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Abstract: In many modern statistical problems, the limited available data
must be used both to develop the hypotheses to test, and to test these
hypotheses—that is, both for exploratory and confirmatory data analysis.
Reusing the same dataset for both exploration and testing can lead to mas-
sive selection bias, leading to many false discoveries. Selective inference is
a framework that allows for performing valid inference even when the same
data is reused for exploration and testing. In this work, we are interested
in the problem of selective inference for data clustering, where a cluster-
ing procedure is used to hypothesize a separation of the data points into
a collection of subgroups, and we then wish to test whether these data-
dependent clusters in fact represent meaningful differences within the data.
Recent work by Gao, Bien and Witten (2022) provides a framework for
doing selective inference for this setting, where a hierarchical clustering
algorithm is used for producing the cluster assignments, which was then
extended to k-means clustering by Chen and Witten (2022). Both these
works rely on assuming a known covariance structure for the data, but
in practice, the noise level needs to be estimated—and this is particularly
challenging when the true cluster structure is unknown. In our work, we
extend this work to the setting of noise with unknown variance, and pro-
vide a selective inference method for this more general setting. Empirical
results show that our new method is better able to maintain high power
while controlling Type I error when the true noise level is unknown.
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1. Introduction

Data clustering is a popular method for summarizing trends in unlabeled data,
and is a powerful tool for gaining understanding and interpretability in large
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datasets. However, it is well known that clustering can easily lead to false dis-
coveries, in the sense that data from a single source (one true cluster) can be
falsely separated into multiple clusters. A core challenge in addressing this is-
sue is that of selective inference—the problem of performing inference on a
hypothesis that was developed using the same dataset. In-depth motivations
for selective inference can be found in Taylor and Tibshirani (2015) and Ben-
jamini (2020), where the latter illustrates its importance from the perspective of
replicability of experimental results. There has been extensive work on selective
inference in supervised settings, such as the work by Fithian, Sun and Taylor
(2014) and Loftus (2015) that provide selective inference frameworks for doing
valid inference after model selection, but less is known about the unsupervised
setting, which is the context for clustering. Some popular clustering methods
include hierarchical clustering (Murtagh and Contreras (2012)), k-means clus-
tering (Steinley (2006)), decision tree clustering (Liu, Xia and Yu (2000)), and
spectral clustering (Von Luxburg (2007)).

Concretely, for the clustering problem, if the n data points X1, . . . , Xn ∈ R
q

are partitioned into clusters C1 ∪ · · · ∪ CK = [n] := {1, . . . , n}, how can we
determine whether the “discovered” clusters Ck and Ck′ are genuinely different
using the observed data (the Xi’s for i ∈ Ck, and for i ∈ Ck′), when these same
data values were used to choose the clusters themselves?

To address this problem, Zhang, Kamath and David (2019) propose a method
based on data splitting, where the hyperplane separating two clusters is esti-
mated using a portion of the data, and the fitted hyperplane, instead of the
clustering algorithm, is used on the rest of the data for generating cluster as-
signments. They then condition on the selection event—the event where the
hyperplane is chosen—to account for the data dependency in the hypothesis
test. Gao, Bien and Witten (2022) provide an alternative solution to this prob-
lem, where they account for the clustering event by directly conditioning on it,
specifically for the hierarchical clustering algorithm, and a recent work of Chen
and Witten (2022) extends their work to the k-means clustering algorithm. Re-
latedly, Hivert et al. (2022) propose a set of valid inference procedures for three
different null hypotheses testing whether two clusters estimated by a clustering
algorithm are truly different, where one of the proposed procedures is an ex-
tension of the work of Gao, Bien and Witten (2022) to testing whether a single
feature plays a role in distinguishing the two clusters. There have also been
relevant work on data with structural assumptions. For example, the work of
Watanabe and Suzuki (2021) provides a method for doing inference on a data
matrix represented by a latent block model after choosing the cluster member-
ship of each entry of the data matrix using the same data matrix, and conditions
on this selection event to do a valid inference.

The aforementioned work of Gao, Bien and Witten (2022) offers an elegant
solution to this problem, providing a framework for performing selective infer-
ence to test the null hypothesis that states

H0(Ck, Ck′) : 1
|Ck|

∑
i∈Ck

μi = 1
|Ck′ |

∑
i∈Ck′

μi (1)
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for each pair k �= k′, where μi = E [Xi] is the true mean of the i-th data point—
in other words, is the mean of cluster Ck equal to the mean of cluster Ck′? Note
that this hypothesis is indeed data-dependent, since the clusters Ck and Ck′ are
chosen based on the observed data, and therefore testing this null must account
for this data dependence. In Gao, Bien and Witten (2022)’s work, it is assumed
that the data is distributed as

Xi
⊥⊥∼ N (μi, σ

2Iq) (2)

for i ∈ [n], where the means μi ∈ R
q are unknown while the (shared) variance

σ2 > 0 is known. In practice, however, σ would often need to be estimated from
the data, and this poses a particular challenge in the setting of this clustering
problem. Without knowing the true cluster structure of the data (since of course,
this is exactly the question we are aiming to test), it is difficult to obtain a
reliable estimate of σ–indeed, we will see shortly that many natural options
lead to either substantial power loss or substantial loss of the Type I error
control. This motivates the need for the more general model that avoids the
need to estimate the true variance. In this work, we propose a method that
avoids this obstacle, by allowing for an unknown variance σ2 (or more generally,
an unknown structured covariance matrix), while guaranteeing Type I error
control and maintaining high power.

The remainder of this paper is organized as follows. In Section 2, we review
the selective inference framework developed by Gao, Bien and Witten (2022)
for the setting where σ is known and discuss motivations for allowing σ to be
unknown. In Section 3, we present our new method for performing inference on
clustering in the setting of an unknown σ (with proofs deferred to the Appendix).
Empirical results are presented in Section 4 to demonstrate the performance
of the new method and compare against the existing framework. Finally, we
conclude with a discussion and some open questions in Section 5.

