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Abstract: The field of distribution-free predictive inference provides tools
for provably valid prediction without any assumptions on the distribution
of the data, which can be paired with any regression algorithm to pro-
vide accurate and reliable predictive intervals. The guarantees provided by
these methods are typically marginal, meaning that predictive accuracy
holds on average over both the training data set and the test point that
is queried. However, it may be preferable to obtain a stronger guarantee
of training-conditional coverage, which would ensure that most draws of
the training data set result in accurate predictive accuracy on future test
points. This property is known to hold for the split conformal prediction
method. In this work, we examine the training-conditional coverage prop-
erties of several other distribution-free predictive inference methods, and
find that training-conditional coverage is achieved by some methods but is
impossible to guarantee without further assumptions for others.
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1. Introduction

Distribution-free predictive inference provides a set of methods for constructing
predictive confidence intervals with minimal assumptions about the underlying
distribution. Specifically, in the case of regression, suppose we are given i.i.d.
training points (Xi, Yi) ∈ X ×R, i = 1, ..., n, and a regression algorithm A that
maps training points to prediction rules μ̂ : X → R. Given a new feature vector
Xn+1, we would like to predict the unseen response Yn+1. A predictive interval
Ĉn, trained on these n training data points using this regression algorithm A,
returns an interval (or more generally, a subset) Ĉn(Xn+1) ⊆ R, with the goal
that Ĉn(Xn+1) should contain the response value Yn+1 for this test point. We
say that Ĉn is a distribution-free predictive interval if, for every distribution P
on X × R it holds that

PPn+1

{
Yn+1 ∈ Ĉn(Xn+1)

}
≥ 1 − α. (1)

Here the notation PPn+1 {·} denotes that the probability is computed with re-
spect to (X1, Y1), ..., (Xn, Yn), (Xn+1, Yn+1)

iid∼ P .
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In practice, we are often interested in the coverage rate for test points once
we fit a regression algorithm to a particular training set. However, the guarantee
in (1) does not directly address this. Rather, it bounds the miscoverage rate on
average over possible sets of training data and test points. As a result, if there
is high variability in the coverage rate as a function of the training data, the
test coverage rate may be substantially below 1 − α for a particular training
set. In this case, while (1) is satisfied on average, after fitting on the realized
draw of the training set distribution the practitioner may be left with prediction
intervals which drastically undercover.

To formalize this intuition, let Dn =
(
(X1, Y1), ..., (Xn, Yn)

)
be the training

data set. Then, define the miscoverage rate as a function of the training data:

αP (Dn) = PP

{
Yn+1 /∈ Ĉn(Xn+1)

∣∣∣ Dn

}
,

where the probability is now only with respect to the test point (Xn+1, Yn+1)
drawn from P . Then, the guarantee in (1) can be re-written as

EPn [αP (Dn)] ≤ α,

where the expectation is with respect to the training data Dn ∼ Pn (and, in
order to be distribution-free, this bound is again required to hold for every
distribution P on X × R).

While this expectation is bounded, αP (Dn) may have high variance over the
training data. In particular, we can consider a worst-case scenario where

PPn {αP (Dn) = 1} = α, PPn {αP (Dn) = 0} = 1 − α, (2)

which trivially satisfies the marginal coverage guarantee (1) since EPn [αP (Dn)] =
α. In other words, in this worst-case scenario, a nonnegligible proportion of
training sets might result in 0% training-conditional coverage even though the
average coverage is still 1 − α, which may be highly problematic in practice.
On the other hand, if we instead had αP (Dn) ≈ α with high probability over
Dn ∼ Pn, this would be ideal, since it ensures that for nearly every possible
draw of the training data, the resulting coverage over future test points should
be ≈ 1 − α.

The variability of training-conditional miscoverage level αP (Dn) will in gen-
eral depend on the distribution P , the regression algorithm A, and the particular
distribution-free method that is used to generate Ĉn(Xn+1). In this paper, we
examine the variability of coverage for popular distribution-free methods for
arbitrary P and A. In particular, we seek to provide guarantees of the form

PPn {αP (Dn) > α + o(1)} ≤ o(1), (3)

also known as a “Probably Approximately Correct” (PAC) predictive interval.
This type of guarantee turns out to be possible for some distribution-free meth-
ods and impossible for others. In addition, we demonstrate empirically that
methods without guarantees of this form can exhibit highly variable training-
conditional miscoverage rates in low stability regimes.
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2. Background

In this section, we will briefly review four related methods for distribution-free
predictive inference, to introduce the methods that we will study in this work.
Consider an algorithm A that maps datasets (consisting of (X,Y ) pairs, with
features X ∈ X and a real-valued response Y ∈ R), to fitted regression functions
μ̂ : X → R.

For a new data point whose features Xn+1 ∈ X are observed, we would like
to predict the unseen response Yn+1 ∈ R. Given a model μ̂ obtained by train-
ing some algorithm A on the available training data (X1, Y1), . . . , (Xn, Yn), can
we construct a prediction interval for Yn+1 around the estimate μ̂(Xn+1)? In
many practical settings, the distribution of the data is likely unknown, and the
regression algorithm A may be a complex “black box” methods whose theoret-
ical properties are not well understood, and therefore it may be challenging to
guarantee a particular error bound for μ̂(Xn+1) as an estimator of the unseen
response Yn+1.

2.1. Distribution-free methods

2.1.1. Conformal prediction

The conformal prediction framework [19], which includes the full and split con-
formal methods (also called “transductive” and “inductive” conformal, respec-
tively), provides a mechanism for constructing prediction intervals in this chal-
lenging setting, with distribution-free coverage guarantees. (See also [9] for ad-
ditional background on these methods.)

To run the split conformal method, we first partition the n available labeled
data points into a training set of size n0 and a holdout set of size n1 = n− n0.
After running the regression algorithm on the training data to obtain the fitted
model μ̂n0 = A

(
(X1, Y1), . . . , (Xn0 , Yn0)

)
, the prediction interval is defined as

Ĉn(Xn+1) = μ̂n0(Xn+1) ± Q̂n1 , (4)

where Q̂n1 is defined as the 	(1 − α)(n1 + 1)
-th smallest value of the holdout
residuals |Yn0+1 − μ̂n0(Xn0+1)|, . . . , |Yn − μ̂n0(Xn)|. This method satisfies the
marginal distribution-free predictive coverage guarantee (1) [19].

