
Electronic Journal of Statistics
Vol. 17 (2023) 1411–1456
ISSN: 1935-7524
https://doi.org/10.1214/23-EJS2131

Discrepancy-based inference for
intractable generative models using

Quasi-Monte Carlo∗

Ziang Niu†

Department of Mathematics, University of Pennsylvania
e-mail: ziangniu@sas.upenn.edu

Johanna Meier†

Institute of Statistics, Leibniz University Hannover
e-mail: meier@statistik.uni-hannover.de

François-Xavier Briol‡

Department of Statistical Science, University College London
e-mail: f.briol@ucl.ac.uk

Abstract: Intractable generative models, or simulators, are models for
which the likelihood is unavailable but sampling is possible. Most ap-
proaches to parameter inference in this setting require the computation
of some discrepancy between the data and the generative model. This is
for example the case for minimum distance estimation and approximate
Bayesian computation. These approaches require simulating a high num-
ber of realisations from the model for different parameter values, which can
be a significant challenge when simulating is an expensive operation. In this
paper, we propose to enhance this approach by enforcing “sample diversity”
in simulations of our models. This will be implemented through the use of
quasi-Monte Carlo (QMC) point sets. Our key results are sample complex-
ity bounds which demonstrate that, under smoothness conditions on the
generator, QMC can significantly reduce the number of samples required
to obtain a given level of accuracy when using three of the most common
discrepancies: the maximum mean discrepancy, the Wasserstein distance,
and the Sinkhorn divergence. This is complemented by a simulation study
which highlights that an improved accuracy is sometimes also possible in
some settings which are not covered by the theory.
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1. Introduction

A particular challenge for statistics is the growing complexity of phenomena
modelled by scientists, and as a result the growing complexity of the models
themselves. This can often lead to cases where a closed form of the likelihood is
not available anymore. As a result, classical parameter estimation tools such as
maximum likelihood estimation or Bayesian inference cannot be used. Within
these so-called intractable likelihood models, intractable generative models, also
known as simulators, are parametric families of probability distributions which
are specified through a generative process, so that it is possible to obtain re-
alisations for any value of the parameter [27]. These models are widely used
throughout the sciences including genetics [9], astronomy [21] and ecology [8].
In machine learning, one of the main applications is for the simulation of realistic
looking images [59]; see for example generative adversarial networks [41].

Denote by Pθ any element of a parametric family of interest with parameter
θ, and let X be the space of realisations from this model. The generative process
of Pθ is usually summarised through a pair (U, Gθ) which includes a relatively
simple probability distribution U (such as a Gaussian or uniform) on some space
U and a parametric map Gθ : U → X called a generator or simulator. To sim-
ulate n independent and identically distributed (IID) realisations {xi}ni=1 from
the model for some fixed parameter θ, one can simply sample IID realisations
ui ∼ U, then map these samples through the generator xi = Gθ(ui). The main
advantage of generative models is that one can model ever more complex phe-
nomena by increasing the flexibility of the generator, so long as the map Gθ can
be evaluated pointwise.

Since simulating is the only option available in the case of generative models,
many methods for inference are based on simulating synthetic data for various
parameter values, then comparing the simulated data to the observations to se-
lect a “good” parameter value. The latter usually requires defining some notion
of distance, or discrepancy, between the two datasets. Once a discrepancy is
defined, one possible approach is the framework of minimum distance estima-
tion (MDE) [75], where an estimator is constructed as the minimiser (over the
set of model parameters) of the discrepancy between datasets. In the Bayesian
literature, an alternative approach called approximate Bayesian computation
(ABC) [9] consists of constructing a pseudo-posterior distribution over parame-
ters by selecting parameter values simulated from a prior distribution for which
the discrepancy between simulated and actual data is small. In all of the cases
above, thinking of the actual data as an approximation to the data-generating
process of interest, the main computational challenge can be summarised as
having to efficiently estimate some discrepancy given access to realisations of
two distributions.

There is a vast literature on possible discrepancies, each with competing
advantages for parameter estimation including efficiency, robustness to model
misspecification, computational cost and sample complexity. In this paper, we
will not aim to be exhaustive, but will focus on a small subset of discrepancies
which are popular in the literature because they lend themselves to efficient im-
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plementations. The first discrepancy is the maximum mean discrepancy (MMD)
[42], which compares embeddings of probability distributions into reproducing
kernel Hilbert spaces, and can be straightforwardly computed through evalua-
tions of a kernel. This was studied by [17, 22, 23, 4, 28] in the context of MDE,
and by [54, 32, 52, 86, 15] for the case where Gθ is a neural network in partic-
ular. It was also used by [64, 74, 58, 47, 13] in the context of ABC. The two
other discrepancies we will consider are the Wasserstein distance, as well as its
relaxation called the Sinkhorn divergence. These can be efficiently implemented
thanks to algorithmic advances in computational optimal transport [77]. They
were considered for MDE by [6, 10, 39, 29, 89, 63, 66, 82] and for ABC by
[11, 40, 61].

Clearly, any algorithmic development improving our ability to estimate these
discrepancies will significantly reduce the overall computational cost of imple-
menting all of the algorithms described above. We propose to tackle this problem
through the use of quasi-Monte Carlo (QMC) point sets [31]. In particular, we
focus on the case where U is a uniform distribution1 and replace IID realisations
by some QMC point set. This is a rather simple algorithmic trick, which we will
call QMC sampling, and which has been explored for a wide range of models; see
for example [20] for copula models, or [44, 45] for neural networks. Once again,
a full review of QMC sampling is out of scope for this paper. Intuitively, this
approach consists of generating a more “diverse” set of samples from the model.
This can be observed visually through the example in Figure 1 which com-
pares realisations from a Gaussian distribution obtained through Monte Carlo
(MC) and QMC. Clearly, the realisations obtained through QMC provide an
improved approximation of Pθ in the intuitive sense that they provide a more
uniform coverage of areas of high-probability under Pθ.

The main contribution of this paper is a set of theoretical results demon-
strating the advantages of QMC sampling for performing inference with dis-
crepancies. In particular, Theorem 1, Theorem 2 and Theorem 3 provide sample
complexity results with respect to the MMD, Wasserstein and Sinkhorn diver-
gence respectively. In each case, the theorem provides sufficient conditions for
estimating the discrepancy at a rate which is linear (up to log factors) in the
number of realisations n. This is a significant improvement upon the usual MC
rate which decreases at a root-n speed. Of course, such speed-ups do come at the
cost of the generality of the method as they require certain regularity conditions
on Gθ and X . Despite this drawback, we show through an extensive simulation
study that faster rates than MC (although not necessarily linear) can still be
obtained for QMC in some settings not covered by our theory. We therefore
see this paper as an initial step in the study of the use of QMC sampling for
discrepancy estimation.

The remainder of this paper is structured as follows. In Section 2, we intro-
duce intractable generative models and the most common distances used for
inference, including the MMD, Wasserstein distance and Sinkhorn divergence.

1The assumption that U is uniform is relatively minor due to Sklar’s theorem, which states
that any multivariate distribution can be obtained through a transformation of a uniform
distribution.
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Fig 1. Realisations from Pθ = N (0, I), a zero mean Gaussian with identity covariance matrix.
We compare realisations from a Unif([0, 1]2) (left plot) against a QMC point set (center left
plot), together with their projections through the generator x = Gθ(u) = (Φ−1

θ1
(u1),Φ−1

θ2
(u2))

(center right and right plot), where Φθ denotes the cumulative distribution function of Pθ.

In Section 3, we derive our novel sample complexity results. Finally, the per-
formance of the performance of these novel estimators is studied numerically in
Section 4. We conclude by discussing potential future directions in Section 5.

2. Background

This section will recall background material on inference for intractable gener-
ative models (in Section 2.1), then introduce the main discrepancies considered
in the literature (in Section 2.2).

2.1. Inference for intractable generative models through
discrepancies

Throughout this paper, we will consider settings where the base space is U =
[0, 1]s, the data space satisfies X ⊆ Rd and the parameter space satisfies Θ ⊆ Rw

for s, d, w ∈ N+ = {1, 2, 3, . . .}. We will denote by P(X ) the set of all Borel
probability distributions on X .

The inference task of interest can be summarised as follows. Given IID re-
alisations {yj}mj=1 from some unknown Q ∈ P(X ), we would like to find the
parameter θ∗ ∈ Θ such that Pθ∗ is closest to Q in some sense. In particular, if
Q ∈ {Pθ ∈ P(X ) : θ ∈ Θ} (i.e. the model is well-specified), our task is to recover
the parameter value θ∗ which was used to simulate the observations {yj}mj=1.
One approach is to use a discrepancy, which we will define to be any function
D : P(X ) × P(X ) → [0,∞). Specific examples will be provided in Section 2.2,
but for now we will only assume such a discrepancy has been selected, and de-
scribe how it can be used for inference. Firstly, we may construct an estimator
through the framework of MDE [75].

θ̂Dm ∈ arg minθ∈Θ D (Pθ,Q
m) ,

where Qm(dx) = 1
m

∑m
j=1 δyj (dx) is an empirical measure, and δyj a Dirac

measure at yj . We note that we use ∈ instead of = since the minimiser may not
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be unique. Of course, this is usually an intractable optimisation problem since
it requires evaluating D pointwise at Pθ, which is itself unknown. As a result, a
common approach is to solve the optimisation problem through evaluations of
D (Pn

θ ,Q
m), or of its gradient, where Pn

θ (dx) = 1
n

∑n
i=1 δxi(dx) and is obtained

from realisations {xi}ni=1 from Pθ. For all discrepancies considered in this paper,
D (Pn

θ ,Q
m) is a biased estimate of D (Pθ,Q

m). This leads to the use of stochastic
optimisation methods with biased gradient estimates, which leads to a bias in the
estimated parameter [87, 49]. However, any approach leading to more efficient
estimation of D (Pθ,Q

m) may be able to significantly reduce this bias.
Secondly, we could use ABC, which aims to construct a pseudo-posterior

which closely approximates the exact Bayesian posterior [9]. This can be achieved
by sampling parameter values {θk}Kk=1 (for some K ∈ N) from a prior distribu-
tion Π, then for each of these values simulating a dataset {xk

i }ni=1. Each of these
parameter values is then accepted as a realisation from the pseudo-posterior if
D(Pn

θk
,Qm) ≤ ε holds for some threshold parameter ε > 0. This straightforward

procedure allows us to sample from the following pseudo-posterior:

ΠD
ε (dθ|y1, . . . , ym) ∝ Π(dθ)E

[
1{D(

Pn
θ ,Q

m
)
≤ε

}(dθ)
]
,

where 1A is an indicator function for the event A, and the expectation is with
respect to the randomness in the simulated data. Note that this sampling pro-
cedure is only necessary due to the intractability of D(Pθk ,Q

m) for intractable
generative models; if this quantity was tractable, we would instead want to verify
whether D(Pθk ,Q

m) ≤ ε instead of D(Pn
θk
,Qm) ≤ ε.

QMC has previously been used for ABC [19], but this was used to improve
sampling of parameters instead of simulating the data. Finally, we also point
out that recent generalised Bayesian procedures for generative models are also
discrepancy-based; see for example [81, 73].

Clearly MDE and ABC critically rely on D (Pn
θ ,Q

m) approaching D (Pθ,Q
m)

at a fast rate in n. Whether this is possible will depend on the discrepancy D.

