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Abstract: The composite quantile regression (CQR) was introduced by
Zou and Yuan [Ann. Statist. 36 (2008) 1108–1126] as a robust regres-
sion method for linear models with heavy-tailed errors while achieving
high efficiency. Its penalized counterpart for high-dimensional sparse mod-
els was recently studied in Gu and Zou [IEEE Trans. Inf. Theory 66 (2020)
7132–7154], along with a specialized optimization algorithm based on the
alternating direct method of multipliers (ADMM). Compared to the vari-
ous first-order algorithms for penalized least squares, ADMM-based algo-
rithms are not well-adapted to large-scale problems. To overcome this com-
putational hardness, in this paper we employ a convolution-smoothed tech-
nique to CQR, complemented with iteratively reweighted �1-regularization.
The smoothed composite loss function is convex, twice continuously differ-
entiable, and locally strong convex with high probability. We propose a
gradient-based algorithm for penalized smoothed CQR via a variant of the
majorize-minimization principal, which gains substantial computational ef-
ficiency over ADMM. Theoretically, we show that the iteratively reweighted
�1-penalized smoothed CQR estimator achieves near-minimax optimal con-
vergence rate under heavy-tailed errors without any moment constraint,
and further achieves near-oracle convergence rate under a weaker mini-
mum signal strength condition than needed in Gu and Zou (2020). Nu-
merical studies demonstrate that the proposed method exhibits significant
computational advantages without compromising statistical performance
compared to two state-of-the-art methods that achieve robustness and high
efficiency simultaneously.
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1. Introduction

Consider a sparse linear regression model y = β∗
0 + xTβ∗ + ε, where y ∈ R is

the response variable, x = (x1, . . . , xp)T is the p-vector of explanatory variables
(covariates), and ε ∈ R is the observation noise. In high-dimensional settings
where the number of covariates considerably exceeds the number of observations,
a common practice is to impose a low-dimensional structure on β∗, the p-vector
of regression coefficients. Over the last three decades, various penalized regres-
sion methods have been developed for fitting high-dimensional models with low
intrinsic dimensions, typified by the L1-penalized least squares method, also
known as the Lasso [34, 9]. We refer to the monographs [8], [18], [37] and [13]
for comprehensive expositions of high-dimensional statistical methods and the-
ory.

One of the main challenges in high-dimensional linear regression is that the
maximum spurious correlation between the covariates and the realized noise can
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be large even when the population counterpart is small. Therefore, the penal-
ized least squares methods are sensitive to the tails of the error distribution,
or equivalently, the response distribution. The statistical properties are often
derived under exponentially light-tailed error distributions [4, 8], including but
not limited to Gaussian, sub-Gaussian or sub-exponential distributions. Heavy-
tailedness, however, has been frequently observed in empirical data, such as the
high-dimensional microarray data as well as financial and economic data. To
cope with heavy-tailed error contamination in high dimensions, many robust
penalized regression methods have been proposed; see, for example, [38], [40],
[27], [26], [11], [1] and [32]. A common thread in these methods is the use of
a robust loss function (that replaces the L2 loss) to achieve either high break-
down point under arbitrary contamination or near-optimal error bounds under
heavy-tailed errors. For the latter, [26] considered the case where ε has a sym-
metric distribution, including the standard Cauchy; [11] and [32] provided a
concentration study for penalized Huber regression with a properly tuned cut-
off parameter when ε has a bounded variance but can be skewed/asymmetric.
To achieve robustness against gross outliers, we refer to [29] the most recent
advance and the references therein.

In this work, we focus on heavy-tailed error contamination in a more general
scenario. When the error distribution is not only heavy-tailed but also asym-
metric, using a classical robust loss function, such as the L1 loss, the Huber
loss and the Tukey loss, may induce non-negligible bias. The impact of this
bias can be alleviated by letting the cut-off parameter in the Huber/Tukey loss
grow with the sample size, yet we still need ε to have finite variance in order
to achieve (near-)optimal convergence rate, and the parameter tuning is quite
delicate in practice. Although the least absolute deviation (LAD) regression
requires no moment condition on ε, the relative efficiency of the LAD can be
arbitrarily small when compared with the least squares [46]. To overcome the
efficiency loss while being robust against heavy-tailed errors, [46] introduced
the composite quantile regression (CQR), as a robust regression method, by
combining quantile information across various quantile levels. The asymptotic
efficiency of the CQR relative to the least squares has a universal lower bound
86.4% [21]. Theoretically, CQR requires the existence of an everywhere non-
vanishing density function of ε without any moment constraint, thus allowing
the infinite variance case. By complementing a composite loss function with
sparsity-inducing penalties, [7] and [17] further proposed penalized composite
quasi-likelihood and quantile regression estimators, respectively.

While the CQR method inherits the robustness property of quantile regres-
sion [22], it also inherits the computational hardness especially in high dimen-
sions. Note that the L1-penalized quantile regression can be recast as a lin-
ear program (LP) [38, 25], solvable by general-purpose optimization toolboxes.
These toolboxes are convenient to use yet are only adapted to small-scale prob-
lems [2]. [42] and [16] proposed more efficient algorithms based on the alternating
direction method of multipliers (ADMM). For penalized CQR, [17] proposed an
ADMM-based algorithm which we will revisit in Section 4.1. The computational
complexity of each ADMM update is of order O(pnq + (p + q)2), where q ≥ 1
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is the number of quantile levels used in the CQR. This can be computationally
intensive when applied to large-scale datasets; see Section 4 for more detailed
discussions.

To extend the capability of CQR with large-scale data, in this paper we
propose a convolution-smoothed CQR (SCQR) method, complemented with
iteratively reweighted L1-penalization for fitting sparse models. Convolution
smoothing turns the piecewise linear check function into a twice continuously
differentiable, convex and locally strongly convex surrogate. Its success has re-
cently been witnessed in the context of quantile regression in both statistical
and computational aspects [15, 19].

Under a Lipschitz continuity condition on the density of ε and sub-Gaussian
(stochastic) designs, we show that the L1-penalized SCQR (SCQR-Lasso) esti-
mator achieves the same rate of convergence as the Lasso estimator when ε is
sub-Gaussian. We do not require the symmetry of the error distribution nor the
existence of any moment, including the mean. Moreover, under a mild minimum
signal strength (also known as the beta-min) condition, we show that the itera-
tively reweighted L1-penalized SCQR estimator converges at a near-oracle rate
O(
√

(s + log q)/n). This reveals the advantage of folded-concave penalization in
terms of its adaptivity to strong signals. Heuristically, the L1 penalty applies
soft-thresholding to all signals ignoring their magnitudes, thus creating a bias
that is of order λ for all non-zero signals, where λ > 0 is the regularization
parameter. Furthermore, we employ a variant of the local adaptive majorize-
minimization (LAMM) algorithm [14] for solving weighted L1-penalized SCQR
estimator. The main idea is to construct an isotropic quadratic objective func-
tion that locally majorizes the smoothed composite quantile loss such that
closed-form updates are available at each iteration. The quadratic coefficient
is adaptively chosen so that the objective function is non-increasing along the
iteration path. Compared to ADMM, LAMM is a simpler gradient-based algo-
rithm that is particularly suited for large-scale problems, where the dominant
computational effort is a relatively cheap matrix-vector multiplication at each
step. The (local) strong convexity of the convolution smoothed loss facilitates
the convergence of such a first order method.

Our work complements [17] in two aspects. The theoretical results in [17] are
derived in the case of fixed designs satisfying conditions (C1) and (C2) therein.
It is unclear whether these conditions hold with high probability for Gaussian or
sub-Gaussian covariates. We provide a random design analysis for sub-Gaussian
covariates. To achieve oracle convergence rate, our beta-min condition is weaker
than that in [17] by relaxing the

√
s-factor, where s denotes the model spar-

sity. Computationally, we develop a fast algorithm for penalized CQR without
sacrificing statistical efficiency by means of convolution smoothing. We believe
that this paper introduces an interesting compromise between robustness, sta-
tistical performance and numerical efficiency for sparse linear regression with
heavy-tailed errors.

This work is also closely related to [39], in which a new robust regres-
sion method is proposed along with a simulation-based procedure for choosing
the regularization parameter. In low dimensions, we refer to [39]’s method as
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pairwise-LAD as it applies LAD regression to the pairwise differences of the
observations, namely, {(yi−yj ,xi−xj)}1≤i �=j≤n. Although CQR and pairwise-
LAD are motivated quite differently, an intriguing connection is that the asymp-
totic relative efficiency of pairwise-LAD is equivalent to that of CQR (compared
to the least squares) when q, the number of quantile levels, goes to infinity. Com-
putationally, [39] reformulates L1-penalized pairwise-LAD as a linear program
with 2n2 + 2p variables and O(n2 + p) constraints. Due to the high computa-
tional complexity and storage cost, generic LP solvers can be extremely slow
in practice. To alleviate the computational burden, [39] suggested using the re-
sampling technique [10] that is able to reduce the effective sample size O(n2)
(for pairwise differences) to O(n).

The rest of the paper is organized as follows. Section 2 starts with a brief
review of (penalized) composite quantile regression, followed by the proposed
convolution smoothed CQR with iteratively reweighted L1-penalization. The
selection of tuning parameters is discussed in Section 2.3. Section 3 provides
the statistical guarantees for penalized SCQR, including a bias analysis and
rates of convergence of the solution path. In Section 4, we first revisit the
ADMM-based algorithm proposed in [17], and then introduce a gradient-based
LAMM algorithm for convolution smoothed CQR. Numerical comparisons of
the three methods, CQR, SCQR and pairwise-LAD, are conducted in Section 5.
All the proofs are placed in the appendix. The Python code for the proposed
method and our implementation of the methods in [17] and [39] is available at
https://github.com/hsmoonjohn/scqr.

2. Sparse composite quantile regression

2.1. Preliminaries

Suppose we observe n independent samples {(xi, yi)}ni=1 of a random variable
(x, y) ∈ R

p × R satisfying the linear model

y = β∗
0 + xTβ∗ + ε = β∗

0 +
p∑

j=1
xjβ

∗
j + ε, (2.1)

where β∗
0 is the intercept, β∗ = (β∗

1 , . . . , β
∗
p)T ∈ R

p is the p-vector of slope
coefficients, and ε denotes the observation noise. Assume that ε is independent
of x, and has cumulative distribution function F (·) and probability density
function f(·). Without loss of generality, we assume β∗

0 = 0; otherwise we set
ε̃ = β∗

0 + ε so that the model becomes y = xTβ∗ + ε̃. Under these assumptions,
the conditional τ -quantile (0 < τ < 1) of y|x is

F−1(τ) +
p∑

j=1
xjβ

∗
j ,

where F−1(τ) := inf{u ∈ R : F (u) ≥ τ} is the τ -quantile of ε.

https://github.com/hsmoonjohn/scqr
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To robustly estimate β∗ in model (2.1), we consider the composite quantile
regression (CQR) approach proposed in [46], which delivers consistent estimates
even when the error distribution has infinite variance and enjoys high efficiency
otherwise [46, 21]. Given a positive integer q, let {τk}qk=1 ⊆ (0, 1) be an increas-
ing sequence of quantile indexes and write α∗

k = F−1(τk). When p < n, the
canonical CQR estimator of β∗, denoted by β̂CQR, is defined as

(α̂1, . . . , α̂q, β̂
CQR) ∈ argmin

α=(α1,...,αq)T∈Rq,

β∈Rp

1
nq

n∑
i=1

q∑
k=1

ρτk(yi − αk − xT
i β)︸ ︷︷ ︸

=: Q̂(α,β)

, (2.2)

where ρτ (u) = {τ−I(u < 0)}u is the check function. In the special case of q = 1,
this becomes the usual quantile regression [22]. [46] established the asymptotic
normality of β̂CQR when the density function f(·) of ε is non-vanishing at the se-
lected quantile levels. Therefore, the root-n consistency of β̂CQR requires no mo-
ment condition on ε, thus allowing very heavy-tailed errors such as the Cauchy
error.

For high-dimensional sparse models in which β∗ is s-sparse with s � n, [17]
proposed the penalized CQR estimator, defined as the global optimum to the
optimization problem

min
α1,...,αq∈R,

β∈Rp

{
1
nq

n∑
i=1

q∑
k=1

ρτk(yi − αk − xT
i β) +

p∑
j=1

Pλ(|βj |)
}
, (2.3)

where Pλ(·) := λ2P (·/λ) for some penalty function P : [0,∞) → [0,∞) and
regularization parameter λ > 0. The regularizer P (·) is allowed to be non-convex
(concave), which helps reduce the bias and leads to oracle estimators when the
signals are sufficiently strong [44]. The most commonly used sparsity-inducing
penalty functions are

(i) L1 function [34]: P (t) = t for t ≥ 0.
(ii) Smoothly clipped absolute deviation (SCAD) penalty [12]: P (0) = 0 and

P ′(t) = I(t ≤ 1) + (a−t)+
a−1 I(t > 1) for t ≥ 0 and some constant a > 2.

(iii) Minimax concave (MC) penalty [43]: P (0) = 0 and P ′(t) = (1− t/a)+ for
t ≥ 0 and some constant a ≥ 1.

Computationally, [17] employed the local linear approximation (LLA) algo-
rithm [45] to obtain an approximate solution to the nonconvex problem (2.3),
which enjoys desirable statistical properties. The LLA algorithm for the opti-
mization problem (2.3) is iterative, starting at iteration 0 with an initial estimate
β̂0 ∈ R

p. At iteration t = 1, 2, . . ., it combines a weighted L1-penalty with the
composite quantile loss to obtain the updated estimates (α̂t, β̂t). The procedure
involves two steps.

1) Using the previous estimate β̂t−1 = (β̂t−1
1 , . . . , β̂t−1

p )T, compute the penalty
weights

wt−1
j = P ′

λ(|β̂t−1
j |) = λP ′(|β̂t−1

j |/λ) ≥ 0, j = 1, . . . , p.
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2) Solve the convex optimization problem

min
α1,...,αq∈R,β∈Rp

{
1
nq

n∑
i=1

q∑
k=1

ρτk(yi − αk − xT
i β) +

p∑
j=1

wt−1
j |βj |

}
(2.4)

to obtain α̂t = (αt
1, . . . , α

t
q)T and β̂t ∈ R

p.

Under the following “beta-min” (minimum signal strength) condition

min
1≤j≤p:β∗

j �=0
|β∗

j | �
√

s log p
n

(2.5)

among other regularity conditions on the non-stochastic design matrix X =
(x1, . . . ,xn)T ∈ R

n×p, [17] showed that initialized with the L1-penalized CQR
(CQR-Lasso) estimator, the LLA algorithm converges to the oracle estimator
in two iterations with high probability.

2.2. Convolution smoothed composite quantile regression

Motivated by the smoothed QR approach [15] that has attractive statistical
properties and computational benefits [19, 33], we propose a penalized smoothed
CQR estimator by complementing the convolution-smoothed composite quan-
tile loss with a folded concave regularizer. We show that the proposed estimator,
computed by a combination of the LLA and the iterative local adaptive majorize-
minimization (LAMM) [14] algorithms, achieves oracle statistical properties un-
der a relaxed “beta-min” condition compared to (2.5). We refer to Section 4 for
a computational comparison between ADMM and LAMM.

For every β ∈ R
p, let F̂ (·;β) be the empirical cumulative distribution func-

tion of the residuals {ri(β) := yi − xT
i β}ni=1. Then, the empirical composite

quantile loss in (2.2) can be written as

Q̂(α,β) = 1
q

∫ ∞

−∞

q∑
k=1

ρτk(u− αk)dF̂ (u;β),

where α = (α1, . . . , αq)T ∈ Rq. Let K : R → [0,∞) be a symmetric, non-
negative kernel function (a function that integrates to 1). For a given sequence
of bandwidth parameters h = hn > 0, we smooth the loss Q̂(·, ·) by

Q̂h(α,β) := 1
q

q∑
k=1

∫ ∞

−∞
ρτk(u− αk)dF̂h(u,β) (2.6)

= 1
nq

n∑
i=1

q∑
k=1

∫ ∞

−∞
ρτk(u)Kh(u + αk − ri(β))du,

where

F̂h(u,β) = 1
n

n∑
i=1

∫ u

−∞
Kh(v − ri(β))dv and Kh(u) = 1

h
K(u/h).
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For each k = 1, . . . ,m, define the convolution smoothed counterpart of ρτk(·) as

�h,k(u) = (ρτk ∗Kh)(u) =
∫ ∞

−∞
ρτk(v)Kh(u− v)dv, (2.7)

where ∗ denotes the convolution operator. Consequently, the smoothed compos-
ite loss Q̂h(α,β) defined in (2.6) can be equivalently written as

Q̂h(α,β) = 1
nq

n∑
i=1

q∑
k=1

�h,k(yi − αk − xT
i β).

Starting with an initial estimate β̂0
h ∈ R

p, we define a sequence of iteratively
reweighted L1-penalized smoothed CQR estimators{

α̂t
h = (α̂t

h,1, . . . , α̂
t
h,q)T, β̂t

h = (β̂t
h,1, . . . , β̂

t
h,p)T

}
t=1,2,...

as follows. At iteration t = 1, 2, . . ., (α̂t
h, β̂

t
h) is defined as a solution to the

convex optimization problem

min
α∈Rq,β∈Rp

{
Q̂h(α,β) +

p∑
j=1

P ′
λ(|β̂t−1

h,j |) · |βj |
}
, (2.8)

where λ > 0 is the regularization parameter. Section 3 establishes the statistical
properties of the solution path {(α̂t

h, β̂
t
h)}t≥1 in the stochastic design setting.

