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Abstract: With the increasing availability of non-Euclidean data objects,
statisticians are faced with the task of developing appropriate statistical
methods for their analysis. For regression models in which the predictors
lie in R

p and the response variables are situated in a metric space, condi-
tional Fréchet means can be used to define the Fréchet regression function.
Global and local Fréchet methods have recently been developed for mod-
eling and estimating this regression function as extensions of multiple and
local linear regression, respectively. This paper expands on these method-
ologies by proposing the Fréchet single index model, in which the Fréchet
regression function is assumed to depend only on a scalar projection of the
multivariate predictor. Estimation is performed by combining local Fréchet
along with M-estimation to estimate both the coefficient vector and the
underlying regression function, and these estimators are shown to be con-
sistent. The method is illustrated by simulations for response objects on
the surface of the unit sphere and through an analysis of human mortality
data in which lifetable data are represented by distributions of age-of-death,
viewed as elements of the Wasserstein space of distributions.
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1. Introduction

A challenge in modern statistics is to analyze complex data objects that possess
structural or geometric properties. Often, such properties are essential to their
character and interpretation, and must be respected in statistical analyses to
maintain maximal utility in drawing scientific conclusions. A basic ingredient for
modeling these objects is the presence of a metric that quantifies the disparity
between them, from which one can extend valuable statistical concepts such as
measures of center and dispersion. These ideas date back to the seminal work of
[21], where the Fréchet mean and variance were defined for random elements of
a metric space. In recent years, such data have been termed random objects [40],
while the associated set of tools has also been referred to as object oriented data
analysis [39, 45]. Relevant examples include covariance matrices [69], probability
distributions [49, 10], and networks [14], among many others.

The demand for regression tools for modeling the dependence of random
objects on vector-valued covariates has grown steadily in recent years. Along
the way, the scope of these tools has broadened significantly, beginning with
relatively simple spaces such as a circle or sphere [19, 18, 8], then on to smooth
manifolds [46, 56, 41, 31, 69, 20, 12] and, most recently, general metric spaces [17,
50]. In the case of smooth Riemannian manifolds, the cited regression models and
estimators include parametric, semiparametric, and nonparametric variants that
provide valuable flexibility; methods for general metric spaces are comparatively
less developed. [50] recently introduced two techniques applicable to response
objects in a generic metric space. Termed global and local Fréchet regression,
these tools generalize linear and local linear regression, respectively, from the
scalar response setting using similar principles to the classical Fréchet mean.

As local and global Fréchet regression are extensions of classical tools for
scalar response variables, one may naturally look to other scalar response models
for inspiration in developing methods to balance the strengths and weaknesses
of these two methods, the former providing flexibility, and the latter stabil-
ity. The model proposed in this paper is based on the single index model for
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scalar responses, specifically the approach studied by [33]. For a random pair
(X,Y ) ∈ R

p × R, the scalar response single index model asserts that

m(x) := E(Y |X = x) = g(θ′0x) (1)

for an unknown coefficient θ0 ∈ R
p and unknown smooth function g. The hybrid

nature is embodied by the finite-dimensional parameter θ0 and a univariate func-
tion g that resides in an infinite-dimensional function space. This is in contrast
with both multiple linear regression, in which g is assumed to be linear, and a
fully nonparametric model in which m is a smooth function with p-dimensional
domain. Interpretation is simplified compared to a fully nonparametric model
since θ0 is a global parameter that modulates the effect of each predictor. At the
same time, the model is more flexible than a linear one by allowing the effect
of the index θ′0x to be nonlinear. A theoretical advantage that adds utility to
the model is that various reasonable estimators, including that studied in [33],
are able to estimate θ0 with a parametric rate, even yielding a limiting normal
distribution in some cases.

In this paper, the Fréchet single index model is proposed as a generaliza-
tion of the standard single index model through the use of conditional Fréchet
means. Prior to its definition, Section 2 provides the necessary background on
Fréchet means, both marginal and conditional, as well as a description of the
local Fréchet regression technique for estimating the latter. The FSI model is
formally defined in Section 3, where estimators of the coefficient vector and uni-
variate object-valued regression function are also detailed. Consistency of both
the single index parameter and the overall regression estimator are established.
Simulations for spherical response data illustrate the sampling variability of
these estimators in Section 4, and a real data analysis involving the association
of distributions of age-at-death for various countries with economic indicators
is provided in Section 5. Code for both the simulation and real data example
can be found on Github (https://github.com/aghosal89/Frechet_SingleIndex).

2. Background on Fréchet regression

Let (Ω, d) be a bounded metric space. The response Y ∈ Ω is to be modeled
conditionally on a p-dimensional covariate X ∈ R

p. Assume (X,Y ) ∼ F , with
F being a joint distribution on R

p × Ω such that Σ = Var(X) exists with Σ
positive definite and μ = E(X). When Ω is a Euclidean space such as R

d or
L2[0, 1] as would be the typical case for multivariate or functional data, one
can utilize the usual notions of expectation arising from Lebesgue integration
to quantify the mean and variance of Y . For arbitrary metric spaces Ω, the
concepts of mean and variance of a random variable are replaced by the Fréchet
mean and variance [21], respectively, defined as

ω⊕ = argmin
ω∈Ω

E
(
d2(Y, ω)

)
, V⊕ = E

(
d2 (Y, ω⊕)

)
. (2)

Existence and uniqueness of the Fréchet mean is by no means guaranteed for
general metric spaces. However, in special cases such as certain Riemannian

https://github.com/aghosal89/Frechet_SingleIndex
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manifolds [1, 47] or spaces with negative curvature [3, 4], Fréchet means exist
and are unique. For the moment, we assume at least that a minimizer exists,
with the consequence that ω⊕ and V⊕ are not vacuous, and the latter is unique.
Extending these concepts to regression, define the Fréchet regression function
of Y given X = x ∈ R

p as

m⊕(x) = argmin
ω∈Ω

M⊕(ω, x), M⊕(·, x) = E(d2(Y, ·)|X = x). (3)

2.1. Local Fréchet regression

Two different approaches were proposed by [50] to estimate the conditional
Fréchet means m⊕(x). First, a global model for m⊕(x) was proposed in which
m⊕(x) can be written as the minimizer of an alternative objective function
motivated by multiple linear regression in the case Ω = R. The result is that
m⊕(x) can be viewed as a weighted Fréchet mean, where the weights depend
on the joint distribution F and the input x. As a direct generalization of linear
regression, global Fréchet regression similarly can be overly restrictive for ran-
dom object responses. Thus, in a second approach, [50] also demonstrated how
to generalize local linear regression to estimate m⊕(x) under less restrictive as-
sumptions on the function m⊕. This approach, termed local Fréchet regression,
will now be described.

The motivation stems from considering a scalar predictor X ∈ R and re-
sponse Y ∈ Ω = R, so that the target m⊕(x) =: m(x) in (3) is just the usual
conditional expectation. Let K be a probability density kernel, h a bandwidth,
and Kh(·) = h−1K(·/h), as used in local polynomial estimation. Given a ran-
dom sample (Xi, Yi), i = 1, . . . , n and a fixed predictor value x, [50] utilized the
expression

l̂(x) = 1
n

n∑
i=1

ŝh(Xi, x)Yi

for the well-known local linear estimator [16] of m⊕(x) in order to motivate the
local Fréchet technique for general response object spaces Ω. Here, the empirical
weight function ŝh, as derived from the local linear least squares criterion, is

ŝh(z, x) = ς̂−2Kh(z − x) [μ̂2 − μ̂1(z − x)] , (4)

where

μ̂j = n−1
n∑

i=1
Kh(Xi − x)(Xi − x)j , ς̂2 = μ̂0μ̂2 − μ̂2

1,

and thus satisfies n−1 ∑n
i=1 ŝh(Xi, x) = 1. Hence, l̂(x) is a weighted average of

the observed responses or, equivalently,

l̂(x) = argmin
y∈R

n∑
i=1

ŝh(Xi, x)(Yi − y)2. (5)
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The local Fréchet regression estimator of m⊕(x) in (3) for a general metric
space Ω is obtained by replacing the squared difference (Y − y)2 in (5) by its
appropriate counterpart in metric spaces, the squared distance. Given a random
sample (X1, Y1), (X2, Y2), . . . , (Xn, Yn) independently distributed according to
F and a fixed x ∈ R, the local Fréchet estimator is

l̂⊕(x) = argmin
ω∈Ω

n∑
i=1

ŝh(Xi, x)d2 (Yi, ω) (6)

where the weights are again given by (4). As pointed out by one reviewer,
the criterion minimized in the right-hand side of (6) is, for each x and ω, a
local linear estimator of the conditional expected value represented by M⊕(ω, x)
in (3). Thus, the local Fréchet regression approach is equivalent to pointwise
estimation of M⊕ by local linear regression, followed by its minimization over
Ω.

3. The Fréchet single index model

While extension of the local Fréchet estimator to accommodate multivariate
predictors x ∈ R

p, p > 1, is mathematically straightforward, its performance
will deteriorate quickly with increasing p due to the curse of dimensionality.
Thus, for even moderate p, the global Fréchet model may be preferable despite
its bias due to increased stability in estimation. Unsurprisingly, one can attempt
to balance the strengths, and mitigate the weaknesses, of these two Fréchet
approaches in the same spirit that semiparametric techniques do for parametric
and nonparametric estimators in classical models. Specifically, the proposed
Fréchet single index model assumes that the Fréchet regression function only
depends on x through an index θ′0x ∈ R, for some θ0 ∈ R

p.

