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Abstract: We study frequentist risk properties of predictive density esti-
mators for mean mixtures of multivariate normal distributions, involving
an unknown location parameter θ ∈ Rd, and which include multivariate
skew normal distributions. We provide explicit representations for Bayesian
posterior and predictive densities, including the benchmark minimum risk
equivariant (MRE) density, which is minimax and generalized Bayes with
respect to an improper uniform density for θ. For four dimensions or more,
we obtain Bayesian densities that improve uniformly on the MRE density
under Kullback-Leibler loss. We also provide plug-in type improvements,
investigate implications for certain type of parametric restrictions on θ, and
illustrate and comment the findings based on numerical evaluations.
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1. Introduction

1.1. Motivation and scientific context

The findings of this paper relate to predictive density estimation for mean-
mixture of normal distributions. The modelling of data via mixing multivariate
normal distributions has found many applications and lead to methodologi-
cal challenges for statistical inference. These include finite mixtures, as well as
continuous mixing on the mean and/or the variance. Whereas scale or vari-
ance mixtures of multivariate normal distributions compose a quite interesting
subclass of spherically symmetric distributions, modelling asymmetry requires
mixing on the mean and prominent examples are generated via variance-mean
mixtures (e.g., [7]), as well as mean-mixtures of multivariate normal distribu-
tions (e.g., [1, 5]) and references therein). Moreover, such mean-mixtures, which
are the subject of study here, generate or are connected to multivariate skew
normal distributions (e.g., [6]) which have garnered much interest over the years.
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The development of shrinkage estimation techniques, namely since Stein’s
inadmissibility finding ([26]) concerning the maximum likelihood or best lo-
cation equivariant estimator under squared error loss in three dimensions or
more, has had a profound impact on statistical theory, thinking, methods, and
practice. Examples include developments on sparsity and regularization meth-
ods, empirical Bayes estimation, adpative inference, small area estimation, non-
parametric function estimation, and predictive density estimation. Cast in a
decision-theoretic framework, Stein’s original result has been expanded in many
diverse ways, namely to other distributions or probability models, and namely
for spherically symmetric and elliptically symmetric distributions (see for in-
stance, [11]). There have been fewer findings for multivariate skew normal or
mean-mixtures of normal distributions, but the recent work of Kubokawa et
al. [17] establishes point estimation minimax improvements of the best location
equivariant estimator under quadratic loss, when the dimension of the location
parameter is greater than or equal to four, and with underlying known pertur-
bation parameter.

Predictive density estimation has generated much interest over the past twenty
years or so, and addresses fundamental issues in statistical predictive analysis.
Decision-theoretic links between shrinkage point estimation and shrinkage pre-
dictive density estimation for normal models have surfaced (e.g., [14], [13]) and
stimulated much activity (see for instance [12]), including findings for restricted
parameter spaces (e.g., [10, 16]). The main objective of this work is thus to ex-
plore the problem of predictive density estimation for mean-mixtures of normal
(MMN) distributions. A secondary objective is to provide novel representations
for Bayesian posterior distributions and predictive densities for MMN models,
which have been found to be lacking in the literature.

Following early findings of Komaki (e.g., [14]) on the predictive density es-
timation problem for multivariate normal models under Kullback-Leibler loss,
George, Liang and Xu in [13] exhibited further parallels with the point es-
timation problem for normal distribution under quadratic loss. They provide
sufficient conditions on marginal distributions and prior distributions to get im-
proved shrinkage predictive density estimators when the dimension is greater
than or equal to three. Thus, motivated by these connections, it is interesting to
investigate whether such shrinkage plays any role in the predictive density esti-
mation problem for mean-mixture of multivariate normal models and we focus
on frequentist risk efficiency of predictive density estimators under Kullback-
Leibler loss. Our contribution here consists in identifying classes of plug-in type
predictive densities and of Bayes predictive densities which are minimax and
dominate the benchmark minimum equivariant estimator (MRE) for the case
when the dimension of the location parameter is greater than or equal to four.

1.2. The prediction problem

The prediction problem that we study relates to mean-mixtures of normal dis-
tributions, which are a large class of distributions including multivariate skew
normal distributions and defined as follows.



Bayesian inference and prediction for mean-mixtures of normal distributions 1895

Definition 1.1. A random vector X ∈ Rd is said to have a mean-mixture
of normal distributions, denoted as X ∼ MMNd(θ, a,Σ,L), if it admits the
representation

X|V = v ∼ Nd(θ + va ,Σ) , V ∼ L , (1.1)

where θ ∈ Rd is a location parameter, a ∈ Rd − {0} is a known perturbation
vector, Σ is a known positive definite matrix, and V is a scalar random variable
with cdf L.

Consider then X|θ ∼ MMNd(θ, a,ΣX ,L1) and Y |θ ∼ MMNd(θ, a,ΣY ,L2),
independently distributed and let Let p(x|θ) and q(y|θ) denote the conditional
densities of X and Y given θ, respectively. Based on observing X = x, we
consider the problem of finding a suitable predictive density estimator q̂(y;x)
for q(y|θ) , y ∈ Rd . The ubiquitous Kullback-Leibler (KL) divergence between
two Lebesgue densities f and g on Rm, defined as

ρ(f, g) =
∫
Rm

f(t) log f(t)
g(t) dt , (1.2)

is the basis of Kullback-Leibler loss given by

L(θ, q̂) = ρ(qθ, q̂) . (1.3)

We evaluate the performance of the density estimators using KL loss in (1.3),
and the associated KL risk function

RKL(θ, q̂) =
∫
Rd

{
∫
Rd

q(y|θ) log q(y|θ)
q̂(y;x) dy} p(x|θ) dx. (1.4)

A benchmark predictive density estimator for q(y|θ), y ∈ Rd, is given by the
Bayes predictive density estimator q̂U (y;X), y ∈ Rd, with respect to the uniform
prior density on Rd. It is known to be the minimum risk equivariant (MRE)
predictive density estimator under changes of location, as well as minimax. We
will expand more on these properties below as well as analytical representations
in Section 2.2, but the main problem relates to uniform improvements in terms
of risk for unconstrained θ ∈ Rd and for some restricted parameter spaces
θ ∈ C ⊂ Rd. We provide predictive densities that dominate q̂U (·;X) among
plug-in type densities and Bayesian densities. A secondary problem of interest
which we address is that of making available exact and useful expressions for
Bayes posterior and predictive analyses.

1.3. Summary of main findings

For the problem described above, here is a short summary of the main results
of the paper.

• MRE density: We provide the general representation q̂U ∼ MMNd(X,
a, ΣX + ΣY ,L3); with L3 defined in Theorem 2.1; of the minimum risk
equivariant (MRE) density estimator as well as several examples.
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• Bayesian analysis under Gaussian priors: We derive novel and ap-
pealing mixture representations for Bayesian posterior and predictive den-
sities under Gaussian priors on θ.

• Domination results (Plug-in type improvements):
We provide for d ≥ 4 sufficient conditions for a plug-in type density of
the form MMNd(θ̂(X), a,ΣX + ΣY ,L3) to dominate the MRE density
(equivalently to be minimax), and which relate to dominance conditions
for an estimator of the mean of a d − 1 dimensional normal distribution
to be minimax under squared error loss.

• Domination results (Improved Bayes predictive densities): We
obtain Bayes predictive densities that dominate the MRE density for
d ≥ 4, (equivalently that are minimax), which relate to Bayesian shrink-
age estimators of a multivariate normal mean in d − 1 dimensions under
squared error loss.

• Restricted parameter spaces: We also extend the dominance results
to cases involving certain types of parametric restrictions and which are
also applicable for d = 2, 3.

The organization of this manuscript is as follows. Section 2.1 contains several
introductory definitions, properties and examples of MMN models, including
a useful canonical form which subdivides the MMN distributed vector into d
independent components, one of which a univariate MMN distribution and the
others as normal distributions. Section 2.2 focuses on the MRE density with
a useful representation accompanied by various examples. Section 2.3 expands
on the calculation of minimax risk and a representation in terms of the en-
tropy of a univariate distribution. Section 3 is devoted to Bayesian posterior
and predictive analysis with several novel representations. Sections 4.1 and 4.2,
namely Theorems 4.1, Theorem 4.2 and Corollary 4.2, contain the main domi-
nance results, with plug-in type and Bayesian improvements. In both cases, the
main technique employed rests upon the canonical transformation presented in
Section 2.1 and permits to split up the KL risk as the addition of two parts,
one of which can be operated on using known normal model prediction analysis
findings. Section 4.3 deals with parametric restrictions and further applications
of Theorems 4.1 and 4.2. Finally in Section 5, some further illustrations are
provided and accompanied by numerical frequentist risk comparisons.

2. Preliminary results and definitions

Here are some details and properties of mean-mixture of normal distributions,
its canonical form, the MRE predictive density, and minimax risk. In the fol-
lowing, we will denote φd(z; Σ) the probability density function of a Nd(0,Σ)
distribution evaluated at z ∈ Rd and for positive definite Σ. When Σ = Id, we
may simplify the writing to φd(z), and then for d = 1 to φ(z). We will denote Φ
as the cdf of a N(0, 1) distribution. The organization of the following subsections
is as follows.

