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Abstract: Epidemiological evidence suggests that simultaneous exposures
to multiple environmental risk factors (Es) can increase disease risk larger
than the additive effect of individual exposure acting alone. The interac-
tion between a gene and multiple Es on a disease risk is termed as syn-
ergistic gene-environment interactions (synG × E). Single-index varying-
coefficients models (SIVCM) have been a promising tool to model synergis-
tic G × E effect and to understand how multiple Es jointly influence genetic
risks on a disease outcome. In this work, we proposed a unified variable se-
lection approach for SIVCM to estimate different effects of gene variables:
varying, non-zero constant and zero effects which respectively correspond
to nonlinear synG × E, no synG × E and no genetic effect. For multiple en-
vironmental exposure variables, we also estimated and selected important
environmental variables that contribute to the synergistic interaction effect.
We theoretically evaluated the oracle property of the proposed variable se-
lection approach. Extensive simulation studies were conducted to evaluate
the finite sample performance of the method, considering both continuous
and discrete gene variables. Application to a real dataset further demon-
strated the utility of the method. Our method has broad applications in
areas where the purpose is to identify synergistic interaction effect.
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1. Introduction

Genetic factors play fundamental roles in many complex diseases, and their ef-
fects are largely influenced by environmental factors. The same genetic factor
can have different effects on disease risks under different environmental condi-
tions, leading to the so called gene-environment (G × E) interaction [1]. The
identification of G × E interactions has been one of the central foci in genetic
studies.

Recently, Ma et al. [2] and Wu et al. [3] proposed a nonparametric method to
capture nonlinear G × E interaction effects. Motivated by epidemiological evi-
dence that simultaneously exposure to multiple environmental conditions would
give rise to a higher risk than the simple addition of individual exposure acting
alone, Liu et al. [4] proposed a partial linear varying multi-index coefficients
model to capture the interaction effect between genetic factors and multiple
exposures, termed as synergistic G × E (synG × E). The method can test the
interaction between a gene and a mixture of environmental variables and further
assess if the interaction effect is linear or nonlinear. While the method was pro-
posed under a low dimensional framework, when the number of genetic variables
is large, a variable selection method is needed.
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Consider the following single-index varying coefficient model (SIVCM),

Y = fT (XTβ)G + ε, (1.1)

where Y is a continuous response variable that measures certain phenotypic
trait of interest; X ∈ R

q is a q dimensional environmental exposure variable
and also called loading covariates; G ∈ R

p+1 is a p + 1 dimensional genetic
variable; f(·) = (f0(·), f1(·), · · · , fp(·))T is a (p + 1) × 1 vector of unknown
functions with fk(·) (k = 0, 1, · · · , p) being the kth unknown non-parametric
function; β = (β1, β2, · · · , βq)T is a vector of unknown loading parameters of
dimension q. The model error ε has mean 0 and finite variance σ2. Furthermore,
according to Theorem 1 in Fan et al. (2003) [5], for the sake of identifiability,
we assume ‖β‖ = 1, β1 > 0, where ‖ · ‖ denotes the Euclidean norm operator;
and fk(·) (k = 0, 1, · · · , p) cannot be the form as f(u) = αTuβTu + γTu + c0,
where α, γ ∈ R

p+1, c0 ∈ R are constants, and α and β are not parallel to each
other.

One of the main advantages of model (1.1) is that it models the effects of G
on Y as functions of X without suffering the curse of dimensionality. One can
interpret fk(XTβ) as the effect of G on Y , modified by multiple X variables
through the index XTβ. In addition, model (1.1) is very flexible to cover a wide
range of models. For instance, if q = 1 and β = 1, then it becomes a varying-
coefficient model (VCM); and if p = 0 and G = 1, then it becomes a standard
single-index model (SIM).

Variable selection has been a popular statistical strategy to solve large p small
n problems in a regression setup. In the past, researchers often opted for for-
ward/backward selection, as well as information based criteria such as AIC and
BIC for variable selection. Recently, variable selection via penalized regression
has been gaining more popularity since it features simultaneous estimation and
selection of parameters. The idea is to add a penalty function to the loss func-
tion or log-likelihood function. Bridge regression [6], least absolute shrinkage
and selection operator (LASSO) [7] and its extensions (adaptive-LASSO [8]),
smoothly clipped absolute deviation (SCAD) [9] and minimax concave penalty
(MCP) [10] are a few examples. To evaluate different penalized functions, Fan
and Li [9] proposed three important criteria: sparsity, unbiasedness and continu-
ity. They showed that SCAD penalty possess the oracle property, meaning that
penalized regression featuring SCAD works as well as if the correct sub-model
was known in advance. Adaptive LASSO [8], SCAD [9] and MCP [10] all pos-
sess the oracle property. However, for adaptive LASSO, determining weights for
parameters might become problematic when the dimension of a model is higher
than sample size. Zhang [10] proved that at a universal penalty level, MCP has
high probability of matching the signs of the unknowns, and thus has nearly
unbiased selection, without assuming the strong irrepresentable condition re-
quired by the LASSO. Therefore, in the current work, we applied MCP penalty
function for its oracle property and fast algorithm [10].

As we all know, model (1.1) is a natural extension of SIM. Variable selection
methods for SIM have been studied by many existing works. Naik [11] derived a
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unified model selection approach for SIM by minimizing the expected Kullback-
Leibler distance between the true and candidate models. Naik and Tsai [12]
developed a residual information criterion to select both the smoothing param-
eter and explanatory variables using a residual log-likelihood approach. Wang
[13] proposed a fully Bayesian variable selection method for SIM. Peng and
Huang [14] proposed a nonconcave penalized least squares method to estimate
both the parameters and the link function of SIM. Zeng et al. [15] proposed a
sim-lasso approach for estimation and variable selection under SIM. Li et al. [16]
proposed a nonconcave penalized least squares variable selection method with
the B-spline-based single index approximation. Luo and Ghosal [17] proposed a
variable selection and estimation technique for high dimensional SIM with un-
known monotone smooth link function. Cheng et al. [18] proposed an effective
variable selection method for high-dimensional SIM. Zhang et al. [19] studied
the estimation and variable selection for a partial linear SIM (PLSIM) when
some linear covariates are not observed, which was extended by Li et al. [20]
by implementing a bias correction step. Wang and Zhu [21] applied penalized
spline to estimate the nonparametric function and SCAD penalty to achieve
sparse estimates of regression parameters in both the linear and single-index
parts of the model. Yu et al. [22] performed variable selection in linear term
and index vector via binary indicators for PLSIVCM. In this work, we treat
the single index functions as regression coefficients and do variable selections
on the index functions as well as the index loading parameters. Treating the
index functions as coefficients has natural interpretations in the current G × E
interaction framework as explained later.

Considering the complicated structure of model (1.1), specifically, the nonlin-
ear structure about the unknown non-parametric functions fk(·) (k = 0, 1, · · · , p)
and the unknown parameter β, we proposed a unified variable selection method
for SIVCM and a three stage iterative variable selection strategy. Specifically,
our goal is to: (1) classify the non-parametric functions fk(·) (k = 0, 1, · · · , p)
into three categories: varying, non-zero constant and zero; (2) select zero and
non-zero component of loading parameters β; and (3) estimate fk(·) (k =
0, 1, · · · , p) and β. Our approach was motivated by the practical need to clas-
sify three different mechanisms in G × E interaction. The zero function of
fk(·) (k = 0, 1, · · · , p) indicates no genetic effect at all; the constant function
of fk(·) (k = 0, 1, · · · , p) indicates the effect of Gk on Y does not change over
XTβ, hence no G × E effect; while the varying function of fk(·) (k = 0, 1, · · · , p)
indicates the existence of G×E effect. In addition to the selection of the coef-
ficient functions, we can also select important loading parameters inside each
index coefficient function, to further quantify the relative importance of individ-
ual exposure variables. If more than one X variable is selected, we can conclude
there is synG × E effect. As shown in Liu et al. [4], the model has the advantage
to capture the joint interaction of a gene with multiple exposures as a whole.
Novel insights about the underlying genetic mechanism can be revealed by the
proposed model.

Feng and Xue [23] proposed a variable selection approach based on model
(1.1) by applying a group SCAD penalty on B-spline coefficients and load-
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ing parameters β. They focused on either zero or non-zero coefficient functions
fk(·) (k = 0, 1, · · · , p). We are particularly interested in the constant coefficient
since it corresponds to no G × E effect and has important practical implica-
tions. Tang et al. [24] and Wu et al. [25] proposed a 2-step unified variable
selection approach based on an additive varying-coefficient model. Instead of
assuming that the regression coefficients in the model must be variable or con-
stant, they classified the non-parametric function into three categories: varying,
constant or zero. Their model is a special case of our SIVCM model when the
dimension of the X variable is reduced to one. No variable selection approach
on SIVCM has been proposed to classify unknown non-parametric functions
fk(·) (k = 0, 1, · · · , p) into three categories (varying, constant or zero), while
selecting non-zero loading parameter β simultaneously. Following the previous
work, we used B-spline basis functions to approximate unknown non-parametric
functions fk(·) (k = 0, 1, · · · , p), then using penalized regression to classify
fk(·) (k = 0, 1, · · · , p) into varying, constant or zero. Further, we selected non-
zero β via first order approximation and penalized regression. The proposed vari-
able selection method does not assume apriori whether fk(·) (k = 0, 1, · · · , p) is
constant or a non-parametric function and can be regarded as a unified variable
selection method for SIVCM. We showed that under some mild regularity con-
ditions, our estimators possess the oracle property, indicating that our penalized
estimators work as well as if the correct sub-model is known in advance.

The rest of the paper was organized as follows. Section 2 introduced our pro-
posed variable selection approach, including the iterative estimation approach
and how to select various tuning parameters for B-spline approximation and pe-
nalized regressions. Method on how to select initial values for β was discussed.
In Section 3, we evaluated the theoretical properties of our approach. In Sec-
tion 4, we performed simulations to evaluate the performance of our method in
finite samples, followed by a real data application in Section 5 and a discussion
in Section 6.

2. The variable selection method

2.1. Model setup

Consider model (1.1) with data {(Yi, Xi, Gik), i = 1, 2, · · ·n, k = 0, 1, 2, · · · , p}
in the following form,

Yi = fT (XT
i β)Gi + εi, i = 1, 2, · · · , n, (2.1)

where Yi is a continuous response variable; Xi = (Xi1, Xi2, · · · , Xiq)T is q-
dimensional continuous loading covariates; XT

i β is the so-called index; G =
(Gik)(p+1)×n=(G1, G2, · · · , Gn), Gi=(1, Gi1, · · · , Gip)T ; G·k =(G1k, · · · , Gnk)T
is a continuous or discrete vector of length n for k = 0, 1, 2, · · · p. In model (1.1),
fk(·) is the effect of G·k on Y for k �= 0 and f0(·) is the intercept function which
models the marginal effect of X on Y ; εi (i = 1, 2, · · · , n) are unknown random
errors with mean 0 and finite variance σ2. We further assume that εi and εj are
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independent of each other for i �= j (∀ 1 ≤ i, j ≤ n), {εi, i = 1, 2, · · · , n} are
independent of {(Xi, Gik), i = 1, 2, · · · , n, k = 0, 1, 2, · · · , p}.

2.2. Estimation method

We approximate the unknown functions {fk(u) : u ∈ U} (k = 0, 1, 2, · · · , p)
using B-spline basis functions. Here, we assume that U is a nondegenerate com-
pact interval. Denote F to be a collection of functions f(u) satisfying (A2) in
Appendix. Let K be the number of interior knots and h be the order of the
B-spline basis function. By Schumaker (1981, chapter 4) [26], we can normal-
ize the B-spline basis function B̃(u) = (B̃1(u), B̃2(u), · · · , B̃L(u))T for F , and
there exists a linear transformation matrix Π [24], such that

ΠB̃(u) = (1, B2(u), B3(u), · · · , BL(u))T = (1, B̄T (u))T Δ= B(u) (2.2)

where B̄(u) = (B2(u), B3(u), · · · , BL(u))T , L = K + h and each component of
B̄(u) and B̃(u) is a function of u. Clearly, B(u) is also a basis function for F .
In our work, we assume that fk(u) ∈ F for k = 0, 1, 2, · · · , p. Therefore, we can
approximate each fk(u) by

fk(u) ≈ BT (u)γk = γk1 + B̄
T (u)γk∗, k = 0, 1, 2, · · · , p, (2.3)

where γk = (γk1, γ
T
k∗)T and γk1 corresponds to the constant part of the coeffi-

cient function and γk∗ = (γk2, γk3, · · · , γkL)T corresponds to the varying part.
To fix notation, we take γ = (γT

0 , γ
T
1 , · · · , γT

p )T , Wi(β) = Ip+1 ⊗ B(XT
i β) · Gi,

where Ip+1 is the (p + 1) × (p + 1) identity matrix and “⊗” is the Kronecker
product operator. With the B-spline approximation same as (2.3), model (2.1)
can be rewritten as

Yi ≈ WT
i (β)γ + εi, i = 1, 2, · · · , n. (2.4)

In matrix notation, we have

Y ≈ W (β)γ + ε (2.5)

where ε = (ε1, ε2, · · · , εn)T and W (β) = (W1(β),W2(β), · · · ,Wn(β))T ∈ R
n ×

R
L(p+1). Thus, the original estimation problem can be transformed to estimate

γ and β.