While split conformal offers both computational efficiency and distribution-
free coverage, its precision may suffer from the loss of sample size incurred by
splitting the data set. In contrast, full conformal uses all the available training
data for model fitting, but comes at a high computational cost. Specifically,
for every y ∈ R, define μ̂y

n+1 = A
(
(X1, Y1), . . . , (Xn, Yn), (Xn+1, y)

)
, the fitted

model obtained by running algorithm A on the training data together with the
hypothesized test point (Xn+1, y). Then construct the prediction set

Ĉn(Xn+1) =
{
y ∈ R : |y − μ̂y

n+1(Xn+1)| ≤ Q̂y
n+1

}
, (5)
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where Q̂y
n+1 is defined as the 	(1−α)(n+ 1)
-th smallest value of the residuals

|Y1 − μ̂y
n+1(X1)|, . . . , |Yn − μ̂y

n+1(Xn)|, |y− μ̂y
n+1(Xn+1)|. Full conformal predic-

tion also offers the distribution-free coverage guarantee (1) [19], under one addi-
tional assumption—the algorithm A needs to be symmetric in the training data
points, meaning that for any m ≥ 1, any permutation σ on [m] := {1, . . . ,m},
and any data points (x1, y1), . . . , (xm, ym) ∈ X × R,

A
(
(x1, y1), . . . , (xm, ym)

)
= A

(
(xσ(1), yσ(1)), . . . , (xσ(m), yσ(m))

)
. (6)

Full conformal prediction is generally more statistically efficient than split con-
formal (i.e., will provide narrower prediction intervals) since we do not need to
split the training data. On the other hand, the computational cost is high—aside
from special cases (e.g., choosing A to be the Lasso [8]), the prediction interval
can only be calculated by running the regression algorithm A for every possible
y ∈ R, or in practice, for a very fine grid of y values (theoretical guarantees for
this discretized setting can also be obtained, as shown by [4]).

2.1.2. Jackknife+ and CV+

The jackknife+ and CV+ methods proposed by [1] offer a compromise between
the computational efficiency of split conformal and the statistical efficiency of
full conformal. These methods, which are closely related to the cross-conformal
procedure of [18, 20], use a cross-validation type approach.

For jackknife+, let μ̂[n]\{i} denote the model fitted to the training data with
data point i removed,

μ̂[n]\{i} = A
(
(X1, Y1), . . . , (Xi−1, Yi−1), (Xi+1, Yi+1), . . . , (Xn, Yn)

)
.

Then the jackknife+ prediction interval is defined as

Ĉn(Xn+1) =
[
the 	(1 − α)(n + 1)
-th largest of {μ̂[n]\{i}(Xn+1) −Ri}i∈[n],

the 	(1 − α)(n + 1)
-th smallest of {μ̂[n]\{i}(Xn+1) + Ri}i∈[n]

]
, (7)

where Ri = |Yi − μ̂[n]\{i}(Xi)| for i ∈ [n] := {1, . . . , n}. The jackknife+ method
offers a weaker distribution-free coverage guarantee [1, Theorem 1]: for every
distribution P on X × R, assuming A is symmetric as in (6),

PPn+1

{
Yn+1 ∈ Ĉn(Xn+1)

}
≥ 1 − 2α. (8)

Note that, in this theoretical guarantee, noncoverage may be as high as 2α,
rather than the target level α. However, empirically the method typically achieves
coverage at level 1−α, and indeed, under algorithmic stability assumptions, e.g.,

PPn+1
{∣∣μ̂n(Xn+1) − μ̂[n]\{i}(Xn+1)

∣∣ ≤ ε
}
≥ 1 − ν, (9)
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the predictive coverage guarantee can be improved to 1− α− o(1) [1, Theorem
5].

While jackknife+ requires only n many calls to the regression algorithm A
(in contrast to full conformal, which in theory requires infinitely many calls),
for a large sample size n this computational cost may still be too high. CV+
extends the jackknife+ method to K-fold cross-validation (where we can view
jackknife+ as n-fold cross-validation, i.e., K = n). Let [n] = S1 ∪ · · · ∪ SK be
a partition of the training data into K subsets of size n/K, and write μ̂[n]\Sk

as the fitted model when the k-th fold Sk is removed from the n training data
points. The CV+ prediction interval is defined as

Ĉn(Xn+1) =
[
the 	(1 − α)(n + 1)
-th largest of {μ̂[n]\Sk(i)(Xn+1) −Ri}i∈[n],

the 	(1 − α)(n + 1)
-th smallest of {μ̂[n]\Sk(i)(Xn+1) + Ri}i∈[n]

]
, (10)

where now Ri = |Yi − μ̂[n]\Sk(i)(Xi)| for i ∈ [n], and where k(i) denotes the
fold to which data point i belongs, i.e., i ∈ Sk(i). The CV+ method’s coverage
guarantee is given by [1, Theorem 4] (see also [20] for a partial version of this
result): for every distribution P on X × R, assuming A is symmetric as in (6),

PPn+1

{
Yn+1 ∈ Ĉn(Xn+1)

}
≥ 1 − 2α−

√
2/n. (11)

As for jackknife+, the CV+ method typically achieves coverage near or above
the target level 1 − α in practice.

2.1.3. A note on randomized algorithms

The background given above implicitly treats the algorithm A as a deterministic
function of the training data—that is, we view A as a function(
(X1, Y1), . . . , (Xn, Yn)

)
�→ μ̂. In many settings, however, it is common to use a

randomized regression algorithm—for instance, stochastic gradient descent. In
this setting, we can formally view A as a function

(
(X1, Y1), . . . , (Xn, Yn), ξ

)
�→

μ̂, where the term ξ introduces stochastic noise (effectively, a random seed).
All the results described above hold for both the deterministic and randomized
settings. (For results that assume A is symmetric, the symmetry condition (6)
should be understood in the distributional sense—that is, the training data
points are treated symmetrically with respect to the randomized training pro-
cedure. For example, for stochastic gradient descent, if data points are drawn
uniformly at random during the training epochs, then symmetry is satisfied.)