2. Background: the known variance case

In this section, we will first give a brief overview of the selective inference method
developed in Gao, Bien and Witten (2022)’s work, and discuss some of the
challenges posed by unknown variance σ2.

2.1. Gao, Bien and Witten (2022)’s Method

Consider clusters Ck, Ck′ , which are two disjoint subsets of [n]. If these clusters
were chosen ahead of time—that is, independently of the data—then it would
be simple to test the null hypothesis H0(Ck, Ck′) defined in (1)—specifically, we
would naturally use the test statistic

1
|Ck|

∑
i∈Ck

Xi −
1

|Ck′ |
∑
i∈Ck′

Xi = X�v where v := 1Ck

|Ck|
− 1Ck′

|Ck′ | .
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Here X ∈ R
n×q is the matrix of observed data with i-th row Xi ∈ R

q, and
where, for a subset C ⊆ [n], 1C ∈ R

n represents the vector with ith entry equal
to 1 for each i ∈ C and 0 for i �∈ C. This test statistic follows a mean-zero normal
distribution under the null hypothesis H0(Ck, Ck′), and so its norm follows a
rescaled χ distributed under the null,

‖X�v‖2
H0(Ck,Ck′ )∼ σ

(
1

|Ck|
+ 1

|Ck′ |

)1/2

· χq.

However, since the clusters were chosen in a data-dependent way, this distri-
bution is not the correct null distribution for ‖X�v‖2. To address this, we can
rewrite X as

X = PvX + P⊥
v X = ‖X�v‖2

‖v‖2
· vv�X

‖vv�X‖F
+ P⊥

v X,

which decomposes X into components lying in the span of v and its orthogonal
complement, with Pv = vv�

‖v‖2
2

denoting the projection matrix that projects to
the span of v, and P⊥

v = In − vv�

‖v‖2
2

projecting to its orthogonal complement,
and where ‖ · ‖2 denotes the Euclidean norm and ‖ · ‖F the Frobenius norm.
Gao, Bien and Witten (2022)’s insight into handling the data-dependent cluster
selection is to condition on the normalized matrix vv�X

‖vv�X‖F
and the orthogonal

projection P⊥
v X, so that only the test statistic ‖X�v‖2 remains unknown, and

moreover to condition on the range of values of ‖X�v‖2 that agree with the
clustering selection. Specifically, defining

x(φ) = φ

‖v‖2
· vv�X

‖vv�X‖F
+ P⊥

v X, (3)

let
S = {φ > 0 : Cluster(X) = Cluster(x(φ))} ,

where Cluster(·) refers to the outcome of the clustering procedure. In other
words, S contains all values of φ for which the same clustering outcome would
have been obtained, if we plug in φ in place of the observed test statistic value
‖X�v‖2. Their main result establishes that, even given the data-dependent clus-
tering procedure, the re-scaled χ distribution is the correct null distribution once
truncated to this set S.

Theorem 1 (Gao, Bien and Witten (2022, Theorem 1)). Let Xi
⊥⊥∼ N (μi, σ

2Iq)
where σ is known, and let v be defined as above. Then, conditional on Cluster(X),

vv�X
‖vv�X‖F

, and P⊥
v X, under the null hypothesis H0(Ck, Ck′) the test statistic

‖X�v‖2 follows a truncated rescaled χ distribution, σ
(

1
|Ck| + 1

|Ck′ |

)1/2
·χq trun-

cated to S. In particular, the p-value

P = 1 − Fχq

(
‖X�v‖2;σ

(
1

|Ck|
+ 1

|Ck′ |

)1/2

,S
)
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is uniformly distributed under H0(Ck, Ck′), where Fχq (·; c,S) is the CDF of a
c · χq random variable truncated to the set S.

Gao, Bien and Witten (2022) provide an algorithm for exactly computing
the set S for the hierarchical clustering algorithm with linkages for which the
exact computation of this set is tractable, along with an implementation of an
importance sampling algorithm for clustering algorithms where this set cannot
be efficiently computed.

It can be seen in Theorem 1 that Gao, Bien and Witten (2022) condition
on Cluster(X), which is the entire outcome of the clustering algorithm and
contains information about all K estimated clusters, as opposed to conditioning
only on the event Ck, Ck′ ∈ Cluster(X), where Ck and Ck′ are the two clusters
of interest. We might ask whether it is necessary to condition on this additional
information, or whether this might lead to loss of power. Indeed, this type of
approach is common in the selective inference literature—in order to be able to
perform selective inference, we may need to condition on additional information
for statistical reasons (i.e., to avoid nuisance parameters) and/or computational
reasons; see, for instance, Fithian (2015, Section 3.2.4), Lee et al. (2016, Section
5.2) for more discussion.

2.2. Challenges in estimating σ

We next discuss motivations for allowing σ to be unknown. Continuing the dis-
cussion earlier on the difficulty of estimating σ from the data, we consider a sim-
ple scenario where we are aiming to determine whether data points X1, . . . , Xn

arise from a single cluster or from two clusters. To test this, we would choose a
data-dependent clustering [n] = C1 ∪ C2, and would now need to estimate σ in
order to run Gao, Bien and Witten (2022)’s test.

• Suppose we estimate the variance by using the within-cluster means, for
instance,

σ̂2
clustered =

∑
i∈C1

‖Xi − X̄C1‖2
2 +

∑
i∈C2

‖Xi − X̄C2‖2
2

(n− 2)q ,

where X̄Ck
is the sample mean in cluster Ck. With this choice, we might

substantially underestimate the variance if the true data distribution only
has a single cluster. The middle column of Figure 1 demonstrates this
problem in practice—we can see that, when the null H0(C1, C2) is true,
the variance may sometimes be vastly underestimated and, as a result,
the empirical distribution of the p-value is far from uniform, which would
lead to false positives.

• Alternatively, we might take a more conservative estimate of variance by
treating the data as a single cluster, e.g.,

σ̂2
all =

∑
i∈[n] ‖Xi − X̄[n]‖2

2

(n− 1)q .
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Fig 1. The top row shows results under the null, and the bottom row shows results under the
alternative. In each row, the left plot shows one draw of the data, along with the estimated
values σ̂all and σ̂clustered, while the middle and right plots show results for Gao, Bien and
Witten (2022)’s method applied with σ̂clustered or with σ̂all, respectively. (See Section 2.2 for
discussion.)

