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Abstract

In this paper, we establish the Hausdorff dimensions of inverse images and collision
time sets for a large class of symmetric Markov processes on metric measure spaces.
We apply the approach in the works by Hawkes and Jain–Pruitt, and make full use of
heat kernel estimates. In particular, the results efficiently apply to symmetric diffusion
processes, symmetric stable-like processes, and symmetric diffusion processes with
jumps in d-sets.
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1 Introduction

Sample path properties of Markov processes have been extensively studied in the
literature, in particular, for Lévy processes. The readers are referred to the survey paper
[38] and the references therein for more details. Nowadays, there are a few develop-
ments in the extensions of part of results from Lévy processes to Lévy-type processes.
For example, based on two-sided heat kernel estimates for a class of symmetric jump
processes on metric measure spaces, the laws of the iterated logarithm (LILs) for sample
paths, local times and ranges are established in [25]. We also obtained in [36] the integral
tests on the escape rates, which are quantitative expressions of recurrence, transience
and conservativeness. By applying the behavior of the symbol of the corresponding
generator, Schilling established in [32] the results on the Hausdorff dimensions of the
image sets for Lévy-type processes, see also the monograph [7, Chapter 5.2]. Recently, a
general method is provided in [37] to establish uniform Hausdorff and packing dimension
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Inverse images and collision time sets for symmetric Markov processes

results for the images of more general Markov processes, including stable jump diffusion
processes and non-symmetric stable-type processes.

The main purpose of this paper is devoted to the Hausdorff dimensions of level sets,
inverse images and collision time sets for a large class of symmetric Markov processes
on metric measure spaces. Here, if we let X := (Xt)t≥0 be a symmetric Markov process
on the metric measure space (M,d, µ), then the inverse image is referred to be

{t > 0 : Xt ∈ D} for any Borel set D ⊂M.

In particular, when D = {x} with some x ∈M , this is reduced into the level set; on the
other hand, the collision time set is defined by

{t > 0 : X1
t = X2

t },

where Xi := (Xi
t)t≥0, i = 1, 2, are two independent copies of X. Concrete examples of

the Markov processes included in the framework of the present paper are symmetric
diffusion processes, symmetric stable-like processes, symmetric diffusion processes with
jumps in d-sets, and so on. Note that, as seen from the survey paper [38, Sections 6 and
7], dimension results and their proofs for level sets, inverse images and collision time
sets are more complex than those for images.

This work is inspired by the Hausdorff dimension results of the inverse images
and collision time sets for stable processes on Euclidean space. Jain and Pruitt [16]
established the Hausdorff dimensions on the collision sets of two independent stable
processes X1 := (X1

t )t≥0 and X2 := (X2
t )t≥0 on R possibly with different indices. Their

idea is to regard the collision of X1 and X2 as their direct product process X1 ⊗ X2

hitting the diagonal set in R2, and to compare the polarity of X1 ⊗X2 with that of some
stable process in R2. Jain and Pruitt [16, Introduction] also pointed out that, if X1 and
X2 have the common index α ∈ (1, 2), then the collision time set of X1 and X2 has
the same Hausdorff dimension as that of the level set of the one-dimensional α-stable
process. This property follows from the fact that the difference process (X1

t −X2
t )t≥0

is also a α-stable process. However, if the indices of X1 and X2 are different, then it is
unclear how to establish the Hausdorff dimension of the collision time set.

Motivated by [16], Hawkes [21, 22] established the Hausdorff dimension of the
inverse image for one-dimensional α-stable processes with α ∈ (1, 2). The idea of these
works is to parametrize the stable indices by using the stable subordinators, and to
utilize the regularity and polarity properties of the stable processes. Liu [27] applied
this idea to the inverse images of compact sets for Lévy processes on Euclidean space.
Benjamini, Chen and Rohde [4, Remark 4.4] utilized this idea to the boundary occupation
time of symmetric stable-like processes on open d-sets in the d-dimensional Euclidean
space. Recently, Knopova and Schilling [26] further applied this idea to the inverse
image of Feller processes on Euclidean space, with application to the collision time sets
of the two independent copies.

Our approach is based on heat kernel estimates for the associated Markov processes,
together with the development of the ideas of [16, 21, 22, 26] as mentioned before. More
precisely, we will make full use of the subordinate processes and the associated potential
theory. However, since the present paper is concerned with symmetric Markov processes
on metric measure spaces, there are a few difficulties and differences compared with
the papers cited above. For instance,

(i) Concerning the inverse image, we follow the idea of Hawkes [21, 22] to make use
of the stable subordinator. However, since the subordinate process of a Markov
process is not a stable process in general, we can not utilize the polarity property
of stable processes as [21, 22].
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Inverse images and collision time sets for symmetric Markov processes

(ii) Inspired by [16] and [21, 22], we determine the Hausdorff dimension of the collision
time set by studying the regularity and polarity of the stable subordinate process
of the direct product process. However, we need further consideration on the
regularity property; it should be noted that, even for the direct product process
of the two independent stable processes on R, its stable subordinate process is
not a stable process on R2 in general. Moreover, since the state space is a metric
measure space, the approach with aid of the difference process is not applicable to
the collision time set.

Due to these difficulties and differences above, we need some new ideas and some
efforts in the present paper. To state the contribution of our paper, let us restrict on the
following special setting.

Theorem 1.1. Let (M,d, µ) be a connected d-set such that any closed ball in M is
compact. For a subset F of M , let dimH(F ) denote its Hausdorff dimension. Let X :=

(Xt)t≥0 be the µ-symmetric diffusion process with walk dimension α or the symmetric
α-stable-like process (that is, the associated scaling function of each process is φ(r) = rα)

on M . Then the following statements hold.

(1) Suppose that d ≤ α. Then, for any a ∈M ,

dimH{t > 0 : Xt = a} = 1− d

α
, Px-a.s. for any x ∈M .

More generally, if F ⊂M is a Borel set such that dimH(F ) > 0, then

dimH{t > 0 : Xt ∈ F} = 1− d− dimH(F )

α
, Px-a.s. for any x ∈M .

(2) Suppose that d < α. Let F ⊂ M be an s-set with some s > 0 (in particular,
dimH(F ) = s > 0). If dimH(F ) > max{2d− α, 0}, then

dimH{t > 0 : X1
t = X2

t ∈ F} = 1− 2d− dimH(F )

α
, Px-a.s. for any x ∈M ×M ,

where Xi := (Xi
t)t≥0, i = 1, 2, are two independent copies of X. In particular,

dimH{t > 0 : X1
t = X2

t } = 1− d

α
, Px-a.s. for any x ∈M ×M .

As mentioned above, the proof of Theorem 1.1 is partly based on heat kernel estimates
for symmetric Markov processes, which are now developed greatly in recent years (see,
e.g., [1, 10, 11, 12, 13, 14, 20]). Indeed, according to general results of our paper, we
also can get by Remark 2.7 below and [12, Remark 1.12(iii) and Example 7.2] that —

Let (M,d, µ) be a connected d-set such that any closed ball in M is compact. Let
X := (Xt)t≥0 be the µ-symmetric diffusion process with jumps on M , where the scaling
functions of diffusion part and jump part are given respectively by φc(r) = rα and
φj(r) = rβ for some 0 < β < α. Then, the conclusion (1) of Theorem 1.1 holds when
d ≤ β, and the conclusion (2) of Theorem 1.1 still holds when d < β.

We make some comments on how to overcome the difficulties mentioned in (i) and (ii).
For the inverse images, we derive the polarity of the subordinate processes by employing
the Frostman lemma on the complete separable metric space in Subsection A.1. For the
collision time sets, we first prove the zero-one law for the tail events (Proposition B.3),
and then establish the Wiener tests for the recurrence and regularity of X1 ⊗ X2

(Propositions B.6 and B.9). Under our general setting, we can see from Examples 3.12

EJP 29 (2024), paper 6.
Page 3/56

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP1069
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Inverse images and collision time sets for symmetric Markov processes

and 4.11 that, the local properties of the volume growth and walk dimensions determine
the Hausdorff dimensions of the inverse images and collision time sets. With regard
to the collision time sets, our general results in Subsection 4.2 allow two independent
symmetric Markov processes to be different. We also note that, as far as the authors
know, the Wiener tests are unavailable for general symmetric Markov processes, even
though those are well known for Brownian motion or other Lévy processes on Euclidean
spaces (see, e.g., [31]).

We mention that Shieh [33, 34] studied the possibility of collisions of two independent
Hunt processes in terms of the heat kernels, with applications to Lévy processes on
Euclidean space and Brownian motions on fractals. Our results in the present paper
provide quantitative information on the collision times, and are applicable to symmetric
jump processes of variable order on d-sets, fractals and ultra-metric spaces. We also
characterize the Hausdorff dimension of the set of collision times on a given set by its
Hausdorff dimension.

The rest of the paper is arranged as follows. In the next section, we present prelimi-
naries and assumptions used in the paper. In Section 3, we obtain Hausdorff dimensions
of level sets and inverse images, where we will first consider heat kernel and resolvent
for the stable-subordinate process. In Section 4, we study Hausdorff dimensions of the
collision time sets. For this, we establish estimates for the resolvent of stable-subordinate
direct-product process. In the appendix, we collect some statements used in the proofs
of our results, which include the Wiener tests for the recurrence and regularity of
symmetric Markov processes on metric measure spaces.

We close this introduction with some words on notations. For nonnegative functions
f and g on a set T , we write f(t) � g(t) (resp. f(t) � g(t)) for any t ∈ T if there exists
a constant c > 0 such that f(t) ≤ cg(t) (resp. f(t) ≥ cg(t)) for any t ∈ T . We write
f(t) ' g(t) for any t ∈ T if f(t) � g(t) and f(t) � g(t) for any t ∈ T .

2 Preliminaries and assumptions

2.1 Dirichlet form, transience, recurrence and capacity

We first recall from [18] the notions of Dirichlet forms and global properties of the
associated Markovian semigroups. Let (M,d) be a locally compact separable metric
space, and µ a positive Radon measure on M with full support. For u, v ∈ L2(M ;µ),
let (u, v) =

∫
M
uv dµ be the L2-inner product. Let {Tt}t>0 be a strongly continuous

Markovian semigroup on L2(M ;µ), and (E ,F) the associated Dirichlet form. More
precisely, (E ,F) is a closed Markovian symmetric form on L2(M ;µ) defined by

E(u, u) = lim
t→0

1

t
(u− Ttu, u), u ∈ F :=

{
u ∈ L2(M ;µ) : lim

t→0

1

t
(u− Ttu, u) <∞

}
(2.1)

(see [18, Lemma 1.3.4]). For α > 0, let

Eα(u, v) = E(u, v) + α(u, v), u, v ∈ F .

For t > 0 and f ∈ L2(M ;µ), we can define the integral

Stf =

∫ t

0

Tsf ds

as the L2-strong convergence limit of the Riemann sum. Then, by [18, p. 37], Tt and
St are bounded symmetric operators on L2(M ;µ). They are further extended uniquely
from L1(M ;µ) ∩ L2(M ;µ) to L1(M ;µ). We can also extend Tt from L2(M ;µ) ∩ L∞(M ;µ)

to L∞(M ;µ) (see [18, p. 56]). We will use the same notation Tt for the corresponding
operators on L1(M ;µ) and on L∞(M ;µ).
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Let L1
+(M ;µ) = {u ∈ L1(M ;µ) : u ≥ 0, µ-a.e. on M} and Gf = limN→∞ SNf for

f ∈ L1
+(M ;µ).

Definition 2.1. Let {Tt}t>0 be a strongly continuous Markovian semigroup on L2(M ;µ),
and (E ,F) the associated Dirichlet form.

(i) (E ,F) is conservative if Tt1 = 1, µ-a.e. for any t > 0.

(ii) (E ,F) is transient if Gf <∞, µ-a.e. for any f ∈ L1
+(M ;µ), and recurrent if Gf = 0

or∞, µ-a.e. for any f ∈ L1
+(M ;µ).

(iii) A µ-measurable set A ⊂M is invariant, if for any f ∈ L2(M ;µ) and t > 0, Tt(1Af) =

1ATtf , µ-a.e. If any invariant set A ⊂ M satisfies µ(A) = 0 or µ(M \ A) = 0, then
(E ,F) is called irreducible.

We know by [18, Lemma 1.6.4 (iii)] that any irreducible Dirichlet form is either
transient or recurrent.

Let Fe denote the totality of µ-measurable functions u on M such that |u| <∞ µ-a.e.
on M and there exists a sequence {un} ⊂ F such that limn→∞ un = u µ-a.e. on M

and limm,n→∞ E(un − um, un − um) = 0. The sequence {un} is called an approximat-
ing sequence of u. For any u ∈ Fe and its approximating sequence {un}, the limit
E(u, u) = limn→∞ E(un, un) exists, and does not depend on the choice of the approximat-
ing sequence for u ([18, Theorem 1.5.2]). We call (Fe, E) the extended Dirichlet space of
(E ,F) ([18, p. 41]). We also know by [18, Lemma 1.5.5] that, if (E ,F) is transient, then
Fe is complete with respect to

√
E .

We next recall from [18] the notion of the capacity relative to (E ,F). Let C0(M)

denote the totality of continuous functions on M with compact support. In what follows,
we suppose that (E ,F) is regular; that is, F ∩ C0(M) is dense both in F with respect
to
√
E1, and in C0(M) with respect to the uniform norm, where E1(f, f) = E(f, f) + ‖f‖22.

Let O be the totality of open subsets of M . For O ∈ O, set

LO = {u ∈ F : u ≥ 1, µ-a.e. on O} . (2.2)

Define the (1-)capacity of O ∈ O by

Cap(O) =

{
infu∈LO E1(u, u), LO 6= ∅,
∞, LO = ∅.

(2.3)

We then define the (1-)capacity of any subset A of M by

Cap(A) = inf
O∈O,A⊂O

Cap(O).

We say that a statement S(x) depending on x ∈ M holds quasi everywhere (q.e.
in short) if there exists a set N ⊂ M with Cap(N ) = 0 such that S(x) holds for any
x ∈ M \ N . For f ∈ F , let f̃ be its quasi-continuous µ-version; that is, f = f̃ , µ-a.e. on
M , and for any ε > 0, there exists a closed subset F of M such that Cap(M \ F ) < ε and
f̃ is finite continuous on F ([18, Section 2.1]).

Let ν be a positive Radon measure on M . According to [18, p. 77, (2.2.1)], we say
that ν is of finite energy integral, if there exists C > 0 such that∫

M

|v|dν ≤ C
√
E1(v, v), v ∈ F ∩ C0(M).

Let S0 denote the totality of measures of finite energy integral on M . Then, there exists
a unique function U1ν ∈ F such that

E1(U1ν, v) =

∫
M

ṽ dν, v ∈ F .
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The function U1ν is called the 1-potential of ν. We note that any measure in S0 charges
no set of zero capacity ([18, Theorem 2.2.3]). Moreover, if K is a compact subset of
M , then there exist a unique element eK ∈ F and a unique measure νK ∈ S0 such that
eK = U1νK and Cap(K) = E1(eK , eK) = νK(K) (see [18, (2.2.13)]). The element eK and
the measure νK are called the 1-equilibrium potential and the 1-equilibrium measure of
K, respectively.

Let
S00 = {ν ∈ S0 : ν(M) <∞, ‖U1ν‖∞ ≤ 1} .

We then see by [18, p. 82, Exercise 2.2.2] that, if K is a compact subset of M , then

Cap(K) = sup
{
ν(K) : ν ∈ S00, supp[ν] ⊂ K, Ũ1ν ≤ 1,q.e.

}
. (2.4)

If (E ,F) is transient, then we can define the 0-order capacity Cap(0)(A) of A ⊂M by
replacing F and E1 with Fe and E , respectively, in (2.2) and (2.3) ([18, p. 74]). As we
see from [18, p. 85], we can also introduce the notions of a class of measures of finite
(0-order) finite energy integral (S(0)

0 in notation), and of (0-order) potential of the measure

ν ∈ S(0)
0 (Uν in notation). In particular, if K is a compact subset of M , then we have

the corresponding 0-order equilibrium potential e(0)
K ∈ Fe and the 0-order equilibrium

measure νK ∈ S(0)
0 such that eK = UνK and Cap(0)(K) = E(eK , eK) = νK(K).

2.2 Hunt process and measurability

In this subsection, we first recall from [6] classes of measurable subsets of M associ-
ated with Hunt processes. As in Subsection 2.1, (M,d) is a locally compact separable met-
ric space, and µ is a positive Radon measure on M with full support. Let M∆ := M ∪{∆}
be the one point compactification of M . Let X = (Ω,F , {Xt}t≥0, {Px}x∈M , {θt}t≥0, ζ) be
a Hunt process on M . Here θt : Ω → Ω is the shift operator of the paths defined by
Xs ◦ θt = Xs+t for every s > 0, and ζ = inf{t > 0 : Xt = ∆} is the lifetime.

Let B(M) be the totality of Borel measurable subsets of M . A subset A of M is called
nearly Borel measurable (relative to the process X), if for any probability measure ν on
M , there exist Borel subsets B1 and B2 of M such that B1 ⊂ A ⊂ B2 and

Pν(Xt ∈ B2 \B1 for some t ≥ 0) = 0

([6, Definition 10.2 in Chapter I]). Let Bn(M) denote the totality of nearly Borel mea-
surable subsets of M . For A ∈ Bn(M), let σA be the hitting time of X to A; that is,
σA = inf{t > 0 : Xt ∈ A}. We say that a point x ∈ M is regular for A, if Px(σA = 0) = 1.
Let Ar denote the totality of regular points for A, i.e.,

Ar = {x ∈M : Px(σA = 0) = 1} .