Remark 1. By some simple matrix calculation, we can see that

WT
i (β)γ = GT

i γ∗1 + W̄ (β)Ti γ∗, i = 1, 2, · · · , n, (2.6)

where W̄
T

i (β) = Ip+1 ⊗ B̄(XT
i β) · Gi, γ∗1 = (γ01, γ11, · · · , γp1)T and γ∗ =

(γT
0∗, γ

T
1∗, · · · , γT

p∗)T .
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Remark 2. The transformation matrix Π can separate the main genetic and G
× E effect from the total effect, which further enables us to assess if there exist
genetic main and interaction effects, that is: (1) if ‖γk∗‖ = (

∑L
l=2 γ

2
kl)1/2 �= 0,

then there exists interaction between G·k and multiple X; (2) if ‖γk∗‖ = 0 and
|γk1| �= 0, then G·k has a constant effect on Y , i.e., no G × E interaction effect;
and (3) if further ‖γk∗‖ = 0 and |γk1| = 0 then G·k has no effect on Y at all.

To select and estimate the parameters γ and β, we apply the penalized regres-
sion idea and minimize the following penalized least squares objective function

Q(β, γ) =
n∑

i=1

(
Yi −WT

i (β)γ
)2 + n

p∑
k=1

pλ1k(‖γk∗‖)

+ n

p∑
k=1

pλ2k(|γk1|)I(‖γk∗‖ = 0) + n

q∑
d=2

pλ3d(|βd|),
(2.7)

where pλ1k(·), pλ2k(·), pλ3d(·) are penalty functions of the corresponding pa-
rameters, and I(·) is an indicator function. In our work, the penalty func-
tions pλ1k(·), pλ2k(·), pλ3d(·) are MCP [10] penalty functions such that p(x, λ) =
λ
∫ x

0 (1 − s
τλ )+ds with regularization parameters τ > 0 and λ > 0.

Remark 3. (1) From the construction of the penalty function, we penalize γk1
only if ‖γk∗‖ = 0. If ‖γk∗‖ �= 0, it implies that the function is varying and no
need to penalize the constant part; (2) No penalty is applied to the intercept
function f0(·). There is no practical motivation to penalize the marginal inter-
cept function; and (3) No penalty is applied to the first loading parameter β1
in β due to the constraint.

We now handle the constraints ‖β‖ = 1 and β1 > 0 on the q-dimensional
single-index parameter β with reparametrization. Denote φ=(φ2, φ3, · · · , φq)T =
(β2, β3, · · · , βq)T , and we can get

β =
(√

1 − ‖φ‖2, φT
)T

, ‖φ‖ < 1.

Therefore, β = β(φ), and β is infinitely differentiable with respect to φ. The
Jacobian matrix of β with respect to φ is

Jφ =
(

−(1 − ‖φ‖2)
−1/2

φT

Iq−1

)
. (2.8)

Note that φ is one dimension lower than β, and Q(β, γ) can be rewritten as

Q(φ, γ) =
n∑

i=1

(
Yi −WT

i (φ)γ
)2 + n

p∑
k=1

pλ1k(‖γk∗‖)

+ n

p∑
k=1

pλ2k(|γk1|)I(‖γk∗‖ = 0) + n

q∑
d=2

pλ3d(|φd|),
(2.9)
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where Wi(φ) = Wi(β). Then we can get the penalized least squares estimators
φ̂, γ̂ and β̂ as

(φ̂, γ̂) = arg min
φ,γ

Q(φ, γ), (2.10)

β̂ =
(√

1 − ‖φ̂‖2, φ̂
T
)T

, ‖φ̂‖ ≤ 1, (2.11)

where γ̂ = (γ̂T
0 , γ̂

T
1 , · · · , γ̂T

p )T . Therefore, the estimator of fk(u) can be obtained
by

f̂k(u) = BT (u)γ̂k, k = 0, 1, 2, · · · , p. (2.12)

2.3. Iterative algorithm

We can see that φ̂ and γ̂ denoted by (2.10) do not have closed form. Thus,
we propose a iterative approach to get the numerical solution of φ̂ and γ̂. Our
modeling purpose is to classify fk(·) (k = 0, 1, 2, · · · , p) into three different
categories: varying, non-zero constant or zero, denoted by V, C and Z respec-
tively. For ∀k ∈ {0, 1, 2, · · · , p}, notations “k ∈ V”, “k ∈ C” and “k ∈ Z” mean
that the function fk(·) is varying, non-zero constant and zero respectively. Ob-
viously, V, C and Z are mutually disjoint, and V ∪ C ∪ Z = {0, 1, 2, · · · , p}.
Furthermore, k /∈ V means that fk(·) is non-zero constant or zero, that is,
{k /∈ V} = {k ∈ C}∪{k ∈ Z}. Following Feng and Xue [23] and Tang et al. [24],
we propose a stepwise iterative approach to obtain our penalized estimator.

Step 0: Set initial values β̂
(0)

and γ̂(0) to start the iteration. Setting fk(·) (k =
0, 1, 2, · · · , p) as identity functions, we can get a simple linear additive model as

Yi = XT
i β+XT

i β ·Gi1+XT
i β ·Gi2+ · · ·+XT

i β ·Gip+εi, i = 1, 2, · · · , n. (2.13)

Therefore, we can set an initial estimator β̃ = (β̃1, φ̃
T )T as

β̃ = (X̃T
X̃)−1X̃

T
Y, (2.14)

where φ̃ = (β̃2, β̃3, · · · , β̃q)T , X̃ = (X1, G̃2X2, · · · , G̃nXn)T , G̃i =
∑p

k=1 Gik.
Considering the constraints for β such that ‖β‖ = 1 and β1 > 0, the initial
estimator β̂

(0)
can be chosen from (2.13) and (2.14) as

β̂
(0)

= β̃

‖β̃‖
· sgn(β̃1) (2.15)

Then the initial estimator of γ̂(0) can be obtained by

γ̂(0) =
(

n∑
i=1

Wi(β̂
(0)

)WT
i (β̂

(0)
)
)−1 n∑

i=1
WT

i (β̂
(0)

)Yi. (2.16)

Step 1: In this step, we classify fk(·) (k = 0, 1, 2, · · · , p) into varying (k ∈ V)
and non-varying (k ∈ C∪Z). For a given initial value of β, denoted by β̂

(0)
from
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(2.15), we can obtain our 1st step estimation γ̂(1) =((γ̂(1)
0 )T , (γ̂(1)

1 )T, · · · , (γ̂(1)
p )T )T

by following a group penalized regression

γ̂(1) = min
γ

Q1(γ|Λ1, β̂
(0)

), (2.17)

where the kth coefficient γ̂
(1)
k = (γ̂(1)

k1 , (γ̂
(1)
k∗ )T )T (k = 0, 1, 2, · · · , p), Λ1 =

{λ11, λ12, · · · , λ1p} and

Q1(γ|Λ1, β̂
(0)

) =
n∑

i=1

(
Yi −WT

i (β̂
(0)

)γ
)2

+ n

p∑
k=1

pλ1k(‖γk∗‖). (2.18)

Note that ‖γk∗‖ > 0 and ‖γk∗‖ = 0 respectively imply that fk(·) is varying
(k ∈ V) and non-varying (k ∈ C ∪ Z). Therefore, instead of penalizing each
coordinate of γk∗ = (γk2, · · · , γkL)T (k = 0, 1, 2, · · · , p) separately, we penalized
‖γk∗‖ (k = 0, 1, 2, · · · , p) for the reason that we want to assess the presence of the
joint varying effect of X and G·k on Y . In particular, from (2.18), no penalty
is applied to γ0∗, which means that the intercept function f0(·) is treated as
being varying in our work. Step 1 classifies fk(·) (k = 0, 1, 2, · · · , p) into two
categories, i.e., varying and non-varying. However, γ̂(1) does not have a closed
form. We can only get numerical solutions through an iterative algorithm. The
detailed iterative algorithm for this step can be found in A.1 of the Appendix,
with the initial iterative value of γ denoted by γ̂(0) in (2.16).

Step 2: After Step 1, we would like to further select variables with constant
effects and classify the non-varying functions fk(·) (k ∈ C ∪ Z) into non-zero
constants (k ∈ C) and zeros (k ∈ Z) in this step, i.e., estimate and select γk1

given γ̂
(1)
k∗ = 0 for k ∈ C ∪ Z. In order to do that, we penalize γk1 only when

‖γ̂(1)
k∗ ‖ = 0, i.e. k ∈ C ∪ Z, and no penalty is applied to γ01.
We obtain estimator γ̂(2) = ((γ̂(2)

0 )T , (γ̂(2)
1 )T , · · · , (γ̂(2)

p )T )T via penalized re-
gression

γ̂(2) = min
γ

Q2(γ|Λ2, β̂
(0)

, γ̂(1)), (2.19)

where (γ̂(2)
k )k∈V = (γ̂(2)

k1 , (γ̂
(2)
k∗ )T )T , (γ̂(2)

k )k∈C = (γ̂(2)
k1 ,0

T )T , (γ̂(2)
k )k∈Z = 0, k =

0, 1, 2, · · · , p, Λ2 = {λ21, λ22, · · · , λ2p} and

Q2(γ|Λ2, β̂
(0)

, γ̂(1))=
n∑

i=1

(
Yi −WT

i (β̂
(0)

)γ̂(1)
)2

+n

p∑
k=1

pλ2k(|γ(1)
k1 |)I(‖γ̂

(1)
k∗ ‖ = 0).

(2.20)

The detailed iterative algorithm for Step 2 can be found in A.1 of the Appendix.
After Step 1 and 2, we can obtain the estimator of the B-spline coefficients γ
denoted as γ̂(2) and classify fk(·) (k = 0, 1, · · · , p) into V, C or Z. Then the next
step is to estimate and select loading parameter β given γ̂(2).

Step 3: We obtain β̂ via the penalized regression

β̂ = min
‖β‖=1

Q3(β|Λ3, γ̂
(2)), (2.21)
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where Λ3 = {λ32, · · · , λ3q} and

Q3(β|Λ3, γ̂
(2)) =

n∑
i=1

(
Yi −WT

i (β)γ̂(2)
)2

+ n

q∑
d=2

pλ3d(|φd|). (2.22)

The detailed iterative algorithm for β̂ can be found in A.1 of the Appendix. We
then replace β̂

(0)
by β̂ and iterate between Step 1 and Step 3 until convergence.

2.4. Selection of tuning parameters

We use the Bayesian Information Criterion (BIC) to select the tuning parame-
ters τ , λ1k, λ2k and λ3d in the penalty functions [27]. Since there are too many
tuning parameters in our penalty functions, and the minimization problem for
the BIC method over a high-dimensional space is computationally intensive and
difficult to track, similar to Feng and Xue [23], we take the adaptive tuning
parameters λ1k, λ2k and λ3d as

λ1k = λ1

‖γ̂un
k ‖ , λ2k = λ2

‖γ̂(1)
k1 ‖

, λ3d = λ3

|β̂un
d |

,

where γ̂un
k (k = 0, 1, 2, · · · , p) and β̂un

d (d = 2, · · · , q) are the unpenalized esti-
mators of γk (k = 0, 1, 2, · · · , p) and β

(0)
d (d = 2, · · · , q). γ̂(1)

k = (γ(1)
k1 , (γ̂

(1)
k∗ )T )T

is denoted by (2.17) and satisfies ‖γ̂(1)
k∗ ‖ = 0. Therefore, we transform the selec-

tion of tuning parameters λ1k, λ2k and λ3d into a one-dimensional grid searching
problem. We just need to chose optimal λ1, λ2 and λ3 in the three step algo-
rithm.

