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manteau statistics for weak FARIMA models. We also propose another
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orate our theoretical work. An application to the Standard & Poor’s 500
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1. Introduction

To model the long memory phenomenon, a widely used model is the fractional
autoregressive integrated moving average (FARIMA, for short) model (see for
instance [25], [18], [11], [29], [3] and [42] among others). This model plays an
important role in many scientific disciplines and applied fields such as hydrology,
climatology, economics, finance, to name a few.

We consider a centered stationary process X := (Xt)t∈Z which satisfies a
FARIMA(p, d0, q) representation of the form

a(L)(1 − L)d0Xt = b(L)εt, (1)

where d0 is the long memory parameter, L stands for the back-shift operator
and a(L) = 1−

∑p
i=1 aiL

i, respectively b(L) = 1−
∑q

i=1 biL
i, is the autoregres-

sive, respectively the moving average, operator. These operators represent the
short memory part of the model (by convention a0 = b0 = 1). In the standard
situation ε := (εt)t∈Z is assumed to be a sequence of independent and identi-
cally distributed (iid for short) random variables with zero mean and with a
common variance. In this standard framework, ε is said to be a strong white
noise and the representation (1) is called a strong FARIMA(p, d0, q) process.
In contrast with this previous definition, the representation (1) is said to be a
weak FARIMA(p, d0, q) if the noise process ε is a weak white noise, that is, if it
satisfies

(A0): E(εt) = 0, Var (εt) = σ2
ε and Cov (εt, εt−h) = 0 for all t ∈ Z and all h �= 0.
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A strong white noise is obviously a weak white noise because independence
entails uncorrelatedness. Of course the converse is not true. The strong FARIMA
model was introduced by [29]. The particular strong FARIMA(0, d0, 0) process
was discussed by [25]. To ensure the stationarity and the invertibility of the
model defined by (1), we assume that 0 < d0 < 1/2 and all roots of a(z)b(z) = 0
are outside the unit disk (see [25] and [29] for details). It is also assumed that
a(z) and b(z) have no common factors in order to insure unique identifiability
of the parameters.

The validity of the different steps of the traditional methodology of Box and
Jenkins (identification, estimation and validation) depends on the noise prop-
erties. After estimating the FARIMA process, the next important step in the
modeling consists in checking if the estimated model fits satisfactorily the data.
Thus, under the null hypothesis that the model has been correctly identified,
the residuals (ε̂t) are approximately a white noise. This adequacy checking step
allows to validate or invalidate the choice of the orders p and q. The choice of
p and q is particularly important because the number of parameters (p+ q + 1)
quickly increases with p and q, which entails statistical difficulties. In particu-
lar, the selection of too large orders p and q may introduce terms that are not
necessarily relevant in the model. Conversely, the selection of too small orders p
and q causes loss of some information, that can be detected by the correlation
of the residuals.

Thus it is important to check the validity of a FARIMA(p, d0, q) model,
for given orders p and q. Based on the residual empirical autocorrelation, [8]
have proposed a goodness-of-fit test, the so-called Portmanteau test, for strong
ARMA models. The intuition behind these Portmanteau tests is that if a given
time series model with iid innovation is appropriate for the data at hand, the au-
tocorrelations of the residuals ε̂t should be close to zero, which is the theoretical
value of the autocorrelations of εt (see Assumption (A0) below). A modification
of the test of [8] has been proposed by [36] which is nowadays one of the most
popular diagnostic checking tools in strong ARMA modeling of time series. A
modified Portmanteau test statistic was proposed by [33] for checking the overall
significance of the residual autocorrelations of a strong FARIMA(p, d0, q) model.
All these above test statistics have been obtained under the iid assumption on
the noise and they may be invalid when the series is uncorrelated but dependent
(see [43], [38], [39], [19], [53], [7], [52], to name a few).

As mentioned above, the works on the Portmanteau statistic are generally
performed under the assumption that the errors εt are independent (see for in-
stance [33]). This independence assumption is often considered too restrictive
by practitioners. It precludes conditional heteroscedasticity and/or other forms
of nonlinearity (see [21] for a review on weak univariate ARMA models) which
can not be generated by FARIMA models with iid noises.1 Relaxing this inde-

1To cite few examples of nonlinear processes, let us mention: the generalized autoregressive
conditional heteroscedastic (GARCH) model (see [24]), the self-exciting threshold autoregres-
sive (SETAR), the smooth transition autoregressive (STAR), the exponential autoregressive
(EXPAR), the bilinear, the random coefficient autoregressive (RCA), the functional autore-
gressive (FAR) (see [49] and [17], for references on these nonlinear time series models).
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pendence assumption allows to cover linear representations of general nonlinear
processes and to extend the range of application of the FARIMA models.

This paper is devoted to the problem of the validation step of weak FARIMA
processes. For the asymptotic theory of weak FARIMA model validation, re-
cently [46] studied the diagnostic checking for long memory time series models
with nonparametric conditionally heteroscedastic martingale difference errors.
This author also generalized the test statistic based on the kernel-based spec-
tral proposed by [28] under weak assumptions on the innovation process. Note
also that [35] have studied the [8] type test for FARIMA-GARCH models by
assuming a parametric form for the GARCH model.

To our knowledge, it does not exist any diagnostic checking methodology for
FARIMA models when the (possibly dependent) error is subject to unknown
conditional heteroscedasticity. We think that this is due to the difficulty that
arises when one has to estimate the asymptotic covariance matrix of the pa-
rameter estimates. In our paper, thanks to the asymptotic results obtained by
[6], we are able to extend for weak FARIMA models the diagnostic checking
methodology proposed by [19] as well as the self-normalized approach proposed
by [7].

The paper is organized as follows. In Section 2, we recall the results on the
least squares estimator asymptotic distribution of weak FARIMA models ob-
tained by [6]. In Section 3, a modified version of the Portmanteau test is pro-
posed thanks to the investigation of the asymptotic distribution of the residual
autocorrelations. Our first main result is stated in Theorem 2. The second main
result of this section is obtained in Theorem 7 by means of a self-normalized
approach. Some numerical illustrations are gathered in Section 4. They corrob-
orate our theoretical work. An application to the Standard & Poor’s 500 and
Nikkei returns also illustrate the practical relevance of our theoretical results.
All our proofs are given in Section 5.

2. Assumptions and estimation procedure

In this section, we recall the results on the least squares estimator asymptotic
distribution of weak FARIMA models obtained by [6] in order to have a self-
contained paper.

Let Θ∗ be the parameter space

Θ∗ =
{

(θ1, θ2, . . . , θp+q) ∈ R
p+q, where aθ(z) = 1 −

p∑
i=1

θiz
i, and

bθ(z) = 1 −
q∑

j=1
θp+jz

j have all their zeros outside the unit disk
}
.

Denote by Θ the Cartesian product Θ∗ × (0, 1/2). The unknown parameter
of interest θ0 = (a1, a2, . . . , ap, b1, b2, . . . , bq, d0)′ is supposed to belong to the
parameter space Θ.



1164 Y. Boubacar Maïnassara et al.

The fractional difference operator (1 − L)d0 is defined, using the generalized
binomial series, by

(1 − L)d0 =
∑
j≥0

αj(d0)Lj ,

where for all j ≥ 0, αj(d0) = Γ(j − d0)/ {Γ(j + 1)Γ(−d0)} and Γ(·) is the
Gamma function. Using the Stirling formula we obtain that for large j, αj(d0) ∼
j−d0−1/Γ(−d0) (one refers to [3] for further details).

For all θ ∈ Θ we define (εt(θ))t∈Z as the second order stationary process
which is the solution of

εt(θ) =
∑
j≥0

αj(d)Xt−j −
p∑

i=1
θi
∑
j≥0

αj(d)Xt−i−j +
q∑

j=1
θp+jεt−j(θ). (2)

Observe that, for all t ∈ Z, εt(θ0) = εt a.s. Given a realization X1, . . . , Xn of
length n, εt(θ) can be approximated, for 0 < t ≤ n, by ε̃t(θ) defined recursively
by

ε̃t(θ) =
t−1∑
j=0

αj(d)Xt−j −
p∑

i=1
θi

t−i−1∑
j=0

αj(d)Xt−i−j +
q∑

j=1
θp+j ε̃t−j(θ), (3)

with ε̃t(θ) = Xt = 0 if t ≤ 0.
As shown in Proposition 8 (see Subsection 5.1), these initial values are asymp-

totically negligible and in particular it holds that εt(θ)− ε̃t(θ) → 0 almost-surely
as t → ∞ uniformly in θ. Let Θ∗

δ denotes the compact set

Θ∗
δ =

{
θ ∈ R

p+q; the roots of the polynomials aθ(z) and bθ(z)

have modulus ≥ 1 + δ
}
.

We define the set Θδ as the Cartesian product of Θ∗
δ by [d1, d2], i.e. Θδ =

Θ∗
δ × [d1, d2], where [d1, d2] ⊂ (0, 1/2) and where δ is a positive constant chosen

such that θ0 belongs to Θδ.
The least squares estimator is defined, almost-surely, by

θ̂n = argmin
θ∈Θδ

Qn(θ), where Qn(θ) = 1
n

n∑
t=1

ε̃2t (θ). (4)

The asymptotic properties of this estimator are well known when the innovation
process (εt)t∈Z is a strong or a semi-strong white noise (see for instance [30],
[41] and [10] who have considered the problem of conditional sum-of squares
estimation with d0 allowed to lie in an arbitrary large compact set). To ensure
the consistency of the least squares estimator in our context, we assume as in
[6] that the parametrization satisfies the following condition.

(A1): The process (εt)t∈Z is strictly stationary and ergodic.
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The consistency of the estimator is obtained under the assumptions (A0) and
(A1). Additional assumptions are required in order to establish the asymp-
totic normality of the least squares estimator. We assume that θ0 is not on the
boundary of the parameter space Θδ.

(A2): We have θ0 ∈
◦
Θδ, where

◦
Θδ denotes the interior of Θδ.

The stationary process ε is not supposed to be an independent sequence. So
one needs to control its dependency by means of its strong mixing coefficients
{αε(h)}h≥0 defined by

αε (h) = sup
A∈Ft

−∞,B∈F∞
t+h

|P (A ∩B) − P(A)P(B)| ,

where F t
−∞ = σ(εu, u ≤ t) and F∞

t+h = σ(εu, u ≥ t + h).
We shall need an integrability assumption on the moment of the noise ε and

a summability condition on the strong mixing coefficients (αε(h))h≥0.

(A3): There exists an integer τ such that for some ν ∈]0, 1], E|εt|τ+ν < ∞ and∑∞
h=0(h + 1)k−2 {αε(h)}

ν
k+ν < ∞ for k = 1, . . . , τ .

Note that (A3) implies the following weak assumption on the joint cumulants
of the innovation process ε (see [16], for more details).

(A3’): There exists an integer τ ≥ 2 such that

Cτ :=
∑

i1,...,iτ−1∈Z

|cum(ε0, εi1 , . . . , εiτ−1)| < ∞ .

In the above expression, cum(ε0, εi1 , . . . , εiτ−1) denotes the τ -th order joint cu-
mulant of the stationary process ε. Due to the fact that the εt’s are centered,
we notice that for fixed (i, j, k)

cum(ε0, εi, εj , εk)=E [ε0εiεjεk]−E [ε0εi]E [εjεk]−E [ε0εj ]E [εiεk]−E [ε0εk]E [εiεj ] .

Assumption (A3) is a usual technical hypothesis which is useful when one proves
the asymptotic normality (see [20] for example). Let us notice however that we
impose a stronger convergence speed for the mixing coefficients than in the
works on weak ARMA processes. This is due to the fact that the coefficients in
the infinite AR or MA representation of εt(θ) have no more exponential decay
because of the fractional operator (see Subsection 6.1 in [6] for details and
comments).

As mentioned before, Hypothesis (A3) implies (A3’) which is also a technical
assumption usually used in the fractional ARIMA processes framework (see for
instance [44, 46]) or even in an ARMA context (see [22, 53]).

For all t ∈ Z, let

Ht(θ) = 2εt(θ)
∂

∂θ
εt(θ) =

(
2εt(θ)

∂

∂θ1
εt(θ), . . . , 2εt(θ)

∂

∂θp+q+1
εt(θ)

)′
.
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Remind that the sequence (εt(θ))t∈Z is given by (2). Under the assumptions
(A0), (A1), (A2) and (A3) with τ = 4, [6] showed that θ̂n → θ0 in probability
as n → ∞ and

√
n(θ̂n−θ0) is asymptotically normal with mean 0 and covariance

matrix Σθ̂ := J−1IJ−1, where J = J(θ0) and I = I(θ0), with

I(θ) =
+∞∑

h=−∞
Cov (Ht(θ), Ht−h(θ)) and J(θ) = 2E

(
∂

∂θ
εt(θ)

∂

∂θ′
εt(θ)

)
a.s.

3. Diagnostic checking in weak FARIMA models

After the estimation phase, the next important step consists in checking if the
estimated model fits satisfactorily the data. In this section we derive the lim-
iting distribution of the residual autocorrelations and that of the Portmanteau
statistics (based on the standard and the self-normalized approaches) in the
framework of weak FARIMA models.

For t ≥ 1, let êt = ε̃t(θ̂n) be the least squares residuals. By (3) we notice that
êt = 0 for t ≤ 0 and t > n. By (1) it holds that

êt =
t−1∑
j=0

αj(d̂)X̂t−j −
p∑

i=1
θ̂i

t−i−1∑
j=0

αj(d̂)X̂t−i−j +
q∑

j=1
θ̂p+j êt−j ,

for t = 1, . . . , n, with X̂t = 0 for t ≤ 0 and X̂t = Xt for t ≥ 1.
For a fixed integer m ≥ 1 consider the vector of residual autocovariances

γ̂m = (γ̂(1), . . . , γ̂(m))′ where γ̂(h) = 1
n

n∑
t=h+1

êt êt−h for 0 ≤ h < n.

In the sequel we will also need the vector of the first m sample autocorrelations

ρ̂m = (ρ̂(1), . . . , ρ̂(m))′ where ρ̂(h) = γ̂(h)/γ̂(0).

Since the papers by [8] and [36], Portmanteau tests have been popular diagnostic
checking tools in the ARMA modeling of time series. Based on the residual
empirical autocorrelations, their test statistics are defined respectively by

Qbp

m = n

m∑
h=1

ρ̂2(h) and Qlb

m = n(n + 2)
m∑

h=1

ρ̂2(h)
n− h

. (5)

These statistics are usually used to answer the question whether (Xt)t∈Z satis-
fies a FARIMA(p, d0, q) representation or (Xt)t∈Z admits a FARIMA(p′, d0, q

′)
representation with p′ > p or q′ > q. We will actually test the null hypothesis

(H0): for all k ∈ {1, . . . ,m}, E(εtεt−k) = 0

against the alternative

(H1): there exists k ∈ {1, . . . ,m} such that E(εtεt−k) �= 0.

These tests are very useful tools to check the global significance of the residual
autocorrelations.
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3.1. Asymptotic distribution of the residual autocorrelations

First of all, the mixing assumption (A3) will entail the asymptotic normality
of the “empirical” autocovariances

γm = (γ(1), . . . , γ(m))′ where γ(h) = 1
n

n∑
t=h+1

εt εt−h for 0 ≤ h < n. (6)

It should be noted that γ(h) is not a computable statistic because it depends
on the unobserved innovations εt = εt(θ0). They are introduced as a device to
facilitate future derivations. Let Ψm be the m× (p + q + 1) matrix defined by

Ψm = E

⎧⎪⎨
⎪⎩
⎛
⎜⎝

εt−1
...

εt−m

⎞
⎟⎠ ∂εt(θ)

∂θ′

∣∣∣
θ=θ0

⎫⎪⎬
⎪⎭ . (7)

By a Taylor expansion of
√
nγ̂m, one should prove that (see Section 5.3)

√
nγ̂m =

√
nγm + Ψm

√
n
(
θ̂n − θ0

)
+ oP(1), (8)

where Ψm is given in (7). We shall also prove (see Section 5.3 again) that

√
nρ̂m =

√
n
γ̂m
σ2
ε

+ oP(1). (9)

Thus from (9) the asymptotic distribution of the residual autocorrelations
√
nρ̂m

depends on the distribution of γ̂m. In view of (8) the asymptotic distribution of
the residual autocovariances

√
nγ̂m will be obtained from the joint asymptotic

behavior of
√
n(θ̂′n − θ′0, γ

′
m)′.

In view of Theorem 1 in [6] and (A2), we have θ̂n → θ0 ∈
◦
Θ in probability.

Thus ∂Qn(θ̂n)/∂θ = 0 for sufficiently large n and a Taylor expansion gives

√
n
∂

∂θ
On(θ0) + J(θ0)

√
n(θ̂n − θ0) = oP(1), (10)

where On(θ) = n−1∑n
t=1 ε

2
t (θ) and the sequence (εt(θ))t∈Z is given by (2).

The equation (10) is proved in [6] (see the proof of Theorem 2). Consequently
from (10) we have

√
n(θ̂n − θ0) = − 2√

n

n∑
t=1

J−1(θ0)εt(θ0)
∂εt(θ0)
∂θ

+ oP (1) . (11)

For integers m,m′ ≥ 1, one needs the matrix Γm,m′ = [Γ(�, �′)]1≤�≤m,1≤�′≤m′

where

Γ(�, �′) =
∞∑

h=−∞
E [εtεt−�εt−hεt−h−�′ ] .

The existence of Γ(�, �′) will be justified in Lemma 3 of the appendix.
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Proposition 1. Under the assumptions (A0), (A1), (A2) and (A3) with
τ = 4, the random vector

√
n

((
θ̂n − θ0

)′
, γ′

m

)′

has a limiting centered normal distribution with covariance matrix

Ξ =
( Σθ̂ Σθ̂,γm

Σ′
θ̂,γm

Γm,m

)
=

∞∑
h=−∞

E
[
UtU

′
t−h

]
, (12)

where from (6) and (11) we have

Ut =
(
U1t

U2t

)
=
(
−2J−1(θ0)εt(θ0) ∂

∂θ εt(θ0)

(εt−1, . . . , εt−m)′εt

)
. (13)

The proof of the proposition is given in Subsection 5.2 of the appendix.
The following theorem which is an extension of the result given in [19] pro-

vides the limit distribution of the residual autocovariances and autocorrelations
of weak FARIMA models.

Theorem 2. Under the assumptions of Proposition 1, we have
√
nγ̂m

D−→
n→∞

N (0,Σγ̂m) where Σγ̂m = Γm,m+ΨmΣθ̂Ψ
′
m+ΨmΣθ̂,γm

+Σ′
θ̂,γm

Ψ′
m

(14)
and √

nρ̂m
D−→

n→∞
N (0,Σρ̂m) where Σρ̂m = 1

σ4
ε

Σγ̂m . (15)

The detailed proof of this result is postponed to Subsection 5.3 of Appendix.

Remark 1. It is clear from Theorem 2 that for a given FARIMA(p, d0, q) model,
the asymptotic distribution of the residual autocorrelations depends only on
the noise distribution through the quantities Γ(�, �′) (which depends on the
fourth-order structure of the noise). It is also worth noting that this asymptotic
distribution depends on the asymptotic normality of the least squares estimator
of the FARIMA(p, d0, q) only through the matrix Σθ̂.

Remark 2. In the standard strong FARIMA case, i.e. when (A1) is replaced
by the assumption that (εt)t∈Z is iid, [6] have showed in Remark 2 that I(θ0) =
2σ2

εJ(θ0). Thus the asymptotic covariance matrix is then reduced as Σθ̂ =
2σ2

εJ
−1(θ0). In the strong case, we also have: Γ(�, �′) = 0 when � �= �′ and

Γ(�, �) = σ4
ε . Thus Γm,m is reduced as Γm,m = σ4

ε Im, where Im denotes the
m×m identity matrix. Because Σθ̂ = 2σ2

εJ
−1(θ0) we obtain that

Σθ̂,γm
= −2

∞∑
h=−∞

E

{
εtJ

−1(θ0)
∂εt(θ0)
∂θ

}⎧⎪⎨
⎪⎩
⎛
⎜⎝

εt−1−h

...
εt−m−h

⎞
⎟⎠ εt−h

⎫⎪⎬
⎪⎭

′
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= −
(
2σ2

εJ
−1(θ0)

)
⎧⎪⎨
⎪⎩E

⎡
⎢⎣
⎛
⎜⎝

εt−1
...

εt−m

⎞
⎟⎠ ∂εt(θ0)

∂θ′

⎤
⎥⎦
⎫⎪⎬
⎪⎭

′

= −Σθ̂Ψ
′
m.

We denote by Σs

γ̂m
and Σs

ρ̂m
the asymptotic variances obtained respectively

in (14) and (15) for the strong FARIMA case. Thus we obtain, in the strong
case, the following simpler expressions

Σs

γ̂m
= σ4

ε Im − 2σ2
εΨmJ−1(θ0)Ψ′

m and Σs

ρ̂m
= Im − 2

σ2
ε

ΨmJ−1(θ0)Ψ′
m,

which are the matrices obtained by [33].

To validate a FARIMA(p, d0, q) model, the most basic technique is to examine
the autocorrelation function of the residuals. Theorem 2 can be used to obtain
asymptotic significance limits for the residual autocorrelations. However, the
asymptotic variance matrices Σγ̂m and Σρ̂m depend on the unknown matrices
Ξ, Ψm and the positive scalar σ2

ε which need to be estimated. This is the purpose
of the following discussion.

3.2. Modified version of the Portmanteau test

From Theorem 2 we can deduce the following result, which gives the limiting dis-
tribution of the standard Portmanteau statistics (5) under general assumptions
on the innovation process of the fitted FARIMA(p, d0, q) model.

Theorem 3. Under the assumptions of Theorem 2 and (H0), the statistics
Qbp

m and Qlb

m defined by (5) converge in distribution, as n → ∞, to

Zm(ξm) =
m∑

k=1

ξk,mZ2
k ,

where ξm = (ξ1,m, . . . , ξm,m)′ is the vector of the eigenvalues of the matrix
Σρ̂m = σ−4

ε Σγ̂m and Z1, . . . , Zm are independent N (0, 1) variables.

It is possible to evaluate the distribution of a quadratic form of a Gaussian
vector by means of the Imhof algorithm (see [31]).

Remark 3. In view of remark 2 when m is large, Σs

ρ̂m
�Im−2σ−2

ε ΨmJ−1(θ0)Ψ′
m

is close to a projection matrix. Its eigenvalues are therefore equal to 0 and
1. The number of eigenvalues equal to 1 is Tr(Im − 2σ−2

ε ΨmJ−1(θ0)Ψ′
m) =

Tr(Im−(p+q+1)) = m − (p + q + 1) and p + q + 1 eigenvalues equal to 0, Tr(·)
denotes the trace of a matrix. Therefore we retrieve the well-known result ob-
tained by [33]. More precisely, under (H0) and in the strong FARIMA case, the
asymptotic distributions of the statistics Qbp

m and Qlb

m are approximated by a
X 2

m−(p+q+1), where m > p + q + 1 and X 2
k denotes the chi-squared distribution

with k degrees of freedom. Theorem 3 shows that this approximation is no longer
valid in the framework of weak FARIMA(p, d, q) models and that the asymptotic
null distributions of the statistics Qbp

m and Qlb

m are more complicated.
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Remark 4. When one focuses on the following alternative hypothesis

(H1): there exists h ∈ {1, . . . ,m} such that E(εtεt−h) �= 0,

this means that under (H1) at least one ρ(h) = γ0(h)/σ2
ε �= 0 where γ0(h) =

E[εtεt−h]. One may prove that under (H1)

ρ̂′mρ̂m = γ̂′
mγ̂m
σ4
ε

+ oP
(

1
n

)
P−−−−→

n→∞
ρ′mρm = γ0

m
′
γ0
m

σ4
ε

where the vector ρm=(ρ(1), . . . , ρ(m))′ = γ0
m

′
/σ2

ε with γ0
m=

(
γ0(1), . . . , γ0(m)

)′.
Therefore the test statistic nρ̂′mρ̂m is consistent in detecting (H1).