Indeed, this is the estimator proposed in Gao, Bien and Witten (2022,
Section S3), and they prove theoretically that, as this is asymptotically
an over-estimate of σ2, Type I error control is guaranteed. However, this
choice can lead to a substantially over-conservative test, as demonstrated
in the right column of Figure 1—if the true data distribution arises from
two clusters, this estimate can massively over-estimate σ2 leading to a
large loss of power.1

See Section 4 for details on these simulations.
Thus, in Figure 1, we clearly see a tradeoff between Type I error control and

power. When using the cluster-wise estimate σ̂clustered, we see that power is high
under the alternative, with the empirical power being as high as the case where
the true σ is used, but Type I error control is lost under the null. On the other
hand, when using the estimate σ̂all that treats the entire dataset as a single
cluster, we see that it controls Type I error under the null but incurs a loss in
power under the alternative.

To avoid this tradeoff, in this work we propose a selective inference procedure
for the clustering problem that can handle an unknown variance σ2 > 0. This
more general model resolves the issue—the p-value distribution is uniform when
the data is generated from a single cluster, without sacrificing too much power

1In sparse high-dimensional settings, Chen and Witten (2022) propose using an alternative
definition based on the median rather than the mean, σ̂2

all–med = Median{X̃2
ij : i ∈ [n], j ∈

[q]}/Median(χ2
1), where X̃ij = Xij − Median{Xi′j : i′ ∈ [n]}. They observe that this alter-

native estimator is less conservative if cluster mean differences are sparse. Since we work in a
low-dimensional setting, we do not compare to this alternative.
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in the scenario where the data is instead generated from distinct clusters.

3. Proposed method: The unknown variance case

We now introduce our proposed method for the setting where the variance
is unknown. In this new setting, we assume that the data is distributed as
Xi

⊥⊥∼ N (μi, σ
2Iq), where the means μi ∈ R

q, as well as the (shared) variance
σ2 > 0, are unknown.

Recall the null hypothesis

H0(Ck, Ck′) : 1
|Ck|

∑
i∈Ck

μi = 1
|Ck′ |

∑
i∈Ck′

μi

in Gao, Bien and Witten (2022), and the corresponding test statistic ‖X�v‖2.
Unfortunately, in our new setting where σ is unknown, the distribution of this
test statistic cannot be computed. With unknown σ, a typical approach would
be to construct a data dependent estimator of σ to result in a test statis-
tic of the form ‖X�v‖2

2/(estimate of σ2), which would follow an F distribu-
tion (after rescaling the numerator appropriately). However, this is impossible
to do in our setting under the broad null hypothesis H0. This is due to the
fact that, to estimate σ, we would need to examine the within-cluster vari-
ability, i.e., quantities of the form

∑
i∈Ck

‖Xi − X̄Ck
‖2
2 for estimated clusters

k = 1, . . . ,K; however, these quantities follow a noncentral χ2 distribution
when each cluster Ck might contain different means μi, following the distri-
bution σ−2 ∑

i∈Ck
‖Xi − X̄Ck

‖2
2 ∼ χ2

q(|Ck|−1)(σ−2 ∑
i∈Ck

‖μi − μ̄Ck
‖2
2). In other

words, any nonzero differences in means within a cluster will lead to nuisance
parameters, arising from within-cluster differences in means, that make it im-
possible to handle unknown variance.

To avoid these nuisance parameters, we restrict to a stronger null hypothesis,

H ′
0(Ck, Ck′) : μi = μi′ ∀ i, i′ ∈ Ck ∪ Ck′ . (4)

In other words, H ′
0 assumes that each data point in clusters Ck and Ck′ has

the same mean, while H0 makes the weaker assumption that the sample mean
of data points in cluster Ck and in cluster Ck′ have the same mean. We can
equivalently rewrite H ′

0(Ck, Ck′) as

H ′
0(Ck, Ck′) :

⎛
⎝In − ww�

‖w‖2 −
∑

i∈[n]\(Ck∪Ck′ )

eie
�
i

⎞
⎠μ = 0 where w :=

1Ck∪Ck′

|Ck ∪ Ck′ | .

(5)

3.1. Decomposition of X

To define our test statistic, we begin by taking a decomposition of the observed
data X. This decomposition plays an analogous role to the decomposition (3)
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used by Gao, Bien and Witten (2022), but is more complex to allow us to handle
unknown variance. We begin by writing

X = P0X + P1X + P2X,

where P0 = vv�

‖v‖2
2

is the rank-one projection matrix that captures the difference
in cluster means for Ck and Ck′ , while

P1 =
(

ICk
−

1Ck
1�
Ck

|Ck|

)
+

(
ICk′ −

1Ck′1�
Ck′

|Ck′ |

)
,

where, for any subset C ⊆ [n], IC represents the diagonal matrix with entry
(i, i) set to 1 if i ∈ C and 0 if i �∈ C. Finally,

P2 = In − P0 − P1

is the projection matrix to the orthogonal complement of P0 and P1. We can see
that P0, P1, and P2 project to subspaces of dimension 1, m− 2, and n−m+ 1,
respectively, where m = |Ck| + |Ck′ | is the number of data points in the two
clusters. Intuitively, we can think of this decomposition of the data as follows:

• P0X captures the difference in means between clusters Ck and Ck′ ;
• P1X captures differences among points within Ck, and among points

within Ck′ ;
• P2X captures all other aspects of the data (i.e., the overall mean of the

combined clusters Ck ∪ Ck′ , as well as information about data points not
lying in Ck ∪ Ck′).

Figure 2 illustrates the roles of these three terms in the decomposition of the
data X.