2.2. Marginal or conditional validity

The predictive coverage bound (1) achieved by split and full conformal, or the
bounds (8) and (11) for the jackknife+ and CV+ methods, are all marginal
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guarantees. This means that the probability is calculated over a random draw
of both the training and test data. However, this may be unsatisfactory for
practical purposes, in several ways.

Training-conditional coverage First, as discussed in Section 1 above, we
may be interested in training-conditional coverage, which ensures that the pre-
dictive coverage guarantees hold (at least approximately) even after conditioning
on the training data set Dn =

(
(X1, Y1), . . . , (Xn, Yn)

)
. For the split conformal

method described in (4), [17, Proposition 2a] establishes training-conditional
coverage through a Hoeffding bound:

Theorem 1 ([17, Proposition 2a]). Consider the split conformal method defined
in (4) with sample size n = n0 +n1, where n0 ≥ 1 many data points are used for
training the fitted model μ̂n0 (with an arbitrary algorithm) while the remaining
n1 ≥ 1 data points are used as the holdout set. Then, for any distribution P and
any δ ∈ (0, 0.5],

PPn

⎧⎨⎩αP (Dn) ≤ α +

√
log(1/δ)

2n1

⎫⎬⎭ ≥ 1 − δ.

This result holds for both deterministic and randomized algorithms A. Note
that it is not necessary to assume that A is symmetric.

In other words, the probability that a training set results in a significantly
higher training-conditional miscoverage rate than the nominal rate, is vanish-
ingly small under the split conformal method. Of course, by running split con-
formal at a modified value α′ := α−

√
log(1/δ)

2n1
, we would obtain a slightly more

conservative prediction interval that would then satisfy

PPn {αP (Dn) ≤ α} ≥ 1 − δ.

This type of guarantee (i.e., with probability at least 1−δ, we obtain at least 1−α
coverage, where α and δ are specified by the user) is often referred to as a prob-
ably approximately correct (PAC) guarantee. This style of inference guarantee
dates back to the work of [23, 22] on setting “tolerance limits”, i.e., a prediction
interval (in the univariate case) or prediction region (in the multivariate case),
for a random variable Y ∼ P , given n i.i.d. draws Y1, . . . , Yn

iid∼ P (that is, a
prediction region Ĉn for Y without any covariate X, such that P (Ĉn) ≥ 1 − α
holds with probability at least 1 − δ, for user-specified parameters α and δ).
More recent results offering PAC-style training-conditional coverage guarantees
for the regression setting, via split conformal and related methods, can be found
in the work of [7, 3, 24, 13]; see also [12, 14, 25] for training-conditional coverage
under covariate shift.

No analogous finite-sample results are known for distribution-free prediction
methods beyond split conformal, although [16] analyze asymptotic training-
conditional validity for the jackknife and for cross-validation under algorithmic
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stability type assumptions such as (9). In this work, our goal will be to exam-
ine the finite-sample training-conditional coverage properties of distribution-free
methods beyond split conformal.

Object-conditional or label-conditional coverage As a second way in
which marginal coverage may not be sufficient for practical utility, we may
also be interested in coverage at a particular new test feature vector Xn+1
(referred to in [17] as object-conditional coverage)—for instance, if the data
points correspond to individual patients in a clinical setting, is it true that a
given patient with a particular feature vector Xn+1 = x has a 1−α probability of
a correct predictive interval? That is, we would like to show that the conditional
coverage probability PPn+1

{
Yn+1 ∈ Ĉn(Xn+1)

∣∣∣ Xn+1 = x
}

is ≥ 1−α, at least
approximately. However, [17, 10] show that this type of guarantee is impossible
under any distribution P for which X is nonatomic (i.e., PP {X = x} = 0 for all
x ∈ X—for instance, this is satisfied by any continuous distribution on Rd); see
also [2]. A third type of conditional guarantee is that of label-conditional coverage
[17, 11] for the setting where the response Y is categorical, requiring accuracy
conditional on the class, i.e., PPn+1

{
Yn+1 ∈ Ĉn(Xn+1)

∣∣∣ Yn+1 = y
}
≥ 1−α for

each category y. Both of these type of conditional guarantees are fundamentally
very different from training-conditional coverage, and we will not address these
further in this work.

3. Theoretical results

As shown in Theorem 1 above, a training-conditional guarantee of the form (3)
was established by [17] for the split conformal method. In our work, we find that
a guarantee of the form (3) can also be shown for the K-fold CV+ method (as
long as n/K, the number of data points in each fold, is sufficiently large), but
no such guarantees are possible for the full conformal or jackknife+ methods.
In this section, we present the main results for each of the three previously
unstudied methods. The proofs will be given in Section 4 below.

First, we consider the full conformal prediction method. In contrast to split
conformal, it is impossible to guarantee training-conditional coverage for the
full conformal method without further assumptions.

Theorem 2. For any sample size n ≥ 2 and any distribution P for which the
marginal PX is nonatomic, there exists a symmetric and deterministic regres-
sion algorithm A such that the full conformal prediction method defined in (5)
satisfies

PPn

{
αP (Dn) ≥ 1 − n−2} ≥ α− 6

√
logn
n

.

In other words, without placing assumptions on the distribution P and/or the
algorithm A (beyond the standard symmetry assumption), we cannot avoid the
worst-case scenario (2), where the marginal guarantee of 1 − α coverage stated
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in (1) is achieved only because the training data set yields ≈ 100% coverage
with probability ≈ 1−α, and ≈ 0% coverage with probability ≈ α. (Our result
holds only for distributions P where X is nonatomic, i.e., PP {X = x} = 0 for
all x ∈ X—this condition appears also in the impossibility results for object-
conditional coverage as described earlier in Section 2.2.)

Next, for the jackknife+, the same worst-case result holds.