The proof of this remark is also postponed to Section 5.
The limit distribution Zm(ξm) depends on the nuisance parameter σ2

ε , the
matrix Ψm and the elements of Ξ. Therefore, the asymptotic distribution of
the Portmanteau statistics (5), under weak assumptions on the noise, requires a
computation of a consistent estimator of the asymptotic covariance matrix Σρ̂m .
The m× (p + q + 1) matrix Ψm and the noise variance σ2

ε can be estimated by
its empirical counterpart. Thus we may use

Ψ̂m = 1
n

n∑
t=1

{
(êt−1, . . . , êt−m)′ ∂êt

∂θ′

}
and σ̂2

ε = γ̂(0) = 1
n

n∑
t=1

ê2
t .

A consistent estimator of Ξ is obtained by means of an autoregressive spectral
estimator, as in [6] (see also [4], [5] and [14], to name a few for a more com-
prehensive exposition of this method). The process (Ut)t∈Z admits an AR(∞)
representation (see [1]) of the form

Δ(L)Ut := Ut −
∞∑
i=1

ΔiUt−i = vt, (16)

such that
∑∞

i=1 ‖Δi‖ < ∞, where ‖ · ‖ denotes any norm on the space of the
real (p+ q+1+m)× (p+ q+1+m) matrices, and det {Δ(z)} �= 0 if |z| ≤ 1. In
view of (12), the matrix Ξ can be interpreted as 2π times the spectral density of
the stationary process (Ut)t∈Z = ((U ′

1t, U
′
2t)′)t∈Z evaluated at frequency 0 (see

p. 459 of [9]). We then obtain that

Ξ = Δ−1(1)ΣvΔ′ −1(1)

Since Ut is unobservable, we introduce Ût ∈ R
p+q+1+m obtained by replacing

εt(θ0) by ε̃t(θ̂n) and J(θ0) by its empirical or observable counterpart Ĵn in (13).
Let Δ̂r(z) = Ip+q+1+m −

∑r
k=1 Δ̂r,kz

k, where Δ̂r,1, . . . , Δ̂r,r denote the coef-
ficients of the least squares regression of Ût on Ût−1, . . . , Ût−r. Let v̂r,t be the
residuals of this regression, and let Σ̂v̂r be the empirical variance of v̂r,1, . . . , v̂r,n.
We are now able to state Theorem 4 which is an extension of a result given in
[5].
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Theorem 4. We assume (A0), (A1), (A2) and Assumption (A3’) with τ =
8. In addition, we assume that process (εt)t∈Z of the FARIMA(p, d0, q) model (1)
is such that the process (Ut)t∈Z defined in (13) admits a multivariate AR(∞)
representation (16), where ‖Δi‖ = o(i−2) as i → ∞, the roots of det(Δ(z)) = 0
are outside the unit disk, and Σv = Var(vt) is non-singular. Then the spectral
estimator of Ξ satisfies

Ξ̂SP
n := Δ̂−1

r (1)Σ̂v̂rΔ̂′ −1
r (1) −→ Ξ = Δ−1(1)ΣvΔ−1(1)

in probability when r = r(n) → ∞ and r5(n)/n1−2(d2−d1) → 0 as n → ∞
(remind that d0 ∈ [d1,d2] ⊂ (0,1/2)).

The proof of this theorem is similar to the proof of Theorem 3 in [6] and it
is omitted.

We are now in a position to define the modified versions of the Box-Pierce
(BP) and Ljung-Box (LB) goodness-of-fit Portmanteau tests. The standard ver-
sions of the Portmanteau tests are useful tools to detect if the orders p and q of
a FARIMA(p, d0, q) model are well chosen, provided the error terms (εt)t∈Z of
the FARIMA(p, d0, q) equation be a strong white noise and provided the num-
ber m of residual autocorrelations is not too small (see Remark 3). Now we
define the modified versions which are aimed to detect if the orders p and q of a
weak FARIMA(p, d0, q) model are well chosen. These tests are also asymptoti-
cally valid for strong FARIMA(p, d0, q) even for small m. The modified versions
of the Portmanteau tests will be denoted by BPw and LBw, the subscript w

referring to the term weak.
Let Σ̂ρ̂m be the matrix obtained by replacing Ξ by Ξ̂ and σ2

ε by σ̂2
ε in Σρ̂m .

Denote by ξ̂m = (ξ̂1,m, . . . , ξ̂m,m)′ the vector of the eigenvalues of Σ̂ρ̂m . At the
asymptotic level α, it holds under the assumptions of Theorem 2 and (H0) that

lim
n→∞

P (Qbp

m > Sm(1 − α)) = lim
n→∞

P (Qlb

m > Sm(1 − α)) = α,

where Sm(1 − α) is such that P(Zm(ξ̂m) > Sm(1 − α)) = α. We emphasize
the fact that the proposed modified versions of the Box-Pierce and Ljung-Box
statistics are more difficult to implement because their critical values have to
be computed from the data while the critical values of the standard method are
simply deduced from a χ2-table. We shall evaluate the p-values

P

{
Zm(ξ̂m) > Qbp

m

}
and P

{
Zm(ξ̂m) > Qlb

m

}
,with Zm(ξ̂m) =

m∑
i=1

ξ̂i,mZ2
i ,

by means of the Imhof algorithm (see [31]).
A second method avoiding the estimation of the asymptotic matrix is pro-

posed in the next Subsection.

3.3. Self-normalized asymptotic distribution of the residual
autocorrelations

In view of Theorem 3, the asymptotic distributions of the statistics defined
in (5) are a mixture of chi-squared distributions, weighted by eigenvalues of the
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asymptotic covariance matrix Σρ̂m of the vector of autocorrelations obtained in
Theorem 2. However, this asymptotic variance matrix depends on the unknown
matrices Ξ, Ψm and the noise variance σ2

ε . Consequently, in order to obtain a
consistent estimator of the asymptotic covariance matrix Σρ̂m of the residual
autocorrelations vector we have used an autoregressive spectral estimator of the
spectral density of the stationary process (Ut)t∈Z to get a consistent estimator
of the matrix Ξ (see Theorem 4). However, this approach presents the problem
of choosing the truncation parameter. Indeed this method is based on an infinite
autoregressive representation of the stationary process (Ut)t∈Z (see (16)). So the
choice of the order of truncation is crucial and difficult.

In this section, we propose an alternative method where we do not estimate
an asymptotic covariance matrix which is an extension to the results obtained
by [7]. It is based on a self-normalization approach to construct a test-statistic
which is asymptotically distribution-free under the null hypothesis. This ap-
proach has been studied by [7] in the weak ARMA case, by proposing new
Portmanteau statistics. In this case the critical values are not computed from
the data since they are tabulated by [37]. In some sense this method is finally
closer to the standard method in which the critical values are simply deduced
from a X 2-table. The idea comes from [37] and has been already extended by
[7], [32], [44], [45] and [47] to name a few in more general frameworks. See also
[48] for a review on some recent developments on the inference of time series
data using the self-normalized approach.

Other alternative methods that avoid the estimation of the covariance of
the parameter estimates by directly eliminating the estimation effect of the
test statistics can be found in [13] or [51]. [13] developed an asymptotically
distribution-free transform of the sample autocorrelations of residuals in general
parametric linear time-series models and showed that the proposed Box-Pierce-
type test statistic based on the transformed autocorrelation is not affected by
the estimation effect. [51] proposed an asymptotic simultaneous distribution-
free transform of the sample autocorrelations of standardized residuals and their
squares, which extended the approach developed by [13] to the conditional mean
and variance models diagnosis.

We denote by Λ the block matrix of Rm×(p+q+1+m) defined by Λ = (Ψm|Im).
In view of (8) and (11) we deduce that

√
nγ̂m = 1√

n

n∑
t=1

ΛUt + oP(1).

At this stage, we do not rely on the classical method that would consist in
estimating the asymptotic covariance matrix Ξ. We rather try to apply Lemma
1 in [37]. So we need to check that a functional central limit theorem holds for
the process U := (Ut)t≥1. For that sake, we define the normalization matrix Cm

of Rm×m by

Cm = 1
n2

n∑
t=1

StS
′
t where St =

t∑
j=1

(ΛUj − γm) .
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To ensure the invertibility of the normalization matrix Cm (it is the result
stated in the next proposition), we need the following technical assumption on
the distribution of εt.

(A4): The process (εt)t∈Z has a positive density on some neighbourhood of zero.

Proposition 5. Under the assumptions of Theorem 2 and (A4), the matrix
Cm is almost surely non singular.

The proof of this proposition is given in Subsection 5.5 of the appendix.
Let (BK(r))r≥0 be a K-dimensional Brownian motion starting from 0. For

K ≥ 1, we denote by UK the random variable defined by:

UK = B′
K(1)V −1

K BK(1), (17)

where
VK =

∫ 1

0
(BK(r) − rBK(1)) (BK(r) − rBK(1))′ dr. (18)

The critical values of UK have been tabulated by [37].
The following theorem states the asymptotic distributions of the sample au-

tocovariances and autocorrelations.

Theorem 6. Under the assumptions of Theorem 2, (A4) and under the null
hypothesis (H0) we have

nγ̂′
mC−1

m γ̂m
in law−−−−→
n→∞

Um and nσ4
ε ρ̂

′
mC−1

m ρ̂m
in law−−−−→
n→∞

Um.

The proof of this theorem is given in Subsection 5.6 of Appendix.
Of course, the above theorem is useless for practical purpose because the

normalization matrix Cm and the nuisance parameter σ2
ε are not observable.

This gap will be fixed below (see Theorem 7) when one replaces the matrix Cm

and the scalar σ2
ε by their empirical or observable counterparts. Then we denote

Ĉm = 1
n2

n∑
t=1

ŜtŜ
′
t where Ŝt =

t∑
j=1

(
Λ̂Ûj − γ̂m

)
,

with Λ̂ = (Ψ̂m|Im) and where Ût and σ̂2
ε are defined in Subsection 3.2.

The above quantities are all observable and the following result is the appli-
cable counterpart of Theorem 6.

Theorem 7. Under the assumptions of Theorem 6, we have

nγ̂′
mĈ−1

m γ̂m
in law−−−−→
n→∞

Um and Qsn

m = nσ̂4
ε ρ̂

′
mĈ−1

m ρ̂m
in law−−−−→
n→∞

Um.

The proof of this result is postponed in Subsection 5.7 of Appendix.
Based on the above result, we propose a modified version of the Ljung-Box

statistic when one uses the statistic

Q̃sn

m = nσ̂4
ε ρ̂

′
mD1/2

n,mĈ−1
m D1/2

n,mρ̂m,
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where Dn,m ∈ R
m×m is diagonal with (n+2)/(n−1), . . . , (n+2)/(n−m) as di-

agonal terms. These modified versions of the Portmanteau tests will be denoted
by BPsn and LBsn, the subscript sn referring to the term self-normalized.

4. Numerical illustrations

In this section, by means of Monte Carlo experiments, we investigate the finite
sample properties of the asymptotic results that we introduced in this work. The
numerical illustrations of this section are made with the open source statistical
software R (see http://cran.r-project.org/).

4.1. Simulation studies and empirical sizes

We study numerically the behavior of the least squares estimator for FARIMA
models of the form

(1 − L)d0 (Xt − aXt−1) = εt − bεt−1, (19)

where the unknown parameter is θ0 = (a, b, d0). First we assume that in (19)
the innovation process (εt)t∈Z is an iid centered Gaussian process with com-
mon variance 1 which corresponds to the strong FARIMA case. For the weak
FARIMA case, we consider that in (19) the innovation process (εt)t∈Z follows
firstly a GARCH(1, 1) process given by the model{

εt = σtηt
σ2
t = ω + α1ε

2
t−1 + β1σ

2
t−1,

(20)

with ω > 0, α1 ≥ 0 and where (ηt)t∈Z is a sequence of iid centered Gaussian
random variables with variance 1. Secondly we consider that in (19) a noise
defined by

εt = η2
t ηt−1. (21)

The example (21) is an extension of a noise process in [43]. Contrary to the
GARCH(1, 1) process, the noise defined in Equation (21) is not a martingale
difference sequence for which the limit theory is more classical.

We simulate N = 1, 000 independent trajectories of size n = 10, 000 of
models (19). The same series is partitioned as three series of sizes n = 1, 000,
n = 5, 000 and n = 10, 000. For each of these N replications, we use the least
squares estimation method to estimate the coefficient θ0 and we apply Portman-
teau tests to the residuals for different values of m ∈ {1, 2, 3, 6, 12, 15}, where m
is the number of autocorrelations used in the Portmanteau test statistic. For the
nominal level α = 5%, the empirical size over the N independent replications
should vary between the significant limits 3.6% and 6.4% with probability 95%.
When the relative rejection frequencies are outside the 95% significant limits,
they are displayed in bold type in Tables 1, 2 and 3.

http://cran.r-project.org/


Validation of weak FARIMA models 1175

Table 1

Empirical size (in %) of the modified and standard versions of the LB and BP tests in the
case of a strong FARIMA(0, d0, 0) defined by (19) with θ0 = (0, 0, d0). The nominal
asymptotic level of the tests is α = 5%. The number of replications is N = 1, 000.

d0 Length n Lag m LBsn BPsn LBw BPw LBs BPs

1 3.3 3.3 4.6 4.5 n.a. n.a.
2 4.5 4.5 4.9 4.9 5.8 5.8

0.05 n = 1, 000 3 5.2 5.1 4.7 4.4 4.9 4.8
6 5.8 5.8 4.6 4.5 5.1 5.0
12 6.0 5.6 5.3 4.6 5.2 5.0
15 5.6 5.2 4.7 4.3 5.3 4.7
1 6.8 6.8 6.6 6.6 n.a. n.a.
2 6.8 6.8 6.4 6.4 7.9 7.9

0.05 n = 5, 000 3 6.6 6.6 5.7 5.7 5.8 5.8
6 6.5 6.4 5.6 5.6 5.7 5.6
12 6.4 6.4 5.3 5.3 6.0 5.9
15 6.1 6.0 4.7 4.6 5.3 5.2
1 4.9 4.9 5.3 5.3 n.a. n.a.
2 5.4 5.4 6.6 6.6 7.8 7.8

0.05 n = 10, 000 3 5.7 5.7 5.9 5.9 6.2 6.2
6 5.9 5.8 4.5 4.5 4.6 4.6
12 5.3 5.3 5.4 5.4 5.6 5.6
15 4.4 4.3 4.8 4.8 4.9 4.9
1 3.6 3.5 4.3 4.3 n.a. n.a.
2 4.7 4.7 4.7 4.7 5.8 5.7

0.20 n = 1, 000 3 5.2 5.0 4.3 4.3 4.9 4.7
6 6.0 5.9 4.7 4.5 5.0 4.9
12 5.7 5.4 5.3 4.7 5.2 4.9
15 5.9 5.6 4.8 4.2 5.2 4.8
1 6.6 6.6 6.5 6.5 n.a. n.a.
2 6.6 6.6 6.4 6.4 7.9 7.9

0.20 n = 5, 000 3 6.7 6.7 5.7 5.7 5.8 5.8
6 6.3 6.3 5.6 5.6 5.7 5.5
12 6.3 6.2 5.5 5.3 6.0 5.9
15 6.1 5.9 4.7 4.6 5.3 5.2
1 4.8 4.8 5.3 5.3 n.a. n.a.
2 5.4 5.4 6.6 6.6 7.8 7.8

0.20 n = 10, 000 3 5.5 5.5 5.9 5.9 6.3 6.3
6 5.8 5.8 4.5 4.5 4.6 4.6
12 5.4 5.3 5.5 5.5 5.6 5.6
15 4.4 4.3 4.7 4.7 4.9 4.9
1 3.9 3.8 4.9 4.9 n.a. n.a.
2 5.1 5.0 4.8 4.6 5.9 5.9

0.45 n = 1, 000 3 5.2 5.2 4.3 4.3 4.8 4.8
6 6.2 6.0 4.7 4.3 4.9 4.9
12 5.8 5.4 4.8 4.7 4.9 4.8
15 5.6 5.5 4.5 4.2 5.0 4.8
1 6.6 6.6 6.6 6.6 n.a. n.a.
2 6.7 6.7 6.5 6.5 8.0 8.0

0.45 n = 5, 000 3 6.6 6.6 5.7 5.7 5.8 5.8
6 6.3 6.3 5.4 5.4 5.6 5.5
12 6.2 6.2 5.5 5.5 6.0 5.9
15 6.2 5.9 4.6 4.6 5.5 5.3
1 5.0 5.0 5.3 5.3 n.a. n.a.
2 5.4 5.4 6.6 6.6 7.9 7.9

0.45 n = 10, 000 3 5.3 5.3 5.9 5.9 6.3 6.3
6 5.8 5.8 4.7 4.6 4.7 4.7
12 5.4 5.4 5.5 5.5 5.7 5.7
15 4.6 4.5 4.9 4.8 4.9 4.9
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Table 2

Empirical size (in %) of the modified and standard versions of the LB and BP tests in the
case of a weak FARIMA(0, d0, 0) defined by (19) with θ0 = (0, 0, d0) and where ω = 0.4,
α1 = 0.3 and β1 = 0.3 in (21). The nominal asymptotic level of the tests is α = 5%. The

number of replications is N = 1, 000.

d0 Length n Lag m LBsn BPsn LBw BPw LBs BPs

1 4.4 4.4 5.4 5.4 n.a. n.a.
2 4.3 4.2 5.7 5.7 15.6 15.5

0.05 n = 1, 000 3 5.9 5.9 5.3 5.0 14.2 14.0
6 5.2 5.1 6.0 6.0 14.6 14.4
12 4.5 4.1 4.2 4.0 11.0 10.7
15 4.0 3.9 4.2 3.9 11.1 10.6
1 4.3 4.3 5.1 5.1 n.a. n.a.
2 4.4 4.4 5.8 5.8 16.9 16.8

0.05 n = 5, 000 3 5.0 5.0 5.5 5.5 16.5 16.5
6 5.6 5.6 4.5 4.5 14.8 14.6
12 5.1 5.1 5.0 4.9 12.6 12.5
15 5.2 5.1 4.9 4.7 11.8 11.6
1 5.7 5.7 5.3 5.1 n.a. n.a.
2 5.0 5.0 4.5 4.5 17.4 17.4

0.05 n = 10, 000 3 5.5 5.5 4.7 4.6 17.2 17.2
6 5.3 5.3 5.0 5.0 14.2 14.1
12 4.9 4.9 4.7 4.7 11.0 11.0
15 4.9 4.8 4.7 4.6 10.2 10.2
1 4.9 4.9 4.3 4.3 n.a. n.a.
2 4.0 4.0 5.7 5.6 15.5 15.4

0.20 n = 1, 000 3 6.0 6.0 5.0 4.8 14.0 13.8
6 5.2 5.1 5.7 5.6 14.3 14.2
12 4.4 4.0 4.3 4.0 10.8 10.5
15 3.9 3.8 4.2 3.9 10.8 10.1
1 4.3 4.3 5.0 5.0 n.a. n.a.
2 4.3 4.3 5.9 5.8 16.9 16.9

0.20 n = 5, 000 3 5.2 5.2 5.4 5.4 16.7 16.7
6 5.6 5.5 4.6 4.5 14.8 14.7
12 5.2 5.2 5.0 4.9 12.5 12.4
15 5.2 5.2 4.8 4.6 11.7 11.7
1 5.7 5.7 5.2 5.2 n.a. n.a.
2 5.1 5.1 4.5 4.5 17.3 17.3

0.20 n = 10, 000 3 5.7 5.6 4.7 4.7 17.2 17.2
6 5.1 5.1 4.9 4.9 14.2 14.2
12 4.8 4.8 4.7 4.7 11.0 11.0
15 4.9 4.7 4.6 4.6 10.2 10.2
1 4.5 4.5 5.4 5.4 n.a. n.a.
2 4.1 4.1 6.0 6.0 16.2 16.1

0.45 n = 1, 000 3 5.9 5.7 5.3 5.3 14.6 14.5
6 5.2 4.8 5.5 5.4 14.4 14.1
12 4.0 3.7 4.2 4.2 11.2 10.8
15 3.8 3.7 4.3 3.9 10.6 10.4
1 4.6 4.6 5.0 5.0 n.a. n.a.
2 4.3 4.3 5.9 5.9 16.7 16.7

0.45 n = 5, 000 3 4.9 4.9 5.4 5.4 16.8 16.7
6 5.7 5.6 4.6 4.6 15.1 14.9
12 5.3 5.3 5.1 5.1 12.7 12.4
15 5.1 5.0 4.8 4.8 11.7 11.7
1 5.7 5.7 5.2 5.2 n.a. n.a.
2 5.0 5.0 4.7 4.7 17.2 17.2

0.45 n = 10, 000 3 5.8 5.7 4.7 4.7 17.5 17.4
6 5.1 5.1 5.0 4.9 14.3 14.3
12 4.8 4.8 4.7 4.7 10.9 10.9
15 4.9 4.7 4.6 4.6 10.2 10.2
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Table 3

Empirical size (in %) of the modified and standard versions of the LB and BP tests in the
case of weak FARIMA(0, d0, 0) defined by (19)–(21) with θ0 = (0, 0, d0). The nominal

asymptotic level of the tests is α = 5%. The number of replications is N = 1, 000.

d0 Length n Lag m LBsn BPsn LBw BPw LBs BPs

1 3.3 3.3 8.7 8.6 n.a. n.a.
2 3.8 3.7 6.1 6.1 16.9 16.9

0.05 n = 1, 000 3 3.5 3.5 4.8 4.7 14.8 14.8
6 3.3 3.2 4.0 4.0 14.1 14.0
12 1.0 0.9 2.5 2.4 13.0 12.8
15 1.0 0.9 2.3 2.1 12.8 12.2
1 3.9 3.9 5.3 5.3 n.a. n.a.
2 4.8 4.8 5.2 5.2 18.7 18.7

0.05 n = 5, 000 3 5.6 5.6 5.3 5.3 15.1 15.0
6 4.8 4.8 4.3 4.3 12.4 12.4
12 3.9 3.9 3.3 3.3 11.2 11.1
15 3.5 3.5 2.7 2.7 10.2 10.1
1 5.4 5.4 5.2 5.2 n.a. n.a.
2 5.6 5.6 5.3 5.3 18.6 18.6

0.05 n = 10, 000 3 4.9 4.9 5.3 5.2 16.6 16.5
6 4.8 4.8 5.5 5.4 13.3 13.3
12 4.1 4.0 4.0 4.0 12.2 12.2
15 5.0 5.0 3.5 3.5 11.2 11.2
1 3.3 3.3 4.9 4.9 n.a. n.a.
2 4.2 4.1 4.4 4.3 14.7 14.7

0.20 n = 1, 000 3 3.7 3.7 3.4 3.2 12.8 12.8
6 3.6 3.4 2.7 2.7 12.9 12.8
12 1.1 1.0 1.9 1.7 11.8 11.3
15 0.9 0.6 1.8 1.7 12.0 11.5
1 3.8 3.8 5.5 5.5 n.a. n.a.
2 4.7 4.7 5.1 5.1 18.8 18.8

0.20 n = 5, 000 3 5.8 5.8 5.2 5.2 15.0 15.0
6 4.9 4.9 4.3 4.3 12.5 12.4
12 3.9 3.9 3.4 3.4 11.1 11.1
15 3.5 3.3 2.7 2.7 10.2 10.1
1 5.4 5.4 5.1 5.1 n.a. n.a.
2 5.6 5.6 5.3 5.3 18.8 18.8

0.20 n = 10, 000 3 5.0 5.0 5.2 5.2 16.6 16.6
6 4.8 4.8 5.4 5.4 13.3 13.3
12 4.0 4.0 4.0 4.0 12.1 12.1
15 5.3 5.3 3.4 3.4 11.2 11.2
1 3.5 3.5 9.0 9.0 n.a. n.a.
2 4.1 4.1 5.9 5.9 17.5 17.5

0.45 n = 1, 000 3 3.9 3.7 5.0 4.8 15.0 14.6
6 3.4 3.4 3.7 3.7 14.1 13.9
12 0.9 0.9 2.0 2.0 12.9 12.2
15 1.0 0.5 1.9 1.7 13.1 12.8
1 4.1 4.1 5.4 5.4 n.a. n.a.
2 4.6 4.6 5.2 5.2 18.8 18.7

0.45 n = 5, 000 3 5.6 5.6 5.2 5.2 15.2 15.2
6 5.1 5.0 4.4 4.4 12.5 12.4
12 4.0 3.8 3.5 3.5 11.1 11.1
15 3.5 3.5 2.6 2.6 10.0 9.9
1 5.5 5.5 5.1 5.1 n.a. n.a.
2 5.6 5.6 5.3 5.3 18.7 18.6

0.45 n = 10, 000 3 4.7 4.7 5.2 5.2 16.6 16.6
6 4.8 4.8 5.3 5.3 13.3 13.3
12 4.0 4.0 4.0 4.0 12.1 12.1
15 5.2 5.2 3.5 3.5 11.1 11.1
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For the standard Box-Pierce test, the model is therefore rejected when the
statistic Qbp

m or Qlb

m is larger than χ2
(m−p−q−1)(0.95) in a FARIMA(p, d0, q) case

(see [33]). Consequently the empirical size is not available (n.a.) for the statistic
Qbp

m or Qlb

m because they are not applicable for m ≤ p+ q + 1. For the proposed
self-normalized test BPsn or LBsn, the model is rejected when the statistic Qsn

m

or Q̃sn

m is larger than Um(0.95), where the critical values UK(0.95) (for K =
1, . . . , 20) are tabulated in Lobato (see Table 1 in [37]).