Fig 2. Left: visualization of a dataset with colors indicating the clusters formed by the clus-
tering algorithm with Ck represented in blue and Ck′ in red. The blue triangle represents
the combined mean of Ck ∪ Ck′ , and the black dots represent the cluster means. Middle: the
original dataset with ‖P0X‖F scaled by a factor of 2, which pushes apart the clusters Ck and
Ck′ . Right: the original dataset with ‖P1X‖F scaled by a factor of 2, which spreads points in
Ck apart from each other while preserving the cluster mean, and same for points in Ck′ .
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3.2. The test statistic

In Gao, Bien and Witten (2022)’s work, the test statistic they use is equivalent to
‖P0X‖F , which under the null hypothesis H0, follows a χq distribution (rescaled
by σ), truncated to a region S that controls for the selection event. In our work,
since σ is unknown, we will use an F distribution in place of the χ. The test
statistic we propose is given by the ratio

R = (m− 2)‖P0X‖2
F

‖P1X‖2
F

.

where the numerator is the same (up to squaring and rescaling) as the statistic
used by Gao, Bien and Witten (2022), while the denominator acts as an estimate
of the noise variance σ2 (up to rescaling). We can gain additional intuition for
this test statistic by considering the case K = 2—if we define Ttwo-sample as the
test statistic for the standard two-sample t-test (i.e., testing for equality of means
in clusters k, k′, assuming equal variances), we can observe that R = T 2

two-sample
in this case.

We next need to define the truncation set. First, we rewrite our decomposition
as

X = ‖P0X‖F · P0X

‖P0X‖F
+ ‖P1X‖F · P1X

‖P1X‖F
+ P2X. (6)

Our test will condition on:
• The total squared norm ‖P0X‖2

F +‖P1X‖2
F for the first and second terms

in the decomposition;
• The normalized terms P0X

‖P0X‖F
and P1X

‖P1X‖F
for the first and second terms

in the decomposition;
• The third term P2X in the decomposition.

With these terms treated as known, the data X can then be fully determined
by revealing the value R = (m − 2)‖P0X‖2

F

‖P1X‖2
F

of the test statistic. For any r > 0,
define

x′(r) =
(√

r

m− 2 + r
· P0X

‖P0X‖F
+

√
m− 2

m− 2 + r
· P1X

‖P1X‖F

)

·
√
‖P0X‖2

F + ‖P1X‖2
F + P2X.

We can verify from the definition of R that X = x′(R) holds by definition.
Finally, define

S ′ = {r > 0 : Cluster(X) = Cluster(x′(r))} ⊆ (0,∞).

3.3. Main result

Our main result, presented next, establishes that we can compute the exact
post-selection distribution of R, which thus allows us to perform valid selective
inference in the unknown-variance setting.
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Theorem 2. Let Xi
⊥⊥∼ N (μi, σ

2Iq) where σ is unknown, and let P0, P1, and
P2 be defined as above. Then, conditional on Cluster(X), ‖P0X‖2

F + ‖P1X‖2
F ,

P0X
‖P0X‖F

, P1X
‖P1X‖F

, and P2X, under the null hypothesis H ′
0 (Ck, Ck′), the ran-

dom variable R follows the Fq,(m−2)q distribution truncated to the set S ′. In
particular, the p-value

P ′ = 1 − FFq,(m−2)q (R;S ′)

is uniformly distributed under H ′
0 (Ck, Ck′), where FFq,(m−2)q (·;S ′) is the CDF

of a Fq,(m−2)q random variable truncated to the set S ′.

The intuition is that, if P0 and P1 were fixed rather than data-dependent
(i.e., if the clusters Ck and Ck′ were chosen before viewing the data), then we
would have σ−2‖P0X‖2

F ∼ χ2
q and, independently, σ−2‖P1X‖2

F ∼ χ2
(m−2)q; thus

R = (m − 2)‖P0X‖2
F

‖P1X‖2
F

would follow an Fq,(m−2)q distribution. After accounting
for the selection event, the null distribution is instead given by a truncated F
distribution.

To implement the results of Theorem 2 in practice, we need to be able to com-
pute this p-value. In other words, we need to either explicitly characterize the set
S ′ that is consistent with the selection event, or develop an empirical sampling
strategy to estimate the p-value. We next consider this computational question.

3.4. Computing the p-value

To characterize the truncation set S ′, we will split into two cases. In the general
setting, when the data is separated into an arbitrary number K ≥ 2 of clus-
ters, we will handle the truncation event via numerical approximation. For the
special case K = 2, however, we will show that S ′ can potentially be computed
explicitly, by relating the problem back to the work of Gao, Bien and Witten
(2022) for the known-variance case.

3.4.1. Special case: K = 2

Rewriting Gao, Bien and Witten (2022)’s procedure in our notation, the modi-
fied data is defined as

x(φ) = φ

‖v‖2
· P0X

‖P0X‖F
+ P1X + P2X, (7)

where v = 1Ck

|Ck| −
1C

k′
|Ck′ | so that P0 = vv�

‖v‖2
2

is projection onto the span of v, and
their selection set is given by S = {φ > 0 : Cluster(X) = Cluster(x(φ))}. In
contrast, our method defines

x′(r) =
(√

r

m− 2 + r
· P0X

‖P0X‖F
+

√
m− 2

m− 2 + r
· P1X

‖P1X‖F

)

·
√
‖P0X‖2

F + ‖P1X‖2
F + P2X
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and S ′ = {r > 0 : Cluster(X) = Cluster(x′(r))}.
The next result shows that, for the case K = 2, these two definitions can be

related in a simple way.

Proposition 1. Suppose that K = 2 (so that we have k = 1, k′ = 2). Assume
that the clustering procedure is location- and scale-invariant—that is, for any
x ∈ R

n×q,
Cluster(x) = Cluster

(
a · x + 1n · b�

)
,

for any a ∈ R and b ∈ R
q. Then, under the notation and definitions above,

S ′ =
{
r > 0 :

√
r

m− 2 · ‖P1X‖F ·
√

1
|C1|

+ 1
|C2|

∈ S
}
.