Then, Ar is nearly Borel measurable ([6, Corollary 2.13 in Chapter II]). If A is a subset
of M , then Ar is defined as the totality of points regular for all nearly Borel subsets
containing A. We call Ar the regular set for A (relative to the process X).

If ν is a Borel measure on M , then Bν(M) denotes the completion of B(M) relative
to ν. Define the σ-field B∗(M) =

⋂
ν Bν(M), where the intersection is taken over all Borel

probability measures on M . We call B∗(M) the σ-algebra of universally measurable
subsets over (M,B(M)). Then, by definition, B(M) ⊂ Bn(M) ⊂ B∗(M) ([6, p. 60]).

Recall that µ is a positive Radon measure onM with full support. Since the state space
M is locally compact and separable, there exists a strictly positive Borel measurable
function g on M such that µg = g · µ is a Borel probability measure on M and thus
Bµg (M) = Bµ(M). Using this relation, we can uniquely extend the measure µ to B∗(M).
We use the same notation µ for such an extension.
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We next recall from [18] the relation between symmetric Hunt processes and Dirichlet
forms. Let {pt}t>0 be the transition function of a Hunt process X on M defined by∫

M

pt(x, dy)f(y) = Ex [f(Xt)] , t > 0, x ∈M

for any nonnegative Borel measurable function f on M , with the convention that f(∆) =

0. The left hand side above is written as ptf(x). We now assume that the process X
is µ-symmetric, i.e., (ptu, v) = (u, ptv) for any t > 0 and nonnegative Borel measurable
functions u, v on M . According to [18, p. 30 and p.160], we can extend {pt}t>0 uniquely
to a strongly continuous Markovian semigroup {Tt}t>0 on L2(M ;µ). Then, by (2.1), we
can associate a Dirichlet form (E ,F) on L2(M ;µ).

Conversely, if (E ,F) is a regular Dirichlet form on L2(M ;µ) associated with a strongly
continuous Markovian semigroup {Tt}t>0 on L2(M ;µ), then there exists a µ-symmetric
Hunt process X on M such that

Ttf = ptf, µ-a.e. for t > 0 and f ∈ L2(M ;µ) ∩ Bb(M)

([18, Theorem 7.2.1]), where Bb(M) denotes the totality of bounded Borel measurable
functions on M .

Let X be a µ-symmetric Hunt process on M generated by a regular Dirichlet form
(E ,F). A set N ⊂M is called exceptional, if there exists a nearly Borel set Ñ ⊃ N such
that Px(σÑ <∞) = 0 for µ-a.e. x ∈M . A set N ⊂M is called properly exceptional, if it
is nearly Borel measurable such that µ(N ) = 0 and M \ N is X-invariant; that is,

Px(Xt ∈ (M \ N )∆ or Xt− ∈ (M \ N )∆ for any t > 0) = 1, x ∈M \ N .

Here (M \ N )∆ = (M \ N ) ∪ {∆} and Xt− = lims↑tXs. By definition, any properly
exceptional set is exceptional. In particular, if (E ,F) is regular, then any compact subset
of M is of finite capacity so that a set N ⊂ M is exceptional if and only if Cap(N ) = 0

([18, Theorem 4.2.1]).

2.3 Heat kernel

Let X = (Ω,F , {Xt}t≥0, {Px}x∈M , {θt}t>0, ζ) be a µ-symmetric Hunt process on M

associated with the regular Dirichlet form (E ,F) on L2(M ;µ). In what follows, we always
impose the following Assumption (H) on the process X.

Assumption 2.2 (Assumption (H)).

(i) (E ,F) is conservative and irreducible.

(ii) There exist a properly exceptional Borel set N ⊂ M and a Borel measurable
function p(t, x, y) : (0,∞) ×M ×M → [0,∞) such that the next three conditions
hold.

• For any t > 0, x ∈M \ N and A ∈ B(M),

Px(Xt ∈ A) =

∫
A

p(t, x, y)µ(dy). (2.5)

• For any t > 0 and x, y ∈M \ N , p(t, x, y) = p(t, y, x).
• For any s, t > 0 and x, y ∈M \ N ,

p(t+ s, x, y) =

∫
M

p(t, x, z)p(s, z, y)µ(dz). (2.6)
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The function p(t, x, y) in Assumption (H) is called the heat kernel in the literature.
While (2.5) determines p(t, x, y) for µ-a.e. y ∈ M , we can regularize p(t, x, y) under
the so-called ultracontractivity condition so that the condition (ii) in Assumption (H) is
fulfilled (see, e.g., [2, Theorem 3.1] and [20, Subsection 2.2] for details).

Under Assumption (H), we write M0 = M \ N .

Remark 2.3. Let Assumption (H) hold.

(i) (2.5) is true also for any A ∈ B∗(M).

(ii) We can characterize the global properties of (E ,F) in terms of the heat kernel as
follows (see [35, Remark 2.2] and [36, Remark 2.2]):

• (E ,F) is transient if∫ ∞
1

(
sup
y∈M0

p(t, x, y)

)
dt <∞, x ∈M0, (2.7)

and recurrent if ∫ ∞
1

p(t, x, y) dt =∞, x, y ∈M0.

• (E ,F) is irreducible if p(t, x, y) > 0 for any t > 0 and x, y ∈M0.

We note that [35, Remark 2.2] refers to the condition (2.7) with x ∈ M0 and
supy∈M0

p(t, x, y) replaced by x ∈ M and supy∈M p(t, x, y), respectively; however,
the argument there shows that the condition (2.7) suffices for transience.

(iii) By (2.6) and the Cauchy-Schwarz inequality, we have p(t, x, y) ≤
√
p(t, x, x)p(t, y, y)

for any t > 0 and x, y ∈M0. Therefore, (2.7) holds if∫ ∞
1

(
sup
y∈M0

p(t, y, y)

)
dt <∞. (2.8)

Below, for λ ≥ 0 and A ∈ B∗(M), define

Uλ(x,A) := Uλ1A(x) =

∫ ∞
0

e−λtPx(Xt ∈ A) dt, x ∈M.

Similarly, for any nonnegative universally measurable function f on M , define

Uλf(x) = Ex

[∫ ∞
0

e−λtf(Xt) dt

]
, x ∈M.

Then, under Assumption (H), for any x ∈M0 and A ∈ B∗(M),

Uλ(x,A) =

∫
A

uλ(x, y)µ(dy),

where

uλ(x, y) =

∫ ∞
0

e−λtp(t, x, y) dt, x, y ∈M0.

To establish our results, we need to introduce various kinds of the heat kernel bounds.
For x ∈ M and r > 0, let B(x, r) = {y ∈ M : d(x, y) < r} and V (x, r) = µ(B(x, r)). We
always assume that there exist positive constants c1, c2, d1, d2 with d1 ≤ d2 so that

c1

(
R

r

)d1
≤ V (x,R)

V (x, r)
≤ c2

(
R

r

)d2
, x ∈M, 0 < r < R <∞. (2.9)
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Definition 2.4.

(1) The heat kernel p(t, x, y) satisfies the two-sided on-diagonal estimates (ODHK), if

p(t, x, x) ' 1

V (x, φ−1(t))
, t > 0, x ∈M0. (2.10)

(2) The heat kernel p(t, x, y) satisfies the near-diagonal lower bounded estimates
(NDLHK), if there exists a constant c0 > 0 so that

p(t, x, y) � 1

V (x, φ−1(t))
, t > 0, x, y ∈M0 with d(x, y) ≤ c0φ−1(t). (2.11)

(3) The heat kernel p(t, x, y) satisfies the (weak) upper bounded estimates (WUHK), if

p(t, x, y) � 1

V (x, φ−1(t))
∧ t

V (x, d(x, y))φ(d(x, y))
, t > 0, x, y ∈M0. (2.12)

Here, φ : [0,∞)→ [0,∞) is a strictly increasing function satisfying that φ(0) = 0, φ(1) = 1,
and that there exist positive constants c3, c4, α1, α2 with α1 ≤ α2 so that

c3

(
R

r

)α1

≤ φ(R)

φ(r)
≤ c4

(
R

r

)α2

, 0 < r < R <∞. (2.13)

Note that (2.13) yields

1

c
1/α2

4

(
R

r

)1/α2

≤ φ−1(R)

φ−1(r)
≤ 1

c
1/α1

3

(
R

r

)1/α1

, 0 < r < R <∞. (2.14)

Combining this with (2.9), we have

c1

c
d1/α2

4

(
T

t

)d1/α2

≤ V (x, φ−1(T ))

V (x, φ−1(t))
≤ c2

c
d2/α1

3

(
T

t

)d2/α1

, x ∈M, 0 < t < T <∞. (2.15)

We also introduce the Hölder regularity condition for the heat kernel p(t, x, y).

Definition 2.5. The heat kernel p(t, x, y) satisfies the Hölder regularity condition (HR),
if there exist constants θ ∈ (0, 1] and C > 0 such that for any t > 0 and x, y, z ∈M ,

|p(t, x, y)− p(t, x, z)| ≤ C

V (x, φ−1(t))

(
d(y, z)

φ−1(t)

)θ
.

Remark 2.6.

(i) According to [13, Proposition 3.1(2)], if the regular Dirichlet form (E ,F) admits no
killing term and the associated heat kernel p(t, x, y) satisfies (NDLHK), then (E ,F)

is conservative.

(ii) Suppose that the heat kernel p(t, x, y) satisfies (WUHK) and (HR). If u is a bounded
continuous function on M , then so is ptu for any t > 0. In particular, there exists
a version of the process X such that all the conditions in Assumption (H) (ii) are
valid by replacing M \ N with M . If (WUHK) and (HR) are imposed on the heat
kernel, then we take the process X as the version above.

(iii) We see by the proof of [13, Proposition 5.4] that, if the heat kernel p(t, x, y) satisfies
(WUHK) and (HR), then it satisfies (NDLHK) as well.
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Remark 2.7. The form in the right hand side of (2.12) for the definition (WUHK) comes
from two-sided heat kernel estimates for the mixture of symmetric stable-like (jump)
processes in metric measure spaces; see [11, 13]. We should emphasize that this kind of
heat kernel upper bounds are satisfied for a large class of symmetric Markov processes,
including symmetric diffusion processes generated by strongly local Dirichlet forms (see
[1, 20]), symmetric diffusion processes with jumps in metric measure spaces (see [12]),
and symmetric jump processes that allowed to have light tails of polynomial decay at
infinity or to have (sub- or super-) exponential decay jumps (see [14, 10]).

To verify the assertion above, below we take the µ-symmetric diffusion process X
on an Ahlfors d-regular set (M,d, µ) with walk dimension α ≥ 2 for example. Similar
arguments work for all the processes mentioned above. In this example, V (x, r) ' rd,
and the heat kernel p(t, x, y) of the process X enjoys the following two-sided estimates:

p(t, x, y) � t−d/α exp

(
−
(
d(x, y)α

t

)1/(α−1)
)
.

Here, we write f(s, x) � g(s, x), if there exist constants ck > 0, k = 1, 2, 3, 4, such
that c1g(c2s, x) ≤ f(s, x) ≤ c3g(c4s, x) for the specified range of (s, x). Then, by some
calculations, one can see that there are constants c5 > 0 such that for all x, y ∈M and
t > 0,

exp

(
−
(
d(x, y)α

t

)1/(α−1)
)
≤ c5

(
1 +

d(x, y)α

t

)−(1+d/α)

.

This implies that for all x, y ∈M and t > 0,

p(t, x, y) ≤ c6
(
t−d/α ∧ t

d(x, y)d+α

)
.

In particular, (WUHK) holds with φ(r) = rα.
Furthermore, according to results in all the cited papers, we know that, for all the

processes mentioned above, (ODHK), (NDLHK), (WUHK) and (HR) are satisfied.

3 Hausdorff dimensions of level sets and inverse images

3.1 Heat kernel and resolvent for stable-subordinate processes

For γ ∈ (0, 1), let Sγ := ({τt}t≥0, P
γ) be the γ-stable subordinator which is indepen-

dent of the process X. Let πt(s) denote the density function of τt. According to [9,
Theorem 4.4] (or the proof of [8, Theorem 3.1]), there exist positive constants c1 and c2
such that

πt(s) ≤
c1t

s1+γ
e−t/s

γ

, s, t > 0 (3.1)

and

πt(s) ≥
c2t

s1+γ
, s, t > 0 with s ≥ t1/γ . (3.2)

Let Xγ
t = Xτt for any t ≥ 0, and let Xγ := (Xγ

t )t≥0 be the γ-stable subordinate
process of X. Then, the process Xγ is a µ-symmetric Hunt process. Let (Eγ ,Fγ) be
a Dirichlet form on L2(M ;µ) associated with Xγ . Then, by [30, Theorem 2.1 (ii) and
Theorem 3.1 (i)-(ii)], (Eγ ,Fγ) is also regular, irreducible and conservative. We note
that M0 = M \ N is Xγ-invariant by definition, and N is of zero capacity relative to
(Eγ ,Fγ) by [30, Theorem 2.2 (i)]; hence N is also properly exceptional with respect
to Xγ . Moreover, the subordinate process Xγ possesses the density function q(t, x, y)

with respect to the measure µ so that

q(t, x, y) =

∫ ∞
0

p(s, x, y)πt(s) ds, t > 0, x, y ∈M0.

EJP 29 (2024), paper 6.
Page 10/56

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP1069
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Inverse images and collision time sets for symmetric Markov processes

Therefore, the process Xγ satisfies Assumption (H) as well.
For any λ ≥ 0, define

uγλ(x, y) =

∫ ∞
0

e−λtq(t, x, y) dt, x, y ∈M0.

Set φγ(t) = (φ(t))γ , so that (φγ)−1(t) = φ−1(t1/γ).

Lemma 3.1. Suppose that the process X satisfies Assumption (H). Let γ ∈ (0, 1]. Then
we have the following statements.

(1) Under (ODHK),

q(t, x, x) ' 1

V (x, (φγ)−1(t))
, t > 0, x ∈M0.

(2) Under (NDLHK),

q(t, x, y) � 1

V (x, (φγ)−1(t))
∧ t

V (x, d(x, y))φγ(d(x, y))
, t > 0, x, y ∈M0.

Moreover,

uγ1(x, y) �
∫ ∞
φγ(d(x,y))

e−t

V (x, (φγ)−1(t))
dt, x, y ∈M0 with d(x, y) ≤ 1 (3.3)

and

uγ1(x, y) � 1

V (x, d(x, y))φγ(d(x, y))
, x, y ∈M0 with d(x, y) ≥ 1. (3.4)

(3) Under (WUHK),

q(t, x, y) � 1

V (x, (φγ)−1(t))
∧ t

V (x, d(x, y))φγ(d(x, y))
, t > 0, x, y ∈M0. (3.5)

Moreover,

uγ1(x, y) �
∫ ∞
φγ(d(x,y))

e−t

V (x, (φγ)−1(t))
dt, x, y ∈M0 with d(x, y) ≤ 1

and

uγ1(x, y) � 1

V (x, d(x, y))φγ(d(x, y))
, x, y ∈M0 with d(x, y) ≥ 1.

Remark 3.2. According to Lemma 3.1 above, if the original process X fulfills one of
the conditions in Definition 2.4, then the subordinate process Xγ also satisfies the
corresponding one, with φ in (2.10) replaced by φγ .

Proof of Lemma 3.1. (1) Suppose that (2.10) holds. Then, by (3.1) and the change of
variables formula with u = t/sγ ,

q(t, x, x) ≤ c1
∫ ∞

0

1

V (x, φ−1(s))
e−t/s

γ t

s1+γ
ds =

c1
γ

∫ ∞
0

e−u

V (x, φ−1((t/u)1/γ))
du. (3.6)

By (2.15), there exist positive constants c2 and η1 such that

V (x, φ−1((t/u)1/γ)) ≥ c2V (x, φ−1(t1/γ))/uη1 = c2V (x, (φγ)−1(t))/uη1 , 0 < u ≤ 1.

Similarly, there exist positive constants c3 and η2 such that

V (x, φ−1((t/u)1/γ)) ≥ c3V (x, (φγ)−1(t))/uη2 , u ≥ 1.
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Accordingly,∫ ∞
0

e−u

V (x, φ−1((t/u)1/γ))
du ≤ c4

V (x, (φγ)−1(t))

(∫ 1

0

e−uuη1 du+

∫ ∞
1

e−uuη2 du

)
.

Combining this with (3.6), we get the desired upper bound of q(t, x, x).
On the other hand, it follows by (3.2) that

q(t, x, x) ≥
∫ ∞
t1/γ

p(s, x, x)πt(s) ds ≥ c5
∫ ∞
t1/γ

1

V (x, φ−1(s))

t

s1+γ
ds. (3.7)

Fix a constant θ > 1 and let θn = t1/γθn. Then, by (2.15) again, there exist positive
constants c6 and η3 such that∫ θn+1

θn

1

V (x, φ−1(s))s1+γ
ds ≥ 1

γV (x, φ−1(θn+1))

(
θ−γn − θ−γn+1

)
≥ c6
tV (x, (φγ)−1(t))

(
1− θ−γ

)
θ−n(γ+η3).