Table 1 displays the relative rejection frequencies of the null hypothesis (H0)
that the data generating process (DGP for short) is a strong FARIMA(0, d0, 0)
model (19), over the N independent replications. For all tests, the percentages of
rejection belong globally to the confident interval with probabilities 95%, except
for LBs and BPs (see Table 8).

Now, we repeat the same experiments on two weak FARIMA models. As
expected Tables 2 and 3 show that the standard LBs or BPs test poorly performs
in assessing the adequacy of these particular weak FARIMA models. Indeed, we
observe that the observed relative rejection frequencies of LBs and BPs are
definitely outside the significant limits. Thus we draw the conclusion that the
error of the first kind is globally well controlled by all the tests in the strong
case, but only by the proposed tests in the weak cases.

4.2. Empirical power

In this section, we repeat the same experiments as in Section 4.1 to examine
the power of the tests for the null hypothesis of Model (19) with a = b = 0
(i.e. a FARIMA(0, d0, 0)) against the FARIMA(0, d0, 1) alternative defined by
Model (19) with θ0 = (0, b, d0)′ and where the innovation process (εt)t∈Z follows
the two weak white noises introduced in Section 4.1.

For each of these N replications we fit a FARIMA(0, d0, 0) model (19) and
perform standard and modified tests based on m = 1, 2, 3, 6, 12 and 15 residual
autocorrelations.

Tables 4 and 5 compare the empirical powers of Model (19) with θ0 =
(0, 0.2, d0)′ over the N independent replications. For these particular weak mod-
els, we notice that the standard BPs and LBs and our proposed tests have very
similar powers except for BPsn and LBsn when n = 5, 000.

In these Monte Carlo experiments, we illustrate that the proposed test statis-
tics have reasonable finite sample performance. Under nonindependent errors,
it appears that the standard test statistics are generally non reliable, overreject-
ing severely, while the proposed tests statistics offer satisfactory levels. Even for
independent errors, they seem preferable to the standard ones when the number
m of autocorrelations is small. Moreover, the error of first kind is well controlled.
Contrarily to the standard tests based on BPs or LBs, the proposed tests can be
used safely for m small. For all these above reasons, we think that the modified
versions that we propose in this paper are preferable to the standard ones for
diagnosing FARIMA models under nonindependent errors.
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Table 4

Empirical power (in %) of the modified and standard versions of the LB and BP tests in the
case of a weak FARIMA(0, d0, 1) defined by (19) with θ0 = (0, 0.2, d0) and where ω = 0.4,
α1 = 0.3 and β1 = 0.3 in (20). The nominal asymptotic level of the tests is α = 5%. The

number of replications is N = 1, 000.

d0 Length n Lag m LBsn BPsn LBw BPw LBs BPs

1 30.1 30.1 100.0 100.0 n.a. n.a.
2 55.7 55.7 100.0 100.0 100.0 100.0

0.05 n = 5, 000 3 75.7 75.7 100.0 100.0 100.0 100.0
6 87.1 87.1 100.0 100.0 100.0 100.0
12 87.0 86.8 100.0 100.0 100.0 100.0
15 87.3 87.2 100.0 100.0 100.0 100.0
1 50.0 50.0 100.0 100.0 n.a. n.a.
2 79.5 79.4 100.0 100.0 100.0 100.0

0.05 n = 10, 000 3 95.2 95.2 100.0 100.0 100.0 100.0
6 98.0 98.0 100.0 100.0 100.0 100.0
12 98.6 98.6 100.0 100.0 100.0 100.0
15 99.0 99.0 100.0 100.0 100.0 100.0
1 98.2 98.2 99.9 99.9 n.a. n.a.
2 94.6 94.6 99.5 99.5 100.0 100.0

0.20 n = 5, 000 3 92.3 92.3 99.6 99.6 100.0 100.0
6 91.0 91.0 99.6 99.6 100.0 100.0
12 88.8 88.7 99.8 99.8 100.0 100.0
15 88.6 88.6 99.8 99.8 100.0 100.0
1 99.7 99.7 100.0 100.0 n.a. n.a.
2 99.2 99.2 100.0 100.0 100.0 100.0

0.20 n = 10, 000 3 99.3 99.2 100.0 100.0 100.0 100.0
6 98.8 98.8 100.0 100.0 100.0 100.0
12 99.3 99.3 100.0 100.0 100.0 100.0
15 99.3 99.3 100.0 100.0 100.0 100.0
1 98.2 98.2 99.8 99.8 n.a. n.a.
2 94.4 94.3 99.5 99.5 100.0 100.0

0.45 n = 5, 000 3 92.4 92.4 99.6 99.6 100.0 100.0
6 90.9 90.8 99.6 99.6 100.0 100.0
12 88.9 88.9 99.8 99.8 100.0 100.0
15 88.8 88.5 99.8 99.8 100.0 100.0
1 99.7 99.7 100.0 100.0 n.a. n.a.
2 99.0 99.0 100.0 100.0 100.0 100.0

0.45 n = 10, 000 3 99.2 99.2 100.0 100.0 100.0 100.0
6 98.9 98.9 100.0 100.0 100.0 100.0
12 99.3 99.3 100.0 100.0 100.0 100.0
15 99.3 99.3 100.0 100.0 100.0 100.0
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Table 5

Empirical power (in %) of the modified and standard versions of the LB and BP tests in the
case of a weak FARIMA(0, d0, 1) defined by (19)–(21) with θ0 = (0, 0.2, d0). The nominal

asymptotic level of the tests is α = 5%. The number of replications is N = 1, 000.

d0 Length n Lag m LBsn BPsn LBw BPw LBs BPs

1 20.3 20.3 99.9 99.9 n.a. n.a.
2 56.7 56.6 99.9 99.9 99.9 99.9

0.05 n = 5, 000 3 69.1 69.1 99.9 99.9 99.9 99.9
6 75.9 75.9 99.9 99.9 99.9 99.9
12 71.9 71.4 99.9 99.9 99.9 99.9
15 68.5 68.0 99.9 99.9 99.9 99.9
1 60.0 60.0 100.0 100.0 n.a. n.a.
2 81.8 81.8 100.0 100.0 100.0 100.0

0.05 n = 10, 000 3 90.3 90.3 100.0 100.0 100.0 100.0
6 93.9 93.9 100.0 100.0 100.0 100.0
12 93.8 93.8 100.0 100.0 100.0 100.0
15 93.7 93.7 100.0 100.0 100.0 100.0
1 92.3 92.3 99.9 99.9 n.a. n.a.
2 86.1 86.0 98.6 98.6 99.8 99.8

0.20 n = 5, 000 3 82.3 82.3 99.2 99.1 99.8 99.8
6 80.0 80.0 98.9 98.9 99.9 99.9
12 73.1 72.8 98.7 98.7 99.6 99.6
15 68.3 68.0 98.4 98.4 99.5 99.5
1 99.2 99.2 100.0 100.0 n.a. n.a.
2 96.4 96.4 100.0 100.0 100.0 100.0

0.20 n = 10, 000 3 94.6 94.6 100.0 100.0 100.0 100.0
6 95.1 95.1 100.0 100.0 100.0 100.0
12 95.2 95.2 100.0 100.0 100.0 100.0
15 94.0 94.0 100.0 100.0 100.0 100.0
1 92.4 92.4 99.9 99.9 n.a. n.a.
2 85.6 85.6 98.6 98.6 99.8 99.8

0.45 n = 5, 000 3 82.1 82.0 99.3 99.3 99.8 99.8
6 80.3 80.3 98.9 98.9 99.9 99.9
12 73.0 72.7 98.7 98.7 99.6 99.6
15 68.2 68.1 98.4 98.4 99.5 99.5
1 99.2 99.2 100.0 100.0 n.a. n.a.
2 96.4 96.4 100.0 100.0 100.0 100.0

0.45 n = 10, 000 3 94.8 94.8 100.0 100.0 100.0 100.0
6 95.2 95.2 100.0 100.0 100.0 100.0
12 95.0 95.0 100.0 100.0 100.0 100.0
15 94.0 94.0 100.0 100.0 100.0 100.0
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4.3. Illustrative example

We now consider an application to the daily log returns (also simply called the
returns) of the Nikkei and Standard & Poor’s 500 indices (S&P 500, for short).
The returns are defined by rt = 100 log(pt/pt−1) where pt denotes the price
index of the S&P 500 index at time t. The observations of the S&P 500 (resp.
the Nikkei) index cover the period from January 3, 1950 to February 14, 2019
(resp. from January 5, 1965 to February 14, 2019). The length of the series is
n = 17, 391 (resp. n = 13, 319) for the S&P 500 (resp. the Nikkei) index. The
data can be downloaded from the website Yahoo Finance: http://fr.finance.
yahoo.com/.

In Financial Econometrics the returns are often assumed to be a white noise.
In view of the so-called volatility clustering, it is well known that the strong
white noise model is not adequate for these series (see for instance [24, 38, 5,
7]).

A long-range memory property of the stock market returns series was largely
investigated by [15] which shows that there are more correlation beetwen power
transformation of the absolute return |rt|v (v > 0) than returns themselves
(see also [3], [42], [2] and [35]). We choose here the case where v = 2 which
corresponds to the squared returns (r2

t )t≥1 process. The mean and the standard
deviation of (r2

t )t≥1 are 0, 9347 and 5, 0036 (resp. 1, 6167 and 5, 4759) for the
S&P 500 (resp. the Nikkei) index. Following a similar way as in [34] we denote
by (Xt)t≥1 the centered series of the squared returns, that is, Xt = r2

t − 0, 9347
(resp. Xt = r2

t − 1, 6167) for the S&P 500 (resp. the Nikkei) index. Figure 1
(resp. Figure 3) plots the returns and the sample autocorrelations of (Xt)t≥1
of the S&P 500 (resp. of the Nikkei). The centered squared returns (X)t≥1
have significant positive autocorrelations at least up to lag 80 (see Figure 1 and
Figure 3) which confirm the claim that stock market returns have long-term
memory (see for instance [15], for more details).

We first fit a FARIMA(1, d0, 1) model defined in (19) to the process (X)t≥1
of the S&P 500 and the Nikkei returns. Let θ̂SP500

n and θ̂Nikkei
n be respectively

the least squares estimators of the parameter θ0 = (a, b, d0)′ for the model (19)
in the case of the S&P 500 and the Nikkei. The least squares estimators were
obtained as

θ̂SP500
n =

⎛
⎝ −0.3371 [0.1105] (0.0023)

−0.1795 [0.0788] (0.0227)
0.2338 [0.0367] (0.0000)

⎞
⎠ and σ̂2

ε = 22.9076 × 10−8

and

θ̂Nikkei
n =

⎛
⎝ −0.0217 [0.3670] (0.9528)

0.1579 [0.3053] (0.6050)
0.3217 [0.0589] (0.0000)

⎞
⎠ and σ̂2

ε = 25.6844 × 10−8, (22)

where the estimated asymptotic standard errors obtained from Σθ̂ := J−1IJ−1

(respectively the p-values), of the estimated parameters (first column), are given

http://fr.finance.yahoo.com/
http://fr.finance.yahoo.com/
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Fig 1. Returns and the sample autocorrelations of squared returns of the S&P 500.

Fig 2. Autocorrelation of the FARIMA(1, 0.2338, 1) residuals for the squares of the S&P
500 returns. The horizontal dotted lines (blue color) correspond to the 5% significant lim-
its obtained under the strong FARIMA assumption. The solid lines (red color) and dashed
lines (green color) correspond also to the 5% significant limits under the weak FARIMA
assumption. The full lines correspond to the asymptotic significance limits for the residual
autocorrelations obtained in Theorem 2. The dashed lines (green color) correspond to the
self-normalized asymptotic significance limits for the residual autocorrelations obtained in
Theorem 7.
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Fig 3. Returns and the sample autocorrelations of squared returns of the Nikkei.

Fig 4. Autocorrelation of the FARIMA(0, 0.2132, 0) residuals for the squares of the Nikkei re-
turns. The horizontal dotted lines (blue color) correspond to the 5% significant limits obtained
under the strong FARIMA assumption. The solid lines (red color) and dashed lines (green
color) correspond also to the 5% significant limits under the weak FARIMA assumption.
The full lines correspond to the asymptotic significance limits for the residual autocorrela-
tions obtained in Theorem 2. The dashed lines (green color) correspond to the self-normalized
asymptotic significance limits for the residual autocorrelations obtained in Theorem 7.
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into brackets (respectively in parentheses). Note that for these series, the esti-
mated coefficients |ân| and |b̂n| are smaller than one. This is in accordance with
the assumptions that the power series a−1

θ and b−1
θ are well defined (remind that

the moving average polynomial is denoted bθ and the autoregressive polynomi-
als aθ). We also observe that the estimated long-range dependence coefficients
d̂n is significant for any reasonable asymptotic level and is inside (0, 0.5). So we
think that the assumption (A2) is satisfied and thus our asymptotic normality
theorem on the residual autocorrelations can be applied.

Concerning the S&P 500, the estimators of the parameters a and b are signif-
icant whereas it is not the case for the Nikkei (see (22)). In the Nikkei case, the
coefficients could reasonably be set to zero. So we adjust a FARIMA(0, d0, 0)
for the squares of Nikkei returns and (22) is reduced as

θ̂Nikkei
n =

(
0.2132 [0.0259] (0.0000)

)
and σ̂2

ε = 25.9793 × 10−8.

We thus apply Portmanteau tests to the residuals of FARIMA(1, d0, 1) (resp.
FARIMA(0, d0, 0)) model for the process (Xt)t≥1 of S&P 500 (resp. of Nikkei).
Table 6 (resp. Table 7) displays the statistics and the p-values of the standard
and modified versions of BP and LB tests of model (19). From Tables 6 and 7,
we draw the conclusion that:

• the strong FARIMA(1, 0.2338, 1) and FARIMA(0, 0.2132, 0) models are
rejected

• but the weak FARIMA(1, 0.2338, 1) and the weak FARIMA(0, 0.2132, 0)
models are not rejected.

Figure 2 (resp. Figure 4) displays the residual autocorrelations and their 5%
significance limits under the strong FARIMA and weak FARIMA assumptions.
In view of Figures 2 and 4, the diagnostic checking of residuals does not indicate
any inadequacy for the proposed tests. All of the sample autocorrelations should
lie between the bands (at 95%) shown as dashed lines (green color) and solid
lines (red color) for the modified tests, while the horizontal dotted (blue color)
for standard test indicate that strong FARIMA is not adequate. Figure 2 (resp.
Figure 4) confirms the conclusions drawn from Table 6 (resp. Table 7).

5. Proofs

The following proofs are quite technical and are adaptations of the arguments
used in [20], [19] and [7].

The results of [6] which will be needed for all the proofs are collected in the
following Subsection 5.1 in order to have a self-contained paper.

In all our proofs, K is a positive constant that may vary from line to line.

5.1. Preliminary results

In this subsection, we shall give some results on estimations of the coefficients
of formal power series that will arise in our study.
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Table 6

Modified and standard versions of Portmanteau tests to check the null hypothesis that the
S&P 500 squared returns follow a FARIMA(1, 0.2338, 1) model (19).

Lag m 1 2 3 4 5 6 7
ρ̂(m) 0.0002 −0.0033 −0.0350 −0.0393 0.0893 −0.0040 −0.0179
LBsn 0.0653 18.150 41.924 58.057 186.72 313.78 341.38
BPsn 0.0653 18.146 41.912 58.037 186.64 313.64 341.20
LBw 0.0008 0.1885 21.445 48.248 186.95 187.23 192.77
BPw 0.0008 0.1884 21.439 48.232 186.88 187.15 192.67
plb

w
0.8525 0.6985 0.0916 0.3137 0.0678 0.0717 0.0752

pbp

w
0.8525 0.6986 0.0917 0.3138 0.0679 0.0718 0.0753

plb

s
n.a. n.a. n.a. 0.0000 0.0000 0.0000 0.0000

pbp

s
n.a. n.a. n.a. 0.0000 0.0000 0.0000 0.0000

Lag m 8 9 10 11 12 13 14
ρ̂(m) 0.0047 0.0137 −0.0040 0.0295 0.0093 −0.0077 −0.0286
LBsn 397.27 397.38 415.22 465.52 468.76 567.87 573.02
BPsn 397.04 397.13 414.93 465.17 468.33 567.38 572.49
LBw 193.16 196.42 196.69 211.82 213.31 214.34 228.55
BPw 193.09 196.34 196.61 211.74 213.22 214.25 228.45
plb

w
0.0758 0.0786 0.0986 0.1053 0.1148 0.1226 0.1047

pbp

w
0.0758 0.0787 0.0987 0.1054 0.1150 0.1228 0.1048

plb

s
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

pbp

s
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Lag m 15 16 17 18 19 20 21
ρ̂(m) 0.0021 0.0086 0.0097 0.0137 −0.0023 0.0016 0.0132
LBsn 588.61 701.16 738.23 738.58 749.24 778.88 788.01
BPsn 588.04 700.44 737.42 737.73 748.33 777.90 786.97
LBw 228.63 229.91 231.54 234.83 234.92 234.97 238.00
BPw 228.52 229.80 231.44 234.72 234.81 234.86 237.89
plb

w
0.1079 0.1113 0.2212 0.2138 0.2127 0.2169 0.2324

pbp

w
0.1080 0.1114 0.2214 0.2140 0.2130 0.2171 0.2327

plb

s
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

pbp

s
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

We begin by recalling the following properties on power series. If for |z| ≤ R,
the power series f(z) =

∑
i≥0 aiz

i and g(z) =
∑

i≥0 biz
i are well defined, then

one has (fg)(z) =
∑

i≥0 ciz
i is also well defined for |z| ≤ R with the sequence

(ci)i≥0 which is given by c = a ∗ b where ∗ denotes the convolution product
between a and b defined by ci =

∑i
k=0 akbi−k =

∑i
k=0 ai−kbk. We will make

use of the Young inequality that states that if the sequence a ∈ �r1 and b ∈ �r2

are such that 1
r1

+ 1
r2

= 1 + 1
r with 1 ≤ r1, r2, r ≤ ∞, then

‖a ∗ b‖�r ≤ ‖a‖�r1 × ‖b‖�r2 .

Now we come back to the power series that arise in our context. Remind that
for the true value of the parameter,

aθ0(L)(1 − L)d0Xt = bθ0(L)εt. (23)
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Table 7

Modified and standard versions of Portmanteau tests to check the null hypothesis that the
Nikkei squared returns follow a FARIMA(0, 0.2132, 0) model as in (19) with a = b = 0.

Lag m 1 2 3 4 5 6 7
ρ̂(m) −0.0678 0.0400 0.0634 −0.0022 0.0165 0.0320 −0.0158
LBsn 5.7332 29.005 34.758 34.779 66.692 288.57 324.46
BPsn 5.7319 28.997 34.745 34.764 66.657 288.40 324.24
LBw 61.211 82.507 136.13 136.20 139.84 153.46 156.78
BPw 61.198 82.487 136.09 136.16 139.76 153.41 156.73
plb

w
0.1086 0.2186 0.1830 0.2551 0.3002 0.3519 0.3609

pbp

w
0.1086 0.2187 0.1831 0.2552 0.3003 0.3521 0.3611

plb

s
n.a. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

pbp

s
n.a. 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Lag m 8 9 10 11 12 13 14
ρ̂(m) 0.0295 0.0384 0.0121 0.0133 0.0503 0.0076 0.0068
LBsn 387.88 512.70 575.09 600.81 791.67 808.20 808.27
BPsn 387.59 512.28 574.57 600.22 790.83 807.29 807.30
LBw 168.41 188.08 190.01 192.36 226.12 226.89 227.50
BPw 168.35 187.10 189.93 192.29 225.10 226.76 227.39
plb

w
0.3627 0.3757 0.3802 0.3825 0.3320 0.3447 0.3526

pbp

w
0.3629 0.3759 0.3804 0.3827 0.3323 0.3450 0.3529

plb

s
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

pbp

s
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Lag m 15 16 17 18 19 20 21
ρ̂(m) 0.0538 0.0073 0.0173 0.0067 −0.0027 −0.0057 0.0153
LBsn 839.87 842.24 842.31 845.36 885.74 935.70 946.03
BPsn 838.80 841.10 841.11 844.10 884.35 934.15 944.40
LBw 266.16 266.88 270.85 271.45 271.56 271.99 275.13
BPw 265.99 266.71 270.68 271.28 271.38 271.82 274.94
plb

w
0.3105 0.3163 0.3161 0.3264 0.3289 0.3329 0.3366

pbp

w
0.3108 0.3166 0.3165 0.3268 0.3293 0.3333 0.3369

plb

s
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

pbp

s
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Thanks to the assumptions on the moving average polynomials bθ and the au-
toregressive polynomials aθ, the power series a−1

θ and b−1
θ are well defined.

Thus the functions εt(θ) defined in (2) can be written as

εt(θ) = b−1
θ (L)aθ(L)(1 − L)dXt (24)

= b−1
θ (L)aθ(L)(1 − L)d−d0a−1

θ0
(L)bθ0(L)εt (25)

and if we denote γ(θ) = (γi(θ))i≥0 the sequence of coefficients of the power
series b−1

θ (z)aθ(z)(1 − z)d, we may write for all t ∈ Z:

εt(θ) =
∑
i≥0

γi(θ)Xt−i. (26)
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In the same way, by (24) one has

Xt = (1 − L)−da−1
θ (L)bθ(L)εt(θ)

and if we denote η(θ) = (ηi(θ))i≥0 the coefficients of the power series (1 −
z)−da−1

θ (z)bθ(z) one has

Xt =
∑
i≥0

ηi(θ)εt−i(θ) . (27)

We strength the fact that γ0(θ) = η0(θ) = 1 for all θ.
For large j, [26] have shown that uniformly in θ the sequences γ(θ) and η(θ)

satisfy
∂kγj(θ)

∂θi1 · · · ∂θik
= O

(
j−1−d {log(j)}k

)
, for k = 0, 1, 2, 3, (28)

and
∂kηj(θ)

∂θi1 · · · ∂θik
= O

(
j−1+d {log(j)}k

)
, for k = 0, 1, 2, 3. (29)

One difficulty that has to be addressed is that (26) includes the infinite past
(Xt−i)i≥0 whereas only a finite number of observations (Xt)1≤t≤n are available
to compute the estimators defined in (4). The simplest solution is truncation
which amounts to setting all unobserved values equal to zero. Thus, for all θ ∈ Θ
and 1 ≤ t ≤ n one defines

ε̃t(θ) =
t−1∑
i=0

γi(θ)Xt−i =
∑
i≥0

γt
i (θ)Xt−i (30)

where the truncated sequence γt(θ) = (γt
i (θ))i≥0 is defined by

γt
i (θ) =

{
γi(θ) if 0 ≤ i ≤ t− 1 ,

0 otherwise.