Specifically, we assume that the random covariate vectors xi’s are sub-Gaussian;
see Condition (A3) below. Recall that the theoretical results in [17] are derived
in the case of fixed designs satisfying conditions (C1) and (C2) therein. It is
natural to question whether or not these conditions hold with high probability
for Gaussian or sub-Gaussian covariates. In Section 3.2, we describe a variant of
the LAMM algorithm for solving (2.8), which will be compared to the ADMM
algorithm for solving (2.4) in terms of statistical accuracy and computation
time; see Section 5.

2.3. Selection of tuning parameters

The penalized smoothed CQR method relies primarily on two key tuning param-
eters, the regularization parameter λ and the bandwith h. As for the quantile
indexes, we follow the suggestion in [46] and take τk = k/(q + 1), k = 1, . . . , q
with q = 19. The resulting estimator thus combines the strength across multiple
QR estimators at levels 5%, 10%, . . . , 90%, 95%.

[19] and [33] demonstrated numerically that the convolution-smoothed QR
estimator is rather insensitive to the choice of the bandwidth as long as it
is in a reasonable range (neither too small nor too large). Motivated by [33],
we set the default value of h as max{0.01,

√
τ(1 − τ){log(p)/n}1/4}, where

τ = q−1∑q
k=1 τk. The penalty level λ, on the other hand, has a more visible im-

pact on the performance as it directly controls the sparsity of the solution. One
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general approach is to use K-fold cross-validation (e.g. K = 5 or 10) when given
a set of λ values. If model selection is of more interest than prediction, infor-
mation criteria typically produce much smaller models and thus are preferable.
As a variant of the high-dimensional Bayesian information criterion (BIC) for
penalized QR [24], [17] considered the following BIC in the context of composite
QR:

BIC(λ) := log
(

1
q

n∑
i=1

q∑
k=1

ρτk(yi − α̂k(λ) − xT
i β̂(λ))

)
+ |Ŝλ|

Cn log(p)
n

, (2.9)

where (α̂(λ), β̂(λ)) is a penalized CQR estimator with regularization parameter
λ, Ŝλ is the support of β̂(λ), and Cn is a positive number depending on n.
Typically Cn is chosen as a slowly growing function of n, e.g., Cn = log(logn).

Motivated by the simulation-based method proposed by [3], we further de-
scribe a λ-tuning procedure that is computationally much cheaper than the
cross-validation and BIC methods. The key is to utilize the the pivotal property
of the L1-loss [3].

As we shall see from the theoretical results in Section 3, the magnitude of
λ depends in theory on ‖ω∗‖∞, where ω∗ = (nq)−1∑n

i=1
∑q

k=1{K̄((α∗
h,k −

εi)/h)− τk}xi, and K̄((α∗
h,k − εi)/h) serves as a smoothed proxy of I(εi ≤ α∗

k).
Recall that P(εi ≤ α∗

k) = τk for each k = 1, . . . , q. Therefore, we consider a
pivotal proxy of w∗, defined as

w̃∗ = 1
nq

n∑
i=1

q∑
k=1

{I(ui,k ≤ τk) − τk}xi, uik
i.i.d.∼ Unif(0, 1).

For some constant c > 1 and α ∈ (0, 1), we set

λ∗ = λ∗(c, α) = c · F−1
‖ω̃∗‖∞|X(1 − α), (2.10)

where F−1
‖ω̃∗‖∞|X(1 − α) denotes the (1 − α)-quantile of ‖ω̃∗‖∞ given X =

(x1, . . . ,xn)T. We can calculate λ∗ numerically with any specified precision by
simulation. In particular, we choose (c, α) = (1.9, 0.05) for SCQR-Lasso and
(c, α) = (3.1, 0.05) for SCQR-SCAD, and simulate the conditional distribution
of ‖ω̃∗‖∞ given X based on 200 replications.

3. Statistical analysis

In this section, we establish the statistical properties of the penalized smoothed
CQR estimators {(α̂t

h, β̂
t
h)}t≥1 initialized at β̂0

h = 0 and for an ordered sequence
of quantile indexes 0 < τ1 < · · · < τq < 1 with q ≥ 1. To begin with, Section 3.1
provides non-asymptotic upper bounds on the smoothing bias. Throughout the
section, we assume that β∗ ∈ R

p in model (2.1) is s-sparse, that is, its support
S = {1 ≤ j ≤ p : β∗

j 
= 0} has cardinality s.
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3.1. Smoothing bias

For any h > 0, define the population composite quantile loss Qh(α,β) =
E{Q̂h(α,β)} for α ∈ Rq and β ∈ Rp, and its minimizer

(α∗
h,β

∗
h) ∈ argmin

α∈Rq,β∈Rp

Qh(α,β). (3.1)

We first show that Qh : Rq+p → R is convex under mild regularity conditions.

Lemma 3.1. Assume that the random covariate vector x ∈ Rp is non-degenerate
with Σ̄ = E(x̄x̄T) � 0, where x̄ = (1,xT)T. Moreover, let the kernel function
K(·) and bandwidth h > 0 be such that

min
k=1,...,q

∫ ∞

−∞
K(u)f(F−1(τk) + hu)du > 0, (3.2)

where F and f denote the CDF and density function of ε, respectively. Then,
the population smoothed composite quantile loss Qh : Rq+p → R is convex and
strictly convex at (α∗,β∗), where α∗ = (α∗

1, . . . , α
∗
q)T with α∗

k = F−1(τk).

Condition (3.2) can easily be verified if either the kernel function K(·) or the
density function f(·) is positive everywhere. Without loss of much generality, we
assume the former throughout this section. Intuitively, convolution smoothing
induces bias which allows us to think (α∗

h,β
∗
h) 
= (α∗,β∗) for any given h >

0. By exploiting the independence of ε and x and a strictly positive kernel
(e.g., Gaussian, Laplacian or logistic), we find that β∗

h = β∗ for any h > 0,
and therefore the proposed smoothing mechanism only generates bias on the
intercepts α∗

1, . . . , α
∗
q that are of less interest.

To obtain explicit upper bounds on the (smoothing) bias, we impose the
following regularity conditions of the density function f(·) of ε as well as the
kernel function K(·).
(A1) There exist constants f, l0 > 0 such that mink=1,...,q f(F−1(τk)) ≥ f and

|f(u) − f(v)| ≤ l0|u− v| for all u, v ∈ R.
(A2) The kernel function K(·) is symmetric around zero and positive every-

where. Moreover, κk :=
∫∞
−∞ |u|kK(u)du < ∞ for k ≤ 2, and κ :=

min|u|≤1 K(u) > 0.

Define the function

mh(b) = E

{
1
q

q∑
k=1

�h,k(ε− bk)
}
, b = (b1, . . . , bq)T ∈ R

q, (3.3)

where �h,k = ρτk ∗ Kh. Under assumptions (A1) and (A2), we will show that
mh : Rq → R is strictly convex with a unique minimizer bh = (bh,1, . . . , bh,q)T,
satisfying max1≤k≤q |bh,k−F−1(τk)| � h2. Consequently, the smoothed popula-
tion composite quantile loss Qh : Rq+p → R also has a unique minimizer, which
is (α∗

h,β
∗
h) = (bh,β∗) and satisfies ‖α∗

h −α∗‖∞ � h2.
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Proposition 3.1. Suppose assumptions (A1) and (A2) hold and that Σ̄ is
positive definite. Then, the smoothed population composite quantile loss Qh :
Rq+p → R for any h > 0 is strictly convex and has a unique minimizer given
by (bh,β∗), where bh = (bh,1, . . . , bh,q)T ∈ R

q is the unique minimizer of the
function mh defined in (3.3). Furthermore, provided 0 < h ≤ f/(2κ1/2

2 l0), we
have

|bh,k − f(F−1(τk))| ≤
2κ2l0

f(F−1(τk))
h2 for k = 1, . . . , q. (3.4)

The proposition above suggests that the smoothing bias primarily affects
intercept terms, but this statement only holds true under the assumption of a
homoskedastic error distribution. It is important to note that the theoretical
properties we discuss in the next section rely on this assumption, and therefore
do not apply to data with heteroskedastic errors. We acknowledge that future
work is needed to explore theoretical properties in such cases.

3.2. Oracle rate of convergence

Initialized at β̂0
h = 0, let {(α̂t

h, β̂
t
h)}t≥1 be a sequence of penalized smoothed

CQR estimators defined in (2.8). Without loss of generality, we assume μ =
E(x) = 0; otherwise, we can rewrite model (2.1) as y = β�

0 + (x − μ)Tβ∗ + ε
with β�

0 := β∗
0 +μTβ∗. Hence, it suffices to work with the centered data {(yi,xi−

μ)}ni=1. In addition, we assume that the random covariate x is sub-Gaussian;
see condition (A3) below. For the regularizer Pλ : [0,∞) → [0,∞), we impose
the following conditions that encompass the L1, SCAD and MC penalties.

(A3) (sub-Gaussian covariates) The covariance matrix Σ = (σjk)1≤j,k≤p =
E(xxT) is positive definite. There exist constants ν0, c0 ≥ 1 such that
P(|z̄Tu| ≥ ν0‖u‖2 · u) ≤ c0e

−u2/2 for all u ∈ R
p+1 and u ≥ 0, where

z̄ = Σ̄−1/2x̄ and
Σ̄ = E(x̄x̄T) =

[
1 01×p

0p×1 Σ

]
.

For simplicity, we assume c0 = 1 and write σ2
x = max1≤j≤p σjj . Moreover,

let γ1 ≥ 1 ≥ γp > 0 be the largest and smallest eigenvalues of Σ.
(A4) Pλ(u) = λ2P (u/λ) for u ≥ 0, where the function P : [0,∞) → [0,∞) is

non-decreasing, differentiable almost everywhere on (0,∞), and satisfies
P (0) = 0, 0 ≤ P ′(u) ≤ 1, limu↓0 P

′(u) = 1 and P ′(u1) ≤ P ′(u2) for all
u1 ≥ u2 ≥ 0.

Under condition (A4), (α̂1
h, β̂

1
h) is essentially the L1-penalized smoothed CQR

estimator (SCQR-Lasso), that is,

(α̂1
h, β̂

1
h) ∈ argmin

α∈Rq,β∈Rp

{
Q̂h(α,β) + λ‖β‖1

}
. (3.5)

Without smoothing, [17] obtained the convergence rates (under L2-loss) for the
L1-penalized CQR (CQR-Lasso) estimator (α̂, β̂) ∈ argminα∈Rq,β∈Rp{Q̂(α,β)+
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λ‖β‖1} under fixed designs. For sub-Gaussian (stochastic) designs, we first es-
tablish estimation error bounds for (α̂1

h, β̂
1
h), which complement the results in

[17].
Recall from Proposition 3.1 that (α∗

h,β
∗) is the unique minimizer of the

population loss Qh. Write α∗
h = (α∗

h,1, . . . , α
∗
h,q)T ∈ R

q. For the smoothed loss
Q̂h(α,β), define its partial gradient vectors at (α∗

h,β
∗) as

ζ∗ := ∇αQ̂h(α∗
h,β

∗) = 1
nq

n∑
i=1

⎡⎢⎣K̄((α∗
h,1 − εi)/h) − τ1

...
K̄((α∗

h,q − εi)/h) − τq

⎤⎥⎦ ∈ R
q, (3.6)

ω∗ := ∇βQ̂h(α∗
h,β

∗) = 1
nq

n∑
i=1

q∑
k=1

{K̄((α∗
h,k − εi)/h) − τk}xi ∈ R

p, (3.7)

where K̄(u) =
∫ u

−∞ K(t)dt.
The key elements of our analysis are (i) a cone-like property for β̂1

h−β∗, and
(ii) a local restricted strong convexity (RSC) property for the empirical loss Q̂h,
which is based on the function

D(α,β) :=
〈
∇Q̂h(α,β) −∇Q̂h(α∗

h,β
∗),
[
α − α∗

h
β − β∗

]〉
, α ∈ R

q,β ∈ R
p. (3.8)

For any regularization parameter λ > 0, define the event

G(λ) :=
{
‖ζ∗‖∞ ≤ 3λ/(2q), ‖ω∗‖∞ ≤ λ/2

}
(3.9)

and the restricted (cone-like) set

C = C(S) :=
{[

δ
Δ

]
∈ R

q+p : ‖ΔSc‖1 ≤ 3‖ΔS‖1 + 3q−1/2‖δ‖2

}
. (3.10)

It can be shown that
[
α̂1

h − α∗

β̂1
h − β∗

]
∈ C(S) conditioned on G(λ). Proposition 3.2

below validates that for all sufficiently large λ, the event G(λ) holds with high
probability.

Proposition 3.2. Under assumption (A3), the event G(λ) holds with proba-
bility at least 1 − 2q exp(−9nλ2/2) − 2p exp{−nλ2/(32ν2

0σ
2
x)}.

Due to high dimensionality, the empirical loss Q̂h : Rq×R
p → R does not have

a curvature along all directions. In fact, there exists a subspace with dimension
at least p−n of directions in which it is completely flat. Instead, it can be shown
that the cone-like subset C = C(S) is well-aligned with the curved directions of
the Hessian of Q̂h in a local region with high probability, which we refer to as
the local RSC property. For r, l > 0, define the (rescaled) �2-ball and �1-cone as

BΩ(r) :=
{[

δ
Δ

]
∈ R

q+p : ‖(δT,ΔT)T‖Ω ≤ r

}
(3.11)
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and CΩ(l) :=
{[

δ
Δ

]
∈ R

q+p : ‖(δT,ΔT)T‖1 ≤ l‖(δT,ΔT)T‖Ω

}
, (3.12)

where
Ω =

[
Iq 0q×p

0p×q Σ

]
∈ R

(q+p)×(q+p).

Here, for a matrix A, ‖ · ‖A denote the vector norm induced by A : ‖u‖A =
‖A1/2u‖2. For any curvature parameter c > 0, radius parameter r > 0, and
cone parameter l > 0, define the event

R(c, r, l) :=
{
D(α,β) ≥ c

(
‖Δ‖2

Σ + q−1‖δ‖2
2
)

for all
[
δ
Δ

]
∈ BΩ(r) ∩ CΩ(l)

}
,

(3.13)

where δ = α − α∗
h ∈ R

q, Δ = β − β∗ ∈ R
p. The following proposition shows

that under certain conditions on (s, p, n) and h, there exists some curvature
parameter c > 0 such that event R(c, r, l) occurs with high probability.

Proposition 3.3. Let assumptions (A1), (A2), and (A3) hold. Furthermore,
assume maxk=1,...,q f(F−1(τk)) ≤ f for some constant f > 0. Then, the event
R(c, r, l) with c = 0.5f · κ holds with probability at least 1 − q/(2p) as long as

12ν2
0r ≤ h ≤ f/{max(4κ1/2

2 l0, 2l0)} and n ≥ C(ν0σxl/fr)2fh log(2p),

where C > 0 is a constant independent of (n, s, p, h).

Based on the above preparations, we are now ready to present the first main
result of this subsection regarding the estimation error of the SCQR-Lasso es-
timator defined in (3.5).

Theorem 3.1. Assume maxk=1,...,q f(F−1(τk)) ≤ f for some constant f > 0.
Under assumptions (A1)–(A3), the SCQR-Lasso estimator (α̂h, β̂h) with λ �
ν0σx

√
log(2p)/n satisfies the following error bound∥∥∥∥∥ α̂h−α∗

h√
q

β̂h − β∗

∥∥∥∥∥
Ω

≤ Cf−1s1/2λ (3.14)

with probability at least 1 − q/p, provided that the bandwidth h satisfies

max
{
σx

f

√
sq log(2p)

n
,
σ2
xf

f2
max(s, q) · log(2p)

n

}
� h � f/l0,

where C > 0 is a constant independent of (n, s, p, h).

The above theorem shows that the L1-penalized SCQR estimator achieves
the same rate of convergence as the L1-penalized quantile regression estima-
tor [3], with a proper choice of the bandwidth parameter h, which is yet flex-
ible. Moreover, Theorem 3.1 indicates that, the regularization parameter λ �
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ν0σx

√
log(2p)/n is independent of the error distibution, which alleviates the dif-

ficulty of tuning parameter selection of the LS estimator that typically depends
on the standard deviation of the error distribution, and of the high-dimensional
CQR estimator by [17] that is dependent on the minimum density of the error
distribution at each quantile level.

As we can observe from Proposition 3.1 and Theorem 3.1, the bandwidth pa-
rameter h adapts to the sample size n, quantile parameter q and dimensionality
p to achieve a tradeoff between statistical accuracy and computational stability.
When error distribution is independent of covariates, the larger the bandwidth,
the bias on the intercept terms gets larger while making the sample size re-
quirement in Theorem 3.1 more lenient. Also, when the dimension p and the
quantile parameter q get larger, the bandwidth should get larger to adapt to the
requirement in Theorem 3.1, which makes the bias larger. On the other hand,
when the bandwith parameter is small, the bias gets smaller. However, smaller
bandwidth require more sample size to satisfy the sample size requirement in
Theorem 3.1, and makes gradient term less stable computaionally dut to 1/h
term inside it.