In Step 1, we take optimal λ1 as the minimizer of

BIC1(λ1) = log
(

n∑
i=1

(
Yi −WT

i (β̂
(0)

)γ̂(λ1)
)2

)
+ log(n)

n
· dfλ1 , (2.23)

where γ̂(λ1) = arg minγ Q1(γ|Λ1, β̂
(0)

) is defined by (2.17) for a given λ1, β̂
(0)

is
denoted as (2.15), dfλ1 is defined as the total number of non-zero coefficients of
{‖γ̂(λ1)

k ‖, k = 0, 1, 2, · · · , p} for a given λ1.
In Step 2, the optimal λ2 is the minimizer of

BIC2(λ2) = log
(

n∑
i=1

(
Yi −WT

i (β̂
(0)

)γ̂(λ2)
)2

)
+ log(n)

n
· dfλ2 , (2.24)

where γ̂(λ2) = arg minγ Q2(γ|Λ2, β̂
(0)

, γ̂(1)) is defined by (2.19) for a given λ2,
dfλ2 is defined as the total number of non zero coefficients of {‖γ̂(λ2)

k ‖, k =
0, 1, 2, · · · , p} for a given λ2.
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In Step 3, we take optimal λ3 as the minimizer of

BIC(λ3) = log
(

n∑
i=1

(
Yi −WT

i (β̂
(λ3))γ̂(λ2)

)2
)

+ logn
n

· dfλ3 , (2.25)

where γ̂(λ2) = arg minγ Q2(γ|Λ2, β̂
(0)

, γ̂(1)), and β̂
(λ3) = arg minβ Q3(β|Λ3, γ̂

(2))
is defined by (2.21) for a given λ3, and dfλ3 is defined as the total number of
non-zero βd (d = 1, 2, · · · , q) for a given λ3. We search the optimal value of
λ1, λ2, λ3 over a grid of 100 exponentially decreasing values with the minimum
being 1E-3, and the maximum of λ1, λ2, λ3 is set to be the minimum value such
that all of the penalized estimators are zeros.

2.5. Selection of the order h and the number of interior knots K

Since h is the order of the B-spline basis function, higher degree corresponds to
more complicated interactions and is less interpretable in practice. In practice,
there is no need to set the order too high, reasonable allocation of knots can make
low-order splines achieve better fitting effect. Tang et al. [24] suggested using
lower degree splines such as linear, quadratic or cubic splines corresponding
to h = 2, 3 and 4, respectively. Hence, we search optimal order hopt over the
set H = {2, 3, 4}. Futhermore, K = Op(n

1
2r+1 ) is a necessary assumption for

oracle properties of the proposed variable selection approach, where n is the
sample size and r is defined in condition (A2) in Appendix. According to He
et al. [28], in our work, the range of the interior knots is taken to be K =[
max(�0.5 · n 1

2r+1 �, 1), �1.5 · n 1
2r+1 �

]
, where �x� denotes the integer part of x.

In theory, we can select the optimal order hopt and the number of interior
knots Kopt for each nonparametric function fk(·). However, this is practically
infeasible due to the large searching space and the computational cost. We
assume that all the nonparametric functions share common h and K. Thus,
(Kopt, hopt) can be achieved via a two-dimensional grid search for (Kopt, hopt) ∈
K ×H focusing only on the intercept function by the following criterion

(Kopt, hopt) = arg min
K,h

{
log

(
n∑

i=1

(
Yi −WT

i γ̂
)2) + log(n)

n
(K + h)

}
, (2.26)

where γ̂ = (γ̂T
0 , 0T , · · · , 0T )T .

3. Theoretical properties

We first fix some notations. Let f0(·) = (f00(·), f10(·), · · · , fp0(·))T and β0 =
(β10, β20, · · · , βq0)T be the true value of f(·) and β respectively, and denote
γ0 = (γT

00, γ
T
10, · · · , γT

p0)T be the true value of the B-spline coefficient γ, where
γk0 = (γ0

k1, γ
0T
k∗ )T , γ0

k∗ = (γ0
k2, γ

0
k3, · · · , γ0

kL)T . Without loss of generality, we
assume βd0 �= 0 for d = 1, · · · s, βd0 = 0 for d = s + 1, · · · q; fk0(·) is varying
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for k = 0, 1, · · · , v, fk0(·) is non-zero constant for k = v + 1, · · · , c and fk0(·)
is zero for k = c + 1, · · · , p. Clearly, we can see that V = {0, 1, 2, · · · , v} and
C = {v + 1, v + 2, . . . , c}, Z = {c+ 1, c+ 2, · · · , p}. The following theorem gives
the consistency of the penalized least square estimators.

Theorem 3.1. Suppose the regulatory conditions (A1) – (A8) in Appendix hold
and the number of interior knots K = Op(n1/(2r+1)). Then

(i) ‖β̂ − β0‖ = Op(n−r/(2r+1) + an);
(ii) ‖f̂k(·) − fk0(·)‖ = Op(n−r/(2r+1) + an), k = 0, 1, 2, · · · , p;
where an = maxk,l{p′λ1k

(‖γ0
k∗‖), p′λ2k

(|γ0
k1|), p′λ3l

(|βd0|), γ0
k∗ �= 0, γ0

k1 �= 0, β0
d �=

0, k = 0, 1, 2, · · · , p, d = 1, 2, · · · , q}.
Furthermore, under some regularity conditions, we can demonstrate that the

above consistent estimators possess the following sparsity properties.

Theorem 3.2. Suppose the regularity conditions (A1) – (A8) in Appendix hold
and the number of interior knots K = Op(n1/(2r+1)). Let λmax = max{λ1k, λ2k,
λ3d, k = 0, 1, 2, · · · , p; d = 2, · · · , q} and λmin = min{λ1k, λ2k, λ3d, k = 0, 1, 2,
· · · , p; d = 2, · · · , q}. Suppose λmax → 0 and nr/(2r+1)λmin → ∞ as n → ∞.
Then with probability approaching to 1, β̂ and f̂k(·) satisfy

(i) β̂d = 0 for d = s + 1, · · · , q;
(ii) f̂k(·) = ck for k = v + 1, · · · , c, where ck is some non-zero constant;
(iii) f̂k(·) = 0 for k = c + 1, · · · , p;
Next, we show that the asymptotic normality of the non-zero coefficients β

and the spline coefficients γ. Obviously, if C �= ∅, model (2.1) degenerates into
a partial linear single-index varying-coefficient model. However, the true model
is unknown in advance. Without loss of generality, we treat all of functions
fk(·) (k = 0, 1, 2, · · · , p) as being varying in advance, then identify whether each
fk(·) is varying, non-zero constant or zero. Denote

β∗ = (β1, β2, · · · , βs)T , f∗(·) = (f∗T
(V)(·), f∗T

(C)(·))T ,

f∗
(V)(·) = (f0(·), f1(·), · · · , fv(·))T , f∗

(C)(·) = (fv+1(·), fv+2(·), · · · , fc(·))T ,

and the corresponding covariates are denoted by X∗, G∗
i = (G∗T

(V)i, G
∗T
(C)i)T (i =

1, 2, · · · , n). Let β∗
0 = (β10, β20, · · · , βs0)T and f∗

0 (·) = (f∗T
(V)0(·), f∗T

(C)0(·))T to
be the true values of β∗ and f∗(·), where f∗

(V)0(·) = (f00(·), f10(·), · · · , fv0(·))T ,
f∗
(C)0(·) = (f(v+1)0(·), f(v+2)0(·), · · · , fc0(·))T . Obviously, fk0(u) (k = v + 1, v +

2, · · · , c) are non-zero constants for ∀u ∈ U . Similarly, we have φ∗, W ∗
i =

(WT
(V)i,W

T
(C)i)T and γ∗ = (γ∗T

(V), γ
∗T
(C))T , where

W(V)i = Iv+1 ⊗B(X∗T
i β∗) ·G∗

(V)i, W(C)i = Ic−v ⊗B(X∗T
i β∗) ·G∗

(C)i,

γ∗
(V) = (γT

0 , γ
T
1 , · · · , γT

v )T , γ∗
(C) = (γT

v+1, γ
T
v+2, · · · , γT

c )T .

Denote γ∗
(V)0 = (γT

00, γ
T
10, · · · , γT

v0)T , γ∗
(C)0 = (γT

(v+1)0, γ
T
(v+2)0, · · · , γT

c0)T be the
estimators of the B-spline approximation to f∗

(V)0(·) and f∗
(C)0(·), respectively.
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We can see that γk0 = (γ0
k1, 0, 0, · · · , 0)T for k = v + 1, v + 2, · · · , c and

γ0
k1 (k = v + 1, v + 2, · · · , c) are non-zero constants. Furthermore, we have

f∗
(C)0 = γ∗0T

(C)1 = (γ0
(v+1)1, γ

0
(v+2)1, · · · , γ0

c1)T . Denote ϑ∗ = (γ∗T
(C)1, φ

∗T )T . The cor-

responding estimator and true value of ϑ∗ are denoted by ϑ̂
∗

= (γ̂∗T
(C)1, φ̂

∗T
)T

and ϑ∗
0 = (γ∗0T

(C)1, φ
∗T
0 )T , respectively. In addition, let

Σ1 = E(G∗
(C)G

∗T
(C)) − E{C1(X∗T

i β∗)D−1(X∗T
i β∗)CT

1 (X∗T
i β∗)} (3.1)

Σ2 = E(V ∗V ∗T ) − E{C2(X∗T
i β∗)D−1(X∗T

i β∗)CT
2 (X∗T

i β∗)} (3.2)

where

V ∗ = ḟ
T (X∗T

i β∗)G∗X∗, D(u) = E{G∗
(V)G

∗T
(V)|X∗T

i β∗ = u}

C1(u) = E{G∗T
(C)G

∗T
(V)|X∗T

i β∗ = u}, C2(u) = E{V ∗G∗T
(V)|X∗T

i β∗ = u}

Then, we can get the asymptotic normality of ϑ̂
∗

in the following theorem.

Theorem 3.3. Under the assumptions of Theorem 3.2, ϑ̂
∗

is
√
n-consistent

and √
n(ϑ̂

∗ − ϑ∗
0)

D−→ N(0,Σ) (3.3)

where notation “ D−→” represents “convergence in distribution” and

Σ =
(

Σ−1
1 0
0 Jφ∗0Σ−1

2 JT
φ∗0

)
.

All the proofs can be found in Appendix.

4. Simulation

We conducted extensive simulations to evaluate the performance of the pro-
posed approach. The performance is measured in several ways: (1) classification
accuracy of the f(·) function denoted as the oracle percentage; (2) IMSE of the
estimated f -function; (3) selection accuracy of β; and (4) estimation accuracy
of β by MSE. Denote R as the total number of simulation runs.

Oracle percentage of f(·) is defined as the percentage of correct classification
out of a total of R simulations, for example, if k ∈ V, and out of R simulations,
fk(·) is classified as varying for g times, then the oracle percentage of fk(·) is
g
R × 100%. IMSE of fk(·) is defined as

IMSE = 1
R

R∑
�=1

⎛⎝ 1
ngrid

ngrid∑
j=1

(
fk(uj) −BT (uj)γ̂(�)

k

)2
⎞⎠ (4.1)



836 Guan, S. et al.

where ngrid is the number of points used to estimate the IMSE of the predicted
function; γ̂(�)

k are the estimators of the B-spline coefficients for the �th simula-
tion; β̂

(�)
is the estimator of the loading parameter β for the �th simulation; uj

is taken at the j/ngrid × 100% quantile among the range of XT β̂
(�)

. For our
simulations, ngrid was set to be 100.

Oracle percentage of β is defined as the percentage of correct selection of β
out of R simulations. For example, if βd �= 0 and out of R simulations, βd is
selected to be non-zero for g times, then the oracle percentage of βd is g

R×100%.
MSE of βd is calculated as 1

R

∑R
�=1(β̂

(�)
d − βd)2 where β̂

(�)
d is the estimator for

βd in the �th simulation.
The simulation data were generated according to model (2.1), where X

were generated from a Unif(0, 1) distribution. For the loading parameter β =
(β1, β2, · · · , βq)T , β1 = β2 = 1√

2 and the rest β′
js were set as zeros. We eval-

uated the performance of the proposed approach with both continuous and
discrete predictors G·k (k = 0, 1, 2, · · · , p). For continuous variables G·k (k =
0, 1, 2, · · · , p), they can be gene expressions. For discrete variables G·k (k =
0, 1, 2, · · · , p), they can be single nucleotide polymorphism (SNP) variants. In
either case, the dimension p can be large.