Theorem 3. For any sample size n ≥ 2 and any distribution P for which the
marginal PX is nonatomic, there exists a symmetric and deterministic regression
algorithm A such that the jackknife+ prediction interval defined in (7) satisfies

PPn

{
αP (Dn) ≥ 1 − n−2} ≥ α− 6

√
logn
n

.

Thus, as for full conformal, without placing assumptions on P and/or A (be-
yond the standard symmetry assumption), we cannot ensure that the jackknife+
method will avoid the worst-case scenario (2).

In contrast, for CV+, we will now see that the lower bound on marginal
coverage, which is � 1−2α as shown in (11), can also be obtained as a training-
conditional guarantee.

Theorem 4. For any integers K ≥ 2 and m ≥ 1, and let n = Km. Suppose
CV+ is run with K folds each of size m. Then, for any regression algorithm A
and any distribution P , the K-fold CV+ method (10) satisfies

PPn

{
αP (Dn) ≤ 2α +

√
2 log(K/δ)

m

}
≥ 1 − δ

for any δ > 0.

As long as the size of each fold, m = n/K, is large, the bound on αP (Dn) is
approximately 2α. Comparing to the marginal result (11) for the CV+ method,
we see that the conditional coverage guarantee (for “most” training data sets
Dn) essentially matches the marginal coverage guarantee, and thus could not
be improved. Note also that, as in Theorem 1 for split conformal, we do not
need to assume A is symmetric, and the result holds regardless of whether A is
deterministic or randomized.

4. Proofs

Before proceeding to the proofs, we give some brief intuition for why the split
conformal and CV+ methods offer training-conditional coverage guarantees,
while full conformal and jackknife+ do not. For split conformal, the n1 residuals
on the holdout set

{|Yi − μ̂n0(Xi)| : i = n0 + 1, . . . , n}

are i.i.d. after conditioning on the fitted model μ̂n0 , and therefore, for large
n1, their sample quantiles concentrate around the corresponding population
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quantiles. Similarly, for CV+, for each fold k = 1, . . . ,K we have m = n/K
many residuals {

|Yi − μ̂[n]\Sk
(Xi)| : i ∈ Sk

}
that are again i.i.d. conditional on the k-th fitted model μ̂[n]\Sk

, and thus again
their sample quantiles concentrate as long as the fold size m = n/K is large.
This concentration of the sample quantiles (which we formalize in Lemma 1
below) is the key ingredient for establishing training-conditional coverage. On
the other hand, for both full conformal and jackknife+, there is no independence
among residuals calculated in each method—for example, for jackknife+, in the
leave-one-out residuals Ri = |Yi − μ̂[n]\{i}(Xi)|, for two data points i = j, data
point (Xi, Yi) is used for training when computing the j-th residual Rj , and
vice versa.

4.1. Proofs for split conformal and CV+

We begin by considering the split conformal and CV+ methods, which both
achieve training-conditional coverage. Both the split conformal result, Theo-
rem 1 [17, Proposition 2a], and the CV+ result, Theorem 4, can be proved as
consequences of the following lemma.

Lemma 1. Let n ≥ 2 and choose a holdout set A with ∅ � A � [n]. Let μ̂[n]\A =
A
(
(Xi, Yi) : i ∈ [n]\A

)
, where A is any algorithm and may be deterministic or

randomized. Define

pA(x, y) = 1
|A|

∑
i∈A

1
{
|Yi − μ̂[n]\A(Xi)| ≥ |y − μ̂[n]\A(x)|

}
,

and
p∗A(x, y) = PP

{
|Y − μ̂[n]\A(X)| ≥ |y − μ̂[n]\A(x)|

∣∣ μ̂[n]\A
}
.

Then p∗A(Xn+1, Yn+1) is a valid p-value conditional on the training data, i.e.,

PP {p∗A(Xn+1, Yn+1) ≤ a | Dn} ≤ a for all a ∈ [0, 1], almost surely over Dn.
(12)

Moreover, for any Δ ≥
√

log 2
2|A| ,

PPn

{
sup

(x,y)∈X×R

(p∗A(x, y) − pA(x, y)) > Δ
}

≤ e−2|A|Δ2
, (13)

Next we will see how this lemma implies the two theorems. First, for split
conformal, Theorem 1 is proved by [17, Proposition 2a], but here we reformulate
the proof in terms of the above lemma, to set up intuition for our CV+ proof
later on.

Proof of Theorem 1 [17, Proposition 2a]. By definition of the split conformal
method (4), we have

Ĉn(Xn+1) =
{
y ∈ R : Q̂n1 ≥ |y − μ̂n0(Xn+1)|

}
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=
{
y ∈ R :

n∑
i=n0+1

1 {|Yi − μ̂n0(Xi)| < |y − μ̂n0(Xn+1)|} < 	(1 − α)(n1 + 1)

}

⊇
{
y ∈ R :

n∑
i=n0+1

1 {|Yi − μ̂n0(Xi)| ≥ |y − μ̂n0(Xn+1)|} > αn1

}
=
{
y ∈ R : p[n]\[n0](Xn+1, y) > α

}
.

where p[n]\[n0](x, y) is defined as in Lemma 1 by choosing the holdout set A =
[n]\[n0]. Therefore, we have

αP (Dn) = PP

{
Yn+1 ∈ Ĉn(Xn+1)

∣∣∣ Dn

}
≤ PP

{
p[n]\[n0](Xn+1, Yn+1) ≤ α

∣∣ Dn

}
.

Next, fixing any Δ > 0, consider the event that

sup
(x,y)∈X×R

(
p∗[n]\[n0](x, y) − p[n]\[n0](x, y)

)
≤ Δ,

which is a function of the training data Dn. On this event, we have

αP (Dn) ≤ PP

{
p∗[n]\[n0](Xn+1, Yn+1) ≤ α + Δ

∣∣∣ Dn

}
≤ α + Δ,

where the last step holds by (12). In other words, so far we have shown that

PPn {αP (Dn) > α + Δ}

≤ PPn

{
sup

(x,y)∈X×R

(
p∗[n]\[n0](x, y) − p[n]\[n0](x, y)

)
> Δ

}
.

Finally, applying (13), this probability is bounded by δ when we choose Δ =√
log(1/δ)

2n1
.