3.1. Model definition

The coefficient θ0 ∈ R
p constitutes the primary target of interest in this new

model, as it lends interpretability by specifying the contribution of each predic-
tor. For identifiability purposes [36], define the parameter space

Θp = {θ ∈ R
p : the first non-zero element of θ is positive, and ‖θ‖E = 1},

where ‖ · ‖E is the Euclidean norm. Hence, θ belongs to the surface of the unit
sphere in p dimensions. By this convention, Θ1 = {1}, for which the required
theoretical work is well-developed as local Fréchet regression. Therefore we focus
on analyzing p ≥ 2.

A comprehensive discussion of a large class of single index models and their
applications can be found in [33] for response data Y ∈ R, where the index
parameter θ0 was estimated using the Semiparametric Least Squares (SLS)
method. The procedure that will be described for estimating the coefficient in
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the proposed model is inspired by this intuitive technique, and leverages local
Fréchet regression and standard distance-based least squares.

To formally define the new model, let FX denote the marginal distribution of
X, with support X ⊂ R

p. For any θ ∈ Θp, define the Fréchet regression function
conditional on the projected variable θ′X as

g⊕(u, θ) = argmin
ω∈Ω

Λ⊕(ω, u, θ), Λ⊕(·, u, θ) = E(d2(Y, ·)|θ′X = u), (7)

where u ∈ Uθ := {θ′x : x ∈ X} and a minimizer is assumed to exist. Thus, the
Fréchet single index (FSI) model for m⊕(x) in (3) is

m⊕(x) = g⊕(θ′0x, θ0), (8)

consisting of an unknown parameter θ0 ∈ Θp and unknown smooth function
g⊕(·, θ0) on Uθ0 .

Given existence of the minimizers in (7), identifiability of the parameter θ0
is equivalent to the statement

P (g⊕(θ′X, θ) �= g⊕(θ′0X, θ0)) > 0

for any θ �= θ0, from which it can be deduced that

W (θ) = E
(
d2(Y, g⊕(θ′X, θ))

)
, (9)

the natural generalization of the least-squares criterion for metric spaces, is
uniquely minimized at θ0. Thus, the above criterion will be used to construct
an M-estimator for θ0. In a recent preprint, [2] independently investigated
model (8), though using a slightly different strategy to estimate W (θ) than
that employed in this paper. A comparison of the proposed estimator and that
of [2] is provided below in Section 3.4.

3.2. Estimation

Suppose a random sample (Xi, Yi), i = 1, . . . , n, distributed according to F is
available. As the true parameter θ0 is unknown, we proceed to estimate the
target in (8) in two steps. First, g⊕(θ′x, θ) is estimated for fixed θ using local
Fréchet regression, followed by optimization over θ. Let h > 0 be a given band-
width and K a univariate probability density kernel, as before. The estimates in
this section depend on h, although we suppress this dependence for simplicity
in several formulae.

For a fixed θ ∈ Θp, repurposing (4) and (6) for use with the predictors θ′Xi,
we obtain the estimator

ĝ⊕(θ′x, θ) = argmin
ω∈Ω

Λ̂⊕(ω, θ′x, θ), Λ̂⊕(ω, θ′x, θ) = 1
n

n∑
i=1

r̂h(Xi, x, θ)d2 (Yi, ω) .

(10)
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Here, the weight function r̂h : Rp × R
p × Θp → R is

r̂h(z, x, θ) = σ̂−2
θ (x)Kh(θ′(z − x)) [μ̂2,θ(x) − μ̂1,θ(x)(θ′(z − x))] , (11)

where, for j = 0, 1, 2,

μ̂j,θ(x) = n−1
n∑

i=1
Kh(θ′(Xi − x))(θ′(Xi − x))j (12)

and σ̂2
θ(x) = μ̂0,θ(x)μ̂2,θ(x) − μ̂1,θ(x)2.

Utilizing this result, we construct a criterion for estimating θ0 by defining
an empirical version of (9). Replacing the expectation with the empirical dis-
tribution, and replacing g⊕(θ′Xi, θ) with the fitted value Ŷi(θ, h) = ĝ⊕(θ′Xi, θ)
yields

Wn(θ) = 1
n

n∑
i=1

d2(Yi, Ŷi(θ, h)). (13)

The coefficient vector θ0 is then estimated by

θ̂ = θ̂(h) = argmin
θ∈Θp

Wn(θ). (14)

As is typically the case in this type of semi-parametric estimation approach,
the bandwidth h cannot decay too quickly if one is to obtain a consistent esti-
mator of θ0. Indeed, Theorem 1 in Section 3.3 restricts the decay of h in a way
that depends on the dimension p as well as n. Nevertheless, in constructing the
final estimator m̂⊕(x) of the regression function m⊕(x), a different smoothing
bandwidth may be used, potentially improving the overall rate of convergence.
Specifically, denote by g̃(θ′x, θ) the estimator in (10) for any θ and x using a
bandwidth h̃ > 0. Then the final regression estimator is

m̂⊕(x) = g̃⊕(θ̂′x, θ̂). (15)

3.3. Theoretical properties

For semiparametric models such as the proposed FSI model, the primary target
of interest is the parametric component, in this case θ0. Once the properties of
the estimate θ̂ are known, their effects on the ensuing estimate m̂⊕(x) in (15)
can be determined. A necessary preliminary result is the uniform consistency of
the estimates ĝ⊕(θ′x, θ) in (10) over x and θ, in analogy to Theorem 5.1 of [33]
in the case of a scalar response. Uniform consistency of local Fréchet regression
for a scalar predictor was first proved by [11], combining pointwise results of [50]
with uniform results on kernel estimation [58, 38]. For the proposed estimators
in the FSI model, this result of [11] implies consistency of ĝ⊕(θ′x, θ) that is
uniform in x for a fixed θ, and is thus insufficient for our purposes.

The key results in [58, 38] utilize Brownian bridge approximations to the
empirical distribution of a scalar or bivariate sample [34, 63]. The quantities
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h−jμ̂j,θ(x) are, in fact, kernel estimators of the density of θ′X at θ′x, so the
appropriate generalization of the Brownian bridge technique involves such an
approximation that is uniform in x and θ. We obtain such an approximation by
utilizing a comparatively lesser known multivariate Brownian bridge approxi-
mation of [13] for the predictor sample X1, . . . , Xn. The value of this particular
approximation was demonstrated in [54] for p-dimensional kernel density esti-
mates. However, to the knowledge of the authors, the corresponding result of
Lemma 2, stated and proved in Section 7.1, is a novel result of independent
interest. It establishes a strong Brownian bridge approximation for kernel den-
sity estimates of projected variables θ′X that is uniform in both the projection
direction and the density argument, and is crucial for establishing Theorem 1
below. As we are performing regression, Lemma 4 in Section 7.1 gives a similar
approximation in the spirit of Proposition 4 of [38] for the scalar response case.
We require the following conditions.
(K) The kernel K is a univariate probability density function with K(w) =

K(−w), is uniformly continuous, and is of bounded variation. With K(j)(w) =
K(w)wj , j = 0, 1, 2, the definite integrals

∫
R
w4K(w)dw,

∫
R
w6K2(w)dw,

and
∫
R
|w log |w||1/2dK(j)(w) are all finite.

(F) Let FX , Fθ′X , and Fθ′X|Y denote the distributions of X, θ′X, and θ′X|Y ,
respectively.

i) The support X is a bounded set, and the Rosenblatt transforma-
tion T : X → [0, 1]p defined in [53] as T1(x) = FX1(x1), Tj(x) =
FXj |X1,...,Xj−1(xj |x1, . . . , xj−1) for j = 2, . . . , p, is Lipschitz continu-
ous. The space Ω is also bounded with respect to the metric d.

ii) For each θ, the support of Fθ′X is a compact interval Uθ, and Fθ′X

admits a density fθ′X that is twice differentiable on Uo
θ , the interior

of Uθ, and satisfies

inf
θ∈Θp

inf
u∈Uθ

fθ′X(u) > 0, sup
θ∈Θp

sup
u∈Uo

θ

|f ′′
θ′X(u)| < ∞.

iii) For any y ∈ Ω and θ ∈ Θp, the conditional density fθ′X|Y (u|y) =
(∂/∂u)Fθ′X|Y (u|y) is twice differentiable with respect to u on Uo

θ

and satisfies

sup
y∈Ω

sup
θ∈Θp

sup
u∈Uo

θ

∣∣∣∣ ∂2

∂u2 fθ′X|Y (u|y)
∣∣∣∣ < ∞.

Additionally, for any open set V ⊂ Ω and θ ∈ Θp, the function
P (Y ∈ V |θ′X = ·) is continuous on Uo

θ .
iv) For each fixed ω ∈ Ω, with R = d2(Y, ω), the vector (X,R) has den-

sity fX,R(x, r) such that supx

∫
R
r2fX,R(x, r)dr < ∞. Furthermore,

the Rosenblatt transformation T+ of (X,R) is Lipschitz continuous.
(M) The minimizers in (7) are unique and, for any ε > 0, there is η = η(ε) > 0

such that

inf
θ∈Θp

inf
x∈X

inf
ω: d(ω,g⊕(θ′x,θ))>ε

{Λ⊕(ω, θ′x, θ) − Λ⊕(g⊕(θ′x, θ), θ′x, θ)} > η.
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Finally, all minimizers in (10) exist with probability approaching 1, though
these need not be unique.

Assumption (K) is common for smoothing estimators and strengthens the cor-
responding assumption of [50] for local Fréchet regression in order to provide
uniform consistency. Assumption (F) lists distributional assumptions on (X,Y ).
Parts i) and iv) are essential in order to leverage the Brownian bridge approxi-
mations of Lemmas 2 and 4, respectively; parts ii) and iii) control the behavior
of the estimated weight functions r̂h in (11), and imply the consistency of the
empirical criteria in (10).