4.1. The continuous cases

In the continuous case, the nonparametric functions fk(u) (k = 0, 1, 2, · · · , p)
were defined as follows: f0(u) = 2 sin(2πu), f1(u) = 2 cos(πu) + 2 and f2(u) =
sin(2πu) + cos(πu) + 1 are varying functions; f3(u) = 2 and f4(u) = 2.5 are
non-zero constants; fk(u) = 0 are zeros for k = 5, · · · , p. The number of loading
parameters was set as q = 5 and β1 = β2 = 1√

2 , β3 = β4 = β5 = 0. Both
G·k (k = 0, 1, 2, · · · , p) and ε were generated from independent N(0, 1). We
run 1000 simulations (R = 1000) to evaluate the performance of the proposed
variable selection approach under p = 50, 100.

Table 1 demonstrates the selection and estimation accuracy for continuous
G·k. The left and right penal corresponds to the case where p = 50 and 100
respectively. For all the cases, the selection accuracy (oracle %) is very closed
to 100% (> 99%), IMSE for varying functions (f0(·), f1(·) and f2(·)) are in the
order of −2, and IMSE for non-zero constant functions (f3(·) and f4(·)) are in
the order of −3. All of the model IMSE and oracle IMSE are in the same order.
These observations indicate that our proposed estimation and selection approach
possesses reasonable selection and estimation accuracy for the non-parametric
function fk(·) (k = 0, 1, 2, · · · , p).

Table 2 presents the selection and estimation accuracy for the loading pa-
rameter β. The results shows that the selection accuracy for all β is reasonably
good (> 98%) in all cases. For most of the β, the MSE is in the order of −4 or
lower, except for β2, which is −3 for both p = 50 and p = 100 when n = 500.
The order of the model estimation for β are at least the same as that of the
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Table 1

Selection (%) and estimation accuracy (IMSE) of fk(·) for continuous G.

Sample size Function p = 50 p = 100
Oracle % Model Oracle Oracle % Model Oracle

n = 500

f0(·) 100.0% 3.87E-02 4.27E-02 100.0% 3.77E-02 4.51E-02
f1(·) 99.6% 1.58E-02 2.42E-02 99.9% 1.57E-02 3.14E-02
f2(·) 99.9% 2.33E-02 2.58E-02 99.9% 2.26E-02 2.96E-02
f3(·) 100.0% 2.09E-03 2.11E-03 100.0% 1.90E-03 1.97E-03
f4(·) 100.0% 2.04E-03 2.06E-03 100.0% 2.07E-03 2.12E-03
Zero 99.7% 1.94E-05 0 99.9% 1.12E-05 0

n = 1000

f0(.) 100.0% 3.23E-02 3.40E-02 100.0% 3.31E-02 3.47E-02
f1(·) 100.0% 7.17E-03 1.21E-02 100.0% 7.07E-03 1.17E-02
f2(·) 100.0% 1.46E-02 1.59E-02 100.0% 1.46E-02 1.64E-02
f3(·) 100.0% 1.02E-03 1.02E-03 100.0% 9.60E-04 9.55E-04
f4(·) 100.0% 1.09E-03 1.09E-03 100.0% 1.06E-03 1.07E-03
Zero 99.8% 8.50E-06 0 99.9% 3.46E-06 0

Table 2

Selection (%) and estimation accuracy (MSE) of β for continuous G.

Sample size β
p = 50 p = 100

Oracle % Model Oracle Oracle % Model Oracle

n = 500

β1 100.0% 1.15E-04 1.07E-04 100.0% 1.17E-04 1.30E-04
β2 100.0% 8.04E-03 4.12E-03 100.0% 2.26E-03 7.62E-03
β3 98.1% 9.98E-05 0 98.2% 3.64E-05 0
β4 98.8% 2.99E-05 0 99.1% 3.13E-05 0
β5 98.6% 1.00E-04 0 98.5% 7.73E-05 0

n = 1000

β1 100.0% 5.30E-05 5.52E-05 100.0% 5.00E-05 5.49E-05
β2 100.0% 5.34E-05 1.86E-03 100.0% 5.04E-05 1.79E-03
β3 98.9% 9.36E-06 0 98.8% 1.16E-05 0
β4 99.4% 6.30E-06 0 99.5% 5.49E-06 0
β5 99.1% 7.17E-06 0 99.0% 6.93E-06 0

oracle model if not lower. These results indicate that our model possesses good
selection and estimation accuracy for the loading parameters β.

4.2. The discrete case

We further evaluated how the proposed model performs with discrete G·k (k =
0, 1, 2, · · · , p), i.e., SNP data. In this simulation, each G·k (k = 0, 1, 2, · · · , p)
variable was simulated from a multinomial distributions with minor allele fre-
quency (MAF) Pa. The G·k (k = 0, 1, 2, · · · , p) variable takes values 0, 1, 2
corresponding to the genotype aa, Aa, and AA with corresponding genotype
frequency P 2

a , 2Pa(1− Pa) and (1− Pa)2, respectively. We set Pa = 0.5 for k =
1, 2, 7; Pa = 0.3 for k = 3, 4, 8; Pa = 0.1 for k = 5, 6, 9 and Pa ∼ Unif(0.05, 0.5)
for k = 10, 11, · · · , p. For the non-parametric functions, f0(u) = 2 sin(2πu),
f1(u) = f3(u) = f5(u) = 2 cos(πu) + 2, f2(u) = f4(u) = f6(u) = sin(2πu) +
cos(πu) + 1; f7(u) = f8(u) = f9(u) = 2; and fk(u) = 0 for k = 10, 11, · · · , p.
Under the setup, we had both varying and constant effect with different minor
allele frequencies. X was generated from Unif(0, 1) and ε was generated from
N(0, 1). Finally, Y was generated according to model (2.1). We evaluated the
performance of the proposed model via R = 1000 simulations under p = 50, 100
and n = 500, 1000.

Table 3 presents the selection and estimation accuracy of the non-parametric
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Table 3

Selection (%) and estimation accuracy (IMSE) of fk(·) for discrete G.

Sample size Function p = 50 p = 100
Oracle % Model Oracle Oracle % Model Oracle

n = 500

f0(.) 100.0% 5.94E-02 5.66E-02 100.0% 7.42E-02 6.95E-02
f1(·) 98.9% 3.71E-02 4.87E-02 98.4% 3.78E-02 5.44E-02
f2(·) 99.0% 4.14E-02 3.79E-02 98.6% 4.30E-02 4.09E-02
f3(·) 99.0% 3.50E-02 4.76E-02 98.5% 3.64E-02 5.81E-02
f4(·) 98.9% 4.04E-02 3.63E-02 98.5% 4.48E-02 3.98E-02
f5(·) 99.0% 4.02E-02 4.95E-02 98.6% 4.50E-02 7.29E-02
f6(·) 98.8% 5.03E-02 4.52E-02 98.4% 4.98E-02 4.83E-02
f7(·) 100.0% 2.37E-03 2.33E-03 99.9% 2.57E-03 2.51E-03
f8(·) 100.0% 2.37E-03 2.37E-03 100.0% 2.55E-03 2.64E-03
f9(·) 100.0% 2.66E-03 2.38E-03 100.0% 2.26E-03 2.24E-03
Zero 99.6% 3.25E-05 0 99.7% 2.88E-05 0

n = 1000

f0(.) 100.0% 3.12E-02 3.20E-02 100.0% 3.09E-02 3.44E-02
f1(·) 99.9% 7.92E-03 1.22E-02 99.9% 7.96E-03 1.22E-02
f2(·) 99.9% 1.50E-02 1.63E-02 99.9% 1.47E-02 1.59E-02
f3(·) 99.9% 7.87E-03 1.21E-02 99.9% 8.19E-03 1.26E-02
f4(·) 99.9% 1.44E-02 1.60E-02 99.9% 1.43E-02 1.58E-02
f5(·) 99.9% 8.40E-03 1.17E-02 99.9% 8.54E-03 1.33E-02
f6(·) 99.9% 1.48E-02 1.62E-02 99.9% 1.44E-02 1.64E-02
f7(·) 100.0% 1.13E-03 1.14E-03 100.0% 9.55E-04 9.50E-04
f8(·) 100.0% 1.14E-03 1.20E-03 100.0% 1.12E-03 1.16E-03
f9(·) 100.0% 1.03E-03 1.04E-03 100.0% 1.13E-03 1.14E-03
Zero 99.8% 9.21E-06 0 99.9% 4.38E-06 0

Table 4

Selection (%) and estimation accuracy (MSE) of β for discrete G.

Sample size β
p = 50 p = 100

Oracle % Model Oracle Oracle % Model Oracle

n = 500

β1 100.0% 1.15E-04 1.07E-04 100.0% 1.17E-04 1.30E-04
β2 100.0% 8.04E-03 4.12E-03 100.0% 2.26E-03 7.62E-03
β3 98.1% 9.98E-05 0 98.2% 3.64E-05 0
β4 98.8% 2.99E-05 0 99.1% 3.13E-05 0
β5 98.6% 1.00E-04 0 98.5% 7.73E-05 0

n = 1000

β1 100.0% 5.30E-05 5.52E-05 100.0% 5.00E-05 5.49E-05
β2 100.0% 5.34E-05 1.86E-03 100.0% 5.04E-05 1.79E-03
β3 98.9% 9.36E-06 0 98.8% 1.16E-05 0
β4 99.4% 6.30E-06 0 99.5% 5.49E-06 0
β5 99.1% 7.17E-06 0 99.0% 6.93E-06 0

function fk(·). We observed that the oracle percentage are very high (> 98.8%)
for all cases, indicating our proposed model can correctly select the coefficient
functions with high accuracy. Further, the IMSE for varying functions are of the
order −2 or lower, while the IMSE for constant functions are of the order −3 or
lower. Moreover, the IMSE of the proposed model are in the same order of the
IMSE of the oracle model. These suggest that our model performs reasonably
well in both selection and estimation for the non-parametric functions.

Table 4 presents the selection and estimation result of the loading parameters
β. We observed that the oracle percentage in all the cases are above 98%, and
the MSE for the estimation of β is in the order of −3 or lower in the proposed
and oracle model. These suggests that our proposed model can correctly select
and estimate the loading parameters with high accuracy.

In all the simulation studies, we observed improved performance when the
sample size increases from 500 to 1000. For example, as shown in Table 4, the
MSE for β5 reduces from 1E-04 to 7.17E-06 when the sample size increases from
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500 to 1000.

5. Real data application

We demonstrated the utility of the model with a human liver cohort (HLC)
data set. The data set can be downloaded from www.synapse.org using synapse
ID: syn4499 which contains gene expressions and phenotypes (activity of several
liver enzymes). For more details regarding the data set, please refer to Schadt
et al. [29] and Yang et al. [30]. In the HLC data set, the phenotypes are enzyme
activity measurements of Cytochrom P450. There are a total of nine P450 en-
zymes (CYP1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, and 3A4). We chose
CYP2E1 to demonstrate the utility of the method. For the environmental vari-
able (X), we chose Age (=X1), Aldehyde Oxydase (X2), and Liver Triglyceride
(X3), then transformed each one of them to [0,1] with Xi−min(Xi)

max(Xi)−min(Xi) . In this
analysis, we focused on gene expressions which are treated as the G variable.
After data cleaning, we had n = 394 (sample size) and N = 19, 172 (number of
gene expressions). Applying the proposed method, we would like to answer the
following questions: (1) which gene is sensitive to the synergistic effect of the
three X variables to affect the CYP2E1 activity? (2) what is the effect function
of the three X variables as a whole, zero, constant or varying? and (3) which X
variable contributes to the synergistic interaction effect?

We focused on the KEGG pathway “Metabolism of Xenobiotics by Cy-
tochrome P450” (hsa00980) to select important genes associated with CYP2E1
activity. There are 76 genes in this pathway and 70 are mapped to our data
set. After applying the proposed method, we identified one gene expression
(SULT2A1) with varying effect and three gene expressions (FABP1, C15orf39,
B3GNT5) with constant effect.