Next, we prove Theorem 4 for the CV+ method.

Proof of Theorem 4. As in the definition of the CV+ method (10), we let Ri =
|Yi− μ̂[n]\Sk(i)(Xi)| for each i ∈ [n]. Following [1, Proof of Theorem 4], the CV+
prediction interval defined in (10) deterministically satisfies

Ĉn(Xn+1) ⊇
{
y ∈ R :

n∑
i=1

1
{
|y − μ̂[n]\Sk(i)(Xn+1)| > Ri

}
< (1 − α)(n + 1)

}

⊇
{
y ∈ R :

n∑
i=1

1
{
Ri ≥ |y − μ̂[n]\Sk(i)(Xn+1)|

}
> αn

}

=
{
y ∈ R :

K∑
k=1

∑
i∈Sk

1
{
Ri ≥ |y − μ̂[n]\Sk

(Xn+1)|
}
> αn

}

=
{
y ∈ R : 1

K

K∑
k=1

pSk
(Xn+1, y) > α

}
,
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where for each fold k, pSk
(x, y) is defined as in Lemma 1 by choosing the holdout

set A = Sk. Therefore, we have

αP (Dn) = PP

{
Yn+1 ∈ Ĉn(Xn+1)

∣∣∣ Dn

}
≤ PP

{
1
K

K∑
k=1

pSk
(Xn+1, Yn+1) ≤ α

∣∣∣∣∣ Dn

}
.

Next, fixing any Δ > 0, consider the event that

max
k

sup
(x,y)∈X×R

(
p∗Sk

(x, y) − pSk
(x, y)

)
≤ Δ,

which is a function of the training data Dn. On this event, we have

αP (Dn) ≤ PP

{
1
K

K∑
k=1

p∗Sk
(Xn+1, Yn+1) ≤ α + Δ

∣∣∣∣∣ Dn

}
≤ 2α + 2Δ,

where the last step holds because each p∗Sk
(Xn+1, Yn+1) is a valid p-value con-

ditional on Dn by (12), and the average of valid p-values is itself a p-value up
to a factor of 2 [15, 21]. Combining everything so far, we have shown that

PPn {αP (Dn) > 2α + 2Δ} ≤ PPn

{
max

k
sup

(x,y)∈X×R

(
p∗Sk

(x, y) − pSk
(x, y)

)
> Δ

}

≤
K∑

k=1

PPn

{
sup

(x,y)∈X×R

(
p∗Sk

(x, y) − pSk
(x, y)

)
> Δ

}
,

where for the last step we take a union bound. Finally, applying (13) to bound
this probability for each fold k, the above quantity is bounded by δ when we
choose Δ =

√
log(K/δ)

2m .

To conclude this section, we now prove the supporting lemma.

Proof of Lemma 1. First, for any fixed function μ : X → R, define

F̄μ(t) = PP {|Y − μ(X)| ≥ t} .

In other words, F̄μ is right-tailed CDF of |Y −μ(X)| under (X,Y ) ∼ P . We can
therefore write

p∗A(Xn+1, Yn+1) = F̄μ̂[n]\A(|Yn+1 − μ̂[n]\A(Xn+1)|).

Since (Xn+1, Yn+1) ∼ P (and is independent of μ̂[n]\A), this is clearly a valid
p-value by definition of F̄μ̂[n]\A , and so we have proved (12).

Next, for any (x, y) ∈ X × R, we can calculate

p∗A(x, y) − pA(x, y)
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= F̄μ̂[n]\A(|y − μ̂[n]\A(x)|) − 1
|A|

∑
i∈A

1
{
|Yi − μ̂[n]\A(Xi)| ≥ |y − μ̂[n]\A(x)|

}
≤ sup

t∈R

(
F̄μ̂[n]\A(t) − 1

|A|
∑
i∈A

1
{
|Yi − μ̂[n]\A(Xi)| ≥ t

})
.

Finally, since {(Xi, Yi)}i∈A are drawn i.i.d. from P and are independent from
μ̂[n]\A, for any Δ ≥

√
log 2
2|A| the Dvoretzky–Kiefer–Wolfowitz inequality implies

that, conditional on μ̂[n]\A,

sup
t∈R

(
F̄μ̂[n]\A(t) − 1

|A|
∑
i∈A

1
{
|Yi − μ̂[n]\A(Xi)| ≥ t

})
≤ Δ

holds with probability at least 1 − e−2|A|Δ2 . The same bound therefore holds
marginally as well. This proves (13).

4.2. Proofs for full conformal and jackknife+

Next, we turn to the results for full conformal and for jackknife+, where we
show that training-conditional coverage cannot be guaranteed without further
assumptions. The proofs for the two methods are closely related and share the
same structure.

First, fix some large integer M (which we will specify later), and partition
X into M sets, X = A0 ∪ A1 ∪ · · · ∪ AM−1, where PP {X ∈ Am} = 1

M for
each m = 0, . . . ,M − 1 (since we have assumed X is nonatomic under the
distribution P , such a partition exists by [5, Proposition A.1]). Define a map
a : X → {0, . . . ,M − 1},

a(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, x ∈ A0,

1, x ∈ A1,

. . .

M − 1, x ∈ AM−1,

assigning each x ∈ X to a particular set in the partition. Then, by our choice of
the Am’s, we see that

a(X) ∼ Unif{0, . . . ,M − 1}

under the distribution P . By extension, mod(
∑n

i=1 a(Xi),M) ∼ Unif{0, ...,M−
1}. For the sake of illustration, consider a “clock” partitioned into M segments
and a hand whose position represents the value of the modulo. In this case, the
hand moves forward by a(Xi) segments when the i-th term is added inside the
modulo—see Figure 1 for an illustration.

Next, we will define three events, Emax, Emod, and Eunif, which are all functions
of the training data Dn. Define

y∗ = the (1 − n−2)-quantile of |Y | under distribution P ,
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Fig 1. Representation of mod(
∑n

i=1 a(Xi),M) for n = 3, when a(X1) = 4, a(X2) = M − 3,
and a(X3) = 1. The left plot shows moving from 0 to mod(a(X1),M), the middle plot shows
moving from mod(a(X1),M) to mod(a(X1) + a(X2),M), and the right plot shows moving
from mod(a(X1) + a(X2),M) to mod(a(X1) + a(X2) + a(X3),M).

and let

M1 =
⌊
M

(
α−

√
2 logn

n
− 2

n

)⌋
≈ αM.