In the following proposition, we show that the difference between εt(θ) and
ε̃t(θ) converges almost-surely to 0 as t → ∞ and this uniformly in θ. This
proposition shows that the convergence of the least squares estimator θ̂n in (4)
studied in [6] is not only in probability but it is almost-sure when d0 ∈ (0, 1/2).
This last confirmation can be easily demonstrated by following line by line the
proof of Theorem 1 in [20].

Proposition 8. Let (Xt)t∈Z be the second-order stationary process given by (1).
Under the standard assumptions of invertibility and identifiability on the au-
toregressive polynomial a and the moving-average polynomial b, we have almost-
surely

lim
t→∞

sup
θ∈Θδ

|εt(θ) − ε̃t(θ)| = 0. (31)
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Proof. From (26) and (30), it can be readily shown that for all θ ∈ Θδ and any
t ∈ Z,

εt(θ) − ε̃t(θ) =
∑
j≥0

γj(θ)Xt−j −
t−1∑
j=0

γj(θ)Xt−j

=
∑
j≥t

γj(θ)Xt−j

=
∑
k≥0

γt+k(θ)X−k.

Recall that for any sequence (Yn)n≥0 of random variables it holds that

Yn
a.s.−→

n→∞
Y ⇔ sup

k≥n
|Yk − Y | P−→

n→∞
0.

Hence supθ∈Θδ
|εt(θ) − ε̃t(θ)| converges almost-surely to 0 as soon as

sup
k≥t

sup
θ∈Θδ

|εk(θ) − ε̃k(θ)|

converges in probability to 0. By (28), one has for all β > 0 and for large t,

P

(
sup
k≥t

sup
θ∈Θδ

|εk(θ) − ε̃k(θ)| > β

)
= P

⎛
⎝sup

k≥t
sup
θ∈Θδ

∣∣∣∣∣∣
∑
j≥0

γk+j(θ)X−j

∣∣∣∣∣∣ > β

⎞
⎠

≤ P

⎛
⎝∑

j≥0
sup
k≥t

sup
θ∈Θδ

|γk+j(θ)| |X−j | > β

⎞
⎠

≤ K

β

(
sup
t∈Z

E |Xt|
)∑

j≥0

(
1

t + j

)1+d1

≤ KVar(X1)
βd1

(t− 1)−d1 −→
t→∞

0,

which completes the proof of the convergence in (31).

Since our assumptions are made on the noise in (1), it will be useful to
express the random variables εt(θ) and its partial derivatives with respect to θ,
as a function of (εt−i)i≥0.

From (25), there exists a sequence λ(θ) = (λi(θ))i≥0 such that

εt(θ) =
∞∑
i=0

λi (θ) εt−i (32)

where the sequence λ(θ) is given by the sequence of the coefficients of the power
series b−1

θ (z)aθ(z)(1 − z)d−d0a−1
θ0

(z)bθ0(z). Consequently λ(θ) = γ(θ) ∗ η(θ0) or,
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equivalently,

λi(θ) =
i∑

j=0
γj(θ)ηi−j(θ0). (33)

As in [30], it can be shown using Stirling’s approximation that there exists a
positive constant K such that

sup
θ∈Θδ

|λi(θ)| ≤ K sup
d∈[d1,d2]

i−1−(d−d0) ≤ Ki−1−(d1−d0) . (34)

Equation (32) and Inequality (34) imply that for all θ ∈ Θ the random
variable εt(θ) belongs to L

2, that the sequence (εt(θ))t is an ergodic sequence
and that for all t ∈ Z the function εt(·) is a continuous function. We proceed
in the same way as regard to the derivatives of εt(θ). More precisely, for any
θ ∈ Θ, t ∈ Z and 1 ≤ k, l ≤ p+ q+1 there exists sequences

.
λk(θ) = (

.
λi,k(θ))i≥1

and
..
λk,l(θ) = (

..
λi,k,l(θ))i≥1 such that

∂εt(θ)
∂θk

=
∞∑
i=1

.
λi,k (θ) εt−i (35)

∂2εt(θ)
∂θk∂θl

=
∞∑
i=1

..
λi,k,l (θ) εt−i. (36)

Of course it holds that
.
λk(θ) = ∂γ(θ)

∂θk
∗ η(θ0) and

..
λk,l(θ) = ∂2γ(θ)

∂θk∂θl
∗ η(θ0).

Similarly we have

ε̃t(θ) =
∞∑
i=0

λt
i (θ) εt−i, (37)

∂ε̃t(θ)
∂θk

=
∞∑
i=1

.
λ
t

i,k (θ) εt−i, (38)

∂2ε̃t(θ)
∂θk∂θl

=
∞∑
i=1

..
λ
t

i,k,l (θ) εt−i, (39)

where λt(θ) = γt(θ) ∗ η(θ0),
.
λ
t

k(θ) = ∂γt(θ)
∂θk

∗ η(θ0) and
..
λ
t

k,l(θ) = ∂2γt(θ)
∂θk∂θl

∗ η(θ0).
In order to handle the truncation error εt(θ)− ε̃t(θ), one needs some informa-

tion on the sequence λ(θ) − λt(θ). This is the purpose on the following lemma.

Lemma 1. For 2 ≤ r ≤ ∞, 1 ≤ k ≤ p + q + 1 and θ ∈ Θ, we have

‖ λ (θ) − λt (θ) ‖�r = O
(
t−1+ 1

r−(d−d0)
)

‖
.
λk (θ) −

.
λ
t

k (θ) ‖�r = O
(
t−1+ 1

r−(d−d0)
)
,

and
‖

..
λk,l (θ) −

..
λ
t

k,l (θ) ‖�r = O
(
t−1+ 1

r−(d−d0)
)
.
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Proof. We have
λ (θ) − λt (θ) =

(
γ(θ) − γt(θ)

)
∗ η(θ0).

In view of (29), the sequence η(θ0) belongs to �q for any q > 1/(1−d0). Young’s
inequality for convolution yields that for all r ≥ 2,

‖ λ (θ) − λt (θ) ‖�r ≤‖ γ(θ) − γt(θ) ‖�p‖ η(θ0) ‖�q (40)

with q = (1− (d0 +β))−1 > 1/(1−d0) and p = r/(1+r(d0 +β)), for some β > 0
arbitrary and sufficiently small. Thus there exists K such that ‖ η(θ0) ‖�q≤ K.
Since for any j ≥ 0,

γj(θ) − γt
j(θ) =

{
0 if 0 ≤ j ≤ t− 1

γj(θ) otherwise,

we obtain using (28) that

‖ λ (θ) − λt (θ) ‖�r ≤ K

( ∞∑
k=0

∣∣γk(θ) − γt
k(θ)

∣∣p)1/p

≤ K

( ∞∑
k=t

|γk(θ)|p
)1/p

≤ K

( ∞∑
k=t

1
kp+pd

)1/p

≤ K

(∫ ∞

t

1
xp+pd

dx
)1/p

≤ Kt−1−d+ 1
p

≤ Kt−1+ 1
r−(d−d0)+β ,

where the constant K varies from line to line. The conclusion follows by tending
β to 0.

The other two points of the lemma are shown in the same way as the first.
This is because from (28), the coefficients ∂γj(θ)/∂θk and ∂2γj(θ)/∂θk1∂θk2 are
equal to O(j−1−d+ζ) for any small enough ζ > 0. The proof of the lemma is
then complete.

Remark 5. The above lemma implies that the sequence
.
λk (θ0) −

.
λt

k (θ0) is
bounded and more precisely there exists K such that

sup
j≥1

∣∣∣∣ .λj,k (θ0) −
.
λt

j,k (θ0)
∣∣∣∣ ≤ K

t
, (41)

for any t ≥ 1 and any 1 ≤ k ≤ p + q + 1.

Lemma 2. For any 2 ≤ r ≤ ∞, 1 ≤ k ≤ p + q + 1 and θ ∈ Θ, there exists a
constant K such that

‖ λt (θ) ‖�r≤ K and ‖
.
λ
t

k (θ) ‖�r≤ K.



Validation of weak FARIMA models 1191

5.2. Proof of Proposition 1

First we remark that the asymptotic normality of the joint distribution of√
n(θ̂′n−θ′0, γ

′
m)′ can be established along the same lines as the proof of Theorem

2 in [6]. The detailed proof is omitted. From (6) and (11) we have

√
n

(
θ̂n − θ0

γm

)
= 1√

n

n∑
t=1

(
−2J−1(θ0)εt ∂

∂θ εt(θ0)

(εt−1, . . . , εt−m)′εt

)
+
(

oP(1)
0m

)

= 1√
n

n∑
t=1

Ut + oP(1),

where 0m is the vector of Rm×1 with zero components. It is clear that Ut is a
measurable function of εt, εt−1, . . . Thus by using the same arguments as in [6]
(see proof of Theorem 2), the central limit theorem (CLT) for strongly mixing
processes (Ut)t∈Z of [27] implies that (1/

√
n)
∑n

t=1 Ut has a limiting normal
distribution with mean 0 and covariance matrix Ξ.

For i ≥ 1, we denote Λi(θ0) = (
.
λi,1(θ0), . . . ,

.
λi,p+q+1(θ0))′. From (35) we

deduce that

∂εt(θ0)
∂θ

=
∞∑
i=1

Λi(θ0)εt−i. (42)

In view of (11) and (42), by applying the CLT for mixing processes we directly
obtain

Σθ̂ = lim
n→∞

Var
(

2J−1 1√
n

n∑
t=1

εt
∂

∂θ
εt(θ0)

)
:= J−1IJ−1

= 4J−1
∞∑

�,�′=1

Λ� (θ0) Λ′
�′ (θ0)

∞∑
h=−∞

E (εtεt−�εt−hεt−�′−h) J−1

= 4J−1
∞∑

�,�′=1

Λ� (θ0) Λ′
�′ (θ0) Γ(�, �′)J−1,

which gives the first block of the asymptotic covariance matrix of Proposition 1.
By the stationarity of (εt)t∈Z and Lebesgue’s dominated convergence theo-

rem, we obtain the (�, �′)-th entry of the matrix Γm,m:

lim
n→∞

Cov(
√
nγ(�),

√
nγ(�′)) = lim

n→∞
1
n

n∑
t=�+1

n∑
s=�′+1

E [εtεt−�εsεs−�′ ]

=
∞∑

h=−∞
E [εtεt−�εt−hεt−h−�′ ] := Γ(�, �′).

We thus have Γm,m = [Γ(�, �′)]1≤�,�′≤m.
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Finally, by the stationarity of (εt)t∈Z and (εt∂εt(θ0)/∂θ)t∈Z we have

Cov
(
−2J−1 1√

n

n∑
t=1

εt
∂

∂θ
εt(θ0),

√
nγ(�′)

)

= −2J−1 1
n

n∑
t=1

n∑
t′=�′+1

Cov
(
εt

∂

∂θ
εt(θ0), εt′εt′−�′

)

= −2J−1 1
n

n−1∑
h=−n+1

(n− |h|)Cov
(
εt
∂εt(θ0)
∂θ

, εt−hεt−�′−h

)
.

By the dominated convergence theorem and from (42), it follows that

lim
n→∞

Cov
(
−2J−1 1√

n

n∑
t=1

εt
∂

∂θ
εt(θ0),

√
nγ(�′)

)

= −2J−1
∞∑

h=−∞
Cov

(
εt

∂

∂θ
εt(θ0), εt−hεt−�′−h

)

= −2J−1
∑
j≥1

Λj (θ0)
∞∑

h=−∞
E (εtεt−jεt−hεt−�′−h)

= −2J−1
∑
j≥1

Λj (θ0) Γ(j, �′) := Σθ̂,γm
(·, �′).

It is clear that the existence of the above matrices is ensured by the existence
of Γ(�, �′) and

∑∞
�,�′=1 ‖Λ�(θ0)Λ′

�′(θ0)Γ(�, �′)‖. The proof will thus follow from
Lemma 3 below.

We now justify the existence of the Γ(�, �′) and
∑∞

�,�′=1 ‖Λ�(θ0)Λ′
�′(θ0)Γ(�, �′)‖

in the following result.

Lemma 3. Under the assumptions (A0) and (A3’) with τ = 4, we have for
(�, �′) �= (0, 0)

Γ(�, �′) =
∞∑

h=−∞
E (εtεt−�εt−hεt−h−�′) < ∞ (43)

and
∞∑

�,�′=1

‖Λ� (θ0) Λ′
�′ (θ0) Γ(�, �′)‖ < ∞. (44)

Proof. Note that, for all h ∈ Z and all (�, �′) �= (0, 0) we have

|E [εtεt−�εt−hεt−h−�′ ]|
≤ |cum (εt, εt−�, εt−h, εt−h−�′)| + |E [εtεt−�]| |E [εt−hεt−h−�′ ]|

+ |E [εtεt−h]| |E [εt−�εt−h−�′ ]| + |E [εtεt−h−�′ ]| |E [εt−�εt−h]| .
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Then, using the stationarity of (εt)t∈Z, and under the assumptions (A0) and
(A3’) with τ = 4 it follows that

Γ(�, �′) ≤
[
E
(
ε2t
)]2 +

∞∑
h=−∞

|cum (ε0, ε−�, ε−h, ε−h−�′)| ≤ K

which proves (43). Similarly, we obtain

∞∑
�,�′=1

‖Λ� (θ0) Λ′
�′ (θ0) Γ(�, �′)‖ ≤

∞∑
h=−∞

∞∑
�,�′=1

|cum (ε0, ε−�, ε−h, ε−h−�′)|

+
[
E
(
ε2t
)]2 ∞∑

�=1

‖Λ� (θ0)‖2 ≤ K

where we have used Lemma 2. The conclusion follows.

5.3. Proof of Theorem 2

The proof is divided in two steps.

5.3.1. Step 1: Taylor’s expansion of
√
nγ̂m and

√
nρ̂m

The aim of this step is to prove (8) and (9). First we prove that for h = 1, . . . ,m,

√
nγ̂(h) =

√
nγ(h) +

(
E

[
εt−h

∂

∂θ′
εt(θ0)

])√
n
(
θ̂n − θ0

)
+ oP(1). (45)

A Taylor expansion of (1/
√
n)
∑n

t=1+h ε̃t(·)ε̃t−h(·) around θ0 gives

√
nγ̂(h) = 1√

n

n∑
t=1+h

ε̃t(θ0)ε̃t−h(θ0) +
(

1
n

n∑
t=1+h

D̃t(θ∗n)
)
√
n
(
θ̂n − θ0

)

=
√
nγ(h) + (E [Dt(θ0)])

√
n
(
θ̂n − θ0

)
+ Rn,h,1 + Rn,h,2 + Rn,h,3,

where

D̃t(θ) = ∂ε̃t(θ)
∂θ′

ε̃t−h(θ) + ε̃t(θ)
∂ε̃t−h(θ)

∂θ′
,

Dt(θ0) = ∂εt(θ0)
∂θ′

εt−h + εt
∂εt−h(θ0)

∂θ′
,

Rn,h,1 = 1√
n

n∑
t=1+h

{ε̃t(θ0)ε̃t−h(θ0) − εt(θ0)εt−h(θ0)} ,

Rn,h,2 =
(

1
n

n∑
t=1+h

(
D̃t(θ∗n) −Dt(θ0)

))√
n
(
θ̂n − θ0

)
,
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Rn,h,3 =
(

1
n

n∑
t=1+h

Dt(θ0) − E [Dt(θ0)]
)
√
n
(
θ̂n − θ0

)
,

and where θ∗n is between θ̂n and θ0. Using the orthogonality between εt and any
linear combination of the past values of εt (in particular ∂εt−h/∂θ), we have

√
nγ̂(h) =

√
nγ(h) +

(
E

[
εt−h

∂

∂θ′
εt(θ0)

])√
n
(
θ̂n − θ0

)
+ Rn,h,1 + Rn,h,2 + Rn,h,3. (46)

Thus, to obtain (45), we just need to prove that in (46) the sequences of random
variables (Rn,h,1)n≥1, (Rn,h,2)n≥1 and (Rn,h,3)n≥1 converge in probability to 0.

One of the three above term is easy to handle. Indeed, by the ergodic theorem,
we have n−1∑n

t=1+h Dt(θ0) − E [Dt(θ0)] → 0 almost-surely as n → ∞. Thus
using the tightness of the sequence (

√
n(θ̂n − θ0))n≥1, we deduce that Rn,h,3 =

oP(1).
The proof of (45) will thus follow from Lemmas 4 and 5 in which the two

others terms Rn,h,1 and Rn,h,2 are discussed. These lemmas are stated and
proved hereafter (see Subsections 5.3.3 and 5.3.4).

We now remark that in Equation (45), E[εt−h(∂εt(θ0)/∂θ′)] is the line h of
the matrix Ψm ∈ R

m×(p+q+1) defined by (7). So for h = 1, . . . ,m, Equation (45)
becomes

√
nγ̂m =

(√
nγ̂(1), . . . ,

√
nγ̂(m)

)′ =
√
nγm + Ψm

√
n
(
θ̂n − θ0

)
+ oP(1).

Therefore the Taylor expansion (8) of γ̂m is proved.
Now, it is clear that the asymptotic distribution of the residual autocovari-

ances
√
nγ̂m is related to the asymptotic behavior of

√
n(θ̂′n − θ′0, γ

′
m)′ obtained

in Subsection 5.2. We come back to the vector ρ̂m = (ρ̂(1), . . . , ρ̂(m))′. Note
that from (45), we have

√
n(γ̂(0)− γ(0)) = oP(1). Applying the CLT for mixing

processes (see [27]) to the process (ε2t )t∈Z, we obtain

√
n
(
σ̂2
ε − σ2

ε

)
= 1√

n

n∑
t=1

(
ε2t − E[ε2t ]

)
+ oP(1) in law−−−−→

n→∞
N
(

0,
∞∑

h=−∞
Cov

(
ε2t , ε

2
t−h

))
.

So we have
√
n(σ̂2

ε − σ2
ε ) = OP(1) and

√
n(γ(0)− σ2

ε ) = OP(1). Now, using (14)
and the ergodic theorem, we have

n

(
γ̂(h)
γ̂(0) − γ̂(h)

σ2
ε

)
=

√
nγ̂(h)

√
n
(
σ2
ε − γ̂(0)

)
σ2
ε γ̂(0) = OP(1),

which means that
√
nρ̂(h) =

√
nγ̂(h)/σ2

ε + OP(n−1/2). For h = 1, . . . ,m, it
follows that

√
nρ̂m =

√
nγ̂m
σ2
ε

+ oP(1),

and the Taylor expansion (9) of ρ̂m is proved. This ends our first step.
The next step deals with the asymptotic distributions of

√
nγ̂m and

√
nρ̂m.
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5.3.2. Step 2: asymptotic distributions of
√
nγ̂m and

√
nρ̂m

The joint asymptotic distribution of
√
nγm and

√
n(θ̂n − θ0) shows that

√
nγ̂m

has a limiting normal distribution with mean zero and covariance matrix

lim
n→∞

Var
(√

nγ̂m
)

= lim
n→∞

Var
(√

nγm
)

+ Ψm lim
n→∞

Var
(√

n(θ̂n − θ0)
)

Ψ′
m

+ Ψm lim
n→∞

Cov
(√

n(θ̂n − θ0),
√
nγm

)
+ lim

n→∞
Cov

(√
nγm,

√
n(θ̂n − θ0)

)
Ψ′

m

= Γm,m + ΨmΣθ̂Ψ
′
m + ΨmΣθ̂,γm

+ Σ′
θ̂,γm

Ψ′
m.

Consequently, we have

lim
n→∞

Var
(√

nρ̂m
)

= lim
n→∞

Var
(√

n
γ̂m
σ2
ε

)
= 1

σ4
ε

Σγ̂m .

This ends our second step and the proof is completed.
In the following, we justify the convergence of Rn,h,1, Rn,h,2.

5.3.3. Step 3: convergence of Rn,h,1

Lemma 4. Under the assumptions of Theorem 2, the sequence of random vari-
ables

Rn,h,1 = 1√
n

n∑
t=1+h

{ε̃t(θ0)ε̃t−h(θ0) − εt(θ0)εt−h(θ0)} (47)

tends to zero in probability as n → ∞.

Proof. Throughout this proof, θ = (θ1, . . . , θp+q, d)′ ∈ Θδ is such that d0 < d ≤
d2 where d2 is the upper bound of the support of the long-range parameter d0.
Let

R1
n,h,1 = 1√

n

n∑
t=1+h

{ε̃t(θ0) − εt(θ0)} ε̃t−h(θ0) (48)

and

R2
n,h,1 = 1√

n

n∑
t=1+h

εt(θ0) {ε̃t−h(θ0) − εt−h(θ0)} . (49)

The lemma will be proved as soon as we show that R1
n,h,1 and R2

n,h,1 tend to
zero in probability when n → ∞.

Proof of the convergence in probability of R1
n,h,1 The arguments follow

the one of Lemma 5 in [6] in a simpler context. The proof is quite long so we
divide it in four steps.
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� Step 1: preliminaries We have

R1
n,h,1 = 1√

n

n∑
t=1+h

{ε̃t(θ0) − ε̃t(θ)} ε̃t−h(θ0)

+ 1√
n

n∑
t=1+h

{ε̃t(θ) − εt(θ)} ε̃t−h(θ0)

+ 1√
n

n∑
t=1+h

{εt(θ) − εt(θ0)} ε̃t−h(θ0)

= ωn,h,1(θ) + ωn,h,2(θ) + ωn,h,3(θ),

where

ωn,h,1(θ) = 1√
n

n∑
t=1+h

{ε̃t(θ0) − ε̃t(θ)} ε̃t−h(θ0),

ωn,h,2(θ) = 1√
n

n∑
t=1+h

{ε̃t(θ) − εt(θ)} ε̃t−h(θ0)

and

ωn,h,3(θ) = 1√
n

n∑
t=1+h

{εt(θ) − εt(θ0)} ε̃t−h(θ0).

Therefore, if we prove that the two sequences of random variables (ωn,h,2(θ))n≥1
and (ωn,h,1(θ) + ωn,h,3(θ))n≥1 converge in probability towards 0, then the con-
vergence in probability of R1

n,h,1 to zero will be true.

� Step 2: convergence in probability of (ωn,h,2(θ))n≥1 to 0 For all β > 0, we
have

P (|ωn,h,2| ≥ β) ≤ 1√
nβ

n∑
t=1+h

E [|ε̃t(θ) − εt(θ)| |ε̃t−h(θ0)|]

≤ 1√
nβ

n∑
t=1+h

‖ε̃t(θ) − εt(θ)‖L2 ‖ε̃t−h(θ0)‖L2 .

First, from (37) and using Lemma 2, we have

‖ε̃t−h(θ0)‖2
L2 = E

⎡
⎣( ∞∑

i=0
λt
i (θ0) εt−i−h

)2
⎤
⎦

=
∞∑
i=1

∞∑
j=1

λt
i (θ0)λt

j (θ0)E [εt−i−hεt−j−h] + σ2
ε

{
λt

0 (θ0)
}2
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= σ2
ε

∞∑
i=1

{
λt
i (θ0)

}2 + σ2
ε

≤ K. (50)

In view of (32), (37) and (50), we may write

P (|ωn,h,2(θ)| ≥ β)

≤ K

β
√
n

n∑
t=1+h

(
E

[
(ε̃t−h(θ) − εt−h(θ))2

])1/2

≤ K

β
√
n

n∑
t=1+h

⎛
⎝∑

i≥0

∑
j≥0

(
λt
i(θ) − λi(θ)

) (
λt
j(θ) − λj(θ)

)
E [εt−i−hεt−j−h]

⎞
⎠

1/2

≤ σεK

β
√
n

n∑
t=1

⎛
⎝∑

i≥0

(
λt
i(θ) − λi(θ)

)2⎞⎠
1/2

≤ σεK

β
√
n

n∑
t=1

∥∥λ(θ) − λt(θ)
∥∥
�2
.

We use Lemma 1, the fact that d > d0 and the fractional version of Cesàro’s
Lemma2 to obtain

P (|ωn,h,2(θ)| ≥ β) ≤ σεK

β

1√
n

n∑
t=1

1
t1/2+(d−d0)

−−−−→
n→∞

0.