Figure 1 presents the plot of the intercept function (left panel) and the varying
coefficient function for gene SULT2A1 (right panel) on CYP2E1 activity. After
shrinkage, the coefficients for X2 and X3 were all zeros, leaving only Age as the
effective environmental factor. The intercept function first increases before age
20, then it decreases dramatically for the rest of the life, showing the overall
declining CYP2E1 enzyme activity over age. The effect of gene SULT2A1 on
the CYP2E1 activity, however, behaves quite differently. The effect of this gene
on CYP2E1 activity shows little change (around the zero line) before age 65.
After that, it shows a positive effect on CYP2E1 activity as people become old.
Gene SULT2A1 encodes sulfotransferase which aids in the metabolism of drugs
and endogenous compounds. Study by Echchgadda et al. [31] showed that in
senescent male rodents, SULT2A1 gene transcription in the liver is significantly
enhanced due to the age-associated loss of the liver expression of androgen
receptor. Although the study was conducted in rodents, it has implication on
humans. Our result of enhanced function of SULT2A1 late in life agrees with
the finding by Echchgadda et al. [31]. This result also demonstrates the unique
strength of the proposed method to capture the non-linear interaction between
environmental factors and genes. However, further biological investigation is
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Fig 1. Plot of the varying effect for gene SULT2A1.

needed to confirm the real function of this gene modified by aging. In addition
to this gene, genes with constant effect are FABP1 (f̂ = 0.135), C15orf39 (f̂ =
−0.112) and B3GNT5 (f̂ = −0.128). The constant effects indicate that the
effect of these genes on CYP2E1 does not change over age. In addition, the
negative effect size tells that the CYP2E1 activity is negatively regulated by
these genes. We did not find literature report to support that these genes show
age-related expressions.

6. Discussion

SIVCM is a promising tool to model non-linear interactions between genes and
multiple environments as a whole. It combines multiple exposure variables X
into a single-index XTβ, hence can reduce model dimension and alleviate the
curse of dimensionality. In this paper, we develop a three stage variable selec-
tion approach for SIVCM. Our goal is to identify varying, non-zero constant and
zero effects which respectively correspond to nonlinear G × E effect, no G × E
effect and no genetic effect. In the meantime, we also select important exposure
variables. Rather than modeling the G × E effect for each X variable separately,
our approach can model the joint effect of multiple environmental factors (X)
as a whole, then identify how different genes interact with the environmental
mixture to affect a disease trait, the so called synergistic G × E interaction.
Our model is biologically motivated and attractive since it offers an alternative
strategy to look for G×E interaction. In addition, our model is flexible to detect
any potential non-linear interactions. We further studied the theoretical prop-
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erty of the proposed estimation and selection method. Both simulation and real
data analysis demonstrate the utility of the proposed method.

In our model setup, the covariates X are assumed to be continuous. This
is due to the fact that the index u = XTβ has to be continuous in order to
model the nonlinear function. In real applications, environmental variables can
be discrete such as smoking, gender and ethnicity group. To accommodate the
presence of discrete factors, the SIVCM can be generalized to a partial linear
VMICM, i.e.,

Y = f(XTβ)G + Zα + ZGδ + ε (6.1)

where Z represent discrete covariates and α and δ represent the effects of Z
and the interaction between Z and G, respectively. According to (2.3)–(2.5), we
have

Y ≈ W (β)γ + Zα + ZGδ + ε (6.2)

Our variable selection approach could be modified slightly to perform selection of
non-parametric functions and the parametric components simultaneously. More
specifically, the design matrix can be updated to (W (β), Z, ZG) in Step 1 in the
algorithm, then the rest follows.

So far we discussed the variable selection approach for SIVCM with a contin-
uous response phenotype. In practice, many phenotype can be categorical such
as a binary disease response in a case control study. It is natural to extend the
current selection approach to a generalized SIVCM framework, which will be
investigated in our future work.

In our model formulation, we assumed index coefficients share common load-
ing parameters β. From a practical point of view, assuming different loading
parameters makes perfect sense such as the model proposed by Ma and Song
[32]. However, such a treatment imposes theoretical challenges when evaluating
the theoretical properties such as the selection consistency. This is because that
the loading coefficients for the kth index coefficient are not identifiable when
fk(u) /∈ V. When a coefficient function is not varying, β does not exists. Thus,
the selection consistency for β does not exists. For this reason, we impose the
same loading parameters for all the index coefficient functions. In addition to
the application to G × E studies, our model has many applications in other
fields where the purpose is to model the interaction between one variable and a
mixture of a few other variables, the so called synergistic interaction.

Appendix A: Appendix

A.1. Computational algorithms

From (2.5), we have the design matrix W (β) with the corresponding parameters
γ = (γT

0 , γ
T
1 , · · · , γT

p )T and γk = (γk1, γ
T
k∗)T . Then the detailed computational

algorithms for Step 1, Step 2 and Step 3 are given as follows.
Computational algorithm for Step 1: In this step, we get the estimator

γ̂(1) denoted in (2.17) by minimizing the objective function Q1(γ|Λ1, β̂
(0)

) and
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using the group coordinate descent algorithm for iterative computation. We first
assign a grouping index from 0 to M for each of the parameters. Furthermore,
parameters with the same grouping index are in the same group and penalized as
a group. Parameters with grouping index 0 are not penalized. Clearly, {γk, k =
0, 1, . . . , p} = {γ(m),m = 0, 1, . . . ,M}, and {γ̂k, k = 0, 1, . . . , p} = {γ̂(m),m =
0, 1, . . . ,M}. Denote W(m) as the design matrix for group m, m = 0, 1, · · ·M .
Given a tuning parameter λ and MCP tuning parameter τMCP , γ̂(1) can be
obtained through the following iteration.

(0) Run a Q-R decomposition on all W(m), i.e., W(m) = Q(m)R(m), m =
0, 1, 2 · · ·M , where QT

(m)Q(m) = I and R(m) is an upper triangular matrix,
Q(m) is the normalized design matrix for group m.

(1) Assign the grouping index for the initial values γ̂(0) from (2.16) such as
{γ̂(0)

(m),m = 0, 1, · · · ,M}, obtain the ordinary least squares (OLS) estima-
tor γ̂OLS

(m) via γ̂OLS
(m) = QT

(m)(Y−Q−(m)γ̂−(m)) = QT
(m)Y−QT

(m)Q−(m)γ̂−(m),
where subscript Q−(m) represents the normalized design matrix without
group m and γ̂−(m) represents the most updated values for γ without
group m.

(2) For m = 0, set γ̂(0) = γ̂OLS
(0) .

(3) For m = 1, · · · ,M , obtain the MCP estimate γ̂(m) via

γ̂(m) =
{

γ̂OLS
(m) , if ‖γ̂OLS

(m) ‖ > λτMCP

τ
1−τ S(γ̂OLS

(m) , λ), if ‖γ̂OLS
(m) ‖ ≤ λτMCP , (A.1)

where S(γ̂OLS
(m) , λ) = γ̂OLS

(m)

(
1 − λ

‖γ̂OLS
(m) ‖

)
+
.

(4) Updated γ̂
(0)
(m) in step (1) by γ̂(m).

Iterate step (1) through step (4) until convergence and get an unadjusted
MCP estimator denoted as γ̂unadjusted. Then, we can get an adjusted MCP
estimator as

γ̂(m) = R−1
(m)γ̂

unadjusted
(m) , m = 0, 1, · · · ,M (A.2)

Accordingly, we have {γ̂(1)
k , k = 0, 1, . . . , p} = {γ̂(m),m = 0, 1, . . . ,M}. Finally,

we can get our Step 1 estimator γ̂(1) = ((γ̂(1)
0 )T , (γ̂(1)

1 )T , · · · , (γ̂(1)
p )T )T .

Computational algorithm for Step 2: In this step, given γ̂(1) in Step 1,
we get the estimator γ̂(2) denoted in (2.19) and use the group coordinate descent
algorithm for iterative computation, same as in Step 1. We first get different
design matrix and grouping index according to γ̂(1); then, repeat Step 1 until
convergence to get γ̂(2).

Computational algorithm for Step 3: In this step, given γ̂(2) in Step 2,
we get β̂ denoted in (2.21). We adopt the idea of first order approximation and
coordinate decent algorithm to estimate β by minimizing (2.22). Since B̄(XTβ)
is not a linear function of β, there is no closed form solution of β. Hence, we
apply a local linear approximation of B̄(XTβ) at β̃, and β̃ is the most updated
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value of β. We have

B̄(XTβ)γ̂k∗ ≈ B̄(XT β̃)γ̂k∗ + B̄
′(XT β̃)γ̂k∗X(β − β̃) (A.3)

Working with βd, d = 1, 2, · · · , q, we have

B̄(XTβ)γ̂∗
k ≈ B̄(XT β̃)γ̂∗

k + B̄
′(XT β̃)γ̂∗

kXd(βd − β̃d) (A.4)

Then we can obtain β̂d by minimizing the following penalized function,

Qd = ‖Y ∗
d −X∗

dβd‖2 + npλ3(|βd|) (A.5)

where

Y ∗
d = Y −

p∑
k=0

[γ̂k1Gk + B̄(XT β̃)γ̂∗
kGk − B̄

T (Xβ̃)γ̂∗
kGkXdβ̃d],

X∗
d =

p∑
k=0

B̄
T (Xβ̃)γ̂∗

kGkXd.

Then, the MCP penalized estimator β̂
∗

= (β̂∗
1 , · · · , β̂∗

q )T can be obtained via the
coordinate descent algorithm. Since there are two constrains on β: (1) ‖β‖2 = 1
and (2) β1 > 0. We do not penalize β1 and normalize β after updating β, i.e.,
β̂d = β̂∗

d

‖β̂∗‖ sgn(β̂∗
1). The detailed algorithm for estimating βd, d = 1, 2, · · · , q, is

given as follows:
(0) Get the initial estimator β̂

(0)
from (2.15);

(1) Calculate Y ∗
d and X∗

d ;
(2) Normalized X∗

d by X̃
∗
d = X∗

d/‖X∗
d‖;

(3) Calculate β̂OLS
d = X̃

∗T
d Y ∗

d

(4) Let β̂∗
1 = β̂OLS

1 and for d �= 1, β̂∗
d = (β̂OLS

d −λ)+
1−1/τMCP if |β̂OLS

d | ≤ λτMCP and
β̂∗
d = β̂OLS

d if |β̂OLS
d | > λτMCP ;

(5) Normalized β̂
∗

= (β̂∗
1 , · · · , β̂∗

q )T , i.e., β̂d = β̂∗
d

‖β̂∗‖ sgn(β̂∗
1);

(6) Update β̂
(0)

in step (0) with β̂ = (β̂1, · · · , β̂q)T , then iterate until conver-
gence.