Hence ∫ ∞
t1/γ

1

V (x, φ−1(s))s1+γ
ds =

∞∑
n=0

∫ θn+1

θn

1

V (x, φ−1(s))s1+γ
ds

≥ c6
tV (x, (φγ)−1(t))

(1− θ−γ)

∞∑
n=0

θ−n(γ+η3)

=
c6

tV (x, (φγ)−1(t))

1− θ−γ

1− θ−(γ+η3)
. (3.8)

Then, by (3.7), we obtain

q(t, x, x) ≥ c7
V (x, (φγ)−1(t))

.

We thus arrive at the desired lower bound of q(t, x, x).
(2) Suppose that (2.11) holds, and let c0 be the constant in (2.11). Without loss of

generality, we may and do assume that c0 = 1. Since the heat kernel p(t, x, y) satisfies
(NLDHK), it follows by (3.2) that for any x, y ∈M0,

q(t, x, y) =

∫ ∞
0

p(s, x, y)πt(s) ds ≥ c1
∫ ∞
t1/γ∨φ(d(x,y))

1

V (x, φ−1(s))

t

s1+γ
ds

= c1t

∫ ∞
t1/γ∨φ(d(x,y))

1

V (x, φ−1(s))s1+γ
ds.

In particular, if d(x, y) ≤ (φγ)−1(t), then, by (3.8),

t

∫ ∞
t1/γ∨φ(d(x,y))

1

V (x, φ−1(s))s1+γ
ds = t

∫ ∞
t1/γ

1

V (x, φ−1(s))s1+γ
ds ≥ c2

V (x, (φγ)−1(t))
.

We also see that, if d(x, y) ≥ (φγ)−1(t), then

t

∫ ∞
t1/γ∨φ(d(x,y))

1

V (x, φ−1(s))s1+γ
ds = t

∫ ∞
φ(d(x,y))

1

V (x, φ−1(s))s1+γ
ds

≥ c3t

V (x, d(x, y))φγ(d(x, y))
.

Therefore, we arrive at the desired lower bound of q(t, x, y).
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Using the lower bound of q(t, x, y) above, we obtain

uλ1 (x, y) =

∫ ∞
0

e−tq(t, x, y) dt =

∫ φγ(d(x,y))

0

e−tq(t, x, y) dt+

∫ ∞
φγ(d(x,y))

e−tq(t, x, y) dt

≥ c4
V (x, d(x, y))φγ(d(x, y))

(∫ φγ(d(x,y))

0

e−ttdt

)
+ c4

∫ ∞
φγ(d(x,y))

e−t

V (x, (φγ)−1(t))
dt.

Since ∫ φγ(d(x,y))

0

e−ttdt � φ2γ(d(x, y)) ∧ 1, (3.9)

we have (3.3) and (3.4).
(3) Suppose that (2.12) holds. We first show the upper bound of q(t, x, y). By definition,

q(t, x, y) =

∫ φ(d(x,y))

0

p(s, x, y)πt(s) ds+

∫ ∞
φ(d(x,y))

p(s, x, y)πt(s) ds = I1 + I2.

Then, by (WUHK) and (3.1),

I1 ≤ c1
∫ φ(d(x,y))

0

s

V (x, d(x, y))φ(d(x, y))

t

s1+γ
ds =

c2t

V (x, d(x, y))φγ(d(x, y))

and

I2 ≤ c3
∫ ∞
φ(d(x,y))

1

V (x, φ−1(s))

t

s1+γ
ds ≤ c4t

V (x, d(x, y))φγ(d(x, y))
.

The last inequality above follows by the same calculation as (3.8). Hence

q(t, x, y) ≤ c5t

V (x, d(x, y))φγ(d(x, y))
.

Following the calculation in the proof of (1), we also have

q(t, x, y) ≤ c6
V (x, (φγ)−1(t))

so that (3.5) follows. The upper bounds of uγ1(x, y) follow by the same calculations as
in (2).

Suppose that the process X satisfies one of the conditions in Definition 2.4. For
γ ∈ (0, 1], let

Iγ(x) =

∫ ∞
1

1

V (x, (φγ)−1(t))
dt, x ∈M.

Then, by Remark 2.3(ii) and Lemma 3.1, the process Xγ is recurrent if the process X
satisfies (NDLHK) and Iγ(x) =∞ for any x ∈M ; Xγ is transient if X satisfies (WUHK)
and Iγ(x) <∞ for any x ∈M . The next lemma provides the Green function (or 0-order
resolvent) estimates of the process Xγ .

Lemma 3.3. Suppose that the process X satisfies Assumption (H). Then for any γ ∈
(0, 1], the following estimates hold.

(1) Under (NDLHK),

uγ0(x, y) �
∫ ∞
φγ(d(x,y))

1

V (x, (φγ)−1(t))
dt, x, y ∈M0. (3.10)

(2) Under (WUHK),

uγ0(x, y) �
∫ ∞
φγ(d(x,y))

1

V (x, (φγ)−1(t))
dt, x, y ∈M0. (3.11)

We omit the proof of Lemma 3.3 because it is similar to that of Lemma 3.1.
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3.2 Hausdorff dimensions of level sets

In this subsection, we will determine the Hausdorff dimensions of the level sets for
the process X. First, we recall the definition of the Hausdorff dimension. Let ϕ be a
continuous Hausdorff function of finite order such that ϕ(0) = 0 (see Definition A.1).
Let Hϕ denote the associated Hausdorff measure on the metric measure space M . If
ϕ(t) = tp for some p > 0, then we write Hp for Hϕ. For a subset A of M , let dimH(A)

denote its Hausdorff dimension, i.e.,

dimH(A) = inf {s > 0 : Hs(A) = 0} = sup {s > 0 : Hs(A) =∞} .

For any fixed a ∈M , let

γa(s) = inf

{
γ > 0 :

∫ 1

0

((φγ)−1(t))s

V (a, (φγ)−1(t))
dt <∞

}
, s ≥ 0. (3.12)

Then, the main result of this part can be stated as follows.

Theorem 3.4. Suppose that the process X satisfies Assumption (H) and (ODHK). We
have the following two statements.

(1) Let a ∈M . If 0 < γa(0) ≤ 1, then

dimH{s > 0 : Xs = a} ≤ 1− γa(0), Px-a.s. for any x ∈M0. (3.13)

On the other hand, if γa(0) > 1, then {s > 0 : Xs = a} = ∅, Px-a.s. for any x ∈M0.

(2) Suppose that 0 < γa(0) < 1 for any a ∈ M . Then N = ∅ and thus M0 = M .
Moreover, if the process X also satisfies (NDLHK) and I1(a) = ∞ for any a ∈ M ,
then

dimH{s > 0 : Xs = a} = 1− γa(0), Px-a.s. for any x ∈M . (3.14)

We will prove Theorem 3.4 by following the argument of [21, Theorem 1] (see also
the proof of [26, Theorem 2.1]). To do so, we need two lemmas.

Lemma 3.5. Let a ∈ M . Then the function s 7→ γa(s) is nonincreasing and Lipschitz
continuous on [0,∞). Moreover, there exists a constant s0 > 0 such that γa(s) = 0 for
any s ≥ s0 and γa(s1) > γa(s2) > 0 if 0 ≤ s1 < s2 < s0.

Proof. We split the proof into four steps.
(i) We show that the function s 7→ γa(s) is nonincreasing. By the change of variables

formula with u = t1/γ , for any γ > 0, we have∫ 1

0

{(φγ)−1(t)}s

V (a, (φγ)−1(t))
dt = γ

∫ 1

0

(φ−1(t))s

V (a, φ−1(t))
tγ−1 dt. (3.15)

Hence, if s2 > s1 ≥ 0, then γa(s2) ≤ γa(s1) because∫ 1

0

(φ−1(t))s2

V (a, φ−1(t))
tγ−1 dt ≤

∫ 1

0

(φ−1(t))s1

V (a, φ−1(t))
tγ−1 dt,

thanks to the fact that φ is increasing on [0, 1] with φ(0) = 0 and φ(1) = 1.
(ii) We prove that there exists a constant s0 ∈ (0,∞) such that γa(s) > 0 for s ∈ [0, s0)

and γa(s) = 0 for s ≥ s0. By (2.14) and (2.15), there exist positive constants ci and ηi
(1 ≤ i ≤ 4) such that

c1t
η1 ≤ φ−1(t) ≤ c2tη2 , 0 ≤ t ≤ 1 (3.16)

and
c3t

η3 ≤ V (x, φ−1(t)) ≤ c4tη4 , x ∈M, 0 ≤ t ≤ 1.
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Here, the constants c3, c4 may depend on x ∈M . Hence, if we define

s0 = inf

{
s > 0 :

∫ 1

0

(φ−1(t))s

V (a, φ−1(t))t
dt <∞

}
,

then s0 ∈ (0,∞). For any s > s0, we have∫ 1

0

(φ−1(t))s

V (a, φ−1(t))t
dt <∞ (3.17)

so that γa(s) = 0.
We now show that γa(s0) = 0 by contradiction. Assume that γa(s0) > 0. Then for any

γ ∈ (0, γa(s0)) and s > s0, we obtain by (3.16),

∞ =

∫ 1

0

(φ−1(t))s0

V (a, φ−1(t))
tγ−1 dt =

∫ 1

0

(φ−1(t))s

V (a, φ−1(t))t
tγ(φ−1(t))s0−s dt

≤ 1

cs−s01

∫ 1

0

(φ−1(t))s

V (a, φ−1(t))t
tγ−(s−s0)η1 dt.

In particular, if we take s > s0 so that (s− s0)η1 < γ < γa(s0), then, by (3.17),∫ 1

0

(φ−1(t))s

V (a, φ−1(t))t
tγ−(s−s0)η1 dt ≤

∫ 1

0

(φ−1(t))s

V (a, φ−1(t))t
dt <∞.

Since the two inequalities above yield a contradiction, we have γa(s0) = 0 as desired.
We also prove that γa(s) > 0 for any s ∈ [0, s0) by contradiction. Assume that γa(s) = 0

for some s ∈ [0, s0). Then, for any s1 ∈ (s, s0), we obtain by (3.16),∫ 1

0

(φ−1(t))s1

V (a, φ−1(t))t
dt =

∫ 1

0

(φ−1(t))s

V (a, φ−1(t))t
(φ−1(t))s1−s dt

≤ cs1−s2

∫ 1

0

(φ−1(t))s

V (a, φ−1(t))
t(s1−s)η2−1 dt.

Since s1 < s0, the left hand side above is divergent; however, we have (s1−s)η2 > γa(s)(=

0) so that the right hand side is convergent by (3.15). We thus get a contradiction so
that γa(s) > 0 for any s ∈ [0, s0).

(iii) We show that γa(s1) > γa(s2) if 0 ≤ s1 < s2 ≤ s0. If γa(s1) = γa(s2)(> 0) for some
nonnegative constants s1 and s2 with s1 < s2 < s0, then for any γ > 0, we have by (3.16),∫ 1

0

(φ−1(t))s1

V (a, φ−1(t))
tγ−1 dt =

∫ 1

0

(φ−1(t))s2

V (a, φ−1(t))
(φ−1(t))−(s2−s1)tγ−1 dt

≥ 1

cs2−s12

∫ 1

0

(φ−1(t))s2

V (a, φ−1(t))
tγ−(s2−s1)η2−1 dt.

(3.18)

Let γ > 0 satisfy 0 < γ − γa(s2) = γ − γa(s1) < (s2 − s1)η2. Then the left hand side
of (3.18) is convergent but the right hand side is divergent. We thus get a contradiction
so that γa(s1) > γa(s2) if 0 ≤ s1 < s2 ≤ s0.

(iv) We prove that the function s 7→ γa(s) is Lipschitz continuous on [0,∞). If
0 ≤ s1 < s2 ≤ s0, then for any γ > 0, we have by (3.16),∫ 1

0

(φ−1(t))s1

V (a, φ−1(t))
tγ−1 dt ≤ 1

cs2−s11

∫ 1

0

(φ−1(t))s2

V (a, φ−1(t))
tγ−(s2−s1)η1−1 dt.

Note also that γa(s1) > 0 by (ii). Hence if 0 < γ < γa(s1), then γa(s2) ≥ γ− (s2− s1)η1. In
particular, since γa(s1)− (s2 − s1)η1 ≤ γa(s2), the function γa(s) is Lipschitz continuous
on [0, s0]. Since we know by (ii) that γa(s) = 0 for s ≥ s0, the function γa(s) is Lipschitz
continuous on [0,∞) as well.

Putting the arguments in (i)–(iv) together, we arrive at the desired assertion.
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Lemma 3.6. Let the process X satisfy Assumption (H). For every a ∈M , if u1(a, a) <∞,
then Cap({a}) = 1/u1(a, a); otherwise, Cap({a}) = 0. In particular, Cap({a}) > 0 if and
only if u1(a, a) <∞. Furthermore, if X satisfies (ODHK) as well, then, for each a ∈M ,
Cap({a}) > 0 if and only if ∫ 1

0

1

V (a, φ−1(t))
dt <∞.

Proof. The first assertion is essentially taken from [18, Example 2.1.2], and we present
the details here for the sake of completeness. Fix a ∈M , and let δa be the Dirac measure
at a. We first assume that u1(a, a) < ∞. Then, by [18, Exercise 4.2.2], the measure
δa is of finite energy integral, and the function x 7→ u1(x, a) is a quasi-continuous and
excessive version of the 1-potential U1δa of δa. Furthermore, by [18, Lemma 2.2.6
and the subsequent comment], the function ea(x) = u1(x, a)/u1(a, a) is a version of the
1-equilibrium potential of {a}. Hence

Cap({a}) = E1(ea, ea) =
1

u1(a, a)
.

We next assume that u1(a, a) = ∞. Then, by [18, Exercise 4.2.2], the measure δa
is not of finite energy integral. Let us suppose that Cap({a}) > 0. Then, according to
[18, Lemma 2.2.6 and the subsequent comment] again, it follows that for some c > 0,
the measure cδa would be the equilibrium potential of {a}, so that δa is of finite energy
integral. This is a contradiction, and so Cap({a}) = 0.

Let us prove the second assertion. By (ODHK),

u1(a, a) �
∫ 1

0

1

V (a, φ−1(t))
dt+

∫ ∞
1

e−t

V (a, φ−1(t))
dt.

Note that the second term of the right hand side above is finite, because the function
t 7→ V (a, φ−1(t)) is nondecreasing. Then, the proof is complete by the first assertion.

Proof of Theorem 3.4. We first prove (1) under the condition that 0 < γa(0) ≤ 1. Here
and in what follows, let Capγ denote the 1-capacity relative to the subordinate processXγ .
If 0 < γ < γa(0), then ∫ 1

0

1

V (a, (φγ)−1(t))
dt =∞,

and so Capγ({a}) = 0 by Lemma 3.6 applied to Xγ , also thanks to Lemma 3.1(1).
Therefore, the process Xγ can not hit the point a by [18, Theorems 4.1.2 and 4.2.1 (ii)],
that is,

0 = Px ⊗ P γ(Xτt = a for some t > 0) = Ex [P γ(τt ∈ {s > 0 : Xs = a} for some t > 0)] .

This implies that

P γ(τt ∈ {s > 0 : Xs(ω) = a} for some t > 0) = 0, Px-a.s. ω ∈ Ω for any x ∈M0.

Then, by the Frostman lemma for the γ-stable subordinator (see [21, Section 3] or [22,
Lemma 2.1]),

dimH{s > 0 : Xs = a} ≤ 1− γ, Px-a.s. for any x ∈M0.

Letting γ ↑ γa(0) along a sequence, we have (3.13).
If γa(0) > 1, then ∫ 1

0

1

V (a, φ−1(t))
dt =∞.
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Hence, by Lemma 3.6 applied to X, we have Cap({a}) = 0 and thus the process X
can not hit the point a by [18, Theorems 4.1.2 and 4.2.1 (ii)] again. The proof of (1) is
complete.

We next prove (2). Assume that γa(0) < 1 for any a ∈M . Then for any γ ∈ (γa(0), 1],
since ∫ 1

0

1

V (a, (φγ)−1(t))
dt <∞, (3.19)

we have Capγ({a}) > 0 by Lemma 3.6 applied to Xγ , also due to Lemma 3.1(1) again.
In particular, it follows by [18, Theorems 4.1.3 and A.2.6 (i)] that the point a is regular
relative to Xγ for any γ ∈ (γa(0), 1], i.e.,

1 = P γa (for any ε > 0, there exists t ∈ (0, ε) such that Xτt = a)

= P γa (Xτt = a for some t > 0) = Ea [P γ(τt ∈ {s > 0 : Xs = a} for some t > 0)] .
(3.20)

On the other hand, since (3.19) is valid with γ = 1, we have Cap({a}) > 0 for any
a ∈M , which implies that N = ∅ and Px(σa <∞) > 0 for any x ∈M . Furthermore, the
process X is irreducible and recurrent by Assumption (H), (NDLHK) and I1(a) =∞ for
any a ∈ M , with the comment just before Lemma 3.3. Hence by [18, Theorem 4.7.1
(iii) and Exercise 4.7.1], we obtain Px(σa < ∞) = 1 for any x ∈ M . Note that Xσa = a

because {a} is closed in M . Therefore, by (3.20) and the strong Markov property of the
process X,

1 = Px(σa <∞) = Ex
[
EXσa [P γ(τt ∈ {s > 0 : Xs = a} for some t > 0)] ;σa <∞

]
= Ex [P γ(τt ∈ {s > 0 : Xs ◦ θσa = a} for some t > 0);σa <∞]

≤ Ex [P γ(τt ∈ {s > 0 : Xs = a} for some t > 0)] ,

which yields

P γ(τt ∈ {s > 0 : Xs(ω) = a} for some t > 0) = 1, Px-a.s. ω ∈ Ω for any x ∈M.