This proves the expected convergence in probability.

� Step 3: convergence of (ωn,h,1(θ)+ωn,h,3(θ))n≥1 Note now that, for all n ≥ 1,
we have

ωn,h,1(θ) + ωn,h,3(θ) = 1√
n

n∑
t=1+h

{
(εt(θ) − ε̃t(θ)) − (εt(θ0) − ε̃t(θ0))

}
ε̃t−h(θ0).

By the mean value theorem, there exists 0 < cω < 1 such that∣∣∣(εt(θ) − ε̃t(θ)) − (εt(θ0) − ε̃t(θ0))
∣∣∣

≤
∥∥∥∥∂(εt − ε̃t)

∂θ
((1 − cω)θ + cωθ0)

∥∥∥∥
Rp+q+1

‖θ − θ0‖Rp+q+1 . (51)

2Recall that the fractional version of Cesàro’s Lemma states that for (ht)t a sequence of
positive real numbers, κ > 0 and c ≥ 0 we have

lim
t→∞

htt
1−κ = |κ| c ⇒ lim

n→∞
1
nκ

n∑
t=0

ht = c.
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Following the same method as the one in Step 2, we obtain

E

(
(εt(θ) − ε̃t(θ)) − (εt(θ0) − ε̃t(θ0))

)2

≤ ‖θ − θ0‖2
Rp+q+1

p+q+1∑
k=1

E

[∣∣∣∣∂(εt − ε̃t)
∂θk

((1 − cω)θ + cωθ0)
∣∣∣∣
2
]

≤ ‖θ − θ0‖2
Rp+q+1

p+q+1∑
k=1

sup
θ

E

[∣∣∣∣∂(εt − ε̃t)
∂θk

(θ)
∣∣∣∣
2
]

≤ ‖θ − θ0‖2
Rp+q+1

p+q+1∑
k=1

σ2
ε sup

θ

∥∥∥∥( .
λk −

.
λ
t

k)(θ)
∥∥∥∥

2

�2

≤ K ‖θ − θ0‖2
Rp+q+1 sup

d;d0≤d≤d2

(
1

t1/2+(d−d0)

)2

≤ K ‖θ − θ0‖2
Rp+q+1

1
t
, (52)

where we have used the fact that the function

θ �→ E

[∣∣∣∣∂(εt − ε̃t)
∂θk

(θ)
∣∣∣∣
2
]

is bounded and continuous. By (50) and (52), it follows that

P (|ωn,h,1(θ) + ωn,h,3(θ)| ≥ β) ≤ K

β
‖θ − θ0‖Rp+q+1

1√
n

n∑
t=1

1
t1/2

and the fractional version of Cesàro’s Lemma implies

lim
n→∞

P (|ωn,h,1(θ) + ωn,h,3(θ)| ≥ β) ≤ K

β
‖θ − θ0‖Rp+q+1 . (53)

� Step 4: end of the proof of the convergence in probability of R1
n,h,1 to 0 For

any ε > 0, we choose θ such that (K/β) ‖θ − θ0‖Rp+q+1 ≤ ε. Then, from (53),
there exists n0 such that for all n ≥ n0,

P (|ωn,h,1(θ) + ωn,h,3(θ)| ≥ β) ≤ ε.

By Step 2, one also has for n ≥ n0

P (|ωn,h,2(θ)| ≥ β) ≤ ε.

Therefore, for all n ≥ n0,

P
(∣∣R1

n,h,1
∣∣ ≥ 2β

)
≤ P (|ωn,h,1(θ) + ωn,h,3(θ)| ≥ β) + P (|ωn,h,2(θ)| ≥ β) ≤ ε

and the expected convergence is proved.
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Proof of the convergence in probability of R2
n,h,1 Under Assumption

(A3) with τ = 2 it follows that εt(θ0) belongs to L
2. Thus the proof of the

convergence in probability of R2
n,h,1 to zero is shown in the same way as the

proof of the convergence in probability of R1
n,h,1 to 0.

Conclusion: convergence in probability of Rn,h,1 The conclusion is a
consequence of the above convergences.

5.3.4. Step 4: convergence of Rn,h,2

Lemma 5. Under the assumptions of Theorem 2, the sequence of random vari-
ables

Rn,h,2 =
(

1
n

n∑
t=1+h

(
D̃t(θ∗n) −Dt(θ0)

))√
n
(
θ̂n − θ0

)
(54)

tends to zero in probability as n → ∞.

Proof. Since (
√
n(θ̂n−θ0))n≥1 is a tight sequence, we have

√
n(θ̂n−θ0) = OP(1).

Hence, to prove the convergence in probability of (Rn,h,2)n≥1 to 0, it suffices to
show that

1
n

n∑
t=1+h

(
D̃t(θ∗n) −Dt(θ0)

)
= oP(1). (55)

This will be proved using Lemma 1 and Cesàro’s Lemma. Nevertheless, the proof
is quite long so we divide it in four steps.

� Step 1: preliminaries We have

1
n

n∑
t=1+h

(
D̃t(θ∗n) −Dt(θ0)

)
= Tn,h,1(θ∗n) + Tn,h,2(θ∗n) + Tn,h,3(θ∗n)

+ Tn,h,4(θ∗n) + Tn,h,5(θ∗n),

where

Tn,h,1(θ) = 1
n

n∑
t=1+h

∂ε̃t(θ)
∂θ′

(ε̃t−h(θ) − εt−h(θ)) ,

Tn,h,2(θ) = 1
n

n∑
t=1+h

(ε̃t(θ) − εt(θ))
∂ε̃t−h(θ)

∂θ′
,

Tn,h,3(θ) = 1
n

n∑
t=1+h

(
∂ε̃t(θ)
∂θ′

− ∂εt(θ)
∂θ′

)
εt−h(θ),

Tn,h,4(θ) = 1
n

n∑
t=1+h

εt(θ)
(
∂ε̃t−h(θ)

∂θ′
− ∂εt−h(θ)

∂θ′

)
and
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Tn,h,5(θ) = 1
n

n∑
t=1+h

(Dt(θ) −Dt(θ0)) .

Therefore, if we prove that the five sequences of random variables (Tn,h,i(θ∗n))n≥1
(for i = 1, . . . , 5) converge in probability towards 0, then (55) will be true.

� Step 2: convergence in probability of (Tn,h,1(θ∗n))n≥1 to 0 For all β > 0,
we have

P (‖Tn,h,1(θ∗n)‖ ≥ β) ≤ 1
nβ

n∑
t=1+h

E

[∥∥∥∥∂ε̃t(θ∗n)
∂θ′

∥∥∥∥ |ε̃t−h(θ∗n) − εt−h(θ∗n)|
]

≤ 1
nβ

sup
θ∈Θδ

n∑
t=1+h

E

[∥∥∥∥∂ε̃t(θ)∂θ′

∥∥∥∥ |ε̃t−h(θ) − εt−h(θ)|
]

≤ 1
nβ

sup
θ∈Θδ

n∑
t=1+h

‖ε̃t−h(θ) − εt−h(θ)‖
L2

∥∥∥∥∂ε̃t(θ)∂θ′

∥∥∥∥
L2

.

First, from (37) and using Lemma 2 we have for 1 ≤ k ≤ p + q + 1
∥∥∥∥ ∂

∂θk
ε̃t(θ)

∥∥∥∥
2

L2
= E

⎡
⎣( ∞∑

i=1

.
λ
t

i,k(θ)εt−i

)2
⎤
⎦

=
∞∑
i=1

∞∑
j=1

.
λ
t

i,k(θ)
.
λ
t

j,k(θ)E [εt−iεt−j ]

= σ2
ε

∞∑
i=1

{
.
λ
t

i,k(θ)
}2

≤ K. (56)

In view of (32), (37), (56) and following the same approach used in Step 2 of
Lemma 4 we have

P (|Tn,h,1(θ∗n)| ≥ β)

≤ K

βn
sup
θ∈Θδ

n∑
t=1+h

(
E

[
(ε̃t−h(θ) − εt−h(θ))2

])1/2

≤ K

βn
sup
θ∈Θδ

n∑
t=1+h

⎛
⎝∑

i≥0

∑
j≥0

(
λt
i(θ)−λi(θ)

)(
λt
j(θ) − λj(θ)

)
E [εt−i−hεt−j−h]

⎞
⎠

1/2

≤ σεK

βn
sup
θ∈Θδ

n∑
t=1

⎛
⎝∑

i≥0

(
λt
i(θ) − λi(θ)

)2⎞⎠
1/2

≤ σεK

βn
sup
θ∈Θδ

n∑
t=1

∥∥λ(θ) − λt(θ)
∥∥
�2
.
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We use Lemma 1, the fact that |d2−d1| < 1/2 and the Cesàro Lemma to obtain

P (|Tn,h,1(θ∗n)| ≥ β) ≤ σεK

β

1
n

n∑
t=1

1
t1/2+(d2−d1)

−−−−→
n→∞

0.

This proves the expected convergence in probability of Tn,h,1(θ∗n).
The same calculations holds for the sequences of random variables

(Tn,h,2(θ∗n))n≥1, (Tn,h,3(θ∗n))n≥1 and (Tn,h,4(θ∗n))n≥1.

� Step 3: convergence in probability of (Tn,h,5(θ∗n))n≥1 to 0 For 1 ≤
i, j ≤ p + q + 1 and in view of (26), (28), we have

sup
θ∈Θδ

∣∣∣∣ ∂

∂θi
εt(θ)

∂

∂θj
εt(θ)

∣∣∣∣ = sup
θ∈Θδ

∣∣∣∣∣∣
∑

k1,k2≥1

∂

∂θi
γk1(θ)

∂

∂θj
γk2(θ)Xt−k1Xt−k2

∣∣∣∣∣∣
≤

∑
k1,k2≥1

sup
θ∈Θδ

∣∣∣∣ ∂

∂θi
γk1(θ)

∣∣∣∣ sup
θ∈Θδ

∣∣∣∣ ∂

∂θj
γk2(θ)

∣∣∣∣ |Xt−k1 | |Xt−k2 |

≤ K
∑

k1,k2≥1

log(k1)k−1−d1
1 log(k2)k−1−d1

2 |Xt−k1 | |Xt−k2 | .

Consequently, we obtain

Eθ0

[
sup
θ∈Θδ

∣∣∣∣ ∂

∂θi
εt(θ)

∂

∂θj
εt(θ)

∣∣∣∣
]

≤ K
∑

k1,k2≥1
log(k1)k−1−d1

1 log(k2)k−1−d1
2 sup

t∈Z

Eθ0 |Xt|2 ≤ K. (57)

Following the same approach used to obtain (57), we have

Eθ0

[
sup
θ∈Θδ

∣∣∣∣εt(θ) ∂2

∂θi∂θj
εt(θ)

∣∣∣∣
]
< ∞. (58)

A Taylor expansion of Dt(·) around θ0 implies that

‖Tn,h,5(θ∗n)‖ ≤ 1
n

n∑
t=1

sup
θ∈Θδ

∥∥∥∥ ∂

∂θ
Dt(θ)

∥∥∥∥ ‖θ∗∗n − θ0‖

≤ ‖θ∗∗n − θ0‖ ×
1
n

n∑
t=1

sup
θ∈Θδ

∥∥∥∥ ∂

∂θ
Dt(θ)

∥∥∥∥
with θ∗∗n between θ0 and θ∗n. The almost-sure convergence of (θ̂n−θ0)n≥1 implies
taht θ∗∗n − θ0 tends to 0 almost-surely. From (57) and (58), it follows that
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E

[
sup
θ∈Θδ

∥∥∥∥ ∂

∂θ
Dt(θ)

∥∥∥∥
]

= E

[
sup
θ∈Θδ

∥∥∥∥εt−h(θ) ∂2

∂θ∂θ′
εt(θ) + ∂

∂θ
εt−h(θ) ∂

∂θ′
εt(θ)

+ ∂

∂θ
εt(θ)

∂

∂θ′
εt−h(θ) + εt(θ)

∂2

∂θ∂θ′
εt−h(θ)

∥∥∥∥
]

≤ K. (59)

Equation (59), the ergodic theorem and the almost-sure convergence of (θ̂n −
θ0)n≥1 to 0 imply that Tn,h,5(θ∗n) tends to 0 almost-surely.

� Step 4: end of the proof of the convergence in probability of Rn,h,2
to zero By Step 2 and 3 we deduce that

Rn,h,2 = oP(1)

and the convergence in probability is proved.
The proof of the lemma is completed.

5.4. Proof of Remark 4

We suppose that (H1) holds true. One may rewrite the above arguments in
order to prove that there exists a nonsingular matrix D∗ such that

√
n(ρ̂m − ρm) = 1

σ2
ε

√
n(γ̂m − γ0

m) + oP(1) d−−−−→
n→∞

N (0, D∗) . (60)

The matrix D∗ is given by

D∗ =
[
Σγ0

m
+ C∗

mJ−1IJ−1C∗
m

′ + C∗
mΣθ̂n,γ0

m
+ Σ′

θ̂n,γ0
m
C∗

m
′
]
/σ4

ε ,

where the matrices Σγ0
m

and Σθ̂n,γ0
m

are obtained from the asymptotic distribu-
tion of

1√
n

n∑
t=1

U∗
t := 1√

n

n∑
t=1

(
−2J−1εt

∂
∂θ εt

(εtεt−1 − γ0(1), . . . , εtεt−m − γ0(m))′

)

d−−−−→
n→∞

N (0,E
[
U∗
t U

∗
t
′]),

with

E
[
U∗
t U

∗
t
′] =:

(
J−1IJ−1 Σθ̂n,γ0

m

Σ′
θ̂n,γ0

m

Σγ0
m

)
.

For h = 1, . . . ,m the row h of the matrix C∗
m is given by

c∗h := E

[
εt−h

∂εt
∂θ

+ εt
∂εt−h

∂θ

]
.
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We point out the fact that under (H1),

E

[
εt
∂εt−h

∂θ

]
�= 0

whereas it vanishes under (H0). Thus we have

∂γm
∂θ

−→
n→∞

C∗
m :=

⎛
⎜⎝

c∗1
′

...
c∗m

′

⎞
⎟⎠ .

Now we write
√
nρ̂m =

√
n(ρ̂m − ρm) +

√
nρm

= 1
σ2
ε

[√
n(γ̂m − γ0

m) +
√
nγ0

m

]
+ oP(1) .

Then it holds that

nρ̂′mρ̂m = nγ̂′
mγ̂m
σ4
ε

+ oP(1)

= 1
σ4
ε

[
n(γ̂m − γ0

m)′(γ̂m − γ0
m) + 2n(γ̂m − γ0

m)′γ0
m + nγ0

m
′
γ0
m

]
+ oP(1)

(61)

By the ergodic theroem, (γ̂m − γ0
m)′γ0

m = oP(1). By [50, Lemma 17.1], the
convergence (60) implies that

n(γ̂m − γ0
m)′(γ̂m − γ0

m) d−−−−→
n→∞

m∑
i=1

λiZ
2
i

where (Zi)1≤i≤m are i.i.d. with N (0, 1) laws and the λi’s are the eigenvalues of
the matrix σ4

εD
∗. Reporting these convergences in (61), we deduce that

γ̂′
mγ̂m = (γ̂m − γ0

m)′(γ̂m − γ0
m) + 2(γ̂m − γ0

m)′γ0
m + γ0

m
′
γ0
m + oP(1)

= γ0
m

′
γ0
m + oP(1)

and the remark is proved.

5.5. Proof of Proposition 5

The following proofs are quite technical and are adaptations of the arguments
used in [7].

To prove the invertibility of the normalized matrix Cm, we need to introduce
the following notation.
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Let St(i) be the i-th component of the vector St =
∑t

j=1 (ΛUj − γm) ∈ R
m.

We remark that

St−1(i) = St(i) −
p+q+1∑
k=1

δi,kεt
∂

∂θk
εt(θ0) − εtεt−i + γ(i), (62)

where δi,k is the (i, k)-th entry of the m× (p + q + 1) matrix Δ := −2ΨmJ−1.
If the matrix Cm is not invertible, there exists some real constants c1, . . . , cm

not all equal to zero, such that we have
m∑
i=1

m∑
j=1

cjCm(j, i)ci = 1
n2

n∑
t=1

m∑
i=1

m∑
j=1

cjSt(j)St(i)ci = 1
n2

n∑
t=1

(
m∑
i=1

ciSt(i)
)2

= 0,

which implies that
∑m

i=1 ciSt(i) = 0 for all t ≥ 1.
Then by (62), it would imply that

m∑
i=1

p+q+1∑
k=1

ciδi,kεt
∂

∂θk
εt(θ0) +

m∑
i=1

ciεtεt−i =
m∑
i=1

ciγ(i). (63)

By the ergodic Theorem, we also have
∑m

i=1 ciγ(i) → 0 almost-surely as n goes
to infinity.

Consequently replacing this convergence in (63) implies that for all t ≥ 1
m∑
i=1

p+q+1∑
k=1

ciδi,kεt
∂

∂θk
εt(θ0) +

m∑
i=1

ciεtεt−i = 0, a.s.

Using (32), it yields that

εt

⎧⎨
⎩
∑
�≥1

(
m∑
i=1

p+q+1∑
k=1

ciδi,k
.
λ�,k (θ0)

)
εt−� +

m∑
�=1

c�εt−�

⎫⎬
⎭ = 0, a.s.

Or equivalently,

εt

{
m∑
�=1

(
m∑
i=1

ci

p+q+1∑
k=1

δi,k
.
λ�,k (θ0) + c�

)
εt−�

+
∑

�≥m+1

(
m∑
i=1

ci

p+q+1∑
k=1

δi,k
.
λ�,k (θ0)

)
εt−�

⎫⎬
⎭ = 0, a.s.

Thanks to Assumption (A4), εt has a positive density in some neighborhood of
zero and then εt �= 0 almost-surely. Hence we obtain

m∑
�=1

(
m∑
i=1

ci

p+q+1∑
k=1

δi,k
.
λ�,k (θ0) + c�

)
εt−�

+
∑

�≥m+1

(
m∑
i=1

ci

p+q+1∑
k=1

δi,k
.
λ�,k (θ0)

)
εt−� = 0, a.s.
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Since the variance of the innovation process in not equal to zero, we deduce that⎧⎪⎨
⎪⎩

∑m
i=1 ci

∑p+q+1
k=1 δi,k

.
λ�,k (θ0) + c� = 0 for all � ∈ {1, . . . ,m}

∑m
i=1 ci

∑p+q+1
k=1 δi,k

.
λ�,k (θ0) = 0 for all � ∈ {m + 1, . . . } .

Then we would have c1 = · · · = cm = 0 which is impossible. Thus we have a
contradiction and the matrix Cm ∈ R

m×m is non singular.

5.6. Proof of Theorem 6

We recall that the Skorokhod space D
�[0,1] is the set of R�-valued functions on

[0,1] which are right-continuous and have left limits everywhere. It is endowed
with the Skorokhod topology and the weak convergence on D

�[0,1] is mentioned
by D

�

−→. The integer part of x will be denoted by �x�.
The proof is divided in two steps.

5.6.1. Functional central limit theorem for (ΛUt)t≥1

In view of (8) and (13), we deduce that
√
nγ̂m =

√
nγm +

√
nΨm

(
θ̂n − θ0

)
+ oP(1)

= 1√
n

n∑
t=1

U2t + Ψm

(
1√
n

n∑
t=1

U1t + oP(1)
)

+ oP(1)

= 1√
n

n∑
t=1

ΛUt + oP(1). (64)

Now, it is clear that the asymptotic behaviour of γ̂m is related to the limit
distribution of Ut = (U ′

1t, U
′
2t)′. Our first goal is to show that there exists a

lower triangular matrix Π with nonnegative diagonal entries such that

1√
n


nr�∑
t=1

ΛUt
D

m

−→
n→∞

(ΠΠ′)1/2 Bm(r), (65)

where (Bm(r))r≥0 is a m-dimensional standard Brownian motion. Using (32),
Ut can be rewritten as

Ut =
(
− 2

{ ∞∑
i=1

.
λi,1 (θ0) εtεt−i, . . . ,

∞∑
i=1

.
λi,p+q+1 (θ0) εtεt−i

}
J−1′

,

εtεt−1, . . . , εtεt−m

)′
.

The non-correlation between εt’s implies that the process (Ut)t∈Z of Rp+q+1+m

is centered. In order to apply the functional central limit theorem for strongly
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mixing process (see [27]), we need to identify the asymptotic covariance matrix
in the classical central limit theorem for the sequence (Ut)t∈Z. It is proved in
Proposition 1 that

1√
n

n∑
t=1

Ut
in law−−−−→
n→∞

N (0,Ξ := 2πfU (0)) ,

where fU (0) is the spectral density of the stationary process (Ut)t∈Z evaluated
at frequency 0. The existence of the matrix Ξ has already been discussed in
Lemma 3.

Since the matrix Ξ is positive definite, it can be factorized as Ξ = ΥΥ′, where
the (p+ q+1+m)× (p+ q+1+m) lower triangular matrix Υ has nonnegative
diagonal entries. Therefore, we have

1√
n

n∑
t=1

ΛUt
in law−−−−→
n→∞

N (0,ΛΞΛ′) ,

and the new variance matrix can also been factorized as ΛΞΛ′ = (ΛΥ)(ΛΥ)′ :=
ΠΠ′, where Π ∈ R

m×(p+q+1). Thus

n−1/2
n∑

t=1
(ΠΠ′)−1/2ΛUt

in law−→
n→∞

N (0, Im),

where (ΠΠ′)−1/2 is the Moore-Penrose inverse (see [40], p. 36) of (ΠΠ′)1/2.
Using the same arguments as in the proof of Theorem 2 in [6], the asymptotic

distribution of n−1/2∑n
t=1 Ut when n tends to infinity is obtained by introducing

the random vector Uk
t defined for any positive integer k by

Uk
t =

(
− 2

{
k∑

i=1

.
λi,1 (θ0) εtεt−i, . . . ,

k∑
i=1

.
λi,p+q+1 (θ0) εtεt−i

}
J−1′

,

εtεt−1, . . . , εtεt−m

)′
.

Since Uk
t depends on a finite number of values of the noise-process (εt)t∈Z, it also

satisfies a mixing property (see Theorem 14.1 in [12], p. 210). Then applying
the central limit theorem for strongly mixing process of [27] shows that its
asymptotic distribution is normal with zero mean and variance matrix Ξk that
converges when k tends to infinity to Ξ. More precisely we have

1√
n

n∑
t=1

Uk
t

in law−−−−→
n→∞

N (0,Ξk) .

The above arguments also apply to matrix Ξk with some matrix Πk which is
defined analogously as Π. Consequently we obtain

1√
n

n∑
t=1

ΛUk
t

in law−−−−→
n→∞

N (0,ΛΞkΛ′)

and we also have n−1/2∑n
t=1(ΠkΠ′

k)−1/2ΛUk
t

in law−−−−→
n→∞

N (0, Im).
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Now we are able to apply the functional central limit theorem (see [27]) and
we obtain that

1√
n


nr�∑
t=1

(ΠkΠ′
k)−1/2ΛUk

t
D

m

−→
n→∞

Bm(r).

Since for all t ∈ {1, . . . , �nr�} we write

(ΠΠ′)−1/2ΛUk
t =

(
(ΠΠ′)−1/2 − (ΠkΠ′

k)−1/2
)

ΛUk
t + (ΠkΠ′

k)−1/2ΛUk
t ,

we obtain the following weak convergence on D
m [0, 1]:

1√
n


nr�∑
t=1

(ΠΠ′)−1/2ΛUk
t

D
m

−→
n→∞

Bm(r).

In order to conclude that (65) is true, it remains to observe that uniformly
with respect to n

Y k
n (r) := 1√

n


nr�∑
t=1

(ΠΠ′)−1/2ΛZk
t

D
m

−→
k→∞

0, (66)

where

Zk
t =

(
− 2

{ ∞∑
i=k+1

.
λi,1 (θ0) εtεt−i, . . . ,

∞∑
i=k+1

.
λi,p+q+1 (θ0) εtεt−i

}
J−1′

,

εtεt−1, . . . , εtεt−m

)′
.