Assumption (M) is a generic condition for M-estimators like those used here
for the FSI model, though sufficient conditions for specific spaces Ω and dis-
tributions F need to be derived on a case-by-case basis. Compared to the cor-
responding assumptions employed by [11] to establish uniform consistency of
local Fréchet estimates, (M) is stronger in its uniformity over θ, but weaker as
it only makes the separation assumption, given in the first display of (M), for
the population criterion Λ⊕ and not the empirical criteria Λ̂⊕. The verification
of assumption (M) can be challenging and, in general, depends on properties
of the metric space as well as the probability measure. However, in some cases,
uniqueness of both population and sample Fréchet means can be established,
along with the separation assumption displayed in (M). As a primary example,
distributions on non-positively curved spaces, also known as Hadamard spaces,
are known to possess unique Fréchet means [59]. These include Hilbert spaces
of finite or infinite dimension, as well as convex subsets of these, as is the case
for the space of Wasserstein distributions on the real line utilized below in the
data example of Section 5. Another example is the space of phylogenetic trees
[5]. However, many data examples lie in spaces with positive curvature, such as
spherical data that are illustrated in the simulations of Section 4. While not a
Hadamard space, the sphere is a proper Alexandrov space, for which sufficient
conditions for uniqueness of Fréchet means, as well as the separation property
stated in (M), have been investigated [42].

Observe also that (M) requires uniqueness only of the population Fréchet
means, whereas only existence is required for the minimizers in (10). Indeed,
if closed balls in Ω are compact, the existence of minimizers ĝ⊕(u, θ) follows
by a continuity argument, so that the last statement of (M) ceases to be an
assumption in this case. The same is true if Ω is a closed, convex subset of a
Hilbert space, with d the Hilbertian metric. In case multiple minimizers in (10)
exist, the consistency result below will hold for any such (sequence of) mini-
mizers. The proof of this result, given in Section 7.2, is considerably simplified
compared to the uniform consistency arguments in both [50] and [11] for global
and local Fréchet regression, respectively.

Theorem 1. Suppose assumptions (K), (F), and (M) are satisfied, and that
h → 0 as n → ∞ such that − log(h)/(nh) and [log(n)]3/[h2n(p+3)/(p+2)] con-
verge to 0 as n → ∞. Let ĝ⊕(θ′x, θ) denote any minimizer of (10) when such a
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minimizer exists. Then

sup
θ∈Θp

sup
x

d(ĝ⊕(θ′x, θ), g⊕(θ′x, θ)) = oP (1).

Theorem 1 imposes two requirements on the h besides the usual condi-
tion h → 0 that ensures the smoothing bias goes to zero. The first is that
− log(h)/(nh) → 0, and arises from the continuity modulus of a Brownian
bridge in dimension p + 1. This is the same rate that arises in one-dimensional
smoothing, as the modulus of continuity is insensitive to the underlying di-
mension. On the other hand, the approximation error leads to the condition
[log(n)]3/[h2n(p+3)/(p+2)] → 0 that does indeed depend on the dimension of the
predictor variable. Although such a condition is not necessary to derive consis-
tency for scalar responses, i.e. Ω = R, the lack of a closed form expression for the
minimizers in (10) prohibits arguments available in this special case from being
used for general object response spaces. We also remark that, in the case p = 2,
this dimension-dependent requirement on the bandwidth can be weakened us-
ing the specialized approximation result of [63] for bivariate distributions rather
than the more general result of [13].

Having established uniform consistency of the local Fréchet regression esti-
mates, one can easily demonstrate that the coefficient estimate is consistent, as
well as the overall regression estimator m̂⊕(x) in (15). The proofs are given in
Section 7.2.

Corollary 1. Suppose the assumptions of Theorem 1 hold and that θ0 is iden-
tifiable. Then θ̂ converges to θ0 in probability.

Corollary 2. Suppose the assumptions of Theorem 1 hold and that θ0 is identi-
fiable. Let h̃ be the bandwidth used to construct m̂⊕(x) in (15) and let g̃⊕(θ′x, θ)
denote the estimator in (10) computed using this bandwidth. If there exists δ > 0
such that

sup
‖θ−θ0‖<δ

sup
x

d(g̃⊕(θ′x, θ), g⊕(θ′x, θ)) = oP (1),

then supx d(m̂⊕(x),m⊕(x)) = oP (1).

Regarding the condition on the bandwidth h̃ in the Corollary 2, observe that
it will immediately hold for any δ > 0 if h̃ = h. However, it may be possible
for h̃ to decay more quickly than h since uniform convergence is only required
for θ near θ0 and not for all θ. A more precise specification of the potential
gains requires further analysis. As a starting point, one must obtain a rate of
convergence for θ̂. The usual approaches of either expanding (Wn − W )(θ) or
controlling its continuity modulus near θ0 present non-trivial challenges due
to the presence of estimates Ŷi(θ, h) in Wn, as these approaches would require
some level of smoothness of these estimates in θ. It is conceivable that such
properties could be derived efficiently for certain classes of smooth spaces, such
as Riemannian manifolds, but we do not pursue these here.
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3.4. Qualitative comparison with an alternative estimator

As mentioned previously, model (8) is also studied independently in a recent
preprint [2]. The key difference in their approach is in the estimation of the ob-
jective function W in (9). Rather than averaging the prediction errors for each
θ across all observations as in (13), [2] propose to bin the projected covariates
θ′Xi into M bins, where M grows slowly in comparison to n. Each bin is repre-
sented by a single pair of values (X∗

m, Y ∗
m), with X∗

m being empirical mean of the
predictors and Y ∗

m the empirical Fréchet mean of the responses in the m-th bin,
respectively. Then, (13) is replaced by a similar version that averages prediction
errors across the M representative rather than the n observed data points.

From a practical perspective, the choice to bin the data comes with some
complications and additional choices that need to be made by the analyst, not
least being the number of bins and placement of breaks, which can be difficult for
large data sets, especially considering the different distributions of data points
that can occur when varying the projection direction θ. While the referenced
preprint does not give much motivation for the choice to bin, doing so could
have some advantages in establishing theoretical properties. For instance, in at-
tempting to establish a central limit theorem for

√
n(Wn(θ)−W (θ)), one is again

faced with the difficulty that Wn involves the intermediate estimates Ŷi(θ, h).
Unlike local linear estimators for Euclidean responses, these local Fréchet esti-
mates have no closed form expression for general metric spaces. Moreover, one
cannot exploit properties of squared distances in Euclidean spaces to control
the differences d2(Yi, Ŷi(θ, h)) − d2(Yi, g⊕(θ′Xi, θ)) in the usual way. However,
if Ω is bounded, the reverse triangle inequality does yield

|d2(Yi, Ŷi(θ, h)) − d2(Yi, g⊕(θ′Xi, θ))| ≤ 2diam(Ω)d(Ŷi(θ, h), g⊕(θ′Xi, θ)),

which can be controlled uniformly in θ and Xi according to Theorem 1, but
unfortunately not at a rate that is negligible compared to

√
n. By binning the

data, the same approach may yield an asymptotic limit as long as the uniform
rate of the local Fréchet estimates shrinks faster than the effect of the increase
in number of bins. Nevertheless, it is unclear whether this represents a real
phenomenon or is merely an artifact of analytic approach.

4. Simulation study on spherical data

We implement our methodology when the responses lie on a Riemannian mani-
fold object space. Let Ω = S2, the surface of the unit sphere in R3, with origin
being the center. For any two points y1, y2 ∈ S2, the geodesic distance between
them is d(y1, y2) = arccos (y′1y2). We refer to a simulation setting as a unique
combination of the sample size n, covariate dimension p, and noise level σ2 > 0
that will be defined below.
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4.1. Data generation

For a given setting (n, p, σ2), independent and identically distributed data pairs
(Xi, Yi) ∈ R

p×S2, i = 1, . . . , n were generated according to the following steps.

1. Independently generate predictor components Xij , j = 1, . . . , p, as Xij =
Wij/

√
p, where Wij

iid∼ U(−1, 1).
2. With θ0 = (θ01, θ02, ..., θ0p)′ being the true parameter, compute the latent

predictor Ui = θ′0Xi.
3. Compute the conditional Fréchet mean at Xi, depending only on Ui, as

m⊕(Xi) =
(√(

1 − U2
i

p

)
cos

(
πUi√
p

)
,

√(
1 − U2

i

p

)
sin

(
πUi√
p

)
,
Ui√
p

)
.

4. Generate a noise vector Zi as follows. First, let (Vi1, Vi2) be an orthonormal
basis for the tangent space span{m⊕(Xi)}⊥. Next, for a given noise level
σ2, generate Ci = (ci1, ci2)′

iid∼ N2(0, σ2I2). Finally, set Zi = ci1Vi1 +
ci2Vi2.

5. Generate the spherical response variable as

Yi = cos (‖Zi‖E)m⊕(Xi) + sin (‖Zi‖E) Zi

‖Zi‖E
.

Steps 4 and 5 produce a point Yi on the sphere with conditional Fréchet mean
equal to m⊕(Xi). To give an idea of what the responses look like relative to the
conditional Fréchet mean function for a given noise level, Figure 1 shows example
data sets and corresponding estimates for p = 5 under two noise scenarios
(σ2 = 0.4 and σ2 = 0.8) and three sample sizes (n = 50, 100, 200).

4.2. Computational details

For each simulated data set, estimation was performed using a grid for the
bandwidth h. For given values θ and h, the local Fréchet estimate ĝ⊕(u, θ) in (10)
was obtained at u = θ′Xi, for each i = 1, . . . , n, using a non-convex optimization
trust region algorithm as implemented in ManOpt toolbox for Matlab [6, 50].
As the algorithm requires an initial estimate, we computed the leave-one-out
Nadaraya-Watson estimate

Ỹ
(NW )
(i) (h, θ) =

∑
l �=i YlK ([X ′

iθ −X ′
lθ] /h)∑

l �=i K ([X ′
iθ −X ′

lθ] /h)

for each observed predictor value Xi. Then, the initial estimate that is entered
into the algorithm is obtained by projecting onto the sphere, i.e.