(Note that we can assume n is sufficiently large so that α −
√

2 logn
n − 2

n > 0,
and thus M1 ≥ 0, since if this does not hold then the results of the theorems
hold trivially.) With these values fixed, the three events are defined as follows:

• Let Emax be the event that maxi∈[n] |Yi| < y∗.
• Let Emod be the event that mod(

∑n
i=1 a(Xi),M) < M1.

• Let Eunif be the event that
∑n

i=1 1 {mod(a(Xi) + m,M) < M −M1} ≥
	(1 − α)(n + 1)
 for all integers m.

Figures 2 and 3 illustrate the events Emod and Eunif, respectively.
The following result shows that, with probability at least ≈ α, all three events

occur:

Lemma 2. Under the definitions and notation above, for (X1, Y1), . . . , (Xn,

Yn) iid∼ P , we have

PPn {Emod} ≥ α−
√

2 logn
n

− 2
n
− 1
M

, PPn {Emax} ≥ 1− 1
n
, PPn {Eunif} ≥ 1− 2

n
,

and therefore,

PPn {Emod ∩ Emax ∩ Eunif} ≥ α−
√

2 logn
n

− 1
M

− 5
n
.

By choosing M to be sufficiently large, then, we obtain

PPn {Emod ∩ Emax ∩ Eunif} ≥ α− 6
√

logn
n

. (14)

Now it remains to be shown that, for both full conformal prediction and for
jackknife+, we can find an algorithm A such that, if the events Emax, Emod, and
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0
1

M1-1

M1

M1+1

M -1
M -2

Fig 2. An illustration of the event Emod, which is the event that mod(
∑n

i=1 a(Xi),M) < M1
for M1 ≈ αM . In the figure, the event Emod holds if and only if the value mod(

∑n
i=1 a(Xi),M)

lands in the shaded region of the “clock”.

0
1

M-M1-3M-M1-2

M-M1--1

M-M1

M -1
M -2

0
1

M-M1-3M-M1-2

M-M1--1

M-M1

M -1
M -2

0
1

M-M1-3M-M1-2

M-M1--1

M-M1

M -1
M -2

Fig 3. An illustration of the event Eunif, which is the event that mod(a(Xi)+m,M) < M−M1
holds for at least �(1 − α)(n + 1)� many training data points i, for every integer m. In the
figure, the shaded region {a ∈ {0, . . . ,M − 1} : mod(a + m,M) < M − M1} is shown for
m = 0 (left figure), m = 1 (center figure), and m = 2 (right figure). The event holds if and
only if at least �(1 − α)(n + 1)� many training data points i ∈ [n] have a(Xi) lying in the
shaded region, for each integer m (i.e., for each of the three displayed figures, as well as all
other possible values of m).

Eunif all hold, then the training-conditional miscoverage rate αP (Dn) is close to
1.

Proof of Theorem 2. For full conformal, we define a symmetric regression algo-
rithm A that maps a data set {(x1, y1), . . . , (xn+1, yn+1)} to the fitted function

μ̂(x) =
{

2y∗, if mod(−a(x) +
∑n+1

i=1 a(xi),M) < M1,

0, otherwise.

Below, we will show that, for any training data set Dn,

If Emax∩Emod∩Eunif holds, then Ĉn(Xn+1)⊆(y∗,∞) almost surely over Xn+1.
(15)
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By definition of y∗, we therefore have

PP

{
Yn+1 ∈ Ĉn(Xn+1)

∣∣∣ Dn

}
≤ PP {Yn+1 ∈ (y∗,∞) | Dn}

= PP {Yn+1 > y∗} ≤ n−2,

for any Dn such that Emax∩Emod∩Eunif holds. Combining this with the bound (14),
we have proved that PPn

{
αP (Dn) ≥ 1 − n−2} ≥ α− 6

√
logn
n , as desired.

To complete the proof, we now verify (15). Condition on the training data
Dn, and assume Emax ∩ Emod ∩ Eunif holds. First, by Emod, we have

mod
(
−a(Xn+1) +

n+1∑
i=1

a(Xi),M
)

= mod
(

n∑
i=1

a(Xi),M
)

< M1

for any value of Xn+1, and therefore, for any y ∈ R,

μ̂y
n+1(Xn+1) = 2y∗

where as before, μ̂y
n+1 = A

(
(X1, Y1), . . . , (Xn, Yn), (Xn+1, y)

)
. On the other

hand, for any i ∈ [n], define

mi = mod

⎛⎝−a(Xi) +
n+1∑
j=1

a(Xj),M

⎞⎠
= M − 1 − mod

⎛⎝a(Xi) −
n+1∑
j=1

a(Xj) − 1,M

⎞⎠ ,

where the last step holds since mod(k,M) = M − 1 − mod(−k − 1,M) for all
integers k. By the event Eunif (applied with m = −

∑n+1
j=1 a(Xj)−1), we see that

mi ≥ M1 for at least 	(1 − α)(n + 1)
 many i ∈ [n]. Therefore, for all y ∈ R,
μ̂y
n+1(Xi) = 0 for at least 	(1 − α)(n + 1)
 many i ∈ [n]. Next, by Emax, we

have |Yi| < y∗ for all i ∈ [n], and therefore, for all y ∈ R, Ry
i < y∗ for at least

	(1 − α)(n + 1)
 many i ∈ [n].
Returning to the definition of full conformal prediction given in (5), we

therefore have Q̂y
n+1 < y∗. Therefore, y ∈ Ĉn(Xn+1) can hold only if |y −

μ̂y
n+1(Xn+1)| < y∗, which implies Ĉn(Xn+1) ⊆ (y∗, 3y∗) ⊆ (y∗,∞). This veri-

fies (15), and thus completes the proof of the theorem.