2.2. Examples of discrepancies

Recall that any discrepancy D such that ∀P1,P2,P3 ∈ P(X ): (i) D(P1,P2) =
0 if and only if P1 = P2, (ii) D(P1,P2) = D(P2,P1), and (iii) D(P1,P2) ≤
D(P1,P3) +D(P3,P2), is called a probability metric on P(X ). If only (i) holds,
D is called a (statistical) divergence. The discrepancies in this paper closely
relate to integral probability metrics (IPMs) [60]. Given a set of functions F ,
an IPM is a probability metric which takes the form:

DF (P,Q) := supf∈F
∣∣∫

X f(x)P(dx) −
∫
X f(x)Q(dx)

∣∣ .
In practice, F needs to be large enough to be able to differentiate P from Q, but
also small enough so that DF (P,Q) can be computed, or at least approximated
up to high accuracy. It should also not be too large since we might otherwise
have DF (P,Q) = ∞ for all P �= Q. This can significantly restrict the choices of F
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available for inference. In the case where F is finite-dimensional, the discrepancy
above can be thought of as comparing a finite number of summary statistics of
P and Q, as commonly done for the method of simulated moments or in ABC.
For this case, the use of QMC was previously studied in [36]. In contrast, our
work will focus on the most common discrepancies based on infinite-dimensional
F , which we introduce below.

Maximum mean discrepancy Let F = {f : X → R : ‖f‖Hk
≤ 1}, the

unit-ball of a reproducing kernel Hilbert space (RKHS) Hk with kernel k : X ×
X → R. In this case, the IPM is called the (kernel) maximum mean discrepancy
(MMD) [42]. We will assume that the kernel is characteristic, which guarantees
that the discrepancy is a metric on the set

Pk(X ) := {P ∈ P(X ) :
∫
X
√
k(x, x)P(dx) < ∞} ⊆ P(X ),

see [83] for more details. The name MMD originates from the fact that the
IPM can be expressed as MMD(P,Q) = ‖

∫
X k(·, y)P(dy) −

∫
X k(·, y)Q(dy)‖Hk

,
which is the difference in the mean of k under P and Q (or can alternatively be
seen as the size of the difference between P and Q when embedded in Hk). The
squared-MMD can also be expressed as

MMD2(P,Q) :=
∫
X
∫
X k(x, y)P(dx)P(dy) − 2

∫
X
∫
X k(x, y)P(dx)Q(dy)

+
∫
X
∫
X k(x, y)Q(dx)Q(dy). (2.1)

Note that this expression does not require the computation of a supremum
anymore. Given two empirical measures Pn = 1

n

∑n
i=1 δxi and Qm = 1

m

∑m
j=1 δyj

approximating P and Q respectively, this expression lends itself naturally to the
following (V-statistic) approximation:

MMD2(Pn,Qm) =
∑n

i,j=1 k(xi,xj)
n2 − 2

∑n
i=1

∑m
j=1 k(xi,yj)
nm +

∑m
i,j=1 k(yi,yj)

m2 . (2.2)

The use of a U-statistic may also be useful in some cases; see for example
[17]. One of the main advantages of the MMD is the fact that it can be easily
approximated, but also that the kernel choice allows for significant flexibility.
The most common example is the Gaussian (or squared-exponential) kernel
k(x, x′) = λ2 exp

(
−‖x− x′‖2

2/σ
2) where λ, σ > 0. QMC point sets were already

used with the MMD in [44, 45] in the context of neural network generators,
but those papers do not study the sample complexity of the approach from a
theoretical viewpoint.

Wasserstein distance Let c : X ×X → [0,∞) be a metric (called cost func-
tion), p ≥ 1 and Γ(P,Q) ⊂ P(X ×X ) be the set of distributions with marginals
P ∈ P(X ) and Q ∈ P(X ) in the first and second coordinate respectively. The
Wasserstein distance can be expressed as:

Wc,p(P,Q) :=
(

min
γ∈Γ(P,Q)

∫
X×X cp(x, y)γ(dx, dy)

) 1
p

.
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A common choice for c is the Euclidean distance, but other metrics can be used.
The Wasserstein distance is a probability metric on the set

Pc,p(X ) = {P ∈ P(X ) :
∫
X cp(x, y)P(dx) < ∞ ∀y ∈ X} ⊆ P(X ).

Although computing the Wasserstein distance for general P and Q is usually
not possible, it is straightforward to do so for empirical measures Pn and Qm

(see for example Chapter 3 in [77]):

Wc,p(Pn,Qm) =
(
min
P

∑n
i=1

∑m
j=1 c

p(xi, yj)Pij

) 1
p

,

where the minimisation is performed over all n×m matrices such that Pij �= 0
∀i, j,

∑n
i=1 Pij = 1

m and
∑m

j=1 Pij = 1
n . To approximate Wc,p(P,Qm), a natural

approach is to use Wc,p(Pn,Qm), but this is known to have a slow convergence
rate as n increases whenever d > 1 [37]. In the special case where p = 1, the
Wasserstein distance is an IPM which corresponds to taking F to be the set of
functions with Lipschitz constant 1: {f : X → R s.t. ∀x, y ∈ X , |f(x) − f(y)| ≤
c(x, y)}. This is therefore another setting of infinite-dimensional F where the
supremum does not need to be computed numerically.

Sinkhorn divergence A common relaxation of the Wasserstein distance is
the following:

W̄c,p,λ(P,Q) := min
γ∈Γ(P,Q)

∫
X×X cp(x, y)γ(dx, dy) + λH(γ‖P⊗Q),

H(γ‖P⊗Q) :=
∫
X×X log

(
γ(dx,dy)

P(dx)Q(dy)

)
γ(dx, dy)

where H(π‖P ⊗ Q) is called the relative entropy, and P ⊗ Q is the product
measure. Since this discrepancy is not normalised, it is common to work instead
with the Sinkhorn divergence [38]:

Sc,p,λ(P,Q) = W̄c,p,λ(P,Q) − 1
2
(
W̄c,p,λ(P,P) + W̄c,p,λ(Q,Q)

)
,

which guarantees the resulting value is greater or equal to zero. The Sinkhorn
divergence is also symmetric, but does not satisfy the triangle inequality and so
is not a metric. However, it does interpolate between the two IPMs we have
seen so far: as λ → 0, Sc,p,λ(P,Q) → Wc,p(P,Q), whereas when λ → ∞,
Sc,p,λ(P,Q) → MMD(P,Q) with kernel k = −c [34]. Once again, it is straight-
forward to compute Sc,p,λ(Pn,Qm) in the case of empirical measures, and this
can be used to estimate the exact Sinkhorn divergence: Sc,p,λ(P,Qm). From a
computational viewpoint, one particular advantage of the Sinkhorn divergence
over the Wasserstein distance is that it has better sample complexity when using
Monte Carlo points in multiple dimensions [38]. We will return to this point in
the next section on QMC sample complexity.
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Sliced discrepancies A final example of discrepancies commonly used for in-
ference are the so-called sliced discrepancies [51]. The main motivation for these
is to construct discrepancies which will be useful for high-dimensional problems.
This is done by projecting probability distributions on X to probability distribu-
tions on some lower dimensional space Y (usually one dimension) using a map
Sξ : P(X ) → P(Y), then comparing these projections using any discrepancy
D : P(Y) × P(Y) → [0,∞), such as those discussed above. The corresponding
sliced discrepancy consists of an average over possible projections:

SD(P,Q) =
∫
Ξ D(SξP,SξQ)dξ,

where SξP,SξQ are the projections of P,Q along the direction ξ ∈ Ξ, and Ξ
is the space of directions considered. In order to compute the discrepancy, an
MC estimator is used: ŜD(P,Q) = 1

L

∑L
l=1 D(SξlP,SξlQ) where {ξl}Ll=1 are

MC realisations from a uniform distribution over Ξ. The most common sliced-
discrepancy is the sliced-Wasserstein distance SWc,p [29, 89, 63, 66], in which
case D is Wc,p and the projections are constructed using the Radon transform.

3. Sample complexity with Quasi-Monte Carlo

Now that we have introduced the main discrepancies which will be considered in
this paper, we are ready to introduce our novel sample complexity results based
on QMC and RQMC. We first introduce the methodology in Section 3.1, then
provide theoretical results demonstrating improved sample complexity for MMD
in Section 3.3 and for the Wasserstein distance and its Sinkhorn approximation
in Section 3.4 and 3.5 respectively. These results all build upon the work of [7],
which considered the use of QMC for integrating compositions of functions.

Notation For two sequences {fn}n∈N and {gn}n∈N, fn = O(gn) is equiva-
lent to lim supn→∞ |fn/gn| < ∞. For some f : X → R and multi-index α =
(α1, . . . , αd) ∈ Nd, we will denote by ∂αf the partial derivative ∂|α|f/∂α1x1 . . .
∂αdxd. The space Cm(X ) of m-continuously differentiable functions (m ∈ N)
corresponds to functions such that ∂αf is continuous ∀α ∈ Nd such that |α| =
α1 + · · ·+αd ≤ m. Similarly, Cm,m(X ×X ) will denote functions f : X ×X → R

such that ∂α,αf exists and is continuous ∀α ∈ Nd with |α| ≤ m. Relatedly, if
we have a set β ⊆ 1 : d, we write ∂β to denote the (first-order) mixed partial
derivatives of f with respect to the coordinates in the set β. Finally, we will
write Lp(X ) to denote the p-integrable functions; i.e. f : X → R satisfying
‖f‖Lp(X ) := (

∫
X |f(x)|pdx)

1
p < ∞ (where we will use the common abuse of

terminology to avoid technicalities with equivalence classes).

3.1. Enhancing sample diversity through quasi-Monte Carlo

Recall that to obtain simulations {xi}ni=1 from Pθ, the generative approach
consist of obtaining realisations {ui}ni=1 ∼ Unif([0, 1]s), then mapping these
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through the generator: xi = Gθ(ui). Under sufficient regularity conditions on
Gθ, we would expect two realisations x1, x2 to be far from one another whenever
u1, u2 are also far from one another. The main idea in this paper is that we may
improve sample diversity by selecting {ui}ni=1 according to a QMC point set.
This notion of diversity is usually measured through the star-discrepancy of a
point set:

D∗({ui}ni=1) := supv∈[0,1]s
∣∣ 1
n

∑n
i=1 1[0,v)(ui) −

∏s
i=1 vi

∣∣ .
We will call a point set {ui}ni=1 such that D∗({ui}ni=1) = O(n−1(logn)αs) for
some αs > 0 as n → ∞ a QMC point set, and αs will usually depend on the
dimensionality s of the domain U . This is also sometimes referred to as a low-
discrepancy point set, but we will avoid this terminology to avoid any confusion
between discrepancies on probability distributions and the star discrepancy.
Popular constructions [31] include Hammersley point sets, which are based on
infinite van der Corput sequence, and can achieve αs = s − 1. Alternatively,
lattice point sets achieve α2 = 2 and αs = s for s ≥ 3, (t,m, s)-nets in base b
achieve αs = s− 1, and the Halton sequence achieves αs = s.

Bounds on D∗({ui}ni=1) are particularly useful since they provide bounds on
the integration error for an estimate 1

n

∑n
i=1 f(ui) of some real-valued function

f : [0, 1]s → R whenever it has bounded Hardy-Krause variation, which will be
denoted by VHK(f). Since the notation for the Hardy-Krause variation is rather
involved, we refer the reader to Appendix A for details.

Related constructions are the randomized QMC (RQMC) point sets, which
are sets of points {ui}ni=1 with distribution Unif([0, 1]s) such that ∃N,B > 0
such that for ∀n ≥ N , D∗({ui}ni=1) ≤ B(logn)αsn−1 with probability 1 for some
αs > 0. The most common approach to construct these consists of “scrambling”
a QMC point set, which consists of applying random transformations which
preserve the low discrepancy structure. This allows those point sets to be used
to obtain unbiased estimates of integrals of some functions against [0, 1]s. Details
on the construction of the scrambled points can be found in Chapter 17 in [71].

In the remainder, we will provide technical conditions on X and Gθ so that
for any D amongst the discrepancies previously mentioned and assuming we use
n QMC points, we have

|D(Pθ,Q
m) −D(Pn

θ ,Q
m)| = O(n−1(logn)αs).

This is an improvement on the MC rate for which the rate would be O(n− 1
2 ).