Ŷ
(0)
(i) (h, θ) =

Ỹ
(NW )
(i) (h, θ)

‖Ỹ (NW )
(i) (h, θ) ‖E

.
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Fig 1. Examples of simulated data sets for covariate dimension p = 5, corresponding to
sample sizes n = 50 (top row), n = 100 (middle row), and n = 200 (bottom row), and noise
levels σ2 = 0.4 (left column) and σ2 = 0.8 (right column). The red dots represent values of
Yi in the sample, while the regression function values m⊕(x) are shown by the black curve
for x ∈ [0, 1]p. The blue dots represent the FSI fitted responses for n observations using (15).
The green dots are the fitted responses obtained by computing (10) for a value of θ far from
the true value θ0.
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Computation of the estimate θ̂(h) by optimizing the criterion Wn is the more
challenging task, particularly for larger values of p, since there is no explicit form
for the gradient or Hessian. Numeric evaluation of the gradient can also be quite
expensive when n is large due to the need to repeatedly perform local Fréchet
regression for each data point. In addition, any optimization procedure is sen-
sitive to the starting value for θ, particularly for larger p, further increasing the
computational burden since multiple starting values must be used. Therefore,
we took the following approach.

First, a collection {θk : k = 1, . . . ,Kp}, of starting values was randomly
generated for each setting (n, p, σ2), with the same starting values being used
for all data sets under that setting. The number of starting points was taken to
be K2 = 10, K5 = 50, and K10 = 100, so that these increase with the dimension
p. We then reduce this initial pool of starting values by optimizing a proxy to
Wn given by

W ∗
n(θ) = n−1

n∑
i=1

d2(Yi, Y
∗
i (h, θ)), (16)

where

Y ∗
i (h, θ) =

∑n
j=1 rh(Xj , Xi, θ)Yj

‖
∑n

j=1 rh(Xj , Xi, θ)Yj‖E

is the projection onto the sphere of the local linear estimate of the Euclidean
regression function E(Y |θ′X = u) at u = θ′Xi. The advantage of using this
proxy is that an analytic gradient and Hessian for W ∗

n are available, so that
optimization of W ∗

n is relatively fast. Using each of the Kp starting values,
we obtain as many initial estimates θ̃k(h), k = 1, . . . ,Kp. This optimization
was executed using the fmincon function in Matlab with the trust-region-
reflective option for the optimizer. In this optimization, θ was represented
by its polar coordinates to handle the constraints in a simple way.

In the final optimization step, K̃p of the initial estimates θ̃k are retained as
starting values based on having the lowest values of the proxy criterion W ∗

n , with
K̃2 = 2, K̃5 = 3, and K̃10 = 5. For each starting value, Wn is directly optimized
using fmincon with the SQP option for the optimizer that does not require a
gradient input, again using the polar representation of θ. The value of θ that, at
convergence, attains the lowest value of Wn is taken to be the estimate θ̂(h) for
that bandwidth. Lastly, fitted values are computed using (15) by setting h̃ = h,
θ̂ = θ̂(h), and Ŷi(h) = m̂⊕(Xi).

As a competitor to the FSI model, we also implemented a multivariate local
Fréchet estimator. The estimator is defined as in (6), with the only difference
being that the weights ŝh(Xi, x) are computed from multivariate local linear
regression, since Xi ∈ R

p, using a product Gaussian kernel with the same band-
width for each predictor. The optimization for this estimator was performed
using the ManOpt trust region algorithm described above.
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4.3. Performance evaluation

Data were generated under 18 unique parameter settings using samples sizes
n = 50, 100, 200, for noise levels σ2 = 0.4, 0.8, and for dimensions p = 2, 5, 10,
with 200 simulation runs per setting. Let s = 1, . . . , 200 be the index for simu-
lations within a given setting, and (Xs

i , Y
s
i ) denoted the simulated data. Then,

from each simulated data set and bandwidth we obtain an estimate θ̂s(h) ∈ R
p

and fitted values Ŷ s
i (h), i = 1, . . . , n from the FSI model, as well as fitted values

Y̌ s
i (h) from the multivariate local Fréchet (mLF) estimator. The following per-

formance metrics were computed for each simulated data set across the entire
range of bandwidths.

1. As the parameter space Θp is a subset of the (p − 1)-dimensional unit
sphere, a natural measurement of empirical squared error for the s-th
simulated data set is

SE(θ̂s(h)) =
[
arccos

(∣∣∣θ′0 θ̂s(h)
∣∣∣)]2 , (17)

where we have introduced the absolute value to account for the fact that
θ0 and −θ0 are indistinguishable from the data.

2. To evaluate the estimation error in regression for the FSI model, the mean
square estimation error (MSEE) for the s-th simulated data set was quan-
tified by

MSEE(s)
⊕,FSI(h) = 1

n

n∑
i=1

[
arccos

(
m⊕(Xs

i )′Ŷ s
i (h)

)]2
(18)

3. To evaluate the estimation error in regression for the multivariate local
Fréchet estimator, the mean square estimation error (MSEE) for the s-th
simulated data set was quantified by

MSEE(s)
⊕,mLF(h) = 1

n

n∑
i=1

[
arccos

(
m⊕(Xs

i )′Y̌ s
i (h)

)]2
(19)

Tables 1 and 2 show empirical performance metrics for the various simulation
settings considered. In these tables, the average and standard deviation of each
metric across simulations is reported. For each metric, the reported values are
for the bandwidth value in the chosen grid that minimizes the corresponding
average across simulations. We observe that the average squared estimation
errors and their standard deviations for the FSI estimator of the coefficient
θ0, and both FSI and mLF estimators of the regression function m⊕(x), all
behave in the expected fashion. Namely, they decay toward zero with increasing
sample size and are larger for higher values of p and for the higher noise level.
However, the FSI regression estimation errors are overall smaller than those
of the multivariate local Fréchet regression estimator when both are evaluated
using their optimal bandwidth, with differences becoming more pronounced for
larger covariate dimensions p.
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Table 1

Simulation results for settings with low noise, σ2 = 0.4. Here p and n are covariate
dimension and sample size, respectively. The third column is the average of the values

SE(θ̂s(h)) from (17) across simulations, with standard deviation in parentheses. Columns 4
and 5 give the averages of MSEE(s)

⊕,FSI(h) and MSEE(s)
⊕,mLF(h) from (18) and (19),

respectively, across simulations, with standard deviation given in parentheses. For each of
the metrics in columns 3–5, results are shown for the bandwidth that minimizes the reported

average of that metric and are rounded to 3 significant digits.

p n Avg. MSE Avg. MSEE⊕,FSI Avg. MSEE⊕,mLF

50 0.032 (0.047) 0.063 (0.039) 0.078 (0.042)
2 100 0.014 (0.020) 0.030 (0.017) 0.040 (0.020)

200 0.006 (0.008) 0.016 (0.008) 0.021 (0.010)

50 0.326 (0.283) 0.100 (0.051) 0.143 (0.054)
5 100 0.168 (0.132) 0.050 (0.026) 0.074 (0.029)

200 0.071 (0.056) 0.023 (0.012) 0.036 (0.015)

50 0.938 (0.519) 0.166 (0.064) 0.251 (0.081)
10 100 0.544 (0.386) 0.082 (0.038) 0.128 (0.038)

200 0.285 (0.152) 0.039 (0.016) 0.065 (0.018)

Table 2

Simulation results for the settings with high noise, σ2 = 0.8. Descriptions of column names
and contents correspond to those given in Table 1.

p n Avg. MSE Avg. MSEE⊕,FSI Avg. MSEE⊕,mLF

50 0.154 (0.284) 0.231 (0.160) 0.285 (0.177)
2 100 0.090 (0.244) 0.130 (0.107) 0.163 (0.100)

200 0.025 (0.037) 0.063 (0.038) 0.084 (0.048)

50 1.038 (0.624) 0.376 (0.180) 0.558 (0.238)
5 100 0.680 (0.555) 0.208 (0.118) 0.298 (0.142)

200 0.367 (0.350) 0.100 (0.056) 0.143 (0.057)

50 1.481 (0.528) 0.496 (0.190) 0.927 (0.302)
10 100 1.297 (0.578) 0.298 (0.104) 0.535 (0.171)

200 0.869 (0.477) 0.160 (0.069) 0.276 (0.083)

Next, we more closely examine the empirical sampling distribution of θ̂(h)
across different values of n for p = 2, since these can be easily visualized via
histograms of the (scalar) polar coordinate representations η̂(h). Specifically,
Figure 2 shows the empirical distribution of η̂(s)(h) for different values of n and
σ2, where h is the same minimizing bandwidth used to compute the average of
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Fig 2. For p = 2 and sample sizes n = 50 (left panels), n = 100 (middle panels), n = 200
(right panels) the simulated empirical distributions of η̂(h), the polar coordinate of θ̂s(h),
are represented by histograms, with h chosen to minimize the average of SE(θ̂s(h)) across
simulations. In the top and bottom rows we have low noise (σ2 = 0.4) and high noise (σ2 =
0.8) scenarios respectively. The vertical red line represents the polar coordinate of θ0, η0 on
the floor of the plot.

the SE(θ̂s(h)) values for p = 2 in Tables 1 and 2 for σ2 = 0.4 and σ2 = 0.8,
respectively. For reference, the true polar coordinate parameter η0 is superim-
posed as the red vertical line. In all cases, as n increases the empirical sampling
distribution becomes more concentrated near η0.