Proof of Theorem 3. For jackknife+, we define a symmetric regression algo-
rithm A that maps a data set {(x1, y1), . . . , (xn−1, yn−1)} to the fitted function

μ̂(x) =
{

0, if mod(a(x) +
∑n−1

i=1 a(xi),M) < M1,

2y∗, otherwise.

As in the proof of Theorem 2, it is sufficient to verify that (15) again holds in
this case.



Training-conditional coverage for distribution-free inference 2059

Condition on the training data Dn, and assume Emax ∩ Emod ∩ Eunif holds.
First, by Emod, for all i ∈ [n], we have

mod

⎛⎝a(Xi) +
∑

j∈[n]\{i}
a(Xj),M

⎞⎠ = mod

⎛⎝ n∑
j=1

a(Xj),M

⎞⎠ < M1,

and therefore
μ̂[n]\{i}(Xi) = 0.

By Emax, we have |Yi| < y∗ for all i ∈ [n], and therefore, Ri = |Yi−μ̂[n]\{i}(Xi)| <
y∗ for all i ∈ [n].

On the other hand, for any i ∈ [n], define

mi = mod

⎛⎝a(Xn+1) +
∑

j∈[n]\{i}
a(Xj),M

⎞⎠ = mod

⎛⎝−a(Xi) +
n+1∑
j=1

a(Xj),M

⎞⎠ .

Exactly as in the proof of Theorem 2, by the event Eunif we see that mi ≥ M1
for at least 	(1 − α)(n + 1)
 many i ∈ [n]. Therefore, μ̂[n]\{i}(Xn+1) = 2y∗ for
at least 	(1 − α)(n + 1)
 many i ∈ [n].

Combining these calculations, we see that μ̂[n]\{i}(Xn+1)−Ri > y∗ for at least
	(1 − α)(n + 1)
 many i ∈ [n]. Thus, by definition of the jackknife+ predictive
interval given in (7), we have Ĉn(Xn+1) ⊆ (y∗,∞). This verifies (15), and thus
completes the proof of the theorem.

Finally, we need to prove Lemma 2.

Proof of Lemma 2. First, since y∗ is chosen to be the (1 − n−2) quantile of |Y |
under the distribution P , we have

PPn

{
max
i∈[n]

|Yi| ≥ y∗

}
≤

n∑
i=1

PP {|Yi| ≥ y∗} ≤ n · n−2 = 1
n
,

and thus PPn {Emax} ≥ 1 − 1
n as desired.

Next, since a(Xi)
iid∼ Unif{0, . . . ,M − 1} for i ∈ [n], it follows immediately

that mod(a(X1)+· · ·+a(Xn),M) ∼ Unif{0, . . . ,M−1} also, and so by definition
of M1 we have

PPn {Emod} = M1

M
=

⌊
M

(
α−

√
2 logn

n − 2
n

)⌋
M

≥ α−
√

2 logn
n

− 2
n
− 1

M
.

Finally, we turn to Eunif. This is the event that

n∑
i=1

1 {mod(a(Xi) + m,M) < M −M1} ≥ 	(1 − α)(n + 1)
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for all integers m, but by definition of the modulo function, it is equivalent to
requiring that this bound holds only for all integers m = 0, . . . ,M − 1, i.e.,

Eunif =
M−1⋂
m=0

{
n∑

i=1
1 {mod(a(Xi) + m,M) < M −M1} ≥ 	(1 − α)(n + 1)


}
.

Now let U1, . . . , Un
iid∼ Unif[0, 1]. Then �MUi� iid∼ Unif{0, . . . ,M − 1}, and so

PPn {Eunif}

= P

{
M−1⋂
m=0

{
n∑

i=1
1 {mod(�MUi� + m,M) < M −M1} ≥ 	(1 − α)(n + 1)


}}
.

(16)

Next, suppose it holds that

sup
s∈[0,1]

∣∣∣∣∣∑
i

1 {Ui < s} − ns

∣∣∣∣∣ ≤
√

n logn
2 . (17)

Then, for each m ∈ {0, 1, . . . ,M −M1 − 1}, we have
n∑

i=1
1 {mod(�MUi� + m,M) < M −M1}

=
n∑

i=1
1 {�MUi� < M −M1 −m} +

n∑
i=1

1 {�MUi� ≥ M −m}

=
n∑

i=1
1

{
Ui < 1 − M1 + m

M

}
+ n−

n∑
i=1

1
{
Ui < 1 − m

M

}
≥
(
n ·

(
1 − M1 + m

M

)
−
√

n logn
2

)
+ n−

(
n ·

(
1 − m

M

)
+
√

n logn
2

)

= n ·
(

1 − M1

M

)
−
√

2n logn

≥ 	(1 − α)(n + 1)
,

where the last step holds by definition of M1. Next, for each m ∈ {M −
M1, . . . ,M − 1}, we have

n∑
i=1

1 {mod(�MUi� + m,M) < M −M1}

=
n∑

i=1
1 {M −m ≤ �MUi� < 2M −M1 −m}

=
n∑

i=1
1

{
Ui < 2 − M1 + m

M

}
−

n∑
i=1

1
{
Ui < 1 − m

M

}
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≥
(
n ·

(
2 − M1 + m

M

)
−
√

n logn
2

)
−
(
n ·

(
1 − m

M

)
+
√

n logn
2

)

= n ·
(

1 − M1

M

)
−
√

2n logn

≥ 	(1 − α)(n + 1)
.

Therefore, returning to (16), we have

PPn {Eunif} ≥ P

{
sup

s∈[0,1]

∣∣∣∣∣∑
i

1 {Ui ≤ s} − ns

∣∣∣∣∣ ≤
√

n logn
2

}
≥ 1 − 2

n
,

where the lasts step holds by the Dvoretzky–Kiefer–Wolfowitz inequality. This
completes the proof.

5. Empirical results

The theoretical results above suggest that we should be concerned about the
training conditional coverage of the full conformal and jackknife+ prediction
intervals. However, the algorithms used as counterexamples in the proof are
extremely unrealistic. In particular, the constructions appearing in the proofs
display an extremely high amount of instability, since the inclusion of a single
training point can greatly impact the output of the regression function.