In [33], they have assumed sub-exponential random vector for the design
matrix when deriving the error rate, which is arguably the weakest moment
condition in high-dimensional regression analysis under random design. This
random design plays crucial role for deriving probability bound of restrictive
strong convexity. We expect the sub-Gaussian condition can be relaxed to sub-
exponential condition by following the proof of Theorem 4.2 of [33]. However,
to derive a prediction error bound for our estimator, sub-Gaussianity is crucial,
as well as for the strong oracle property which will be discussed in the follow-
ing section. For the sake of brevity, only sub-Gaussian design is considered for
deriving the error bound. As a corollary, we derive a prediction error bound for
β̂h, which is a direct consequence of Theorem 3.1.

Corollary 3.1. Under the conditions of Theorem 3.1, it holds

1√
n
‖X(β̂h − β∗)‖2 � f−1ν0σxs

1/2
(

log p
n

)1/2
(3.15)

with probability at least 1 − (q + 2)/p.

Next, we investigate the statistical properties of the iteratively reweighted
L1-penalized estimators (α̂t

h, β̂
t
h) when t ≥ 2. Define the error vectors

θt =
[

α̂t
h−α∗

h√
q

β̂t
h − β∗

]
∈ R

q+p, t = 1, 2, . . . .

The following result characterizes the dependence of the estimation error ‖θt‖2
at t-th step on ‖θt−1‖2 from the previous step. It reveals how iteratively re-
weighted L1-penalization refines the statistical rate when the signals are suf-
ficiently strong. We first derive a deterministic bound of the estimation error,
conditioned on some “good” events.
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Theorem 3.2. Suppose assumptions (A1)–(A4) hold, and let a0, c > 0 be such
that

P ′(a0) > 0 and
√

1 + {P ′(a0)}2/2 < a0cγp. (3.16)

Furthermore, let b > 0 satisfy√
b2 + 1

2 P ′(a0) + 2 = a0cγp · b, (3.17)

and define ropt = a0b(γps)1/2λ. Then, conditioned on G(P ′(a0)λ) ∩ R(c, r, l)
with r ≥ q1/2ropt and l = 4γ−1/2

p

√
2 · max(s, q), the sequence of solutions

{(α̂t
h, β̂

t
h)}t≥1 to programs (2.4) satisfies

‖θt‖Ω ≤ δ · ‖θt−1‖Ω + c−1
{
γ−1/2
p ‖P ′

λ((|β∗
S | − a0λ)+)‖2 + ‖ω∗

S‖2

}
︸ ︷︷ ︸

=: rora

+ c−1√q‖ζ∗‖2, (3.18)

where δ :=
√

1 + {P ′(a0)}2/2/(a0cγp) ∈ (0, 1). In addition, it holds for for any
t ≥ 2 that

‖θt‖Ω ≤ δt−1ropt + (1 − δ)−1(rora + c−1√q‖ζ∗‖2). (3.19)

The above theorem shows that under proper conditions on the curvature
parameter c and penalty function, the estimation error, at least its leading
term, can be refined iteratively via reweighted L1-penalization. From (3.18) we
see that there are three terms on the right-hand side that cannot be improved,
which are

‖ω∗
S‖2, ‖P ′

λ((|β∗
S | − a0λ)+)‖2 and √

q‖ζ∗‖2.

The first term, ‖ω∗
S‖2, determines the oracle convergence rate because it cor-

responds to the estimation error of the oracle SCQR estimator when only the
significant covariates (indexed by S) are used in the fitting. The oracle SCQR
estimator is formally defined as

(α̂o, β̂o) = argmin
(α,β)∈R

q×R
p

βSc=0

Q̂h(α,β), (3.20)

where subscript h is ommited for the brevity of notation. The second term
‖P ′

λ((|β∗
S |−a0λ)+)‖2 is the shrinkage bias induced by the penalty function. For

the L1-penalty Pλ(t) = λt (t ≥ 0), it is easy to see that this term is of order s1/2λ
regardless of how large the non-zero coordinates of β∗ are (in magnitude). For a
concave penalty that has a decreasing P ′

λ, there is a chance that this shrinkage
bias might be reduced when the signals are sufficiently strong. A concave penalty
function Pλ satisfying (A4) is called folded concave if it further satisfies the
following property.
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(A5) a∗ := inf{a > 0 : P ′(a) = 0} is finite.

Under assumption (A5) and the minimum signal strength condition (also
known as the beta-min condition) that ‖β∗

S‖min ≥ (a0 + a∗)λ, the shrinkage
bias becomes zero. The third term, √q‖ζ∗‖2, depends on the partial gradient
of the empirical loss with respect to α. Therefore, its order is independent of p
and only scales with q.

Recall that Theorem 3.2 is a deterministic result conditioned on some “good”
event related to the local RSC structure and the magnitude of the gradient of
the empirical loss. Combining Theorem 3.2 with Propositions 3.2 and 3.3, we
further provide a complete result characterizing the oracle convergence rate of
the iteratively reweighted L1-penalized SCQR estimator under a weaker beta-
min condition than needed in [17].

Theorem 3.3. Suppose assumptions (A1)–(A5) hold, and that there exist a1 ≥
a∗ > a0 > 0 such that

P ′(a0) > 0 and
√

4 + 2{P ′(a0)}2 < a0γpκf. (3.21)

Moreover, let the regularization parameter λ and bandwidth h satisfy λ �
ν0σx

√
log(2p)/n and

max
{
C1

√
sq log(2p)

n
,C2

max(s, q) · log(2p)
n

}
� h � f/l0,

where C1 = σxν
3
0 and C2 = σ2

xν
6
0ff

−2. Then, for any z > 0, under the beta-min
condition ‖β∗

S‖min ≥ (a0 + a1)λ, the iteratively reweighted L1-penalized SCQR
estimator (α̂t

h, β̂
t
h) with t � log log(2p)/ log(1/δ) satisfies the bounds

‖β̂t
h − β∗‖2 � f−1

√
s + log q + z

n
,

‖α̂t
h −α∗‖2 � f−1q1/2

(√
s + log q + z

n
+ h2

)
with probability at least 1 − q/p − 2e−(s+z) as long as n � s log p + log q + t,
where δ =

√
4 + 2{P ′(a0)}2/(a0γpκf) ∈ (0, 1).

Theorem 3.3 shows that under a beta-min condition ‖β∗
S‖min �

√
log(p)/n,

the proposed estimator (of β∗) achieves a near-oracle rate
√

(s + log q)/n after
as many as log(log p) steps, where q ≥ 1 is a predetermined number of quantile
levels. This complements the strong oracle property established in [17], which
requires the minimum signal strength to be of order

√
s log(p)/n.

3.3. Strong oracle property

To establish the strong oracle property of our proposed multi-step estimator
(α̂t

h, β̂
t
h), we need to show that the estimator equals to the oracle estimator
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defined in (3.20) for sufficiently large t. We define a similar event that resembles
the local RSC property. Let

Drsc(α1,β1,α2,β2) := 〈∇Q̂h(α1,β1) −∇Q̂h(α2,β2), (αT
1 −αT

2 ,β
T
1 − βT

2 )T〉
‖β1 − β2‖2

Σ + q−1‖α1 −α2‖2
2

.

(3.22)

Given radius parameters r, l > 0 and a curvature parameter c > 0, define

Rrsc(r, l, c) :=
{
Drsc(α1,β1,α2,β2) ≥ c for all (α1,β1,α2,β2) ∈ Λ(r, l)

}
,

(3.23)

where

Λ(r, l) := ∩q
k=1Λk(r, l) ∩ {(α1,β2,α2,β2) :

[
α2 −α∗

h

β2 − β∗

]
∈ BΩ(r/2), (β2)Sc = 0},

Λk(r, l) := {(α1,β1,α2,β2) :
[
α1k − α2k
β1 − β2

]
∈ BΣ̄(r) ∩ CΣ̄(l)}. (3.24)

Theorem 3.4. Suppose assumptions (A1)–(A5) hold, and for some predeter-
mined δ ∈ (0, 1) and c > 0, there exist constants a1 > a0 > 0 such that

P ′(a1) = 0, P ′(a0) > 0, and a0δcγp >
√

1 + P ′(a0)2/2. (3.25)

Moreover, let r ≥ q1/2γ
1/2
p a0bs

1/2λ and l =
√

2{2 + 2/P ′(a0)} ·
[
max{q, (1 +

b2)s}/γp
]1/2, where b > 0 is a constant that satisfies√

1 + b2

2 P ′(a0) + 1 = a0cγpb. (3.26)

Assume ‖β∗
S‖min ≥ (a0 + a1)λ. Then, conditioned on the event

{‖∇βQ̂h(α̂o, β̂o)‖∞ ≤ λ/2} ∩ {‖θo‖Ω ≤ r/2} ∩ Rrsc(r, l, c)

∩
{
‖β̂o − β∗‖∞ ≤

[
a0 −

√
1 + {P ′(a0)/2}2

δcγp

]
λ

}
(3.27)

where

θo =
[

α̂o−α∗
h√

q

β̂o − β∗

]
,

the strong oracle property holds: β̂� = β̂o provided � ≥ log(s1/2/δ)/ log(1/δ).

Similar to the Theorem 3.2, Theorem 3.4 is a deterministic result that de-
pends on the event described in (3.27). Thus, our next goal is to control the
probability of the event (3.27). To control such probability, we require devia-
tion bound and a non-asymptotic Kiefer-Bahadur representation of the oracle
estimator that are of independent interest.
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(A1’) In addition to Condition (A1), assume supu∈R |fε(u)| ≤ f for some con-
stant f > 0.

(A2’) In addition to Condition (A2), assume supu∈R K(u) ≤ κu for some κu ∈
(0, 1].

Since the oracle estimator is essentially an unpenalized smoothed CQR esti-
mator in the low-dimensional regime where s � n, we need to derive relevant
results for the low-dimensional smoothed CQR estimator. The following propo-
sition summarizes those results about the oracle estimator that is essential to
deriving necessary conditions for the strong oracle property. Same result has
been derived in low dimensional smoothed CQR paper by [41], we refer their
paper for detailed proof of the following result.

Proposition 3.4. Assume Conditions (A1’), (A2’), and (A3) hold. Then, for
any t ≥ 0, the oracle estimator (α̂o, β̂o) defined in (3.20) satisfies∥∥∥∥∥ α̂o−α∗

h√
q

β̂o − β∗

∥∥∥∥∥
Ω

� f−1
√

s + t

n
(3.28)

with probability at least 1 − 2qe−t.
Moreover, let S = E(xSx

T
S), and D := q−1∑q

k=1 fε(F−1(τk))S. Then,∥∥∥∥∥D(β̂o − β∗) + 1
nq

n∑
i=1

q∑
k=1

{K̄((α∗
k − εi)/h) − τk}xi,S

∥∥∥∥∥
2

� (s + t)
h1/2n

+ h3/2

√
q(s + t)

n
+ h4

with probability at least 1 − 3qe−t.

Before presenting our final theorem that characterizes the strong oracle prop-
erty, there is one more event that we need to make sure that it holds with high
probability, which is Rrsc(r, l, c). The following Proposition characterizes the
event and its probability bound.

Proposition 3.5. Let r, l, and h satisfy

24ν2
0r ≤ h ≤ f/{max(4κ1/2

2 l0, 2l0)} and nh ≥ Cff−2 max{s, l2 log(p)},
(3.29)

for some sufficiently large constant C independent of (n, s, p, h). Then, the event
Rrsc(r, l, c) holds with probability at least 1 − q/(2p) with c = 0.5κ · f .

With the above preparations, we finally establish the strong oracle property
of our iterative estimator.

Theorem 3.5. Assume (A1’), (A2’), and (A3)–(A5) hold. Assume also that

max
j∈Sc

‖JjS(JSS)−1‖1 ≤ A0 (3.30)



Sparse composite quantile regression 2085

for some A0 ≥ 1, where J := q−1∑q
k=1 fε(F−1(τk))Σ. Moreover, let μ4 :=

supu∈Sp E|Σ̄−1/2x̄Tu|4 < ∞. For a predetermined δ ∈ (0, 1), suppose there
exist a1 > a0 satisfying (3.25) with c = 0.5κf , and the beta-min condition
‖β∗

S‖min ≥ (a0+a1)λ. Let the smoothing bandwidth h � {log(p)/n}1/4 and λ �√
log(p)/n. Then, β̂t = β̂o for all t ≥ �log(s1/2/δ)/ log(1/δ)� with probability

at least 1 − 2q/p − (5q + 1)/n, provided that the sample size satisfies n �
max{s8/3/(log p)5/3, s4/3 log(p)}.

The above strong oracle property theorem, the required beta-min condition
is ‖β∗

S‖min �
√

log(p)/n which further complements the strong oracle property
established in [17].

4. Algorithms

In this section, we discuss the computational methods for penalized composite
quantile regression, with a particular focus on the weighted L1-penalty. We
first revisit the ADMM-based algorithm proposed in [17], and then describe a
local adaptive majorize-minimization (LAMM) for convolution-smoothed CQR.
Complexities of the two algorithms are also discussed.

4.1. An alternating direction method of multipliers algorithm

The computation of either L1-penalized or folded concave penalized composite
quantile regression boils down to solving a weighted L1-penalized problem

min
α,β

{
1
nq

n∑
i=1

q∑
k=1

ρτk(yi − αk − xT
i β) +

p∑
j=1

λj |βj |
}
, (4.1)

where λj ≥ 0 for j = 1, . . . , d. A conventional strategy is to formulate (4.1)
as a linear program, solvable by general-purpose optimization toolboxes. These
toolboxes are convenient to use yet are only adapted to small-scale problems. To
solve (4.1) more efficiently under high-dimensional settings, [17] proposed an al-
gorithm based on the alternating direction method of multipliers (ADMM). The
idea is to cast (4.1) as an equivalent program solvable by ADMM. Specifically,
they consider the following reformulation

minimize 1
nq

n∑
i=1

q∑
k=1

ρτk(zik) +
p∑

j=1
λj |γj |

subject to Z = 1T
q ⊗ y − 1n ⊗αT − 1q ⊗ (Xβ),γ = β,

where Z = (zik)n×q ∈ R
n×q with zik = yi−αk −xT

i β, X = (x1,x2, . . . ,xn)T ∈
R

n×p and γ = (γ1, . . . , γp)T. Here ⊗ denotes the Kronecker product. Let ϕ =
(αT,βT)T ∈ R

p+q be the total vector of parameters (of interest). The augmented
Lagrangian of the above problem is

Lσ(ϕ,Z,γ,U ,v) := 1
nq

n∑
i=1

q∑
k=1

ρτk(zik) +
p∑

j=1
λj |γj | + 〈vec(U), vec(Z) + X1ϕ〉
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+ 〈v,γ − X2ϕ〉 + σ

2 ‖vec(Z) + X1ϕ− Y ‖2
F + σ

2 ‖γ − X2ϕ‖2
2,

(4.2)

where U = (uik) ∈ R
n×q and v = (v1, . . . , vp)T are the Lagrangian multipliers,

Y = 1q ⊗ y is an (nq)-dimensional vector that stacks q copies of y ∈ R
n one

underneath the other, σ > 0 is a optimization parameter and

X1 =

⎛⎜⎝1n . . . 0 X
...

. . .
...

...
0 . . . 1n X

⎞⎟⎠ ∈ R
(nq)×(p+q), X2 = (Op×q Ip) ∈ R

p×(p+q).

Moreover, let us define Proxτ (v, a) := v − max{(τ − 1)/a,min(v, τ/a)}, and
Shrink(v, a) := sign(v)(|v| − a)+. The former is the proximity operator of the
check loss ρτ with respect to parameter a > 0, and the latter is the proximity
operator of | · |, also known as the soft-thresholding operator. The ADMM-based
algorithm [17] for solving problem (4.1) is summarized in Algorithm 1.

Algorithm 1 The ADMM Algorithm for Solving Weighted L1-penalized CQR
Input: Initialize with (ϕ0,Z0, γ0,U0, v0), where ϕ0 = ((α0)T, (β0)T)T

For t = 0, 1, . . ., repeat the following steps until convergence.
1. Update

ϕt+1 =
1
σ

(XT
1 X1 + X

T
2 X2)−1 ·

[
X

T
1 {σY − σvec(Zt) − vec(U t)} + X

T
2 (σγt + vt)

]
(4.3)

2. Update

zt+1
ik = Proxτk

(
yi − αt+1

k − xT
i β

t+1 − ut
ik

σ
, nqσ

)
, 1 ≤ i ≤ n, 1 ≤ k ≤ q, (4.4)

γt+1
j = Shrink

(
βt+1
j −

vtj

σ
,
λdj

σ

)
, 1 ≤ j ≤ p. (4.5)

3. Update

vec(U t+1) = vec(U t) + σ{vec(Zt+1) + X1ϕ
t+1 − Y },

vt+1 = vt + σ(γt+1 − X2ϕ
t+1).