Since the cost of generating MC or QMC realisations is linear in the number
of samples, a natural approach to balance the error in n and m of estimating
D(Pθ,Q) is to take n growing with

√
m. Note however that this optimal scaling

is asymptotic and relies on a number of unknown constants dependent on the
QMC point set used and the cost of evaluating the generator. This scaling will
be studied further in the experiments.
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3.2. Technical assumptions

Before stating our sample complexity results, we introduce and discuss the as-
sumptions that will be required. Our first assumption concerns the domain of
the generator and the point sets:

Assumption 1. Given a model Pθ with generative process (Unif([0, 1]s), Gθ), we
assume we have access to xi = Gθ(ui) for i = 1, . . . , n where {ui}ni=1 ⊂ [0, 1]s
form a QMC or RQMC point set for some αs > 0. Furthermore, we write
Pn
θ = 1

n

∑n
i=1 δxi .

This assumption is very mild since it only assumes we can write the generative
model in terms of a generator mapping from [0, 1]s (which is always possible due
to Sklar’s theorem) and that we have access to a QMC or RQMC point set such
as those mentioned above. Such point sets are widely available, for example in
Python through the packages SciPy [88] and QMCPy [24].

For the MMD and Sinkhorn divergence results, we will also require a second
assumption on the generator. For this, we will use the notation av : b−v to
represent a point u ∈ [a, b]s with uj = aj for j ∈ v, and uj = bj for j /∈ v; see
Appendix A for more details.

Assumption 2. The generator is a map Gθ : [0, 1]s → X where:

1. ∂(1,...,1)(Gθ)j ∈ C([0, 1]s) for all j = 1, . . . , d.
2. ∂v(Gθ)j(· : 1−v) ∈ Lpj ([0, 1]|v|) for all j = 1, . . . , d and v ∈ {0, 1}s \

(0, . . . , 0), where pj ∈ [1,∞] and
∑d

j=1 p
−1
j ≤ 1.

Assumption 2.1 is fairly straightforward and simply requires that the mixed
partial derivative of the generator with respect to each coordinate is a continu-
ous function, which is usually a condition which should be easy to verify (this
needs to be done on a case-by-case basis). For example, in the case of neural
network-based generators, the chain rule guarantees that this assumption will be
satisfied whenever the activation functions are smooth enough. This is for exam-
ple the case for the logistic, hyperbolic tangent, Gaussian, softplus and softmax
activation functions which are all infinitely differentiable. However, neural gen-
erators with less regular activation functions such as the rectified linear unit
will not satisfy the condition.

Assumption 2.2 requires certain integrability conditions for derivatives of
the generator. When X is compact, it follows directly from the first condi-
tion. However, this is not true when X is not bounded and the requirement that∑d

j=1 p
−d
j ≤ 1 is slightly harder to satisfy in that case, especially for high dimen-

sional problems. One straightforward, but rather restrictive, way of guaranteeing
the condition is to enforce that derivatives of the form ∂v(Gθ)j(· : 1−v) are all
bounded. Alternatively, we could require that ∂v(Gθ)j ∈ Lpj ([0, 1]|v|) for all
j = 1, . . . , d and v ∈ {0, 1}s \ (0, . . . , 0), where pj ∈ [1,∞] and

∑d
j=1 p

−1
j ≤ 1/2;

see Corollary 7 of [7] for a more detailed discussion. This holds for example
when the generator has bounded derivatives.
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3.3. Sample complexity for maximum mean discrepancy

We are now ready to present our sample complexity results. Our first set of
results will provide sufficient conditions on k and Gθ to guarantee improved
sample complexity by the use of (R)QMC point sets. We say that a kernel k
is bounded if ∃C > 0 such that supx,x′∈X |k(x, x′)| ≤ C. Before presenting
this result, we briefly recall a result using IID samples which will be used as a
reference.

Proposition 1 (Lemma 1 in [17]). Assume that k is bounded and let P ∈ Pk(X ).
Let Pn = 1

n

∑n
i=1 δxi where {xi}ni=1 are IID realisations from P. Then, with

probability 1 − δ:

MMD(P,Pn) = O(n− 1
2 )
√

log(δ−1).

We also only provide a simplified version of the statement which does not
make the constants explicit for simplicity. It is also possible to obtain similar
results for convergence of the MMD in the case of dependent realisations; see
[23]. Although the rate in n is independent of dimensions, we will require a large
number of samples in order to converge to zero due to the small exponent. The
original statement is valid for finite n, but we present it in this asymptotic form
for ease of comparison with the QMC/RQMC result below.

We now present a new sample complexity for MMD using QMC sequences.
To do so, we need to show that the space of functions of the form f ◦ Gθ for
f ∈ Hk is continuously embedded into a space for which QMC can provide fast
convergence rates. This is a challenging task, as was highlighted by [53], and we
provide an auxiliary theorem for this (Theorem 4) in Appendix B.1. For this
theorem to hold, we show that sufficient conditions can be obtained by ensuring
that the generator Gθ and domain X are regular enough.

Theorem 1. Let Pθ ∈ Pk(X ) and suppose Assumption 1 and 2 hold. Further
assume that k ∈ Cs,s(X ) and ∀t ∈ Nd

0, |t| ≤ s, supx∈X ∂t,tk(x, x) < Ck where Ck

is some universal constant depending only on k. Then,

MMD(Pθ,P
n
θ ) = O(n−1(logn)αs).

A direct implication is the following corollary, which follows from the triangle
inequality.

Corollary 1. Suppose the conditions in Theorem 1 hold. Then,

|MMD(Pθ,Q
m) − MMD(Pn

θ ,Q
m)| = O(n−1(logn)αs).

The proof is in Appendix B.2. When using QMC, our result is only valid
asymptotically in n, whereas for MC the result is also valid for finite n, al-
though it only holds with probability 1− δ. When using a RQMC point set the
result above holds with probability 1 for finite but large enough n. As compared
to Proposition 1, this theorem requires additional regularity from the generator
(as per Assumption 2), but also smoothness for k. It does however provide a
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significantly faster convergence rate. The smoothness condition for the kernel is
always satisfied in the case of the Gaussian kernel since it is infinitely differen-
tiable; see Section 4.4. of [84]. Note that Theorem 1 has direct implications for
the work of [44, 45], which considered the use of QMC sampling in the context
of MMD generative adversarial networks.

3.4. Sample complexity for the Wasserstein distance

The main competitor to MMD for inference in generative models is the Wasser-
stein distance. An interesting question is therefore whether QMC can also lead
to improved sample complexity results in this setting. We first recall a result for
the case of MC realisations. Extensions of this result to dependent realisations
can also be found in [37].

Proposition 2 (Theorem 1 in [37], simplified). Let p > 0, c(x, y) = ‖x−y‖ for
some norm ‖ · ‖ on X = Rd and P ∈ Pc,q(X ) for q > p. Let Pn be the empirical
measure obtained from n IID realisations of P. Then,

E
[
W p

c,p(P,Pn)
]
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
O
(
n− 1

2 + n− (q−p)
q

)
if p > d

2 and q �= 2p.

O
(
n− 1

2 log(1 + n)+n− (q−p)
q

)
if p = d

2 and q �= 2p.

O
(
n− p

d + n− (q−p)
q

)
if p ∈

[
1, d

2
)

and q �= d
(d−p) .

The result above is in expectation, but leads directly to a result in probability
using Markov’s inequality. This result shows a significant disadvantage of using
the Wasserstein distance for inference in generative models from a computational
viewpoint: it suffers from the curse of dimensionality when p is small relative to
d (the scenario most common in practice). Indeed, in the third case considered
above the n required to estimate the distance accurately increases exponentially
quickly with d.

The case most commonly considered in practice for inference in generative
models is p = 1 (see for example [10, 11]), in which case the rate is O(n−1/2) if
d = 1, O(n−1/2 log(1 + n)) if d = 2, and O(n−1/d) for d ≥ 3. In the next result,
we derive a novel result to show the impact of the use of QMC point sets to
estimate the Wasserstein distance when q = 1, in which case the Wasserstein is
an IPM. The proof is in Appendix B.3.

Theorem 2. Let Pθ ∈ Pc,1(X ) where c(x, y) = ‖x − y‖ for some norm ‖ · ‖
on X ⊆ Rd. Suppose that Assumption 1 holds with s = d = 1, and assume that
VHK(Gθ) < ∞. Then,

Wc,1(Pθ,P
n
θ ) = O(n−1(logn)αs).

Since our goal is to approximate Wc,1(Pθ,Q
m) with Wc,1(Pn

θ ,Q
m), we also

consider:

Corollary 2. Suppose the conditions in Theorem 2 hold. Then,

|Wc,1(Pθ,Q
m) −Wc,1(Pn

θ ,Q
m)| = O(n−1(logn)αs).
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We note that the assumption that VHK(Gθ) < ∞ is weaker than that imposed
in Assumption 2, so that the discussion about sufficient conditions also holds
here. This result shows that the convergence rate can be improved by a O(n−1/2)
term (up to logarithms) when using a RQMC/QMC point set instead of MC
samples in d = 1 (once again, QMC results are only valid asymptotically). This
is significant since in d = 1, the computational cost for the Wasserstein distance
is O(n log n), which is significantly faster than the O(n2) cost for the MMD
distance. For d > 1, the optimal rate for approximating an arbitrary distribution
with a deterministic point set is Wc,1(P,Pn) = O(n−1/d); see Theorem 2 in [68].
We therefore cannot hope to obtain an improved sample complexity result in
this case.

Fortunately, this is not the end of the story. First, the d = 1 rate also transfers
to sliced-Wasserstein distances in d > 1 using Theorem 2 in [62]. As we will see
in the next section, the use of QMC and RQMC for the sliced-Wasserstein
distance leads to very favourable computational costs, and warrants further
study. Second, the next section will show that the Sinkhorn divergence can also
be approximated at a fast rate even for d > 1.

3.5. Sample complexity for the Sinkhorn divergence

As for the other discrepancies, we will first review an existing result about the
sample complexity of the Sinkhorn divergence with MC samples. Note that
the result, which was proved in [38], is in terms of distance between estimated
Sinkhorn divergence and the exact Sinkhorn divergence. Results of this form
can be obtained from our theorems for the MMD and Wasserstein distance
since they are both metrics and hence satisfy the triangle inequality, but here
we are working with a divergence instead of a metric and so directly present the
result in this form.

Proposition 3 (Corollary 1 in [38]). Let P,Q ∈ Pc,p(X ) on some bounded
X ⊂ Rd, and suppose c ∈ C∞,∞(X ×X ) is a Lipschitz continuous cost function.
Let Pn and Qn consist of n IID realisations from P and Q respectively. Then,
with probability 1 − δ:

|Sc,p,λ(P,Q) − Sc,p,λ(Pn,Qn)| = O(n− 1
2 )
√

log(δ−1).

The constant in this rate depends on λ and d, and more detailed can be
found in Theorem 3 of [38]. Most strikingly, the dependence on λ is exponential
as λ → ∞. See also [57] for a more refined result when using the squared
Euclidean metric as cost function. Given a fixed value of λ and d, the rate
in n is the MC rate. As we will see in the next results, this can be improved
upon using QMC/RQMC point sets. Note here we need to restrict the domain
to be compact, which is more restrictive than for our results for the MMD or
Wasserstein distance, but is similar to the requirement in Proposition 3.

Assumption 3. Assume that the domain X ⊂ Rd is a compact space.
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This restriction for the domain is necessary since our proof builds on [38],
which requires this assumption to hold. Although there are some results that
allow the support of the distribution to be unbounded, for example in [57] where
the compactness assumption was relaxed to distributions with sub-Gaussian
tails on unbounded domains, this proof technique requires us to enforce stronger
regularity conditions for the generator which would limit the applicability of the
proof.

Theorem 3. Let c ∈ C∞,∞(X ×X ) and suppose Pθ,Q ∈ Pc,p(X ). Furthermore,
suppose Assumptions 1, 2 and 3 hold. Then

|Sc,p,λ(Pθ,Q
m) − Sc,p,λ(Pn

θ ,Q
m)| = O(n−1(logn)αs).