Therefore, a natural question is how large the variability of αP (Dn) is in prac-
tice, particularly in unstable environments. In our simulation, we will examine
the empirical performance of the training-conditional miscoverage rate αP (Dn)
for the four distribution-free predictive inference tools studied in this work, for
a linear regression task where high dimensionality may cause some instability
in the regression algorithm.1

5.1. Setting

We choose a target coverage rate of 90%, i.e., α = 0.1, and will compare the
performance of split conformal (with n0 = n1 = n/2), full conformal, jackknife+,
and CV+ (with K = 20 folds).

We use sample size n = 500 for the training set, and ntest = 1000 for the test
set. For each trial, we generate i.i.d. data points (Xi, Yi), i = 1, . . . , n + ntest,
from the following distribution:

Xi ∼ N (0, Id) and Yi | Xi ∼ N (X�
i β, 1),

where β =
√

10 · U for a random unit vector U drawn uniformly from the
unit sphere in X = Rd. We repeat the experiment for each dimension d =
125, 250, 500, 1000, with 200 independent trials for each dimension.

1Code to reproduce the experiment is available at http://rinafb.github.io/code/
training_conditional.zip.

http://rinafb.github.io/code/training_conditional.zip
http://rinafb.github.io/code/training_conditional.zip
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Our algorithm A is given by ridge regression with penalty parameter λ =
0.0001, i.e., for any data set (x1, y1), . . . , (xN , yN ), the fitted model
μ̂ = A

(
(x1, y1), . . . , (xN , yN )

)
is given by

μ̂(x) = x�β̂ where β̂ = arg min
β∈Rd

{
N∑
i=1

(yi − x�
i β)2 + λ‖β‖2

2

}
.

Finally, we estimate the training-conditional miscoverage rate αP (Dn) for each
of the four methods, by computing the empirical coverage over the ntest many
test points:

αP (Dn) ≈ 1
ntest

ntest∑
i=1

1
{
Yn+i ∈ Ĉn(Xn+i)

}
.

Instability of the algorithm In this simulation, we apply the ridge regres-
sion algorithm to a training set where the xi’s are standard Gaussian, with a
penalty parameter λ ≈ 0. This optimization problem is extremely poorly con-
ditioned when the training set size is ≈ d, but is well-behaved if the number
of training points is either sufficiently large or sufficiently small relative to d
(see [6] for an analysis of “ridgeless” regression, i.e., taking λ → 0, in the over-
parametrized setting). As a result, if the number of training points is ≈ d, the
outcome of the algorithm may be highly unstable—the stability assumption (9)
will not hold, and in general, predictions μ̂(x) will vary greatly with a new draw
of the training set. However, instability will not occur if the training set size is
substantially smaller than d or larger than d.

For split conformal, since the model is trained on n0 = n/2 = 250 many data
points, this instability will be high for d = 250 (but not for d = 125, 500, 1000).
In contrast, when running full conformal or jackknife+ or CV+, the models are
trained on n + 1 = 501 or n − 1 = 499 or n − n/K = 475 many data points,
respectively. Therefore, for these three methods, we expect instability to be high
for dimension d = 500 (but not for d = 125, 250, 1000).

5.2. Results

The results of the simulations are displayed in Figure 4. For both split conformal
and CV+, as the theory suggests, the training-conditional miscoverage rate
αP (Dn) is consistently near or below the nominal level α = 0.1. This is the case
even for dimensions where the trained models for split conformal or for CV+ are
likely to exhibit instability, as discussed above. Specifically, for split conformal,
the αP (Dn) values concentrate around α for each choice of dimension d. For
CV+, the same is true for dimensions d = 125, 250, 1000 where the algorithm is
fairly stable, while in the unstable regime d = 500, CV+ appears to be highly
conservative, with αP (Dn) values consistently much lower than α. (The same
outcome occurs if we repeat the experiment with dimension d = 475, where
instability for CV+ is highest, but for brevity we do not show results for this
value of d.)
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Fig 4. Plots of the estimated training-conditional miscoverage level αP (Dn) for 200 inde-
pendent trials of the simulation, at each dimension d = 125, 250, 500, 1000. The gray vertical
lines indicates the target miscoverage level α = 0.1. For each d, the empirical distribution of
αP (Dn) is displayed as a histogram on the left, and as an empirical CDF on the right.

In contrast, for full conformal and for jackknife+, we see that at d = 500
(where the trained models for these two methods are likely to be unstable), the
training-conditional miscoverage rate αP (Dn) is highly variable—specifically, we
see that αP (Dn) is substantially higher than nominal level α = 0.1 for a large
fraction of the trials. On the other hand, the training-conditional miscoverage
rate αP (Dn) concentrates near α = 0.1 for both methods, for all other values of
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d. This is true both for a low-dimensional setting when d = 125, 250 and a high-
dimensional (i.e., overparameterized) setting when d = 1000, suggesting that
algorithmic stability may play a key role in understanding training-conditional
coverage, as we discuss further below.

6. Conclusion

In this paper, we examine one form of conditional validity for methods of
distribution-free predictive inference: training-conditional validity. While this
form of validity has been previously established for the split conformal prediction
method, here we examined whether this property holds for other distribution-
free prediction tools. We showed that training conditional coverage guarantees
can be ensured for the CV+ method, but are not possible for either the full con-
formal or jackknife+ methods without additional assumptions. In addition, we
demonstrated empirically that training-conditional miscoverage rates far above
the nominal level α can occur in realistic data sets with the latter two methods.

6.1. The role of algorithmic stability

An interesting open question is whether there are any mild assumptions that
would ensure training-conditional coverage for full conformal and/or for jack-
knife+. One possibility is to consider algorithmic stability assumptions such
as (9). In particular, our empirical results show that poor training-conditional
coverage for these two methods is observed exactly in those settings where the
behavior of the regression algorithm A is highly unstable (specifically, when
d ≈ n, in our linear regression simulation). This suggests that assuming stabil-
ity of A could potentially be sufficient to ensure training-conditional coverage
for these methods. We leave this open question for future work.
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