4.2. A local adaptive majorize-minimization algorithm for smoothed
CQR

In this section, we focus on solving a smoothed version of (4.1) with each ρτk
replaced by �h,k = ρτk ◦ Kh. To take advantage of the smoothness and the
local strong convexity of the smoothed loss, we employ a variant of the local
adaptive majorize-minimization algorithm (LAMM) proposed by [14]. The main
idea of LAMM is to construct an isotropic quadratic objective function that
locally majorizes the smoothed composite quantile loss such that closed-form
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updates are available at each iteration. To see this, recall the smoothed objective
function Q̂h(α,β) = (nq)−1∑n

i=1
∑q

k=1 �h,k(yi−αk−xT
i β). For k = 1, 2, . . ., let

ϕk = ((αk)T, (βk)T)T be the iterate after the k iteration. At the k-th iteration,
for some sufficiently large quadratic parameter φk > 0, we define a locally
majorizing isotropic quadratic function

F (ϕ;φk,ϕ
k−1) := Q̂h(ϕk−1) + 〈∇Q̂h(ϕk−1),ϕ−ϕk−1〉 + φk

2 ‖ϕ−ϕk−1‖2
2,

(4.6)

satisfying F (ϕk−1;φk,ϕ
k−1) = Q̂h(ϕk−1). For a large enough φk, say no less

than the largest eigenvalue of ∇2Q̂h(ϕk−1), we have F (ϕ;φk,ϕ
k−1) ≥ Q̂h(ϕ)

for all ϕ. Then, we define the updated iterate ϕk = ((αk)T, (βk)T)T as the
solution to

min
ϕ

{F (ϕ;φk,ϕ
k−1) + ‖λ ◦ β‖1}, (4.7)

where λ = (λ1, . . . , λp)T. It is easy to see that

Q̂h(ϕk) + ‖λ ◦ βk‖1 ≤ F (ϕk;φk,ϕ
k−1) + ‖λ ◦ βk‖1 (4.8)

≤ F (ϕk−1;φk,ϕ
k−1) + ‖λ ◦ βk−1‖1 = Q̂h(ϕk−1) + ‖λ ◦ βk−1‖1.

This ensures that the objective function (with penalty) decreases after each it-
eration. From the first-order optimality condition we obtain the following closed
forms for αk and βk:

αk
j = αk−1

j − φ−1
k ∂αj Q̂h(ϕk−1), j = 1, 2, . . . , q,

βk
j = Shrink(βk−1

j − φ−1
k ∂βj Q̂h(ϕk−1), φ−1

k λj), j = 1, . . . , p.

To choose a sufficiently large quadratic coefficient φk that ensures majorization
property, we start from a relatively small number, say φ0 = 0.01, and succes-
sively inflate it by a factor γ > 1, denoted by φk,l = γlφ0 for l = 1, 2, . . .. If the
solution ϕk,l to (4.7) with φk = φk,l satisfies (4.8) for some l ≥ 0, we stop the
search and set φk = φk,l. Therefore, the quadratic coefficient φk is automatically
determined at each step. By default, we set the optimization parameters to be
(φ0, γ) = (0.01, 1.25). We summarize the whole procedure in Algorithm 2.

From Algorithms 1 and 2 we see that the dominant computational effort of
each LAMM update is the multiplication of a p×nq matrix and (nq)-dimensional
vectors, which can be implemented in O(pnq) operations. In addition to this,
each ADMM update also involves the multiplication of a (p + q) × (p + q)
matrix and (p + q)-dimensional vectors with a complexity O(pnq + (p + q)2).
Moreover, the ADMM needs to compute and store the inverse of XT

1X1+X
T
2X2 ∈

R(p+q)×(p+q), hence incurring extra computational cost and memory allocation.
Via the Sherman-Morrison-Woodbury formula, the real computational effort of
this step is to evaluate the inverse of an n× n matrix (with complexity O(n3)),
which is still expensive when n is large.



2088 H. Moon and W.-X. Zhou

Algorithm 2 The LAMM Algorithm for Smoothed CQR with Weighted L1-
penalization

Input: Initialize with α0 = 0 and β0 = 0
For k = 0, 1, . . ., repeat the following steps until convergence.

1. Set φk = max{φ0, φk−1/γ}.
2. Update

αk
j = αk−1

j − φ−1
k ∂αj Q̂h(ϕk−1), j = 1, 2, . . . , q,

βk
j = Shrink(βk−1

j − φ−1
k ∂βj

Q̂h(ϕk−1), φ−1
k λj), j = 1. . . . , p.

3 If F (ϕk;φk,ϕ
k−1) < Q̂h(ϕk), set φk = γφk and repeat Step 2 until F (ϕk;φk,ϕ

k−1) ≥
Q̂h(ϕk).

Figure 1 shows a preliminary comparison between the ADMM and LAMM
algorithms for computing L1-penalized CQR estimators on a simulated dataset
with increasing n, p subject to p = 5n. To make comparisons that are as fair
as possible, each algorithm is implemented in Python, using the NumPy library
for basic linear algebra operations. On the statistical aspect, the CQR-Lasso
(by ADMM) and SCQR-Lasso (by LAMM) estimators exhibit nearly identical
estimation errors (under squared model error); in a speed comparison, the run-
time of ADMM grows significantly faster than that of LAMM as the sample
size and dimension increase. These preliminary numerical results show evidence
that LAMM can also be faster than ADMM by several orders of magnitude.
More empirical evidence will be given in the next section.

5. Numerical studies

Recall that composite quantile regression was introduced by [46] as a robust
regression method for linear models with heavy-tailed errors that may have in-
finite variance. The relative efficiency of CQR compared to the least squares
is at least 70% regardless the error distribution, could be arbitrarily close to
95.5% in the Gaussian model and arbitrarily large with very heavy-tailed er-
rors. The least absolute deviation (LAD) regression, however, may have an ar-
bitrarily small relative efficiency with respect to the least squares. Recently, [39]
introduced a new robust method for high-dimensional regression along with a
simulation-based procedure for choosing the regularization parameter. In the
Gaussian model, their oracle estimator achieves the same asymptotic relative
efficiency (with respect to the least squares) as the CQR.

In the following simulation study, we first compare the penalized SCQR
method with its non-smoothed counterpart [17], and then with the robust re-
gression method proposed by [39] when the tuning parameters are automatically
chosen for both methods. Data are generated independently from the linear
model

y = xTβ∗ + ε, x ∼ Np(0,Σ), (5.1)



Sparse composite quantile regression 2089

Fig 1. A numerical comparison between CQR via ADMM and SCQR via LAMM. Panels (a)
and (b) display, respectively, the “model error versus sample size” curve and the “runtime
versus sample size” curve. The sample size n increases from 20 to 200, and the dimension p
is set as 5n.

where β∗ = (3, 1.5, 0, 0, 2, 0, . . . , 0)T ∈ R
p and Σ = (0.5|j−k|)1≤j,k≤p. Indepen-

dent of x, the observation noise ε is generated from one of following four distri-
butions:

(a) The normal distribution with mean 0 and variance 3—N(0, 3).
(b) The mixture normal (MN) distribution—

√
6×{0.5N(0, 1)+0.5N(0, 0.56)}.

(c) The t-distribution with 3 degrees of freedom—t3.
(d) The standard Cauchy distribution with the density f(t) = 1/{π(1 + t2)}.

We consider two moderate-scale settings with (n, p) = (100, 600) and (n, p) =
(200, 1200).

The statistical performance of each method is measured via the (average)
squared model error (with the standard error in the parenthesis), which is
‖β̂ − β∗‖2

Σ, the number of false positive results (FP), which is the number
of spurious covariates that are selected, and the number of true positive results
(TP), which is the number of significant covariates that are selected. For the
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implementation of CQR, we set q = 19 and choose quantile levels τk = k/20 for
k = 1, . . . , 19.

The theoretical bandwidth requirements suggested in Theorem 3.1 is not scale
invariant, which is not a good property in applications. In [15], the authors have
evaluated their smoothed quantile regression estimator at the rule-of-thumb
bandwidth of [30], which is hROT = 1.06ŝn−1/5, where ŝ is the minimum be-
tween the sample standard deviation and the interquartile range (divided by
1.38898) of the standard median regression estimator’s residuals. In [33], they
have shown that the results are insensitive to the choice of the bandwith pro-
vided that it is in a reasonable range (neither too small nor too large). In our
numerical simulation, we endorsed their choice of the bandwidth parameter
h = max

{
0.05,

√
τ(1 − τ){log(p)/n}1/4} which is scale invariant, with slight

modification that we put τ = q−1∑q
k=1 τk.

Table 1 summarizes the simulation results for CQR-Lasso, SCQR-Lasso and
SCQR-SCAD that uses the SCAD penalty to compute the weights in (2.8).
For a fair comparison between the two methods in terms of statistical and
numerical efficiency, we first compute an “oracle” λ value based on the true
model error ‖β̂ − β∗‖Σ for each estimator. To be specific, we first compute
each estimator along a predetermined sequence of λ values, and choose the λ
that minimizes the true model error averaged over 50 replications. Next, we
run 100 additional simulations for each method using the optimally chosen λ,
and report the results in Table 1. When the L1 penalty is used, the SCQR has
slightly lower model errors than the CQR yet at the cost of more false positives.
From the runtime comparison we see a significant computational advantage of
the SCQR via LAMM over the CQR via ADMM. As mentioned in Section 3.2,
both algorithms are implemented in Python using the NumPy library for basic
linear algebra operations. Moreover, with the optimally chosen λ, the SCQR-
SCAD estimator considerably outperforms the Lasso counterparts and achieves
oracle-like performance.

We further implement both methods with λ chosen by two data-driven pro-
cedures, the (five-fold) cross-validation and a modified BIC method; see Sec-
tion 2.3 for details. Under the four error distributions, Tables 2 and 3 show
the simulation results for CQR-Lasso, SCQR-Lasso and SCQR-SCAD with λ
chosen by five-fold cross-validation and BIC, respectively. Statistically, the L1-
penalized CQR and SCQR methods perform similarly in terms of model se-
lection accuracy and estimation accuracy (for β∗). This empirically validates
the theoretical results that smoothing only affects the intercept terms and thus
does not compromise the estimation of β∗. The runtime comparison, on the
other hand, shows that the computational cost of ADMM, combined with either
cross-validation or BIC, becomes prohibitive as soon as the data has moderately
large scales.

We end this section with a numerical comparison of the (smoothed) compos-
ite quantile regression method and the robust regression method proposed by
[39]. The latter is a combination of the pairwise difference technique and LAD
regression. For simplicity, we focus on L1-penalization. Following the terminol-
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Table 1

Statistical performance comparison between the CQR (via ADMM) and the SCQR (via
LAMM) estimators under linear model (5.1) with four error distributions. Optimally chosen

λ values are used for both methods.
n = 100, p = 600 n = 200, p = 1200

Error Method ME TP FP Runtime ME TP FP Runtime
N(0, 3) CQR (Lasso) 0.7680 (0.41) 3 11.62 21.05 0.3581 (0.14) 3 14.66 166.01

SCQR (Lasso) 0.6617 (0.26) 3 18.37 0.88 0.3317 (0.15) 3 24.31 1.21
SCQR (SCAD) 0.1096 (0.99) 3 0.06 0.46 0.0474 (0.04) 3 0.04 0.81

MN CQR (Lasso) 0.3871 (0.18) 3 10.15 18.95 0.1940 (0.08) 3 12.65 147.39
SCQR (Lasso) 0.3298 (0.16) 3 17.87 0.72 0.1808 (0.06) 3 23.89 1.08
SCQR (SCAD) 0.0484 (0.04) 3 0.06 0.44 0.0290 (0.02) 3 0.03 0.79

t3 CQR (Lasso) 0.4131 (0.23) 3 10.3 19.78 0.2196 (0.09) 3 12.78 150.94
SCQR (Lasso) 0.3661 (0.17) 3 17.57 0.81 0.1839 (0.08) 3 23.58 1.15
SCQR (SCAD) 0.0561 (0.05) 3 0.04 0.52 0.0246 (0.02) 3 0.03 0.88

Cauchy CQR (Lasso) 1.3223 (0.99) 3 13.33 24.64 0.6289 (0.38) 3 17.92 190.73
SCQR (Lasso) 1.0474 (0.68) 3 17.57 0.96 0.4655 (0.26) 3 23.36 1.40
SCQR (SCAD) 0.2350 (0.39) 3 0.41 0.64 0.1174 (0.16) 3 0.69 1.11

Table 2

Statistical performance comparison between the CQR (via ADMM) and the SCQR (via
LAMM) estimators under linear model (5.1) with four error distributions—N(0, 3), mixture
normal, t3 and Cauchy. The average of the squared model L2 error (and standard error),

true positives (TP), and false positives (FP), and runtime (in seconds), over 100
replications, are reported. 5-fold CV is used to select λ.

n = 100, p = 600
Error Method ME TP FP Runtime
N(0, 3) CQR (Lasso) 0.7924 (0.36) 3 3.52 768.38

SCQR (Lasso) 0.8066 (0.43) 3 8.77 52.41
SCQR (SCAD) 0.2074 (0.24) 3 0.31 49.94

MN CQR (Lasso) 0.4110 (0.20) 3 4.14 626.67
SCQR (Lasso) 0.5066 (0.29) 3 9.69 46.29
SCQR (SCAD) 0.1383 (0.13) 3 0.29 44.05

t3 CQR (Lasso) 0.4125 (0.23) 3 4.27 722.36
SCQR (Lasso) 0.4966 (0.34) 3 8.60 48.12
SCQR (SCAD) 0.1395 (0.12) 3 0.35 47.68

Cauchy CQR (Lasso) 1.2951(1.12) 3 4.74 1158.31
SCQR (Lasso) 1.2584 (1.06) 3 6.32 63.46
SCQR (SCAD) 0.3848 (0.48) 2.96 0.22 79.90

Table 3

Statistical performance comparison between the CQR (via ADMM) and the SCQR (via
LAMM) estimators under linear model (5.1) with four error distributions—N(0, 3), mixture
normal, t3 and Cauchy. The average of the squared model L2 error (and standard error),
true positives (TP), false positives (FP) and runtime (in seconds), over 200 replications,

are reported. The BIC (2.9) is used to select λ.
n = 100, p = 600

Error Method ME TP FP Runtime
N(0, 3) CQR (Lasso) 1.0595 (0.64) 3 0.64 197.86

SCQR (Lasso) 0.9438 (0.54) 3 0.62 9.51
SCQR (SCAD) 0.3394 (0.49) 3 0.95 8.18

MN CQR (Lasso) 0.5632 (0.27) 3 0.75 157.95
SCQR (Lasso) 0.5159 (0.24) 3 0.67 8.48
SCQR (SCAD) 0.1208 (0.17) 3 0.49 7.28

t3 CQR (Lasso) 0.6291 (0.39) 3 0.54 173.23
SCQR (Lasso) 0.5659 (0.34) 3 0.53 8.81
SCQR (SCAD) 0.0876 (0.13) 3 0.22 7.81

Cauchy CQR (Lasso) 2.7542 (2.64) 2.83 0.30 283.25
SCQR (Lasso) 2.1228 (1.81) 2.93 0.27 11.51
SCQR (SCAD) 0.4055 (0.94) 2.88 0.03 12.60
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ogy in [39], we refer to their estimator as Rank Lasso, defined as

β̂RL(λ) = argmin
β∈Rp

{
1

n(n− 1)

n∑
i,j=1,i �=j

|(yi − xT
i β) − (yj − xT

jβ)| + λ

p∑
k=1

|βk|
}
.

(5.2)

By utilizing the pivotal property of the L1-loss [3], they further proposed a
simulation-based procedure to choose λ automatically from the data. Compu-
tationally, [39] reformulate the optimization problem (5.2) as a linear program
(LP), and then use general-purpose optimization toolboxes. We thus follow this
route and implement Rank Lasso using the SciPy library with method “highs”
[20]. In the following simulation study, we use equation (7) in [39] with c = 1.01
and α0 = 0.1 to compute the λ in (5.2); for SCQR-Lasso, we simulate λ via (2.10)
with c = 1.9 and α = 0.05.

For data-driven Rank Lasso and SCQR-Lasso estimators, we summarize re-
sults on the statistical and computational performance in Table 4 under the four
error distributions when (n, p) = (100, 600). The data-driven SCQR typically
has much smaller estimation errors but more false positives than the data-driven
Rank Lasso. This could just be a consequence of the different tuning procedures.
The runtime comparison confirms SCQR as a practical and computational effi-
cient approach to robust regression. The linear program reformulation of (5.2),
on the other hand, involves 2n2 + 2p variables and O(n2 + p) constraints. Even
the state-of-the-art LP solvers are not adapted to large-scale problems.

Table 4

Statistical and computational performance comparison of the Rank Lasso and the SCQR
methods, among four error distributions: N(0, 3), MN, t3, and the standard Cauchy, under
model (5.1). The mean (and standard error) of the model estimation error, true positives

(TP), false positives (FP), and runtime (in seconds) are reported.
n = 100, p = 600

Error Method ME TP FP Runtime
N(0, 3) Rank Lasso 1.5222(0.52) 3 0.30 249.28

SCQR (Lasso) 0.6970(0.24) 3 17.95 0.62
SCQR (SCAD) 0.1237(0.13) 3 0.05 0.34

MN Rank Lasso 0.8145(0.51) 3 0.55 247.97
SCQR (Lasso) 0.3478(0.22) 3 18.30 0.60
SCQR (SCAD) 0.0726(0.05) 3 0.05 0.38

t3 Rank Lasso 0.8324(0.48) 3 0.35 241.71
SCQR (Lasso) 0.3660(0.21) 3 16.20 0.56
SCQR (SCAD) 0.0551(0.042) 3 0.05 0.40

Cauchy Rank Lasso 4.6628(2.89) 3 0.40 241.81
SCQR (Lasso) 1.3241(0.84) 3 17.55 0.82
SCQR (SCAD) 0.4395(1.47) 2.95 0.20 0.43

Appendix A: Proof of main results

By a change of variable, we can rewrite the smoothed composite quantile loss
Q̂h : Rq+p → R in (2.6) as

Q̂h(α,β) = 1
q

q∑
k=1

{
(1−τk)

∫ 0

−∞
F̂h(u+αk;β)du+τk

∫ ∞

0
(1−F̂h(u+αk;β))du

}
.
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Using this expression, we obtain

∂αk
Q̂h(α,β) = 1

qn

n∑
i=1

{K̄h(αk − ri(β)) − τk}, k = 1, . . . , q, (A.1)

∇βQ̂h(α,β) = 1
qn

q∑
k=1

n∑
i=1

{K̄h(αk − ri(β)) − τk}xi, (A.2)

where
K̄(u) =

∫ u

−∞
K(v)dv and K̄h(u) = K̄(u/h).