A.2. Proofs of theorems

The following regularity conditions are assumed.
(A1) The density function fU (u) of a random variable U = XTβ is bounded

away from 0 on U = {u = XTβ : X ∈ X}, where X is the compact support of
X. Furthermore, we assume that fu(·) satisfies the Lipschitz condition of order
1 on U ;

(A2) fk(·) (k = 0, 1, · · · , p) have bounded and continuous derivatives up to
order r on U and r ≥ 2;
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(A3) E(‖G‖6) < ∞ and E(|ε|6) < ∞;
(A4) {(Yi, Xi, Gi), i = 1, 2, · · · , n} is a strictly stationary and strongly mixing

sequence with mixing coefficient α(n) = O(ρn) for some 0 < ρ < 1;
(A5) Let bn = maxk,l{p′′λ1

(‖γ0
k∗‖), p′′λ2

(|γ0
k1|), p′′λ3

(|β0
d |), γ0

k∗ �= 0, γ0
k1 �= 0, β0

l �=
0} for k = 1, · · · , p, d = 2, · · · , q, then bn → 0 as n → 0;

(A6) lim infn→∞ lim inf‖γk∗‖→0+
1
λ1
|p′λ1

(‖γk∗‖)| > 0 for k = v + 1, · · · , p

lim inf
n→∞

lim inf
|γk1|→0+

1
λ2

|p′λ2
(|γk1|)| > 0 for k = c + 1, · · · , p

lim inf
n→∞

lim inf
|βd|→0+

1
λ3

|p′λ3
(|βd|)| > 0 for d = s + 1, · · · , q

(A7) Let κ1, κ2, · · · , κK be internal knots of [a, b], where a = inf{u : u ∈ U},
b = sup{u : u ∈ U}. Furthermore, let κ1 = a, κK+1 = b, hi = κi − κi−1,
hmax = max{hi}, hmin = min{hi}. Then, there exist a constant C0 such that
hmax
hmin

< C0 and max{hi+1 − hi} = o(K−1);
(A8) D(u) is positive, and each element of C1(u) and C2(u) satisfy the Lip-

schitz condition of order 1 on U .
Before the proof, we first define some notations as follows:

Ψ11 = 1
n

n∑
i=1

W ∗
(V)i(φ∗0)W ∗T

(V)i(φ∗0),Ψ12 = 1
n

n∑
i=1

W ∗
(V)i(φ∗0)G∗T

(C)i,

Ψ13 = 1
n

n∑
i=1

W ∗
(V)i(φ∗0)V ∗T

i ,Ψ21 = 1
n

n∑
i=1

G∗
(C)iW

∗T
(V)i(φ∗0),

Ψ22 = 1
n

n∑
i=1

G∗
(C)iG

∗T
(C)i,Ψ23 = 1

n

n∑
i=1

G∗
(C)iV

∗T
i ,

Ψ31 = 1
n

n∑
i=1

ViW
∗T
(V)i(φ∗0),Ψ32 = 1

n

n∑
i=1

V ∗
i G

∗T
(C)i,

Ψ33 = 1
n

n∑
i=1

V ∗
i V

∗T
i ,Λ10 = 1

n

n∑
i=1

W ∗
(V)i(φ∗0)(εi + RT (φ∗0)G∗

i ).

Lemma 1. If fk(u) (k = 0, 1, · · · , p) satisfies condition (A2), then there exists
a constat C0 > 0 such that

sup
u∈U

|fk(u) −BT (u)γk∗| ≤ C0K
−r (A.6)

Proof. This result follows directly from the standard B-spline theory.

Lemma 2. Suppose the regularity conditions (A1) – (A7) hold and the number
of knots K = Op(n1/(2r+1)). Then we have

Ψ22 − ΨT
12Ψ−1

11 Ψ12
P−→ Σ1 and Ψ33 − ΨT

13Ψ−1
11 Ψ13

P−→ Σ2 (A.7)

where notation “ P−→” represents convergence in probability.
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Proof. The results of this lemma follow directly from [23] and [33].

Proof of Theorem 3.1. To show the consistency of β̂ is equivalent to show the
consistency of φ̂. Let αn = n−r/(2r+1) + an, φ = φ0 + δτ1, γ = γ0 + δτ2 and
τ = (τT1 , τT2 )T , where τ2 = (τ01, τ0∗, · · · , τp1, τp∗) and {τk1, τk∗} corresponds to
the B-spline coefficients {γk1, γk∗}; τ1 = (τφ1 , · · · , τ

φ
q−1); τ

φ
l corresponds to φl;

and γ0 and φ0 are the true value of γ and φ, respectively.
To show the consistency of γ̂ and φ̂, we need to show ∀ε > 0, ∃ a large enough

C such that
P

{
inf

‖τ‖=C
{Q(φ, γ)} > Q(φ0, γ0)

}
≥ 1 − ε. (A.8)

If (A.8) holds, we can say with probability at least 1− ε, there exists a local
minimum in the ball {(γ0, φ0) + δτ : ‖τ‖ ≤ C}. Hence, there exists a local
minimizer such that ‖(γ̂, φ̂) − (γ0, φ0)‖ = Op(δ).

Let Dn(τ) = K−1{Q(γ, φ) −Q(γ0, φ0)}, we can get

Dn(τ) = 1
K

n∑
i=1

[(
Yi −WT

i (φ0 + δτ1)(γ0 + δτ2)
)2 − (

Yi −WT
i (φ0)γ0)2]

+ n

K

p∑
k=1

[
pλ2k(|γ0

k1+δτk1|)I(‖γ0
k∗+δτk∗‖=0)−pλ2k(|γ0

k1|)I(‖γ0
k∗‖=0)

]
+ n

K

q−1∑
d=1

[
pλ3d(|φ0

d + δτφd |) − pλ3d(|φ0
d|)

]
Since pλ1k(‖γ0

k∗‖)] = 0 for k = v + 1, · · · , p and pλ3d(|φ0
d|) = 0 for d =

s + 1, · · · , q − 1 and I(‖γ0
k∗‖ = 0) = 0 for k = 1, · · · , v, we have

Dn(τ) ≥ 1
K

n∑
i=1

[(
Yi −WT

i (φ0 + δτ1)(γ0 + δτ2)
)2 − (

Yi −WT
i (φ0)γ0)2]

+ n

K

v∑
k=1

[
pλ1k(‖γ0

k∗ + αnτk∗‖) − pλ1k(‖γ0
k∗‖)

]
+ n

K

p∑
k=v+1

[
pλ2k(|γ0

k1 + δτk1|) − pλ2k(|γ0
k1|)

]
+ n

K

s−1∑
j=1

[pλ3d(|φ0
j + αnτ

φ
j |) − pλ3d(|φ0

j |)]

By Taylor Expansion at (γ0, φ0), following [23], we have

Dn(τ) ≥ −2δ
K

n∑
i=1

[
(εi + RT (XT

i β
0)Gi)(Ẇ

T

i (φ0)γ0JT
φ0Xiτ1 + WT

i (φ0)τ2)
]

+ δ2

K

n∑
i=1

(ẆT

i (φ0)γ0JT
φ0Xiτ1 + WT

i (φ0)τ2)2 + op(1)
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+ n

K

v∑
k=1

[
δp′λ1k

(‖γ0
k∗‖)

γ0
k∗

‖γ0
k∗‖

τTk∗ + δ2p′′λ1k
(‖γ0

k∗‖)τk∗τTk∗(1 + op(1))
]

+ n

K

p∑
k=v+1

[
δp′λ2k

(|γ0
k1|)sgn(γ0

k1)τk1 + δ2p′′λ2k
(|γ0

k1|)(τk1)2(1 + op(1))
]

+ n

K

s−1∑
d=1

[
δp′λ3d

(|φ0
d|)sgn(φ0

d)τ
φ
d + δ2p′′λ3d

(|φ0
d|)(τφd )2(1 + op(1))

]
=: S1 + S2 + op(1) + S3 + S4 + S5

where Ẇ i(φ0) = Ip+1 ⊗ Ḃ(XT
i β

0) · Gi, R(u) = (R0(u), R2(u), · · · , Rp(u))T ,
Rk(u) = fk(u) − BT (u)γ0

k, k = 0, 1, · · · , p. From Lemma 1, we have |Rk(u)| =
O(K−r) and

|ḟk(XT
i β

0) − Ḃ
T (u)γ0

k| ≤ C0K
−r+1 (A.9)

Note that εi is independent of (Xi, Gi), we have

1√
n

n∑
1

εi(Ẇ
T

i (φ0)γ0JT
φ0Xiτ1 + WT

i (φ0)τ2) = Op(‖τ‖) (A.10)

In addition, from (A.4), we can get
n∑

i=1
RT (XT

i β
0)Gi(Ẇ

T

i (φ0)γ0JT
φ0Xiτ1 + WT

i (φ0)τ2)

=
n∑

i=1
RT (XT

i β
0)Gi{ḟ

T (XT
i β

0)GiJ
T
φ0Xiτ1

+ (ẆT

i (φ0)γ0 − ḟ
T (XT

i β
0)GiJ

T
φ0Xiτ1 + WT

i (φ0)τ2)}
= Op(nK−r‖τ‖). (A.11)

Following [23], from (A.10), (A.11) and (A.4), it is easy to show that

S1 = Op(
√
nK−1δ)‖τ‖ + Op(nK−1−rδ)‖τ‖ = Op(1 + nr/(2r+1)an)‖τ‖. (A.12)

Similarly, we can get

S2 = Op(
√
nK−1δ2)‖τ‖2 = Op(1 + 2nr/(2r+1)an)‖τ‖2. (A.13)

Hence, S2 dominates S1 uniformly in {τ : ‖τ‖ = C} by choosing a sufficiently
large C.

Further, by Taylor expansion at γ0, we have

S3 ≤ nK−1δan

v∑
k=1

γ0
k∗

‖γ0
k∗‖

τTk∗ + nK−1δ2bn

v∑
k=1

τk∗τ
T
k∗

≤ nK−1δan
√
v‖τ‖ + nK−1δ2bn‖τ‖2
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Since bn → 0, then it is easy to show that S3 is dominated by S2 uniformly in
‖τ‖ = C.

For S4 and S5, we have

S4 ≤ δannK
−1

p∑
k=v+1

τk1 + nK−1δ2bn

p∑
k=v+1

(τk1)2 ≤ nK−1δ2C + nK−1δ2C2bn,

S5 ≤ δannK
−1

s∑
j=1

τφj + nK−1δ2bn

s∑
j=1

(τφj )2 ≤ nK−1δ2C + nK−1δ2C2bn.

With the same argument, we have S4 and S5 dominated by S2 uniformly in
‖τ‖ = C. Hence, by choosing a large enough C, (A.8) holds. Therefore, there
exists local minimizers φ̂ and γ̂ such that

‖φ̂− φ0‖ = Op(δ), ‖γ̂ − γ0‖ = Op(δ).

So we can get ‖β̂ − β0‖ = Op(δ), which completes the proof of (i).

Note that

‖f̂k(u) − f0
k (u)‖ =

∫
U
{f̂k(u) − f0

k (u)}2du

=
∫
U
{BT (u)γ̂k −BT (u)γ0

k + Rk(u)}2du

≤ 2
∫
U
{BT (u)γ̂k −BT (u)γ0

k}2du + 2
∫
U
R2

k(u)du

= 2(γ̂k − γ0
k)T

(∫
U
BT (u)B(u)du

)
(γ̂k − γ0

k) + 2
∫
U
R2

k(u)du.

It is obvious that
∫
U BT (u)B(u)du = O(1), so we can get

(γ̂k − γ0
k)T

(∫
U
BT (u)B(u)du

)
(γ̂k − γ0

k) = Op(n−2r/(2r+1) + a2
n). (A.14)

In addition, from Lemma 1, it is easy to show that∫
U
R2

k(u)du = Op(n−2r/(2r+1)). (A.15)

According to (A.14) and (A.15), we complete the proof of (ii).

Proof of Theorem 3.2. (i) Without loss of generality, we denote φ = (φnz, φz),
where φnz = (φ1, · · · , φs−1) and φz = (φs, · · · , φq−1). Since λmax → 0, it can be
seen an = 0 for large n. Then, by Theorem 3.1, it is sufficient to show

‖φj − φ0
j‖ = Op(n−r/(2r+1)), d = 1, · · · , s− 1
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for φnz. For φz, for some given small ε = Cn−r/(2r+1), with probability ap-
proaching 1 as n → ∞, for d = s, · · · , q − 1, we have

∂Q(φ, γ)
∂φd

> 0 when 0 < φd < ε and ∂Q(φ, γ)
∂φd

< 0 when − ε < φd < 0.

We have
∂Q(φ, γ)

∂φd
= ∂g(γ, φ)

∂φd
+ npλ3d(|φd|)sgn(φd)

∂Q(φ, γ)
∂φd

=
n∑

i=1

(
Yi −WT

i (φ)γ
)
Ẇ

T

i (φ)γeTφd
Xi + nṗλ3d(|φd|)sgn(φd)

=
n∑

i=1
{εi + RT (XT

i β
0)Gi + (Ip+1 ⊗B(Xiβ

0) ·Gi)T (γ0 − γ)

+ (Ip ⊗ [B(XT
i β

0) −B(XT
i β)] ·Gi)T γ}WT

i (φ)γeTφd
Xi

+ np′3d(|φd|)sgn(φd)

where eφd
= (−(1−‖φ‖2)−1/2φd, 0, · · · , 0, 1, 0, · · · , 0)T with (d+1)th component

as 1. From conditions (A.1), (A.2), (A.4) and (A.9), similar to [23], we have

∂Q(φ, γ)
∂φd

= nλ3d{λ−1
3d p

′
λ3d

(|φd|)sgn(φd) + Op(n−r/(2r+1)λ−1
3d )} (A.16)

Clearly we can see that λ3dn
r/(2r+1) ≥ λminn

r/(2r+1) → ∞, which implies
Op(n−r/(2r+1)λ−1

3d ) = op(1). From (A6), lim infn→∞ lim inf |βd|→0+
1
λ3
|p′λ3

(|βd|)|>
0. So we can conclude that the sign of ∂Q(φ,γ)

∂φj
is completely determined by sign

of φj . Hence, we prove β̂j = 0 for j = s + 1, · · · , q. This completes the proof of
(i).