By using [21, Section 3] or [22, Lemma 2.1] again,

dimH{s > 0 : Xs = a} ≥ 1− γ, Px-a.s. for any x ∈M .

Letting γ ↓ γa(0) along a sequence, we have

dimH{s > 0 : Xs = a} ≥ 1− γa(0), Px-a.s. for any x ∈M .

Combining this with (3.13), we get (3.14).

Example 3.7. Let the process X satisfy Assumption (H), (ODHK) and (NDLHK). We
impose the next conditions on the functions V (x, r) and φ(r):

• There exist positive constants d1, d2 and ci, 1 ≤ i ≤ 4, such that

c1r
d1 ≤ V (x, r) ≤ c2rd1 , x ∈M, r ∈ (0, 1)

and
c3r

d2 ≤ V (x, r) ≤ c4rd2 , x ∈M, r ∈ [1,∞).

• There exist positive constants α, β, ci, 5 ≤ i ≤ 8, such that

c5r
α ≤ φ(r) ≤ c6rα, r ∈ (0, 1)

and
c7r

β ≤ φ(r) ≤ c8rβ , r ∈ [1,∞).
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Then for any a ∈ M , γa(s) = (d1 − s)/α for any s ∈ [0, d1], and γa(0) ≤ 1 if and only if
0 < d1 ≤ α. We also see that I1(a) =∞ for any a ∈M if and only if 0 < d2 ≤ β.

By the calculation above and Theorem 3.4, we have the following: if 0 < d1 ≤ α and
0 < d2 ≤ β, then

dimH{s > 0 : Xs = a} = 1− d1

α
, Px-a.s. for any x ∈M .

If d1 > α, then {s > 0 : Xs = a} = ∅, Px-a.s. for any x ∈M .

3.3 Hausdorff dimensions of inverse images

In this subsection, we determine the Hausdorff dimensions of the inverse images for
the process X. For this purpose, we make a stronger assumption on the volume function.

Assumption 3.8. There exists a strictly increasing function V (r) on [0,∞) so that
V (0) = 0 and that there are some positive constants c1 and c2 so that for all x ∈M and
r ≥ 0,

c1V (r) ≤ V (x, r) ≤ c2V (r).

Note that under the assumption above, the value γa(u) defined by (3.12) is indepen-
dent of the choice of a ∈M . Hence we write γ(u) for γa(u). In other words,

γ(s) = inf

{
γ > 0 :

∫ 1

0

((φγ)−1(t))s

V ((φγ)−1(t))
dt <∞

}
, s ≥ 0.

We also define

s0 = inf

{
s > 0 :

∫ 1

0

(φ−1(t))s

V (φ−1(t))t
dt <∞

}
.

Then, by the proof of Lemma 3.5, the function s 7→ γ(s) is Lipschitz continuous on [0,∞)

and s0 defined above is positive; moreover, γ(s) is strictly decreasing on [0, s0] such that
γ(s) = 0 for s ≥ s0.

We also introduce the next assumption onM in order for the validity of Proposition A.4
below.

Assumption 3.9. Any closed ball in M is compact.

Theorem 3.10. Let F be a Borel subset of M such that sF = dimH(F ) > 0. Suppose
that the process X satisfies Assumption (H), and that Assumption 3.8 holds. Suppose
also that for any s ≥ 0 with γ(s) > 0 and for any γ ∈ (0, γ(s)), there exists a constant
c1 > 0 such that for any T ∈ (0, 1/2),∫ 1

T

(φ−1(u))s

V (φ−1(u))
uγ−1 du ≤ c1(φ−1(T ))s

V (φ−1(T ))
T γ . (3.21)

(1) Under (NDLHK), if 0 ≤ γ(sF ) ≤ 1, then

dimH{t > 0 : Xt ∈ F} ≤ 1− γ(sF ), Px-a.s. for any x ∈M0.

On the other hand, if γ(sF ) > 1, then {t > 0 : Xt ∈ F} = ∅, Px-a.s. for any x ∈M0.

(2) Suppose further that M satisfies Assumption 3.9, and the process X satisfies
Assumption (H), (NDLHK) and (WUHK) with M \ N replaced by M . If γ(sF ) > 0

and ∫ ∞
1

1

V (φ−1(t))
dt =∞, (3.22)

then
dimH{t > 0 : Xt ∈ F} ≥ 1− γ(sF ), Px-a.s. for any x ∈M.
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To prove Theorem 3.10, we need the following lemma.

Lemma 3.11. Suppose that the process X satisfies Assumption (H). If A is a subset of
M , then Ar (relative to X) is Borel measurable.

Proof. Under Assumption (H), if B is a universally measurable subset of M , then
µ(B) = 0 implies Uλ(x,B) = 0 for any x ∈M0. Namely, µ is a reference measure for the
process X in the sense of [6, Definition 1.1 in Chapter V] or [15, p. 112]. Hence, the
assertion follows from [6, Corollary 1.14 in Chapter V] or [15, p. 115, Exercise 3].

We also need the notation for the energy of a Borel measure. Let ψ : [0,∞)→ [0,∞)

be a Borel measurable function. For a Borel measure ν on M , define

Iψ(ν) =

∫∫
M×M

1

ψ(d(x, y))
ν(dx) ν(dy).

Then, Iψ(ν) is called the ψ-energy of ν. If ψ(t) = ts for some s > 0, then we write Iψ

as Is.

Proof of Theorem 3.10. We first prove (1) under the condition that γ(sF ) ≤ 1. Let F
be a Borel subset of M . Without loss of generality, we assume that γ(sF ) > 0. Then,
by Lemma 3.5 and its proof, there exists δ ∈ (0, sF /2) such that γ(u) > 0 for any
u ∈ (sF , sF + δ). If we fix u ∈ (sF , sF + δ), then γ(u) < γ(s) < γ(sF ) for any s ∈ (sF , u),
thanks to Lemma 3.5 again. Therefore, for any C > 0, there exists T0 ∈ (0, 1/2) such that

C ≤
∫ 1

T0

(φ−1(t))s

V (φ−1(t))
tγ(u)−1 dt.

In particular, for any x, y ∈M with d(x, y) ≤ φ−1(T0), it follows by (3.21) that

C ≤
∫ 1

φ(d(x,y))

(φ−1(t))s

V (φ−1(t))
tγ(u)−1 dt ≤ c1d(x, y)sφγ(u)(d(x, y))

V (d(x, y))
.

This implies that for any compact subset K of F , there exists a constant C0 := C0(K) > 0

such that
C0

d(x, y)s
≤ c2φ

γ(u)(d(x, y))

V (d(x, y))
, x, y ∈ K. (3.23)

Let Xγ(u) be the γ(u)-stable subordinate process of the process X, and (Eγ(u),Fγ(u))

the associated regular Dirichlet form. We now assume that there exists a finite and
nontrivial Borel measure ν on M such that it is compactly supported in K and charges no
set of zero capacity relative to (Eγ(u),Fγ(u)). Then for any s ∈ (sF , u), since Hs(K) = 0,
Proposition A.2 yields Is(ν) =∞. Combining this with (3.23), we obtain∫∫

K×K

φγ(u)(d(x, y))

V (d(x, y))
ν(dx) ν(dy) =∞. (3.24)

Let uγ(u)
1 (x, y) be the 1-resolvent kernel for Xγ(u). According to Lemma 3.1(2), under

(NDLHK),∫∫
K×K

φγ(u)(d(x, y))

V (d(x, y))
ν(dx)ν(dy) ≤ c3

∫∫
K×K

u
γ(u)
1 (x, y) ν(dx)ν(dy)

= c3

∫
K

U
γ(u)
1 ν dν,

(3.25)
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where the constant c3 > 0 may depend on the set K. In particular, (3.24) and (3.25) yield∫
K

U
γ(u)
1 ν dν =∞. (3.26)

Let νγ(u)
K be the equilibrium measure of K relative to (Eγ(u),Fγ(u)). Since K is

compact, we have

Capγ(u)(K) = ν
γ(u)
K (K) =

∫
K

U
γ(u)
1 ν

γ(u)
K dν

γ(u)
K <∞.

On the other hand, if νγ(u)
K is nontrivial, then we have ν

γ(u)
K (K) = ∞ by (3.26) with

ν = ν
γ(u)
K . This is a contradiction so that we get Capγ(u)(K) = ν

γ(u)
K (K) = 0. By the

regularity of the capacity ([18, (2.1.6)]), we further obtain Capγ(u)(F ) = 0. This and [18,
Theorem 4.2.1 (ii)] yield

0 = Px ⊗ P γ(u)(X
γ(u)
t ∈ F for some t > 0)

= Ex

[
P γ(u)(τt ∈ {t > 0 : Xt ∈ F} for some t > 0)

]
and thus

P γ(u)(τt ∈ {t > 0 : Xt(ω) ∈ F} for some t > 0) = 0, Px-a.s. ω ∈ Ω for any x ∈M0.

Then, by [21, Section 3] or [22, Lemma 2.1] again, we have

dim {t > 0 : Xt ∈ F} ≤ 1− γ(u), Px-a.s. for any x ∈M0.

Letting u ↓ sF along a sequence, we arrive at the assertion (1) provided that γ(sF ) ≤ 1.
If γ(sF ) > 1, then, by the proof of Lemma 3.5, we can take u > sF so that γ(u) = 1.

Hence the same argument as before implies that Cap(F ) = 0, and thus Px({t > 0 : Xt ∈
F} = ∅) = 1 for any x ∈M0. The proof of (1) is complete.

We next prove (2). Without loss of generality, we assume that sF > 0 and 0 < γ(sF ) <

1. Then, by Lemma 3.5, there exists a constant ε > 0 such that for all s ∈ (sF − ε, sF ),
γ(sF ) < γ(s) < 1. We now fix such s ∈ (sF − ε, sF ). Then the regularity of the Hausdorff
measure yields Hs(K) > 0 for some compact subset K of F . Under Assumption 3.9, we
can further use Proposition A.4 to show that there exists a finite and nontrivial Borel
measure νsK on M such that supp[νsK ] ⊂ K and Is(νsK) <∞.

On the other hand, Lemma 3.5 implies again that γ(s) < γ(v) < 1 for any v ∈ (sF−ε, s).
Then for any v ∈ (sF − ε, s) and T ∈ (0, 1/2),

∞ >

∫ 1

0

(φ−1(t))s

V (φ−1(t))
tγ(v)−1 dt ≥

∫ 2T

T

(φ−1(t))s

V (φ−1(t))
tγ(v)−1 dt ≥ c1(φ−1(T ))sT γ(v)

V (φ−1(T ))
,

which implies that for some c2 > 0,

φγ(v)(d(x, y))

V (d(x, y))
≤ c2
d(x, y)s

, x, y ∈ K. (3.27)

Let Xγ(v) be the γ(v)-stable subordinate process of the process X. Since γ(v) < γ(0),
it follows by Lemma 3.1(3) and (3.21) that under (WUHK), there exists a constant c3 > 0

such that for all x, y ∈ K,
φγ(v)(d(x, y))

V (d(x, y))
≥ c3uγ(v)

1 (x, y).
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Combining this with (3.27), we have for some c4 > 0,

1

d(x, y)s
≥ c4uγ(v)

1 (x, y), x, y ∈ K.

Therefore,

∞ > Is(νsK) =

∫∫
K×K

1

d(x, y)s
νsK(dx)νsK(dy) ≥ c4

∫∫
K×K

u
γ(v)
1 (x, y) νsK(dx)νsK(dy).

Then, by [18, Exercise 4.2.2], the measure νsK is of finite energy integral relative to Xγ(v).
Moreover, since νsK is nontrivial, Capγ(v)(F ) ≥ Capγ(v)(K) > 0 thanks to [18, Theorem
2.2.3]. In particular, for all s ∈ (sF − ε, sF ), Capγ(s)(F ) > 0.

We now follow the argument of [27, Theorem 1]. Let σF be the hitting time of Xγ(s)

to F , i.e., σF = inf{t > 0 : X
γ(s)
t ∈ F}. Define

Fγ(s) =
{
x ∈M : Px ⊗ P γ(s)(σF <∞) = 1

}
, F rγ(s) =

{
x ∈M : Px ⊗ P γ(s)(σF = 0) = 1

}
.

Namely, F rγ(s) is the totality of regular points of F relative to the process Xγ(s). By

Lemma 3.11 applied to the process Xγ(s), F rγ(s) is a Borel subset of M . Since F \ F rγ(s) is
exceptional (see [18, Theorem 4.1.3 and Theorem A.2.6 (i)]), it follows from [18, Theorem
4.2.1 (ii)] that Capγ(s)(F \ F rγ(s)) = 0. This and Capγ(s)(F ) > 0 yield Capγ(s)(F rγ(s)) > 0

and so F rγ(s) 6= ∅. On the other hand, since it follows from [6, Proposition 2.8 (p.73)

and Proposition 1.4 (p.197)] that the function g(x) := Px ⊗ P γ(s)(σF < ∞) is Borel
measurable and excessive, the set Fγ(s) is also Borel measurable. As F rγ(s) ⊂ Fγ(s) by

definition, F \ Fγ(s) is also exceptional and Capγ(s)(Fγ(s)) ≥ Capγ(s)(F rγ(s)) > 0.

Since Capγ(s)(Fγ(s)) > 0, the regularity of the capacity ([18, (2.1.6)]) implies that

there exists a compact subsetK of Fγ(s) such that Capγ(s)(K) > 0. Then, by [30, Theorem

2.2 (i)], there exists a constant c5 > 0 such that Cap(K) ≥ c5Capγ(s)(K) > 0. We here
note that X is irreducible and recurrent by Assumption (H), (NDLHK) and (3.22) with
the comment just before Lemma 3.3. Hence, by [18, Theorem 4.7.1 (iii) and Exercise
4.7.1], we have Px(σK <∞) = 1 for any x ∈M . Noting that XσK ∈ K and K ⊂ Fγ(s), we
further obtain by the strong Markov property of X,

1 = Px(σK <∞) = Ex

[
PXσK ⊗ P

γ(s)(Xτt ∈ F for some t > 0)
]

= Ex

[
EXσK

[
P γ(s) (τt ∈ {u > 0 : Xu ∈ F} for some t > 0)

]]
= Ex

[
P γ(s) (τt ∈ {u > 0 : Xu ◦ θσK ∈ F} for some t > 0)

]
≤ Ex

[
P γ(s) (τt ∈ {u > 0 : Xu ∈ F} for some t > 0)

]
.

(3.28)

Thus

P γ(s) (τt ∈ {u > 0 : Xu ∈ F} for some t > 0) = 1, Px-a.s. for any x ∈M .

Then, by [21, Section 3] or [22, Lemma 2.1] again,

dim {t > 0 : Xt ∈ F} ≥ 1− γ(s), Px-a.s. for any x ∈M .

Letting s ↑ sF along a sequence, we have by Lemma 3.5,

dim {t > 0 : Xt ∈ F} ≥ 1− γ(sF ), Px-a.s. for any x ∈M .

Combining this with Theorem 3.10, we complete the proof.
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Example 3.12. Suppose that the process X satisfies Assumption (H), (WUHK) and (HR).
Then, by Remark 2.6 (iii), X satisfies (NDLHK) as well, and all of M0 can be replaced
with M under these conditions. We now impose the same conditions on the functions
V (x, r) and φ(r) as in Example 3.7. Then γ(s) = (d1 − s)/α for s ∈ [0, d1], and (3.21) is
fulfilled. We also see that (3.22) is valid if and only if 0 < d2 ≤ β.

Let F ⊂M be a Borel set with sF = dimH(F ) > 0. Then 0 ≤ γ(sF ) ≤ 1 if and only if
d1 − α ≤ sF ≤ d1. Therefore, if F satisfies sF > 0, d1 − α ≤ sF ≤ d1 and 0 < d2 ≤ β, then

dimH{t > 0 : Xt ∈ F} = 1− d1 − sF
α

, Px-a.s. for any x ∈M .

With Examples 3.7 and 3.12, one can easily get the first assertion (1) in Theorem 1.1,
also thanks to Remark 2.7.

4 Hausdorff dimensions of collision time sets

4.1 Resolvent of stable-subordinate direct-product processes

For i = 1, 2, let Xi := ({Xi
t}t≥0, {Px}x∈M ) be a µ-symmetric Hunt process on M

generated by a regular Dirichlet form (E i,F i) on L2(M ;µ). We assume that X1 and
X2 are independent, and satisfy Assumption (H). For each i = 1, 2, let N i denote the
corresponding properly exceptional set and M i

0 := M \ N i, and let pi(t, x, y) be the heat
kernel of Xi.

For any t ≥ 0 and x = (x1, x2) ∈M ×M , define

Xt = (X1
t , X

2
t ), Px = P 1

x1
⊗ P 2

x2
.