The proof is available in Appendix B.4. Note that the rate is now the same
as that possible when using QMC/RQMC for the MMD, and it significantly
improves on what is possible when working with the Wasserstein distance.

4. Numerical experiments

In this section, we will return to the uniform and Gaussian models first studied in
Figure 1, then consider inference for intractable generative models including the
multivariate g-and-k distributions, a flexible class of bivariate Beta distributions,
and the deep neural network generator of a variational autoencoder. The aims
of this section are two-fold. First, we will verify that the theoretical results in
the previous section hold in practice. Second, we will look at QMC sampling
in settings where Assumption 2 and 3 are violated. The requirements on the
smoothness of Gθ and the assumption that X is compact are rather restrictive
but necessary to transfer existing theoretical results from the QMC theory to
the setting of generative models. Thankfully, we will see that there are many
settings where these assumptions are not satisfied but the approach nevertheless
provides significant speed-ups. As such, our paper provides further evidence
complementing the extensive discussion of this issue in Chapters 15, 16 and
17 of Art Owen’s book [71], and opens the way for further extensions of our
theoretical results in Section 3.

Our simulation study uses the SciPy [88], JAX [16], QMCPy [24], POT [35] and
TensorFlow [1] libraries. The code can be found at

https://github.com/johannnamr/Discrepancy-based-inference-using-
QMC.

Unless stated otherwise, all the RQMC results are based on Sobol sequences,
which are randomised using a linear matrix scramble with digital shift [56], and
generalised Halton sequences, which use the scrambling factors of [33]. The ap-
proximation of sliced-distances is based on randomly sampled slices as described
in Section 2. Additional results are provided in Appendix C.

https://github.com/johannnamr/Discrepancy-based-inference-using-QMC
https://github.com/johannnamr/Discrepancy-based-inference-using-QMC
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Fig 2. Sample complexity for a Uniform and Gaussian model in MMD, Wasserstein distance,
sliced-Wasserstein distance and Sinkhorn divergence.

4.1. Sample complexity for uniform and Gaussian models

We first revisit the examples in Figure 1 which considered uniform and Gaussian
distributions. These examples are of course very simple and do not require
inference tools for generative models, but their simplicity allows us to study the
sample complexity of QMC/RQMC in a wide range of scenarios. For the uniform
distribution Pθ = Unif([0, 1]d), we will use U = Unif([0, 1]s) with Gθ(u) = u. For
the Gaussian distribution Pθ = N (0, I), we use U = Unif([0, 1]s) together with
the inverse CDF of the univariate standard Gaussian Φ element-wise: Gθ(u) =
(Φ−1(u1), . . . ,Φ−1(ud)). The simulator Gθ does not depend on θ here since we
only study the sample complexity results for a fixed distribution.

For these examples, we have s = d, Pn = 1
n

∑n
i=1 δxi , Qm = 1

m

∑m
j=1 δyj

and n = m, where {xi}ni=1 and {yj}mj=1 are obtained through the generator
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Gθ. Our main results are presented in Figure 2, and include simulations with
MC (in blue), RQMC with Halton sequences (in green) and RQMC with Sobol
sequences (in orange). All the experiments have been repeated 25 times. The
lines provide the average, and the error bars also represent intervals for the
range of values observed. The smaller windows provide a zoomed-in plot for the
cases where the gains in performance quickly reduce with d.

The first row computes |MMD2(Pn,Qm)| when using a squared-exponential
kernel with lengthscale l = 1.5d1/2. This quantity should decrease as O(n−1/2)
(see Proposition 1) when using MC, and as O(n−1(logn)αs) (see Theorem 1)
when using RQMC. These rates clearly hold for both models when d = 1, and
we see that RQMC quickly provides orders of magnitude improvements as n
grows. For the uniform example, the Sobol sequence significantly outperforms
the Halton sequence, but this is not the case for the Gaussian example. This is in
line with theoretical results showing that the root-mean squared error for Sobol
sequences can decrease as O(n−3/2(logn)αs) [70], and could motivate further
theoretical work extending the results in this paper. Significant improvements
are also observed for larger values of d, although the gains (if any) are limited for
d > 100 in the Gaussian case. This is not surprising since the Gaussian model
does not satisfy the necessary conditions of Theorem 1 since X is unbounded
and the generator is not sufficiently regular (Gθ is unbounded, and as a result
has infinite Hardy-Krause variation; see [71] Section 15.11). The lengthscale
is adapted so as to increase with dimension; this is necessary as the distance
between points grows exponentially with d due to the curse of dimensionality.

Additional experiments with the Matérn kernel with smoothness parameter
ν = 3/2, 5/2 and 7/2 are also provided in Figure 12. We observe that the
performance is significantly improved when using QMC points sets regardless
of the choice of kernel, although this advantage decreases when d increases, and
is larger for smoother kernels. This is interesting to see since the Matérn kernel
does not satisfy the conditions of Theorem 1 when d is large. Finally, we notice
from Figure 14 that the results are not very sensitive to the choice of QMC
point set.

The second row of Figure 2 illustrates |Wc,p(Pn,Qm)| with c(x, y) = ‖x−y‖2
and p = 1. The QMC point sets lead to significant gains when d = 1, but not for
larger d (a small advantage is seen until d = 5, but this is very limited). Further
experiments for alternative choices of c and p can also be found in Figure 15,
where similar results are observed. All of these results are consistent with what
we would expect from Theorem 2, even though the regularity conditions of the
theorem are not satisfied in the Gaussian case. The third row of Figure 2 illus-
trates |SWc,p(Pn,Qm)| with L = 100 random slices when c = ‖x−y‖2 and p = 1.
Clearly, we are able to obtain a gain in accuracy when using RQMC, and this
is the case even for large d, which is a significant improvement on what is pos-
sible with the exact Wasserstein distance. Although the rate is O(n−1(logn)αs)
regardless of the value of d, the gains from using RQMC do become smaller in
higher dimensions because the constant in this rate does still depend on d.

Finally, the fourth row of Figure 2 looks at the value of |Sc,p,λ(Pn,Qm)| with
λ = 2d, p = 2 and c(x, y) = ‖x − y‖2. Once again, we observe that RQMC



Quasi-Monte Carlo for intractable models inference 1427

Fig 3. Realisation from the bivariate Beta model using MC and QMC point sets for θ =
(1, 1, 1, 1, 1) and θ = (1.5, 1.5, 1.5, 1.5, 1.5).

provides significant gains in performance in d = 1, but also for d > 1 in the
case of the uniform. For the Gaussian, although the performance is improved
to some extent for d > 1, these gains are really small. Interestingly, Figure 16
shows that the gains crucially depend on p and c, but also on the choice of λ. In
particular, although Figure 2 could lead us to believe that there are close to no
gains for the Gaussian case, this is clearly not the case when using an increased
regularisation level λ.

4.2. Inference for bivariate beta distributions

We now move on to studying discrepancy-based inference for intractable gen-
erative models with QMC and RQMC. Ever since the work of [69], there has
been an interest in designing flexible classes of multivariate distributions which
generalise the Beta distribution (as an indicator, [69] has over 180 citations to
date). One popular approach is that of [5], which has been used by [26] to model
household purchasing habits, and by [80] to model indicators of well-being. Al-
though flexible, this does lead to an intractable density which makes inference
challenging. We will focus on the d = 2 and w = 5 version of the model previ-
ously considered by [46, 65], and whose marginals are Beta(θ1 + θ3, θ4 + θ5) and
Beta(θ2 +θ4, θ3 +θ5) distributed respectively in the first and second coordinate.
In particular, denoting by �x� the integer part of some x ∈ R:

G1
θ(u) := ũ1+ũ3

ũ1+ũ3+ũ4+ũ5
, G2

θ(u) := ũ2+ũ4
ũ2+ũ3+ũ4+ũ5

, ũi = −
∑�θi	

k=1 ln(uik) + ui0,

where ui0 ∼ Gamma(θi−�θi� , 1), u = (u11, . . . , u1θ1 , u21, . . . , u5θ5)∼Unif([0, 1]s)
and s =

∑5
i=1 �θi�. Note that the dimension s of the base space now depends

on the value of θ.
In the special case where θi is an integer, ui0 = 0 is fixed (as opposed to

sampled from a Gamma). In this case, both X and Gθ satisfy the conditions in
Assumptions 3 and 2. When this is not the case, ui0 can be generated through
rejection sampling (see Appendix C.2). In that case, the generator does not
satisfy Assumption 2 anymore, and also has a much higher-dimensional domain;
i.e. s =

∑5
i=1 �θi�+15. Here, the first term comes from the simulation of Gamma



1428 Z. Niu et al.

Fig 4. Sample complexity results for the bivariate Beta distribution with integer and scalar
parameters. In both cases d=2, but the left-hand side plot uses s = 5 whereas the right-hand
side plot uses s = 20. These differences in dimensionality seem to impact the convergence rate
obtained through QMC point sets. Each solid line corresponds to RQMC, while the dashed
lines correspond to MC point sets.

random variables with integer parameters �θ1� , . . . , �θ5�, and the second term
is the dimensionality required to simulate five Gamma random variables with
scalar parameters in (0, 1) (that is, the simulation of a Gamma through rejection
sampling requires a three-dimensional point). Despite these challenges, we will
see below that certain gains in performance are still possible.

Figure 3 provides realisations from this model through MC and QMC sam-
pling (in blue and green respectively). As observed, the QMC point set provides
a slightly better coverage of the distribution, although the difference is not very
large visually. In those cases, s = 5 for the left-hand side plot, whereas s = 20
for the right-hand side plot. We note that this case significantly differs from the
examples in the previous section since we have s � d, which may partly ex-
plain why the difference is not as striking visually. However, looking at Figure 4
(which is the equivalent of Figure 2 for this model), we can see that QMC leads
to a significant improvement in terms of sample complexity, especially in the
case of integer parameter and to a lesser extent with scalar parameter values.
Once again, this difference between left-hand side and right-hand side plot is
most likely due the difference in value of s, and the fact that Assumption 2 is not
satisfied in the latter case. We also note that the advantage provided by QMC
is particularly significant for the MMD and the sliced Wasserstein distance.

For the last part of this experiment, we perform inference for the parame-
ter θ using an MDE approach with the MMD, the Wasserstein distance, the
sliced Wasserstein distance and the Sinkhorn divergence. The generator Gθ is
not differentiable in θ and we therefore propose to use a gradient-free global op-
timisation algorithm. We utilise the differential evolution algorithm due to [85],
which is implemented as a sub-routine of the optimize function in the python
library SciPy [88]. The dataset consists of m = 216 points, from which a mini-
batch of 210 points is sampled at random at every iteration. Depending on the
considered experiment, either n samples are generated using MC or n, n 3

4 , n
2
3 or
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Fig 5. Minimum distance estimation for the parameters of the bivariate Beta distribution
with the MMD, Wasserstein, sliced Wasserstein and Sinkhorn divergence. Each box-plot cor-
responds to the result of 10 repetitions of an identical experiment. The red bars provide the
sample median and the orange triangles the sample mean. The dashed horizontal line corre-
spond to the median value for the MC-based estimators with n points.

n
1
2 are simulated using RQMC at every iteration. The optimisation algorithm is

run for 3,000 iterations for every setting. For the MMD, a squared-exponential
kernel with lengthscale l = 1.5d1/2 is used. The Wasserstein distance is com-
puted with c(x, y) = ‖x − y‖2 and p = 1 as is the sliced Wasserstein distance
based on 100 projections. The Sinkhorn divergence is considered with λ = 5d,
c(x, y) = ‖x−y‖2 and p = 2. For the experiments, we focused on the case where
θ∗ = (θ∗1 , θ∗2 , θ∗3 , θ∗4 , θ∗5) = (1, 1, 1, 1, 1) as this was studied by [46, 65]. Therefore,
the bounds, within each parameter is optimised by the differential evolution
algorithm, are set to [0, 2]. We note that although the true parameter is inte-
ger valued, the optimisation algorithm will have to simulate data for parameter
values which are scalar-valued. As a result, the dimensionality of the domain
of the generator will generally be s ∈ [15, 25] (assuming that the optimisation
routine does not explore regions of the parameter space with large parameter
values relative to θ∗).