The work of Gao, Bien and Witten (2022) gives an explicit characterization
of the set S for a family of agglomerative hierarchical clustering algorithms,
while Chen and Witten (2022) does the same for k-means clustering. Moreover,
both of these algorithms are location- and scale-invariant. Consequently, for the
case K = 2, we can explicitly characterize the truncation set S ′, and thus can
compute the p-value P ′ constructed in Theorem 2 by leveraging Gao, Bien and
Witten (2022)’s construction of the set S, for these two popular algorithms.

Of course, a major limitation of this result is that we can only handle K = 2.
However, in iterative procedures (e.g., hierarchical clustering), the test can be
applied at the first step (i.e., the first split, from a single cluster to K = 2
clusters). This hypothesis test can then essentially be interpreted as testing the
global null, i.e., whether the data should be split into clusters at all or simply
treated as a single cluster.

3.4.2. General case: K ≥ 2

Next we consider the general case. If K > 2, then the result of Proposition 1 no
longer applies—as we will see in the proof of this proposition, the case K = 2
leads to the result specifically because P2 = 1n1�

n

n in that case, but this no longer
holds for K > 2. Moreover, even if K = 2, it might be the case that we are using
a clustering algorithm for which S does not have an explicit characterization
and/or which is not location- and scale-invariant. In any of these settings, we do
not have an explicit characterization of S ′, and thus the truncated CDF needed
in Theorem 2 cannot be computed exactly.

Nonetheless, the inference procedure can still be run in the general case,
by computing P ′ approximately through importance sampling. Specifically, in
order to (approximately) compute the p-value P ′, we need to be able to estimate

1 − FFq,(m−2)q (r;S ′) = PR′∼Fq,(m−2)q {R′ > r | R′ ∈ S ′}

=
PR′∼Fq,(m−2)q {R′ > r, R′ ∈ S ′}

PR′∼Fq,(m−2)q {R′ ∈ S ′} ,
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and then evaluate this probability at r = R. Since r = R may be extremely large,
and/or the selection set S ′ may be very small, the events R′ > r and/or R′ ∈ S ′

may have extremely low probability under the distribution R′ ∼ Fq,(m−2)q.
We approximate this probability with importance sampling, using a truncated
normal distribution as the proposal distribution. Further details are given in
Appendix A.3.2.

4. Empirical results

We now provide empirical results for our proposed method. We present sim-
ulation results for Type I error control and empirical power for our proposed
method, as well as results on a small real dataset (the penguin dataset provided
by (Horst, Hill and Gorman, 2020), which was also analyzed in Gao, Bien and
Witten (2022)). For all experiments, we use the hierarchical clustering algorithm
with average linkage for clustering.2

4.1. Type I error control

Theorem 2 states that P ′ follows the uniform distribution under the null, so it
controls the Type 1 error rate of the hypothesis test. We illustrate this empir-
ically by plotting empirical quantiles of a sample of P ′ against the theoretical
quantiles of the uniform distribution. We compare to the p-value P computed
by Gao, Bien and Witten (2022)’s method, with either oracle knowledge of the
true σ, or with plug-in estimates σ̂all or σ̂clustered. (The results for the latter two
variants of Gao, Bien and Witten (2022)’s method were also shown in the top
row of Figure 1 in Section 2.2.)

We perform 2000 independent trials, with datasets generated as

Xi
⊥⊥∼ N (μi, σ

2Iq)

for i ∈ [n], with μi = 0q for all i ∈ [n] so that the null hypothesis is true.
We set σ = 1, n = 30, and q = 2. Figure 3 presents results for two different
settings, K = 2 and K = 3. We use the exact computation method presented in
Section 3.4.1 for K = 2, and the importance sampling method discussed in 3.4.2
for K = 3 (with N = 8000 draws when we run importance sampling). For the
K = 2 case, the p-values are generated for the comparison between clusters
k = 1 and k′ = 2. For the K = 3 case, in each trial, the p-values are generated
for the comparison between two randomly chosen clusters k �= k′ ∈ {1, 2, 3}.

Figure 3 illustrates that the proposed method, along with Gao, Bien and
Witten (2022)’s method with either the conservative estimate σ̂all or with or-
acle knowledge of the true σ, all result in uniformly distributed p-values (and
thus, control the Type I error rate) for both settings. On the other hand, Gao,
Bien and Witten (2022)’s method applied with σ̂clustered fails to do so, with a

2Code for reproducing all experiments is available online at https://github.com/yjyun97/
cluster_inf_unknown_var.

https://github.com/yjyun97/cluster_inf_unknown_var
https://github.com/yjyun97/cluster_inf_unknown_var
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substantially anticonservative distribution of the p-values. As expected, since
σ̂clustered is a more extreme underestimate for larger K, the nonuniformity of
the p-values is more substantial when K = 3 than when K = 2.

Fig 3. Simulation under the null (see Section 4.1 for details). The left plots show one draw of
the data, along with the result of hierarchical clustering for K = 2 (top) and K = 3 (bottom);
in these figures, and in analogous figures below, the shape of each data point indicates the true
cluster from which the data point originated, while the color indicates the cluster assignment
estimated from the data. The right plots show QQ plots comparing the p-values obtained via
the four different methods.

4.2. Empirical power

It is inevitable that not knowing σ will cause some loss in power, as we are
forced to condition on more components of X than we would otherwise do when
computing the p-value. On the other hand, using σ̂all in place of σ in P also
causes a loss in power, due to σ̂all being an overestimate of σ in settings where
the alternative hypothesis is true. Here, we compute the empirical power of the
same four methods as above. To be more precise, to calculate empirical power,
for each trial, we again consider clusters k = 1 and k′ = 2 for the case K = 2, or
a randomly chosen pair k �= k′ ∈ {1, 2, 3} for the case K = 3. For each trial, we
first verify whether the null H ′

0(Ck, Ck′) holds—in other words, if the recovered
clusters Ck, Ck′ are both subsets of the same original true cluster. Empirical
power is then defined as the proportion of times that we reject the null, among
all trials for which this null is false.