Finally, to more fully examine the estimation performance of the overall
regression function m⊕(x) more closely, Figure 3 juxtaposes the boxplots of
MSEE(s)

⊕,FSI(h) from (18) for each simulation setting on the log scale, where h
is the minimizing bandwidth used for this metric in Tables 1 and 2. The vari-
ation increases with p, but under each p it decreases with n. These reflect the
numerical summaries given in Tables 1 and 2.

5. Regression of mortality distributions

To demonstrate the application of our method, we consider human mortality
data at the country level. The goal is to model the dependence of age-at-death
distributions for a given year based on country-specific covariates. For this il-
lustration, the year 2013 was selected, and human mortality data were sourced
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Fig 3. For each covariate dimension p = 2, 5, 10; boxplots of log(MSEE(s)
⊕,FSI(h)) from (18)

are given over all simulations for the optimizing bandwidths used in Tables 1 and 2, in each
panel from left to right for sample sizes n = 50, 100, 200 as indicated by blue, yellow, and
cyan in the plot, respectively. The top and bottom panels correspond to low and high noise
scenarios, respectively, with different vertical axis ranges.

for 39 countries from the Human Mortality Database (HMD, [32] www.mor-
tality.org) for this year. The HMD provides data for 41 countries; Hong Kong
and Taiwan were omitted due to lack of availability of records for all covariates
used in this illustrative example. The data for each country are structured as
life-tables; for integer-valued age j, 0 ≤ j ≤ 110, the life table provides the size
of the population mj which is at least j years old, normalized so that the total

https://www.mortality.org/
https://www.mortality.org/
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population is m0 = 100, 000. By computing differences, one can compute his-
tograms of age-at-death that are specific to each country and year. In order to
focus on adult mortality, we consider the histogram over the age range [20, 110].

The impacts of many socioeconomic, environmental, and other variables on
health outcomes have been extensively researched. For this illustration, we chose
five covariates that, intuitively, have strong potential to influence mortality pat-
terns of a nation. These include year-on-year percentage change in GDP (GDPC
[62]), carbon dioxide emissions in metric tons per capita (CO2E [60]), current
health care expenditure as a percentage of GDP (HCE [61]), the human devel-
opment index (HDI [64]), and infant mortality per 1000 live births (IM [65])
[28, 23, 52, 25, 15, 30, 24, 43, 37, 55]. Hence, Xi ∈ R

5 constitutes the covariate
vector for the i-th country, i = 1, . . . , 39.

To apply the proposed FSI model, the density histograms constructed from
the lifetables were smoothed and then used to produce a quantile function for
each country. This smoothing step was performed using the CreateDensity
function in the R package frechet in order to obtain a smooth density, with the
default cross-validated bandwidth choice, followed by conversion to a quantile
function using the function dens2quantile in the package fdadensity [9, 48].
These constructed distributions will be referred to as observed distributions,
and are visualized in Figure 4.

Fig 4. The estimated densities for each country for year 2013 over the age interval [20,110];
the countries with top 6 and bottom 6 mode ages are highlighted in blue and red colors re-
spectively. The red colored densities include Russian Federation, Belarus, Ukraine, Hungary,
Slovakia, and Latvia. The densities in blue include Australia, Canada, Spain, France, Japan,
and Switzerland.

Let Yi represent the observed age-at-death distribution with quantile function
qi for the i-th country, and Xi a vector of covariates, i = 1, . . . , 39, during
2013. The random object responses Yi are assumed to belong to the space Ω
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of probability distributions G on R with finite second moment, i.e. for which∫
R
x2 dG(x) < ∞. For two distributions G1, G2 ∈ Ω, the squared Wasserstein

distance [67] between them is

d2
W (G1, G2) =

∫ 1

0

(
G−1

1 (t) −G−1
2 (t)

)2 dt, (20)

where G−1
1 , G−1

2 are the quantile functions corresponding to G1, G2 respectively.
The above form of the metric makes obvious the point raised previously that the
Wasserstein space is isometric to a subset of the Hilbert space L2[0, 1]. Thus, it
is a flat Hadamard space, though it is convex and not linear. While one may,
to some extent, employ linear methods to analyze such data, practical and the-
oretical problems emerge even in this simple case. From a practical standpoint,
certain critical outputs, such as fitted values, that should be distribution-valued
may not be so when linear methods are applied. These may be easily remedied
using an ad hoc correction, but this is a clear disadvantage compared to the
object treatment provided by Fréchet methods that will always respect such
constraints. Beyond estimation, use of the non-linear geometry has distinct ad-
vantages when it comes to inference, particularly in the formulation of error
models and uncertainty assessment, even in the setting of univariate distribu-
tions [44, 51, 49]. In addition, although univariate distributions are employed in
this illustrative example, the model is equally applicable to multivariate distri-
butions [70], in which case the Wasserstein space is no longer flat.

Letting (X,Y ) denote a generic covariate-distribution pair, the target is the
Fréchet regression function m⊕ as defined in (3), for which we will assess seven
competing models for object data. Specifically, m⊕ was estimated using global
and local Fréchet regression techniques, the latter for each individual predictor,
yielding six competitors to the proposed FSI model in (8).

5.1. Computational details

The computations for global and local Fréchet estimates, the latter for any fixed
bandwidth, were carried out using the existing functionalities of the frechet
package [9]. For the FSI model, for any specified θ and bandwidth h, this pack-
age was also used to compute ĝ⊕ in (10). To estimate θ0 via (14), the optim
command was used with option “L-BFGS-B” [7] with a lattice of 34 = 81 starting
points of polar coordinates η ∈ [−π/2, π/2]4. The predictors were each centered
and scaled to have sample mean zero and unit sample variance prior to fitting
all models. For simplicity we use the same acronyms for the standardized co-
variates as previously given for the unstandardized ones, with the Xi values in
each model being on the standardized scale.

As a first step, for each of the local Fréchet regression fits and the FSI model
fit, a single bandwidth was selected by leave-one-out cross validation on the
entire data set; no bandwidth is needed for global Fréchet regression. With m
denoting a model index corresponding to the FSI model or one of the local
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Fréchet fits, let Ŷ
(m,−i)
i (h) denote the fitted value for the i-th country pro-

duced by the estimate of model m using all countries except county i and with
bandwidth h. Then the chosen bandwidth is

h∗
m = argmin

h∈Hm

n∑
i=1

d2
W (Yi, Ŷ

(m,−i)
i (h)), (21)

where Hm is a grid of potential bandwidth choices for the given model. For the
local Fréchet fits of each individual predictor, this step was executed using built-
in functionalities of the frechet package. For the FSI bandwidth, the model
was fit for each bandwidth in a pre-defined grid as described above, then h∗

FSI
was computed as in (21).

5.2. Model comparisons

To assess model performance, two metrics were computed. The first metric,
termed the Fréchet R2, quantifies the quality of model fit by in-sample perfor-
mance. Specifically, for a given model m, let Ŷ

(m)
i denote the fitted value that

it produces for the i-th country. Furthermore, let

ω̂⊕ = argmin
ω∈Ω

1
n

n∑
i=1

d2
W (Yi, ω)

denote the sample Fréchet mean. Indeed, this is simple to compute due to the
nature of dW in (20), as it is known that ω̂⊕ is the distribution with quantile
function n−1 ∑n

i=1 qi. The Fréchet R2 for model m is

R2
⊕,m = 1 −

∑n
i=1 d

2
W (Yi, Ŷ

(m)
i )∑n

i=1 d
2
W (Yi, ω̂⊕)

, (22)

which measures the proportion of Wasserstein-Fréchet variability in the data
that is explained by the model.

The second performance metric is based on out-of-sample performance, in
which the data were randomly split into a testing set of size 10 and training set
of size 29, with 30 distinct random splits being executed. With k = 1, . . . , 30
representing the index of each unique split of the data, denote by Y[k,j], j =
1, . . . , 10, the age-at-death distribution for the j-th country in the k-th testing
set, and by Ŷ

(m)
[k,j] the predicted distribution for the same country using the fit

of model m produced by the k-th training set. The error for the k-th split and
model m is then quantified by

MSPE(m)
k = 1

10

10∑
j=1

d2
W

(
Y[k,j], Ŷ

(m)
[k,j]

)
. (23)

For local Fréchet and FSI model fits, the bandwidth used for each training set
was fixed to be the value h∗

m in (21).
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Table 3

Performance metrics for comparing seven Fréchet regression fits in three classes of models:
(GF) global Fréchet, (LF) local Fréchet, (FSI) Fréchet single index. The predictor used for
each local Fréchet fit is indicated for each subcolumn below LF: (HDI) human development

index; (HCE) current health care expenditure as a percentage of GDP; (GDPC)
year-on-year percentage change in GDP; (IM) infant mortality; (CO2E) carbon dioxide

emissions. The R2
⊕ row gives the Fréchet R2 values defined in (22). The MSPE row gives

the average out-of-sample mean-square prediction error (MSPE), defined in (23), across the
30 data splits. The SD(MSPE) row gives the standard deviation of the out of sample

prediction errors across the 30 data splits.

Evaluation LF
Measures GF FSI

HDI HCE GDPC IM CO2E

R2
⊕ 0.697 0.688 0.521 0.132 0.433 0.162 0.827

MSPE 6.23 6.87 6.93 13.51 12.08 13.74 4.35

SD(MSPE) 2.45 5.45 3.44 4.82 10.03 5.40 2.11

Table 3 gives the computed metrics for all models. The top three models in
terms of Fréchet R2 are the proposed FSI model, the local Fréchet fit using the
HDI covariate, and the global Fréchet model. Figure 5 plots the fitted distri-
butions (as densities) for these three models, along with the observed densities.
The plot provides a visual reinforcement of the Fréchet R2 findings as these three
models all produce distribution fits that approximate the observed distributions
reasonably well.