The results of our experiments are presented in Figure 5, where we studied the
computational cost and the accuracy of the estimates in l2 norm for each choice
of discrepancy. In each of these settings, we compared an MC method based
on n points with an RQMC method with n, n

3
4 , n

2
3 and n

1
2 points. As could be

reasonably expected, the RQMC-based estimator with n points is significantly
more expensive than an MC with n points, but it is also much more accurate in
l2 error. Similarly, the RQMC-based estimators with n

2
3 or n 1

2 are less accurate
in l2 error but usually cheaper than MC with n points. More interestingly, we
see that the RQMC estimator with n

3
4 points is both cheaper and more accurate
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Fig 6. Realisations from the multivariate g-and-k distribution for d = 2. The scatter plots
for MC and QMC are both based on n = 26 realisations, of which two fall outside the plotted
interval for each point set. These points were omitted to allow for a zoomed-in view of the
mode of the distribution.

than the MC estimator with n points for the Wasserstein distance, whilst for
the Sinkhorn divergence it is cheaper and provides roughly the same level of
accuracy. This clearly highlights that RQMC point sets can provide advantages
even in cases not necessarily covered by our theoretical results. Surprisingly, this
is not the case for the MMD, for which the performance of the RQMC-based
estimator with n

3
4 is slightly worse than for the MC-based estimator in this

experiment. We speculate that this may be due to a poor choice of kernel or
an issue with the optimisation method since we obtained encouraging sample
complexity results in Figure 4.

4.3. Inference for multivariate g-and-k models

Next, we will consider is the multivariate extension of the g-and-k distribution
considered in [46, 65]. This parametric class is very flexible as it contains four pa-
rameters controlling the mean, variance, skewness and kurtosis of the marginals,
as well as a fifth parameter controlling correlations across neighbouring coordi-
nates. Unfortunately, inference is made challenging by the fact that the density
is not available in closed-form. It is however straightforward to sample from
this distribution, and it has recently become one of the most common target
problems to assess the performance of inference schemes for generative models;
see e.g. [78, 10, 46, 11, 17, 65, 28] for a small subset of recent papers using this
model. The g-and-k has been applied to a range of applied problems, includ-
ing (amongst others) insurance modelling [76], ranking and selection [43], and
modelling of the prices of short-term rentals [79].

The generator for this model is:

Gθ(u) := θ1 + θ2

(
1 + 0.8 (1−exp(−θ3z))

(1+exp(−θ3z))

)
(1 + z2)θ4z,
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Fig 7. Sample complexity results for the multivariate g-and-k distribution in various dimen-
sions d. The Wasserstein distance is omitted due to the fact that the discrepancy is pro-
hibitively expensive when d > 1 and n is large. Each solid line corresponds to RQMC, whereas
the dashed lines correspond to MC point sets.

where U = Unif([0, 1]d), z = Σ 1
2 Φ−1(u)
 where Φ−1(u) is the inverse CDF of the

univariate standard Gaussian distribution applied element-wise and Σ ∈ Rd×d is
a symmetric tri-diagonal Toepliz matrix with diagonal entries all equal to 1 and
off-diagonal entries equal to θ5. Its square-root can be obtained in closed form
and is provided in Appendix C.3. Note that s = d and we can straightforwardly
replace MC realisations with a QMC or RQMC point set. Another important
remark is that this generator does not satisfy the conditions of Assumption 2
since we are using the inverse CDF of a standard Gaussian. As parameter of
interest, we consider θ = (θ1, θ2, θ3, exp(θ4), θ5), where the rescaling of is used
to avoid numerical instabilities during optimisation.

Figure 6 presents a scatter plot of two point sets of size n = 26 obtained
through MC and RQMC in the case where θ = (3, 1, 1,− log(2), 0.1). We can
observe that the RQMC-based point set provides a better coverage of areas of
high probability than the MC-based point set. These visual results also bare
out in the estimates of the discrepancies in Figure 7, where we plot the sample
complexity as a function of n for different values of d for the MMD (with squared-
exponential kernel and lengthscale l = 1.5d1/2), the sliced Wasserstein distance
(with c(x, y) = ‖x−y‖2, p = 1 and 100 projections) and the Sinkhorn divergence
(with λ = 5d, c(x, y) = ‖x − y‖2 and p = 2). Here, the Wasserstein distance is
omitted due to the prohibitive computational cost when d is large.

In each case, the RQMC algorithms significantly outperform their MC coun-
terpart, although this improved performance is limited for higher values of d.
For example, in the case of MMD, the RQMC rates were of the form n−α with
α equal to 0.73, 0.65, 0.58 and 0.54 in dimensions 5, 10, 25 and 50 respectively,
whereas α was approximately 0.5 for MC in all cases. This is in line with what
we would expect following the results of Section 4.1 where the use of the inverse
CDF of a Gaussian was studied in detail.

In the last part of our experiments for the multivariate g-and-k distribution,
we adapt a gradient-based optimisation method to perform inference for the
parameter θ using an MDE approach that builds on the MMD. The considered
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Fig 8. Minimum distance estimation with the MMD for the multivariate g-and-k distribution.
The figure plots the estimated MMD between the model with the estimated parameter and the
data as a function of the number of stochastic gradient descent steps.

Fig 9. Minimum distance estimation with the MMD for the multivariate g-and-k distribution.
The figure plots the l1 error between the estimated parameter and the true value as a function
of the number of stochastic gradient descent steps.

stochastic gradient descent (SGD) algorithm is similar to the one of [17], but
uses an approximation of the squared MMD using empirical measures as in (2.2)
instead of a U-statistic approximation. From m = 216 data points, a minibatch
of 211 points is sampled for every descent step. Using either the MC or QMC
approach, n = 29 data points are simulated for each descent step. The step
size of the SGD algorithm is fixed at 0.2 (for both MC and QMC) and the
optimisation is run for 50, 000 descent steps. The squared MMD and its gradient
are computed based on the squared-exponential kernel with lengthscale l =
1.5d1/2. To obtain the gradient of the multivariate g-and-k distribution, we make
use of automatic differentiation provided by the python library JAX [16]. The
experiments aim at retrieving the true parameter θ∗ = (θ∗1 , θ∗2 , θ∗3 , exp(θ∗4), θ∗5) =
(3, 1, 1,− log(2), 0.1) and start the SGD algorithm at θ0 = (0.3, 0.3, 0.3, 0.3, 0.3).

Figure 8 illustrates the results for |MMD2(Pn
θ̂
,Qm)| as a function of the num-
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ber of descent steps of the stochastic gradient descent method, where Qm here
corresponds to the entire original data (i.e. m = 216). The experiment is re-
peated for a range of values of d between 5 and 25. As we can observe, the
estimated MMD is much more accurate when sampling is done with RQMC. In
Figure 9, we then look at the case of d = 5 in more details. In particular, the
figure shows the l1 distance between the true and estimated parameters of the g-
and-k as a function of the number of descent steps. It is overall unclear which of
RQMC and MC outperforms the other, and this depends on which parameters
are of most interest. RQMC seems to outperform MC for θ3, performs equally
well as MC for θ4 and θ5 (the curves overlap), and tends to do worse for θ2. For
all parameters, the jumps in l1 error between descent steps is much larger for
MC than RQMC, highlighting that RQMC estimates have a much smaller vari-
ance. The contrast between Figure 8 and Figure 9 highlights that minimisation
of a discrepancy does not necessarily mean that the estimates for all parameter
values will be accurate. In fact, Figure 21 in Appendix C.3 actually shows that
RQMC actually has a worse performance than MC as d grows when looking at
the results in terms of l2 errors instead of MMD (as in Figure 8). In this case,
we expect that such a counter-intuitive result is due to the value of m being too
small relative to that of n for RQMC, which could lead to over-fitting.

4.4. Inference for generative neural networks

Our final model is a generative neural network which was trained using the
Sinkhorn divergence by [38]. More precisely, this model is the decoder network
of a variational autoencoder (VAE) given by Gθ : U → X with U = [0, 1]2 and
X = [0, 1]784 (i.e. s = 2 and d = 784) where:

Gθ(u) = φ2
(
φ1
(
φ1
(
u
W 1 + b1

)
W 2 + b2

)
W 3 + b3

)
and θ is a vector containing all entries of the weight matrices W 1 ∈ R2×500,W 2 ∈
R500×500,W 3 ∈ R500×784 and biases b1 ∈ R500, b2 ∈ R500, b3 ∈ R784 so that w =
644784. Additionally, φ1(x) = log( exp(x) + 1) (a softplus activation function)
and φ2(x) = (1 + exp(−x))−1 (a logistic activation function), and the output of
the generator is a 784-dimensional vector which can be rescaled to form a 28×28
pixel image. Since Gθ is the composition of smooth functions, it is itself smooth.
Furthermore, since X is bounded, the derivatives of Gθ (which are continuous)
must also be bounded, and Gθ therefore satisfies Assumption 2, and hence our
theorems hold.

In the right-hand side plot of Figure 10, the sample complexity is plotted as
a function of n for the MMD (with squared-exponential kernel and lengthscale
l = 0.01), the sliced Wasserstein distance (with c(x, y) = ‖x − y‖2, p = 1 and
100 projections), and the Sinkhorn divergence (with c(x, y) = ‖x − y‖2, p = 2
and λ = 1). Here, the Wasserstein distance is omitted due to the prohibitive
computational cost in high dimensions. We observe that QMC leads to signifi-
cant improvements in sample complexity, especially for the MMD and Sinkhorn
divergence.
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Fig 10. Sample complexity results for the generative neural network. Each solid line corre-
sponds to RQMC, whereas the dashed lines correspond to MC.

Fig 11. Left: Minimum distance estimation with the Sinkhorn divergence for the VAE. The
figure plots the Sinkhorn divergence between the model with the estimated parameters and the
data as a function of the number of training epochs. Right: Comparison of the computational
cost for simulating from the generative neural network using MC and RQMC. Each line
represents the average of 500 repetitions and the error bars give the minimum and maximum
values observed.

Comparing the sample complexity for the Sinkhorn divergence with different
choices of cost c and order p in the right-hand side plot of Figure 10, we find
that the choice of squared Euclidean cost, i.e. c(x, y) = ‖x − y‖2 and p = 2,
significantly outperforms the other considered choices. It is therefore used in the
following experiments.

In the final experiment, the generative neural network is trained as the de-
coder network of a VAE on the MNIST dataset for 500 epochs with mini-batches
of size 300 using the Adam optimizer [50]. This MDE approach is based on the
Sinkhorn divergence with parameters λ = 1, c(x, y) = ‖x− y‖2 and p = 2 and a
dataset of size m = n = 55, 000. This setup corresponds to the one used by [39].
The implementation of this experiment uses the python library TensorFlow [1]
and SciPy[88] to generate Sobol points. Using RQMC sampling, we observe in
the left-hand side plot of Figure 11 that the training loss decreases significantly
faster in the number of training epochs than when using MC sampling.

The right-hand side plot of Figure 11 compares the computational cost of
simulating from the generative neural network, which implies sampling with
d = 2. We observe that RQMC sampling is much cheaper than MC for all
considered n.
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5. Conclusion

This paper focused on the use of QMC and RQMC point sets for discrepancy-
based inference in intractable generative models. We showed (in Theorems 1, 2
and 3) that the sample complexity becomes O(n−1(logn)αs) instead of O(n−1/2)
for the MMD and Sinkhorn divergence in arbitrary dimension d. These faster
rates can provide significant improvements on the current state-of-the-art with
no significant increases in computational cost (since QMC point sets can be pre-
computed). Unfortunately, the rate for the Wasserstein-1 distance can only be
improved when d = 1, and is otherwise gated at O(n−1/d) due to a well-known
curse of dimensionality. However, we showed that the recently introduced sliced-
Wasserstein distance can obtain the optimal O(n−1(logn)αs) rate regardless of
d.