In Section 2.1, we extract some stochastic properties of MMN distributions,
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and link such distributions to multivariate skew normal distributions. Lemma 2.1
describes a key orthogonal transformation crucial to the main dominance find-
ings of Section 4, which splits up a d-dimensional MMN distributed vector into
d independent univariate components, d − 1 of which are normally distributed
and the other MMN distributed. As a complement to Section 2.1, we provide
in the Appendix a result (Lemma 6.1) which facilitates the representation of
various MMN densities.

In Section 2.2, as a continuation to Section 1.2 where the prediction problem
is cast into a decision-theoretic framework with the specification of Kullback-
Leibler loss and risk, we focus on the benchmark best equivariant predictive
density which admits an appealing representation and which is minimax (Theo-
rem 2.1). We conclude the section with several examples varying with the choice
of model for the observable X and predicted Y .

In Section 2.3, we provide a decomposition of KL risk and obtain a simpli-
fication of the constant and minimax risk of the MRE predictive density. This
brings into play interesting expressions on their own relative to the entropy of
MMN distributions.

2.1. The model

As mentioned above, the distributions of interest are mean-mixtures of mul-
tivariate normal (MMN) distributions, both for our observables and densities
to be estimated by a predictive density estimator. Such distributions connect
to multivariate skew normal distributions and have been the object of inter-
est in recent work with studies of stochastic properties (e.g., [1], [5], [25]), and
shrinkage estimation about its location parameter ([17]).

As an alternative and equivalently to Definition 1.1, the random vector X
has stochastic representation

X = θ + Σ1/2Z + V a , (2.1)

where Z ∼ Nd(0, Id) and V ∼ L on R, and its probability density function can
be expressed as:

p(x|θ) = EV {φd (x− θ − V a,Σ)}

= φd (x− θ,Σ) EV
(
e−

V 2
2 aT Σ−1aeV (x−θ)T Σ−1a

)
. (2.2)

Thus, we note that the density function of a MMN random vector can be decom-
posed in two parts: one symmetrical density φd(·), and the other part a function
of the projection of (x−θ) in the direction of Σ−1a. Moreover, this construction
isolates the asymmetry in the direction Σ−1a and the scale is controlled by the
random variable V .

Remark 2.1. It is easy to see that the family of MMN distributions is closed
under linear combinations of independent components. Specifically, if Xi|θ ∼
MMNd(θ, a,Σi,Li), i = 1, . . . , n, are independently distributed, then

n∑
i=1

biXi|θ
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∼ MMNd((
∑n

i=1 bi) θ, a,
∑n

i=1 b
2
i Σi,L0) with L0 the cdf of the mixing variable

V0 =d
∑n

i=1 biVi. Namely, for the identically distributed case with Σi = Σ and
the sample mean with bi = 1/n, we obtain that

X̄|θ ∼ MMNd(θ, a,Σ/n,L0) , with L0 the cdf of V̄ .

It thus follows, as observed in [17], that findings applicable for a single MMN
distributed observable X can be extended to the random sample case.

We now turn our attention to a fundamental and useful decomposition, or
canonical form, ([1]) for MMN distributions which follows rather directly from
Definition 1.1.

Lemma 2.1. For a random vector X ∼ MMNd(θ, a,Σ,L) as in (1.1), there
exists an orthogonal matrix H such that the first row of H is proportional to
a� Σ−1/2 and Z = HΣ−1/2X has a MMNd(HΣ−1/2θ, a0, Id,L) distribution
with a0 = (

√
aTΣ−1a, 0, . . . , 0)T .

Such a Z may be referred to as a canonical form and is comprised of d
independent components. Moreover Z −HΣ−1/2θ has d− 1 components which
are N(0, 1) distributed and another distributed as MMN1(0, a0, 1,L) . Such a
canonical form construction is not unique and depends on the choice of H.

As already mentioned, the family of MMN distributions contains many in-
teresting distributions and we expand here and in the Appendix with examples,
which will also inform us for our predictive density problem and related Bayesian
posterior analysis. A prominent example is the multivariate skew normal distri-
bution due to Azzalini and Dalla Valle [6]. Indeed, if we consider V ∼ TN(0, 1),
the standard truncated normal distribution on R+ in (1.1), we get the multi-
variate skew-normal family of distributions with densities

p(x|θ) = 2φd

(
x− θ; Σ + aaT

)
Φ
(

(x− θ)�Σ−1a√
1 + a�Σ−1a

)
. (2.3)

Here, we note that also V ∼
√
χ2

1, i.e. the square root of a Chi-square distribu-
tion with k = 1 degrees of freedom. Various other choices of the mixing density
have appeared in the literature (e.g., [5]), namely cases where V ∼

√
χ2
k or V is

Gamma distributed. A general representation with accompanying examples are
postponed to the Appendix.

2.2. The minimum risk equivariant predictive density

Consider X|θ ∼ MMNd(θ, a,ΣX ,L1) and Y |θ ∼ MMNd(θ, a,ΣY ,L2), inde-
pendently distributed as in Definition 1.1, i.e.

X|θ, V1 ∼ Nd(θ+V1 a,ΣX) , Y |θ, V2 ∼ Nd(θ+V2 a,ΣY ) ,with V1 ∼ L1 , V2 ∼ L2 .
(2.4)

Bayesian predictive densities play a central role and they will be studied
throughout this paper. For a prior density π for θ and a generated posterior
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density π(·|x) with respect to a σ-finite measure ν, it is known (e.g., [3, 4]) that
the Bayes predictive density is given by

q̂π(y;x) =
∫
Rd

q(y|θ) π(θ|x) dν(θ) . (2.5)

As mentioned in Section 1.2, the benchmark MRE predictive density q̂U (·;X)
coincides with the Bayes predictive density estimator with respect to the uniform
prior density on Rd. In [15], a representation, which applies to both integrated
squared-error loss and KL loss, for q̂U is provided. For our prediction problem,
the following result makes use of this representation and summarizes the above
optimality properties.

Theorem 2.1. The MRE predictive density estimator of the density of Y rel-
ative to model (2.4) under KL loss, is given by the Bayes predictive density q̂U
under prior πU (θ) = 1 . Furthermore, we have

q̂U (·;X) ∼ MMNd(X, a,ΣX + ΣY ,L3) , (2.6)

where L3 is the cdf of V3 = V2 − V1. Finally, q̂U (·;X) is minimax under KL
loss.

Proof. The MRE and minimax properties are given in Proposition 2 and The-
orem 1 of [20], respectively. For a location family prediction problem with
X ∼ p(x − θ) and Y ∼ q(y − θ) independently distributed, it is shown in
[15] that

q̂U (y;X) = q ∗ p̄(y − x) , with p̄(t) = p(−t) ,
i.e., the convolution of q and the additive inverse of p followed by a change of
location equal to x. For model (1.1), the above convolution q ∗ p̄ is given by the
density of Y −X in model (1.1) with θ = 0, and the result follows since

Y −X|V1, V2 ∼ Nd((V2 − V1) a,ΣX + ΣY ).

Theorem 2.1 is quite general and can be viewed as an extension of the multi-
variate normal case with a = 0 and q̂U (·;X) ∼ Nd(X,ΣX+ΣY ). It is particularly
interesting that the MRE density estimator also belongs to the class of MMN
distributions with location parameter x and the same perturbation parameter
a. As well, the distribution of the difference V2 − V1 plays a key role in The-
orem 2.1’s representation of the MRE predictive density, and as illustrated in
the next series of examples.

Example 2.1. When continuous, the mixing distributions can be taken to have
a scale parameter equal to one without loss of generality, since a multiple can
be integrated into the shape vector a. For examples (C) and (D) below, we will
make use of the following lemma whose proof is relegated to the Appendix.

Lemma 2.2. For all B, c ∈ R, A ∈ R+, we have∫ ∞

0
Φ(ct) e− t2

2A+Bt dt = e
AB2

2
√

2πA Φ2(
cAB√
1 + c2A

,B
√
A; c

√
A√

1 + c2A
) , (2.7)
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where Φ2(z1, z2; ρ) the cdf evaluated at z1, z2 ∈ R of a bivariate normal dis-
tributions with means equal to 0, variances equal to 1 and covariance equal to
ρ.

(A) For the case of degenerate V2 with P(V2 = v2) = 1, i.e., when the distri-
bution of Y |θ is normal with Y ∼ Nd(θ + av2,ΣY ), the MRE predictive
density reduces to q̂U (·;X) ∼ MMNd(X + av2,−a,ΣX + ΣY ,L1).

(B) For the case of degenerate V1 with P(V1 = v1) = 1, i.e., when the dis-
tribution of X is normal with X ∼ Nd(θ + av1,ΣY ), the MRE predictive
density reduces to q̂U (·;X) ∼ MMNd(X − av1, a,ΣX + ΣY ,L2).

(C) We consider in this example V1, V2 i.i.d. exponentially distributed with
densities f(t) = e−t I(0,∞)(t), as well as ΣX = σ2

X Id and ΣY = σ2
Y Id.