Using out-of-sample performance, the FSI model emerges as the best model
with the lowest average MSPE of 4.35. The left panel of Figure 6 shows boxplots
of the 30 different log(MSPE(m)

k ) values for each model across splits, reinforcing
the metrics in Table 3. In addition to having the smallest median MSPE value,
the dispersion across folds for the FSI is among the lowest, second only to the
global Fréchet model. The global Fréchet model suffers from model-induced bias,
while the local Fréchet estimates using HDI lack relevant information from other
variables and suffer from poor prediction in certain data splits. As designed, the
FSI model balances the strengths of these two models. However, these results do
not examine the relative performance of these models for each individual split
of the data. The right panel of Figure 6 shows the boxplots of the logarithm
of the ratio of MSPEs for each of three competing models (global Fréchet and
local Fréchet estimates using HDI and HCE, respectively) to the MSPEs of FSI
across splits. This comparison shows FSI as the best in overall out-of-sample
prediction, as its prediction error is smaller than that of the other top-performing
models for the majority of the 30 training/test data splits.
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Fig 5. Observed smooth densities (top left) along with their fits produced by the proposed FSI
model (top right), global Fréchet model (bottom left), and local Fréchet regression with HDI as
predictor (bottom right). Densities are colored by the mode of the age-at-death distribution.

Next, we intepret the coefficient estimate for the FSI model. Rounded to
three digits after the decimal, this was

θ̂ = (0.667, 0.741, −0.067, 0.005, 0.046)′.

with the order of standardized covariates being human development index (HDI),
healthcare expenditure as percentage of GDP (HCE), year-on-year percentage
change in GDP (GDPC), infant mortality per 1000 live births (IM), and carbon
dioxide emissions metric tonnes per capita (CO2E). The estimated coefficients
for HDI and HCE have the highest magnitudes of 0.667 and 0.741 respectively,
indicating their heavy influence relative to the other three predictors on the
index Ûi = θ̂′Xi that drives the FSI fit, when all variables are in the model. As
the FSI fit can be viewed as a local Fréchet estimate based on the univariate
predictor Ûi, the superiority of the FSI model to the local Fréchet fit using ei-
ther the HDI or HCE as predictor indicates that the combined predictive power
of HDI and HCE, as quantified by the projection direction θ̂, is stronger than
either individual predictor when using local Fréchet regression. On the other
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Fig 6. Left panel: boxplots of MSPE(m)
k values in log scale from (23) across splits for the fol-

lowing estimates from left to right: global Fréchet (GF); local Fréchet for each of the predictors
human development index (HDI), healthcare expenditure as percentage of GDP (HCE), year-
over-year percentage change in GDP (GDPC), infant mortality per 1000 live births (IM), and
CO2 emissions in metric tonnes per capita (CO2E); and Fréchet single index (FSI). Right
panel: boxplots of log of ratio of the MSPEs from global Fréchet estimates (dark red, left) and
local Fréchet estimates using HDI (dark purple, midde) and HCE (green, right) relative to
those of FSI are shown. The MSPE values of each competitor are higher than the FSI values
for more than 75% of the folds, shown by the first quartile of the log-ratios being above the
dotted horizontal line.

Fig 7. Age-at-death densities fitted by the FSI model for varying values of HDI (human
development index, left) and HCE (health care expenditure, right), with other variables at
their sample median. Colors indicate regularly spaced standardized values of the covariate.

hand, the global Fréchet model also combines the influence of all predictors, but
does so less efficiently due to bias in the underlying model.

Since HDI and HCE appear to have relatively higher importance as predictors
of mortality distributions for the local Fréchet regression as well as for the
FSI model in terms of both in-sample and out-of-sample performance, it was
interesting to explore how a small change in standardized value of HDI or HCE
would affect the mortality distribution prediction of FSI model, while keeping all
other covariates fixed at their median values. Figure 7 shows the age-at-death
distributions predicted by the fitted FSI model. As expected, higher HDI or
HCE are associated with increased longevity. In particular, the plots suggests
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that the mode of mortality distributions increases for higher values of HDI or
HCE, keeping other covariates fixed.

6. Discussion

The Fréchet single index model developed in this paper offers an alternative to
global and local Fréchet regression for random object response data with vector-
valued predictors in the spirit of semiparametric regression. While global Fréchet
regression comfortably accommodates multiple predictors, it can be unduly rigid
for many complex data settings. Indeed, even in the special case Ω = R, in which
global Fréchet is multiple linear regression, such a model is often inadequate,
so that its inadequacy in more complex metric spaces Ω is more likely than
not. Local Fréchet regression, on the other hand, is unattractive when multiple
predictors are present on both theoretical and practical grounds, despite its
flexibility. Indeed, the data illustration involving mortality profiles demonstrates
that the FSI model outperforms both global Fréchet regression and the best
single-predictor model fitted using local Fréchet regression. Future extensions
of the FSI model to handle more complex predictors, such as high-dimensional,
functional, or object-valued data, will be valuable assets.

The technical issue surrounding existence and uniqueness of Fréchet means,
whether marginal or conditional, has been circumvented in this work by as-
sumption, although specific concrete examples of spaces satisfying the relevant
assumption (M) have been provided due to the work of others on this challenging
topic. Nevertheless, as pointed out by reviewers, a particular limitation of the
FSI model is its requirement that the conditional Fréchet means m⊕(x) in (3)
not only exist for each x, but that those conditional on θ′x, namely g⊕(θ′x, θ)
in (7), exist and are unique for every θ. Examples can be quickly constructed in
which the FSI model holds while g⊕(θ′x, θ) are only unique for θ equal to or in a
neighborhood of θ0. It seems plausible that one should still be able to estimate
θ0 in this setting, yet the methods proposed in this paper are inadequate. It is
likely that criterion functions less restrictive than (9) may provide a path, and
we leave this for future work.

While we have used a generalized version of semiparametric least squares for
the estimation of the coefficient vector and local Fréchet regression to estimate
g⊕ in (7), other options are of course available. For example, projection pursuit
[22, 26], average derivatives [27], the conditional minimum average variance
estimation (MAVE) technique [68], and sliced inverse regression [35], among
others, have been validated practically and theoretically for scalar responses.
Such approaches could conceivably work for object responses as alternatives to
the method presented here for estimating the coefficient in the FSI model. More
broadly, alternative smoothing methods could be developed for the estimation
of the link function g⊕, although local Fréchet regression and the Nadaraya-
Watson estimator [29] seem to be the only available options to date for a general
metric space. Other semiparametric approaches for scalar data, such as multiple
index models, may well prove to be adaptable to this scenario, although their
extensions are less obvious.
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7. Proofs

This section provides detailed arguments for establishing the main results in
Section 3.3. First, Section 7.1 contains proofs of Lemmas 1–5. These lemmas
contain the necessary pieces for establishing Theorem 1 and Corollaries 1 and
2, which are proved in Section 7.2.

7.1. Lemmas 1–5 and their proofs

Define
μj,θ(x) = E

[
Kh(θ′(X1 − x))(θ′(X1 − x))j

]
, j = 0, 1, 2,

σ2
θ(x) = μ0,θ(x)μ2,θ(x) − μ2

1,θ(x),
rh(z, x, θ) = σ−2

θ (x)Kh(θ′(z − x)) [μ2,θ(x) − μ1,θ(x)(θ′(z − x))] ,
Λ̃⊕(ω, θ′x, θ) = E[rh(X,x, θ)d2(Y, ω)].

(24)

Lemma 1 will establish the uniform rate of convergence of Λ̃⊕ to the population
target as a function of the bandwidth h. Lemma 2 will then utilize a multivari-
ate Brownian bridge approximation to establish rates of convergence of kernel
estimates for the densities of projections θ′X that are uniform in both θ and
the density argument. In turn, Lemma 3 applies the result of Lemma 2 to the
components μ̂j,θ that are used in the local Fréchet estimator in (11). Finally,
Lemma 4 gives the details of a multivariate Brownian bridge approximation as
a generalization of a result in [38], and Lemma 5 applies this approximation to
establish uniform consistency of the estimators Λ̂⊕(ω, θ′x, θ) in (10).

Lemma 1. Under assumptions (K) and (F),

sup
ω,θ,x

|Λ̃⊕(ω, θ′x, θ) − Λ⊕(ω, θ′x, θ)| = o(1).

Proof. First, we follow the steps of Theorem 3 in [50] to establish that

dFY |θ′X(y|v)
dFY (u) =

fθ′X|Y (v|y)
fθ′X(v) . (25)

Let V ⊂ Ω be any open set. For θ ∈ Θp and u ∈ Uθ, set

aθ(u) =
∫
V

fθ′X|Y (u|y)
fθ′X(u) dFY (y), bθ(u) =

∫
V

dFY |θ′X(y|u).

By Tonelli’s theorem, for any s ∈ R,∫ s

−∞
aθ(u)fθ′X(u)du =

∫
V

[∫ s

−∞
fθ′X|Y (u|y)du

]
dFY (y)

=
∫ s

−∞

[∫
V

dFY |θ′X(y|u)
]
fθ′X(u)du

=
∫ s

−∞
bθ(u)fθ′X(u)du.
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Hence, under part iii) of (F), it follows that aθ(u) = bθ(u), whence (25) follows.
Furthermore, let

φ(ω, u, θ) = ∂2

∂u2 Λ⊕(ω, u, θ), (26)

which is guaranteed to exist for any ω ∈ Ω, θ ∈ Θp and u ∈ Uo by part iii) of
(F) and dominated convergence. Indeed, (F) ensures that

|φ(ω, u, θ)| =
∣∣∣∣
∫

Ω
d2(y, ω) ∂2

∂u2

[
fθ′X|Y (u|y)
fθ′X(u)

]
dFY (y)

∣∣∣∣ < ∞ (27)

uniformly in ω, θ, and u ∈ Uθ.
Next, using both (K) and part ii) of (F), we can follow the arguments in the

proof of Theorem 1 in [11] to obtain the expansion

Λ̃⊕(ω, θ′x, θ) = Λ⊕(ω, θ′x, θ) +E
(
rh(X,x, θ)φ(ω, θ′X∗, θ) [θ′(X − x)]2

)
, (28)

where X∗ is some intermediate value between X and x. Using (K), (F), and
basic results of [16],

E
(
|rh(X,x, θ)| [θ′(X − x)]2

)
= O(h2) (29)

uniformly in x and θ. Applying (27) and (29) to (28), the result follows.