In this notation, we have K̄ ′
h(u) = Kh(u) = (1/h)K(u/h).

A.1. Proof of Lemma 3.1

Combining (A.1) and (A.2), we see that the full gradient of Q̂h with respect to
(αT,βT)T ∈ R

q+p is

∇Q̂h(α,β) = 1
qn

n∑
i=1

⎛⎜⎜⎜⎝
K̄h(α1 − ri(β)) − τ1

...
K̄h(αq − ri(β)) − τq∑q

k=1{K̄h(αk − ri(β)) − τk}xi

⎞⎟⎟⎟⎠ ∈ R
q+p, (A.3)

where ri(β) = yi − xT
i β. For the Hessian, note that for any 1 ≤ k, l ≤ q and

1 ≤ j ≤ p,

∂2Q̂h

∂αk∂αl
= 1

qn

n∑
i=1

Kh(αk − ri(β))δkl,
∂2Q̂h

∂βj∂αk
= 1

qn

n∑
i=1

Kh(αk − ri(β))xij

with δkl = I(k = l), and

∇2
βQ̂h(α,β) = 1

nq

n∑
i=1

q∑
k=1

Kh(αk − ri(β))xix
T
i .

For every β ∈ R
p, write

vi = vi(β) = (Kh(α1 − ri(β)), · · · ,Kh(αq − ri(β)))T, i = 1, . . . , n,
v = (v1, . . . , vq)T = v(β) = (Kh(α1 − r(β)), · · · ,Kh(αq − r(β)))T,

where r(β) = y − xTβ. It follows that

∇2Q̂h(α,β) = 1
nq

n∑
i=1

(
diag(vi) vix

T
i

xiv
T
i 1T

qvi · xix
T
i

)
(A.4)
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and

∇2Qh(α,β) = 1
q

(
E(diag(v)) E(vxT)
E(xvT) E(1T

qv · xxT)

)
, (A.5)

where 1q = (1, . . . , 1)T ∈ Rq.
For any a = (a1, . . . , aq)T ∈ R

q and b ∈ R
p, note that

(aT, bT)∇2Qh(α,β)(aT, bT)T = 1
q

q∑
k=1

E{vk(ak + xTb)2} ≥ 0,

where vk = Kh(αk − r(β)).
This verifies the positive semidefiniteness of ∇2Qh(α,β) and so is the con-

vexity of Qh. At (α,β) = (α∗,β∗), vk = Kh(α∗
k − β∗

0 − ε) = Kh(F−1(τk) − ε).
Using the independence of ε and x, and condition (3.2), we obtain that

(aT, bT)∇2Qh(α,β)(aT, bT)T
∣∣
(α,β)=(α∗,β∗)

= 1
q

q∑
k=1

E(ak + xTb)2 · EKh(F−1(τk) − ε)

= 1
q

q∑
k=1

E(ak + xTb)2 ·
∫ ∞

−∞
K(v)f(F−1(τk) − hv)dv > 0

for all a ∈ R
q and b ∈ R

p, where the second equality follows from integration
by parts and a change of variable. This proves the strict convexity of Qh at
(α∗,β∗).

Turning to the sample Hessian, for any a = (a1, . . . , aq)T ∈ R
q, b ∈ R

p we
have

(aT, bT)∇2Q̂h(α,β)(aT, bT)T = 1
nq

n∑
i=1

q∑
k=1

Kh(αk − ri(β))(ak + xT
i b)2 ≥ 0.

Hence, the empirical composite quantile loss Q̂h is twice-differentiable and con-
vex.

A.2. Proof of Proposition 3.1

We first show that the function mh : Rq → R has a unique minimizer, denoted
by bh. For each 1 ≤ k ≤ q, define the univariate function mh,k(b) = E�h,k(ε− b)
whose first and second-order derivatives are

m′
h,k(b) =

∫ ∞

−∞
K(v)F (b− hv)dv − τk, m′′

h,k(b) =
∫ ∞

−∞
K(v)F (b− hv)dv.

Since K is positive everywhere, we have m′′
h,k(b) > 0 for all b. Therefore, mh,k(·)

is strictly convex and has a unique minimizer, denoted by bh,k. Noting further



Sparse composite quantile regression 2095

that ∇2mh(b) = q−1diag({m′′
h,1(b1), . . . ,m′′

h,q(bq)}), the function mh : Rq → R

is also strictly convex with a unique minimizer bh = (bh,1, . . . , bh,q)T.
For any α ∈ Rq,β ∈ Rp, we write Δx = xT(β − β∗) and obtain that

Qh(α,β) = 1
q

q∑
k=1

E�h,k(ε + β∗
0 − αk − Δx)

= E

[
1
q

q∑
k=1

E{�h,k(ε + β∗
0 − αk − Δx)|x}

]
= E{mh(α1 + Δx − β∗

0 , . . . , αq + Δx − β∗
0)}

≥ mh(bh) = Qh(β∗
0 + bh,β

∗).

In other words, the function Qh : Rq+p → R is minimized at (β∗
0 +bh,β

∗). With
a everywhere positive kernel, Qh is strictly convex so that (β∗

0 + bh,β
∗) is the

unique minimizer, implying α∗
h = β∗

0 + bh and β∗
h = β∗ as claimed.

Finally, it remains to bound |bh,k − F−1(τk)|. For each k = 1, . . . , q, define
b̃k = F−1(τk) + tk{bh,k − F−1(τk)} with

tk = sup{t ∈ [0, 1] : t|bh,k − F−1(τk)| ≤ κ
1/2
2 h}.

When |bh,k − F−1(τk)| ≤ κ
1/2
2 h, we have tk = 1, otherwise tk ∈ (0, 1). Set

δk = b̃k − F−1(τk), satisfying |δk| ≤ κ
1/2
2 h and in particular, |δk| = κ

1/2
2 h if

|bh,k − F−1(τk)| > κ
1/2
2 h. By Lemma 3.1 and the fact that m′

h,k(bh,k) = 0, we
have

{m′
h,k (̃bk) −m′

h,k(F−1(τk))}δk ≤ {m′
h,k(bh,k) −m′

h,k(F−1(τk))}δk
≤ |m′

h,k(F−1(τk))| · |δk|.

For the left-hand side,

m′
h,k (̃bk) −m′

h,k(F−1(τk)) =
∫ b̃k

F−1(τk)
m′′

h,k(t) dt

=
∫ b̃k

F−1(τk)

∫ ∞

−∞
K(u)f(t− hu) du dt

= f(F−1(τk))δk +
∫ b̃k

F−1(τk)

∫ ∞

−∞
K(u){f(t− hu) − f(F−1(τk))}du dt.

This, together with the Lipschitz continuity of f , implies

{m′
h,k (̃bk) −m′

h,k(F−1(τk))}δk ≥ f(F−1(τk))δ2
k − l0

2 |δk|3 − l0κ1h · δ2
k.

On the other hand, we have

|m′
h,k(F−1(τk))| = |

∫ ∞

−∞
K(u){F (F−1(τk)−hu)−F (F−1(τk))}du| ≤ l0κ2h

2/2.
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Putting together the pieces, we conclude that

f(F−1(τk))δ2
k ≤ l0

2 κ2h
2|δk| +

l0
2 |δk|3 + l0κ1hδ

2
k < κ2l0h

2|δk| +
1
2f(F−1(τk))δ2

k

provided 0 < h ≤ f(F−1(τk))/(2κ1/2
2 l0), where the second inequality follows

from the fact that κ1 < κ
1/2
2 . Canceling out |δk| from both sides yields

|δk| <
2κ1/2

2 l0h

f(F−1(τk))
· κ1/2

2 h ≤ κ
1/2
2 h.

By the definition of b̃k, we must have |bh,k −F−1(τk)| ≤ κ
1/2
2 h; otherwise |δk| =

κ
1/2
2 h which contradicts the above inequality. Consequently, tk = 1 and b̃k =

bh,k, thus implying the claimed bound (3.4).

A.3. Proof of Proposition 3.2

We first consider ‖ζ∗‖∞ = max1≤k≤q |ζ∗k |, where

ζ∗k = 1
nq

n∑
i=1

{K̄((α∗
h,k − εi)/h) − τk}

is the k-th coordinate of ζ∗. Note that K̄((α∗
h,k − εi)/h) − τk ∈ [−τk, 1 − τk].

Hence, applying Hoeffding’s inequality yields

P{|ζ∗k | > 3λ/(2q)} ≤ 2e−2n(3λ/2)2 = 2e−9nλ2/2.

Taking the union bound over k = 1, . . . , q, it follows that P{‖ζ∗‖∞ > 3λ/(2q)} ≤
2qe−9nλ2/2.

For w∗ = (ω∗
1 , . . . , ω

∗
p)T ∈ R

p, let

zij = xij

q

q∑
k=1

{K̄((α∗
h,k − εi)/h) − τk},

so that ω∗
j = (1/n)

∑n
i=1 zij . Note that E(zij) = 0, |zij | ≤ |xij |, and by as-

sumption (A3), P(|xij | ≥ ν0σ
1/2
jj t) ≤ e−t2/2 for all t ≥ 0. It thus follows from

Proposition 2.5 of [37] that

P

(∣∣∣∣ 1n
n∑

i=1
zij

∣∣∣∣ > t

)
≤ 2 exp{−nt2/(8ν2

0σjj)}. (A.6)

Finally, taking t = λ/2 and applying the union bound over j = 1, . . . , p prove
the claimed bound.
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A.4. Proof of Proposition 3.3

We have

D(α,β) = 1
nq

n∑
i=1

q∑
k=1

{
K̄

(
αk − ri(β)

h

)
− K̄

(
α∗
h,k − ri(β∗)

h

)}
〈x̄i, (δk,Δ)〉,

(A.7)

by letting x̄i = (1,xT
i )T, where δ = α−α∗

h,Δ = β − β∗.
We restrict our focus on the symmetrized Bregmann divergence with each

quantile index k = 1, . . . , q, by letting

Dk(α,β) := 1
n

n∑
i=1

{
K̄

(
αk − ri(β)

h

)
− K̄

(
α∗
h,k − ri(β∗)

h

)}
〈x̄i,Δk〉,

where Δk := (δk,Δ).
We first claim that, when ‖Δk‖Σ̄ ≤ r, we have the following lower bound

Dk(α,β) ≥ c‖Δk‖2
Σ̄

with high probability for some positive c > 0, so that we can combine all the
bounds for each k to derive the desired result of the Proposition 3.3. Let us
define an event in the neighborhood of the true parameter, Ei,k := {|εi−α∗

h,k| ≤
h/2}∩{|〈x̄i,Δk〉|/‖Δk‖Σ̄ ≤ h/(2r)}, with r > 0. We can lower bound Dk(α,β)
by

κ

nh

n∑
i=1

〈x̄i,Δk〉2IEi,k
, (A.8)

where κ := min|x|≤1 K(x). Also, by using similar smoothing technique from [26],
we define a Lipshitz continuous function for R > 0, as

ϕR(u) := u2I(|u| ≤ R/2) + (|u| −R)2I(R/2 < |u| ≤ R). (A.9)

Then, we can further lower bound (A.8) by

κ

nh

n∑
i=1

〈x̄i,Δk〉2IEi,k
≥ κ · 1

nh

n∑
i=1

ϕh/2(〈Δk, x̄i〉) · χi,k︸ ︷︷ ︸
=:D0,k(α,β)

, (A.10)

where χi,k = I(|εi − α∗
h,k| ≤ h/2).

To prove our claim, now it suffices to show that when ‖Δk‖Σ̄ = δr, for each
(δ ∈ (0, 1]), we have

κ

nh

n∑
i=1

ϕδ(h/2)(〈Δk, x̄i〉) · χi,k ≥ c(δr)2. (A.11)
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If it holds for δ = 1, then

κ

nh

n∑
i=1

ϕh/2(〈Δk/δ, x̄i〉) · χi,k ≥ cr2,

which gives
κ

nh

n∑
i=1

ϕδ(h/2)(〈Δk, x̄i〉) · χi,k ≥ c(δr)2.

Hence, we only need to prove when ‖Δk‖Σ̄ = r. Suppose ‖Δk‖Σ̄ = r, we have

|Eχi,k − hf(α∗
h,k)| ≤

∫ α∗
h,k+h/2

α∗
h,k−h/2

|fε(t) − fε(α∗
h,k)|dt ≤

l0
4 h2

with Proposition 3.1. Moreover, we have the following lower bound

Eχi,k ≥ hfε(α∗
h,k) −

l0
4 h2 ≥ h(f − l0Cbh

2 − l0
4 h) ≥ 3

4fh (A.12)

when h ≤ min{f/(4κ1/2
2 l0), f/(2l0)}, where Cb := 2κ2l0/f is an upper bound

of the bias |bh,k − f(F−1(τk))| that derived in the Proposition 3.1. Then, using
above results, we get

E{h−1ϕh/2(〈Δk, x̄i〉)χi,k} ≥ 3
4fEϕh/2(〈Δk, x̄i〉)

≥ 3
4f [r2 − E{〈Δk, x̄i〉2I{|〈Δk, x̄i〉| ≥ h/4)}].

The last term of the above inequality is equal to

3
4fr

2(1 − E{ξ2
Δk

I|ξΔk
|≥h/(4r)}

)
, (A.13)

where ξΔk
= 〈Δk, x̄i〉/‖Δk‖Σ̄.

Since we have sub-Gaussian covariates, for any u > 0, we get

E{ξ2
Δk

I(|ξΔk
| > u)} = 2E

{∫ ∞

0
t · I(|ξΔk

| > t)I(|ξΔk
| > u)dt

}

= 2E
∫ u

0
t · I(|ξΔk

| > t)I(|ξΔk
| > u)dt

+ 2E
∫ ∞

u

t · I(|ξΔk
| > t)dt

= u2
P(|ξΔk

| > u) + 2
∫ ∞

u

t · P(|ξΔk
| > t)dt

≤ u2e−(u/
√

2ν0)2 + 2ν2
0

∫ ∞

u/ν0

t · P(|ξΔk
| > ν0t)dt

≤ (u2 + 2ν2
0)e−(u/

√
2ν0)2 ,
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where we use the condition (A3) to establish the last two inequalities.
To simplify, define Lδ := min

{
L : E(vTx̄)2 · I(|vTx̄| > L) ≤ δ for all v ∈

R
p+1, ‖v‖Σ̄ = 1

}
. Then, we get L1/8 ≤ h/(4r) when h/(4r) ≥ 3ν2

0 ., which leads
to

inf
‖Δk‖Σ̄=r

E{D0,k(α,β)} >
21
32fr

2. (A.14)

Now, we need to bound |D0,k(α,β)−E{D0,k(α,β)}|. The domain of interest
is BΩ(r) ∩ CΩ(l), in particular ‖(δT,ΔT)T‖Ω ≤ r. Thus, when ‖Δk‖Σ̄ = r, it
also satisfies that ‖Δk‖1 ≤ l‖Δk‖Σ̄. Let us define

Zn(l) := sup
‖Δk‖1≤lr

|D0,k(α,β) − E{D0,k(α,β)}|.

Then, we have 0 ≤ h−1ϕh/(2r)(ξΔk
) ≤ (4r)−2h, and

E{h−2ϕ2
h/(2r)(ξΔk

)χi,k} ≤ (h/4r)2h−2
E
(
ξ2
Δk

· χi,k

)
≤ (4r)−2 · {hfε(α∗

h,k) + l0h
2/4}

≤ (4r)−2(5fh/4), (A.15)

where the last inequality follows from Proposition 3.1.
To control Zn(l) defined above, let us divide it by r2 for convenience, which

gives

1
r2 · Zn(l) = sup

‖Δk‖1≤l‖Δk‖Σ̄

∣∣∣∣ 1
nh

n∑
i=1

{ϕh/(2r)(ξΔk
) − Eϕh/(2r)(ξΔk

)}
∣∣∣∣. (A.16)

With (A.15) and above preparations on Z ′ := Zn(l)/r2, we can apply Theorem
7.3 of [6], a refined Talagrand’s inequality, which gives

P

{
Z ′ ≤ E(Z ′) + h/(16r2n)

√
40nfr2x/h + 2E(Z ′)x + hx/(48r2n)

}
≤ e−x.

(A.17)

We further simplify the inequality above as

Z ′ ≤ E(Z ′) + {E(Z ′)}1/2
√

hx

4r2n
+ (4r)−1 · 2f1/2

√
hx

n
+ hx

48r2n

≤ 5
4E(Z ′) +

√
fhx

4r2n
+ hx

3r2n
(A.18)

with probability at least 1 − e−x, where the last inequality follows from ab ≤
a2/4 + b2.