Here the distribution of V3 is Laplace or double-exponential with density
1
2 e

−|v3| on R. Therefore, from Theorem 2.1, we have

q̂U (y;x) =
∫
R

1
2 e−|v3| 1

σd
S

φd(
y − x− av3

σS
) dv3 ,

= φd

(
y − x;σ2

SId
) ∫
R+

e
−(v2

3
‖a‖2

2σ2
S

+v3) cosh
(
v3(

(y − x)�a
σ2
S

)
dv3 ,

with σS = (σ2
X + σ2

Y )1/2. By making use of Lemma 2.2 with A = σ2
S

‖a‖2 ,

B = −1 ± (y−x)�a
σ2
S

, and c = 0, we obtain (for a �= 0)

q̂U (y;x) =

√
πσ2

S

2‖a‖2 φd(y − x;σ2
SId) e

σ2
S

2‖a‖2 + {(y−x)�a}2

2σ2
S‖a‖2

×
[{

e
− (y−x)�a

‖a‖2 Φ
(

σS

‖a‖ ( (y − x)�a
σ2
S

− 1)
)}

+
{
e

(y−x)�a

‖a‖2 Φ
(
− σS

‖a‖ ( (y − x)�a
σ2
S

+ 1)
)}]

.

(D) Consider V1, V2 i.i.d. truncated normal distributed TN(0, 1) (or equiva-
lently as

√
χ2

1) for which X and Y are i.i.d. as multivariate skew normal
as in (2.3). A straightforward calculation yields the density

gV3(t) = 2
√

2 φ( t√
2
) Φ(− |t|√

2
) IR(t) ,

for V3 =d V2 − V1. It follows from Theorem 2.1, for ΣX = σ2
X Id and

ΣY = σ2
Y Id, denoting σS = (σ2

X + σ2
Y )1/2 again, that

q̂U (y;x) =
∫
R

2
√

2 φ( t√
2
) Φ(− |t|√

2
)φd(y − x− at;σ2

SId) dt ,

= 2√
π
φd(y − x;σ2

SId)
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×
∫
R+

Φ(− t√
2
) e

− t2
2 ( 1

2+ a�a
σ2
S

)
{
e

(y−x)�at

σ2
S + e

− (y−x)�at

σ2
S

}
dt .

Now, by making use of Lemma 2.2 with c = − 1√
2 , A = 2σ2

S

σ2
S+2a�a

, and B =

± (y−x)�a
σ2
S

, collecting terms, and setting fk =
√
σ2
S + ka�a for k = 1, 2,

we obtain

q̂U (y;x) = 4σS

f1
φd

(
y − x;σ2

S(Id + aa�

f2
1

)
)

×
{

Φ2

(
− (y − x)�a

f1f2
,

√
2(y − x)�a
σSf2

; −σS√
2 f1

)

+ Φ2

(
(y − x)�a

f1f2
,−

√
2(y − x)�a
σSf2

; −σS√
2f1

)}
.

In the evaluation above, we made use of the identities (I − aa�

f2
2

)−1 =
I + aa�

f2
1

and |I + aa�

f2
1
| = 1+ a�a

f2
1

, which is a special case of the Sherman-
Morrison formula for the matrix inversion of A + b1b

�
2 with A being a

square matrix and b1 and b2 vectors of the same dimension.

2.3. Minimax risk and entropy

We will make use of Lemma 2.1’s canonical form to transform a mean-mixture of
normal distributions vector into two independent components and to capitalize
on the corresponding simplification for KL divergence which is as follows. The
following technical result summarizes this and it will be also of critical use in
Section 4.

Lemma 2.3. For i = 1, 2, let fi, gi be densities for Ti, and let f and g be the
resulting joint densities of T = (T1, T2)� associated with the fi’s and the gi’s
respectively under the assumption of independence. Then, we have for the KL
divergence defined in (1.2)

ρ(f, g) = ρ(f1, g1) + ρ(f2, g2) . (2.8)

Proof. By independence, we have

ρ(f, g) = ET

{
log

(
f1(T1)f2(T2)
g1(T1)g2(T2)

)}

= ET

{
log

(
f1(T1)
g1(T1)

)}
+ ET

{
log

(
f2(T2)
g2(T2)

)}
,

which is (2.8).

The Kullback-Leibler risk expressions brings into play the entropy associated
with MMN distributions. Such a measure is not easily manipulated into a closed



1902 P. Bhagwat and É. Marchand

form (see for instance [9] for the study of entropy for multivariate skewed normal
distributions), but it can be expressed in terms of the entropy of a univariate
MMN distribution, as illustrated with the following expansion of the constant
and minimax risk of the MRE density q̂U in the context of model (2.4). For a
Lebesgue density f on Rd, with entropy

H(f) = −
∫
Rd

f(t) log f(t) dt ,

we will make use of the following well-known and easily established properties.

Lemma 2.4. (a) For T ∈ Rd with density f , U = ψ(T ) ∼ g with ψ : Rd →
Rd invertible with inverse Jacobian Jψ, we have H(g) = −E log |Jψ| +
H(f) ;

(b) Let T = (T(1), T(2)) ∼ f be a random vector with independently distributed
components T(1) ∼ f1 on Rm1 and T(2) ∼ f2 on Rm2 . Then (as in
Lemma 2.3), we have H(f) = H(f1) + H(f2) .

As implied by part (a) of the above lemma, the entropy H(fμ) is constant as
a function of μ for location family densities fμ(t) = f0(t− μ), as is the case for
MMNd(μ, b,Σ,L) densities. Now, we have the following dimension reduction
decomposition for the entropy Hd(b,Σ,L) of a MMNd(0, b,Σ,L) density.

Lemma 2.5. We have for d ≥ 2:

Hd(b,Σ,L) = H1(
√
b�Σ−1b, 1,L) + d− 1

2 {1 + log(2π)} + 1
2 log |Σ| .

Proof. Let X ∼ MMNd(0, b,Σ,L), which has entropy Hd(b,Σ,L), and set Z =
H Σ−1/2 X ∼ fZ with H orthogonal having first row b�Σ−1/2√

(b�Σ−1b) . It follows from
part (a) of Lemma 2.4 that H(fZ) = −1

2 log |Σ|+Hd(b,Σ,L). From Lemma 2.1,
we have Z = (Z1, Z(2))� with Z1 ∼ MMN1(0,

√
(b�Σ−1b), 1,L) and Z(2) ∼

Nd−1(0, Id−1) independently distributed, and the result follows from part (b)
of Lemma 2.4 and a straightforward evaluation of the entropy H(φd−1).

With the above, we conclude with an expression for the constant and minimax
risk of the MRE density.

Theorem 2.2. In the context of model (2.4), the Kullback-Leibler risk of the
MRE density q̂U is given by

RKL(θ, q̂U ) = H1(
√

a�Σ−1
S a, 1,L3) − H1(

√
a�Σ−1

Y a, 1,L2) + 1
2 log |ΣS |

|ΣY |
,

(2.9)
with ΣS = ΣX + ΣY .

Proof. Observe first setting D =d Y −X that

Eθ log q̂U (Y ;X) = Eθ log q̂U (Y −X; 0)
= E0 log q̂U (Y −X; 0)
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= E0 log q̂U (D; 0)
= −H(q̂U (·; 0)) ,

since D|θ ∼ MMNd(0, a,ΣS ,L3), i.e., D has density q̂U (·; 0). Therefore, we
obtain for θ ∈ Rd that

RKL(θ, q̂U ) = Eθ{log qθ(Y ) − log q̂U (Y ;X)}
= H(q̂U (·; 0)) − H(q0)
= Hd(a,ΣS ,L3) − Hd(a,ΣY ,L2) ,

and the result then follows from Lemma 2.5.

The particular case with ΣX = σ2
XId and ΣY = σ2

Y Id follows directly from
(2.9) and yields

RKL(θ, q̂U ) = H1(
‖a‖
σS

, 1,L3) − H1(
‖a‖
σY

, 1,L2) + d

2 log σ2
S

σ2
Y

. (2.10)

3. Bayes posterior analysis and predictive densities

In this section, given a relative paucity of results in the literature, we expand on
representations for Bayesian posterior and predictive densities for mean-mixture
of normal distributions. For skewed-normal distributions, previous Bayesian pos-
terior and predictive analysis, with applications of interest to empirical Bayes
estimators of θ and to portfolio theory, have appeared in [17] and [24], respec-
tively.

Bayesian posterior analysis of MMN models relate to the general form

X|K, θ ∼ fθ,K , K ∼ g , and θ ∼ π , (3.1)

with observable X ∈ Rd, density g of K free of θ, and π prior density for θ ∈ Rd.
Such a set-up leads to the following intermediate result, taken from [21].

Lemma 3.1. For model (3.1), the posterior distribution of U =d θ|x admits
the representation

U |K ′ ∼ πk′,x with K ′ ∼ gπ,x , (3.2)
πk′,x being the posterior density of θ as if K = k′ had been observed, and
gπ,x(k′) ∝ g(k′)mπ,k′(x) with mπ,k′ being the marginal density of X as if K = k′

had been observed.

We now apply the above to MMN distributions.