Then, X := ({Xt}t≥0, {Px}x∈M×M ) is a µ ⊗ µ-symmetric Hunt process on M ×M . Let
(E ,F) be the associated Dirichlet form on L2(M ×M ;µ⊗ µ). Then, by [29, Theorems 3.1
and 5.1], (E ,F) is regular and irreducible. We also see by [29, Theorem 4.3 (3)] that the
set M ×M \ (M1

0 ×M2
0 ) has zero capacity relative to (E ,F). By combining this with the

relation

Px(Xt ∈M ×M) = Px1
(X1

t ∈M)Px2
(X2

t ∈M) = 1, t ≥ 0, x = (x1, x2) ∈M1
0 ×M2

0 ,

(E ,F) is also conservative by [18, Exercise 4.5.1]. The heat kernel of X is given by

p(t, x, y) = p1(t, x1, y1)p2(t, x2, y2), t ≥ 0, x = (x1, x2), y = (y1, y2) ∈M1
0 ×M2

0 .

For γ ∈ (0, 1), let Xγ := ((Xγ
t )t≥0, {P γx }x∈M×M ) be a subordinate process of X with

respect to the γ-stable subordinator Sγ = ({τt}t≥0, P
γ), that is, for any t ≥ 0 and

x ∈M ×M ,
Xγ
t = Xτt = (X1

τt , X
2
τt), P γx = Px ⊗ P γ .

Let (Eγ ,Fγ) be the associated Dirichlet form on L2(M × M ;µ ⊗ µ). Then, by [30,
Theorems 2.1(ii) and 3.1(i)(ii)], (Eγ ,Fγ) is also regular, irreducible and conservative.
The heat kernel of Xγ is given by

qγ(t, x, y) =

∫ ∞
0

p(s, x, y)πt(s) ds, t > 0, x, y ∈M1
0 ×M2

0 ,

where πt(s) is the density function of Sγt .
For λ ≥ 0, let uγλ(x, y) be the λ-resolvent density of Xγ , i.e., for x, y ∈M1

0 ×M2
0 ,

uγλ(x, y) =

∫ ∞
0

e−λtqγ(t, x, y) dt =

∫ ∞
0

e−λt
∫ ∞

0

p(s, x, y)πt(s) dsdt. (4.1)
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In the following, we will assume that the processes X1 and X2 satisfy the common
one of the conditions in Definition 2.4. Under this assumption, we use the notations
φi, αi1 and αi2, respectively, to denote the corresponding scaling function φ and the
associated indices α1, α2. For x = (x1, x2) ∈M ×M and y = (y1, y2) ∈M ×M , let

φd(x, y) = φ1(d(x1, y1)) ∨ φ2(d(x2, y2))

and φγd(x, y) := (φd(x, y))γ . It is clear that

1

2
{φ1(d(x1, y1)) + φ2(d(x2, y2))} ≤ φd(x, y) ≤ φ1(d(x1, y1)) + φ2(d(x2, y2)).

We first show the lower bound for the resolvent density of the process Xγ .

Lemma 4.1. Suppose that the independent processes X1 and X2 satisfy Assumption
(H) and (NDLHK). Then, for any γ ∈ (0, 1], there exist positive constants c1 and c2 such
that for any x, y ∈M1

0 ×M2
0 ,

uγ1(x, y) ≥ c1
∫ ∞
φγd(x,y)

e−t

V (x1, (φ
γ
1)−1(t))V (x2, (φ

γ
2)−1(t))

dt, φd(x, y) ≤ 1

and

uγ1(x, y) ≥ c2

V (x1, φ
−1
1 (φd(x, y)))V (x2, φ

−1
2 (φd(x, y)))φγd(x, y)

, φd(x, y) ≥ 1.

Proof. Without loss of generality, we assume that the processes X1 and X2 satisfy
(NDLHK) with the constant c0 = 1 involved in. Then, by (3.2) and (4.1),

uγ1(x, y) ≥ c1
∫ ∞

0

e−tt

(∫ ∞
t1/γ∨φd(x,y)

1

V (x1, φ
−1
1 (s))V (x2, φ

−1
2 (s))s1+γ

ds

)
dt

= c1

(∫ φγd(x,y)

0

e−ttdt

)(∫ ∞
φd(x,y)

1

V (x1, φ
−1
1 (s))V (x2, φ

−1
2 (s))s1+γ

ds

)

+ c1

∫ ∞
φγd(x,y)

e−tt

(∫ ∞
t1/γ

1

V (x1, φ
−1
1 (s))V (x2, φ

−1
2 (s))s1+γ

ds

)
dt

=: (I) + (II).

(4.2)

Following (3.8) and (3.9), we have

(I) �
φ2γ
d (x, y) ∧ 1

V (x1, φ
−1
1 (φd(x, y)))V (x2, φ

−1
2 (φd(x, y)))φγd(x, y)

and

(II) �
∫ ∞
φγd(x,y)

e−t

V (x1, φ
−1
1 (t1/γ))V (x2, φ

−1
2 (t1/γ))

dt

=

∫ ∞
φγd(x,y)

e−t

V (x1, (φ
γ
1)−1(t))V (x2, (φ

γ
2)−1(t))

dt.

Hence, the proof is complete.

We next show the upper bound of the resolvent of Xγ .
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Lemma 4.2. Suppose that the independent processes X1 and X2 satisfy Assumption
(H) and (WUHK). For a fixed constant γ ∈ (0, 1], if there exists a constant c1 > 0 such
that for i = 1, 2,∫ T

0

tγ

V (w, φ−1
i (t))

dt ≤ c1T
1+γ

V (w, φ−1
i (T ))

, w ∈M, T ∈ (0, 1], (4.3)

then there exists a constant c2 > 0 such that for any x, y ∈M1
0 ×M2

0 ,

uγ1(x, y) ≤ c2
∫ 2

φγd(x,y)

1

V (x1, (φ
γ
1)−1(t))V (x2, (φ

γ
2)−1(t))

dt, φd(x, y) ≤ 1. (4.4)

Proof. For any x, y ∈M1
0 ×M2

0 , write

uγ1(x, y) =

∫ ∞
0

e−t
(∫ ∞

0

p(s, x, y)πt(s) ds

)
dt

=

∫ ∞
0

e−t

(∫ ∞
φd(x,y)

p(s, x, y)πt(s) ds

)
dt

+

∫ ∞
0

e−t

(∫ φd(x,y)

0

p(s, x, y)πt(s) ds

)
dt

=: J1 + J2.

(4.5)

Then, by (WUHK) and (3.1) with the Fubini theorem,

J1 ≤ c1
∫ ∞

0

e−tt

(∫ ∞
φd(x,y)

e−t/s
γ

V (x1, φ
−1
1 (s))V (x2, φ

−1
2 (s))s1+γ

ds

)
dt

= c1

∫ ∞
φd(x,y)

1

V (x1, φ
−1
1 (s))V (x2, φ

−1
2 (s))s1+γ

(∫ ∞
0

e−t(1+1/sγ)tdt

)
ds

= c1

∫ ∞
φd(x,y)

1

V (x1, φ
−1
1 (s))V (x2, φ

−1
2 (s))

sγ−1

(1 + sγ)2
ds.

Since γ > 0, we have∫ ∞
21/γ

1

V (x1, φ
−1
1 (s))V (x2, φ

−1
2 (s))

sγ−1

(1 + sγ)2
ds ≤

∫ ∞
21/γ

1

V (x1, φ
−1
1 (s))V (x2, φ

−1
2 (s))s1+γ

ds

<∞.

If φd(x, y) ≤ 1, then∫ 21/γ

φd(x,y)

1

V (x1, φ
−1
1 (s))V (x2, φ

−1
2 (s))

sγ−1

(1 + sγ)2
ds �

∫ 21/γ

φd(x,y)

sγ−1

V (x1, φ
−1
1 (s))V (x2, φ

−1
2 (s))

ds

=
1

γ

∫ 2

φγd(x,y)

1

V (x1, (φ
γ
1)−1(s))V (x2, (φ

γ
2)−1(s))

ds.

Therefore, there exists a constant c2 > 0 such that

J1 ≤ c2
∫ 2

φγd(x,y)

1

V (x1, (φ
γ
1)−1(s))V (x2, (φ

γ
2)−1(s))

ds, φd(x, y) ≤ 1. (4.6)

To prove the upper bound of J2, we assume that φ1(d(x1, y1)) ≤ φ2(d(x2, y2)) ≤ 1.
By (4.3), ∫ φ2(d(x2,y2))

0

sγ

V (x1, φ
−1
1 (s))

ds ≤ c3φ
γ+1
2 (d(x2, y2))

V (x1, φ−1(φ2(d(x2, y2))))
.
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Then, by (WUHK) and (3.1) with the Fubini theorem again,

J2 ≤
c4

V (x2, d(x2, y2))φ2(d(x2, y2))

∫ ∞
0

e−tt

(∫ φ2(d(x2,y2))

0

e−t/s
γ

V (x1, φ
−1
1 (s))sγ

ds

)
dt

=
c4

V (x2, d(x2, y2))φ2(d(x2, y2))

∫ φ2(d(x2,y2))

0

sγ

V (x1, φ
−1
1 (s))(1 + sγ)2

ds

≤ c5φ
γ
2(d(x2, y2))

V (x1, φ
−1
1 (φ2(d(x2, y2))))V (x2, d(x2, y2))

.

A similar bound as above is valid even for φ2(d(x2, y2)) ≤ φ1(d(x1, y1)) ≤ 1, and thus

J2 ≤
c6φ

γ
d(x, y)

V (x1, φ
−1
1 (φd(x, y)))V (x2, φ

−1
2 (φd(x, y)))

, φd(x, y) ≤ 1.

Combining this with (4.6), we have (4.4).

Before the proof of the Green function estimates of Xγ , we give a criterion for
recurrence or transience. For γ ∈ (0, 1], let

Jγ(x) =

∫ ∞
1

1

V (x1, (φ
γ
1)−1(t))V (x2, (φ

γ
2)−1(t))

dt, x ∈M ×M.

Then, by the change of variables formula with s = t1/γ , we have

Jγ(x) = γ

∫ ∞
1

tγ−1

V (x1, φ
−1
1 (t))V (x2, φ

−1
2 (t))

dt.

Lemma 4.3. Suppose that the independent processes X1 and X2 satisfy Assumption
(H), and let γ ∈ (0, 1].

(1) If X1 and X2 satisfy (NDLHK) and Jγ(x) = ∞ for any x ∈ M ×M , then Xγ is
recurrent.

(2) If X1 and X2 satisfy (WUHK) and Jγ(x) < ∞ for any x ∈ M × M , then Xγ is
transient.

Proof. We first prove (1). Suppose that the processes X1 and X2 satisfy (NDLHK) and
Jγ(x) =∞ for any x ∈M ×M . We can then follow the calculations of (4.2) and (3.8) to
show that, for any x, y ∈M1

0 ×M2
0 ,∫ ∞

1

qγ(t, x, y) dt ≥ c1
∫ ∞

1∨φγd(x,y)

t

(∫ ∞
t1/γ

1

V (x1, φ
−1
1 (s))V (x2, φ

−1
2 (s))s1+γ

ds

)
dt

≥ c2
∫ ∞

1∨φγd(x,y)

1

V (x1, φ
−1
1 (t1/γ))V (x2, φ

−1
2 (t1/γ))

dt

= c2

∫ ∞
1∨φγd(x,y)

1

V (x1, (φ
γ
1)−1(t))V (x2, (φ

γ
2)−1(t))

dt =∞.

Hence by Remark 2.3 (ii), Xγ is recurrent.
We next prove (2). Suppose that the processes X1 and X2 satisfy (WUHK) and

Jγ(x) <∞ for any x ∈M ×M . Then for any x ∈M1
0 ×M2

0 , we follow the calculation as
in the proof of Lemma 4.2 to see that∫ ∞

1

sup
y∈M1

0×M2
0

qγ(t, x, y) dt =

∫ ∞
1

sup
y∈M1

0×M2
0

(∫ ∞
0

p(s, x, y)πt(s)ds

)
dt

≤
∫ ∞

1

{∫ ∞
0

(
sup

y∈M1
0×M2

0

p(s, x, y)

)
πt(s) ds

}
dt

≤ c3
∫ ∞

1

t

(∫ ∞
0

e−t/s
γ

V (x1, φ
−1
1 (s))V (x2, φ

−1
2 (s))s1+γ

ds

)
dt =: c3I.
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Then, by the Fubini theorem,

I =

∫ ∞
0

1

V (x1, φ
−1
1 (s))V (x2, φ

−1
2 (s))s1+γ

(∫ ∞
1

e−t/s
γ

tdt

)
ds

=

∫ ∞
0

e−1/sγ (sγ + 1)

V (x1, φ
−1
1 (s))V (x2, φ

−1
2 (s))s

ds

≤ 2

∫ 1

0

e−1/sγ

V (x1, φ
−1
1 (s))V (x2, φ

−1
2 (s))s

ds+ 2

∫ ∞
1

sγ−1

V (x1, φ
−1
1 (s))V (x2, φ

−1
2 (s))

ds.

The first term above is convergent by (2.15) with φ = φ1 and φ = φ2, and so is the second
one by assumption. Hence by Remark 2.3 (i), Xγ is transient.

Remark 4.4. If Assumption 3.8 is imposed on the volume function V , then the function
Jγ(x) in Lemma 4.3 is replaced by the integral

Jγ =

∫ ∞
1

1

V ((φγ1)−1(t))V ((φγ2)−1(t))
dt. (4.7)

In particular, by the proof of Lemma 4.3 and Remark 2.3 (iii), we see that if the indepen-
dent processes X1 and X2 satisfy (ODHK) and Jγ <∞, then Xγ is transient.

By following the proofs of Lemmas 4.1 and 4.2, we also get the Green function
estimates.

Lemma 4.5. Suppose that the independent processes X1 and X2 satisfy Assump-
tion (H).

(1) Let X1 and X2 satisfy (NDLHK). Then there exists a constant c1 > 0 such that

uγ0(x, y) ≥ c1
∫ ∞
φγd(x,y)

1

V (x1, (φ
γ
1)−1(t))V (x2, (φ

γ
2)−1(t))

dt, x, y ∈M1
0 ×M2

0 .

(2) Let X1 and X2 satisfy (WUHK). If (4.3) holds and Jγ < ∞, then there exists a
constant c2 > 0 such that for any x, y ∈M1

0 ×M2
0 with φd(x, y) ≤ 1,

uγ0(x, y) ≤ c2
∫ ∞
φγd(x,y)

1

V (x1, (φ
γ
1)−1(t))V (x2, (φ

γ
2)−1(t))

dt. (4.8)

Assume in addition that there exists a constant c3 > 0 such that for i = 1, 2,∫ T

0

tγ

V (w, φ−1
i (t))

dt ≤ c3T
1+γ

V (w, φ−1
i (T ))

, w ∈M, T ∈ [1,∞). (4.9)

Then (4.8) is valid for any x, y ∈M1
0 ×M2

0 with φd(x, y) ≥ 1 as well.

Proof. We prove (4.8) for any x, y ∈M1
0 ×M2

0 with φd(x, y) ≥ 1 only because the rest of
the assertions follows in the same way as Lemmas 4.1 and 4.2.

Let

uγ0(x, y) =

∫ ∞
0

(∫ ∞
0

p(s, x, y)πt(s) ds

)
dt

=

∫ ∞
0

(∫ ∞
φd(x,y)

p(s, x, y)πt(s) ds

)
dt+

∫ ∞
0

(∫ φd(x,y)

0

p(s, x, y)πt(s) ds

)
dt

=: J1 + J2.
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Then, by following (4.6) and the change of the variables formula with t = sγ , we get

J1 ≤ c1
∫ ∞
φd(x,y)

sγ−1

V (x1, φ
−1
1 (s))V (x2, φ

−1
2 (s))

ds

=
c1
γ

∫ ∞
φγd(x,y)

1

V (x1, (φ
γ
1)−1(s))V (x2, (φ

γ
2)−1(s))

ds.

(4.10)

To prove the upper bound of J2, we assume that φd(x, y) ≥ 1 and φ1(d(x1, y1)) ≤
φ2(d(x2, y2)). By (4.9),∫ φ2(d(x2,y2))

0

sγ

V (x1, φ
−1
1 (s))

ds ≤ c2φ
γ+1
2 (d(x2, y2))

V (x1, φ−1(φ2(d(x2, y2))))
.

Then, by (WUHK) and (3.1) with the Fubini theorem,

J2 ≤
c3

V (x2, d(x2, y2))φ2(d(x2, y2))

∫ ∞
0

t

(∫ φ2(d(x2,y2))

0

e−t/s
γ

V (x1, φ
−1
1 (s))sγ

ds

)
dt

=
c3

V (x2, d(x2, y2))φ2(d(x2, y2))

∫ φ2(d(x2,y2))

0

sγ

V (x1, φ
−1
1 (s))

ds

≤ c4φ
γ
2(d(x2, y2))

V (x1, φ
−1
1 (φ2(d(x2, y2))))V (x2, d(x2, y2))

.

A similar bound as above is valid also for φ2(d(x2, y2)) ≤ φ1(d(x1, y1)), and thus

J2 ≤
c5φ

γ
d(x, y)

V (x1, φ
−1
1 (φd(x, y)))V (x2, φ

−1
2 (φd(x, y)))

, φd(x, y) ≥ 1.