We perform 500 independent trials, with datasets generated as

Xi
⊥⊥∼ N (μi, σ

2Iq)

for i ∈ [n] with σ = 1, n = 30, and q = 2. As before, we use the exact
computation method presented in Section 3.4.1 for K = 2, and the importance
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Fig 4. Simulation under the alternative, for Setting 1 (top row), Setting 2 (middle row), and
Setting 3 (bottom row). (See Section 4.2 for details.) The left and middle column of plots show
one draw of the data for two different signal strengths δ, along with the result of hierarchical
clustering. The right column of plots shows power as a function of signal strength δ for the
four different methods.

sampling method discussed in 3.4.2 for K = 3 (with N = 8000 draws when we
run importance sampling). We test three different settings for generating the
means μi:

• Setting 1: K = 2 true clusters, with μi = (0, 0)� for n/2 = 15 data points,
and μi = (δ, 0)� for the remaining n/2 = 15 data points. (The results for
the three variants of Gao, Bien and Witten (2022)’s method in Setting 1
were also shown in the bottom row of Figure 1 in Section 2.2.)

• Setting 2: K = 3 true clusters, with μi = (0, 0)� for n/3 = 10 data points,
μi = (δ, 0)� for n/3 = 10 data points, and μi = (δ/2, δ

√
3/2)� for the

remaining n/3 = 10 data points.
• Setting 3: K = 3 true clusters, with μi = (0, 0)� for n/3 = 10 data points,

μi = (δ, 0)� for n/3 = 10 data points, and μi = (2δ, 0)� for the remaining
n/3 = 10 data points.
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We then run hierarchical clustering with the true number of clusters K. In
each setting, the parameter δ ∈ {0, 1, . . . , 7} controls the signal strength. Note
that δ = 0 corresponds to the null(s) being true, as all data points have mean
μi = 0. Setting 1 with δ = 0 is identical to the first simulation under the null
in Section 4.1 (where hierarchical clustering is run with K = 2), while Settings
2 and 3 with δ = 0 are identical to the second simulation under the null in
Section 4.1 (where hierarchical clustering is run with K = 3). For the K = 2
case (Setting 1), the p-values are generated for the comparison between clusters
k = 1 and k′ = 2. For the K = 3 case (Settings 2 and 3), in each trial, the p-
values are generated for the comparison between two randomly chosen clusters
k �= k′ ∈ {1, 2, 3}. In all settings, the threshold for rejecting a p-value is α = 0.05.

Figure 4 illustrates the power, as a function of δ, for the four methods in
each of the three settings. We see that the highest power is achieved by Gao,
Bien and Witten (2022)’s method applied with the anticonservative estimate
σ̂clustered, but this power comes at the cost of loss of Type I error control (as we
can see due to the high rejection rate at δ = 0, where the null is true). Among
the remaining methods, we see that the proposed method always has power
at least as high as Gao, Bien and Witten (2022)’s method applied with the
conservative estimate σ̂all—sometimes approximately the same, and sometimes
substantially higher, in the various settings. Determining the types of settings
where our proposed method will result in a substantial gain in power remains
an interesting open question.

4.3. Robustness to model misspecification

In this section, we empirically study the robustness of the proposed method
to model misspecification for two different settings, with comparison to that of
Gao, Bien and Witten (2022)’s method applied with σ̂all and σ̂clustered.

We reproduce the experiments in Section 4.1 (where μi ≡ 0, i.e., all data is
drawn from the null), with the only difference being the data generating process.
First we consider a setting where the data are generated from an extremely
heavy-tailed distribution,

Xij
iid∼ t5, i ∈ [n], j ∈ [q].

We next repeat with a more moderately heavy-tailed distribution,

Xij
iid∼ t10, i ∈ [n], j ∈ [q].

Finally, we consider a Gaussian distribution with a non-isotropic covariance
matrix.

Xi
iid∼ N

((
0
0

)
,

(
1 0
0 2

))
, i ∈ [n].

The results for these three settings are shown in Figures 5, 6, and 7, respectively.
In all three settings, we see that all of the methods show inflation of Type I error
in the presence of model misspecification. As expected, this is more severe for
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Fig 5. Simulation under the null under model misspecification, with noise generated from an
extremely heavy-tailed distribution, t5.

Fig 6. Simulation under the null under model misspecification, with noise generated from a
moderately heavy-tailed distribution, t10.

the extremely heavy tailed t5 noise, and more mild for the other two settings.
Moreover, as expected, Gao, Bien and Witten (2022)’s method with the anti-
conservative estimate σ̂2

clustered shows substantially more inflation of the Type
I error; the inflation is similar between our method and Gao, Bien and Witten
(2022)’s method with the anti-conservative estimate σ̂2

all.

4.4. Real dataset

We next compare the methods on a real dataset—the penguin dataset (Horst,
Hill and Gorman, 2020), which contains information about the bill length (mm)
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Fig 7. Simulation under the null under model misspecification, with noise generated from a
Gaussian distribution with a non-isotropic covariance matrix.

Fig 8. Visualization of the penguin dataset. The output of the clustering algorithm corresponds
to that run on the centered and standardized dataset.

Table 1

Results on the centered and standardized penguin dataset.
(k, k′) (1, 2) (1, 5) (4, 5)

Proposed method 0.5 0.0045 1.5e-08
Gao, Bien and Witten (2022)’s method with σ̂all 0.85 0.13 0.0014

Gao, Bien and Witten (2022)’s method with σ̂clustered 0.31 1.6e-07 4.2e-22

and flipper length (mm) of three different species of penguins, Adelie, Chinstrap,
and Gentoo. (This dataset was also studied by Gao, Bien and Witten (2022,
Section 6) to test their method for inference after clustering.) The data is shown
in Figure 8.

Table 1 shows the p-values computed by each of the three methods that
does not require knowledge of σ—our proposed method, along with Gao, Bien
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and Witten (2022)’s with σ̂all or with σ̂clustered. We test three different pairwise
cluster comparisons (i.e., comparing Ck and Ck′ , for three different choices of
(k, k′)).