Using the same arguments as those used in the proof of Theorem 2 in [6], we
have

sup
n

Var
(

1√
n

n∑
t=1

Zk
t

)
−→
k→∞

0

and since �nr� ≤ n,
sup

0≤r≤1
sup
n

{∥∥Y k
n (r)

∥∥} −→
k→∞

0.

Thus (66) is true and the proof of (65) is achieved.

5.6.2. Limit theorem

To conclude the prove of Theorem 6, we follow the arguments developed in [7].
Note that the previous step ensures us that Assumption 1 in [37] is satisfied for
the sequence (ΛUt)t≥1. Firstly from (65) we deduce that

1√
n
S
nr� = 1√

n


nr�∑
t=1

ΛUt −
�nr�
n

(
1√
n

n∑
t=1

ΛUt

)

D
m

−→
n→∞

(ΠΠ′)1/2Bm(r) − r(ΠΠ′)1/2Bm(1). (67)
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Observe now that the continuous mapping theorem implies

Cm = 1
n

n∑
t=1

(
1√
n
St

)(
1√
n
St

)′

D
m

−→
n→∞

(ΠΠ′)1/2
[∫ 1

0
{Bm(r) − rBm(1)} {Bm(r) − rBm(1)}′ dr

]
(ΠΠ′)1/2

and consequently
Cm

D
m

−→
n→∞

(ΠΠ′)1/2Vm(ΠΠ′)1/2.

Using (64), (67) and again the continuous mapping theorem on the Skorokhod
space, one finally obtains

nγ̂′
mC−1

m γ̂m
D

m

−→
n→∞

{
(ΠΠ′)1/2Bm(1)

}′ {
(ΠΠ′)1/2Vm(ΠΠ′)1/2

}−1 {
(ΠΠ′)1/2Bm(1)

}
= B′

m(1)V −1
m Bm(1) := Um.

Consequently, from (9) it follows that

nσ4
ε ρ̂

′
mC−1

m ρ̂m
D

m

−→
n→∞

Um,

which completes the proof of Theorem 6.

5.7. Proof of Theorem 7

The proof follows the same line as in the proof of Theorem 2 in [7] (see also the
proof of in [6]).

Supplementary Material

Supplement A: Example of explicit calculation of Σρ̂m and Cm

The results of the previous subsections 3.2 and 3.3 are particularized in the
FARIMA(1, d0, 0) and FARIMA(0, d0, 1) cases. First we consider the case of a
FARIMA(1, d0, 0) model of the form

(1 − L)d0 (Xt − aXt−1) = εt, (68)

where the unknown parameter is θ0 = (a, d0). We assume that in (68) the
innovation process (εt)t∈Z is a GARCH(1, 1) process given by (20). We also
assume that in (20): α2

1κ + β2
1 + 2α1β1 < 1,3 where κ := Eη4

1 and we assume
that κ > 1.

For the sake of simplicity we assume that the variables (ηt)t∈Z involved in (20)
have a symmetric distribution. More precisely, we have the following symmetry
assumption

3This is a necessary and sufficient condition for the existence of a nonanticipative stationary
solution process (εt)t∈Z with fourth-order moments (see [24, Example 2.3]).
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E[εt1εt2εt3εt4 ] = 0 when t1 �= t2, t1 �= t3 and t1 �= t4, (69)

made in [23, 5]. For this particular GARCH(1, 1) model with fourth-order mo-
ments and symmetric innovations satisfying (69), it can be shown that

E [εtεt−�εt−hεt−h−�′ ] =

⎧⎨
⎩

E
[
ε2t ε

2
t−�

]
if h = 0 and � = �′

0 otherwise.
(70)

Now we need to compute the autocovariance structure of (ε2t )t∈Z. We will use
the fact that the GARCH process (εt)t∈Z is fourth-order stationary, then (ε2t )t∈Z

is a solution of the following ARMA(1, 1) model

ε2t = ω + (α1 + β1)ε2t−1 + νt − β1νt−1, t ∈ Z (71)

where νt = ε2t − σ2
t is the innovation of (ε2t )t∈Z. From (71) the autocovariances

of (ε2t )t∈Z take the form

γε2(�) := Cov(ε2t , ε2t−�) = γε2(1)(α1 + β1)�−1, � ≥ 1, (72)

where

γε2(1) = (κ− 1)(α1 − α1β
2
1 − α2

1β1)
1 − β2

1 − 2α1β1 − α2
1κ

σ4
ε ,

γε2(0) := Var(ε2t ) = (κ− 1)(1 − β2
1 − 2α1β1)

1 − β2
1 − 2α1β1 − α2

1κ
σ4
ε ,

and σ2
ε := ω

1 − α1 − β1
.

From (70) and (72) we deduce that for any � ≥ 1

Γ(�, �) = E
[
ε2t ε

2
t−�

]
= Cov(ε2t , ε2t−�) + E

[
ε2t
]
E
[
ε2t−�

]
=
{

1 + 1
σ4
ε

γε2(1)(α1 + β1)�−1
}
σ4
ε . (73)

Examples of analytic and numerical computations of Σρ̂m

As mentioned before, the subject of this subsection is to give an explicit expres-
sion of the asymptotic variance of residual autocorrelations Σρ̂m defined in (15)
in the particular case of model (68). For that sake, we need the following addi-
tional expressions. It is classical that the noise derivatives (∂εt(θ0)/∂a, ∂εt(θ0)/
∂d)′ in (68) can be represented as(∂εt(θ0)

∂a

∂εt(θ0)
∂d

)
= −

∑
j≥1

(
aj−1

1
j

)
εt−j . (74)

We compute the information matrices J(θ0) and I(θ0) by using (74). Then we
have
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J(θ0) = 2σ2
ε

(
1

1−a2 − ln(1−a)
a

− ln(1−a)
a

π2

6

)
. (75)

A simple calculation implies that

J−1(θ0) = 1
2σ2

ε c(a)

(
π2

6
ln(1−a)

a
ln(1−a)

a
1

1−a2

)
, (76)

where

c(a) = π2

6(1 − a2) −
(

ln(1 − a)
a

)2

. (77)

We now investigate a similar tractable expression for I(θ0). Using (74) and (69)
we have

I(θ0) = 2σ2
εJ(θ0)

+ 4σ4
ε

(κ− 1)(α1 − α1β
2
1 − α2

1β1)
1 − β2

1 − 2α1β1 − α2
1κ

⎛
⎝ 1

1−a2(α1+β1) − ln[1−a(α1+β1)]
a(α1+β1)

− ln[1−a(α1+β1)]
a(α1+β1)

Li2(α1+β1)
α1+β1

⎞
⎠ ,

(78)

where Li2 is the Spence function defined by Li2(z) =
∑∞

k=1 z
kk−2. Note that

we retrieve the well know result: I(θ0) = 2σ2
εJ(θ0) in the strong FARIMA case

(i.e. when α1 = β1 = 0 in (78)).
The matrix defined in (7) can be rewritten as

Ψm = −σ2
ε

(
1 a . . . am−1

1 1
2 . . . 1

m

)′
. (79)

Using (73) and under the symmetry assumption (69), the matrix Γm,m takes
the simple following diagonal form

Γm,m = σ4
ε Im

+ σ4
ε

(κ− 1)(α1 − α1β
2
1 − α2

1β1)
1 − β2

1 − 2α1β1 − α2
1κ

diag(1, (α1 + β1), . . . , (α1 + β1)m−1).

(80)

Using (69), (74) and (76), the matrix Σ′
θ̂,γm

is given by

Σ′
θ̂,γm

= 1
σ2
ε c(a)

×⎛
⎜⎜⎜⎜⎜⎜⎝

{
π2

6 + ln(1−a)
a

}
Γm,m(1, 1)

{
1

1−a2 + ln(1−a)
a

}
Γm,m(1, 1){

aπ2

6 + ln(1−a)
2a

}
Γm,m(2, 2)

{
1

2(1−a2) + ln(1 − a)
}

Γm,m(2, 2)
...

...{
am−1 π2

6 + ln(1−a)
ma

}
Γm,m(m,m)

{
1

m(1−a2) +am−2 ln(1 − a)
}

Γm,m(m,m)

⎞
⎟⎟⎟⎟⎟⎟⎠
,

(81)

where for any 1 ≤ i, j ≤ m, Γm,m(i, j) is given by (80).
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From Remark 2, in the strong FARIMA case the asymptotic variance of
residual autocorrelations takes a simpler form

Σs

ρ̂m
= Im − 1

c(a)

[
π2

6
(
ai+j−2)
+ 1

1 − a2

(
1
ij

)
+ ln(1 − a)

a

(
aj−1

i
+ ai−1

j

)]
1≤i,j≤m

where c(a) is the constant given in (77).
From the above explicit expressions we deduce that the asymptotic variance

of residual autocorrelations for this model is in the form

Σρ̂m = Σs

ρ̂m
+ (κ− 1)(α1 − α1β

2
1 − α2

1β1)
1 − β2

1 − 2α1β1 − α2
1κ

[
(α1 + β1)i−11{i=j} + 1

c(a)M(i, j)

−
{
(α1 + β1)i−1 + (α1 + β1)j−1} 1

c(a)

{
π2

6
(
ai+j−2)+ 1

1 − a2

(
1
ij

)
+

ln(1−a)
a

(
aj−1

i
+ ai−1

j

)}]
1≤i,j≤m

,

where

M(i, j)

=
[
ln(1− a)

a

1
1− a2(α1 +β1)

− 1
1− a2

ln(1− a(α1 +β1))
a(α1 +β1)

][
π2

6
aj−1

i
+ 1

ij

ln(1− a)
a

]

+
[
Li2(α1 +β1)

α1 +β1

1
1− a2 − ln(1− a)

a

ln(1− a(α1 +β1))
a(α1 +β1)

][
ln(1− a)

a

aj−1

i
+ 1

ij

1
1− a2

]

+
[
π2

6
1

1− a2(α1 +β1)
− ln(1− a)

a

ln(1− a(α1 +β1))
a(α1 +β1)

][
π2

6 ai+j−2 + ai−1

j

ln(1− a)
a

]

+
[
Li2(α1 +β1)

α1 +β1

ln(1− a)
a

− π2

6
ln(1− a(α1 +β1))

a(α1 +β1)

][
ln(1− a)

a
ai+j−2 + ai−1

j

1
1− a2

]
.

For simplicity, we take in the sequel β1 = 0 to consider the case of an ARCH(1)
model. For instance when m = 3, κ = 3, ω = 1 and a = −0.55 we have

Σρ̂3 Eigenvalues ξ3 Z3(ξ3)

α1 = 0

⎛
⎝ 0.14 0.09 −0.27

0.09 0.25 0.01
−0.27 0.06 0.91

⎞
⎠ (1.00, 0.28, 0.02) χ2

1 + 0.28χ2
1 + 0.02χ2

1

α1 = 0.55

⎛
⎝ 0.7 0.38 −1.60

0.38 0.94 −0.23
−1.60 −0.23 4.8

⎞
⎠ (5.38, 1.00, 0.05) 5.38χ2

1 + 1.00χ2
1 + 0.05χ2

1

It is clear that for α1 = 0.55, the [33] approximation by a χ2
1 distribution

will be disastrous. The eigenvalues ξm can be very different from those of strong
FARIMA models which are close to 1 or 0 when the lag m is large enough (see
Remark 3). More precisely, for instance for α1 = 0 and m = 12 we obtain

ξ12 = (1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 0.07, 0.00)′,
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In this weak FARIMA(1, d, 0) with α1 = 0.55 and m = 12 we also obtain

ξ12 = (5.46, 3.75, 2.32, 1.79, 1.41, 1.24, 1.13, 1.07, 1.04, 1.02, 0.080.00)′.

The same result holds for FARIMA(0, d, 1) model with a replaced by b in θ0.

Explicit form of the matrix Cm

The following example gives an explicit form of the normalization matrix Cm

for the model given in (68). For reading convenience, we restrict ourselves to the
case m = 3. Using the expression of J−1(θ0) given in (76) and Equation (74),
we obtain that for all 1 ≤ j ≤ n

−2J−1(θ0)εj

(
∂εj(θ0)

∂a
∂εj(θ0)

∂d

)
=
(
v
(1)
j (a)

v
(2)
j (a)

)
,

where
v
(1)
j (a) = 1

σ2
ε c(a)

∑
k≥1

{
π2

6 ak−1 + ln(1 − a)
a

1
k

}
εjεj−k

and
v
(2)
j (a) = 1

σ2
ε c(a)

∑
k≥1

{
ln(1 − a)

a
ak−1 + 1

1 − a2
1
k

}
εjεj−k.

Thus, the vector ΛUj is given by

ΛUj =

⎛
⎜⎜⎜⎜⎝

−σ2
ε v

(1)
j (a) − σ2

ε v
(2)
j (a) + εjεj−1

−σ2
εav

(1)
j (a) − σ2

ε v
(2)
j (a)/2 + εjεj−2

−σ2
εa

2v
(1)
j (a) − σ2

ε v
(2)
j (a)/3 + εjεj−3

⎞
⎟⎟⎟⎟⎠ .

A simple calculation shows that, for any 1 ≤ j1, j2 ≤ n,

(ΛUj1) (ΛUj2)
′ =

⎛
⎜⎜⎜⎜⎝
K

(1)
j1

(a)K(1)
j2

(a) K
(1)
j1

(a)K(2)
j2

(a) K
(1)
j1

(a)K(3)
j2

(a)

K
(2)
j1

(a)K(1)
j2

(a) K
(2)
j1

(a)K(2)
j2

(a) K
(2)
j1

(a)K(3)
j2

(a)

K
(3)
j1

(a)K(1)
j2

(a) K
(3)
j1

(a)K(2)
j2

(a) K
(3)
j1

(a)K(3)
j2

(a)

⎞
⎟⎟⎟⎟⎠ ,

where

K
(1)
j (a) = −σ2

ε v
(1)
j (a) − σ2

ε v
(2)
j (a) + εjεj−1,

K
(2)
j (a) = −σ2

εav
(1)
j (a) − σ2

ε v
(2)
j (a)/2 + εjεj−2

and K
(3)
j (a) = −σ2

εa
2v

(1)
j (a) − σ2

ε v
(2)
j (a)/3 + εjεj−3.
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Therefore we deduce that for all positive integer t

St =
t∑

j=1
(ΛUj − γ3)

=
t∑

j=1

⎛
⎜⎜⎜⎝

−σ2
ε v

(1)
j (a) − σ2

ε v
(2)
j (a) + εjεj−1

−σ2
εav

(1)
j (a) − σ2

ε v
(2)
j (a)/2 + εjεj−2

−σ2
εa

2v
(1)
j (a) − σ2

ε v
(2)
j (a)/3 + εjεj−3

⎞
⎟⎟⎟⎠− t

n

⎛
⎜⎜⎝
∑n

j=2 εjεj−1∑n
j=3 εjεj−2∑n
j=4 εjεj−3

⎞
⎟⎟⎠ .

The same result holds for FARIMA(0, d0, 1) model with a replaced by b in θ0.

Supplement B: Additional Monte Carlo experiments

For the nominal level α = 5%, the empirical size over the N independent replica-
tions should vary between the significant limits 3.6% and 6.4% with probability
95%. When the relative rejection frequencies are outside the 95% significant
limits, they are displayed in bold type in Tables.

FARIMA models with a �= 0 and b �= 0

Table 8 displays the relative rejection frequencies of the null hypothesis (H0)
that the DGP follows a strong FARIMA model (19), over the N independent
replications. When p = q = 1 for all tests, the percentages of rejection belong
to the confident interval with probabilities 95%, except for LBs and BPs (see
Table 8). Consequently all these tests well control the error of first kind.

We draw the conclusion that in these strong FARIMA cases the proposed
modified version may be clearly preferable to the standard ones.

Now, we repeat the same experiments on two weak FARIMA models. As ex-
pected Tables 9 and 10 show that the standard LBs or BPs test poorly performs
in assessing the adequacy of these particular weak FARIMA models. Indeed, we
observe that

• the observed relative rejection frequencies of LBs and BPs are definitely
outside the significant limits,

• the errors of the first kind are only globally well controlled by the proposed
tests when n is large.

We also investigate the case where the GARCH model (20) have infinite fourth
moments. As showing in Figures 5, . . . , 10 the results are qualitatively similar
to what we observe here in Tables 9 and 10.
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Table 8

Empirical size (in %) of the modified and standard versions of the LB and BP tests in the
case of a strong FARIMA(1, d0, 1) defined by (19) with θ0 = (0.9, 0.2, d0). The nominal

asymptotic level of the tests is α = 5%. The number of replications is N = 1, 000.

d0 Length n Lag m LBsn BPsn LBw BPw LBs BPs

1 5.8 5.7 7.4 7.3 n.a. n.a.
2 5.0 5.0 7.4 7.3 n.a. n.a.

0.05 n = 1, 000 3 4.3 4.3 5.8 5.8 n.a. n.a.
6 4.1 4.1 5.6 5.5 10.9 10.9
12 5.1 4.6 4.7 4.5 6.9 6.6
15 5.0 4.7 5.0 4.8 6.9 5.9
1 6.0 6.0 7.4 7.4 n.a. n.a.
2 6.5 6.5 7.9 7.9 n.a. n.a.

0.05 n = 5, 000 3 4.7 4.7 6.7 6.7 n.a. n.a.
6 3.5 3.5 5.2 5.1 11.0 10.9
12 5.3 5.3 5.8 5.8 7.9 7.6
15 4.5 4.5 5.8 5.5 7.0 6.9
1 4.2 4.2 6.1 6.1 n.a. n.a.
2 4.2 4.2 6.3 6.4 n.a. n.a.

0.05 n = 10, 000 3 3.8 3.8 5.9 5.9 n.a. n.a.
6 3.5 3.5 4.7 4.7 10.4 10.4
12 4.2 4.2 6.1 6.1 7.6 7.6
15 4.0 3.8 5.7 5.7 7.4 7.4
1 5.8 5.8 9.2 9.1 n.a. n.a.
2 4.9 4.9 7.5 7.5 n.a. n.a.

0.20 n = 1, 000 3 4.6 4.5 5.9 5.9 n.a. n.a.
6 4.2 4.1 5.6 5.4 10.3 10.2
12 5.4 4.9 4.7 4.4 6.4 5.9
15 5.5 4.9 5.1 4.4 6.8 6.2
1 6.4 6.4 6.1 6.2 n.a. n.a.
2 6.8 6.8 6.9 6.9 n.a. n.a.

0.20 n = 5, 000 3 4.3 4.3 5.9 5.8 n.a. n.a.
6 3.8 3.8 4.6 4.6 10.0 10.0
12 5.2 5.2 5.7 5.6 7.6 7.5
15 4.5 4.5 5.6 5.3 6.8 6.7
1 4.5 4.5 5.5 5.5 n.a. n.a.
2 4.1 4.1 5.8 5.8 n.a. n.a.

0.20 n = 10, 000 3 3.1 3.1 5.3 5.3 n.a. n.a.
6 3.7 3.6 4.3 4.3 10.1 10.1
12 3.8 3.8 6.1 6.1 7.5 7.5
15 3.7 3.7 5.8 5.7 7.0 6.9
1 4.3 4.3 8.7 8.7 n.a. n.a.
2 3.0 3.0 5.9 5.9 n.a. n.a.

0.45 n = 1, 000 3 3.7 3.7 4.4 4.4 n.a. n.a.
6 3.8 3.8 4.7 4.5 8.1 7.8
12 5.1 4.6 4.3 4.2 5.1 4.9
15 4.6 4.5 4.7 4.3 5.0 4.7
1 5.6 5.5 6.0 6.0 n.a. n.a.
2 5.2 5.2 6.4 6.4 n.a. n.a.

0.45 n = 5, 000 3 4.0 4.0 5.9 5.9 n.a. n.a.
6 3.8 3.8 4.6 4.6 10.1 9.9
12 5.2 5.2 5.4 5.4 7.2 7.1
15 4.6 4.6 5.0 4.9 6.7 6.6
1 4.3 4.3 5.3 5.3 n.a. n.a.
2 3.2 3.2 5.7 5.7 n.a. n.a.

0.45 n = 10, 000 3 3.1 3.0 5.4 5.4 n.a. n.a.
6 3.7 3.7 4.3 4.3 9.8 9.8
12 4.3 4.3 5.8 5.8 7.2 7.0
15 3.6 3.3 5.7 5.7 6.8 6.8



Validation of weak FARIMA models 1215

Table 9

Empirical size (in %) of the modified and standard versions of the LB and BP tests in the
case of a weak FARIMA(1, d0, 1) defined by (19) with θ0 = (0.9, 0.2, d0) and where ω = 0.4,
α1 = 0.3 and β1 = 0.3 in (20). The nominal asymptotic level of the tests is α = 5%. The

number of replications is N = 1, 000.

d0 Length n Lag m LBsn BPsn LBw BPw LBs BPs

1 4.9 4.9 6.7 6.7 n.a. n.a.
2 3.8 3.8 6.3 6.3 n.a. n.a.

0.05 n = 1, 000 3 3.2 3.2 5.2 5.2 n.a. n.a.
6 3.9 3.8 4.9 4.8 18.5 18.3
12 2.3 2.3 4.1 4.0 10.2 9.7
15 2.7 2.3 4.4 4.2 9.7 9.3
1 5.1 5.1 5.6 5.6 n.a. n.a.
2 4.9 4.9 5.4 5.4 n.a. n.a.

0.05 n = 5, 000 3 2.6 2.6 5.0 5.0 n.a. n.a.
6 3.5 3.5 4.4 4.4 19.6 19.6
12 2.7 2.7 3.3 3.2 11.4 11.4
15 3.4 3.4 4.2 4.1 10.8 10.7
1 4.8 4.8 6.9 6.9 n.a. n.a.
2 4.8 4.8 6.7 6.7 n.a. n.a.

0.05 n = 10, 000 3 4.7 4.7 5.5 5.5 n.a. n.a.
6 3.3 3.3 6.4 6.4 20.2 20.2
12 4.2 4.2 6.3 6.3 12.4 12.3
15 3.6 3.6 5.5 5.5 11.6 11.6
1 5.3 5.3 7.8 7.7 n.a. n.a.
2 3.6 3.4 5.7 5.7 n.a. n.a.

0.20 n = 1, 000 3 3.1 3.1 4.9 4.8 n.a. n.a.
6 3.3 3.2 4.5 4.5 17.6 17.4
12 2.3 2.0 4.1 4.1 9.4 8.9
15 2.4 2.1 4.4 4.2 9.0 8.1
1 4.6 4.6 4.3 4.3 n.a. n.a.
2 4.3 4.3 4.4 4.4 n.a. n.a.

0.20 n = 5, 000 3 3.1 3.1 4.4 4.3 n.a. n.a.
6 4.1 4.1 3.9 3.9 19.0 19.0
12 2.6 2.6 2.9 2.9 10.9 10.6
15 3.4 3.3 4.0 4.0 10.0 9.9
1 4.8 4.8 5.1 5.1 n.a. n.a.
2 4.7 4.7 5.0 5.0 n.a. n.a.

0.20 n = 10, 000 3 4.5 4.5 4.8 4.8 n.a. n.a.
6 3.5 3.5 5.6 5.6 19.1 19.1
12 4.1 4.1 5.9 5.9 12.1 12.1
15 3.7 3.7 5.3 5.3 11.3 11.3
1 4.4 4.4 11.1 11.0 n.a. n.a.
2 3.4 3.4 5.4 5.3 n.a. n.a.

0.45 n = 1, 000 3 3.1 3.1 4.9 4.9 n.a. n.a.
6 3.1 2.9 4.5 4.4 15.3 15.1
12 2.2 2.1 4.0 4.0 7.9 7.5
15 2.1 2.0 4.4 4.3 7.0 6.5
1 3.9 3.9 4.2 4.2 n.a. n.a.
2 3.4 3.4 4.2 4.2 n.a. n.a.