Example 3.1. Consider X|θ ∼ MMNd(θ, a,Σ,L) and the prior θ ∼ Nd(μ,Δ)
with Σ,Δ > 0. The above fits into model (3.1) with g taken to be the density
of the mixing parameter K = V ∼ L, and fθ,k the Nd(θ + ka,Σ) density.
Conditional on K = k′, standard Bayesian analysis for the normal model tells
us that

θ|k′, x ∼ Nd

(
(I −P )x+Pμ− k′a, (I −P )Σ

)
, and X|k′ ∼ Nd(μ+ k′a,Σ + Δ) ,

(3.3)
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with P = Σ (Σ+Δ)−1, which yields the densities πk′,x and mπ,k′ of Lemma 3.1.
Then from Lemma 3.1, we infer that

θ|x ∼ MMNd ((I − P )x + Pμ, a∗ = −a , (I − P )Σ ,L∗) , (3.4)

where the distribution L∗ has density

gπ,x(k′) ∝ g(k′) e−A
2 k′2+Bk′

, (3.5)

with A = a�(Σ + Δ)−1a and B = (x− μ)�(Σ + Δ)−1a .
Furthermore, it follows immediately that

E(θ|x) = (I − P )x + Pμ − P aE(K ′) , with K ′ ∼ gπ,x . (3.6)

We conclude here by pointing out that a similar analysis was provided by [17]
for Δ = τ2Id and a multivariate skew normal model. This was carried out in
the context of an empirical Bayesian analysis.

Remark 3.1. For the improper prior density π(θ) = 1, one obtains θ|x ∼
MMNd(x,−a,Σ,L) by a direct calculation. It can also be inferred from the
above Example with Δ = τ2Id and τ2 → ∞.

Example 3.2. It is interesting to further study the above posterior distributions
for the particular cases where the mixing density (i.e., V or K) of the MMN
model is of the form

g(k) ∝ e−c1k
2/2− c2k I(0,∞)(k), (3.7)

with c1 > 0, c2 ∈ R, or c1 = 0, c2 > 0. Several of these distributions are
presented in Example 6.1. Cases c1 > 0 for instance, which correspond to trun-
cated normal distributions on (0,∞), lead to skew-normal densities (2.3) for
c2 = 0. In the following, denote TN (a, b; (0,∞)) as a truncated normal distri-
bution on (0,∞) with shape parameter a ∈ R, scale parameter b > 0, density
1
b

φ((y−a)/b)
Φ(a/b) I(0,∞)(y), and expectation a + bR(a/b), with the reverse Mill’s ratio

R(·), given by R(t) = φ(t)
Φ(t) , t ∈ R.

Now, for K ∼ g as in (3.7), it follows from (3.5) that

gπ,x(k′) ∝ e−(c1+A)k′2/2 + (B−c2)k′
I(0,∞)(k′)

∝ φ

(√
A + c1 k

′ − (B − c2)√
A + c1

)
I(0,∞)(k′) ,

which is the density of a TN
(

B−c2
A+c1

, 1√
A+c1

; (0,∞)
)

distribution. Hence, the
above, which yields the density associated with L, provides a complete descrip-
tion of the posterior distribution in (3.4) for all considered cases of mixing
density (3.7). Analogously, the corresponding expectation E(K ′) = B−c2

A+c1
+

1√
A+c1

R( B−c2√
A+c1

) provides an explicit expression for the posterior expectation
E(θ|x) in (3.6).
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3.1. Predictive densities

We now continue the above posterior analysis by focussing on the Bayes predic-
tive density (i.e., the conditional density of Y given X = x) for MMN distribu-
tions and a normally distributed prior for the unknown location parameter. In
doing so, the following extension comes into play.

Definition 3.1. A random vector Z ∈ Rd is said to have a mean-mixture of
normal distribution with two directions, denoted as Z ∼ MMNd(θ, a1, a2,Σ,L),
if it admits the representation

Z|W1,W2 ∼ Nd (θ + a1W1 + a2W2 ,Σ) with (W1,W2) ∼ L,

where θ ∈ Rd is a location parameter, a1, a2 ∈ Rd are known perturbation
vectors, Σ is a known positive definite matrix, and W1,W2 are scalar random
variables with joint cdf L.

We make use of the following intermediate result provided in [21] and appli-
cable to mixture models of the form:

X|K, θ ∼ fθ,K with K ∼ g ;Y |J, θ ∼ fθ,J with J ∼ h, and θ ∼ π. (3.8)

In the above set-up, X ∈ Rd is observable, the mixing variables K and J are
independently distributed with distributions free of θ, the variables X and Y
are conditionally independent on θ, and π is a prior density for θ ∈ Rd with
respect to a σ-finite measure ν.

Lemma 3.2. For model (3.8), setting πk′,x and gπ,x as in Lemma 3.1, the
Bayes predictive density of Y admits the mixture representation

Y |J ′,K ′ ∼ qπ(·|J ′,K ′), with J ′ ∼ h,K ′ ∼ gπ,x independent ,

and qπ(y|j′, k′) =
∫
Rd qθ,j′(y)πk′,x(θ) dν(θ), which can be interpreted as the

Bayes predictive density for Y as if Y ∼ qθ,j′ and K = k′ had been observed.

When applying the above to mean-mixture of multivariate normal distribu-
tions with a normal distributed prior, we obtain the following.

Theorem 3.1. (a) For X|θ ∼ MMNd(θ, aX , σ2
XId,L1), Y |θ ∼ MMNd(θ, aY ,

σ2
Y Id,L2) independent, and prior θ ∼ Nd(μ, τ2Id), the Bayes predictive

distribution for Y is

MMNd

(
ωx + (1 − ω)μ,−ωaX , aY , (ωσ2

X + σ2
Y )Id,L

)
,

with L the joint cdf of (K ′, J ′) for independently distributed K ′ ∼ gπ,x as
in (3.5) and J ′ ∼ L2, with ω = τ2/(τ2 + σ2

X), A = ‖aX‖2/(σ2
X + τ2), and

B = {(x− μ)�aX}/{σ2
X + τ2}.

(b) Moreover, whenever aY = caX for aX �= 0 and a fixed c ∈ R, the above
predictive distribution is MMNd

(
ωx + (1 − ω)μ, aX , (ωσ2

X + σ2
Y )Id,L3

)
,

with L3 the cdf of cJ ′ − ωK ′, and (J ′,K ′) distributed as above. Finally,
for aX = 0, i.e., for X|θ ∼ Nd(θ, σ2

XId), the predictive distribution is
MMNd(ωx + (1 − ω)μ, aY , (ωσ2

X + σ2
Y )Id,L2).
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Proof. Part (b) follows immediately from part (a). For part (a), consider X ′ =
X −K ′aX and Y ′ = Y − J ′aY . The result then follows from Lemma 3.2 with
the familiar predictive density estimation result:

Y ′|J ′,K ′, X ′ ∼ Nd

(
ωX ′ + (1 − ω)μ, (ωσ2

X + σ2
Y )Id

)
,

implying

qπ(·|J ′,K ′) ∼ Nd

(
ωx + (1 − ω)μ− ωaXK ′ + aY J

′, (ωσ2
X + σ2

Y )Id
)
,

matching Definition 3.1 with (W1,W2) =d (K ′, J ′).

Observe that in the context above where X|θ is normally distributed, the
model and predictive densities for Y are interestingly in the same MMN class
with differences only in location and scale, but not with regards to the pertur-
bation factor and mixing distribution.

Remark 3.2. We point out that the minimum risk predictive density matches
the density in (b) with τ2 = ∞, i.e., ω = 1.

4. Dominance results

In this section, we first provide KL risk improvements on the MRE predic-
tive density q̂U for estimating the density of Y |θ ∼ MMNd(θ, a,ΣY ,L2) based
on X|θ ∼ MMNd(θ, a,ΣX ,L1) with d ≥ 4. Such improvements are necessar-
ily minimax as a consequence of Lemma 2.1. Our findings cover two types of
improvements: (i) plug-in type (Section 4.1), and (ii) Bayesian improvements
(Section 4.2). Furthermore, we provide in Section 4.3 analogous results for cer-
tain type of restricted parameter spaces which are also applicable for d = 2, 3.
Examples will be provided in Section 5.

4.1. Plug-in type improvements

In the normal case with X|θ ∼ Nd

(
θ, σ2

XId
)

and Y |θ ∼ Nd

(
θ, σ2

Y Id
)

indepen-
dently distributed, the MRE predictive density q̂U (·;X) ∼ Nd

(
X, (σ2

X + σ2
Y )Id

)
is inadmissible for d ≥ 3 and can be improved for instance by plug-in type
densities of the form qθ̂(·;X) ∼ Nd

(
θ̂(X), (σ2

X + σ2
Y )Id

)
. Indeed, the KL risk

performance of qθ̂ relates directly to the “dual” point estimation risk of θ̂(X) for
estimating θ under squared error loss ‖θ̂−θ‖2, with qθ̂(·;X) dominating q̂U (·;X)
if and only if θ̂(X) dominates X ([10]). For MMN distributions, such a duality
does not deploy itself in the same way, but does so after a transformation to a
canonical form. In the following, we consider plug-in type densities of the form
qθ̂(·;X) ∼ MMNd

(
θ̂(X), a,ΣX + ΣY ,L3

)
, which include q̂U for θ̂(X) = X,

and provide sufficient conditions for which qθ̂ dominates q̂U . The result applies
for d ≥ 4 and for ΣY = cΣX , but is otherwise general.
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Theorem 4.1. Let X,Y be distributed as in model (2.4) with a �= 0, d ≥ 4, θ ∈
Rd,ΣY = cΣX , and set ΣS = ΣX + ΣY . Consider the problem of obtaining a
predictive density estimator q̂(y;X), y ∈ Rd, for the density of Y . Then, qθ̂

dominates q̂U under KL loss whenever θ̂(X) = Σ1/2
S H�

(
h�

1 Σ−1/2
S X

η̂(H2Σ−1/2
S X)

)
with

(i) H =
(
h�

1
H2

)
a d × d orthogonal matrix such that h�

1 = a�Σ−1/2
S√

a�Σ−1
S a

, so that

HΣ−1/2
S a = (

√
a�Σ−1

S a, 0, . . . , 0)� = a0(say),
(ii) η̂(Z) an estimator of η ∈ Rd−1 which dominates Z under squared error

loss ‖η̂ − η‖2 and for the model Z|η ∼ Nd−1
(
η, (1 + c)−1 Id−1

)
.