One significant drawback of our results is that they not only require the
generator to satisfy certain regularity conditions (see Assumption 2), but also
that X is compact (see Assumption 3). These are common assumptions for the
QMC literature (see the discussion in [71]), but these nonetheless exclude many
cases of practical interest. Despite these limitations, we showed in Section 4
that QMC/RQMC can still provide significant gains when the assumptions do
not hold; for example when using the inverse transform approach to sampling
from Gaussian distributions (which has an unbounded generator) and sampling
Gamma random variables through rejection sampling. This is in line with work
in the QMC literature (see for example [70]) and future work could explore these
cases from a theoretical viewpoint in more detail.

Another potential line of future research would be to explore the use of other
point sets, including weighted point sets, for inference in generative models.
This was recently studied in the context of the Sinkhorn divergence by [12], who
use quantization to improve sample qualities. However, alternative approaches
could also be used. For example, the component-by-component construction of
randomly shifted lattice rules could allow us to deal with unbounded integrands
in weighted spaces with product and order dependent weights [67]. Support
points [55] have also been shown in simulation studies to improve over the
QMC rate of convergence, but this comes at the cost of a higher computational
burden in high-dimensional problems cases. Bayesian quadrature [18] is also
known to provide optimally weighted point set for the MMD, and could lead
to faster sample complexity results; this was demonstrated for the MMD in
[14]. We expect that such approaches could provide significant improvements
in performance, particularly in cases of computationally expensive generators.
Higher-order digital nets could also be used to provide dimension-independent
convergence rates, albeit with further assumptions on the generator. In this
respect, one could think of adapting the architecture of the generator as well as
the choice of discrepancy so as to ensure that such fast rates can be obtained.

Appendix

First, in Appendix A, we recall relevant background material on QMC. Then,
in Appendix B, we provide all the proofs for the results in the main text. In
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Appendix C, we provide additional numerical experiments to complement the
results in the main text.

Appendix A: Additional background

For completeness, we first recall several definitions and results which are rel-
evant for QMC. Our presentation closely follows [72], and we refer the reader
to this paper for further details. For some vector u ∈ Rs, we will denote its
j’th component as uj , so that u = (u1, . . . , us). We first introduce the s-fold
alternating sum of f over [a, b] ⊂ R:

Δ(f ; a, b) =
∑

v⊆{1,...,s}
(−1)|v|f(av : b−v)

where a, b are two s dimensional vectors. We write |v| for the cardinality of the
multi-index v, and −v for the sequence {1, . . . , s}\v which contains all elements
of {1, . . . , s} not in v. Furthermore, av denotes a |v|-tuple of real values repre-
senting the components aj for j ∈ v. The symbol av : b−v represents the point
u ∈ [a, b]s with uj = aj for j ∈ v, and uj = bj for j /∈ v.

Let Y = {u ∈ [a, b]s | 0 < u1 < u2 < . . . < us = 1} be a ladder on [a, b]. For
j = 1, 2, . . . , s, denote by Yj a ladder on [aj , bj ]. A (multi-dimensional) ladder
on [a, b] has the form Y =

∏s
j=1 Yj . For y ∈ Y, the successor point y+ is defined

by taking (y+)j to be the successor of yj in Yj . The variation of f over Y is
then given by:

VY(f) =
∑

y∈Y |Δ(f ; y, y+)| .

Let Yj denote the set of all ladders on [aj , bj ] and put Y =
∏s

j=1 Y
j . Then, the

variation of f in the sense of Hardy and Krause is given by:

VHK(f) =
∑

v�{1,...,s} V[a−v,b−v ]f(u−v : bv).

We can now finally present the Koksma-Hwlaka inequality, which decouples
the quadrature error into a term depending on the function, the Hardy-Krause
variation, and a term depending on the point set, the star discrepancy.

Lemma 1 (Theorem 15.5 in [71]). Let U = [0, 1]s, f : U → R and {ui}ni=1 ⊂ U .
Then, if VHK(f) < ∞, we have:∣∣∣∫[0,1]s f(u)du− 1

n

∑n
i=1f(ui)

∣∣∣ ≤ VHK(f)D∗({ui}ni=1).

Combining this result with the definition of QMC or RQMC point set al-
lows us to provide results on the convergence of QMC/RQMC estimators for
functions with bounded Hardy-Krause variation.
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Appendix B: Proof of theoretical results

In this appendix, we provide proofs of all the theoretical results in the main
text. Firstly, in Section B.1, we provide some useful preliminary results. Then,
Section B.2 contains the proof of our results on MMD, Section B.3 the proof of
our results on the Wasserstein distance, and Section B.4 the proof of our results
on the Sinkhorn divergence.

B.1. Preliminary results

Before stating our main result for this section, Theorem 4, we recall a prelimi-
nary results which will be used in its proof.

Lemma 2 (Generalised Hölder’s Inequality; Corollary 2.6 of [2]). Suppose that
p, p1, . . . , pr ∈ (0,∞] and

∑r
i=1 p

−1
i = p−1. Then, if ‖fi‖Lpi (X ) < ∞ for all

i ∈ {1, . . . , r}, we have:

‖
∏r

i=1 fi‖Lp(X ) ≤
∏r

i=1 ‖fi‖Lpi (X ).

We now provide an intermediate result which upper bounds the norm of the
composition of two functions. For this, we will need to introduce an ordering
on multi-indices. Let a, b be two multi-indices, then a ≺ b means that |a| < |b|
or, |a| = |b| and ai < bi for the smallest i such that ai �= bi. The proof closely
follows [7], but allows for additional smoothness of g ◦ h.

Theorem 4. Let X ⊂ Rd be an open set and let Hk be an RKHS with kernel k :
Rd×Rd → R satisfying k ∈ Cs,s(Rd×Rd) with supx∈X ∂t,tk(x, x) < Ck,∀t ∈ Nd

0
such that |t| ≤ s where Ck is some universal constant only depending on kernel.
Suppose g : X → R satisfies g ∈ Hk and h : [0, 1]s → X . Then, assuming h is
sufficiently regular for all norms to exist:

VHK(g ◦ h) ≤ C‖g‖Hk(X )
∑

α �=∅,α⊆1:s
∑

1≤|t|≤|α|

×
∑|α|

l=1
∑

(	r,kr)∈S(l,α,t)
∏l

r=1
∥∥∂	rhkr (· : 1−α)

∥∥
Lpr ([0,1]|α|)

for any
∑s

r=1 p
−1
r ≤ 1 and where

S(l, α, t) =
{

(�r, kr), r = 1, . . . , l
∣∣∣ �r ∈ 1 : s, kr ∈ 1 : d,∪l

r=1�r = α,

�r ∩ �r′ = ∅ for r �= r′, and |{j ∈ 1 : l | kj = i}| = ti

}
.

Proof. Starting with Equation 3 in [7] and recalling that h : [0, 1]s → X and
g : X → R:

VHK(g ◦ h) ≤
∑

α �=∅,α⊆1:s ‖∂α(g ◦ h)(· : 1−α)‖L1([0,1]|α|) (B.1)

where we recall that VHK(g◦h) denotes the variation of g◦h in the sense of Hardy
and Krause. In order to express the norm of g ◦ h, we first need an expression
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for its partial derivatives. We will use Theorem 1 in [25] which is a Faa di Bruno
formula for mixed partial derivative. In particular, for α ⊆ 1 : s:

∂α(g ◦ h)(u : 1−α) =
∑

1≤|t|≤|α| ∂
tg(h(u : 1−α))

×
∑|α|

l=1
∑

(	r,kr)∈S(l,α,t)
∏l

r=1 ∂	rhkr (u : 1−α)

To clarify, here the first sum is over all multi-indices t ∈ Nd
0, and ∂α(g◦h) denotes

mixed partial derivatives where we differentiate at most once per coordinate.
Taking the Lp norm of these derivatives, we get that for α ⊆ 1 : s:

‖∂α(g ◦ h)(· : 1−α)‖Lp([0,1]|α|)

=

∥∥∥∥∥∥
∑

1≤|t|≤|α|
∂tg(h(· : 1−α))

|α|∑
l=1

∑
(	r,kr)∈S(l,α,t)

l∏
r=1

∂	rhkr (· : 1−α)

∥∥∥∥∥∥
Lp([0,1]|α|)

≤
∑

1≤|t|≤|α|

∥∥∥∥∥∥∂tg(h(· : 1−α))
|α|∑
l=1

∑
(	r,kr)∈S(l,α,t)

l∏
r=1

∂	rhkr (· : 1−α)

∥∥∥∥∥∥
Lp([0,1]|α|)

≤
∑

1≤|t|≤|α|

∥∥∂tg(h(· : 1−α))
∥∥
L∞([0,1]|α|)

×

∥∥∥∥∥∥
|α|∑
l=1

∑
(	r,kr)∈S(l,α,t)

l∏
r=1

∂	rhkr (· : 1−α)

∥∥∥∥∥∥
Lp([0,1]|α|)

≤
∑

1≤|t|≤|α|

∥∥∂tg(h(· : 1−α))
∥∥
L∞([0,1]|α|)

×
|α|∑
l=1

∑
(	r,kr)∈S(l,α,t)

∥∥∥∥∥
l∏

r=1
∂	rhkr (· : 1−α)

∥∥∥∥∥
Lp([0,1]|α|)

(B.2)

Here, the first inequality follows by the triangle inequality. The second inequality
follows from Hölder’s inequality (Lemma 2 with p1 = ∞ and p2 = p). Finally,
the third inequality once again follows from the triangle inequality. The rest of
the proof will consist of bounding each of the remaining norms separately.

For the first norm, we will use the fact that g ∈ Hk and we can therefore
bound the norm of its derivatives. Since k ∈ Cm×m(Rd × Rd), we have k ∈
Cm×m(X × X ). Following Corollary 4.36 of [84], we have that g ∈ Hk implies
g ∈ Cm(X ), and ∀t ∈ Nd

0 with |t| ≤ m and ∀x ∈ X ,

∂tg(x) ≤ ‖g‖Hk(X )(∂t,tk(x, x)) 1
2

Given the assumption that supx∈X ∂t,tk(x, x) ≤ Ck, we obtain the following
inequality combining above results with m = s

‖∂tg(h(· : 1−α))‖L∞([0,1]|α|) ≤ ‖∂tg‖L∞(X ) = sup
x∈X

∂tg(x) ≤ C
1/2
k ‖g‖Hk(X ).

(B.3)
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For the second norm, we can once again make use of Hölder’s inequality
(Lemma 2) which guarantees that if ∂	rhkr (· : 1−α) ∈ Lpr([0, 1]|α|) for α ⊆ 1 : s
and

∑l
r=1 p

−1
r ≤ p−1, then∥∥∥∏l

r=1 ∂	rhkr (· : 1−α)
∥∥∥
Lp([0,1]|α|)

≤
∏l

r=1 ‖∂	rhkr (· : 1−α)‖Lpr ([0,1]|α|) . (B.4)

Plugging the inequalities in B.3 and B.4 into B.2, we get that for α ⊆ 1 : s:

‖∂α(g ◦ h)(· : 1−α)‖Lp([0,1]|α|)

≤C‖g‖Hk(X )
∑

1≤|t|≤|α|

|α|∑
l=1

∑
(	r,kr)∈S(l,α,t)

l∏
r=1

‖∂	rhkr (· : 1−α)‖Lpr ([0,1]|α|) .

Plugging this bound with p = 1 in Equation B.1 concludes the proof.

B.2. Proof of Theorem 1 and Corollary 1

B.2.1. Proof of Theorem 1

Proof. First, we notice that under our assumptions, we may directly apply The-
orem 4 in order to get that ∃Cθ > 0 such that for any f ∈ Hk:

VHK(f ◦Gθ) ≤ Cθ‖f‖Hk
.