By taking expectation on the right-hand side of (A.16), we apply Talagrand’s
contraction principle in Theorem 4.12 of [23], which leads to

E(Z ′) ≤ l

r
· E
∥∥∥∥∥ 1
n

n∑
i=1

eiχi,kx̄i

∥∥∥∥∥
∞

, (A.19)
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where ei’s are independent Rademacher random variables.
We have E(eiχi,kxij) = 0 and E(eiχi,kxij)2 ≤ σjjch, where ch = (9/8)fh +

l0h
2/4. Also, for k = 3, 4, . . . ,

E|eiχi,kxij |k ≤ ch · k
∫ ∞

0
uk−1

P(|xij | ≥ u)du

≤ chν
k
0σ

k/2
jj · k

∫ ∞

0
P(|xij | ≥ ν0σ

1/2
jj t)dt

≤ chν
k
0σ

k/2
jj · k

∫ ∞

0
e−t2/2tk−1dt

≤ k!
2 · ν2

0σjjch · (2ν0σ
1/2
jj )k−2. (A.20)

Then, following the proof of Theorem 2.10 in [5], letting v = ν2
0σ

2
xchn, c = 2ν0σx

and using Bernstein’s inequality, we get

E(Z ′) ≤ 2ν0σx
l

r

(√
fh log(2p)

n
+ log(2p)

n

)
. (A.21)

Hence, combining bounds (A.18) and (A.21) with x = log(2p), we get

Z ′ ≤ 1
2(1 + 5ν0σxl)

√
fh log(2p)

r2n
+ 2.5ν0σxl

log(2p)
rn

+ h log(2p)
3r2n

(A.22)

with probability at least 1 − (2p)−1.
Then, provided that n ≥ C(ν0σxl/fr)2fh log(2p) for some large constant C,

we get

Dk(α,β) ≥ c‖Δk‖2
Σ̄ (A.23)

with probability at least 1 − (2p)−1 where c = 0.5f · κ. Summing up these
results for k = 1 . . . , q, we get the desired RSC property with probability at
least 1 − q/(2p).

A.5. Proof of Theorem 3.1

Throughout the proof, we write α̂ = α̂h and β̂ = β̂h for simplicity. To prove
Theorem 3.1, we first derive an upper bound on the symmetrized Bregman
divergence given in (3.8), along with a cone property for the estimator. Next,
we prove a local RSC property based on Proposition 3.3, which in turns implies
a lower bound on the Bregman divergence. Combining these upper and lower
bounds yields the claimed estimation error bound.

Set δ̂ = α̂−α∗
h ∈ R

q and Δ̂ = β̂ − β∗ ∈ R
p. Conditioned on the event G(λ)

defined in (3.9), we have

D(α̂, β̂) ≤ λ(‖Δ̂S‖1 − ‖Δ̂Sc‖1) + 3λ
2q ‖δ̂‖1 + λ

2 ‖Δ̂‖1 ≤ 3λ
2
(
‖Δ̂S‖1 + q−1‖δ̂‖1

)
.

(A.24)
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Recall from Proposition 3.2 that a lower bound for D(α,β) holds when (δT,ΔT)T

is in a cone-like set, where δ = α−α∗
h and Δ = β−β∗. We thus need to show

that the estimator satisfies a cone-like property (with high probability). Using
the optimality of (α̂, β̂) and the convexity of Q̂h, we have

0 ≥ Q̂h(α̂, β̂) − Q̂h(α∗
h,β

∗) + λ(‖β̂‖1 − ‖β∗‖1) (A.25)

≥ ζ∗T(α̂−α∗
h) + ω∗T(β̂ − β∗) + λ(‖β̂‖1 − ‖β∗‖1)

≥ −‖ζ∗‖∞‖α̂−α∗
h‖1 − ‖ω∗‖∞‖β̂ − β∗‖1 + λ(‖β̂Sc − β∗

Sc‖1 − ‖β̂S − β∗
S‖1).

It follows that

(λ− ‖ω∗‖∞)‖β̂Sc − β∗
Sc‖1 ≤ (λ + ‖ω∗‖∞)‖β̂S − β∗

S‖1 + ‖ζ∗‖∞‖α̂−α∗
h‖1,
(A.26)

which further implies

‖β̂Sc − β∗
Sc‖1 ≤ 3‖β̂S − β∗

S‖1 + 3q−1/2‖α̂−α∗
h‖2 (A.27)

conditioned on G(λ). Using the above bound and Cauchy-Schwarz inequality,
we get

‖(δ̂T, Δ̂T)T‖1 ≤ 4s1/2‖Δ̂S‖2 +
(
q1/2 + 3q−1/2)‖δ̂‖2

≤ 4 max(s, q)1/2(‖Δ̂S‖2 + ‖δ̂‖2)

≤ 4
√

2 · max(s, q)1/2γ−1/2
p ‖(δ̂T, Δ̂T)T‖Ω,

so that (δ̂T, Δ̂T)T ∈ CΩ(l) with l = 4γ−1/2
p

√
2 · max(s, q), where CΩ(l) is defined

in (3.12).
Note further that the RSC property only holds in a local neighborhood of

α∗
h and β∗, for which (α̂, β̂) does not necessarily satisfy. We thus employ a

localized argument complemented with proof by contradiction. For some r > 0
to be determined, define η := sup

{
u ∈ [0, 1] : u(δ̂, Δ̂) ∈ BΩ(r)

}
, where BΩ(r)

is defined in (3.11). By definition, η = 1 when (δ̂, Δ̂) ∈ BΩ(r), and η ∈ (0, 1)
otherwise. Then define an intermediate “estimate” (α̃, β̃) = (α∗

h,β
∗)+ η(δ̂, Δ̂),

which satisfies (i) (α̃, β̃) = (α̂, β̂) if (δ̂, Δ̂) ∈ BΩ(r), and (ii) (α̃, β̃) lies on
the boundary of (α∗

h,β
∗) + BΩ(r) if (δ̂, Δ̂) /∈ BΩ(r). Moreover, (α̃, β̃) inherits

the cone property of (α̂, β̂) conditioned on G(λ). Applying Proposition 3.3, we
obtain that

D(α̃, β̃) ≥ c

(
‖Δ̃‖2

Σ + 1
q
‖δ̃‖2

2

)
(A.28)

with probability at least 1 − q/(2p) conditioned on G(λ), where c = 0.5f · κ.
On the other hand, Lemma F.2 in the supplementary material of [14] states
that D(α̃, β̃) ≤ ηD(α̂, β̂). Combining the upper and lower bounds in (A.24)
and (A.28), we obtain

c

(
‖Δ̃‖2

Σ + 1
q
‖δ̃‖2

2

)
≤ 3λ

2

(
‖Δ̃S‖1 + 1

√
q
‖δ̃‖2

)
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≤ 3λ
2

(
s1/2‖Δ̃‖2 + 1

√
q
‖δ̃‖2

)
≤ 3√

2
s1/2λ · ‖(δ̃T/

√
q, Δ̃T)‖2

≤ 3√
2
γ−1/2
p s1/2λ · ‖(δ̃T/

√
q, Δ̃T)‖Ω.

Canceling out the common factor ‖(δ̃T/
√
q, Δ̃T)‖Ω from both sides yields

‖(δ̃T/
√
q, Δ̃T)‖Ω ≤ 3√

2c
γ−1/2
p s1/2 = 3

√
2

fκγ
1/2
p

s1/2λ. (A.29)

In view of Proposition 3.3, we choose r = h/(12ν2
0) so that ‖(δ̃T, Δ̃T)‖Ω < r

provided
3
√

2
fκ

γ−1/2
p (sq)1/2λ <

h

12ν2
0
.

In this case, (α̃, β̃) falls into the interior of BΩ(r) and we claim that (δ̂, Δ̂) ∈
BΩ(r) and thus η = 1. Otherwise if (δ̂, Δ̂) /∈ BΩ(r), (α̃, β̃) is constructed to be
on the boundary of (α∗

h,β
∗) +BΩ(r) so that ‖(δ̃T, Δ̃T)‖Ω = r. This contradicts

the above, and therefore proves the claim. The desired estimation error bound
then holds on the event R(c, r, l)∩G(λ). Finally, from Propositions 3.2 and 3.3 we
see that event R(c, r, l)∩G(λ) with λ � ν0σx

√
log(2p)/n occurs with probability

at least 1 − q/p as long as n � sq log(p).

A.6. Proof of Corollary 3.1

From (A.26), we know that ‖β̂Sc − β∗
Sc‖1 ≤ 3‖β̂S − β∗

S‖1 + 3q−1‖α̂ − α∗
h‖1.

Also, we have 3q−1‖α̂−α∗
h‖1 ≤ 3|α̂j−α∗

h,1| for some j ∈ {1, . . . , q}, and assume
j = 1 satisfy the condition without loss of generality. Let x̄T

i := (q−1/2,xT
i ), X̄ =

(x̄1, . . . , x̄n)T ∈ R
n×(p+1), Σ̄ := Ex̄ix̄

T
i , which notation will be only used in this

proof. Moreover, let Ψ = X̄Σ̄−1/2, A = Σ̄1/2, and Δ̂T
1 := (α̂1−α∗

h,1, β̂
T
h−β∗T).

Then, Definition 1 in [28] holds with s0 = s, k0 = 3, A = A, and K(s0, k0, A) =
{min(γp, 1/q)}−1/2. Then, by using Theorem 16 of [28], we obtain that, with
probability at least 1 − 2p−1,

1√
n
‖X(β̂h − β∗)‖2 ≤ 1√

n
‖X̄Δ̂1‖2 ≤ 2‖AΔ̂1‖ ≤ 2

∥∥∥∥∥ α̂h−α∗
h√

q

β̂h − β∗

∥∥∥∥∥
Ω

.

Then, the result follows from Theorem 3.1.

A.7. Proof of Theorem 3.2

The idea behind this proof is that we need to control the magnitude of false
discoveries at each step to refine the estimation error. The larger value of λj
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with j ∈ Sc tends to penalize the false discoveries harder. Throughout the proof,
we write α̂t = α̂t

h and β̂t = β̂t
h for simplicity. Let us define a sequence of sets

for t ≥ 1 as follows

St := S ∪ {1 ≤ j ≤ p : λt−1
j = P ′

λ(|β̂t−1
j |) < P ′(a0)λ}. (A.30)

Each set depends on the estimator of the previous iterative step. Using above
definition of the index set St, we claim that

|St| < (b2 + 1)s, and ‖λt−1
Sc
t
‖min ≥ P ′(a0)λ. (A.31)

We first assume that the above claime holds. On G(P ′(a0)λ), using (A.26),
we can derive that (δ̂t, Δ̂t) ∈ CΩ(l) with l = 4γ−1/2

p

√
2 · max(s, q), where

(δ̂t, Δ̂t) = (α̂t − α∗
h, β̂

t − β∗), and CΩ(l) is defined in (3.12). Consider the
symmetrized Bregmann divergence

D(α̂t, β̂t) = 〈−λ ◦ ĝ, Δ̂t〉 + 〈−ζ∗, δ̂t〉 + 〈−ω∗, Δ̂t〉,

where ĝ ∈ ∂‖β̂t‖1. For the first term of the right-hand side of the equality above,
we split it into three parts, which leads to

〈λ ◦ g, Δ̂t〉 = 〈(λ ◦ g)S , Δ̂t
S〉 + 〈(λ ◦ g)St\S , Δ̂

t
St\S〉 + 〈(λ ◦ g)Sc

t
, Δ̂t

Sc
t
〉

≥ −‖λS‖2‖Δ̂S‖2 + 0 + ‖λSc
t
‖min‖Δ̂t

Sc‖1.

The inequality above is derived using β∗
Sc = 0 and the property of subdifferen-

tial. Then, combining above result with Hölder’s inequality, we get the following
upper bound of the symmetrized Bregmann divergence

D(α̂t, β̂t) ≤ ‖ζ∗‖2‖δ̂t‖2 + ‖ω∗
St
‖2‖Δ̂t

St
‖2 + ‖λS‖2‖Δ̂S‖2

+ (‖ω∗
Sc
t
‖∞ − ‖λSc

t
‖min)‖Δ̂t

Sc‖1

≤ ‖ζ∗‖2‖δ̂t‖2 + ‖ω∗
St
‖2‖Δ̂t

St
‖2 + ‖λS‖2‖Δ̂S‖2 (A.32)

≤ q‖ζ∗‖∞‖δ̂t/√q‖2 + (0.5P ′(a0)s1/2
√
b2 + 1 + s1/2)λ‖Δ̂t‖2

< γ−1/2
p s1/2λ

(
P ′(a0)

√
(b2 + 1)/2 + 2

)
‖θt‖Ω = c · ropt‖θt‖Ω.

(A.33)

As in the proof of Theorem 3.1, define an intermediate vector (α̃t, β̃t) :=
(α∗

h,β
∗) + η(δ̂t, Δ̂t) with η := sup

{
u ∈ [0, 1] : u(δ̂t, Δ̂t) ∈ BΩ(r)

}
, where

BΩ(r) is defined in (3.11). On event R(c, r, l) ∩ G(P ′(a0)λ), we can ensure that
η = 1, since D(α̃t, β̃t) ≤ ηD(α̂t, β̂t) from Lemma F.2 in the supplementary
material of [14] combined with the RSC property gives ‖θ̃t‖Ω < ropt, which
implies (δ̃t, Δ̃t) ∈ BΩ(r), thus ensuring η = 1 via proof by contradiction.

Now, we need to verify the claim (A.31). For the second part of the claim, it
holds trivially for t = 1. Assume that it holds for 1, . . . , t. Using the definition of
the index set, for j ∈ Sc

t+1, we have λt
j ≥ P ′(a0)λ, which verifies the second part
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of (A.31). For the first part of (A.31), since S1 = S, it holds for t = 1 trivially.
Suppose it holds for some t ≥ 1. Then, we get P ′

λ(|β̂t
j |) < P ′(a0)λ = P ′

λ(a0λ)
for j ∈ St+1 \S, which implies that |β̂t

j | > a0λ due to the monotonicity of P ′(·).
Thus, we get an upper bound for the size of the set as follows.

|St+1 \ S|1/2 < (a0λ)−1‖(β̂t − β∗)St+1\S‖2 ≤ (a0λ)−1γ−1/2
p ropt = bs1/2.

(A.34)

Hence, we get |St+1| = |S|+ |St+1 \ S| < s+ b2s, which verifies the first part of
the claim (A.31).

To refine the rate at each step, we need to control the terms in (A.32). For each
j, we consider two cases, where the first case is when |β̂t−1

j − β∗
j | ≥ a0λ which

gives a−1
0 |β̂t−1

j − β∗
j | ≥ λ ≥ λt−1

j , and the other case is when |β̂t−1
j − β∗

j | < a0λ

which gives λt−1
j ≤ P ′

λ((|β∗
j | − a0λ)+) due to the monotonicity of P ′(·) and the

fact that |β∗
j |−a0λ < |β̂t−1

j | using the triangle inequality. Then, we get following
bounds

‖λS‖2 ≤ ‖P ′
λ((|β∗

S | − a0λ)+)‖2 + a−1
0 ‖Δ̂t−1

S ‖2, (A.35)

and

‖ω∗
St
‖2 ≤ ‖ω∗

S‖2 + |St \ S|1/2‖ω∗
Sc‖∞

≤ ‖ω∗
S‖2 + (a0λ)−1‖ω∗

Sc‖∞‖Δ̂t−1
St\S‖2

≤ ‖ω∗
S‖2 + P ′(a0)

2a0
‖Δ̂t−1

St\S‖2. (A.36)

Substituting above results into (A.32), we get

D(α̂t
h, β̂

t
h) ≤

{
√
q‖ζ∗‖2 + c ·rora +γ−1/2

p a−1
0
√

1 + {P ′(a0)/2}2‖Δ̂t−1
St

‖2

}
‖θt‖Ω.

Then, combining with the RSC property, we get

‖θt‖Ω ≤ δ · ‖θt−1‖Ω + rora + c−1√q‖ζ∗‖2, (A.37)

where δ =
√

1 + {P ′(a0)/2}2/(ca0γp) ∈ (0, 1).

A.8. Proof of Theorem 3.3

Let λ = 8P ′(a0)−1ν0σx

√
log(2p)/n, and λ1 = P ′(a0)−1

√
{s + log(q) + z}/n ≤

λ. If the inequality does not hold, then let λ = P ′(a0)−1
√

{s + log(q) + z}/n.
Then, with slight modification of the proof of Proposition 3.2, the event

{‖ζ∗‖∞ ≤ 3P ′(a0)λ1/(2q), ‖ω∗‖∞ ≤ P ′(a0)λ/2} ⊂ G(P ′(a0)λ) holds with prob-
ability at least 1 − q/(2p) − e−2(s+z).
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On G(P ′(a0)λ), we can use the results from Proposition 3.3 and Theorem 3.2.
Consider c = 0.5f · κ, l = 4γ−1/2

p

√
2 · max(s, q) and b such that satisfies

√
2P ′(a0)(b2 + 1)1/2 + 4 = a0κfγpb.

Also, let r ≥ q1/2ropt = a0b(γpsq)1/2λ. Then, using Proposition 3.3 with proper
conditions of sample size and the smoothing parameter decribed therein, the
event R(c, r, l) holds with probability at least 1 − q/(2p). With above prepa-
rations, we get the following estimation error bound using Theorem 3.2 on
event {‖ζ∗‖∞ ≤ 3P ′(a0)λ1/(2q), ‖ω∗‖∞ ≤ P ′(a0)λ/2}∩R(c, r, l) ⊂ G(P ′(a0))∩
R(c, r, l),

‖θt‖Ω ≤ δt−1ropt + (1 − δ)−1(rora + c−1√q‖ζ∗‖2) (A.38)

where rora = c−1{γ−1/2
p ‖P ′

λ((|β∗
S | − a0λ)+)‖2 + ‖ω∗

S‖2
}

is defined in Theo-
rem 3.2. Since we have t � log{log(2p)}/ log(1/δ), we get δt−1ropt �

√
s/n.