Before outlining a proof of the theorem, we highlight its essential nature,
which is the provide a recipe for obtaining when d ≥ 4 an improved KL risk
predictive density over the MRE density q̂U . The key idea is to decompose the
prediction problem into two separate parts which are additive in terms of risk:
a one-dimensional part whose risk contribution matches that of that of q̂U and
another d − 1 dimensional part, independent of both the perturbation vector
and the mixing distributions, for which improvement is possible by relying on
well-studied shrinkage type estimators in normal models. Given the generality
of the result, a substantial number of applications follow.

Proof of Theorem 4.1. The KL risk difference between q̂U and qθ̂ is

ΔKL(θ, qθ̂) = RKL(θ, qθ̂) − RKL(θ, q̂U )

= E log
∫
φd

(
Σ−1/2

S (Y −X − va)
)
dL3(v)∫

φd

(
Σ−1/2

S (Y − θ̂(X) − va)
)
dL3(v)

= E log
∫
φd(HΣ−1/2

S (Y −X − va)) dL3(v)∫
φd(HΣ−1/2

S (Y − θ̂(X) − va)) dL3(v)

=
{
E log

∫
φ1

(
h�

1 Σ−1/2
S (Y −X) − v

√
a�Σ−1

S a
)
dL3(v)∫

φ1
(
h�

1 Σ−1/2
S (Y − θ̂(X)) − v

√
a�Σ−1

S a
)
dL3(v)

+ E log
φd−1

(
H2Σ−1/2

S (Y −X)
)

φd−1
(
H2Σ−1/2

S (Y − θ̂(X))
)
}
.

Now for θ̂(X) given, the first term above vanishes and we get

ΔKL(θ, qθ̂) = E log
φd−1

(
H2Σ−1/2

S (θ −X)
)

φd−1
(
H2Σ−1/2

S (θ − θ̂(X))
)

= 1
2
{
E‖η̂(Z) − η‖2 − E‖Z − η‖2} , (4.1)

for Z := H2Σ−1/2
S X ∼ Nd−1

(
η, (1 + c)−1 Id−1

)
and η := H2Σ−1/2

S θ.
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The above dominance finding is quite general with respect to the specifica-
tions of a,L1, and L2 of model (2.4). Furthermore, observe by examining (4.1)
that the risk difference depends on θ only through η = H2Σ−1/2

S θ and this for
any choice of H2. More strikingly as seen with (4.1), the risk difference does
not depend on the mixing distributions L1 and L2 and can be simply described
by a quadratic risk difference of point estimators in a (d − 1) variate normal
distribution problem. An illustration of Theorem 4.1 and some of the above fea-
tures will be presented in Section 5, but we conclude first with an application
of Theorem 4.1 to Baranchik-type estimators.

Corollary 4.1. Under the set-up of Theorem 4.1, a predictive density qθ̂k,r

dominates q̂U under KL loss for

θ̂k,r(X) = X − k(1 + c)
r

(
‖H2Σ−1/2

X X‖2

1+c

)
‖H2Σ−1/2

X X‖2
Σ1/2

X H�
2 H2Σ−1/2

X X, (4.2)

whenever r(·) is an absolutely continuous and nondecreasing function on (0,∞)
such that: (i) 0 < k < 2(d− 3) and (ii) 0 ≤ r(·) ≤ 1.

Proof. It follows from a well-known dominance condition (e.g., Theorem 2.3 in

[11]) that the Baranchik-type estimator
(

1 − (1 + c)−1 r(‖Z‖2)
‖Z‖2

)
Z dominates

Z under loss ‖η̂ − η‖2 for Z ∼ Nd−1
(
η, (1 + c)−1 Id−1

)
, d ≥ 4, and under

conditions (i) and (ii). The result then follows as an application of Theorem 4.1
upon expressing θ̂k,r(X) in terms of ΣX = (1 + c)−1ΣS .

4.2. Bayesian improvements

We now focus on Bayesian predictive densities that dominate q̂U . In doing so,
we work with Lemma 2.1’s canonical form, apply the partitioning argument of
Lemma 2.3, and take advantage of known results for prediction in multivariate
normal models. We consider a class of improper priors on θ which is the product
measure of a (improper) uniform density over the linear subspace spanned by a
and a second component of the prior (π0) supported on the subspace orthogonal
to a. The measure of this nature splits resulting Bayes predictive densities into
independent parts, and leads to a decomposition of the KL risk in two additive
parts. The dominance result is thus derived by dominating the part of the KL
risk corresponding to the orthogonal space to a, where transformed variables
are Nd−1 distributed, and where we can capitalize on known results. Namely,
the superharmonicity of π0, or its associated marginal density or its associated
square root marginal density, will suffice for dominance and minimaxity. The
following is stated for ΣX = σ2

XId and ΣY = σ2
Y Id, but the finding applies as

well to cases where ΣY = cΣX (see Remark 6.1 in the Appendix).

We choose an orthogonal transformation H =
(
h�

1
H2

)
of variables to obtain

following results such that h1 = a
‖a‖ . We denote ζ = H2θ ∈ Rd−1, where the
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rows of H2 span the (d − 1)-dimensional space orthogonal to a. The following
intermediate result demonstrates the splitting of Bayesian predictive densities
associated with the class of priors considered here.

Lemma 4.1. Consider X,Y distributed as in model (2.4) with ΣX = σ2
XId,

ΣY = σ2
Y Id, and d ≥ 2. Consider prior densities of the form

π(θ) = π0 (ζ) = π0 (H2θ) . (4.3)

Then, the Bayes predictive density for Y is given by

q̂π(y;X) = q̂U (h�
1 y;h�

1 X) × q̂π0(H2y;H2X) , (4.4)

with: (i) q̂U (·;h�
1 X) the MRE density, given in Theorem 2.1, of

h�
1 y ∼ MMN1(h�

1 θ, ‖a‖, σ2
Y ,L2) based on h�

1 X ∼ MMN1(h�
1 θ, ‖a‖, σ2

X ,L1),
and (ii) q̂π0(·;H2X) the Bayes predictive density for H2Y ∼ Nd−1(ζ, σ2

Y Id−1)
based on H2X ∼ Nd−1

(
ζ, σ2

XId−1
)

and for prior density π0(ζ) for ζ.

Proof. From the transformation of variables under the orthogonal matrix H, it
follows that q̂π(y;X) = q̂π(Hy;HX). Note that the distribution of the trans-
formed variables is

HX ∼ MMNd(Hθ, a0, σ
2
XId,L1)

and HY ∼ MMNd(Hθ, a0, σ
2
Y Id,L2),

where a0 = (‖a‖, 0, . . . , 0)�. With the multiplicative nature of the prior density
in (4.3) in terms of h�

1 θ and ζ = H2θ, coupled with the conditional independence
of h�

1 Y and H2Y given θ, expression (4.4) follows.

Now we provide the main dominance result of this section by establishing
parallels between predictive density estimation problems for d-variate MMN
model and (d− 1)- variate normal model. We denote, for a given prior density
π0, mπ0 as the marginal density of Z ∼ Nd−1(ζ, σ2Id−1). It is given by

mπ0(z, σ2) =
∫
Rd−1

φd−1(z − ζ, σ2Id−1)π0(ζ) dζ . (4.5)

Theorem 4.2. Consider X,Y distributed as in model (2.4) with ΣX = σ2
XId,

ΣY = σ2
Y Id, and d ≥ 2, and consider prior densities π(θ) of the form given in

(4.3).

(a) Then, the corresponding Bayes predictive density q̂π admits the represen-
tation

q̂π(y;x) = q̂U (y;x) × mπ0(H2 w, σ
2
W )

mπ0(H2 x, σ2
X) , (4.6)

with w = σ2
Xy+σ2

Y x
σ2
X+σ2

Y
, and σ2

W = σ2
Xσ2

Y

σ2
X+σ2

Y
.