0.45 n = 5, 000 3 2.9 2.9 4.4 4.4 n.a. n.a.
6 3.5 3.5 3.9 3.9 18.4 18.4
12 2.4 2.4 2.8 2.7 9.9 9.8
15 3.2 3.2 3.9 3.8 9.2 9.2
1 4.6 4.6 5.3 5.3 n.a. n.a.
2 4.3 4.3 5.1 5.0 n.a. n.a.

0.45 n = 10, 000 3 3.5 3.5 5.0 5.0 n.a. n.a.
6 2.8 2.8 5.3 5.3 19.3 19.3
12 4.2 4.2 5.5 5.5 12.2 12.2
15 3.6 3.5 5.5 5.5 11.4 11.4
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Table 10

Empirical size (in %) of the modified and standard versions of the LB and BP tests in the
case of a weak FARIMA(1, d0, 1) defined by (19)–(21) with θ0 = (0.9, 0.2, d0). The nominal

asymptotic level of the tests is α = 5%. The number of replications is N = 1, 000.

d0 Length n Lag m LBsn BPsn LBw BPw LBs BPs

1 5.1 5.1 7.3 7.3 n.a. n.a.
2 3.6 3.6 6.9 6.9 n.a. n.a.

0.05 n = 1, 000 3 2.9 2.9 4.3 4.1 n.a. n.a.
6 2.6 2.5 3.1 3.0 10.3 10.3
12 0.9 0.9 1.2 1.1 8.7 8.3
15 0.4 0.4 1.0 0.8 8.0 7.3
1 3.9 3.9 5.4 5.4 n.a. n.a.
2 3.9 3.9 5.9 5.9 n.a. n.a.

0.05 n = 5, 000 3 3.9 3.9 5.5 5.5 n.a. n.a.
6 3.2 3.1 3.8 3.8 10.6 10.6
12 2.4 2.4 3.5 3.4 8.3 8.2
15 2.7 2.7 3.3 3.3 8.4 8.3
1 5.0 5.0 5.2 5.2 n.a. n.a.
2 4.9 4.9 4.5 4.5 n.a. n.a.

0.05 n = 10, 000 3 3.8 3.8 5.6 5.6 n.a. n.a.
6 3.6 3.6 4.5 4.5 10.4 10.4
12 3.3 3.3 4.3 4.3 8.5 8.4
15 4.7 4.7 3.8 3.8 7.7 7.4
1 5.7 5.6 10.1 10.0 n.a. n.a.
2 3.4 3.4 5.5 5.5 n.a. n.a.

0.20 n = 1, 000 3 3.7 3.7 4.0 4.0 n.a. n.a.
6 2.9 2.8 2.5 2.4 10.2 9.7
12 0.9 0.9 1.1 1.1 7.9 7.2
15 0.5 0.5 0.8 0.8 7.5 6.9
1 3.5 3.5 4.0 3.9 n.a. n.a.
2 3.7 3.7 4.3 4.3 n.a. n.a.

0.20 n = 5, 000 3 4.1 4.1 5.0 5.0 n.a. n.a.
6 3.1 3.1 3.5 3.5 10.0 10.0
12 2.8 2.8 3.3 3.3 8.2 8.2
15 2.4 2.4 3.1 3.1 7.9 7.8
1 5.1 5.1 4.8 4.8 n.a. n.a.
2 4.7 4.7 4.2 4.2 n.a. n.a.

0.20 n = 10, 000 3 3.8 3.8 4.7 4.7 n.a. n.a.
6 3.8 3.8 4.1 4.1 10.1 10.1
12 3.4 3.4 4.0 4.0 8.0 8.0
15 4.8 4.8 3.6 3.6 7.5 7.4
1 3.8 3.8 12.1 12.0 n.a. n.a.
2 2.4 2.4 4.4 4.4 n.a. n.a.

0.45 n = 1, 000 3 2.7 2.6 3.8 3.7 n.a. n.a.
6 3.2 3.0 2.3 2.3 8.3 7.9
12 1.1 0.9 1.0 0.9 6.4 6.3
15 0.3 0.3 1.4 1.1 6.8 6.4
1 3.1 3.1 4.4 4.4 n.a. n.a.
2 2.7 2.7 4.5 4.5 n.a. n.a.

0.45 n = 5, 000 3 3.2 3.2 4.9 4.9 n.a. n.a.
6 3.2 3.1 3.4 3.4 9.7 9.7
12 3.3 3.3 3.3 3.3 7.3 7.3
15 2.4 2.4 3.2 3.1 7.2 7.0
1 5.1 5.1 4.8 4.8 n.a. n.a.
2 4.9 4.9 4.3 4.3 n.a. n.a.

0.45 n = 10, 000 3 3.6 3.6 4.9 4.9 n.a. n.a.
6 3.5 3.5 4.3 4.2 10.2 10.2
12 3.7 3.7 3.7 3.7 7.7 7.6
15 4.8 4.8 3.9 3.9 7.2 7.1
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Power of the tests

In this section, we repeat the same experiments as in Section 4.1 to examine the
power of the tests for the null hypothesis of Model (19) against the following
FARIMA alternative defined by

(1 − L)d (Xt − aXt−1) = εt − b1εt−1 − b2εt−2, (82)

with θ0 = (a, b1, b2, d0) and where the innovation process (εt)t∈Z follows a strong
or weak white noise introduced in Section 4.1.

For each of these N replications we fit a FARIMA(1, d, 1) model (19) and
perform standard and modified tests based on m = 1, 2, 3, 6, 12 and 15 residual
autocorrelations.

Tables 11, 12 and 13 compare the empirical powers of Model (82) with θ0 =
(0.9, 1,−0.2, d0) over the N independent replications. For these particular strong
and weak FARIMA models, we notice that the standard BPs and LBs and
our proposed tests have very similar powers except for BPsn and LBsn when
n = 5, 000.
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Table 11

Empirical power (in %) of the modified and standard versions of the LB and BP tests in the
case of a strong FARIMA(1, d0, 2) defined by (82) with θ0 = (0.9, 1,−0.2, d0). The nominal

asymptotic level of the tests is α = 5%. The number of replications is N = 1, 000.

d0 Length n Lag m LBsn BPsn LBw BPw LBs BPs

1 24.5 24.5 37.9 37.9 n.a. n.a.
2 28.8 28.8 46.1 46.1 n.a. n.a.

0.05 n = 5, 000 3 36.7 36.7 22.2 22.1 n.a. n.a.
6 55.7 55.7 40.6 40.3 47.6 47.6
12 54.9 54.7 27.2 27.2 28.3 28.0
15 54.0 53.6 18.0 17.8 27.9 27.7
1 44.9 44.9 62.8 62.7 n.a. n.a.
2 51.4 51.3 76.1 76.0 n.a. n.a.

0.05 n = 10, 000 3 62.8 62.8 39.9 39.9 n.a. n.a.
6 86.5 86.5 80.9 80.8 84.7 84.7
12 85.8 85.8 64.9 64.8 66.4 66.2
15 82.0 82.0 43.2 43.2 60.8 60.8
1 14.0 14.0 58.0 57.9 n.a. n.a.
2 22.2 22.2 71.1 71.1 n.a. n.a.

0.20 n = 5, 000 3 24.1 23.8 40.7 40.7 n.a. n.a.
6 32.1 32.0 74.4 74.4 78.5 78.5
12 52.3 52.2 62.4 62.2 67.7 67.6
15 51.6 51.3 14.1 14.0 62.1 61.7
1 21.4 21.4 84.9 85.0 n.a. n.a.
2 30.6 30.6 93.1 93.1 n.a. n.a.

0.20 n = 10, 000 3 35.6 35.6 65.9 65.7 n.a. n.a.
6 44.1 44.1 96.9 96.9 97.8 97.8
12 76.3 76.2 93.2 93.2 94.3 94.3
15 73.7 73.7 43.9 43.9 91.6 91.6
1 0.0 0. 100.0 100.0 n.a. n.a.
2 49.1 49.1 100.0 100.0 n.a. n.a.

0.45 n = 5, 000 3 69.0 69.0 100.0 100.0 n.a. n.a.
6 76.7 76.6 100.0 100.0 100.0 100.0
12 86.8 86.7 100.0 100.0 100.0 100.0
15 90.9 90.7 100.0 100.0 100.0 100.0
1 0.0 0.0 100.0 100.0 n.a. n.a.
2 77.9 77.9 100.0 100.0 n.a. n.a.

0.45 n = 10, 000 3 90.3 90.2 100.0 100.0 n.a. n.a.
6 94.2 94.2 100.0 100.0 100.0 100.0
12 98.9 98.9 100.0 100.0 100.0 100.0
15 99.5 99.4 100.0 100.0 100.0 100.0
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Table 12

Empirical power (in %) of the modified and standard versions of the LB and BP tests in the
case of a weak FARIMA(1, d0, 2) defined by (82) with θ0 = (0.9, 1,−0.2, d0) and where
ω = 0.4, α1 = 0.3 and β1 = 0.3 in (20). The nominal asymptotic level of the tests is

α = 5%. The number of replications is N = 1, 000.

d0 Length n Lag m LBsn BPsn LBw BPw LBs BPs

1 22.5 22.5 32.8 32.7 n.a. n.a.
2 27.3 27.3 41.7 41.8 n.a. n.a.

0.05 n = 5, 000 3 32.4 32.3 20.1 20.0 n.a. n.a.
6 52.1 52.0 34.0 34.0 55.8 55.7
12 54.1 54.1 23.5 23.5 34.2 34.1
15 53.9 53.4 17.1 16.9 31.9 31.8
1 36.1 36.1 53.2 53.2 n.a. n.a.
2 44.9 44.9 64.5 64.5 n.a. n.a.

0.05 n = 10, 000 3 56.5 56.5 33.1 33.1 n.a. n.a.
6 83.1 83.1 71.2 71.2 86.4 86.2
12 84.0 83.9 59.0 59.0 70.4 70.2
15 80.6 80.5 40.1 40.1 67.4 67.2
1 14.6 14.5 51.0 50.9 n.a. n.a.
2 21.8 21.8 67.1 67.1 n.a. n.a.

0.20 n = 5, 000 3 22.4 22.3 37.7 37.7 n.a. n.a.
6 32.3 32.3 68.3 68.3 81.9 81.9
12 51.6 51.5 55.9 55.8 68.7 68.5
15 51.7 51.6 64.2 64.1 64.8 64.6
1 22.8 22.8 74.1 74.0 n.a. n.a.
2 29.6 29.6 86.2 86.2 n.a. n.a.

0.20 n = 10, 000 3 32.9 32.9 56.6 56.5 n.a. n.a.
6 43.1 43.1 92.3 92.3 97.1 97.1
12 72.9 72.8 88.3 88.3 93.8 93.8
15 71.2 71.1 89.1 88.9 92.0 92.0
1 30.1 30.1 99.8 99.8 n.a. n.a.
2 40.1 40.1 100.0 100.0 n.a. n.a.

0.45 n = 5, 000 3 57.9 57.9 100.0 100.0 n.a. n.a.
6 65.7 65.7 100.0 100.0 100.0 100.0
12 78.8 78.5 100.0 100.0 100.0 100.0
15 84.7 84.6 100.0 100.0 100.0 100.0
1 62.2 62.2 99.9 99.9 n.a. n.a.
2 72.2 72.2 100.0 99.9 n.a. n.a.

0.45 n = 10, 000 3 84.8 84.8 100.0 100.0 n.a. n.a.
6 89.8 89.7 100.0 100.0 100.0 100.0
12 97.7 97.7 100.0 100.0 100.0 100.0
15 99.0 99.0 100.0 100.0 100.0 100.0
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Table 13

Empirical power (in %) of the modified and standard versions of the LB and BP tests in the
case of a weak FARIMA(1, d0, 2) defined by (82)–(21) with θ0 = (0.9, 1,−0.2, d0). The

nominal asymptotic level of the tests is α = 5%. The number of replications is N = 1, 000.

d0 Length n Lag m LBsn BPsn LBw BPw LBs BPs

1 27.6 27.6 42.6 42.7 n.a. n.a.
2 32.7 32.6 51.4 51.3 n.a. n.a.

0.05 n = 5, 000 3 36.9 36.9 23.7 23.7 n.a. n.a.
6 53.3 53.0 39.7 39.7 46.0 45.9
12 49.6 49.3 23.7 23.7 29.3 29.2
15 44.4 44.2 17.5 17.4 28.5 28.1
1 48.5 48.5 68.3 68.3 n.a. n.a.
2 58.7 58.6 76.6 76.5 n.a. n.a.

0.05 n = 10, 000 3 66.8 66.8 42.5 42.5 n.a. n.a.
6 84.2 84.0 77.0 76.9 83.2 83.2
12 79.9 79.9 62.7 62.6 66.0 66.0
15 75.8 75.8 40.5 40.5 61.4 61.3
1 15.3 15.3 62.4 62.5 n.a. n.a.
2 23.5 23.4 74.6 74.6 n.a. n.a.

0.20 n = 5, 000 3 25.9 25.9 45.3 45.2 n.a. n.a.
6 34.0 34.0 73.1 72.9 78.5 78.4
12 51.3 50.8 56.8 56.6 64.5 64.4
15 46.3 45.8 15.0 14.9 60.1 60.1
1 23.0 23.0 85.2 85.2 n.a. n.a.
2 33.8 33.8 93.6 93.6 n.a. n.a.

0.20 n = 10, 000 3 36.5 36.5 68.3 68.3 n.a. n.a.
6 46.8 46.7 95.4 95.4 97.1 97.1
12 81.7 81.7 90.8 90.8 93.7 93.6
15 79.0 78.7 44.2 44.0 91.7 91.7
1 41.9 41.9 99.9 99.9 n.a. n.a.
2 51.9 51.9 100.0 100.0 n.a. n.a.

0.45 n = 5, 000 3 66.7 66.7 100.0 100.0 n.a. n.a.
6 73.6 73.6 100.0 100.0 100.0 100.0
12 83.1 83.0 100.0 100.0 100.0 100.0
15 85.5 85.4 100.0 100.0 100.0 100.0
1 69.2 69.2 100.0 99.9 n.a. n.a.
2 79.2 79.2 100.0 100.0 n.a. n.a.

0.45 n = 10, 000 3 90.8 90.8 100.0 100.0 n.a. n.a.
6 93.6 93.6 100.0 100.0 100.0 100.0
12 97.8 97.8 100.0 100.0 100.0 100.0
15 99.1 99.1 100.0 100.0 100.0 100.0
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Small sample size

The following tables deal with the same numerical experiments that in Section 4
when the sample sizes are less than 500.
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Table 14

Empirical size (in %) of the modified and standard versions of the LB and BP tests in the
case of a strong FARIMA(0, d0, 0) defined by (19) with θ0 = (0, 0, d0). The nominal
asymptotic level of the tests is α = 5%. The number of replications is N = 1, 000.

d0 Length n Lag m LBsn BPsn LBw BPw LBs BPs

1 3.9 3.6 10.1 9.6 n.a. n.a.
2 3.3 3.2 8.1 7.4 7.6 7.1

0.05 n = 100 3 3.8 3.1 5.9 5.2 8.1 6.8
6 3.1 2.7 5.0 3.9 6.9 5.9
12 2.4 1.3 3.9 2.1 5.8 3.8
15 2.8 1.0 4.5 2.3 6.9 4.3
1 5.3 5.2 7.6 7.3 n.a. n.a.
2 5.0 4.7 5.4 5.3 6.1 6.0

0.05 n = 250 3 4.7 4.5 5.6 5.5 5.8 5.6
6 5.2 4.8 6.4 6.1 6.7 6.3
12 5.0 3.8 4.4 3.7 6.2 5.3
15 4.6 3.2 4.4 3.5 6.0 4.9
1 5.0 5.0 5.6 5.6 n.a. n.a.
2 5.5 5.5 5.7 5.6 6.0 5.8

0.05 n = 500 3 5.9 5.7 5.9 5.7 6.6 6.5
6 5.3 5.1 5.6 5.2 6.0 5.9
12 5.1 4.3 5.0 4.7 5.9 5.0
15 5.4 4.5 4.6 4.2 6.0 5.2
1 4.5 4.0 5.9 5.3 n.a. n.a.
2 4.1 3.7 6.5 6.0 6.5 5.8

0.20 n = 100 3 4.1 3.5 5.3 4.9 6.4 6.1
6 3.3 2.9 4.6 3.7 6.1 4.9
12 3.6 1.5 4.1 2.0 5.5 3.4
15 2.9 0.9 4.4 2.0 6.5 3.5
1 5.8 5.7 5.8 5.7 n.a. n.a.
2 5.2 5.1 5.2 4.8 5.8 5.6

0.20 n = 250 3 5.1 5.0 5.5 5.4 5.4 5.1
6 5.7 5.4 5.9 5.3 6.3 5.7
12 5.6 4.0 4.2 3.8 5.8 5.1
15 4.8 3.6 4.5 3.6 6.2 4.7
1 5.7 5.5 5.0 5.0 n.a. n.a.
2 5.4 5.4 5.4 5.3 5.5 5.3

0.20 n = 500 3 6.2 6.1 5.7 5.6 6.3 6.2
6 5.4 5.0 5.5 5.0 5.6 5.6
12 5.1 4.4 5.0 4.7 6.0 5.0
15 5.2 4.3 4.4 4.2 5.9 5.1
1 4.3 4.1 9.4 8.9 n.a. n.a.
2 3.9 3.4 8.3 7.5 7.7 7.3

0.45 n = 100 3 4.0 3.3 6.5 5.7 7.0 6.5
6 3.3 2.4 4.7 3.5 6.5 5.3
12 3.5 1.7 3.9 2.3 5.5 3.2
15 3.9 1.4 4.2 2.2 6.1 3.7
1 5.4 5.4 8.2 7.9 n.a. n.a.
2 5.0 4.9 5.3 5.1 5.5 5.3

0.45 n = 250 3 5.1 5.0 5.8 5.3 5.3 5.0
6 5.6 5.2 6.0 5.2 6.2 5.4
12 5.4 3.9 4.6 3.9 5.8 5.2
15 5.1 4.0 4.7 3.7 6.2 5.0
1 5.4 5.2 5.6 5.6 n.a. n.a.
2 5.2 5.2 5.4 5.3 5.9 5.8

0.45 n = 500 3 5.9 5.8 6.3 6.1 6.4 6.4
6 6.0 5.6 5.6 5.0 5.6 5.5
12 4.9 3.9 5.6 4.8 5.7 5.1
15 5.2 4.3 4.6 4.2 6.1 4.9
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Table 15

Empirical size (in %) of the modified and standard versions of the LB and BP tests in the
case of a weak FARIMA(0, d0, 0) defined by (19) with θ0 = (0, 0, d0) with ω = 0.4, α1 = 0.3
and β1 = 0.3 in (21). The nominal asymptotic level of the tests is α = 5%. The number of

replications is N = 1, 000.

d0 Length n Lag m LBsn BPsn LBw BPw LBs BPs

1 2.3 2.3 10.1 9.6 n.a. n.a.
2 2.6 2.6 5.9 5.3 13.1 12.4

0.05 n = 100 3 1.9 1.6 4.0 3.1 11.1 9.9
6 1.4 1.1 3.0 2.5 12.8 11.2
12 1.0 0.3 3.5 2.0 14.5 10.8
15 0.8 0.1 2.6 0.8 16.1 11.0
1 3.0 3.0 8.1 8.1 n.a. n.a.
2 2.6 2.4 5.3 5.2 16.4 16.4

0.05 n = 250 3 1.9 1.8 4.3 3.9 16.2 15.6
6 0.7 0.4 4.3 4.1 20.1 18.8
12 0.6 0.5 3.6 2.6 24.6 22.4
15 0.2 0.2 4.0 2.9 25.7 22.4
1 3.4 3.4 7.2 7.0 n.a. n.a.
2 2.0 2.0 6.3 6.3 20.4 20.3

0.05 n = 500 3 1.5 1.5 5.1 5.0 21.1 20.7
6 0.9 0.9 4.6 4.6 28.0 27.6
12 0.4 0.4 4.0 3.2 34.2 32.8
15 0.1 0.0 3.3 3.0 36.2 34.7
1 2.8 2.7 5.3 5.0 n.a. n.a.
2 3.1 3.1 4.9 4.2 10.9 10.1

0.20 n = 100 3 1.8 1.6 3.8 2.9 9.9 8.3
6 1.9 1.1 2.9 2.0 10.8 9.0
12 0.8 0.3 3.1 1.8 13.1 9.7
15 0.7 0.1 2.3 0.7 14.7 9.6
1 3.2 3.2 5.5 5.4 n.a. n.a.
2 3.0 3.0 4.3 4.2 14.4 14.3

0.20 n = 250 3 2.4 2.3 3.6 3.4 14.9 14.2
6 0.7 0.7 4.3 3.8 18.3 17.3
12 0.6 0.4 3.5 2.6 23.6 21.2
15 0.4 0.1 3.8 2.5 23.9 21.0
1 3.8 3.8 5.3 5.3 n.a. n.a.
2 2.4 2.3 6.1 6.1 18.9 18.9

0.20 n = 500 3 1.8 1.7 4.9 4.6 19.9 19.6
6 0.9 0.9 4.4 4.3 26.5 26.2
12 0.4 0.4 3.7 3.2 33.5 31.5
15 0.1 0.1 3.3 3.0 35.4 33.8
1 2.8 2.6 8.9 8.3 n.a. n.a.
2 2.5 2.2 6.9 6.5 12.1 11.4

0.45 n = 100 3 1.6 1.5 5.0 4.1 11.4 10.0
6 1.6 1.2 3.4 2.2 10.9 8.4
12 0.9 0.5 3.2 1.9 13.5 10.0
15 0.9 0.3 2.2 0.8 14.3 9.0
1 3.3 3.1 8.7 8.6 n.a. n.a.
2 3.3 3.1 6.1 6.1 16.8 16.2

0.45 n = 250 3 2.6 2.5 4.3 4.2 15.5 15.1
6 1.0 0.9 4.5 4.3 19.0 18.0
12 0.6 0.4 3.9 2.8 23.7 21.8
15 0.4 0.3 3.6 2.5 24.5 21.6
1 3.6 3.5 6.7 6.6 n.a. n.a.
2 2.4 2.3 6.9 6.8 20.0 20.0

0.45 n = 500 3 1.7 1.7 5.4 5.2 21.3 21.2
6 1.0 0.9 4.8 4.5 26.9 26.4
12 0.5 0.4 3.7 3.5 33.2 32.0
15 0.1 0.1 3.5 3.1 36.3 34.8
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Table 16

Empirical size (in %) of the modified and standard versions of the LB and BP tests in the
case of a weak FARIMA(0, d0, 0) defined by (19)–(21) with θ0 = (0, 0, d0). The nominal

asymptotic level of the tests is α = 5%. The number of replications is N = 1, 000.

d0 Length n Lag m LBsn BPsn LBw BPw LBs BPs

1 2.2 2.1 20.0 19.5 n.a. n.a.
2 1.5 1.5 15.2 14.7 18.3 17.3

0.05 n = 100 3 1.1 0.9 10.7 10.1 15.3 14.4
6 0.4 0.2 6.0 5.2 10.4 9.7
12 0.0 0.0 3.2 2.5 8.2 5.9
15 0.2 0.0 2.4 1.7 7.7 5.0
1 3.2 2.9 14.4 14.2 n.a. n.a.
2 3.1 2.9 10.7 10.6 18.7 18.3

0.05 n = 250 3 1.9 1.8 7.8 7.6 16.3 16.0
6 0.9 0.6 4.5 4.2 12.6 12.0
12 0.4 0.3 2.0 1.5 10.6 8.8
15 0.2 0.2 1.3 1.3 10.0 8.2
1 4.3 4.3 11.7 11.6 n.a. n.a.
2 3.7 3.7 8.7 8.6 18.7 18.6

0.05 n = 500 3 2.9 2.7 6.5 6.4 16.7 16.6
6 1.8 1.6 3.4 3.2 14.4 14.1
12 0.3 0.2 2.2 1.7 10.9 10.4
15 0.2 0.2 1.1 1.0 10.2 9.7
1 3.9 3.7 11.9 11.3 n.a. n.a.
2 1.5 1.5 7.4 6.8 12.3 11.4

0.20 n = 100 3 1.4 1.4 5.2 4.5 10.7 9.6
6 0.3 0.2 2.3 1.8 8.4 7.6
12 0.1 0.0 1.1 0.8 6.5 4.2
15 0.2 0.0 0.9 0.4 5.8 3.4
1 3.9 3.8 7.1 6.9 n.a. n.a.
2 3.6 3.4 6.1 5.7 13.2 13.1

0.20 n = 250 3 1.9 1.8 3.8 3.4 11.7 11.3
6 0.9 0.6 2.6 2.3 9.8 9.3
12 0.3 0.3 1.0 0.6 8.8 7.6
15 0.2 0.2 0.5 0.5 8.9 7.2
1 5.3 5.3 6.3 6.1 n.a. n.a.
2 4.0 3.9 5.4 5.3 15.8 15.6

0.20 n = 500 3 3.3 3.3 3.7 3.6 12.9 12.9
6 1.9 1.5 1.4 1.4 11.9 11.5
12 0.2 0.1 1.2 0.9 9.8 9.2
15 0.3 0.2 0.5 0.5 9.2 8.9
1 3.9 3.8 21.5 20.2 n.a. n.a.
2 1.6 1.5 13.1 11.9 16.5 16.4

0.45 n = 100 3 1.2 0.9 7.5 7.2 13.7 12.7
6 0.7 0.7 3.1 2.4 10.6 9.2
12 0.1 0.0 1.3 0.8 6.9 5.2
15 0.2 0.0 1.3 0.3 6.2 3.8
1 5.0 5.0 15.7 15.5 n.a. n.a.
2 3.0 3.0 10.4 10.0 18.6 18.2

0.45 n = 250 3 2.3 2.3 7.5 7.3 16.1 15.9
6 0.6 0.4 3.6 3.6 12.1 11.4
12 0.4 0.3 1.5 1.1 9.7 8.6
15 0.2 0.2 1.1 0.8 10.1 8.8
1 4.8 4.8 12.5 12.5 n.a. n.a.
2 4.2 4.0 8.9 8.7 19.6 19.5

0.45 n = 500 3 3.2 3.2 5.7 5.6 16.6 16.6
6 2.0 1.8 2.6 2.5 13.7 13.4
12 0.1 0.1 1.5 1.1 10.8 10.3
15 0.3 0.2 0.6 0.6 10.4 10.1
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Table 17

Empirical size (in %) of the modified and standard versions of the LB and BP tests in the
case of a strong FARIMA(1, d0, 1) defined by (19) with θ0 = (0.9, 0.2, d0). The nominal

asymptotic level of the tests is α = 5%. The number of replications is N = 1, 000.

d0 Length n Lag m LBsn BPsn LBw BPw LBs BPs

1 4.7 4.4 23.2 22.9 n.a. n.a.
2 3.9 3.6 8.1 7.5 n.a. n.a.