(ii) & (iii) Applying similar arguments as in (i), we immediately have, with
probability approaching 1, γ̂k∗ = 0 for k = v + 1, · · · , p and γ̂k1 = 0 for k =
c+ 1, · · · , p. Then by supu B(u) = O(1) and f̂k(·) = γ̂k0 + B̄(Xβ̂)γ̂k∗, we prove
f̂k(·) = ck for k = v + 1, · · · , c where ck is some constant and f̂k(·) = 0 for
k = c + 1, · · · , p.

Proof of Theorem 3.3. By Theorems 3.1 and 3.2, we can see that, as n → ∞,
Q(φ, γ) attains the minimal value at (φ̂

∗T
, 0)T and (γ̂∗T

(V), γ̂
∗T
(C), 0)T . Obviously,

according to (2.7), we can see that γ̂∗
(C) = (γ̂∗T

v+1, γ̂
∗T
v+2, · · · , γ̂∗T

c+1)T and γ̂∗
k =

(γ̂∗
k1, 0, 0, · · · , 0)T for k = v + 1, v + 2, · · · , c. Then, we have f̂k(·) = γ̂k1 for k =

v+1, · · · , c. Denote θ∗ = (γ∗T
(C)1, φ

∗T )T , the real value of θ∗ is θ∗0 = (γ∗0T
(C)1, φ

∗0T )T
and let

Q1n(φ, γ) = ∂Q(φ, γ)
∂γ(V)

, Q2n(φ, γ) = ∂Q(φ, γ)
∂γ(C)

, Q3n(φ, γ) = ∂Q(φ, γ)
∂φ

.
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Then, (φ̂
∗T

, 0)T and (γ̂∗T
(V), γ̂

∗T
(C), 0)T must satisfy

1
n
Q1n((φ̂

∗T
, 0)T , (γ̂∗T

(V), γ̂
∗T
(C), 0)T )

= − 2
n

n∑
i=1

W ∗
(V)i(φ̂

∗
)
(
Yi −W ∗T

(V)i(φ̂
∗
)γ̂∗

(V) −G∗T
(C)iγ̂

∗
(C)1

)
+ V1 = 0

(A.17)

1
n
Q2n((φ̂

∗T
, 0)T , (γ̂∗T

(V), γ̂
∗T
(C), 0)T )

= − 2
n

n∑
i=1

W ∗
(C)i

(
Yi −W ∗T

(V)i(φ̂
∗
)γ̂∗

(V) −G∗T
(C)iγ̂

∗
(C)1

)
+ V2 = 0 (A.18)

1
n
Q3n((φ̂

∗T
, 0)T , (γ̂∗T

(V), γ̂
∗T
(C), 0)T )

= − 2
n

n∑
i=1

Ẇ
∗T
(V)i(φ̂

∗
)γ̂∗

(V)J
T
φ̂
∗X∗

(V)i

(
Yi −W ∗T

(V)i(φ̂
∗
)γ̂∗

(V) −G∗T
(C)iγ̂

∗
(C)1

)
+ V3 = 0 (A.19)

where

V1 =
(

0, p′λ∗
11

(‖γ̂∗
1‖)

γ̂∗
1

‖γ̂∗
1‖

, p′λ12
(‖γ̂∗

2‖)
γ̂∗

2
‖γ̂∗

2‖
, · · · , p′λ1v

(‖γ̂v‖)
γ̂v

‖γ̂v‖

)T

∈R
(K+h)(v+1)

V2 =
(
p′λ2(v+1)

(|γ̂∗
(v+1)1|)sgn(|γ̂∗

(v+1)1|),

. . . , p′λ2c
(|γ̂∗

c |)sgn(|γ̂∗
c |), 0, 0, · · · , 0

)T

∈ R
c−v+s−1

V3 =
(
0, 0, · · · , 0, p′λ31

(|φ̂∗
1|)sgn(|φ̂∗

1|),

. . . , p′λ3(s−1)
(|φ̂∗

s−1|)sgn(|φ̂∗
s−1|)

)T

∈ R
c−v+s−1.

Applying Taylor expansion to p′3d(|φ̂∗
d|) (d = 1, · · · , s− 1), we get

p′λ3d
(|φ̂∗

d|) = p′λ3d
(|φ̂0

d|) + {p′′λ3d
(|φ̂0

d|) + op(1)}(φ̂∗0
d − φ∗0

d ). (A.20)

Furthermore, (A5) implies that p′′λ3d
(|φ̂0

d|) = op(1), and note that p′λ3d
(|φ̂0

d|) = 0
as λmax → 0. Then, from Theorem 3.1 and 3.2, we have

p′λ3d
(|φ̂d|)sgn(φ̂d) = op(φ̂∗ − φ∗0)
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Similarly, we have

p′λ1k
(‖γ̂k‖)

γ̂k

‖γ̂k‖
= op(γ̂∗

(V) − γ0
(V)), k = 0, 1, 2, · · · , v

p′λ2k
(|γ̂k|)sgn(γ̂k) = op(γ̂∗

(C)1 − γ0
(C)1), k = v + 1, · · · , c

Hence, by (A.17) and using Taylor expansion, a simple calculation yields

1
n

n∑
i=1

W ∗
(V)i(φ̂

∗
)
(
Yi −W ∗T

(V)i(φ̂
∗
)γ̂∗

(V) −G∗T
(C)iγ̂

∗
(C)1

)
= 1

n

n∑
i=1

[W ∗
(V)i(φ∗0) + W ∗

(V)i(φ̂
∗
) −W ∗

(V)i(φ∗0)]
(
εi + RT (φ∗0)G∗

i

−W ∗T
(V)i(φ∗0)(γ̂∗

(V) − γ∗0
(V)) − [W ∗T

(V)i(φ̂
∗
) −W ∗T

(V)i(φ∗0)]γ̂∗
(V)

−G∗T
(C)i(γ̂

∗
(C)1 − γ0

(C)1)
)

= 1
n

n∑
i=1

W ∗
(V)i(φ∗0)

(
εi + RT (φ∗0)G∗

i −W ∗T
(V)i(φ∗0)(γ̂∗

(V) − γ∗0
(V))

− [W ∗T
(V)i(φ̂

∗
) −W ∗T

(V)i(φ∗0)]γ̂∗
(V)−G∗T

(C)i(γ̂
∗
(C)1−γ̂∗0

(C)1)
)

+ op(φ̂
∗ − φ∗0)

= 1
n

n∑
i=1

W ∗
(V)i(εi+RT (φ∗0)G∗

i )−
1
n

n∑
i=1

W ∗
(V)i(φ∗0)W ∗T

(V)i(φ∗0)(γ̂∗
(V)−γ∗0

(V))

− 1
n

n∑
i=1

W ∗
(V)i[W ∗T

(V)i(φ̂
∗
) −W ∗T

(V)i(φ∗0)]γ̂∗
(V)

− 1
n

n∑
i=1

W ∗
(V)iG

∗T
(C)i(φ∗0)(γ̂∗

(C)1 − γ∗0
(C)1)

+ op(φ̂
∗ − φ∗0)

= 1
n

n∑
i=1

W ∗
(V)i(εi + RT (φ∗0)G∗

i ) −
1
n

n∑
i=1

W ∗
(V)iW

∗T
(V)i(φ∗)(γ̂∗

(V) − γ∗0
(V))

− 1
n

n∑
i=1

W ∗
(V)iV

∗T
i (φ̂

∗ − φ∗0)

− 1
n

n∑
i=1

W ∗
(V)iG

∗T
(C)i(φ∗)(γ̂∗

(C)1 − γ∗0
(C)1) + op(φ̂

∗ − φ∗0)

Then, based on (A8), Theorem 3.1 and supu ‖B(u)‖ = O(1), we have

γ̂∗
(V) −γ∗0

(V) = [Ψ11 + op(1)]−1(Λ10 −Ψ12(γ̂∗
(C)1 −γ∗0

(C)1)−Ψ13(φ̂
∗−φ∗0)) (A.21)

Thus, according to (A.18), we can get

0 = 1
n

n∑
i=1

G∗
(C)i

(
Yi −W ∗T

(V)i(φ̂
∗
)γ̂∗

(V) −G∗T
(C)iγ̂

∗
(C)1

)
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= 1
n

n∑
i=1

G∗
(C)i

(
εi + RT (φ∗)G∗

i −W ∗T
(V)i(φ∗)(γ̂∗

(V) − γ∗0
(V))

− [W ∗T
(V)i(φ̂

∗
) −W ∗T

(V)i(φ∗)]γ̂∗
(V) −G∗T

(C)i(γ̂
∗
(C)1 − γ̂∗0

(C)1)
)

+ op(γ̂∗
(C)1 − γ∗0

(C)1)

= 1
n

n∑
i=1

G∗
(C)i

(
εi + RT (φ∗)G∗

i −W ∗T
(V)i(φ∗)[Ψ11+op(1)]−1

× (Λ10−Ψ12(γ̂∗
(C)1−γ̂∗0

(C)1)

− Ψ13(φ̂
∗ − φ∗)) − [W ∗T

(V)i(φ̂
∗
) −W ∗T

(V)i(φ∗)]γ̂∗
(V) −G∗T

(C)i(γ̂
∗
(C)1 − γ∗0

(C)1)
)

+ op(γ̂∗
(C)1 − γ∗0

(C)1)

= 1
n

n∑
i=1

G∗
(C)i

(
εi + RT (φ∗)G∗

i −W ∗T
(V)i(φ∗)[Ψ11 + op(1)]−1Λ10

)
+ 1

n

n∑
i=1

G∗
(C)iW

∗T
(V)i(φ∗)[Ψ11 + op(1)]Ψ12(γ̂∗

(C)1 − γ∗0
(C)1)

+ 1
n

n∑
i=1

G∗
(C)iW

∗T
(V)i(φ∗)[Ψ11 + op(1)]Ψ13(φ̂

∗ − φ∗0)

− 1
n

n∑
i=1

G∗
(C)i

(
[W ∗T

(V)i(φ̂
∗
) −W ∗T

(V)i(φ∗)]γ̂∗
(V)

)
− 1

n

n∑
i=1

G∗
(C)iG

∗T
(C)i(γ̂

∗
(C)1 − γ̂∗0

(C)1) + op(γ̂∗
(C)1 − γ∗0

(C)1)

Δ= J1 + J2 + J3 − J4 − J5 + op(γ̂∗
(C)1 − γ∗0

(C)1)

Note that

1
n

n∑
i=1

Φ22Φ−1
11 W

∗
(V)i(φ∗)(εi + RT (φ∗)G∗

i −W ∗T
(V)i(φ∗)Ψ−1

11 Λ10) = 0

1
n

n∑
i=1

(G∗
(C)i − Φ22Φ−1

11 W
∗
(V)i(φ∗))W ∗T

(V)i(φ∗) = 0

Hence, we can get

J1 = 1
n

n∑
i=1

(G∗
(C)i − Ψ22Ψ−1

11 W
∗
(V)i(φ∗))εi

+ 1
n

n∑
i=1

(G∗
(C)i − Ψ22Ψ−1

11 W
∗
(V)i(φ∗))R(φ∗)G∗

i

+ 1
n

n∑
i=1

(G∗
(C)i − Ψ22Ψ−1

11 W
∗
(V)i(φ∗))W ∗T

(V)i(φ∗)[Ψ11 + op(1)]−1
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+ op(γ̂∗
(C)1 − γ∗0

(C)1)

= 1
n

n∑
i=1

(G∗
(C)i − Ψ22Ψ−1

11 W
∗
(V)i(φ∗))εi + op(γ̂∗

(C)1 − γ∗0
(C)1)

Similarly, we have

J2 = Φ22Ψ−1
11 Ψ12(γ̂∗

(C)1 − γ∗0
(C)1) + op(γ̂∗

(C)1 − γ∗0
(C)1)

J3 = Ψ22Φ−1
11 Ψ13(φ̂

∗ − φ∗0) + op(φ̂
∗ − φ∗0)