(b) If d ≥ 4, then q̂π given in (4.6) dominates the MRE density q̂U under
Kullback-Leibler loss, and is therefore minimax, if and only if q̂π0(·;H2X)
dominates under Kullback-Leibler loss the MRE density for H2Y based on
H2X and given by a Nd−1

(
H2X, (σ2

X + σ2
Y

)
Id−1) density.
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Proof. (a) For the multivariate normal case with H2X ∼ Nd−1(ζ, σ2
XId−1)

independent of H2Y ∼ Nd−1(ζ, σ2
Y Id−1), it is known (i.e., Lemma 2 in

[13]) that the Bayes predictive density associated with prior density π0 for
ζ is given by

q̂π0(H2y;H2X) = q̂U (H2y;H2X) × mπ0(H2w;σ2
W )

mπ0(H2x;σ2
X) , (4.7)

where q̂U (·;H2X) is the MRE predictive density of the density of H2Y
based on H2X, and given by a Nd−1

(
H2X, (σ2

X +σ2
Y

)
Id−1) density. Now,

plugging the above (4.7) into (4.4), we obtain

q̂π(y;X) = q̂U (h�
1 y;h�

1 X) × q̂U (H2y;H2X) × mπ0(H2w;σ2
W )

mπ0(H2x;σ2
X) ,

and the result follows since mπ0(z;σ2) = 1 for the uniform density π0 = 1.
(b) It immediately follows from (a) and (4.7) that

RKL(θ, q̂U ) −RKL(θ, q̂π) = E logmπ0(H2W ;σ2
W ) − E logmπ0(H2X;σ2

X)
= E log q̂π0(H2Y ;H2X) − E log q̂U (H2Y ;H2X) .

Observe that the r.h.s. is indeed the KL risk difference between the MRE
density for H2Y based on H2X and q̂π0(·;H2X), the Bayes predictive
density of H2Y under the prior density π0(ζ). This yields part (b).

Remark 4.1. Theorem 4.2’s dominance finding in part (b) is unified with
respect to the model settings a, L1 and L2, as well as the dimension d ≥ 4, σ2

X ,
and σ2

Y . Furthermore, as seen in the lines of the proof, the difference in risks
between the predictive densities q̂U and q̂π: (i) does not depend on the mixing
L1 and L2, and (ii) depends on θ only through ζ = H2θ.

Starting with [14], continuing namely with [13], several Bayesian predictive
densities q̂π0(·;H2X) have been shown to satisfy the dominance condition in
part (b) of the above Theorem. Such choices lead to dominating predictive den-
sities of q̂U . In [13], analogously to the quadratic risk estimation problem with
multivariate normal observables (e.g., [27, 11]), sufficient conditions for mini-
maxity are conveniently expressed in terms of the marginal density mπ0(z, σ2)
given in (4.5). The superharmonicity of either π0, mπ0(z, σ2) for z ∈ Rd−1, for
various values of σ2, or as well of

√
mπ0(z, σ2), each lead to sufficient condi-

tions for minimaxity. We recall here that the superharmonicity of h : Rd−1→ R
holds whenever the Laplacian Δ2h(t) =

∑d−1
i=1

∂2h(t)
∂t2i

exists with Δ2h(t) ≤ 0 for
t ∈ Rd−1.

Corollary 4.2. Consider the prediction context of Theorem 4.2 and a prior
density π0 as in (4.3) other than the uniform density. Suppose that mπ0(z, σ2

X)
is finite for all z ∈ Rd−1 and that d ≥ 4. Then, the following conditions are
each sufficient for q̂π(·;X) given in (4.6) to dominate the MRE density q̂U :
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(i) Δ2 mπ0(z, σ2) ≤ 0, z ∈ Rd−1, for σ2
Xσ2

Y

σ2
X+σ2

Y
< σ2 < σ2

X , with strict in-
equality on a set of positive Lebesgue measure on Rd−1 for at least one
σ2;

(ii) Δ2
√

mπ0(z, σ2) ≤ 0, z ∈ Rd−1, for σ2
Xσ2

y

σ2
X+σ2

Y
< σ2 < σ2

X , with strict
inequality on a set of positive Lebesgue measure on Rd−1 for at least one
σ2;

(iii) The prior π0 is such that Δ2π0(ζ) ≤ 0 a.e.

Proof. The results follow from part (b) of Theorem 4.2 and Theorem 1 – Corol-
lary 2 in [13].

Choices of the prior density π0 satisfying the conditions of Corollary 4.2 thus
rest upon analyses for the normal case which are plentiful. In particular, several
examples of π0, and the resulting predictive density q̂π0 , are provided in [13].
These provide explicit representations of minimax predictive densities q̂π given
in (4.6). A detailed example is presented in Section 5.

To conclude describing the dominance findings of this section and of Sec-
tion 4.1, we point out that the plug-in type improvements of Theorem 4.2
and the Bayesian dominance results of Theorem 4.2 and Corollary 4.2 are ap-
plicable regardless of the choice of the orthogonal completion H2 of H, thus
adding to choices of π0 leading to minimaxity. Furthermore, the above develop-
ments are unified and the findings are applicable for all MMN models (2.4) with
ΣX = σ2

XId and ΣY = σ2
Y Id, as well as for ΣY = cΣX as justified in Remark 6.1.

Remark 4.2. A particular appealing choice of H2, which will be further explored
below in Sections 4.3 and 5, is such that H�

2 H2 = Id − aa�

a�a
in which case

‖ζ‖2 = θ�
(
Id −

aa�

a�a

)
θ , (4.8)

and spherically symmetric densities π2(ζ) = g
(
‖ζ‖2) leading to prior densities

in (4.3) of the form

π(θ) = g

{
θ�

(
Id −

aa�

a�a

)
θ

}
= g

(∥∥∥∥θ − a�θ

a�a
a

∥∥∥∥
2)

. (4.9)

Such densities do not depend on ‖a‖ and have contours given by hypersurfaces
of cylinders with axis given by a (or h1 = a

‖a‖ ). Here is an example of three
contours for d = 3 and a = (1, 1, 1)�.

4.3. Restricted parameter spaces

Theorem 4.2 also leads to implications when there exists parametric restrictions
on ζ = H2θ. Statistical models where parametric restrictions are present appear
naturally in a great variety of contexts, and there is a large literature on related
inferential problems, namely for a decision-theoretic approach (e.g., [23, 28]).
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Fig 1. Contours of π(θ) for d = 3 and a = (1, 1, 1)�.

Questions of predictive analysis under parametric restrictions are also of interest
with findings obtained in [22, 16, 10]. Namely, for normal models, specifically
model (2.4) with a = 0, ΣX = σ2

XId, ΣY = σ2
Y Id with θ constrained to a

convex set C with non-empty interior, it was shown in [10] that the Bayes
predictive density associated with the uniform prior for θ on C dominates the
MRE predictive density under Kullback-Leibler loss. The next result extends
this finding to MMN models.

Theorem 4.3. Consider X,Y distributed as in model (2.4) with ΣX = σ2
XId,

ΣY = σ2
Y Id, and d ≥ 2. Let C ⊂ Rd−1 be a convex set with non-empty interior,

and let πC(θ) = π0,U (ζ) = IC(ζ) , with IC the indicator function of the set C.
Then q̂πC

(·;X) dominates q̂U (·;X) under KL risk and the restriction θ ∈ {θ ∈
Rd : H2θ ∈ C}.

Proof. As in Theorem 4.2 and the given proof, we infer that q̂π given in (4.6) with
prior density π(θ) = π0(ζ) for ζ = H2θ dominates q̂U if and only if q̂π0(·;H2X)
dominates the MRE density for H2Y ∼ Nd−1(ζ, σ2

Y Id−1). But, since this latter
dominance holds precisely for density π = πC for the uniform density choice
π0 = π0,U as shown in [10], the result follows.

The setting of C above is quite general and interesting examples includes
balls, and cones such as order constraints of the type ζi ≤ ζi+1 for i = 1, . . . , d−2.
As earlier, the finding is unified and general to the MMN models. Here are two
applications of Theorem 4.3.