0.05 n = 100 3 4.3 4.0 6.9 6.1 n.a. n.a.
6 4.7 3.6 5.4 3.7 8.4 5.9
12 5.1 2.9 4.2 2.3 5.0 2.6
15 6.2 3.5 4.9 2.5 5.8 2.5
1 5.3 5.3 10.8 10.7 n.a. n.a.
2 3.6 3.3 6.8 6.8 n.a. n.a.

0.05 n = 250 3 4.0 3.7 5.7 5.4 n.a. n.a.
6 4.2 3.7 5.4 5.1 10.6 9.6
12 3.1 2.2 5.3 4.2 6.5 5.7
15 3.3 2.5 5.6 4.3 6.4 5.2
1 4.6 4.6 6.9 6.8 n.a. n.a.
2 4.3 4.2 5.8 5.6 n.a. n.a.

0.05 n = 500 3 4.3 4.2 5.7 5.5 n.a. n.a.
6 5.0 4.8 6.7 6.5 11.0 10.7
12 4.9 4.2 5.5 4.6 7.1 6.2
15 5.6 4.3 5.7 4.5 7.1 6.2
1 5.1 4.8 27.1 25.9 n.a. n.a.
2 4.0 3.8 8.7 8.2 n.a. n.a.

0.20 n = 100 3 4.1 4.0 7.5 6.9 n.a. n.a.
6 5.5 3.9 5.3 3.9 7.6 6.2
12 4.9 3.0 4.3 2.6 4.3 2.9
15 6.9 2.4 5.1 2.9 5.2 2.7
1 5.1 5.0 14.0 13.9 n.a. n.a.
2 3.4 3.1 7.3 7.2 n.a. n.a.

0.20 n = 250 3 4.3 4.1 6.2 5.9 n.a. n.a.
6 4.7 4.3 6.0 5.5 10.3 9.8
12 3.8 2.6 5.1 4.3 5.7 5.1
15 3.9 2.8 5.9 4.4 5.7 5.0
1 5.6 5.6 12.1 12.1 n.a. n.a.
2 4.9 4.9 7.0 6.9 n.a. n.a.

0.20 n = 500 3 5.0 4.9 6.7 6.4 n.a. n.a.
6 5.5 5.2 6.2 5.7 10.1 9.6
12 5.6 4.8 5.3 4.6 6.3 5.3
15 5.7 4.4 5.4 4.5 5.9 5.1
1 3.2 3.1 32.0 31.6 n.a. n.a.
2 3.5 3.4 8.3 7.3 n.a. n.a.

0.45 n = 100 3 2.9 2.5 6.9 6.4 n.a. n.a.
6 3.8 2.9 3.6 2.8 4.6 3.5
12 3.6 1.3 2.7 1.8 2.1 1.2
15 4.1 1.9 3.7 1.5 2.2 0.9
1 3.4 3.3 18.3 18.0 n.a. n.a.
2 3.2 3.2 6.4 6.1 n.a. n.a.

0.45 n = 250 3 3.6 3.4 5.2 5.1 n.a. n.a.
6 3.8 3.3 4.8 4.4 7.9 7.3
12 3.1 2.3 4.0 3.2 4.4 3.7
15 3.2 2.3 4.7 3.3 4.0 3.1
1 3.6 3.6 14.5 14.4 n.a. n.a.
2 3.4 3.4 5.3 5.3 n.a. n.a.

0.45 n = 500 3 3.4 3.4 5.5 5.5 n.a. n.a.
6 5.0 4.7 4.9 4.6 7.2 7.0
12 5.2 4.7 4.4 3.9 4.2 4.0
15 5.0 4.3 4.4 3.6 4.2 3.7
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Table 18

Empirical size (in %) of the modified and standard versions of the LB and BP tests in the
case of a weak FARIMA(1, d0, 1) defined by (19) with θ0 = (0.9, 0.2, d0) and where ω = 0.4,
α1 = 0.3 and β1 = 0.3 in (20). The nominal asymptotic level of the tests is α = 5%. The

number of replications is N = 1, 000.

d0 Length n Lag m LBsn BPsn LBw BPw LBs BPs

1 3.1 3.1 19.7 18.7 n.a. n.a.
2 2.0 1.7 7.8 7.3 n.a. n.a.

0.05 n = 100 3 1.7 1.6 6.8 6.2 n.a. n.a.
6 1.4 0.9 6.1 4.7 15.6 12.5
12 1.5 0.9 5.1 3.7 13.5 8.9
15 2.0 1.2 5.1 2.6 13.1 8.9
1 2.5 2.4 10.6 10.0 n.a. n.a.
2 2.1 1.7 6.6 6.4 n.a. n.a.

0.05 n = 250 3 1.2 1.1 5.7 5.2 n.a. n.a.
6 0.8 0.8 5.3 4.7 25.0 24.2
12 0.8 0.7 3.7 3.3 23.5 21.5
15 1.1 1.1 3.8 3.0 24.7 21.8
1 2.4 2.4 8.1 8.1 n.a. n.a.
2 1.7 1.7 7.1 7.0 n.a. n.a.

0.05 n = 500 3 0.8 0.7 6.1 6.0 n.a. n.a.
6 0.7 0.6 4.6 4.2 31.5 31.0
12 1.1 1.1 3.9 3.8 33.5 32.3
15 1.0 0.9 4.6 4.0 35.0 33.4
1 2.6 2.6 24.0 23.4 n.a. n.a.
2 1.7 1.6 9.0 8.4 n.a. n.a.

0.20 n = 100 3 2.3 1.7 6.7 6.2 n.a. n.a.
6 1.5 0.8 5.5 4.2 15.2 12.3
12 1.4 0.6 4.5 3.1 12.0 7.7
15 2.0 0.8 4.7 2.8 11.2 7.5
1 3.5 3.5 17.1 16.8 n.a. n.a.
2 1.9 1.9 8.5 8.0 n.a. n.a.

0.20 n = 250 3 1.1 1.0 5.5 5.0 n.a. n.a.
6 0.7 0.7 4.3 4.1 24.2 23.4
12 0.6 0.6 3.3 2.9 22.1 19.7
15 0.6 0.5 3.8 3.1 22.9 20.1
1 2.5 2.4 12.0 11.8 n.a. n.a.
2 2.0 2.0 7.7 7.7 n.a. n.a.

0.20 n = 500 3 1.4 1.4 6.1 5.6 n.a. n.a.
6 0.8 0.8 4.3 4.0 30.2 29.6
12 0.8 0.7 3.4 3.2 33.2 31.7
15 0.7 0.6 4.3 3.8 34.3 32.7
1 2.4 2.3 33.2 32.9 n.a. n.a.
2 1.4 1.3 8.5 7.8 n.a. n.a.

0.45 n = 100 3 1.5 1.2 6.3 5.4 n.a. n.a.
6 1.4 0.8 4.5 3.5 10.5 8.3
12 0.8 0.3 4.3 2.7 7.0 5.0
15 1.5 0.4 4.1 2.4 7.5 4.3
1 2.1 2.1 20.1 20.1 n.a. n.a.
2 1.7 1.7 5.9 5.8 n.a. n.a.

0.45 n = 250 3 1.1 0.8 5.2 4.9 n.a. n.a.
6 0.9 0.9 4.1 3.7 18.8 18.0
12 0.4 0.4 2.6 2.1 17.4 15.4
15 0.2 0.2 4.2 3.0 18.4 15.7
1 2.1 2.1 13.3 13.2 n.a. n.a.
2 1.2 1.2 5.8 5.7 n.a. n.a.

0.45 n = 500 3 1.1 1.0 4.9 4.9 n.a. n.a.
6 0.6 0.6 4.0 3.8 27.3 26.4
12 0.2 0.2 3.1 2.8 28.3 27.0
15 0.2 0.1 4.3 3.8 28.4 26.8



Validation of weak FARIMA models 1227

Table 19

Empirical size (in %) of the modified and standard versions of the LB and BP tests in the
case of a weak FARIMA(1, d0, 1) defined by (19) with θ0 = (0.9, 0.2, d0) and where ω = 0.04,
α1 = 0.12 and β1 = 0.85 in (20). The nominal asymptotic level of the tests is α = 5%. The

number of replications is N = 1, 000.

d0 Length n Lag m LBsn BPsn LBw BPw LBs BPs

1 3.1 3.1 19.7 18.7 n.a. n.a.
2 2.0 1.7 7.8 7.3 n.a. n.a.

0.05 n = 100 3 1.7 1.6 6.8 6.2 n.a. n.a.
6 1.4 0.9 6.1 4.7 15.6 12.5
12 1.5 0.9 5.1 3.7 13.5 8.9
15 2.0 1.2 5.1 2.6 13.1 8.9
1 2.5 2.4 10.6 10.0 n.a. n.a.
2 2.1 1.7 6.6 6.4 n.a. n.a.

0.05 n = 250 3 1.2 1.1 5.7 5.2 n.a. n.a.
6 0.8 0.8 5.3 4.7 25.0 24.2
12 0.8 0.7 3.7 3.3 23.5 21.5
15 1.1 1.1 3.8 3.0 24.7 21.8
1 2.4 2.4 8.1 8.1 n.a. n.a.
2 1.7 1.7 7.1 7.0 n.a. n.a.

0.05 n = 500 3 0.8 0.7 6.1 6.0 n.a. n.a.
6 0.7 0.6 4.6 4.2 31.5 31.0
12 1.1 1.1 3.9 3.8 33.5 32.3
15 1.0 0.9 4.6 4.0 35.0 33.4
1 2.6 2.6 24.0 23.4 n.a. n.a.
2 1.7 1.6 9.0 8.4 n.a. n.a.

0.20 n = 100 3 2.3 1.7 6.7 6.2 n.a. n.a.
6 1.5 0.8 5.5 4.2 15.2 12.3
12 1.4 0.6 4.5 3.1 12.0 7.7
15 2.0 0.8 4.7 2.8 11.2 7.5
1 3.5 3.5 17.1 16.8 n.a. n.a.
2 1.9 1.9 8.5 8.0 n.a. n.a.

0.20 n = 250 3 1.1 1.0 5.5 5.0 n.a. n.a.
6 0.7 0.7 4.3 4.1 24.2 23.4
12 0.6 0.6 3.3 2.9 22.1 19.7
15 0.6 0.5 3.8 3.1 22.9 20.1
1 2.5 2.4 12.0 11.8 n.a. n.a.
2 2.0 2.0 7.7 7.7 n.a. n.a.

0.20 n = 500 3 1.4 1.4 6.1 5.6 n.a. n.a.
6 0.8 0.8 4.3 4.0 30.2 29.6
12 0.8 0.7 3.4 3.2 33.2 31.7
15 0.7 0.6 4.3 3.8 34.3 32.7
1 2.4 2.3 33.2 32.9 n.a. n.a.
2 1.4 1.3 8.5 7.8 n.a. n.a.

0.45 n = 100 3 1.5 1.2 6.3 5.4 n.a. n.a.
6 1.4 0.8 4.5 3.5 10.5 8.3
12 0.8 0.3 4.3 2.7 7.0 5.0
15 1.5 0.4 4.1 2.4 7.5 4.3
1 2.1 2.1 20.1 20.1 n.a. n.a.
2 1.7 1.7 5.9 5.8 n.a. n.a.

0.45 n = 250 3 1.1 0.8 5.2 4.9 n.a. n.a.
6 0.9 0.9 4.1 3.7 18.8 18.0
12 0.4 0.4 2.6 2.1 17.4 15.4
15 0.2 0.2 4.2 3.0 18.4 15.7
1 2.1 2.1 13.3 13.2 n.a. n.a.
2 1.2 1.2 5.8 5.7 n.a. n.a.

0.45 n = 500 3 1.1 1.0 4.9 4.9 n.a. n.a.
6 0.6 0.6 4.0 3.8 27.3 26.4
12 0.2 0.2 3.1 2.8 28.3 27.0
15 0.2 0.1 4.3 3.8 28.4 26.8
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Table 20

Empirical size (in %) of the modified and standard versions of the LB and BP tests in the
case of a weak FARIMA(1, d0, 1) defined by (19) with θ0 = (0.9, 0.2, d0) and where ω = 0.04,
α1 = 0.12 and β1 = 0.85 in (20). The nominal asymptotic level of the tests is α = 5%. The

number of replications is N = 1, 000.

d0 Length n Lag m LBsn BPsn LBw BPw LBs BPs

1 3.3 3.3 8.9 8.9 n.a. n.a.
2 2.5 2.5 7.5 7.5 n.a. n.a.

0.05 n = 1, 000 3 2.1 2.1 5.4 5.3 n.a. n.a.
6 1.1 1.0 4.3 4.1 38.4 38.1
12 0.6 0.6 3.7 3.2 43.3 42.7
15 0.2 0.2 3.5 3.5 45.7 44.6
1 4.4 4.4 5.4 5.4 n.a. n.a.
2 3.5 3.5 5.0 5.0 n.a. n.a.

0.05 n = 10, 000 3 3.3 3.3 6.3 6.3 n.a. n.a.
6 2.3 2.2 4.5 4.4 57.7 57.6
12 1.6 1.6 4.0 3.9 68.9 68.8
15 1.3 1.3 4.6 4.6 73.8 73.8
1 4.6 4.6 5.2 5.2 n.a. n.a.
2 4.3 4.3 5.0 5.0 n.a. n.a.

0.05 n = 20, 000 3 3.9 3.9 4.8 4.8 n.a. n.a.
6 2.5 2.5 5.0 4.8 41.7 41.7
12 3.8 3.8 4.2 4.2 51.1 51.1
15 3.3 3.2 3.7 3.7 52.8 52.7
1 3.5 3.4 9.9 9.7 n.a. n.a.
2 2.4 2.4 6.4 6.4 n.a. n.a.

0.20 n = 1, 000 3 2.2 2.1 4.9 4.9 n.a. n.a.
6 1.1 0.8 3.5 3.4 37.4 37.2
12 0.3 0.3 3.5 3.3 42.9 42.4
15 0.0 0.0 3.6 3.5 44.4 43.2
1 4.2 4.2 4.0 4.0 n.a. n.a.
2 3.4 3.4 4.1 4.1 n.a. n.a.

0.20 n = 10, 000 3 3.3 3.3 5.3 5.3 n.a. n.a.
6 2.2 2.2 4.3 4.3 55.8 55.8
12 1.6 1.6 3.9 3.9 67.7 67.7
15 1.3 1.3 4.1 4.1 72.9 72.9
1 5.0 5.0 4.3 4.3 n.a. n.a.
2 4.6 4.6 4.4 4.4 n.a. n.a.

0.20 n = 20, 000 3 3.9 3.9 4.7 4.7 n.a. n.a.
6 2.7 2.7 4.7 4.7 41.0 41.0
12 3.7 3.7 4.0 4.0 50.3 50.3
15 3.4 3.4 3.6 3.5 51.9 51.8
1 3.0 3.0 12.1 12.2 n.a. n.a.
2 1.8 1.8 5.5 5.4 n.a. n.a.

0.45 n = 1, 000 3 1.7 1.6 4.4 4.4 n.a. n.a.
6 0.6 0.6 3.4 3.3 34.7 34.4
12 0.4 0.4 3.3 3.0 38.6 38.0
15 0.2 0.2 3.6 3.5 40.0 38.9
1 3.7 3.6 3.7 3.7 n.a. n.a.
2 3.0 3.0 3.7 3.8 n.a. n.a.

0.45 n = 10, 000 3 3.0 3.0 5.1 5.1 n.a. n.a.
6 2.0 2.0 4.7 4.7 55.3 55.3
12 1.7 1.7 3.8 3.8 67.6 67.4
15 1.3 1.3 4.1 4.1 72.0 71.8
1 5.0 5.0 4.1 4.1 n.a. n.a.
2 4.5 4.5 4.1 4.1 n.a. n.a.

0.45 n = 20, 000 3 3.7 3.7 4.8 4.8 n.a. n.a.
6 2.9 2.9 4.5 4.4 40.5 40.5
12 3.7 3.7 3.8 3.8 49.8 49.7
15 3.5 3.5 3.6 3.6 51.3 51.3
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GARCH process with infinite moment

In order to see if the test procedures remain reliable for GARCH process with
infinite moment (for α1 +β1 ≥ 1), we replicate the numerical experiments made
on Model (19)–(20) with ω = 0.04, α1 = 0.13 and β1 = 0.88.

Figures 5, . . . , 10 indicate that the results are qualitatively similar to what
we observe here in Tables 2, 3 9 and 10.

Figures 5, . . . , 9 display the residual autocorrelations of a realization of size
n = 2, 000 for weak FARIMA models (19)–(20) with ω = 0.04, α1 = 0.13,
β1 = 0.88 and three values of d0, and their 5% significance limits under the
strong FARIMA and weak FARIMA assumptions. These figures confirm clearly
the conclusions drawn in Subsection 4.1. The horizontal dotted lines (blue color)
correspond to the 5% significant limits obtained under the strong FARIMA as-
sumption. The solid lines (red color) and dashed lines (green color) correspond
also to the 5% significant limits under the weak FARIMA assumption. The full
lines correspond to the asymptotic significance limits for the residual autocorre-
lations obtained in Theorem 2. The dashed lines (green color) correspond to the
self-normalized asymptotic significance limits for the residual autocorrelations
obtained in Theorem 7.
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Fig 5. Autocorrelation of a realization of size n = 2, 000 for a weak FARIMA(1, 0.01, 1)
model (19)–(20) with θ0 = (0.9, 0.2, 0.01) and where ω = 0.04, α1 = 0.13 and β1 = 0.88. The
horizontal dotted lines (blue color) correspond to the 5% significant limits obtained under
the strong FARIMA assumption. The solid lines (red color) and dashed lines (green color)
correspond also to the 5% significant limits under the weak FARIMA assumption. The full
lines correspond to the asymptotic significance limits for the residual autocorrelations obtained
in Theorem 2. The dashed lines (green color) correspond to the self-normalized asymptotic
significance limits for the residual autocorrelations obtained in Theorem 7.
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Fig 6. Autocorrelation of a realization of size n = 2, 000 for a weak FARIMA(1, 0.25, 1)
model (19)–(20) with θ0 = (0.9, 0.2, 0.25) and where ω = 0.04, α1 = 0.13 and β1 = 0.88. The
horizontal dotted lines (blue color) correspond to the 5% significant limits obtained under
the strong FARIMA assumption. The solid lines (red color) and dashed lines (green color)
correspond also to the 5% significant limits under the weak FARIMA assumption. The full
lines correspond to the asymptotic significance limits for the residual autocorrelations obtained
in Theorem 2. The dashed lines (green color) correspond to the self-normalized asymptotic
significance limits for the residual autocorrelations obtained in Theorem 7.
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Fig 7. Autocorrelation of a realization of size n = 2, 000 for a weak FARIMA(1, 0.49, 1)
model (19)–(20) with θ0 = (0.9, 0.2, 0.49) and where ω = 0.04, α1 = 0.13 and β1 = 0.88. The
horizontal dotted lines (blue color) correspond to the 5% significant limits obtained under
the strong FARIMA assumption. The solid lines (red color) and dashed lines (green color)
correspond also to the 5% significant limits under the weak FARIMA assumption. The full
lines correspond to the asymptotic significance limits for the residual autocorrelations obtained
in Theorem 2. The dashed lines (green color) correspond to the self-normalized asymptotic
significance limits for the residual autocorrelations obtained in Theorem 7.
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Fig 8. Autocorrelation of a realization of size n = 2, 000 for a weak FARIMA(0, 0.01, 0)
model (19)–(20) with θ0 = (0, 0, 0.01) and where ω = 0.04, α1 = 0.13 and β1 = 0.88. The
horizontal dotted lines (blue color) correspond to the 5% significant limits obtained under
the strong FARIMA assumption. The solid lines (red color) and dashed lines (green color)
correspond also to the 5% significant limits under the weak FARIMA assumption. The full
lines correspond to the asymptotic significance limits for the residual autocorrelations obtained
in Theorem 2. The dashed lines (green color) correspond to the self-normalized asymptotic
significance limits for the residual autocorrelations obtained in Theorem 7.
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Fig 9. Autocorrelation of a realization of size n = 2, 000 for a weak FARIMA(0, 0.25, 0)
model (19)–(20) with θ0 = (0, 0, 0.25) and where ω = 0.04, α1 = 0.13 and β1 = 0.88. The
horizontal dotted lines (blue color) correspond to the 5% significant limits obtained under
the strong FARIMA assumption. The solid lines (red color) and dashed lines (green color)
correspond also to the 5% significant limits under the weak FARIMA assumption. The full
lines correspond to the asymptotic significance limits for the residual autocorrelations obtained
in Theorem 2. The dashed lines (green color) correspond to the self-normalized asymptotic
significance limits for the residual autocorrelations obtained in Theorem 7.
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Fig 10. Autocorrelation of a realization of size n = 2, 000 for a weak FARIMA(0, 0.49, 0)
model (19)–(20) with θ0 = (0, 0, 0.49) and where ω = 0.04, α1 = 0.13 and β1 = 0.88. The
horizontal dotted lines (blue color) correspond to the 5% significant limits obtained under
the strong FARIMA assumption. The solid lines (red color) and dashed lines (green color)
correspond also to the 5% significant limits under the weak FARIMA assumption. The full
lines correspond to the asymptotic significance limits for the residual autocorrelations obtained
in Theorem 2. The dashed lines (green color) correspond to the self-normalized asymptotic
significance limits for the residual autocorrelations obtained in Theorem 7.
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