Since the true clustering (i.e., the penguin species) is known, we can see
that (k, k′) = (1, 2) corresponds to two estimated clusters that are not very
well separated in terms of the true species labeling, while (k, k′) = (1, 5) and
(k, k′) = (4, 5) clearly correspond to a true difference in species. In Table 1,
overall we see that the proposed method produces p-values that are substantially
lower than those computed by Gao, Bien and Witten (2022)’s method with the
conservative estimate σ̂all, corresponding to a gain in power. Gao, Bien and
Witten (2022)’s method applied with σ̂clustered produces p-values even lower
than our proposed method, but may not be reliable in terms of Type I error
control as we have seen in our simulations.

5. Discussion

In this work, we have proposed an extension of Gao, Bien and Witten (2022)’s
framework for selective inference for clustering to the case where the isotropic
covariance matrix is unknown. Since the method does not rely on plug-in em-
pirical estimates of σ, we can avoid loss of power and/or loss of Type I error
control. For location- and scale-invariant clustering algorithms, we have shown
that the resulting p-value can be computed exactly in the case of K = 2 clus-
ters by leveraging connections to the findings of Gao, Bien and Witten (2022);
more generally, standard sampling strategies allow for accurate estimation of
the p-value.

These results suggest a number of possible extensions and open questions.
First, in our work we allow for unknown variance but assume an isotropic co-
variance structure, i.e., σ2Iq, for the q-dimensional data points. It would be
interesting to extend these techniques to the setting of diagonal covariance, or
even an arbitrary covariance matrix, to allow for nonconstant variance along
the q coordinates and/or nonzero correlation. Another important question is
whether these tools can be extended to the non-Gaussian setting, which would
offer further flexibility and robustness for real-data applications.

Appendix A: Additional proofs and details

A.1. Proof of Theorem 2

First, suppose that clusters Ck and Ck′ were fixed, i.e., not data-dependent. We
will show that, in that case, we have

R | Z ∼ Fq,(m−2)q

under H ′
0 (Ck, Ck′), where

Z =
(
‖P0X‖2

F + ‖P1X‖2
F ,

P0X

‖P0X‖F
,

P1X

‖P1X‖F
,P2X

)
.
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Since X has isotropic covariance while P0,P1,P2 are orthogonal, we see that
P0X, P1X, P2X are mutually independent, and so we now only need to show

R |
(
‖P0X‖2

F + ‖P1X‖2
F ,

P0X

‖P0X‖F
,

P1X

‖P1X‖F

)
∼ Fq,(m−2)q.

Moreover, under H ′
0 (Ck, Ck′), we see that E [P0X] = 0 and E [P1X] = 0; there-

fore, by properties of the Gaussian distribution (with mean zero and isotropic
covariance), we have (‖P0X‖F , ‖P1X‖F ) independent from

(
P0X

‖P0X‖F
, P1X
‖P1X‖F

)
,

and so now it suffices to show that

R | ‖P0X‖2
F + ‖P1X‖2

F ∼ Fq,(m−2)q.

Finally, ‖P0X‖F and ‖P1X‖F are independent, with σ−2‖P0X‖2
F ∼ χ2

q and
σ−2‖P1X‖2

F ∼ χ2
(m−2)q (because P0 is a rank-1 projection matrix while P1

is a rank-(m − 2) projection matrix). The desired statement follows since, for
independent random variables A ∼ χ2

a and B ∼ χ2
b , it follows from properties

of the χ2 and F distributions that A/a
B/b is independent from A + B, and follows

a Fa,b distribution.
Next, we will account for the fact that clusters Ck and Ck′ are data-dependent,

by conditioning on Cluster(X). Let f(R,Z)(r, z) denote the joint density of (R,Z)
with respect to the appropriate base measure, when we treat Cluster(X) (and
thus Ck, Ck′) as fixed. By the work above we can write f(R,Z)(r, z) = fR(r)fZ(z)
where fR is the density of the Fq,(m−2)q distribution. We then need to cal-
culate the conditional distribution of R, given the event (R,Z) ∈ E∗, where
E∗ is the subset of all values (r, z) such that Cluster(x′(r)) = Cluster∗, for
some particular clustering Cluster∗ (and then we will apply the calculation with
Cluster∗ = Cluster(X)) (and note that, by the construction of clustering proce-
dures, (R,Z) ∈ E∗ has positive probability). The density of (R,Z) | (R,Z) ∈ E∗

is then given by

f(R,Z)|(R,Z)∈E∗(r, z) ∝ f(R,Z)(r, z) · 1(r,z)∈E∗ = fR(r)fZ(z) · 1(r,z)∈E∗ ,

and therefore the conditional density of R is given by

fR|Z;(R,Z)∈E∗(r | z) ∝ fR(r) · 1(r,Z)∈E∗ .

Returning to our definitions, we see that, letting Cluster∗ = Cluster(X),

(r, Z) ∈ E∗ ⇔ r ∈ S ′,

and therefore, we have calculated that the distribution of R conditional on Z
and on Cluster(X) is

fR|Z;(R,Z)∈E∗(r | z) ∝ fR(r) · 1r∈S′ .

This proves the desired result about the distribution of R. The validity of the
p-value P ′ follows as an immediate consequence.
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A.2. Proof of Proposition 1

Let v = 1C1
|C1| −

1C2
|C2| , specializing the construction from before to the case K = 2

(i.e., we are comparing clusters k = 1 and k′ = 2). Define

φ =
√

r

m− 2 · ‖v‖2 · ‖P1X‖F .

We can rearrange terms to obtain

r

m− 2 = φ2

‖v‖2
2 · ‖P1X‖2

F

and therefore

r

m− 2 + r
=

r
m−2

1 + r
m−2

=
φ2

‖v‖2
2·‖P1X‖2

F

1 + φ2

‖v‖2
2·‖P1X‖2

F

= φ2

φ2 + ‖v‖2
2 · ‖P1X‖2

F

.