J4 = Ψ23(φ̂
∗ − φ∗0) + op(φ̂

∗ − φ∗0)
J5 = Ψ22(γ̂∗

(C)1 − γ∗0
(C)1) + op(γ̂∗

(C)1 − γ∗0
(C)1)

So we can get

1
n

n∑
i=1

(G∗
(C)i − Ψ22Ψ−1

11 W
∗
(V)i(φ∗))εi

= (Ψ22Ψ−1
11 Ψ12−Ψ22)(γ̂∗

(C)1−γ∗0
(C)1)+(Ψ22Ψ−1

11 Ψ13 − Ψ23)(φ̂
∗ − φ∗0)

+ op(γ̂∗
(C)1 − γ∗0

(C)1) + op(φ̂
∗ − φ∗0)

= (Φ11,Φ12)(θ̂
∗ − θ∗0) + op(θ̂

∗ − θ∗0) (A.22)

where Φ11 = Ψ22Ψ−1
11 Ψ12 − Ψ22,Φ12 = Ψ22Ψ−1

11 Ψ13 − Ψ23.
According to (A.19), we have

0 = 1
n

n∑
i=1

V̂
∗ (

Yi−W ∗T
(V)i(φ̂

∗
)γ̂∗

(V) −G∗T
(C)iγ̂

∗
(C)1

)
+op(γ̂∗

(C)1−γ∗0
(C)1)+op(φ̂

∗ − φ∗0)

= 1
n

n∑
i=1

V̂
∗(

εi + RT (φ∗)G∗
i −W ∗T

(V)i(φ∗)(γ̂∗
(V) − γ∗0

(V))

− [W ∗T
(V)i(φ̂

∗
) −W ∗T

(V)i(φ∗)]γ̂∗
(V)

−G∗T
(C)i(γ̂

∗
(C)1 − γ̂∗0

(C)1)
)

+ op(γ̂∗
(C)1 − γ∗0

(C)1) + op(φ̂
∗ − φ∗0)

= 1
n

n∑
i=1

V̂
∗(

εi+RT (φ∗)G∗
i −W ∗T

(V)i[Ψ11+op(1)]−1(Λ10−Ψ12(γ̂∗
(C)1 − γ̂∗0

(C)1)

− Ψ13(φ̂
∗ − φ∗)) − [W ∗T

(V)i(φ̂
∗
) −W ∗T

(V)i(φ∗)]γ̂∗
(V) −G∗T

i (γ̂∗
(C)1 − γ̂∗0

(C)1)
)

+ op(γ̂∗
(C)1 − γ∗0

(C)1) + op(φ̂
∗ − φ∗)

= 1
n

n∑
i=1

V̂
∗(

εi + RT (φ∗)G∗
i −W ∗T

(V)i[Ψ11 + op(1)]−1Λ10

)
+ 1

n

n∑
i=1

V̂
∗
W ∗T

(V)i[Ψ11 + op(1)]−1Ψ12(γ̂∗
(C)1 − γ̂∗0

(C)1)



Variable selection for SIVCM with applications to synG×E 853

+ 1
n

n∑
i=1

V̂
∗
W ∗T

(V)i[Ψ11 + op(1)]−1Ψ13(φ̂
∗ − φ∗0)

− 1
n

n∑
i=1

V̂
∗
[W ∗T

(V)i(φ̂
∗
) −W ∗T

(V)i(φ∗)]γ̂∗
(V)

− 1
n

n∑
i=1

V̂
∗
G∗T

(C)i(γ̂
∗
(C)1 − γ∗0

(C)1) + op(γ̂∗
(C)1 − γ∗0

(C)1) + op(φ̂
∗ − φ∗0)

Δ= Δ1 + Δ2 + Δ3 − Δ4 − Δ5 + +op(γ̂∗
(C)1 − γ∗0

(C)1) + op(φ̂
∗ − φ∗0)

where V̂
∗

= Ẇ
∗T
(V)i(φ̂

∗
)γ̂∗

(V)J
T
φ̂
∗X∗

(V)i. For Δ1, we have

Δ1 = 1
n

n∑
i=1

V̂
∗
M1 = 1

n

n∑
i=1

V ∗M1 + 1
n

n∑
i=1

[ḟ(φ∗)G∗
i − Ẇ (φ∗)γ∗]JT

φ̂
∗X∗

i M1

+ 1
n

n∑
i=1

Ẇ (φ∗)(γ̂∗ − γ∗)JT
φ̂
∗X∗

i M1 + 1
n

n∑
i=1

[Ẇ (φ∗) − Ẇ (φ̂
∗
)]TJT

φ̂
∗X∗

i M1

=: Δ11 + Δ12 + Δ13 + Δ14

where M1 = εi + RT (φ∗)G∗
i −W ∗T

(V)i(φ∗)Ψ−1
11 Λ10.

Note that

1
n

n∑
i=1

Ψ13Ψ−1
11 W

∗
(V)i(φ∗)(εi + RT (φ∗)G∗

i −W ∗T
(V)i(φ∗)Ψ−1

11 Λ10) = 0

1
n

n∑
i=1

(V ∗
i − ΨT

13Ψ−1
11 W

∗
(V)i(φ∗))W ∗T

(V)i(φ∗) = 0

Then, we can show that

Δ11 = 1
n

n∑
i=1

(V ∗
i − ΨT

13Ψ−1
11 W

∗
(V)i(φ∗))εi

+ 1
n

n∑
i=1

(V ∗
i − ΨT

13Ψ−1
11 W

∗
(V)i(φ∗))R(φ∗)G∗

i

+ 1
n

n∑
i=1

(V ∗
i − ΨT

13Ψ−1
11 W

∗
(V)i(φ∗))W ∗T

(V)i(φ∗)[Ψ11 + op(1)]−1

+ op(γ̂∗
(C) − γ∗0

(C)1)

= 1
n

n∑
i=1

(V ∗
i − ΨT

13Ψ−1
11 W

∗
(V)i(φ∗))εi + op(γ̂∗

(C)1 − γ∗0
(C)1) + op(φ̂

∗ − φ∗0)

Similar to [23], we can get Δ12 = op(γ̂∗
(C)1 − γ∗0

(C)1) + op(φ̂
∗ − φ∗0),

Δ13 = op(γ̂∗
(C)1 − γ∗0

(C)1) + op(φ̂
∗ − φ∗0),Δ14 = op(γ̂∗

(C)1 − γ∗0
(C)1) + op(φ̂

∗ − φ∗0).
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Hence, we have

Δ1 = 1
n

n∑
i=1

(V ∗
i −ΨT

13Ψ−1
11 W

∗
(V)i(φ∗))εi+op(γ̂∗

(C)1−γ∗0
(C)1)+op(φ̂

∗−φ∗0) (A.23)

For Δ2, we have

Δ2 = 1
n

n∑
i=1

V̂
∗
M2 = 1

n

n∑
i=1

V ∗M2 + 1
n

n∑
i=1

[ḟT (φ∗)GT
i − Ẇ (φ∗)γ∗]JT

φ̂
∗X∗

i

+ 1
n

n∑
i=1

Ẇ
∗T
i (γ̂∗ − γ∗)JT

φ̂
∗X∗

i M2 + 1
n

n∑
i=1

[Ẇ ∗
i (φ∗) − Ẇ

∗
i (φ̂

∗
)]JT

φ̂
∗X∗

i M2

Δ= Δ21 + Δ22 + Δ23 + Δ24

where M2 = W ∗T
(V)i[Ψ11 + op(1)]−1Ψ12(γ̂∗

(C)1 − γ̂∗0
(C)1). Hence, we have

Δ21 = ΨT
13Ψ−1

11 Ψ12(γ̂∗
(C)1 − γ̂∗0

(C)1) + op(γ̂∗
(C)1 − γ̂∗0

(C)1)

Similar arguments to that of J12, we have

Δ22 = op(γ̂∗
(C)1 − γ̂∗0

(C)1),Δ23 = op(γ̂∗
(C)1 − γ̂∗0

(C)1), and Δ24 = op(γ̂∗
(C)1 − γ̂∗0

(C)1).

Therefore, we have

Δ2 = ΨT
13Ψ−1

11 Ψ12(γ̂∗
(C)1 − γ̂∗0

(C)1) + op(γ̂∗
(C)1 − γ̂∗0

(C)1). (A.24)

Similarly, we have

Δ3 = ΨT
13Ψ−1

11 Ψ13(φ̂
∗ − φ∗0) + op(φ̂

∗ − φ∗0). (A.25)

Now we consider Δ4, applying Taylor expansion, we have

Δ4 = 1
n

n∑
i=1

V̂
∗
[W ∗T

(V)i(φ̂
∗
) −W ∗T

(V)i(φ∗0)]γ̂∗
(V)

= 1
n

n∑
i=1

V̂
∗
[Ẇ ∗T

i (φ∗0)γ̂(V)iJ
T
φ∗X∗T

i (φ̂
∗ − φ∗0) + op(φ̂

∗ − φ∗0)]

= 1
n

n∑
i=1

V̂
∗
[V ∗T (φ̂

∗ − φ∗0)) + op(φ̂
∗ − φ∗0)]

= 1
n

n∑
i=1

V ∗V ∗T (φ̂
∗ − φ∗0) + 1

n

n∑
i=1

V ∗(φ̂
∗ − φ∗0)Ẇ ∗T

i (φ∗)(γ̂∗
(V) − γ∗

(V))JT
φ̂
∗X∗

i

+ 1
n

n∑
i=1

V ∗T (φ̂
∗ − φ∗0)[ḟ(φ∗)G∗

i − Ẇ
∗T
i (φ∗)γ∗

(V)]JT
φ̂
∗X∗

i

= 1
n

n∑
i=1

V ∗V ∗T (φ̂
∗ − φ∗0) + op(φ̂

∗ − φ∗0)
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= Ψ21(φ̂
∗ − φ∗0) + op(φ̂

∗ − φ∗0).

Similarly, we have

Δ5 = ΨT
23(γ̂

∗
(C)1 − γ∗

(C)1) + op(γ̂∗
(C)1 − γ∗0

(C)1) (A.26)

So we can get

1
n

n∑
i=1

(V ∗
i − ΨT

13Ψ−1
11 W

∗
(V)i(φ̂

∗
))εi (A.27)

= ΨT
23(γ̂

∗
(C)1 − γ∗0

(C)1) + ΨT
21(φ̂

∗ − φ∗0) − ΨT
13Ψ−1

11 Ψ12(γ̂∗
(C)1 − γ∗0

(C)1)

− ΨT
13Ψ−1

11 Ψ13(φ̂
∗ − φ∗0) + op(γ̂∗

(C)1 − γ∗0
(C)1) + op(φ̂

∗ − φ∗0)

= (ΨT
21 − ΨT

13Ψ11Ψ13)(φ̂
∗ − φ∗0) + (ΨT

23 − ΨT
13Ψ11Ψ12)(γ̂∗

(C)1 − γ∗0
(C)1)

+ op(γ̂∗
(C)1 − γ∗0

(C)1) + op(φ̂
∗ − φ∗0)

= (Φ21,Φ22)(θ̂
∗ − θ∗0) + op(θ̂

∗ − θ∗0). (A.28)

where Φ21 = ΨT
23 − ΨT

13Ψ11Ψ12 and Φ22 = ΨT
21 − ΨT

13Ψ11Ψ13.
According to (A.22) and (A.27), we have

√
n(θ̂

∗ − θ∗0) =
(

Φ11 Φ12
Φ21 Φ22

)−1 1√
n

n∑
i=1

(
G∗

(C)i − Ψ22Ψ−1
11 W

∗
(V)i(φ∗)

V∗
i − ΨT

13Ψ−1
11 W

∗
(V)i(φ∗)

)
εi

+ op(1). (A.29)

By the central limit theorem and Slutsky’s theorem, we can see that θ̂
∗

is con-
sistent and has asymptotic normality.

It follows from (2.8) that

β̂
∗ − β∗

0 = Jφ∗0(φ̂
∗ − φ∗0) + Op(n−1).

Hence, we can get

√
n(ϑ̂

∗ − ϑ∗
0) =

(
1 0
0 Jφ∗0

)√
n(θ̂ − θ∗0).

Therefore, we can get the asymptotic covariance matrix Σ as

Σ =
(

Σ−1
1 0
0 Jφ∗0Σ−1

2 JT
φ∗0

)
Then, the proof of Theorem 3.3 is completed.
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