More precisely, Gθ takes the place of h in Theorem 4, and all norms depending
on Gθ are bounded thanks to Assumption 2. We can then directly combine this
result with the Koksma-Hlawka inequality (Lemma 1) to get a bound on the
MMD:

MMD(Pθ,P
n
θ ) = sup‖f‖Hk(X)≤1

∣∣∫
X f(x)Pθ(dx) −

∫
X f(x)Pn

θ (dx)
∣∣

= sup‖f‖Hk(X)≤1

∣∣∣∫[0,1]s f(Gθ(u))du− 1
n

∑n
i=1 f(Gθ(ui))

∣∣∣
≤ sup‖f‖Hk(X)≤1 VHK(f ◦Gθ)D∗({xi}ni=1)

≤ sup‖f‖Hk(X)≤1 Cθ‖f‖Hk(X )D
∗({xi}ni=1) = CθD

∗({xi}ni=1)

By definition, we know that whenever {ui}ni=1 is a QMC point set, we have
D∗({ui}ni=1) = O(n−1(logn)αs). This concludes the proof.

B.2.2. Proof of Corollary 1

Proof. The proof is trivial by using the fact that MMD is a distance and thus the
triangle inequality holds |MMD(Pθ,Q

m) − MMD(Pn
θ ,Q

m)| ≤ MMD(Pθ,P
n
θ ).

The rate therefore follows from Theorem 1.
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B.3. Proof of Theorem 2 and Corollary 2

B.3.1. Proof of Theorem 2

Proof. Using the Kantorovich-Rubinstein duality theorem, we may express the
Wasserstein distance as an integral probability metric associated to the class of
Lipschitz continuous functions when p = 1:

Wc,1(Pθ,P
n
θ ) := sup‖f‖L≤1

∣∣∫
X f(x)Pθ(dx) −

∫
X f(x)Pn

θ (dx)
∣∣

= sup‖f‖L≤1

∣∣∣∫[0,1]s f(Gθ(u))du− 1
n

∑n
i=1 f(Gθ(ui))

∣∣∣ (B.5)

where ‖g‖L := |g(x) − g(y)| /c(x, y). Then, using the Koksma-Hwlaka inequality
in Lemma 1, we get:∣∣∣∫[0,1]s f(Gθ(u))du− 1

n

∑n
i=1 f(Gθ(ui))

∣∣∣ ≤ VHK(f ◦Gθ)D∗({ui}ni=1). (B.6)

Let YN be the ladder {v ∈ [0, 1]N |0 < v1 < v2 < . . . < vN = 1}. Assuming f is
Lipschitz and Gθ has bounded variation in the sense of Hardy and Krause, we
have

VHK(f ◦Gθ) = supN≥1 supv∈YN

∑N
i=1 |f(Gθ(vi)) − f(Gθ(vi−1))|

= ‖f‖L supN≥1 supv∈YN

∑N
i=1 c(Gθ(vi), Gθ(vi−1))

≤ M‖f‖L supN≥1 supv∈YN

∑N
i=1 |Gθ(vi) −Gθ(vi−1)|

= M‖f‖LVHK(Gθ). (B.7)

where the first equality follows by definition of the Hardy-Krause variation, the
second equality from the definition of the Lipschitz norm, and the first inequality
from the fact that all norms are equivalent on R so that ∃M > 0 such that
c(x, y) ≤ M |x− y| for all x, y ∈ R. Combining the results in Equations B.5, B.6
and B.7, we get:

Wc,1(Pθ,P
n
θ ) = sup

‖f‖L≤1

∣∣∣∣∣
∫

[0,1]s
f(Gθ(u))du− 1

n

n∑
i=1

f(Gθ(ui))

∣∣∣∣∣
≤ sup

‖f‖L≤1
M‖f‖LVHK(Gθ)D∗({ui}ni=1) = MVHK(Gθ)D∗({ui}ni=1).

The proof of the theorem is concluded by noting the rate of convergence for the
star discrepancy in the case of QMC or RQMC point sets.

B.3.2. Proof of Corollary 2

Proof. The proof is simple by noticing when p ≥ 1, the Wasserstein distance
Wc,p with distance function c is indeed a distance satisfying the triangle inequal-
ity (Proposition 2.3 in [77]).
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B.4. Proof of Theorem 3

We will now prove Theorem 3. The bounds follow the main approach in [38],
but need to be significantly modified to accommodate QMC or RQMC point
sets instead of IID realisations.

Proof. Since the Sinkhorn divergence is a normalised version of the regularised
optimal transport problem, we can use this definition together with the triangle
inequality to get:

|Sc,p,λ(Pθ,Q) − Sc,p,λ(Pn
θ ,Q)|

=
∣∣W̄c,p,λ(Pθ,Q) − W̄c,p,λ(Pn

θ ,Q) − 1
2
(
W̄c,p,λ(Pθ,Pθ) − W̄c,p,λ(Pn

θ ,P
n
θ )
)∣∣

≤
∣∣W̄c,p,λ(Pθ,Q) − W̄c,p,λ(Pn

θ ,Q)
∣∣+ 1

2
∣∣W̄c,p,λ(Pθ,Pθ) − W̄c,p,λ(Pn

θ ,P
n
θ )
∣∣ .
(B.8)

We will now focus on bounding these terms. To do so, we first recall that the
regularized optimal transport problem can be expressed as follows:

W̄c,p,λ(P,Q) = maxg∈C(X ),h∈C(X ) EX∼P,Y∼Q

[
FX,Y
λ (g, h)

]
+ λ,

where

F x,y
λ (g, h) = g(x) + h(y) − λ exp

(
g(x)+h(y)−cp(x,y)

λ

)
.

We will denote by (g∗, h∗) the optimal potentials for W̄c,p,λ(Pθ,Q) (i.e. the
functions g and h attaining the maximum), by

(
ḡ, h̄

)
the optimal potentials for

W̄c,p,λ(Pn
θ ,Q), by (g̃, h̃) the optimal potentials for W̄c,p,λ(Pθ,Pθ), and by (ĝ, ĥ)

the optimal potentials for W̄c,p,λ(Pn
θ ,P

n
θ ).

Now we can upper bound the first term in (B.8) using the triangle inequality
as follows:∣∣W̄c,p,λ(Pθ,Q) − W̄c,p,λ(Pn

θ ,Q)
∣∣

=
∣∣∣EX∼Pθ,Y∼Q

[
FX,Y
λ (g∗, h∗)

]
− 1

n

∑n
i=1 EY∼Q

[
F xi,Y
λ

(
ḡ, h̄

)]∣∣∣
≤
∣∣∣EX∼Pθ,Y∼Q

[
FX,Y
λ (g∗, h∗)

]
− EX∼Pθ,Y∼Q

[
FX,Y
λ

(
ḡ, h̄

)]∣∣∣
+
∣∣∣EX∼Pθ,Y∼Q

[
FX,Y
λ

(
ḡ, h̄

)]
− 1

n

∑n
i=1 EY∼Q

[
F xi,Y
λ

(
ḡ, h̄

)]∣∣∣ (B.9)

We will now bound the remaining terms. By the optimality of (g∗, h∗), we can
leave out the absolute in the first term of (B.9) and further bound

EX∼Pθ,Y∼Q

[
FX,Y
λ (g∗, h∗)

]
− EX∼Pθ,Y∼Q

[
FX,Y
λ (ḡ, h̄)

]
= EX∼Pθ,Y∼Q

[
FX,Y
λ (g∗, h∗)

]
− 1

n

∑n
i=1 EY∼Q

[
F xi,Y
λ (g∗, h∗)

]
+ 1

n

∑n
i=1 EY∼Q

[
F xi,Y
λ (g∗, h∗)

]
− 1

n

∑n
i=1 EY∼Q

[
F xi,Y
λ (ḡ, h̄)

]
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+ 1
n

∑n
i=1 EY∼Q

[
F xi,Y
λ (ḡ, h̄)

]
− EX∼Pθ,Y∼Q

[
FX,Y
λ (ḡ, h̄)

]
≤

∣∣∣EX∼Pθ,Y∼Q

[
FX,Y
λ (g∗, h∗)

]
− 1

n

∑n
i=1 EY∼Q

[
F xi,Y
λ (g∗, h∗)

]∣∣∣
+
∣∣∣ 1n ∑n

i=1 EY∼Q

[
F xi,Y
λ (ḡ, h̄)

]
− EX∼Pθ,Y∼Q

[
FX,Y
λ (ḡ, h̄)

]∣∣∣ (B.10)

where the inequality follows from triangle inequality and the fact that

1
n

∑n
i=1 EY∼Q

[
F xi,Y
λ (g∗, h∗)

]
− 1

n

∑n
i=1 EY∼Q

[
F xi,Y
λ (ḡ, h̄)

]
≤ 0

because of the optimality of (ḡ, h̄). We will now turn to the second term in (B.8),
which can be treated without taking the absolute value for the same reason as
above and thus can be similarly upper-bounded as follows:

W̄c,p,λ(Pθ,Pθ) − W̄c,p,λ(Pn
θ ,P

n
θ )

= EX∼Pθ,Y∼Pθ

[
FX,Y
λ (g̃, h̃)

]
− 1

n2

∑n
i=1

∑n
j=1 F

xi,yj

λ (ĝ, ĥ)

= EX∼Pθ,Y∼Pθ

[
FX,Y
λ (g̃, h̃)

]
− 1

n2

∑n
i=1

∑n
j=1 F

xi,yj

λ (ĝ, ĥ)

− 1
n

∑n
i=1 EY∼Pθ

[
F xi,Y
λ (g̃, h̃)

]
+ 1

n

∑n
i=1 EY∼Pθ

[
F xi,Y
λ (g̃, h̃)

]
+ 1

n2

∑n
i=1

∑n
j=1 F

xi,yj

λ (g̃, h̃) − 1
n2

∑n
i=1

∑n
j=1 F

xi,yj

λ (g̃, h̃)

≤
∣∣∣EX∼Pθ,Y∼Pθ

[
FX,Y
λ (g̃, h̃)

]
− 1

n

∑n
i=1 EY∼Pθ

[
F xi,Y
λ (g̃, h̃)

] ∣∣∣
+
∣∣∣ 1n ∑n

i=1 EY∼Pθ

[
F xi,Y
λ (g̃, h̃)

]
− 1

n2

∑n
i=1

∑n
j=1 F

xi,yj

λ (g̃, h̃)
∣∣∣ (B.11)

where the last inequality holds since
1
n2

∑n
i=1

∑n
j=1 F

xi,yj

λ (g̃, h̃) − 1
n2

∑n
i=1

∑n
j=1 F

xi,yj

λ (ĝ, ĥ) ≤ 0

due to the definition of g̃, h̃, ĝ and ĥ.
Combining (B.9), (B.10) and (B.11), we end up with several terms which

take the form of absolute integration errors for integrating against Pθ for various
choices of potentials. From Theorem 2 in [38], we know that if c ∈ C∞,∞(X×X ),
then all of these potentials are in Wm,2(X ) for m = d/2 + 1. We will now
obtain an upper bound on the integration error for any arbitrary potentials
g, h ∈ Wm,2(X ). Firstly, using the definition of F x,y

λ (g, h) and the triangle
inequality: ∣∣∣EX∼Pθ,Y∼Q

[
FX,Y
λ (g, h)

]
− 1

n

∑n
i=1 EY∼Q

[
F xi,Y
λ (g, h)

]∣∣∣
≤
∣∣∫

X g(x)Pθ(dx) − 1
n

∑n
i=1 g(xi)

∣∣
+ λ

∣∣∣ ∫X ∫X exp
(

g(x)+h(y)−cp(x,y)
λ

)
Q(dy)Pθ(dx)

− 1
n

∑n
i=1

∫
X exp

(
g(xi)+h(y)−cp(xi,y)

λ

)
Q(dy)

∣∣∣
=
∣∣∣∫[0,1]s g(Gθ(u))du− 1

n

∑n
i=1 g(Gθ(ui))

∣∣∣ (B.12)
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where the equality holds due to the duality equation (see e.g. Equation 6 in
[38]):

exp
(
− g(x)

λ

)
=
∫
X exp

(
h(y)−cp(x,y)

λ

)
Q(dy).