Combining this with (4.10), we arrive at the desired assertion.

4.2 Hausdorff dimensions of collision time sets

In this subsection, we will determine the Hausdorff dimensions of collision time sets
of two independent processes X1 and X2 on a given set in terms of the associated scale
functions. In what follows, we impose Assumption 3.8 on M . Define φ(t) = φ1(t) ∨ φ2(t)

so that φ−1(t) = φ−1
1 (t) ∧ φ−1

2 (t). If we let φγ(t) = φ(t)γ and φγi (t) = φi(t)
γ , then

(φγ)−1(t) = (φγ1)−1(t) ∧ (φγ2)−1(t). For s > 0, let

γ(s) = inf

{
γ > 0 :

∫ 1

0

((φγ)−1(t))s

V ((φγ1)−1(t))V ((φγ2)−1(t))
dt <∞

}
.

We also let

s0 = inf

{
s > 0 :

∫ 1

0

((φ)−1(t))s

V (φ−1
1 (t))V (φ−1

2 (t))t
dt <∞

}
.

Then, by the proof of Lemma 3.5, the function s 7→ γ(s) is Lipschitz continuous on [0,∞),
and s0 defined above is positive; moreover, γ(s) is positive and strictly decreasing on
[0, s0) and γ(s) = 0 for s ≥ s0.

Theorem 4.6. Let Assumption 3.8 hold. Suppose that the independent processes X1

and X2 satisfy Assumption (H) and (NDLHK). Let F ⊂ M be a Borel set with sF =

dimH(F ) > 0. Assume that for any s ∈ [0, s0) and γ ∈ (0, γ(s)), there exist constants
c1 > 0 and T0 ∈ (0, 1) such that for any T ∈ (0, T0),∫ 1

T

(φ−1(t))s

V (φ−1
1 (t))V (φ−1

2 (t))
tγ−1 dt ≤ c1(φ−1(T ))s

V (φ−1
1 (T ))V (φ−1

2 (T ))
T γ . (4.11)
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(1) If γ(sF ) ≤ 1, then

dimH{v > 0 : X1
v = X2

v ∈ F} ≤ 1− γ(sF ), Px-a.s. for any x ∈M1
0 ×M2

0 .

On the other hand, if γ(sF ) > 1, then {v > 0 : X1
v = X2

v ∈ F} = ∅, Px-a.s. for any
x ∈M1

0 ×M2
0 .

(2) Suppose further that M satisfies Assumption 3.9, and that the processes X1 and
X2 satisfy Assumption (H), (NDLHK) and (WUHK) with M1

0 and M2
0 replaced by M .

If J1 =∞, 0 ≤ γ(sF ) < 1 and (4.3) holds for any γ ∈ (γ(sF ), 1], then

dimH{v > 0 : X1
v = X2

v ∈ F} ≥ 1− γ(sF ), Px-a.s. for any x ∈M ×M . (4.12)

Proof. Let F ⊂M be a Borel set with sF = dimH(F ) > 0. We first prove (1). Let us now
assume that γ(sF ) ≤ 1. Without loss of generality, we may and do assume that γ(sF ) > 0.
Then, by the proof of Lemma 3.5, there exists δ ∈ (0, sF /2) such that γ(u) > 0 for any
u ∈ (sF , sF + δ). If we fix u ∈ (sF , sF + δ), then for any s ∈ (sF , u), γ(u) < γ(s) < γ(sF ).
Therefore, it follows by (4.11) that for any C0 > 0, there exists T0 ∈ (0, 1) such that for
any T ∈ (0, T0),

C0 ≤
∫ 1

T

((φγ(u))−1(t))s

V ((φ
γ(u)
1 )−1(t))V ((φ

γ(u)
2 )−1(t))

dt ≤ c1((φγ(u))−1(T ))sT

V ((φ
γ(u)
1 )−1(T ))V ((φ

γ(u)
2 )−1(T ))

. (4.13)

Here c1 is a positive constant depending on the choices of u ∈ (sF , sF + δ) and s ∈ (sF , u).
Note that for any x, z ∈M ×M ,

φd(x, z) = φ1(d(x1, z1)) ∨ φ2(d(x2, z2)) ≤ (φ1 ∨ φ2)(d(x, z)) = φ(d(x, z)). (4.14)

Hence, if φγ(u)(d(x, z)) ≤ T0, then Lemma 4.1 and (4.13) with T = φ
γ(u)
d (x, z) yield

1

d(x, z)s
≤

c2φ
γ(u)
d (x, z)

V ((φ
γ(u)
1 )−1(φd(x, z)))V ((φ

γ(u)
2 )−1(φd(x, z)))

≤ c3
∫ 1

φ
γ(u)
d (x,z)

1

V ((φ
γ(u)
1 )−1(t))V ((φ

γ(u)
2 )−1(t))

dt ≤ c4uγ(u)
1 (x, z).

(4.15)

Recall that
diag(F ) = {y = (y1, y2) ∈M ×M : y1 = y2 ∈ F}.

Let K be a compact subset of M ×M such that K ⊂ diag(F ). If there exists no finite
and nontrivial Borel measure on M ×M compactly supported in K, then the equilibrium
measure of K for Xγ is trivial and thus

Capγ(u)(K) = 0.

We now assume that there exists a finite and nontrivial Borel measure ν on M ×M
such that it is compactly supported in K and charges no set of zero capacity relative to
(Eγ(u),Fγ(u)). Then, by (4.15),∫∫

φγ(u)(d(x,z))≤T0

1

d(x, z)s
ν(dx) ν(dz) ≤ c4

∫∫
φγ(u)(d(x,z))≤T0

u
γ(u)
1 (x, z) ν(dx) ν(dz).

(4.16)
On the other hand, by Lemma 4.1, there exists c5 := c5(T0) > 0 such that for any x, z ∈ K
with φγ(u)(x, z) ≥ T0, we obtain uγ(u)

1 (x, z) ≥ c5. Hence, by (4.16),

Is(ν) =

∫
K

∫
K

1

d(x, z)s
ν(dx) ν(dz) ≤ c6

∫
K

∫
K

u
γ(u)
1 (x, z) ν(dx) ν(dz). (4.17)
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We also note that Hs(K) = 0 because

s > sF = dimH(diag(F )) ≥ dimH(K).

Then Proposition A.2 yields Is(ν) =∞. Therefore, by (4.17),∫
K

∫
K

u
γ(u)
1 (x, z) ν(dx) ν(dz) =∞. (4.18)

Let νγ(u)
K be the equilibrium measure of K for Xγ(u). Since this measure is of

finite energy integral relative to (Eγ(u),Fγ(u)), it charges no set of zero capacity ([18,

Theorems 2.1.5(ii) and 2.2.3]). If we assume that νγ(u)
K is nontrivial, then (4.18) with

ν = ν
γ(u)
K gives

Capγ(u)(K) =

∫
K

∫
K

u
γ(u)
1 (x, z) ν

γ(u)
K (dx) ν

γ(u)
K (dz) =∞,

which contradicts Capγ(u)(K) <∞. Therefore, νγ(u)
K is trivial and

Capγ(u)(K) = ν
γ(u)
K (K) = 0.

By the argument above, we have Capγ(u)(K) = 0 for any compact subset K of diag(F ).
Since it follows from the regularity of the capacity ([18, (2.1.6)]) that

Capγ(u)(diag(F )) = sup{Capγ(u)(K) : K is a compact subset of diag(F )} = 0,

we obtain, by [18, Theorem 4.2.1 (ii)],

0 = Px ⊗ P γ(u)(X
γ(u)
t ∈ diag(F ) for some t > 0)

=

∫
Ω

[
P γ(u)(Xτt(ω) ∈ diag(F ) for some t > 0)

]
Px(dω).

Namely, for any x ∈M1
0 ×M2

0 , we have for Px-a.s. ω ∈ Ω,

P γ(u)(τt ∈ {v > 0 : X1
v (ω) = X2

v (ω) ∈ F} for some t > 0) = 0.

Then, by [21, Section 3] or [22, Lemma 2.1] again, we get

dimH{v > 0 : X1
v = X2

v ∈ F} ≤ 1− γ(u), Px-a.s. for x ∈M1
0 ×M2

0 .

Letting s ↓ sF and then u ↓ sF along some sequences, we arrive at (4.12).
If γ(sF ) > 1, then, by the proof of Lemma 3.5 again, there exists a constant u > sF

such that γ(u) = 1. Then the same argument as above yields Cap(diag(F )) = 0 and thus

Px(Xv ∈ diag(F ) for some v > 0) = Px(X1
v = X2

v ∈ F for some v > 0) = 0, x ∈M1
0×M2

0 .

We next prove (2). We assume that 0 ≤ γ(sF ) < 1. Then, by Lemma 3.5, there exists
a constant ε > 0 such that for all s ∈ (sF − ε, sF ), γ(sF ) < γ(s) < 1. We now fix such
s ∈ (sF − ε, sF ). Since sF = dimH(diag(F )), the regularity of the Hausdorff measure
yields Hs(K) > 0 for some compact subset K of diag(F ). We also note that any closed
ball in M×M is compact by Assumption 3.9. Hence, as a consequence of Proposition A.4,
there exists a finite and nontrivial Borel measure νsK on M ×M such that supp[νsK ] ⊂ K
and Is(νsK) <∞.
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On the other hand, by the proof of Lemma 3.5 again, we have γ(s) < γ(v) < 1 for any
v ∈ (sF − ε, s). Then, for any v ∈ (sF − ε, s) and T ∈ (0, 1/2),

∞ >

∫ 1

0

(φ−1(t))s

V (φ−1
1 (t))V (φ−1

2 (t))
tγ(v)−1 dt ≥

∫ 2T

T

(φ−1(t))s

V (φ−1
1 (t))V (φ−1

2 (t))
tγ(v)−1 dt

≥ c1(φ−1(T ))sT γ(v)

V (φ−1
1 (T ))V (φ−1

2 (T ))
,

which implies that for some c2 > 0,

φγ(v)(x, y)

V (φ−1
1 (φ(x, y)))V (φ−1

2 (φ(x, y)))
≤ c2
d(x, y)s

, x, y ∈ K. (4.19)

Let Xγ(v) be the γ(v)-stable subordinate process of the process X. Since γ(v) < γ(0),
it follows by Lemma 4.2 and (4.11) with (4.3) that under (WUHK) pointwisely, there
exists a constant c3 > 0 such that for all x, y ∈ K,

φγ(v)(x, y)

V (φ−1
1 (φ(x, y)))V (φ−1

2 (φ(x, y)))
≥ c3uγ(v)

1 (x, y). (4.20)

Here we note that x1 = x2 and y1 = y2 and thus

φd(x, y) = φ(d(x1, y1)) = φ(d(x2, y2)) ' φ(d(x, y)).

Combining (4.20) with (4.19), we have for some c4 > 0,

1

d(x, y)s
≥ c4uγ(v)

1 (x, y), x, y ∈ K. (4.21)

Therefore,

∞ > Is(νsK) =

∫∫
K×K

1

d(x, y)s
νsK(dx)νsK(dy) ≥ c4

∫∫
K×K

u
γ(v)
1 (x, y) νsK(dx)νsK(dy).

Note that the last integral above is well-defined because uγ1(x, y) is defined for any
x, y ∈ M by assumption. Then, by [18, Exercise 4.2.2], the measure νsK is of finite
energy integral relative to Xγ(v). Moreover, since νsK is nontrivial, Capγ(v)(diag(F )) ≥
Capγ(v)(K) > 0 thanks to [18, Theorem 2.2.3]. In particular, for all s ∈ (sF − ε, sF ),
Capγ(s)(diag(F )) > 0.

We now follow the argument of [27, Theorem 1] again. Let σdiag(F ) be the hitting time

of Xγ(s) to diag(F ), i.e., σdiag(F ) = inf{t > 0 : X
γ(s)
t ∈ diag(F )}. Define

(diag(F ))γ(s) =
{
x ∈M ×M : Px ⊗ P γ(s)(σdiag(F ) <∞) = 1

}
and

(diag(F ))rγ(s) =
{
x ∈M ×M : Px ⊗ P γ(s)(σdiag(F ) = 0) = 1

}
.

Then, by following the proof of Theorem 3.10(2), we get

Capγ(s)((diag(F ))γ(s)) ≥ Capγ(s)((diag(F ))rγ(s)) > 0.

In particular, since J1 = ∞ and (NDLHK) hold, X is recurrent. We can then have an
inequality corresponding to (3.28) with some compact set K ⊂ (diag(F ))γ(s). We further
follow the proof of Theorem 3.10(2) to obtain

dim {t > 0 : Xt ∈ F} ≥ 1− γ(sF ), Px-a.s. for any x ∈M ×M .

The proof is complete.
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Corollary 4.7. Keep the same condition in Theorem 4.6. Suppose that the independent
processes X1 and X2 satisfy (WUHK) and (HR). If J1 =∞, γ(sF ) ∈ [0, 1] and (4.3) hold,
then

dimH{v > 0 : X1
v = X2

v ∈ F} = 1− γ(sF ), Px-a.s. for any x ∈M ×M .

The assumption in Theorem 4.6 (2) implies that the process X is recurrent. For
instance, the assumption is fulfilled by a class of α-stable-like symmetric jump processes
on ultra-metric spaces with any α > 0 (see, e.g., [3, 19] for details). On the other hand,
it is natural to allow X to be transient. For instance, if X1 and X2 are independent
symmetric stable process on R with index α ∈ (1, 2), then their direct product process is
transient. Here we utilize two types of the Wiener tests in Propositions B.6 and B.9. The
price is to assume that the collision place F is closed, and to make the next assumption
on M in addition to Assumption 3.9.

Assumption 4.8. M is connected.

Note that under Assumption 4.8, M ×M is also connected.

Theorem 4.9. Suppose that Assumptions 3.8, 3.9 and 4.8 hold. Let the processes X1

and X2 satisfy Assumption (H), (WUHK) and (HR), so that X1 and X2 are independent.
Let F ⊂ M be an (sF , tF )-set for some sF ∈ (0, s0) and tF > 0 with γ(sF ) < 1. Assume
the following conditions on X1 and X2:

• For any γ ∈ (γ(sF ), 1], (4.3) holds, and there exists a constant c1 > 0 such that for
any T ∈ (0, 1/2),∫ T

0

((φγ)−1(t))sF

V ((φγ1)−1(t))V ((φγ2)−1(t))
dt≤c1((φγ)−1(T ))sF

∫ 1

T

1

V ((φγ1)−1(t))V ((φγ2)−1(t))
dt.

(4.22)

• J1 < ∞, and (4.9) holds with γ = 1. Furthermore, there exists a constant c2 > 0

such that for any T ≥ 1,∫ T

1

(φ−1(t))tF

V (φ−1
1 (t))V (φ−1

2 (t))
dt ≤ c2(φ−1(T ))tF

∫ ∞
T

1

V (φ−1
1 (t))V (φ−1

2 (t))
dt. (4.23)

Then

dimH{v > 0 : X1
v = X2

v} ≥ 1− γ(sF ), Px-a.s. for any x ∈M ×M . (4.24)

Proof. For γ ∈ (0, 1], we use the same notations σdiag(F ), (diag(F ))γ(s) and (diag(F ))rγ(s)

as in the proof of Theorem 4.6 (2). For any s ∈ (0, sF ) with γ(sF ) < γ(s) < 1,∫ 1

0

1

V ((φ
γ(s)
1 )−1(t))V ((φ

γ(s)
2 )−1(t))

dt =∞,

and Jγ(s) ≤ J1 <∞ by assumption. Since (4.3) and (4.22) are also valid by assumption,
we apply Proposition B.9 for Xγ(s) and thus

diag(F ) = (diag(F ))rγ(s) ⊂ (diag(F ))γ(s).

Then, for any y ∈ diag(F ),

1 = P γ(s)
y (σdiag(F ) <∞)

= Ey

[
P γ(s)

(
τt ∈

{
v > 0 : X1

v = X2
v ∈ F

}
for some t > 0

)]
.

(4.25)

Note that (4.3) with γ = 1 is valid by assumption. Since (4.9) and (4.23) are also valid
by assumption, we apply Proposition B.6 with γ = 1 to show that Px(σdiag(F ) <∞) = 1
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for any x ∈ M ×M . We also see that Xdiag(F ) ∈ diag(F ) because diag(F ) is closed.
Therefore, by (4.25) and the strong Markov property of the process X, we obtain for any
x ∈M ×M ,

1 = Px(σdiag(F ) <∞)

= Ex

[
EXσdiag(F )

[
P γ(s)

(
τt ∈

{
v > 0 : X1

v = X2
v ∈ F

}
for some t > 0

)]
;σdiag(F ) <∞

]
= Ex

[
P γ(s)

(
τt ∈

{
v > 0 : X1

v ◦ θσdiag(F )
= X2

v ◦ θσdiag(F )
∈ F

}
for some t > 0

)]
≤ Ex

[
P γ(s)

(
τt ∈

{
v > 0 : X1

v = X2
v ∈ F

}
for some t > 0

)]
.

Then, by [21, Section 3] and [22, Lemma 2.1],

dimH{v > 0 : X1
v = X2

v ∈ F} ≥ 1− γ(s), Px-a.s. for any x ∈M ×M .

Letting s ↑ sF along a sequence, we get

dimH{v > 0 : X1
v = X2

v ∈ F} ≥ 1− γ(sF ), Px-a.s. for any x ∈M ×M .