Example 4.1. Suppose d = 2, a = (1, 1)�, and the parametric restriction c ≤
θ1−θ2 ≤ c̄, with C = (c, c̄) a strict subset of R. The MRE density q̂U (·;X) is that
of MMN2

(
X, a, (σ2

X + σ2
Y )I2,L3

)
distribution. In the context of Theorem 4.3,

we have ζ = θ1−θ2√
2 and the prior density πC(θ) = IC(θ1−θ2). Theorem 4.2 tells
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us that the Bayes predictive density q̂πC
dominates the MRE q̂U with respect to

KL loss and under the given parametric restriction. 1

An explicit expression for q̂πC
is available from Theorem 4.2 with π0 the

uniform U( c√
2 ,

c̄√
2 ) density for ζ. As evaluated in [16], we obtain

( √
2

c̄− c

)
mπ0(z, σ2) =

∫ c̄/
√

2

c/
√

2
φ
(
z − ζ, σ2) dζ

= Φ
(
z + c̄/

√
2

σ

)
− Φ

(
z + c/

√
2

σ

)
,

and (4.6) then yields

q̂πC
(y;x) = q̂U (y;x)

Φ
(

w+c̄/
√

2
σW

)
− Φ

(
w+c/

√
2

σW

)
Φ
(

x+c̄/
√

2
σX

)
− Φ

(
x+c/

√
2

σX

) , y ∈ R,

with w and σ2
W given in (4.6), and q̂U the MRE density which is that of a

MMN2(x, a, (σ2
X + σ2

Y )I2,L3) distribution.
Example 4.2. Theorem 4.3 applies for θ restricted to a cylinder of radius, say
m, with the axis along the direction a, i.e.,

Cm =
{
θ ∈ Rd :

∥∥∥∥θ − a�θ

a�a
a

∥∥∥∥ ≤ m

}
;

examples of which are drawn in Figure 1. The dominating predictive density
q̂πCm

is Bayes with respect to the uniform prior density on Cm, which corre-
sponds to (4.9) with g(t) = I(0,m)(t). An explicit expression for q̂πCm

can be
derived from Theorem 4.2 with π0 the uniform density on the ball Bm =
{t ∈ Rd−1 : ‖t‖ ≤ m} and marginal density

mπ0(z, σ2) =
∫
Bm

φd−1
(
z − ζ, σ2Id−1

)
dζ

= F
d−1, ‖z‖

2
σ2

(m
2

σ2 ) ,

with Fν,λ the cdf of a χ2
ν(λ) distribution. From (4.6), we thus obtain

q̂πCm
(y;x) = q̂U (y;x)

⎛
⎜⎝
F
d−1, ‖H2w‖2

σ2
W

( m2

σ2
W

)

F
d−1, ‖H2x‖2

σ2
X

(m2

σ2
X

)

⎞
⎟⎠ , y ∈ Rd,

with ‖H2t‖2 = t�
(
I − aa�

a�a

)
t , for t ∈ Rd, w = σ2

Xy +σ2
Y x

σ2
X+σ2

Y
, σ2

W = σ2
Xσ2

Y

σ2
X+σ2

Y
,

and q̂U the MRE density which is that of a MMNd(x, a, (σ2
X + σ2

Y )Id,L3) dis-
tribution.

1In Example 4.1, for the compact interval case say without loss of generality c = −m and
c̄ = m, there exists a much larger class of dominating predictive densities obtained by replacing
the uniform density for ζ by an even density π0 supported on (−m,m) that is increasing and
logconcave on (0,m). This is established as in Theorem 4.3 and making use of Theorem 3.2
in [10], which exploits a related point estimation finding in [18].
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5. Illustrations

We provide here illustrations of Theorems 4.1 and 4.2 accompanied by numerical
comparisons and various observations.

Example 5.1 (A Bayesian minimax predictive density). In the context of The-
orem 4.2, consider H2 as in Remark 4.2 combined with the harmonic prior
density for ζ ∈ Rd−1 given by π0(ζ) = ‖ζ‖−(d−3) and which generates via (4.9)
an “adjusted” harmonic prior density on θ given by

πH(θ) =
∥∥∥∥θ − a�θ

a�a
a

∥∥∥∥
−(d−3)

. (5.1)

Thus, the prior density is the product measure on Rd with uniform prior
on the linear subspace spanned by a and the above harmonic measure on the
(d−1)-dimensional chosen subspace orthogonal to a. Since π0 is superharmonic
on Rd−1 for d ≥ 4, it follows from Corollary 4.2 that the Bayes predictive
density q̂πH

(·;X) in (4.6), as well as in (5.3) below, dominates the MRE density
q̂U and is consequently minimax.

An explicit expression for q̂πH
is available from(4.6) with marginal density

mπ0(z, σ2) =
∫
Rd−1

φd−1(z − ζ, σ2Id−1)
1

||ζ||(d−3) dζ = σ3−d ET
(3−d)

2 ,

where T ∼ χ2
d−1

(
||z||2
σ2

)
. In particular for odd d ≥ 5, as shown in the Appendix,

one may obtain

mπ0(z, σ2) =
(
||z||2

) 3−d
2

⎛
⎝1 − e−

||z||2
2σ2

d−5
2∑

k=0

(
||z||2
2σ2

)k 1
k!

⎞
⎠ = s(||z||2, σ2) (say) ,

(5.2)
which relates to expressions for the inverse moments of a chi-square variable
with even degrees of freedom (e.g., [8]), as well a closed form for an incomplete
gamma function which intervenes in Komaki’s [14] representation of mπ0 . From
(4.6) and the above, we thus have

q̂πH
(y;x) = q̂U (y;x)

s

(∥∥∥w − a�w
a�a

a
∥∥∥2

, σ2
W

)

s

(∥∥∥x− a�x
a�a

a
∥∥∥2

, σ2
X

) , y ∈ Rd , (5.3)

where w and σ2
W are as given in (4.6).

Risk differences between q̂U and q̂πH
are plotted in Figure 2a and Figure 2b

as a function of ‖ζ‖2, or equivalently as a function of

t = ‖ζ‖2

d− 1 = 1
d− 1

∥∥∥∥θ − a�θ

a�a
a

∥∥∥∥
2

,
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i.e., in terms of the average squared component of ζ. The actual risks depend on
the underlying mixing distributions L1 and L2, but not the risk differences as
previously observed in Remark 4.1. Observe as well that t is independent of ‖a‖
and only depends on the direction a/‖a‖. Figure 2a has σ2

X = 1, σ2
Y = 2 and

varying d, while Figure 2b has fixed d = 5, σ2
X = 1 with σ2

Y = cσ2
X and varying

c. As seen with Figure 2a, the improvement in KL risk vanishes at t → ∞, but
gains in prominence with increasing d, and with the proximity of θ to the linear
subspace spanned by a. As seen with Figure 2b, the KL risk difference loses
in prominence with larger c which is consistent with the fact that MRE density
gains in reliability when the variance σ2

X of the observable decreases.
Frequentist risk ratios between q̂U and q̂πH

are plotted in Figure 2c for
σ2
X = 1, σ2

Y = 2 and varying d. These ratios depend additionally on the mix-
ing distributions L1 and L2 and they are set here with

√
χ2

1 mixing (Exam-
ple 2.1 (B)), i.e., X|θ and Y |θ have skew-normal distributions with densi-
ties given in (2.3), and q̂U given in part (D) of Section 2.2. We further set
a = 1d = (1, . . . , 1)�, in which case the harmonic prior density on θ in (5.1) re-

duces to πH(θ) = ||θ− θ̄1d||−(d−3) with θ̄ = 1
d

d∑
i=1

θi. With the above settings, the

constant (and minimax) risk of the MRE density can be computed from (2.10).
For instance, we obtain R(θ, q̂U ) ≈ 1.0954 for d = 5, ≈ 1.5187 for d = 7 and
≈ 1.9403 for d = 9. These are close to linear with the term d

2 log σ2
S

σ2
Y

= d
2 log 3

2
(≈ 1.0137 for d = 5, ≈ 1.4191 for d = 7 and ≈ 1.8246 for d = 9), representing
the MRE risk for the normal case with a = 0, being dominant in (2.10). As seen
in Figure 2c, where the risk ratios are plotted with respect to t = 1

d−1 ||θ−θ̄1d||2,
the gains increase in d and with the closeness of the θi’s to θ̄.

Example 5.2 (Plug-in type improved predictive density). In the context of
Theorem 4.1 and Corollary 4.1), consider plug-in type predictive densities

qθ̂JS
(y;X) ∼ MMNd

(
θ̂JS(X), a,ΣX + ΣY ,L3

)
with the choice of the James-Stein estimator (r(t) = d− 3 in Corollary 4.1)

θ̂JS(X) = X − (d− 3)(1 + c)
‖H2Σ−1/2

X X‖2
Σ1/2

X H�
2 H2Σ−1/2

X X, (5.4)

leading to the dominance of qθ̂JS
over q̂U for d ≥ 4. Both the dominating pre-

dictive density qθ̂JS
and the actual difference in risks do depend on the choice

of H2, but the KL risk difference, as given in (4.1) and mentioned at the end of
Section 4.1, is independent of the underlying mixing distributions and will thus
coincide with the corresponding difference stemming for d− 1 dimensional nor-
mal models and which have appeared many times in the literature. The difference
in risks will be a function of η = H2Σ−1/2

X θ in general, and more precisely as a
function of ‖η‖2 in this case given that the James-Stein estimator is equivariant
with respect to orthogonal transformations.
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Fig 2. KL risk performance of predictive density estimators.

It is thus more interesting to look at the ratio of Kullback-Leibler risks and
such ratios are presented in Figure 2c with the same settings as in Example 5.1,
i.e., multivariate skew-normal models with

√
χ2

1 mixing, ΣX = σ2
XId = Id,ΣY =

σ2
Y Id = 2Id, and a = (1, · · · , 1)T . Again here, the risk ratios are plotted with

respect to t = 1
d−1 ||θ − θ̄1d||2, the gains increase in d and with the closeness of



Bayesian inference and prediction for mean-mixtures of normal distributions 1917

the θi’s to θ̄.