Remaining quantity to bound is rora + c−1√q‖ζ∗‖2 from (A.38). The second
term c−1√q‖ζ∗‖2 is bounded by (3/2)P ′(a0)−1c−1

√
{s + log(q) + z}/n on the

event {‖ζ∗‖∞ ≤ 3P ′(a0)λ1/(2q), ‖ω∗‖∞ ≤ P ′(a0)λ/2} ⊂ G(P ′(a0)λ). By using
the beta-min condition, the shrinkage bias term ‖P ′

λ((|β∗
S |−a0λ)+)‖2 vanishes.

The only term remaining to bound is ‖ω∗
S‖2.

Consider

‖S−1/2ω∗
S‖2 =

∥∥∥∥ 1
nq

n∑
i=1

q∑
k=1

{
K̄h(α∗

h,k − εi) − τk
}
S−1xi,S

∥∥∥∥
2
, (A.39)

where S := E(xSxT
S). Since we have |(S−1/2ω∗

S)j | = |q−1∑q
k=1

{
K̄h(α∗

h,k−εi)−
τk
}
(S−1/2xi,S)j | ≤ |(S−1/2xi,S)j |, we get ‖S−1/2ω∗

S‖2 ≤ ‖ 1
n

∑n
i=1 S

−1/2xi,S‖2.
Then, since each S−1/2xi,S is an s-dimensional sub-Gaussian random vector
with parameter 2

√
2ν0σx, we get

‖S−1/2ω∗
S‖2 ≤ 8ν0σx

√
2s
n

+ 4ν0σx

√
2 log(1/ε)

n
(A.40)

with probability at least 1 − ε. By letting ε = e−(s+z) and combining all the
bounds we have for (3.19), we get the desired bound with probability at least
1−q/p−2e−(s+z). Seperate bounds comes from ‖β̂t

h−β∗‖Σ, ‖(α̂t
h−α∗

h)/√q‖2 ≤
‖θt‖Ω. Finally, the h2 bias term comes from ‖α∗

h −α∗‖2, which was derived in
the Proposition 3.1.

A.9. Proof of Theorem 3.4

For t = 1, 2, . . ., let Tt = S ∪ {1 ≤ j ≤ p : λt−1
j = P ′

λ(|β̂t−1
j |) < P ′(a0)λ}, and

k = |Tt|. By using the optimality we get

0 =
〈
∇Q̂h(α̂t, β̂t) + λ ◦ ĝ,

[
δ̂o

Δ̂o

]〉
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=
〈
∇Q̂h(α̂t, β̂t) −∇Q̂h(α̂o, β̂o),

[
δ̂o

Δ̂o

]〉
+
〈
λ ◦ ĝ,

[
δ̂o

Δ̂o

]〉

+
〈
∇Q̂h(α̂o, β̂o),

[
δ̂o

Δ̂o

]〉
≥ −‖ζo‖∞‖δ̂o‖1 − ‖ωo‖∞‖Δ̂o‖1 + ‖λT c

t
‖min‖Δ̂o

T c‖1 − ‖λTt‖∞‖Δ̂o
T ‖1,

where δ̂o=α̂t−α̂o, Δ̂o= β̂t−β̂o, ζo = ∇αQ̂h(α̂o, β̂o), and ωo = ∇βQ̂h(α̂o, β̂o).
By rearranging terms and using the optimality (‖ζo‖∞ = 0), we get

(‖λT c
t
‖min − ‖ωo‖∞)‖Δ̂o

T c
t
‖1 ≤ (‖ωo‖∞ + ‖λTt‖∞)‖Δ̂o

Tt
‖1, (A.41)

which leads to
‖Δ̂o

T c
t
‖1 ≤ {1 + 2/P ′(a0)}‖Δ̂o

Tt
‖1,

thus ∥∥∥∥∥ δ̂oΔ̂o

∥∥∥∥∥
1

≤ {2 + 2/P ′(a0)}(‖δ̂o‖1 + ‖Δ̂o
Tt
‖1)

≤ {2 + 2/P ′(a0)}
{

2 max(q, k)
γp

}1/2
∥∥∥∥∥ δ̂oΔ̂o

∥∥∥∥∥
Ω

, (A.42)

which explains the choice of l in the theorem.
Now, using the optimality and properties of subdifferential, we get〈
∇Q̂h(α̂t, β̂t) −∇Q̂h(α̂o, β̂o),

[
δ̂o

Δ̂o

]〉
=
〈

− λ ◦ ĝ −∇Q̂h(α̂o, β̂o),
[
δ̂o

Δ̂o

]〉
≤ ‖ωo

Tt
‖2‖Δ̂o

Tt
‖2 − (‖λT c

t
‖min − ‖ωT c

t
‖∞)‖Δ̂o

T c
t
‖1 + ‖λS‖2‖Δ̂o

S‖2 (A.43)

≤ (s1/2 + 0.5P ′(a0)k1/2)λ‖Δ̂o‖2 ≤
√

2(s1/2 + 0.5P ′(a0)k1/2)λγ−1/2
p ‖θ̂ot‖Ω

(A.44)

Using the similar argument given in the proof of Theorem 3.2, we can get |Tt| ≤
(1 + b2)s and q1/2‖θ̂ot‖Ω < r, which makes∥∥∥∥α̂t − α̂o

β̂t − β̂o

∥∥∥∥
Ω
≤ r.

Now, define St := {1 ≤ j ≤ p : |β̂t
j − β∗

j | > a0λ}, which makes S0 = S. We have

λt−1
j = P ′

λ

(
|β̂t−1

j |
)
≤ P ′

λ(|β∗
j | − a0λ)

if j ∈ S ∩ Sc
t−1., and λt−1

j ≤ λ for remaining j. Thus, we get

‖λt−1
S ‖2 ≤ ‖P ′

λ(|β∗
S | − a0λ)‖2 + λ|S ∩ St−1|1/2 = λ|S ∩ St−1|1/2. (A.45)
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For each j ∈ Tt \ S, β∗
j = 0 and λt−1

j = P ′
λ

(
|β̂t−1

j |
)
< P ′

λ(a0λ), which leads
to |β̂t−1

j − β∗
j | > a0λ, thus we get Tt \ S ⊆ St−1 \ S. Then, we get ‖ωo

Tt
‖2 ≤

‖ωo‖∞|Tt\S|1/2 ≤ ‖ωo‖∞|St−1\S|1/2 since ωo
S = 0. Then, by combining above

results with (A.43), we get

c‖θot‖2
Ω ≤ {‖ωo‖∞|St−1 \ S|1/2 + λ|S ∩ St−1|1/2}γ−1/2

p ‖θot‖Ω, (A.46)

which leads to

‖β̂t − β̂o‖2 ≤ γ−1/2
p ‖θot‖Ω ≤

√
1 + {P ′(a0)/2}2

cγp
|St−1|1/2λ. (A.47)

By the definition of St, we have minj∈St |β̂t
j − β̂o

j | > a0λ − ‖β̂o − β∗‖∞. Thus,
provided that {

‖β̂o − β∗‖∞ ≤
[
a0 −

√
1 + {P ′(a0)/2}2

δcγp

]
λ

}
,

we have

|St|1/2 <
‖(β̂t − β̂o)St‖2

a0λ− ‖β̂o − β∗‖∞
≤ δ|St−1|1/2,

which completes the proof.

A.10. Proof of Proposition 3.4

We need to first establish the estimation error bound of the oracle estimator,
which is essentially the estimation error bound of low dimensional smoothed
CQR estimator. In this proof, with abuse of notations, use same notaion we
used for the high-dmensional estiamtion error bound, except for the dimension
which is now s � n. Proof strategy is similar to the proof of Theorem 3.1,
but now it is low dimensional, so that some steps can be omitted. We establish
upper and lower bounds of D(α,β) in low dimension. Here, let

R(c, r) :=
{
D(α,β) ≥ c

(
‖Δ‖2

Σ + q−1‖δ‖2
2
)

for all
[
δ
Δ

]
∈ BΩ(r)

}
.

We first prove that R(c, r) holds with high probability. We follow the proof of
Proposition 3.3 until (A.18), with slight modification that we no longer require
CΩ(l), thus taking supremum only on ‖Δk‖Σ̄ = r. Thus, just denote Zn(l) as Zn

in this proof. Then, we need to bound E(Z ′) to establish the RSC property. Using
Rademacher symmetrization and Talagrand’s contraction principle on (A.16),
we get

E(Z ′) ≤ 1
r
· E
∥∥∥∥∥ 1
n

n∑
i=1

eiχi,kx̄i

∥∥∥∥∥
2

≤ f
1/2
√

hs

r2n
. (A.48)
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Thus, as long as n ≥ Cfhs/r2 for sufficiently large C > 0, we get the desired
RSC property with probability at least 1 − qe−(s+t). Next, we need to get an
upper bound of D(α,β). Using the optimality, we get D(α̂o, β̂o) ≤ ‖ζ∗‖∞‖α̂o−
α∗

h‖1 + ‖Σ−1/2ω∗‖2‖β̂o − β∗‖Σ. Then, using the result of the Proposition 3.2,
we have ‖ζ∗‖∞‖α̂o − α∗

h‖1 ≤ 2λ‖(α̂o − α∗
h)/q1/2‖2 with probability at least

1− 2qe−8nλ2 . Setting λ =
√

(s + t)/n gives the desired probability bound. Now
it remains to bound ‖Σ−1/2ω∗‖2. Let ξi := q−1∑q

k=1{K̄((α∗
h,k−εi)/h)−τk}. We

have |ξi| ≤ 1. Then, ‖Σ−1/2ω∗‖2 = ‖(1/n)
∑n

i=1 ξiwi‖2, where wi = Σ−1/2xi.
Using a covering argument, for any ε ∈ (0, 1), there exist an ε-net Nε of the unit
sphere with cardinality |Nε| ≤ (1 + 2/ε)s such that

‖Σ−1/2ω∗‖2 ≤ (1 − ε)−1 max
u∈Nε

〈
u,

1
n

n∑
i=1

ξiwi

〉
. (A.49)

Then, we have, for k = 2, 3, . . .

E
(
|〈u, ξiwi〉|k

)
≤ E|〈u,wi〉|k

≤ νk0

∫ ∞

0
P(|〈u,wi〉| ≥ ν0t)ktk−1dt

≤ ν0k

∫ ∞

0
tk−1e−tdt

≤ k!
2 ν2

0(2ν0)k−2.

Now, using Bernstein’s inequality and applying union bound over Nε, we get

‖Σ−1/2ω∗‖2 ≤ ν0

1 − ε

(√
2u
n

+ 2u
n

)
(A.50)

with probability at least 1 − elog(1+2/ε)s−u. Choosing ε = 2/(e2 − 1) ahaend
u = 2s+ t gives the desired upper bound with probability at least 1−e−t. Thus,
following the similar argument used in the Theorem 3.1 to combine the lower
and upper bounds of the Bregmann divergence, we get the desired estimation
error bound for the oracle estimator. For the Bahadur representation part, we
refer to the Theorem 2 of [41].

A.11. Proof of Proposition 3.5

We restrict our focus on the symmetrized Bregmann divergence with each quan-
tile index k = 1, . . . , q, by letting

Dk
rsc(α1,β1,α2,β2)

:= 1
n

n∑
i=1

{
K̄

(
α1k − ri(β1)

h

)
− K̄

(
α2k − ri(β2)

h

)}
〈x̄i,Δk〉,
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where Δk := (α1k − α2k,β
T
1 − βT

2 )T. Then, we have

Dk
rsc(α1,β1,α2,β2) ≥

κ

nh

n∑
i=1

〈x̄i,Δk〉2IEi,k
(A.51)

where

Ei,k = {|εi − α∗
h,k| ≤ h/2} ∩ {|x̄i

TΔ∗
k| ≤ h/4} ∩ {|〈xi,Δk〉|/‖Δk‖Σ̄ ≤ h/(4r)},

Δ∗
k :=

(
α2k − α∗

h,k

β2 − β∗

)
. (A.52)

In addition to ϕR, let

φR(u) := I(|u| < R/2) + 2{1 − |u|/R}I(R/2 ≤ |u| ≤ R).

Then, we can further lower bound (A.51) by

Dk
rsc(α1,β1,α2,β2) ≥ κ‖Δk‖2

Σ̄ · 1
nh

n∑
i=1

χi,k · ϕh/(4r)
(
ξΔk

)
φh/4

(
x̄i

TΔ∗
k

)
︸ ︷︷ ︸

=:D0,k
rsc(α1,β1,α2,β2)

(A.53)

We have 3fh/4 ≤ Eχi,k ≤ 5fh/4 almost surely, which is similar to the proof
of the Proposition 3.3. Using the sub-Gaussianity and the similar analyses fol-
lowing (A.13), we have

E
{
χi,kϕh/(4r)

(
x̄i

TΔk/‖Δk‖Σ̄
)
φh/4

(
x̄i

TΔ∗
k

)}
≥ 3

4fhE
{
ϕh/(4r)

(
x̄i

TΔk/‖Δk‖Σ̄
)
φh/4

(
x̄i

TΔ∗
k

)}
≥ 3

4fh
(
1 − E{ξ2

Δk
I|ξΔk

|≥h/(8r)} − E{ξ2
Δk

I|xT
i Δ∗

k|≥h/8}
)
>

9
16fh (A.54)

when h/(8r) > 3ν2
0 .

Now, we need to bound | − D0,k
rsc(α1,β1,α2,β2) + E{D0,k

rsc(α1,β1,α2,β2)}|
uniformly over Λ(r, l). Let

Zk(r, l) := sup
Λ(r,l)

| −D0,k
rsc(α1,β1,α2,β2) + E{D0,k

rsc(α1,β1,α2,β2)}|.

If we denote D0,k
rsc(α1,β1,α2,β2) = (1/n)

∑n
i=1 wk(xi, εi), where

wk(xi, εi) := (χi,k/h) · ϕh/(4r)
(
x̄i

TΔk/‖Δk‖Σ̄
)
φh/4

(
x̄i

TΔ∗
k

)
,

we have

0 ≤ wk(xi, εi) ≤ h/(8r)2, and Ew2
k(xiεi) ≤ (8r)−2 · 5fh/4.
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Again using Talagrand’s inequality as in the proof of Proposition 3.3, for any
t > 0, we get

Zk(r, l) ≤
5
4EZk(r, l) +

√
fht

16r2n
+ ht

12r2n
(A.55)

with probability at least 1−e−t. From here, we closely follow the proof of Lemma
E.2 of [33] to bound EZk(r, l). With Rademacher symmetrization and using the
connection between Gaussian and Rademacher complexities that in Lemma 4.5
of [23], we get

EZk(r, l) ≤ 2
√

π

2 · E
{

sup
Λ(r,l)

Gk(α1,β1,α2,β2)
}

(A.56)

where Gk(α1,β1,α2,β2) := (nh)−1∑n
i=1 gi,kχi,k · ϕh/(4r)

(
ξΔk

)
φh/4

(
x̄i

TΔ∗
k

)
,

and gi,k are independent standard normal random variables. Denote E
∗ be the

conditional expectation given data {(yi,xi)}ni=1. Then, {Gk(α1,β1,α2,β2)}Λ(r.l)
is a Gaussian process, zero at the true parameter. Now, apply the Gaussian com-
parison theorem to bound E

∗{supΛ(r,l) Gk(α1,β1,α2,β2)}.
Let γT

1 = (αT
1 ,β

T
1 ),γT

2 = (αT
2 ,β

T
2 ), and denote γT

1,k = (α1k,β
T
1 ),γT

2,k =
(α2k,β

T
2 ),γ′

1,k
T = (α′

1k,β
′
1
T),γ′

2,k
T = (α′

2k,β
′
2
T), and abbreviate the notation

to Gk(γ1,k,γ2,k).
Let Δ′

k
T = (α′

1k − α′
2k,β

′
1
T − β′

2
T),Δ′

k
∗T = (α′

2k − α∗
h,k,β

′
2
T − β∗T). Then,

we have

Gk(γ1,k,γ2,k) −Gk(γ′
1,k,γ

′
2,k)

= Gk(γ1,k,γ2,k) −Gk(γ′
1,k + Δ′

k,γ
′
2,k) + Gk(γ′

1,k + Δ′
k,γ

′
2,k) −Gk(γ′

1,k,γ
′
2,k)

= 1
nh

n∑
i=1

gi,kχi,k · ϕh/(4r)(ξΔk
){φh/4(x̄i

TΔ∗
k) − φh/4(x̄i

TΔ′
k
∗)}

+ 1
nh

n∑
i=1

gi,kχi,k · φh/4(x̄i
TΔ′

k
∗){ϕh/(4r)(ξΔk

) − ϕh/(4r)(ξΔ′
k
)}.