The proof is complete.

Recall that (WUHK) and (HR) implies (NDLHK) (Remark 2.6). Then, by Theorems 4.6
(1) and 4.9, we have

Corollary 4.10. Under the full conditions of Theorems 4.6 (1) and 4.9,

dimH{v > 0 : X1
v = X2

v ∈ F} = 1− γ(sF ), Px-a.s. for any x ∈M ×M .

Example 4.11. Let M satisfy Assumptions 3.9 and 4.8. Suppose that the independent
processesX1 andX2 satisfy Assumption (H), (WUHK) and (HR). We impose the following
conditions on V (x, r) and φj(r) (j = 1, 2):

• There exist positive constants d1, d2 and ci (1 ≤ i ≤ 4) such that

c1r
d1 ≤ V (x, r) ≤ c2rd1 , x ∈M, r ∈ (0, 1)

and
c3r

d2 ≤ V (x, r) ≤ c4rd2 , x ∈M, r ∈ [1,∞).

• There exist positive constants α11, α21, α12, α22 and ci (5 ≤ i ≤ 8) such that

c5r
αj1 ≤ φj(r) ≤ c6rαj1 , r ∈ (0, 1)

and
c7r

αj2 ≤ φj(r) ≤ c8rαj2 , r ∈ [1,∞).

For simplicity, we assume that α11 ≤ α21 and α12 ≤ α22. Then, by calculations, we
have

s0 = α11

(
d1

α11
+

d1

α21

)
, γ(s) =

d1 − s
α11

+
d1

α21
, 0 ≤ s ≤ s0

so that
0 < γ(s) < 1 ⇐⇒ s0 − α11 < s < s0.

In particular, (4.11) holds for any s ∈ [0, s0) and γ ∈ (0, γ(s)).

(i) Let F ⊂M be a Borel subset with sF = dimH(F ) > 0.
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• Assume that d1 < α21. Then s0 − α11 < d1, and 0 < γ(sF ) < 1 for any
sF ∈ (s0 − α11, d1]. In particular, if d1 < 2α11, then s0 − α11 < α11(1 + d1/α21),
and γ(sF ) ≥ (d1/α11) − 1 for any sF ∈ (s0 − α11, α11(1 + d1/α21)]. Hence we
see that if d1 < (2α11) ∧ α21 and

s0 − α11 < sF ≤ d1 ∧
{
α11

(
1 +

d1

α21

)}
, (4.26)

then (4.3) holds for any γ ∈ (γ(sF ), 1].
• J1 =∞ if and only if

d2

α12
+

d2

α22
≤ 1. (4.27)

By the calculations above, we have the following: Suppose that 0 < d1 < (2α11)∧α21,
and (4.27) holds. If F satisfies (4.26), then

dimH{s > 0 : X1
s = X2

s ∈ F} = 1−
(
d1 − sF
α11

+
d1

α21

)
, Px-a.s. for any x ∈M ×M .

(4.28)
We now assume in addition that d1 = d2 = d, α11 = α21 = α and α12 = α22 = β.
Under this condition, if d < α, d ≤ β/2 and 2d− α < sF ≤ d hold, then

dimH{s > 0 : X1
s = X2

s ∈ F} = 1− 2d− sF
α

, Px-a.s. for any x ∈M ×M . (4.29)

In particular, since sM = d, we have

dimH{s > 0 : X1
s = X2

s} = 1− d

α
, Px-a.s. for any x ∈M ×M .

(ii) Let F ⊂ M be an (sF , tF )-set with some constants sF ∈ (0, s0) and tF > 0 so that
dimH(F ) = sF . Then, by calculations, we can see that

• If d1 < (2α11) ∧ α21 and (4.26) hold, then (4.3) is fulfilled for any γ ∈ (γ(sF ), 1].
Under the current setting, (4.22) also holds for any γ ∈ (γ(sF ), γ(0)). There-
fore, if

d1

α11
+

d1

α21
> 1, (4.30)

then (4.22) is true for any γ ∈ (γ(sF ), 1].
• J1 <∞ if and only if

d2

α12
+

d2

α22
> 1. (4.31)

If we assume in addition that d2 < α12, then

d2 > α22

(
d2

α12
+

d2

α22
− 1

)
.

Therefore, (4.23) with γ = 1 holds if and only if

α22

(
d2

α12
+

d2

α22
− 1

)
< tF ≤ d2. (4.32)

Hence we have the following: Suppose that d1 < (2α11) ∧ α21, d2 < α12, (4.30)
and (4.31) hold. If F satisfies (4.26) and (4.32), then (4.28) holds. We assume in
addition that d1 = d2 = d, α11 = α21 = α and α12 = α22 = β. Under this condition,
if (α ∨ β)/2 < d < α ∧ β, 2d− α < sF ≤ d and 2d− β < tF ≤ d, then (4.29) holds.

It immediately follows from Example 4.11 and Remark 2.7 that the second assertion
(2) in Theorem 1.1 holds.
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A Hausdorff measure and dimension

A.1 Frostman lemma

Here we follow the arguments in [17, 23, 24] to give a proof of the Frostman lemma
on the complete separable metric space.

Definition A.1. (1) A function ϕ : [0,∞)→ R is called Hausdorff, if the following three
conditions are satisfied.

(i) ϕ(t) > 0 for any t > 0.
(ii) If t ≥ s > 0, then ϕ(t) ≥ ϕ(s).

(iii) ϕ is right continuous.

(2) A Hausdorff function ϕ is of finite order, if there exists a constant η > 0 such that

lim sup
t→0

ϕ(3t)

ϕ(t)
≤ η.

Let (M,d) be a complete separable metric space. Let ϕ be a continuous Hausdorff
function of finite order such that ϕ(0) = 0. For any subset F of M and δ > 0, define

Hϕδ (F ) = inf

{ ∞∑
n=1

ϕ(diam(Un)) : F ⊂
∞⋃
n=1

Un, Un ⊂M and diam(Un) ≤ δ for all n ≥ 1

}

and

Hϕ(F ) := lim
δ→0
Hϕδ (F ).

Here diam(A) = sup {d(x, y) : x, y ∈ A} for A ⊂M . Then, by [24, Notes 4–6, 9], Hϕ is an
outer measure on M , such that any Borel subset B ⊂M is measurable with respect to
Hϕ and

Hϕ(B) = inf{Hϕ(G) : G is an open subset of M and G ⊃ B}
= sup{Hϕ(K) : K is a compact subset of M and K ⊂ B}.

(A.1)

In the rest of this part, we always assume that ϕ is a continuous Hausdorff function
of finite order such that ϕ(0) = 0. For any Borel measure ν on M , define the ϕ-energy of
ν as

Iϕ(ν) =

∫∫
M×M

1

ϕ(d(x, y))
ν(dx) ν(dy).

For x ∈M and r > 0, let B(x, r) denote the closed ball with radius r centered at x, i.e.,
B(x, r) = {y ∈M : d(x, y) ≤ r}.

We first present a condition for the Hausdorff measure of a Borel set being infinite in
terms of the ϕ-energy.

Proposition A.2. Let F be a Borel subset of M . If there exists a finite and nontrivial
Borel measure ν on M such that supp[ν] ⊂ F and Iϕ(ν) <∞, then Hϕ(F ) =∞.

To obtain Proposition A.2, we follow the proof of [17, Proposition 4.9] to show

Lemma A.3. Let ν be a Borel measure on M . Suppose that for some F ∈ B(M) and
c > 0,

lim sup
r→0

ν(B(x, r))

ϕ(r)
≤ c, x ∈ F. (A.2)

Then ν(F ) ≤ cHϕ(F ).
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Proof. Let ν be a Borel measure on M , and let ν∗ be the associated outer measure. Then
any Borel subset B ⊂M is ν∗-measurable and ν∗(B) = ν(B). Suppose that (A.2) holds
for some F ∈ B(M) and c > 0. For n,m ∈ N, define a Borel subset

Fn,m =

{
x ∈ F : ν(B(x, r)) ≤

(
c+

1

n

)
ϕ(r) for any r ∈

(
0,

1

m

]}
,

so that F = ∩∞n=1 ∪∞m=1 Fn,m. For m ∈ N, let {Uk}∞k=1 be a (1/m)-covering of F . Namely,
{Uk}∞k=1 is a sequence of subsets of M such that

F ⊂
∞⋃
k=1

Uk, diam(Uk) ≤ 1

m
, k = 1, 2, 3, . . .

If Fn,m ∩ Uk 6= ∅, then, for any x ∈ Fn,m ∩ Uk,

ν∗(Fn,m ∩ Uk) ≤ ν∗(Uk) ≤ ν∗(B(x, diam(Uk))) = ν(B(x,diam(Uk)))

≤
(
c+

1

n

)
ϕ (diam(Uk)) .

Therefore,

ν(Fn,m) = ν(Fn,m ∩ F ) = ν∗(Fn,m ∩ F ) ≤
∞∑
k=1

ν∗(Fn,m ∩ Uk) ≤
(
c+

1

n

) ∞∑
k=1

ϕ (diam(Uk)) .

Since the covering {Uk}∞k=1 is taken arbitrary, we have for any n,m ∈ N,

ν(Fn,m) ≤
(
c+

1

n

)
Hϕ1/m(F ).

Letting m→∞ and then n→∞, we obtain ν(F ) ≤ cHϕ(F ).

Proof of Proposition A.2. Let F be a Borel subset of M . Suppose that there exists a
finite and nontrivial Borel measure ν on M such that supp[ν] ⊂ F and Iϕ(ν) <∞. Let

F1 =

{
x ∈ F : lim sup

r→0

ν(B(x, r))

ϕ(r)
> 0

}
.

Then, for any x ∈ F1, there exist ε > 0 and a decreasing positive sequence {rn}∞n=1 such
that rn ↓ 0 as n→∞ and

ν(B(x, rn))

ϕ(rn)
≥ ε, n = 1, 2, 3, . . .

We also have ν({a}) = 0 for any a ∈ M because Iϕ(ν) < ∞. Hence, for each rn, there
exists qn ∈ (0, rn) such that

ν(B(x, rn) \B(x, qn)) ≥ 1

4
εϕ(rn). (A.3)

Moreover, we may and do assume that qn > rn+1 for all n ≥ 1 by taking subsequences
of {rn}∞n=1 and {qn}∞n=1 respectively, if necessary. Under this assumption, the annuli
B(x, rn) \B(x, qn), n = 1, 2, 3, . . . , are disjoint.

For any x ∈ F1, it follows by (A.3) that∫
B(x,rn)\B(x,qn)

1

ϕ(d(x, y))
ν(dy) ≥ 1

ϕ(rn)
ν(B(x, rn) \B(x, qn)) ≥ ε

4
,
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and thus ∫
M

1

ϕ(d(x, y))
ν(dy) ≥

∞∑
n=1

∫
B(x,rn)\B(x,qn)

1

ϕ(d(x, y))
ν(dy) =∞.

Since Iϕ(ν) <∞ by assumption, we get ν(F1) = 0.
For any x ∈ F \ F1,

lim
r→0

ν(B(x, r))

ϕ(r)
= 0.

Since ν(F1) = 0, Lemma A.3 implies that for any c > 0,

Hϕ(F ) ≥ Hϕ(F \ F1) ≥ 1

c
ν(F \ F1) =

1

c
ν(F ).

Letting c→ 0, we have Hϕ(F ) =∞.

In the following, we present a criterion for a Borel set to be of zero Hausdorff measure
in terms of the potential.

Proposition A.4. Let M satisfy Assumption 3.9, and let F be a Borel subset of M such
that Hϕ(F ) > 0. Then for any ε ∈ (0, 1), there exists a finite and nontrivial Borel measure
ν on M such that supp[ν] ⊂ F and Iϕ

ε

(ν) <∞.

The proof of Proposition A.4 needs three lemmas. The first two lemmas concern the
upper bound of the Hausdorff measure.

Lemma A.5. Let M satisfy Assumption 3.9, and let ν be a finite and nontrivial Borel
measure on M . If A is a Borel subset of M with A ⊂ supp[ν], and if c is a positive constant
such that

lim sup
r→0

ν(B(x, r))

ϕ(r)
> c, x ∈ A, (A.4)

then Hϕ(A) ≤ (c∗/c)ν(M). Here c∗ is a positive constant that is independent of the
choices of A and c.

Proof. Suppose that (A.4) holds for some A ∈ B(M) and c > 0. For δ > 0, let

Cδ = {B(x, r) : x ∈ A, r ∈ (0, δ], ν(B(x, r)) > cϕ(r)} .

Then for any x ∈ A, there exists r0 ∈ (0, δ] such that ν(B(x, r0)) > cϕ(r0). This yields
B(x, r0) ∈ Cδ and thus A ⊂

⋃
B∈Cδ B. Moreover, since sup{diam(B) : B ∈ Cδ} ≤ 2δ

and M satisfies Assumption 3.9, the covering lemma (see, e.g., [23, Theorem 1.2])
implies that there exists a sequence of countable disjoint sets {Bn}∞n=1 ⊂ Cδ such that⋃
B∈Cδ B ⊂

⋃∞
n=1 5Bn, where 5B(x, r) = B(x, 5r). Therefore,

Hϕ10δ(A) ≤
∞∑
n=1

ϕ(diam(5Bn)) =

∞∑
n=1

ϕ(5 diam(Bn)). (A.5)

Since the Hausdorff function ϕ is of finite order and Bn ∈ Cδ, there exists c∗ > 0,
which depends only on ϕ, such that for any n ∈ N,

ϕ(5 diam(Bn)) ≤ c∗ϕ(diam(Bn)) ≤ c∗
c
ν(Bn).

Combining this with (A.5) and noting that the sequence {Bn}∞n=1 is disjoint, we obtain

Hϕ10δ(A) ≤ c∗
c

∞∑
n=1

ν(Bn) ≤ c∗
c
ν(M).

Letting δ ↓ 0, we get Hϕ(A) ≤ (c∗/c)ν(M).
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We refer to the next key lemma for the regularity of the Hausdorff measure.

Lemma A.6. ([24, Corollary 7]) If F is Borel subset of M such that Hϕ(F ) > 0, then
there exists a compact subset K of F such that 0 < Hϕ(K) <∞.

Lemma A.7. Let M satisfy Assumption 3.9, and let F be a Borel subset of M such that
Hϕ(F ) > 0. Then there exist a constant b > 0 and a compact subset K of F such that
Hϕ(K) > 0 and

Hϕ(B(x, r) ∩K) ≤ bϕ(r), x ∈ K, r > 0.

Proof. Let F be a Borel subset of M such that Hϕ(F ) > 0. Then, by Lemma A.6,
there exists a compact subset E of F such that 0 < Hϕ(E) < ∞. Hence, if we define
ν(A) = Hϕ(A ∩ E) for A ∈ B(M), then ν is a finite and nontrivial Borel measure on M

such that supp[ν] = E.

Let c∗ > 0 be the same constant as in Lemma A.5 and

E1 =

{
x ∈ E : lim sup

r→0

ν(B(x, r))

ϕ(r)
> 2c∗

}
.

Since Lemma A.5 yields

Hϕ(E1) ≤ 1

2
ν(M) =

1

2
Hϕ(E),

we have

Hϕ(E \ E1) ≥ Hϕ(E)−Hϕ(E1) ≥ 1

2
Hϕ(E) > 0

and thus 0 < Hϕ(E \ E1) <∞.

Define

hn(x) = sup
0<r≤1/n

ν(B(x, r))

ϕ(r)
, x ∈ E \ E1, n ∈ N

and

h(x) = lim sup
r→0

ν(B(x, r))

ϕ(r)
, x ∈ E \ E1.

Then hn(x)→ h(x) as n→∞ for any x ∈ E \E1. Hence, by the Egorov theorem and (A.1),
there exists a compact subset K of E \ E1 such that Hϕ(K) > 0 and

sup
x∈K
|hn(x)− h(x)| → 0, n→∞. (A.6)

Since h(x) ≤ 2c∗ for any x ∈ E \ E1, (A.6) implies that for some r0 > 0,

ν(B(x, r))

ϕ(r)
≤ 4c∗, x ∈ K, 0 < r ≤ r0. (A.7)

As the function ϕ is nondecreasing, we also have

ν(B(x, r))

ϕ(r)
≤ H

ϕ(E)

ϕ(r0)
=: c1, x ∈ K, r ≥ r0. (A.8)

Hence if we let b = (4c∗) ∨ c1, then (A.7) and (A.8) yield ν(B(x, r)) ≤ bϕ(r) for any x ∈ K
and r > 0. Moreover, by noting that K ⊂ E, we obtain

Hϕ(B(x, r) ∩K) ≤ Hϕ(B(x, r) ∩ E) = ν(B(x, r)) ≤ bϕ(r), x ∈ K, r > 0.

The proof is complete.
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Proof of Proposition A.4. Let F be a Borel subset of M such that Hϕ(F ) > 0. Then,
by Lemma A.7, there exist a constant b > 0 and a compact subset K of F such that
0 < Hϕ(K) <∞ and

Hϕ(B(x, r) ∩K) ≤ bϕ(r), x ∈ K, r > 0.