To bound the expression above, we may then use the Koksma-Hwlaka inequality
in Lemma 1:∣∣∣∫[0,1]s g(Gθ(u))du− 1

n

∑n
i=1 g(Gθ(ui))

∣∣∣ ≤ VHK(g ◦Gθ)D∗ ({ui}ni=1) .

To conclude the proof, our approach will be to upper bound VHK(g ◦Gθ) using
Theorem 4 for some sufficiently smooth kernel k which we will take to be Matérn
kernel k of smoothness m − d/2 (see Appendix C.1 for a definition). This will
require that Gθ is sufficiently regular to satisfy the assumptions in Theorem 4,
but this is true thanks to Assumption 2. As a result ∃Cθ > 0 such that VHK(g ◦
Gθ) ≤ Cθ‖g‖Hk

, which leads to a bound of the form:∣∣∣∫[0,1]s g(Gθ(u))du− 1
n

∑n
i=1 g(Gθ(ui))

∣∣∣ ≤ Cθ‖g‖Hk
D∗ ({ui}ni=1) . (B.13)

It has been proven in Theorem 2 of [39] that the potentials g, h ∈ Wm,2(X ),
where X ⊆ Rd is a compact space and m ∈ N. Conveniently, when m > d/2, we
know that Wm,2(X ) is norm-equivalent to the RKHS Hk with Matérn kernel k
of smoothness m−d/2 (see Example 2.6 in [48]), so that ∃C1, C2 > 0 such that:

C1‖g‖Hk(X ) ≤ ‖g‖Wm,2(X ) ≤ C2‖g‖Hk(X )

We can then combine this result with Equation B.13 to get a bound of the form∣∣∣∫[0,1]s g(Gθ(u))du− 1
n

∑n
i=1 g(Gθ(ui))

∣∣∣ ≤ Cθ

C1
‖g‖Wm,2(X )D

∗ ({ui}ni=1) . (B.14)

Putting all of the pieces together we end up with

|Sc,p,λ(Pθ,Q) − Sc,p,λ(Pn
θ ,Q)| ≤ C̃θD

∗ ({ui}ni=1) .

where the bound follows from combining Equations B.8 and B.9 to obtain an
upper bound in terms of integration error, then Equation B.14 to upper bound
such error, and finally combining all of the constants. This concludes our proof.

Appendix C: Additional numerical experiments

In this section, we provide additional details on the numerical experiments pre-
sented in the main text, and also complement these with additional results to
provide a more complete picture of the impact of QMC and RQMC point sets.
First, in Section C.1, we provide additional experiments on the sample complex-
ity for the uniform and Gaussian models. Sections C.2 and C.3 then provide
additional details on the experiments with the bivariate Beta and multivariate
g-and-k distributions respectively.
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Fig 12. Sample complexity results for the MMD squared with different choices of kernels. The
smoother the kernel, the more QMC point sets improve performance for d > 1.

Fig 13. Sample complexity results for the U-statistic approximation of the maximum mean
discrepancy squared for the uniform and Gaussian distributions. We compare MC realisations
with realisations obtained through a RQMC point set. The setup is identical to that of Figure
2 (top row), except we use a U-statistic approximation instead of the squared MMD with
empirical measures.

Fig 14. Sample complexity results for the MMD squared for different QMC point sets. The
performance does not seem to be significantly impacted by the choice of QMC point set.

C.1. Uniform and Gaussian models

The first set of additional experiments focuses on the sample complexity of
MMD. These experiments were once again performed with generalised Halton
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Fig 15. Sample complexity results for the Wasserstein distance with various choices of the
cost c and order p.

Fig 16. Sample complexity results for the Sinkhorn divergence with various choices of cost c,
order p and regularisation λ. The top row corresponds to c = ‖x − y‖2 and p = 2, whereas
the second row corresponds to λ = 2d.

sequences randomised using the scrambling factors of [33], and with a length-
scale of l = 1.5d1/2. In Figure 12, we compare the sample complexity of MMD
when different kernels are used. In particular, we compare a squared-exponential
kernel with Matérn kernels of smoothness 3/2, 5/2 and 7/2. The Matérn kernels
take the form:

kν(x, x′) = λ221−ν

Γ(ν)

(√
2ν‖x−x′‖2

σ2

)ν
Kν

(√
2ν‖x−x′‖2

σ2

)
,

where ν > 0 is the smoothness parameter, Γ is the Gamma function, and Kν is
the modified Bessel function of the second kind of order ν. In dimension d = 1, all
kernels lead to similar sample complexity results for either MC and QMC point
sets. However, for d > 1, we see a clear improvement when using a smoother ker-
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nel and QMC point sets, with the squared-exponential kernel providing the best
overall performance. This clearly supports our choice of squared-exponential ker-
nel for the experiments in the main text, and also shows the importance of the
smoothness requirements on the kernel in Theorem 1.

Another choice we made in the main text was to focus on the MMD with
empirical measures. However, many papers in the literature use a U-statistic
approximation instead:

MMD2
U(Pn,Qm) =

∑n
i �=j k(xi,xj)
n(n−1) − 2

∑n
i=1

∑m
j=1 k(xi,yj)
nm +

∑m
i �=j k(yi,yj)
m(m−1) ,

see for example [17, 74]. The main advantage of the U-statistic is that it is un-
biased, but it does have a larger variance. This turns out to have a significant
impact when using QMC point sets in which case we cannot obtain an improved
convergence rate. This is illustrated in Figure 13 where we reproduced the sam-
ple complexity plots in the top row of Figure 2 using the U-statistic. As can be
observed, we are not able to obtain a faster convergence rate, and this is the
case even in d = 1. In fact, the results are significantly worse than MC when
d > 1.

These experiments were complemented by a study of the impact of the QMC
point sets in Figure 14 where we compare an order-1, order-2, and order-8 lattice
which were shifted to obtain randomised point sets. As observed, there is only
negligible differences in the performance of the different QMC point sets when
d is small, but further gains can be obtaioned when d is large in the case of the
uniform distribution.

Next, we studied the impact of the choice of c and p on sample complexity
results for the Wasserstein distance. Note that the result in Theorem 2 is only
valid for p = 1. As we can see in Figure 15, the performance is similar across
various choices of c and p. In each case, a faster rate is obtained for d = 1
indicating that the result of our theorem could potentially be extended to p �= 1.
However, in all cases this gain in performance quickly vanishes as d increases. A
similar study was performed for the Sinkhorn divergence in Figure 16 (bottom
row). In this case, we may rely on Theorem 3 which is also valid for d > 1. As
we can see, there seems to be a larger impact due to the choice of cost function
or of p, and this should warrant further study.

C.2. Bivariate beta model

As mentioned in Section 4.2 in the main text, it is possible to sample from the
bivariate beta model using uniform random variables whenever all parameter
take integer values. However, in the more general setting where the parameters
may take scalar values, we will also require realisations from a Gamma random
variable.

In order to make this model amenable to realisations from QMC point sets,
we therefore need an approach to sampling from Gamma random variables using
uniform random variables. A number of approaches are highlighted in Chapter
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Fig 17. Minimum distance estimation for the parameters of the bivariate Beta distribution
with the MMD, Wasserstein, sliced Wasserstein and Sinkhorn divergence. Each point corre-
sponds to the median of 10 repetitions of an identical experiment.

IX.3. of [30], but we will focus specifically on the rejection sampling algorithm
by Ahrens and Dieter [3] which we recall in Algorithm 1.

Algorithm 1 Rejection sampling for n realisations of a Gamma(α, 1) where
α ∈ (0, 1)
Require: A 3-dimensional point set of size n: {ui = (ui1, ui2, ui3)}ni=1 ⊂ [0, 1]3

Set b = (α + e)/e
for i in 1, . . . , n do

Set pi = b× ui1.
if p ≤ 1 then

Let xi = p
1/α
i

If ui2 ≤ exp(−xi), accept xi, else reject xi.
else

Let xi = − log ((b− pi)/α)
If ui3 ≤ xα−1

i , accept xi, else reject xi.
end if

end for

Alternative representation Figure 17 gives an alternative representation of
the results in Figure 5 in the main text. It highlights the relationship between
the computation time and the l2 error of the estimates in the different setups.

C.3. Univariate and multivariate g-and-k models

In this final subsection, we provide additional details for the g-and-k models.

Generator In order to simulate from the multivariate g-and-k distribution
studied in this paper, we will simply need to simulate some uniform random
variables and transform these. In order to do so, one quantity of interest will
be the matrix-square root of Σ ∈ Rd×d. We recall that Σ is a symmetric tri-
diagonal Toepliz matrix with diagonal entries all equal to 1 and off-diagonal
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Fig 18. Minimum MMD estimation of the parameters of the univariate g-and-k distribution
using stochastic optimisation.

entries equal to θ5, i.e.:

Σ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 θ5 0 . . . 0

θ5 1 θ5
. . .

...

0 θ5
. . . . . . 0

...
. . . . . . . . . θ5

0 . . . 0 θ5 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

For such matrices, the square-root is known in closed form and its computation
does not require the use of an algorithm. It has entries given by

(
Σ 1

2

)
ij

= 2
d+1

∑d
k=1

√
1 + 2θ5 cos

(
kπ
d+1

)
sin

(
ikπ
d+1

)
sin

(
jkπ
d+1

)
.

This can be used directly in the expression for the generator of this model.

Computational cost Figure 19 describes the computational cost of simu-
lating n realisations of the g-and-k distribution using our implementation. In
particular, it compares MC and RQMC for a range of values of d. When n is less
that 212, the cost is usually slightly smaller with RQMC, but as n goes beyond
this point the cost of using MC was significantly smaller.

Additional numerical results To complement the results in the main text,
we first provide results for parameter estimation in the case d = 1, which is the
most common in the literature. In this case, p = 4 since the parameter θ5 does
not enter the generator.
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Fig 19. Comparison of the computational cost for simulating from the multivariate g-and-k
distribution using MC and RQMC. Each line represents the average of 1000 repetitions.

Fig 20. Histograms of the univariate g-and-k distribution at θ∗, together with MC and RQMC-
based approximations with n = 211.

The results were obtained without sub-sampling the dataset and are provided
in Figure 18. As observed in the top left plot, the stochastic optimisation algo-
rithm is able to attain low values of the MMD squared in a much smaller number
of steps when using RQMC as opposed to MC. This then leads to an improved
parameter estimate as measure in terms of l2-norm between the estimated pa-
rameter and the true parameter θ∗; see the top right plot. The bottom row of
the figure gives the error for each of the four parameters as the number of step
increases. In each case, the RQMC estimates provide significant improvements
over the MC estimates, although the gains are limited for the second parameter
(which controls the variance).

To complement these results, we provide a histogram obtained by sampling
n = 211 from the model at θ∗ from MC and QMC, and compare these to a
histogram of Pθ∗ (obtained in practice by sampling a number of samples order
of magnitude larger). The results are provided in Figure 20. The RQMC-based
realisations provide a much better approximation of the distribution near the
mode. This is confirmed by the table which provides the distance between the
MC-based histogram or the RQMC-based histogram and the truth in terms
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Fig 21. Minimum distance estimation with the MMD for the multivariate g-and-k distribu-
tion. The figure plots the l2 error between the estimated parameter and the true value as the
number of stochastic gradient descent steps increases.

of various choices of distance including the Kullback-Leibler divergence, the
l2 norm, or the Hellinger distance. We also notice that both MC and RQMC
provide relatively poor approximation at the tail of the distribution. This is most
likely due to the small number of realisations used to create the histogram.

Finally, Figure 21 provides the l2 error between true and estimated param-
eters for the experiment presented in Figure 8. Clearly, a smaller value of the
estimated MMD does not necessarily guarantee a better parameter estimate.
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