Remark 5.1. As a follow-up to the examples above, we conclude by compar-
ing the Bayes predictive density qπH

and the plug-in type density qθ̂JS
. While

plug-in or plug-in type densities are simple and appealing to a broad spectrum
of researchers, from a decision-theoretic perspective, it is often preferable to
consider Bayes minimax procedure such as qπH

and it is certainly of interest
to compare the frequentist risk performance with other procedures. For the given
settings (i.e., d = 5, 7, 9, σ2

X = 1, σ2
Y = 2), Figure 2c reveals better performance

uniformly of qπH
, and the same was observed for some other combinations of

σ2
X and σ2

Y which we tested.
Interestingly, as seen above with (4.1) and Remark 4.1, the difference in KL

risks here will not depend on the settings of the perturbation vector a, and the
mixing distributions L1 and L2. Therefore, the analysis for the normal case
is critical. For the estimation of a multivariate normal mean θ under squared-
error loss with covariance matrix σ2

XIp, it was actually shown (i.e., [19]) that the
Bayes estimator θ̂πH

with respect to the harmonic prior dominates the James-
Stein estimator for p ≥ 3. Given this finding, the historical parallels between
the above mentioned point estimation problem and the normal model prediction
problem, and the numerical evidence collected here, it certainly is worth fur-
ther investigating whether there is a theoretical finding and justification of the
dominance of qπH

over qθ̂JS
.

Concluding remarks

In this work, we have addressed the problem of determining efficient predictive
densities under Kullback-Leibler frequentist risk for multivariate skew-normal
distributions and, more generally, for mean-mixtures of multivariate normal
(MMN) distributions, and provided Bayesian and plug-in type predictive den-
sities which dominate the MRE density, and are minimax in four dimensions or
more. In doing so, we have made use of a canonical transformation which leads
to the decomposition of the Kullback-Leibler risk for the predictive densities
being considered into two additive parts, one of which matching that of the
MRE and minimax density, the other relating to a normal model and permit-
ting improvement in view of shrinkage predictive density estimation results for
such models. Further implications are provided for certain type of parametric
restrictions. In addition, motivated by the relative paucity of analytical repre-
sentations for Bayesian posterior and predictive densities, we have contributed
such explicit representations.

This work represents, to the best of our knowledge, a first foray of the study
of predictive density estimation for MMN distributions. The findings are thus
novel and they are also unified. The canonical transformation technique may
well find further applications in predictive analysis, such as for mean-variance
mixture of normal distributions. Extensions to other choices of loss (e.g., α-
divergence) and to unknown covariance structures would be most interesting to
investigate as well. Finally, it would be particularly interesting to investigate
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analysis in the case of an i.i.d. draws from X|θ ∼ MMNd(θ, a,Σ,L1) as the
reduction for instance to a linear combination of the sample values (as described
in Remark 2.1) is not a sufficiency reduction.

6. Appendix

A general representation of MMN distributions

This section contains further examples of MMN distributions as defined in
Definition 1.1 based on the following lemma.

Lemma 6.1. For a mixing density of the form

�(v) = h(v) e−c2v− c1v
2/2 I(0,∞)(v) , (6.1)

with c1 > 0, c2 ∈ R or c1 = 0, c2 ≥ 0, the corresponding pdf of X in (1.1) is
given by

p(x|θ) = 1
c′1

φd (x− θ,Σ)
E
[
h
{

1
c′1

(
Z + c′2

c′1

)}∣∣∣Z + c′2
c′1

≥ 0
]

R
(

c′2
c′1

) , (6.2)

with Z ∼ N(0, 1), c′1 =
(
c1 + a�Σ−1a

)1/2, c′2 = (x − θ)�Σ−1a − c2 , and R(·)
the reverse Mill’s ratio.

Proof. The result follows from (2.2) as the skewing factor
EV

(
e−

V 2
2 a�Σ−1aeV (x−θ)T Σ−1a

)
reduces to

∞∫
0

e−
v2
2 (c′1)

2
evc

′
2 h(v) dv

=
√

2π
c′1

e
c′22
2c′21

∞∫
0

h(v) c′1√
2π

e

−c′21

(
v− c′2

(c′1)2

)2

2 dv

=
√

2π
c′1

e
c′22
2c′21 E

{
h

(
Z

c′1
+ c′2

c′21

)∣∣∣∣Z + c′2
c′1

≥ 0
}

Φ
(
c′2
c′1

)
.

We point out that the above Lemma applies for c1 = c2 = 0 and thus covers
all absolutely continuous distributions on R+. Here are nevertheless specific
examples of model density (6.2).

Example 6.1. (A) Gamma mixing with �(v) = vα−1 e−v/β

Γ(α)βα . Lemma 6.1 ap-
plies with h(v) = vα−1

Γ(α)βα , c1 = 0 and c2 = 1/β, and the model density is

given by (6.2) with c′1 =
(
a�Σ−1a

)1/2 and c′2 = (x − θ)�Σ−1a − (1/β).
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The density was studied in [1, 2]. The exponential case with α = 1 sim-
plifies with

p(x|θ) = 1
βc′1

φd (x− θ; Σ)
R
(

c′2
c′1

) . (6.3)

More generally for positive integer α, the density’s expression brings into
play the (α − 1)th lower-truncated moment of a normal distribution. For
instance, with E {(Z + Δ)|Z + Δ ≥ 0} = Δ + R(Δ), we obtain for the
case α = 2 the model density:

p(x|θ) = φd(x− θ,Σ)
(c′1 β)2

{
c′2/c

′
1

R(c′2/c′1)
+ 1

}
,

with the above c′1 and c′2.
(B)

√
χ2
k mixing with h(v) = ( 1

2 )k/2−1

Γ(k/2) vk−1, c1 = 1, c2 = 0, and k > 0.
The corresponding model density is given by (6.2) with the above h, c′1 =(
1 + a�Σ−1a

)1/2, and c′2 = (x − θ)�Σ−1a. The density was given in [5]
and, as previously noted, the case k = 1 reduces to the skew-normal case in
(2.3). As in Example (A) for positive integer k, the density’s expression
involves a lower-truncated moment of a normal distribution.

(C) Kummer type II mixing with c2 = c/σ, c1 = 0, h(v) = σb

Γ(a)ψ(a,1−b,c)
va−1

(v+σ)a+b

with a, c, σ > 0, b ∈ R, and ψ the confluent hypergeometric function of type
II defined for γ1, γ3 > 0 and γ2 ∈ R as ψ(γ1, γ2, γ3) = 1

Γ(γ1)
∫
R+

tγ1−1(1+
t)γ2−γ1−1 e−γ3t dt. This class of densities includes for b = −a the Gamma
densities in (A), as well as Beta type II densities for c = 0 and b > 0. The
resulting mean-mixture density is given by (6.2) and involves interesting
expectations of the form E

(
Wa−1

(W+σ)a+b |W ≥ 0
)

where W ∼ N(Δ, 1) with
Δ = c′2/c

′
1.

Proof of Lemma 2.2. We have

e
−AB2

2 (2πA)−1/2
∫ ∞

0
Φ(ct) e− t2

2A+Bt dt =
∫ ∞

0
Φ(ct) 1√

A
φ( t−AB√

A
) dt

= P (U − cT ≤ 0,−T ≤ 0) ,

with U, T independently distributed as N(0, 1) and N(θT = AB, σ2
T = A),

respectively. The result follows since

(U − cT,−T )� ∼ N2

((
−cAB

AB

)
,

[
1 + c2A cA

cA A

])
.

Remark 6.1. Predictive density estimates are intrinsic by nature which implies
that the developments of Section 4.2, presented for ΣX = σ2

XId and ΣY = σ2
Y Id

in model (1.1) with known σ2
X and σ2

Y , apply as well for ΣY = cΣX with known
ΣX ,ΣY , and c = σ2

Y /σ
2
X . Indeed, one can consider X ′ = Σ−1/2

X X for which
X|θ ∼ MMNd(Σ−1/2

X θ,Σ−1/2
X a, Id,L1) to estimate the density of Y ′ = Σ−1/2

X Y ,
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for which Y ′|θ ∼ MMNd(Σ−1/2
X θ,Σ−1/2

X a, cId,L2). In doing so, one produces a
predictive density estimator q1(y′) = q̂(y′;x′), y′ ∈ Rd, for the density qY ′ of
Y ′, which equates to q2(y) = q̂(Σ−1/2

X y; Σ−1/2
X x) |Σ−1/2

X |; y ∈ Rd; as a predictive
density estimator of the density qY of Y . Moreover, the Kullback-Leibler losses
ρ(qY ′ , q1) and ρ(qY , q2) are equal, i.e.∫

Rd

qY ′(t) log qY ′(t)
q1(t)

dt =
∫
Rd

qY (t) log qY (t)
q2(t)

dt ,

as seen with the change of variables t → Σ−1/2
X t.

Proof of (5.2). With the standard representation T |K ∼ χ2
d−1+2K with K ∼

Poisson
(

||z||2
2σ2

)
, we have

ET (3−d)/2 =
∞∑
k=0

e−
||z||2
2σ2

1
k!

(
||z||2
2σ2

)k

E
(
χ2
d−1+2k

) (3−d)
2

= 1
2 d−3

2
e−

||z||2
2σ2

∞∑
k=0

(
||z||2
2σ2

)k 1
Γ(d−1

2 + k)

= e−
||z||2
2σ2

(
||z||2
σ2

)− d−3
2 ∞∑

k= d−3
2

(
||z||2
2σ2

)k 1
k! ,

which yields (5.2).
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