Lemma 2. Let κ : R → R satisfy the following properties:

• κ is uniformly continuous and of bounded variation;
•
∫
R
|κ(w)|dw < ∞;

• κ(u) → 0 as |u| → ∞; and
•
∫
R
|u log |u||1/2dκ(u) < ∞.

For h > 0, x in the support of FX , and θ ∈ R
p with ‖θ‖ = 1, set

ν̂θ(x) = n−1
n∑

i=1
κh(θ′(Xi − x)),

where κh(·) = h−1κ(·/h). Then, on a sufficiently rich probability space, there
exist processes ρn,θ(x) and εn,θ(x) such that, provided h → 0 as n → ∞,

ν̂θ(x) = E(ν̂θ(x)) + n−1/2ρn,θ(x) + n−1/2εn,θ(x),

sup
x,θ

|ρn,θ(x)| = OP

{
(−h−1 log h)1/2

}
, and

sup
x,θ

|εn,θ(x)| = O

(
(logn)3/2

hn1/[2(p+1)]

)
a.s.

(30)

Proof. Let T be the Rosenblatt transformation defind in assumption (F) point
i), and let Ĝ be the empirical distribution function of Ti = T (Xi), i = 1, . . . , n.
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[13] proved the existence of a sequence of Brownian bridges Bn (with continuous
sample paths) on the p-dimensional unit cube such that

sup
t∈[0,1]p

|n1/2(Ĝ(t) − t) −Bn(t)| = O

(
(logn)3/2

n1/[2(p+1)]

)
a.s. (31)

Define Zn(x) = n1/2(F̂X(x) − F (x)) − Bn(T (x)), where F̂X is the empirical
distribution function of the Xi, and let Fθ′X and F̂θ′X be, respectively, the
population and empirical distribution functions of θ′Xi, so that

F̂θ′X(u) − Fθ′X(u) =
∫
Rp

1(θ′z ≤ u)d
[
F̂X(z) − FX(z)

]

= n−1/2
∫
Rp

1(θ′z ≤ u)dBn(T (z))

+ n−1/2
∫
Rp

1(θ′z ≤ u)dZn(z)

= n−1/2Bn,θ(u) + n−1/2Zn,θ(u).

Hence,

ν̂θ(x) = E(ν̂θ(x)) +
∫
R

κh(u− θ′x))d(F̂θ′X − Fθ′X)(u)

= E(ν̂θ(x)) + n−1/2ρn,θ(x) + n−1/2εn,θ(x),
(32)

where ρn,θ(x) =
∫
R
κh(u − θ′x)dBn,θ(u) and εn,θ(x) =

∫
R
κh(u − θ′x)dZn,θ(u).

Thus, we have established the first line of (30). Due to conditions on the kernel
and (31), the third line of (30) immediately follows.

To establish the second line of (30), use integration by parts, the change of
variable s = (u − θ′x)/h, and the assumption that κ(u) → 0 as |u| → 0 to
conclude that

|ρn,θ(x)| =
∣∣∣∣
∫
R

κh(u− θ′x)dBn,θ(u)
∣∣∣∣

≤ h−1
∫
R

|Bn,θ(θ′x + hs)||dκ(s)|

≤ h−1
∫
R

|Bn,θ(θ′x + hs) −Bn,θ(θ′x)||dκ(s)|.

(33)

To control the integrand, let αn,θ be the continuity modulus of

Bn,θ(u) =
∫
Rp

1(θ′z ≤ u)dBn(T (z)).

With αn being the continuity modulus of Bn, it follows that αn,θ(ε) ≤ αn(LT ε),
where LT is the Lipschitz constant of T from (F). Using standard arguments,
one can show that

sup
‖s−t‖≤εp1/2

[
E
{
(Bn(s) −Bn(t))2

}]1/2 ≤ q(ε) =
{√

pε(1 − ε), 0 < ε < 1/2
√
p/2, ε ≥ 1/2.
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Then Lemma 2 of [57] implies the existence of a random variable A > 0 with
E(A) < ∞ such that

αn(ε) ≤ 16(p logA)1/2q(ε) + 16p
√

2
∫ ε

0
{log(1/r)}1/2 dq(r). (34)

Applying this bound to the integrand in (33), we find that

sup
x,θ

|ρn,θ(x)| ≤ h−1
∫
R

αn(Lt|s|h)|dκ(s)|.

Hence, applying the exact arguments in Proposition 4 of [58] under (K), we can
conclude line 2 of (30).

Lemma 3. Under assumptions (K) and (F),

sup
ω,x,θ

∣∣∣∣∣ 1n
n∑

i=1
{r̂h(Xi, x, θ) − rh(Xi, x, θ)}d2(Yi, ω)

∣∣∣∣∣ = OP (bn),

where

bn = max
{(

− log h
nh

)1/2
,

[logn]3/2

hn(p+2)/[2(p+1)]

}
.

Proof. By applying Lemma 2 to the kernels κ(u) = K(u)uj , j = 0, 1, 2, we can
conclude that μ̂j,θ(x) = μj,θ(x) + hjOP (bn) uniformly in x and θ. Using the
fact that μj,θ(x) = hjfθ′X(θ′x)(K1j + o(1)) by (K) and (F), simple calculations
show that σ̂−2

θ (x) = σ−2
θ (x) + OP (bnh−2) uniformly in x and θ. Consequently,

by assumption (F),

r̂h(z, x, θ) − rh(z, x, θ) = OP (bnh−2)Kh [θ′(z − x)] {μ̂2,θ(x) − μ̂1,θ(x)θ′(z − x)}
+ O(h−2)Kh [θ′(z − x)]

{
OP (bnh2) −OP (hbn)θ′(z − x)

}
,

where all O(·) and OP (·) terms are uniform in θ and x.
Finally, applying Lemma 2 to the kernel κ(u) = K(u)|u|, similar analysis

shows that

μ̂+
j,θ(x) = n−1

n∑
i=1

Kh(θ′(Xi − x))|θ′(Xi − x)|j

satisfies supx,θ |μ̂+
j,θ(x)| = OP (hj). Thus,

sup
ω,x,θ

∣∣∣∣∣ 1n
n∑

i=1
{r̂h(Xi, x, θ) − rh(Xi, x, θ)} d2(Yi, ω)

∣∣∣∣∣
≤ diam2(Ω) sup

x,θ

[
OP (bnh−2){μ̂0,θ(x)μ̂2,θ(x) + μ̂1,θ(x)μ̂+

1,θ(x)}

+ O(h−2){μ̂+
0,θ(x)OP (bnh2) + μ̂+

1,θ(x)OP (bnh)}
]

= OP (bn).
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Lemma 4. Under assumptions (K) and (F), and with κ satisfying the condi-
tions in Lemma 2, for any fixed ω ∈ Ω, set

ν̂+
θ (x) = n−1

n∑
i=1

κh(θ′(Xi − x))d2(Yi, ω), κh(·) = h−1κ(·/h).

Then, on a sufficiently rich probability space, there exist processes ρ+
n,θ(x) and

ε+
n,θ(u) such that, provided h → 0 as n → ∞,

ν̂+
θ (x) = E(ν̂+

θ (x)) + n−1/2ρ+
n,θ(x) + n−1/2ε+

n,θ(x),

sup
x,θ

|ρ+
n,θ(x)| = OP

{
(−h−1 log h)1/2

}
, and

sup
x,θ

|ε+
n,θ(x)| = O

(
(logn)3/2

hn1/[2(p+2)]

)
a.s.

(35)

Proof. The proof follows the same line as that of Lemma 2, with some adjust-
ments to deal with the presence of the response variable. For any fixed ω, write
R = d2(Y, ω) and Ri = d2(Yi, ω). Furthermore, let FX,R and F̂X,R be the popu-
lation and empirical cumulative distribution functions of (Xi, Ri), and similarly
define Fθ′X,R and F̂θ′X,R for the random pairs (θ′Xi, Ri). Applying the result of
[13] to the vectors (Xi, Ri) ∈ R

p+1, and letting T+ be the Rosenblatt transfor-
mation of (X,R), there is a (p+1)-dimensional Brownian bridge B+

n such that,
with Ĝ+ denoting the empirical cumulative distribution function of T+(Xi, Ri),

sup
t∈[0,1]p+1

|
√
n(Ĝ+(t) − t) −B+

n (t)| = O

(
[logn]3/2

n1/[2(p+2)]

)
a.s. (36)

Continuing, set Z+
n (x, r) = n1/2(F̂X,R(x, r)−FX,R(x, r))−B+

n (T+(x, r)), so
that, for u ∈ Uθ,

F̂θ′X,R(u, r) − Fθ′X,R(u, r) =
∫
Rp

1(θ′z ≤ u)dz

[
F̂X,R(z, r) − FX,R(z, r)

]

= n−1/2
∫
Rp

1(θ′z ≤ u)dzB
+
n (T+(z, r))

+ n−1/2
∫
Rp

1(θ′z ≤ u)dzZ
+
n (z, r)

= n−1/2B∗
n,θ(u, r) + n−1/2Z∗

n,θ(u, r).