We compute

x′(r) =
(√

r

m− 2 + r
· P0X

‖P0X‖F
+

√
m− 2

m− 2 + r
· P1X

‖P1X‖F

)

·
√

‖P0X‖2
F + ‖P1X‖2

F + P2X

=
(
φ · P0X

‖P0X‖F
+ ‖v‖2 · ‖P1X‖F · P1X

‖P1X‖F

)
·
√

‖P0X‖2
F + ‖P1X‖2

F

φ2 + ‖v‖2
2 · ‖P1X‖2

F

+ P2X

= x(φ) · ‖v‖2 ·
√

‖P0X‖2
F + ‖P1X‖2

F

φ2 + ‖v‖2
2 · ‖P1X‖2

F

− P2X ·
(
‖v‖2 ·

√
‖P0X‖2

F + ‖P1X‖2
F

φ2 + ‖v‖2
2 · ‖P1X‖2

F

− 1
)
,

where for the last step we apply the calculation (7). Furthermore, in the case
K = 2, we can verify that P2 = 1n1�

n

n , the projection to the span of 1n. There-
fore, we can write

x′(r) = a · x(φ) + 1n · b�,
where

a = ‖v‖2 ·
√

‖P0X‖2
F + ‖P1X‖2

F

φ2 + ‖v‖2
2 · ‖P1X‖2

F

and

b = −
(
‖v‖2 ·

√
‖P0X‖2

F + ‖P1X‖2
F

φ2 + ‖v‖2
2 · ‖P1X‖2

F

− 1
)

·X�1n

n
.
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By our assumption on the clustering procedure, we therefore have

Cluster(x′(r)) = Cluster(x(φ)),

and so r ∈ S ′ if and only if φ ∈ S, as desired.

A.3. Implementation details

In our experiments, the three variants of Gao, Bien and Witten (2022)’s method
(i.e., using the true σ, or the estimates σ̂all or σ̂clustered) are run using the code
provided by Gao, Bien and Witten (2022) in the R package clusterpval. We
now give details for implementation of our proposed method.

A.3.1. Notes on computation in the K = 2 case

Computing the p-value

P ′ = 1 − FFq,(m−2)q (R;S ′)

for our method often requires extremely precise calculations of the CDF of the
F distribution due to the truncation.

To estimate the CDF in the tail of the F distribution, we use Li and Martin
(2002)’s approximation,

FFk,�
(t) ≈ Fχ2

k

(
2� + kt

3 + k − 2
2� + 4kt

3
· kt

)
.

Note that Li and Martin (2002)’s method is accurate in the regime where k
is finite while � → ∞, which is appropriate to our setting as we apply the
approximation with k = q and � = (m − 2)q. Combining all these calculations
means that we can approximate P ′ via the CDF of a truncated χ2 distribution,

P ′ ≈ 1 − Fχ2
q

(
2(m− 2)q + qR

3 + q − 2
2(m− 2)q + 4qR

3
· qR ; S̃ ′

)

where

S̃ ′ =
{

2(m− 2)q + qr
3 + q − 2

2(m− 2)q + 4qr
3

· qr : r ∈ S ′

}
.

Finally, we use the TChisqRatioApprox function from Gao, Bien and Witten
(2022)’s R package clusterpval for this remaining calculation with the trun-
cated χ2 distribution.
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A.3.2. Importance sampling algorithm for the K ≥ 2 case

For the setting where K > 2, or where K = 2 but we do not have an ex-
act characterization of the truncation set S ′, we use importance sampling to
approximate the p-value P ′.

In order to run importance sampling, it is convenient for us to transform the
F distribution to a Beta distribution, since the Beta distribution takes values
over a bounded range. From properties of these two distributions, it holds that
Z ∼ Beta(a/2, b/2) if and only if b

a ·
Z

1−Z ∼ Fa,b, or equivalently, R ∼ Fa,b if and
only if R

b
a+R

∼ Beta(a/2, b/2). We can then derive an analogous transformation
for the truncated versions of these distributions: for any r it holds that

FFq,(m−2)q (r;S ′) = FBeta(q/2,(m−2)q/2)

(
r

m− 2 + r
;S ′′

)
,

where S ′′ = {z ∈ (0, 1) : (m− 2) z
1−z ∈ S ′}. The p-value P ′ is therefore equal to

P ′ = 1 − FFq,(m−2)q (R;S ′) = 1 − FBeta(q/2,(m−2)q/2)

(
R

m− 2 + R
;S ′′

)
.

In order to calculate this p-value, we need to be able to perform a calculation
of the form

1 − FBeta(q/2,(m−2)q/2) (z;S ′′) = PZ∼Beta(q/2,(m−2)q/2) {Z > z | Z ∈ S ′′}

=
PZ∼Beta(q/2,(m−2)q/2) {Z > z, Z ∈ S ′′}

PZ∼Beta(q/2,(m−2)q/2) {Z ∈ S ′′} ,

and then apply this calculation at the value z = R
m−2+R . We estimate the

numerator and denominator simultaneously, using importance sampling with
the proposal distribution

TN
(

R

m− 2 + R
,α2; 0, 1

)
,

which is the truncated normal distribution—i.e., the N
(

R
m−2+R , α2

)
distribu-

tion truncated to the interval [0, 1].
Our procedure is:

• Draw Z(1), . . . , Z(N) iid∼ TN
(

R
m−2+R , α2; 0, 1

)
, for N draws.

• Compute importance weights

w(Z(i)) =
fBeta(q/2,(m−2)q/2)(Z(i))
fTN

(
R

m−2+R ,α2;0,1
)(Z(i))

for i ∈ [N ],

where fBeta(q/2,(m−2)q/2) and fTN
(

R
m−2+R ,α2;0,1

) denote the densities of the
respective distributions.
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• Estimate

P ′ ≈
∑N

i=1 w(Z(i)) · 1
{
Z(i) > R

m−2+R , Z(i) ∈ S ′′
}

∑N
i=1 w(Z(i)) · 1

{
Z(i) ∈ S ′′

} .

The tuning parameter α is adjusted based on empirical performance—specifically,
we choose α so that 1

N

∑N
i=1 1{Z(i) ∈ S ′′} ≈ 0.5, to ensure that our proposal

distribution TN
(

R
m−2+R , α2; 0, 1

)
is neither too concentrated nor too dispersed

to accurately approximate the truncated target distribution.
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