Now, using the Lipshitz continuity of φR, ϕR and ϕR ≤ (R/2)2, we get

E
∗{

Gk(γ1,k,γ2,k) −Gk(γ′
1,k + Δ′

k,γ
′
2,k)

}2

≤ 1
n2

n∑
i=1

h2

(8r)4
( 8
h

)2
〈x̄i,γ2,k − γ′

2,k〉2χi,k =
(

1
8r2n

)2 n∑
i=1

〈x̄i,γ2,k − γ′
2,k〉2χi,k

(A.57)

and

E
∗{

Gk(γ′
1,k + Δ′

k,γ
′
2,k) −Gk(γ′

1,k,γ
′
2,k)

}2

≤ 1
(nh)2

n∑
i=1

{
ϕh/(4r)(x̄i

TΔk/‖Δk‖Σ̄) − ϕh/(4r)(x̄i
TΔ′

k/‖Δ′
k‖Σ̄)

}2
χi,k
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≤
(

1
4rn

)2 n∑
i=1

(
x̄i

TΔk/‖Δk‖Σ̄ − x̄i
TΔ′

k‖Δ′
k‖Σ̄

)
χi,k (A.58)

Now, we have an inequality

E
∗{Gk(γ1,k,γ2,k) −Gk(γ′

1,k,γ
′
2,k)}2

≤ 2E∗{
Gk(γ1,k,γ2,k) −Gk(γ′

1,k + Δ′
k,γ

′
2,k)

}2

+ 2E∗{
Gk(γ′

1,k + Δ′
k,γ

′
2,k) −Gk(γ′

1,k,γ
′
2,k)

}2

which can be bounded by using (A.57) and (A.58). Define another Gaussian
process {Zk(γ1,γ2)}Λ(r,l) as

Zk(γ1,γ2) =
√

2
8r2n

n∑
i=1

g′i,k〈x̄i,Δ∗
k〉χi,k +

√
2

4rn

n∑
i=1

g′′i,k
〈x̄i,Δk〉
‖Δk‖Σ̄

χi,k

=
√

2
8r2n

n∑
i=1

〈g′i,kx̄i,S ,Δ∗
k,S〉χi,k +

√
2

4rn

n∑
i=1

g′′i,k
〈x̄i,Δk〉
‖Δk‖Σ̄

χi,k,

where x̄i,S = (1,xT
i,S)T, Δ∗

k,S = (α2k−α∗
h,k,β

T
2,S −β∗T)T, and g′1,k, . . . , g

′′
n,k are

i.i.d. standard normal random variable that are independent of other variables..
We can also abbreviate the notation as Zk(γ1,k,γ2,k). Then, we have an inequal-
ity E∗{Gk(γ1,k,γ2,k) − Gk(γ′

1,k,γ
′
2,k)}2 ≤ E∗{Zk(γ1,k,γ2,k) − Zk(γ′

1,k,γ
′
2,k)}2.

Applying Sudakov-Fernique’s Gaussian comparison inequality (see, e.g. Theo-
rem 7.2.11 in [36]), we get

E
∗
{

sup
Λ(r,l)

Gk(γ1,γ2)
}

≤ E
∗
{

sup
Λ(r,l)

Zk(γ1,γ2)
}
. (A.59)

The above remains valid if we replace E
∗ by E. We use the cone-like constraint

‖Δk‖1 ≤ l‖Δk‖Σ̄, and ‖Δ∗
k‖Σ̄ ≤ r/2, which leads to

E

{
sup
Λ(r,l)

Zk(γ1,γ2)
}

≤
√

2
16rE

∥∥∥∥ 1
n

n∑
i=1

g′i,kχi,kS̄
−1/2x̄i,S

∥∥∥∥
2

+
√

2l
4r E

∥∥∥∥ 1
n

n∑
i=1

g′′i,kχi,kx̄i

∥∥∥∥
∞

≤
√

2
16r

√
5fh
4

s

n
+

√
2l

4r E

∥∥∥∥ 1
n

n∑
i=1

g′′i,kχi,kx̄i

∥∥∥∥
∞
. (A.60)

where S̄ := Ex̄S x̄T
S . Then, from (A.56), (A.59), and (A.60), we get

EZk(r, l) ≤
√
π

{√
5

16

√
hs

r2n
+ l

2rE
∥∥∥∥ 1
n

n∑
i=1

g′′i,kχi,kx̄i

∥∥∥∥
∞

}
. (A.61)
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To bound the second term of the right-hand side of (A.61), define Gj =∑n
i=1 gi,kχi,kx̄ij for j = 1, . . . , p+1. Using the sub-Gaussianity (A3), for k ≥ 3,

we have

E|x̄j |k ≤ 2νk0σ
k/2
jj k

∫ ∞

0
tk−1e−t2/2dt = 2k/2νk0σ

k/2
jj kΓ(k/2).

By using the identity Γ(k)Γ(k + 1/2) = 21−2k√πΓ(2k), we get

E|gi,kx̄ij | ≤ 2k/2
Γ(k+1

2 )√
π

· 2k/2νk0σ
k/2
jj kΓ(k/2) = 2νk0σ

k/2
jj k!.

Thus, for any 0 ≤ λ < (2ν0σ
1/2
jj )−1,

Eeλgi,kχi,kx̄ij ≤ 1 + 1
2 · 5fh

4 σjjλ
2 + 2 · 5fh

4

∞∑
k=3

λ2k

(2k)!ν
2k
0 σ2k

jj (2k)!

≤ 1 + 1
2 · 5fh

4 σjjν
2
0

∞∑
k=2

λk(2ν0σ
1/2
jj )k−2

≤ 1 + 1
2 · 5fh

4 · ν2
0σjjλ

2

1 − 2ν0σ
1/2
jj λ

which leads to logEeλGj ≤ 1
2 ·

5fh
4 · ν2

0σjjλ
2n

1−2ν0σ
1/2
jj λ

. We can apply same to −Gj using
symmetry. By Corollary 2.6 in [5], we have

E

∥∥∥∥ 1
n

n∑
i=1

g′′i,kχi,kx̄i

∥∥∥∥
∞

≤ ν0σx

{
5
2

√
fh log(2p)

n
+ 2 log(2p)

n

}
(A.62)

. Then, taking r = h/(24ν2
0) and combining above result, we get Zk(r, l) ≤ f/16

with probability at least 1− q/(2p), which leads to the conclusion by combining
those for all k = 1, . . . , q.

A.12. Proof of Theorem 3.5

To prove Theorem 3.5, we need to verify the event in Theorem 3.4 holds with
high probability. We closely follow the proof of Lemma E.3 in [33]. First, we
bound ‖∇βQ̂h(α̂o, β̂o)‖∞. Let ωh(α,β) = ∇βQ̂h(α,β)−∇βQh(α,β) We have

‖∇βQ̂h(α̂o, β̂o)‖∞≤‖ωh(α̂o, β̂o)−ωh(α∗
h,β

∗)‖∞+‖∇βQh(α̂o, β̂o)‖∞+‖ω∗‖∞.

Let γT = (αT,βT),γ∗
h

T = (α∗
h,β

∗T). Define the oracle neighborhood Θ∗
S(r) =

{γ ∈ γ∗
h + BΩ(r),βSc = 0}. Conditioned on the event {γ̂o ∈ γ∗

h + BΩ(r)}, we
have

‖ωh(α̂o, β̂o) − ωh(α∗
h,β

∗)‖∞ ≤ sup
Θ∗

S(r)
‖ωh(α,β) − ωh(α∗

h,β
∗)‖∞ (A.63)
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Then, we can bound the above term by bounding it for each quantile index k =

1. . . . , q. Let Δ∗
k,S =

(
αk − α∗

h,k

βS − β∗
S

)
. Also, let Wkj(Δ∗

k,S) = (1/n)
∑n

i=1(wikj −

Ewikj) where

wikj :=
{
K̄

(
α∗
h,k − εi + 〈x̄i,S ,Δ∗

k,S〉
h

)
− K̄

(
α∗
h,k − εi

h

)}
xij

σ
1/2
jj

. (A.64)

Then, we have

sup
Θ∗

S(r)
‖ωh(α,β) − ωh(α∗

h,β
∗)‖∞ ≤ σx

1
q

q∑
k=1

max
1≤j≤p

sup
‖Δ∗

k,S‖≤r

|Wkj(Δ∗
k,S)|

(A.65)

Using (A1’) and (A2’), we get |wikj | ≤ h−1|xij〈x̄i,S ,Δ∗
k,S〉/σ

1/2
jj |, |E(wikj)| ≤

f‖Δ∗
k,S‖S̄ . It can be also shown that

E(w2
ijk|xi) ≤ fh−1(x2

ij/σjj)〈x̄i,S ,Δ∗
k,S〉2

using Minkowski’s integral inequality. Above inequalities lead to

E{(wijk − Ewijk)2|xi} ≤ 2f2‖Δ∗
k,S‖2

S̄
+ 2fh−1(x2

ij/σjj)〈x̄i,S ,Δ∗
k,S〉2.

For λ ∈ R,let λ∗ = λ/‖Δ∗
k,S‖S̄ , and let Δ∗∗

k,S = Δ∗
k,S/‖Δ∗

k,S‖S̄ . Then, using
|eu − 1 − u| ≤ (u2/2)eu∨0 we obtain

Eeλ∗Wkj(Δ∗
k,S) =

n∏
i=1

Ee
λ∗
n (wikj−Ewikj)

≤
n∏

i=1
E

{
1 + λ2

∗
2n2 (wikj − Ewikj)2e

|λ∗|
n |wikj−Ewikj |

}

≤
n∏

i=1

{
1 + λ2f

2

n2 e
|λ|f
n Ee

|λ|
nh |x̂ij〈x̄i,S ,Δ∗∗

k,S〉|

+ λ2f

n2h
e

|λ|f
n Ex̂2

ij〈x̄i,S ,Δ∗∗
k,S〉2e

|λ|
nh |x̂ij〈x̄i,S ,Δ∗∗

k,S〉|
}
.

where x̂ij = xij/σ
1/2
jj . Applying Hölder’s inequality, we get, for any t > 0,

Ex̂2
ij〈x̄i,S ,Δ∗∗

k,S〉2et|x̂ij〈x̄i,S ,Δ∗∗
k,S〉|

≤
{
Ex̂2

ije
tx̂2

ij
}1/2 ·

(
E〈x̄i,S ,Δ∗∗

k,S〉4et〈x̄i,S ,Δ∗∗
k,S〉2)1/2

and
Eet|x̂ij〈x̄i,S ,Δ∗∗

k,S〉| ≤
(
Eetx̂

2
ij
)1/2 · (Eet〈x̄i,S ,Δ∗∗

k,S〉2)1/2.



2114 H. Moon and W.-X. Zhou

For a unit vector u ∈ S
p,let Zu = (zTu)2/(4ν2

0), where z = Σ̄−1/2x̄.
Then, using sub-Gaussianity, we can show that

EeZu = 1 +
∫ ∞

0
euP(Zu ≥ u)du ≤ 3,

EZ2
ue

Zu =
∫ ∞

0
(u2 + 2u)euP(Zu ≥ u)du ≤ 8.

Then, we obtain

Eeλ∗Wkj(Δ∗
k,S) ≤

n∏
i=1

{1 + Cν4
0f/(n2h)} ≤ eCν4

0f/(nh),

for |λ| ≤ min{nh/(4ν2
0), n/f}, where C > 0 is an absolute constant.

Similarily, for each pair (Δ∗
k,S ,Δ∗′

k,S), we have a bound

Eeλ{Wkj(Δ∗
k,S)−Wkj(Δ∗′

k,S)}/‖Δ∗
k,S−Δ∗′

k,S‖Σ̄ ≤ eCν4
0f/(nh).

Then, we can use Corollary 2.2 in [31] since above result satisfies condition (Ed)
of [31]. Thus, with probability at least 1 − e−u,

sup
‖Δ∗

k,S‖≤r

|Wkj(Δ∗
k,S)| � ν2

0f
1/2

σxr

√
s + u

nh

provided nh � (s + u)1/2 Taking u = log(2p) and combining bounds for k =
1, . . . , q, we get

sup
Θ∗

S(r)
‖ωh(α,β) − ωh(α∗

h,β
∗)‖∞ � σxr

√
s + log p

nh
(A.66)

with probability at least 1 − q/(2p) as long as nh � (s + log p)1/2.
Now, we need to bound ‖∇βQh(α̂o, β̂o)‖∞. Since ∇βQh(α̂o, β̂o)S = 0, only

need to bound Sc part. For γ ∈ Θ∗
S(r), we have

∇βQh(α,β)Sc −∇βQh(α∗
h,β

∗)Sc

= 1
q

q∑
k=1

E

∫ ∞

−∞
K(u)

{
Fε

(
x̄T
SΔ∗

k,S + F−1
ε (τk) − hu

)
− Fε

(
F−1
ε (τk) − hu

)}
xScdu

Using Taylor expansion, we get

Fε

(
x̄T
SΔ∗

k,S + F−1
ε (τk) − hu

)
− Fε

(
F−1
ε (τk) − hu

)
= fε

(
F−1
ε (τk)

)
· x̄T

SΔ∗
k,S +

∫ x̄T
SΔ∗

k,S

0
{fε(t− hu + F−1

ε (τk)) − fε(F−1
ε (τk))}dt.

Let JScS = q−1∑q
k=1 fε(F−1(τk))E(xScxT

S), note that ExSc = 0, then above
displays imply

‖∇βQh(α,β)Sc −∇βQh(α∗
h,β

∗)Sc − JScS(β − β∗)‖∞
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≤ 0.5l0 max
j∈Sc

E

{
1
q

q∑
k=1

(x̄T
SΔ2

k,S∗)2|xj |
}

+ max
j∈Sc

(
1
q

q∑
k=1

κ1hE|xjx̄
T
SΔ∗

k,S |
)

≤ 0.5l0σxμ
1/2
4

∥∥∥∥(α−α∗
h)/√q

βS − β∗
S

∥∥∥∥2

ΩS

+ l0κ1hσx · 1
q

q∑
k=1

‖Δ∗
k,S‖S̄ .

Thus, it gives

‖∇βQh(α̂o, β̂o)Sc − JScS(β̂o − β∗)S‖∞ ≤ 0.5l0σxμ
1/2
4 r2 + l0κ1hσxr. (A.67)

Now. it remains to bound. ‖JScS(β̂o − β∗)S‖∞. Using the condition given in
the statement of the theorem, we obtain

‖JScS(β̂o − β∗)S‖∞ = ‖JScS(JSS)−1JSS(β̂o − β∗)S‖∞
≤ max

j∈Sc
‖JjS(JScS)−1‖1 · ‖JSS(β̂o − β∗)S‖∞ ≤ A0 · ‖JSS(β̂o − β∗)S‖∞.

(A.68)

Instead of using the trivial �2 bound for �∞-norm, we have Proposition 3.4,
which gives a Bahadur representation of the oracle estimator∥∥∥∥∥D(β̂o − β∗)S + 1

nq

n∑
i=1

q∑
k=1

{K̄((α∗
k − εi)/h) − τk}xi,S

∥∥∥∥∥
2

� (s + t)
h1/2n

+ h3/2

√
q(s + t)

n
+ h4 (A.69)

with probability at least 1 − 3qe−t, where D = JSS . This gives

‖D(β̂o − β∗)S‖∞
≤ ‖D(β̂o − β∗)S + ∇βQ̂h(α∗

h,β
∗)S‖∞ + ‖∇βQ̂h(α∗

h,β
∗)S‖∞

� (s + t)
h1/2n

+ h3/2

√
q(s + t)

n
+ h4 +

√
log(s) + t

n
, (A.70)

where

‖∇βQ̂h(α∗
h,β

∗)S‖∞ �
√

log(s) + t

n

with probability at least 1 − e−t by using the proof of Proposition 3.2. Then,
combining all results above, we get

‖∇βQ̂h(α̂o, β̂o)‖∞ �
√

log(2p)
n

+
√

s + log p
nh

√
q(s + t)

n

+ A0

{√
log(s) + t

n
+ (s + t)

h1/2n
+ h3/2

√
q(s + t)

n
+ h4

}
(A.71)



2116 H. Moon and W.-X. Zhou

with probability at least 1−q/p−(5q+1)e−t, provided that
√

(s ∨ log p + t)/n �
h � 1.

Now, take t = log(n). Using the conditions from Theorem 3.4 and Proposi-
tion 3.5, set r = h/(24ν2

0), l =
√

2{2 + 2/P ′(a0)} ·
[
max{q, (1 + b2)s/γp}

]1/2,
c = 0.5κf , and choose the bandwidth parameter h � {log(p)/n}1/4, we get,
with probability at least 1 − 2q/p− (5q + 1)/n,

‖∇βQ̂h(α̂o, β̂o)‖∞ �
√

log(p)
n

, ‖θo‖Ω �
√

s + log(n)
n

, ‖β̂o − β∗‖∞ �
√

log(p)
n

provided that n � max{s8/3/(log p)5/3, log(p)}. Then, as in (3.27) required in
Theorem 3.4, choosing λ = C

√
log(p)/n with sufficiently large C > 0, we

have (3.27) with probability at least 1 − 2q/p − (5q + 1)/n, provided that
n � max{s8/3/(log p)5/3, s4/3 log(p)}, thus provind the strong oracle property.

A.13. Lemma F.2 of [14]

Lemma F.2 of [14] has been used multiple times throughout the technical proofs.
Here, we include the statement of the Lemma.

Lemma F.2. Let DL(β1,β2) = L(β1) − L(β2) − 〈L(β2),β1 − β2〉 and
DcL

s(β1,β2) = DL(β1,β2) + DL(β2,β1). For β(t) = β∗ + t(β − β∗) with
t ∈ (0, 1], we have that

Ds
L(β(t),β∗) ≤ tDs

L(β,β∗).

The above lemma applies to general differentiable convex loss functions, so
we can apply in our smoothed loss function as well.
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