Hence,

ν̂+
θ (x) = E(ν̂+

θ (x)) +
∫
R2

κh(u− θ′x)rd[F̂θ′X,R(u, r) − Fθ′X,R(u, r)]

= E(ν̂+
θ (x)) + n−1/2ρ+

n,θ(x) + n−1/2ε+
n,θ(x),

(37)

where

ρ+
n,θ(x) =

∫
R

κh(u− θ′x)dB+
n,θ(u), B+

n,θ(u) =
∫
R

rdrB
∗
n,θ(u, r),



1104 A. Ghosal et al.

ε+
n,θ(x) =

∫
R

κh(u− θ′x)dZ+
n,θ(u), Z+

n,θ(u) =
∫
R

rdrZ
∗
n,θ(u, r).

From assumption (K) and (36), the third line of (35) is established since

sup
θ,x

|ε+
n,θ(x)| = O

(
[logn]3/2

hn1/[2(p+2)]

)
a.s. (38)

Next, consider the continuity modulus α+
n of the Gaussian process

B̃+
n (z) =

∫
R

rdrB
+
n (T+(z, r))

on R
p. Define γj(z) =

∫
R
rjdrFX,R(z, r), j = 1, 2, and, for two points z, z′, let z

denote their element-wise minimum. Then

Cov(B̃+
n (z), B̃+

n (z′)) = γ2(z) − γ1(z)γ1(z′).

Hence,

E
{
(B̃+

n (z) − B̃+
n (z′))2

}
= γ2(z) + γ2(z′) − 2γ2(z) − [γ1(z) − γ1(z′)]2

≤ γ2(z) + γ2(z′) − 2γ2(z)

=
∫
R

r2dr[FX,R(z, r) − FX,R(z, r)]

+
∫
R

r2dr[FX,R(z′, r) − FX,R(z, r)]

(39)

Under assumption (F), since max{‖z − z‖, ‖z′ − z‖} ≤ ‖z − z′‖, the above is
bounded above by M‖z − z′‖ for M = supz

∫
R
r2fX,R(z, r)dr. Hence, we apply

Lemma 2 of [57] to conclude that there exists a random variable A+ > 0 with
finite expectation such that, with q+(ε) = ε1/2,

α+
n (ε) ≤ 16(2Mp1/2 logA+)1/2q+(ε)+32p3/4

√
M

∫ ε

0
{log(1/s)}1/2dq+(s). (40)

Letting α+
n,θ denote the continuity modulus of B+

n,θ(u), the above arguments
demonstrate that

α+
n,θ(ε) ≤ α+

n (L+
T ε),

where L+
T is the Lipschitz constant of T+.

Finally, using integration by parts, the change of variable s = (u − θ′x)/h,
and assumption (K), for large enough n we will have

|ρ+
n,θ(x)| =

∣∣∣∣
∫
R

κh(u− θ′x)dB+
n,θ(u)

∣∣∣∣
= h−1

∫
R

|B+
n,θ(θ

′x + hs) −B+
n,θ(θ

′x)||dκ(s)|

≤ h−1
∫
R

α+
n (L+

T hs)|dκ(s)|.

(41)
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Applying the integral arguments of Proposition 3 of [38] under (K), we can
conclude the second line of (35).

Lemma 5. Under assumptions (K) and (F), for any fixed ω ∈ Ω,

sup
x,θ

∣∣∣∣∣ 1n
n∑

i=1
rh(Xi, x, θ)d2(Yi, ω) − Λ̃⊕(ω, θ′x, θ)

∣∣∣∣∣ = OP (b′n) ,

where

b′n = max
[{

− log h
nh

}1/2
,

[logn]3/2

hn(p+3)/[2(p+2)]

]
.

Proof. Define ν̂+
0,θ(x) and ν̂+

1,θ(x) as in the statement of Lemma 4 for the kernel
choices κ(u) = K(u) and κ(u) = uK(u), respectively. Then write

1
n

n∑
i=1

rh(Xi, x, θ)d2(Yi, ω) − Λ̃⊕(ω, θ′x, θ)

= μ2,θ(x)
σ2
θ(x) {ν̂0,θ(x) −E[ν̂0,θ(x)]} + hμ1,θ(x)

σ2
θ(x) {ν̂1,θ(x) − E[ν̂1,θ(x)]} .

(42)

Under assumption (K) and (F), both μ2,θ(x)σ−2
θ (x) and hμ1,θ(x)σ−2

θ (x) are
uniformly bounded in x and θ as h → 0. Applying Lemma 4 to ν̂j,θ(x), j = 0, 1,
completes the proof.

7.2. Proofs of main results

Proof of Theorem 1. Begin by expanding

sup
ω,x,θ

|Λ̂⊕(ω, θ′x, θ) − Λ⊕(ω, θ′x, θ)|

≤ sup
ω,x,θ

∣∣Λ̃⊕(ω, θ′x, θ) − Λ⊕(ω, θ′x, θ)
∣∣

+ sup
ω,x,θ

∣∣∣∣∣ 1n
n∑

i=1
{r̂h(Xi, x, θ) − rh(Xi, x, θ)}d2(Yi, ω)

∣∣∣∣∣
+ sup

ω,x,θ

∣∣∣∣∣ 1n
n∑

i=1
rh(Xi, x, θ)d2(Yi, ω) − Λ̃⊕(ω, θ′x, θ)

∣∣∣∣∣ .

(43)

The first two terms on the right-hand side are oP (1) by Lemmas 1 and 3,
respectively. For the third term, we have

ψn(ω) = sup
x,θ

∣∣∣∣∣ 1n
n∑

i=1
rh(Xi, x, θ)d2(Yi, ω) − Λ̃⊕(ω, θ′x, θ)

∣∣∣∣∣ = oP (1)
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for any fixed ω by Lemma 5 and the conditions on the bandwidth. It is straight-
forward to show, using Lemma 3 and the boundedness of Ω that, for any
ω1, ω2 ∈ Ω,

|ψn(ω1) − ψn(ω2)| ≤ O(d(ω1, ω2)) sup
θ,x

{
1
n

n∑
i=1

|rh(Xi, x, θ)| + E[rh(X,x, θ)]
}

= d(ω1, ω2) [OP (bn) + O(1)]
= OP (d(ω1, ω2)),

where bn is the rate given in the statement of Lemma 3. Hence, applying Theo-
rem 1.5.4 of [66], we see that supω∈Ω |ψn(ω)| = oP (1), so that the first expression
in (43) converges to zero in probability.

Having established this, for any ε > 0, let η > 0 be the constant in (M). Let
x, θ be fixed, and ω be a point satisfying d(ω, g⊕(θ′x, θ)) > ε. If

sup
θ,x,ω

|Λ̂⊕(ω, θ′x, θ) − Λ⊕(ω, θ′x, θ)| < η/2,

then

Λ̂⊕(g⊕(θ′x, θ), θ′x, θ) < Λ⊕(g⊕(θ′x, θ), θ′x, θ) + η

2
< Λ⊕(ω, θ′x, θ) − η + η

2
< Λ̂⊕(ω, θ′x, θ) + η

2 − η

2
= Λ̂⊕(ω, θ′x, θ).

Therefore, such ω cannot be a minimizer of Λ̂⊕(·, θ′x, θ), whence

d(ĝ⊕(θ′x, θ), g⊕(θ′x, θ)) ≤ ε.

Since this argument holds simultaneously for all θ and all x, the result holds.

Proof of Corollary 1. Let V (θ0) be any neighborhood of θ0 in Θp. then

P (θ̂ ∈ V (θ0)) ≥ P (Wn(θ̂) ≥ Wn(θ)) − P ( inf
θ/∈V (θ0)

Wn(θ) ≤ Wn(θ0))

= 1 − P ( inf
θ/∈V (θ0)

Wn(θ) ≤ Wn(θ0))

We will show this last probability tends to zero. Writing

W̃n(θ) = n−1
n∑

i=1
d2(Yi, g⊕(θ′Xi, θ)),
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it follows that

P

(
inf

θ/∈V (θ0)
Wn(θ) ≤ Wn(θ0)

)

≤ P

(
inf

θ/∈V (θ0)
[Wn(θ) − W̃n(θ)] + inf

θ/∈V (θ0)
[W̃n(θ) −W (θ)]

+ inf
θ/∈V (θ0)

W (θ) ≤ Wn(θ0)
)

≤ P

(
sup
θ

|Wn(θ) − W̃n(θ)| + sup
θ

|W̃n(θ) −W (θ)|

+|Wn(θ0) −W (θ0)| > inf
θ/∈V (θ0)

W (θ) −W (θ0)
)
.

As infθ/∈V (θ0) W (θ) − W (θ0) > 0 due to the identifiability condition, we show
that each of the terms on the left hand side of the last probability state-
ment converges to zero in probability. Using the uniform law of large numbers,
which is applicable here since (M) implies continuity of g⊕ in both arguments,
supθ |W̃n(θ)−W (θ)| = oP (1). By boundedness of Ω and the triangle inequality,

sup
θ

|Wn(θ) − W̃n(θ)| ≤ 2diam(Ω)
n

sup
θ

n∑
i=1

d(g⊕(θ′Xi, θ), ĝ⊕(θ′Xi, θ))

is oP (1) by Theorem 1. The above results clearly imply that |Wn(θ0)−W (θ0)| =
oP (1).

Proof of Corollary 2. By direct application of the triangle inequality, whenever
‖θ̂ − θ0‖ < δ,

sup
x

d(m̂⊕(x),m⊕(x)) = sup
x

d(g̃⊕(θ̂′x, θ̂), g⊕(θ′0x, θ0))

≤ sup
‖θ−θ0‖<δ

sup
x

d(g̃⊕(θ′x, θ), g⊕(θ′x, θ))

+ sup
x

d(g⊕(θ̂′x, θ̂), g⊕(θ′0x, θ0)).

By assumption, the first term converges to zero in probability. Since θ̂ has been
proven to be consistent and assumption (M) implies continuity of g⊕, the second
term also converges weakly to zero.
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