Define ν(A) = Hϕ(A ∩K) for A ∈ B(M). Then ν is a finite and nontrivial Borel measure
on M such that supp[ν] ⊂ K, and

ν(B(x, r)) = Hϕ(B(x, r) ∩K) ≤ bϕ(r), x ∈ K, r > 0. (A.9)

Fix a point x in K and let m(r) = ν(B(x, r)) for r > 0. Then, for any ε ∈ (0, 1),∫
M

1

ϕ(d(x, y))ε
ν(dy) =

∫
d(x,y)≤1

1

ϕ(d(x, y))ε
ν(dy) +

∫
d(x,y)>1

1

ϕ(d(x, y))ε
ν(dy)

=

∫ 1

0

1

ϕ(r)ε
dm(r) +

∫
d(x,y)>1

1

ϕ(d(x, y))ε
ν(dy) ≤

∫ 1

0

1

ϕ(r)ε
dm(r) +

Hϕ(K)

ϕ(1)ε
.

Moreover, we obtain by (A.9) that∫ 1

0

1

ϕ(r)ε
dm(r) ≤ bε

∫ 1

0

1

m(r)ε
dm(r) ≤ bεm(1)1−ε

1− ε
<∞.

Therefore, there exists a constant c1 = c1(ε,K) > 0 such that

Iϕ
ε

(ν) =

∫
M

∫
M

1

ϕ(d(x, y))ε
ν(dx)ν(dy) ≤ c1ν(K) <∞.

The proof is complete.

A.2 Locally s-set and s-measure

Let (M,d) be a locally compact separable metric space. In this subsection, for x ∈M
and r > 0, we still use the notation B(x, r) for the closed ball with radius r centered
at x, i.e., B(x, r) = {y ∈ M : d(x, y) ≤ r}. We recall the notions of locally s-sets and
s-measures.

Definition A.8. Let s and t be positive constants.

(i) A subset F of M is called a locally s-set, if F is a closed set and there exists
a positive Borel measure η on M such that supp[η] ⊂ F , and, for some positive
constants r0, c1(F ) and c2(F ),

c1(F )rs ≤ η(B(x, r)) ≤ c2(F )rs, x ∈ F, r ∈ (0, r0).

The measure η is called the locally s-measure of F .

(ii) A subset F of M is called a globally t-set, if F is a closed set and there exists
a positive Borel measure η on M such that supp[η] ⊂ F , and, for some positive
constants r0, c3(F ) and c4(F ),

c3(F )rt ≤ η(B(x, r)) ≤ c4(F )rt, x ∈ F, r ≥ r0.

The measure η is called the globally t-measure of F .

(iii) A subset F of M is called an (s, t)-set, if F is a locally s-set and globally t-set such
that the corresponding locally s-measure and globally t-measure are the same. In
particular, an (s, s)-set is called the s-set.
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Let F ⊂M be a locally s-set. We then have dimH(F ) = s by following the argument of
[23, 8.7 (p.61–62)]. For x ∈M and r > 0, if B(x, r) ∩ F 6= ∅, then, for any y ∈ B(x, r) ∩ F
and z ∈ B(x, r),

d(y, z) ≤ d(y, x) + d(x, z) ≤ 2r,

that is, B(x, r) ⊂ B(y, 2r). This implies that

η(B(x, r)) ≤ 2sc2(F )rs, x ∈M, 0 < r ≤ r0/2.

Let F be a globally t-set with t-measure η. Then we also have

η(B(x, r)) ≤ 2tc4(F )rt, x ∈M, r ≥ r0. (A.10)

This fact is already observed in [28, Section 1].
Fix x ∈M and x0 ∈ F . If r ≥ 2d(x, x0), then, for any y ∈ B(x0, r/2),

d(x, y) ≤ d(x, x0) + d(x0, y) ≤ r/2 + r/2 = r,

that is, B(x0, r/2) ⊂ B(x, r). Hence, if we define dF (x) := infy∈F d(x, y) (x ∈M), then

η(B(x, r)) ≥
(
c3(F )/2t

)
rt, x ∈M, r ≥ 2(dF (x) ∨ r0). (A.11)

B Wiener tests

In this appendix, we establish the Wiener tests for recurrence and regularity of the
stable subordinate process of the direct product process. Hereafter, (M,d) is a locally
compact separable metric space and µ is a positive Radon measure on M with full
support.

B.1 Transience and regularity

Let X := (Ω,F , {Ft}t≥0, {Xt}t≥0, {Px}x∈M , {θt}t≥0) be a µ-symmetric Hunt process
on M , where {Ft}t≥0 is a minimum completed admissible filtration, and θt : Ω → Ω is
the shift of paths such that Xt ◦ θs = Xt+s for s, t ≥ 0. In this subsection, we will present
equivalent conditions for the transience and regularity of sets relative to the process X.

Let

F∞ = σ

⋃
t≥0

Ft

 ,

and define the tail σ-field T by

T =
⋂
t>0

σ

⋃
u≥t

σ(Xs : s ∈ [t, u])

 .

We say that T is trivial, if for any A ∈ T , Px(A) = 1 for any x ∈ M or Px(A) = 0 for
any x ∈ M . For B ∈ B(M), let σB = inf{t > 0 : Xt ∈ B} be the first hitting time of
X to B, and let LB = sup{t > 0 : Xt ∈ B} be the last exit time of X from B. Then,
{LB <∞} ∈ T .

Below, for x ∈M , n ≥ 1 and B ∈ B(M), define

Bx,λn =
{
y ∈ B : λn ≤ d(x, y) ≤ λn+1

}
when λ > 1, and

Bx,λn =
{
y ∈ B : λn+1 ≤ d(x, y) ≤ λn

}
when 0 < λ ≤ 1.

We first give equivalent conditions for the transience.
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Lemma B.1. Assume that the process X is conservative and transient, and that T is
trivial. Then, for any x ∈M , λ > 1 and B ∈ B(M), the following assertions are equivalent
to each other.

(i) Px(LB <∞) = 1.

(ii) Px(LB <∞) > 0.

(iii) Px
(

lim infn→∞{σBx,λn =∞}
)

= 1.

Proof. Since T is trivial and {LB <∞} ∈ T , we obtain the equivalence between (i) and
(ii).

We now prove the equivalence between (i) and (iii). We simply write Bn for Bx,λn .
Suppose first that (i) holds. Then for Px-a.s. ω ∈ Ω, we have Xt(ω) /∈ B for all t > LB(ω).
Since X is conservative, it follows by [15, p. 95, Corollary] that

Px (Xt− ∈M and Xt ∈M for any t > 0) = 1.

Then, by (i),

Px

(
sup

s∈[0,LB ]

d(x,Xs) <∞

)
= 1,

which implies that

Px

(
σBn =∞ for all n >

log sups∈[0,LB ] d(x,Xs)

log λ

)
= 1.

Therefore, (iii) follows.
Suppose next that (iii) holds. Since X is transient, we see that

Px

(
lim
t→∞

d(x,Xt) =∞
)

= 1.

Then
1 = Px

({
lim
t→∞

d(x,Xt) =∞
}
∩ lim inf

n→∞
{σBn =∞}

)
≤ Px(LB <∞),

which yields (i).

We next show the equivalent conditions for the regularity of points.

Lemma B.2. Assume that the process X is transient and that the single point set {x} is
polar relative to the process X. If the Blumenthal zero-one law holds for the process X,
then, for any λ ∈ (0, 1) and B ∈ B(M), the following three conditions are equivalent to
each other.

(i) x is regular for B, that is, Px(σB = 0) = 1.

(ii) Px(σB = 0) > 0.

(iii) Px
(

lim supn→∞{σBx,λn <∞}
)

= 1.

Proof. The equivalence between (i) and (ii) follows by the Blumenthal zero-one law.
We now prove the equivalence between (i) and (iii). Assume first that (i) is valid.

Then for Px-a.s. ω ∈ Ω, there exists a sequence {tn(ω)} such that tn(ω) ↓ 0 as n→∞ and
Xtn(ω)(ω) ∈ B for all n ≥ 1. Since d(x,Xtn(ω)(ω))→ 0 as n→∞, we have (iii).

Assume next that (iii) is valid. We simply write Bn for Bx,λn . Then, for Px-a.s.
ω ∈ Ω, there exist some sequences {nk(ω)}∞k=1 ⊂ N and {tk(ω)}∞k=1 ⊂ [0,∞) such
that Xtk(ω)(ω) ∈ Bnk(ω) for all k ≥ 1. This yields

λnk(ω)+1 ≤ d(x,Xtk(ω)(ω)) ≤ λnk(ω), k ≥ 1,
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and thus

d(x,Xtk(ω)(ω))→ 0, k →∞.

On the other hand, since X is transient, there exists T (ω) ∈ (0,∞) such that
d(x,Xt(ω)) > 1 for all t > T (ω), which implies that tk(ω) ∈ [0, T (ω)] for all k ≥ 1.
Therefore, there exists a subsequence {tkl(ω)} of {tk(ω)} such that the monotone limit
t0(ω) := liml→∞ tkl(ω) exists in [0, T (ω)] and

lim
l→∞

d(x,Xtkl (ω)(ω)) = 0. (B.1)

Moreover, as {x} is polar relative to X, it follows by [15, p. 95, Theorem 9] that

Px (d(x,Xt−) > 0 and d(x,Xt) > 0 for all t > 0) = 1.

Taking (B.1) into account, we have t0(ω) = 0 and thus Px(σB = 0) = 1.

B.2 Zero-one law for the tail event

Let X1 and X2 be the independent µ-symmetric Hunt processes on M , and let X be
the direct product of X1 and X2 on M ×M . For γ ∈ (0, 1], let Xγ be the γ-subordinate
process of X. We will present the zero-one law for the tail event of Xγ . Let {Fγt }t≥0

denote the minimum completed admissible filtration of the process Xγ , and set

Fγ∞ = σ

⋃
t≥0

Fγt

 .

Let T γ be the tail σ-field of Xγ , i.e.,

T γ =
⋂
t>0

σ

⋃
u≥t

σ(Xγ
s : s ∈ [t, u])

 .

We then have

Proposition B.3. Let M satisfy Assumption 4.8. If the independent processes X1 and
X2 satisfy Assumption (H), (WUHK) and (HR), then, for any A ∈ T γ , P γx (A) = 1 for all
x ∈M ×M , or P γx (A) = 0 for all x ∈M ×M . In particular, T γ is trivial. Moreover, under
the assumptions above, the Blumenthal zero-one law also holds true.

Let us prove Proposition B.3 by following the proof of [25, Theorem 2.10] (see also
the references therein for the original proofs). For i = 1, 2, let pi(s, xi, yi) be the heat
kernel of the process Xi, and qγ(t, x, y) the heat kernel of Xγ , i.e.,

qγ(t, x, y) =

∫ ∞
0

p1(s, x1, y1)p2(s, x2, y2)πt(s) ds.

We also let q1,γ(t, u, w) and q2,γ(t, u, w) be the heat kernels of the subordinate processes
of X1 and X2, respectively, i.e.,

q1,γ(t, u, v) =

∫ ∞
0

p1(s, u, v)πt(s) ds, q2,γ(t, u, v) =

∫ ∞
0

p2(s, u, v)πt(s) ds.

Since for i = 1, 2, any t > 0 and u ∈M ,∫
M

pi(t, u, w)µ(dw) ≤ 1, (B.2)
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we have for any A,B ∈ B(M),∫∫
A×B

qγ(t, x, y)µ(dy)

=

∫ ∞
0

(∫
A

p1(s, x1, y1)µ(dy1)

)(∫
B

p2(s, x2, y2)µ(dy2)

)
πt(s) ds

≤
{∫ ∞

0

(∫
A

p1(s, x1, y1)µ(dy1)

)
πt(s) ds

}
∧
{∫ ∞

0

(∫
B

p2(s, x2, y2)µ(dy2)

)
πt(s) ds

}
=

(∫
A

q1,γ(t, x1, y1)µ(dy1)

)
∧
(∫

B

q2,γ(t, x2, y2)µ(dy2)

)
.

(B.3)

For x = (x1, x2) ∈M ×M and r > 0, let B(x, r) be an open ball with radius r centered
at x with respect to the product metric, i.e.,

B(x, r) = {y = (y1, y2) ∈M ×M : d(x1, y1) + d(x2, y2) < r} .

Let τB(x,r) = inf{t > 0 : Xγ
t 6∈ B(x, r)} be the exit time from B(x, r) of the process Xγ .

Lemma B.4. If the independent processes X1 and X2 satisfy (WUHK), then there exists
a constant c1 > 0 such that for any x ∈M1

0 ×M2
0 , t ≥ 0 and r > 0,

P γx (τB(x,r) ≤ t) ≤ c1t
(

1

φγ1(r)
+

1

φγ2(r)

)
.

Proof. Suppose that the processes X1 and X2 satisfy (WUHK). For x = (x1, x2) ∈M and
r > 0, we write τ = τB(x,r) for simplicity. Then

P γx (τ ≤ t) = P γx (τ ≤ t,Xγ
2t ∈ B(x, r/2)) + P γx (τ ≤ t,Xγ

2t /∈ B(x, r/2))

≤ P γx (τ ≤ t, d(x,Xγ
2t) ≤ r/2) + P γx (d(x,Xγ

2t) ≥ r/2).

Since X1 and X2 satisfy (WUHK), it follows by (3.5) that there exist positive constants
c1 and c2 such that for each i = 1, 2, and for any t > 0 and r > 0,∫
d(xi,w)≥r/4

qi,γ(2t, xi, w)µ(dw)≤c1
∫
d(xi,w)≥r/4

t

V (xi, d(xi, w))φγi (d(xi, w))
µ(dw)≤ c2t

φγi (r)
.

Note that if d(x, y) ≥ r/2, then d(x1, y1) ≥ r/4 or d(x2, y2) ≥ r/4. Therefore, by (B.3),
there exists a constant c3 > 0 such that for any x ∈M1

0 ×M2
0 , t > 0 and r > 0,

P γx (d(x,Xγ
2t) ≥ r/2) =

∫
d(x,y)≥r/2

qγ(2t, x, y)µ(dy)

≤
∫
d(x1,y1)≥r/4

q1,γ(2t, x1, y1)µ(dy1) +

∫
d(x2,y2)≥r/4

q2,γ(2t, x2, y2)µ(dy2)

≤ c3t
(

1

φγ1(r)
+

1

φγ2(r)

)
.

(B.4)

Then, by the triangle inequality and the strong Markov property, we get

P γx (τ ≤ t, d(x,Xγ
2t) ≤ r/2) ≤ Eγx

[
P γXτ

(
d(Xγ

2t−s, X
γ
0 ) ≥ r/2

)
|s=τ ; τ ≤ t

]
≤ sup
s∈[0,t],d(x,z)≥r

P γz
(
d(Xγ

2t−s, z) ≥ r/2
)
≤ c3t

(
1

φγ1(r)
+

1

φγ2(r)

)
,

where the last inequality follows from the argument of (B.4). We thus complete the
proof.
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Proof of Proposition B.3. We split the proof into three parts.
(i) Throughout the proof, we will fix ε > 0 small enough. By Lemma B.4 and (2.13),

there exist positive constants c1 and c2 so that for all x ∈M ×M , t0 > 0 and c? ≥ 1,

P γx

(
sup
s≤t0

d(Xγ
s , x) > c?((φ

γ
1)−1(t0) ∨ (φγ2)−1(t0))

)
≤ c1t0

(
1

φγ1(c?((φ
γ
1)−1(t0) ∨ (φγ2)−1(t0)))

+
1

φγ2(c?((φ
γ
1)−1(t0) ∨ (φγ2)−1(t0)))

)
≤ c2
cγα1
?

.

(B.5)

Take c? large enough so that c2/c
γα1
? < ε.

Let c∗ > 1 and t1 > 0 be constants which will be fixed later in this order. We first fix
c∗ > 1. Then, by (WUHK), (3.5) and (2.13),∫

d(x1,y1)≥c∗(φγ1 )−1(t1)

q1,γ(t1, x1, y1)µ(dy1)

≤ c3
∫
d(x1,y1)≥c∗(φγ1 )−1(t1)

t1
V (x1, d(x1, y1))φγ1(d(x1, y1))

µ(dy1)

≤ c4t1
φγ1(c∗(φ

γ
1)−1(t1))

≤ c5
cγα1
∗

.

(B.6)

Here the positive constants c3, c4, c5 above are independent of the choices of c∗, t1, x1

and y1. Similarly, we have∫
d(x2,y2)≥c∗(φγ2 )−1(t1)

q2,γ(t1, x2, y2)µ(dy2) ≤ c6
cγα1
∗

. (B.7)

Note that, by (B.3),∫
d(x1,y1)≥c∗(φγ1 )−1(t1)

qγ(t1, x, y)µ(dy) ≤
∫
d(x1,y1)≥c∗(φγ1 )−1(t1)

q1,γ(t1, x1, y1)µ(dy1)

and ∫
d(x2,y2)≥c∗(φγ2 )−1(t1)

qγ(t1, x, y)µ(dy) ≤
∫
d(x2,y2)≥c∗(φγ2 )−1(t1)

q2,γ(t1, x2, y2)µ(dy2).

Hence it follows by (B.6) and (B.7) that, if we take c∗ > 1 so large that (c5+c6)/cγα1
∗ < ε/4,

then for any x ∈M ×M and t1 > 0,∫
{d(x1,y1)≥c∗(φγ1 )−1(t1)}∪{d(x2,y2)≥c∗(φγ2 )−1(t1)}

qγ(t1, x, y)µ(dy)

≤
∫
d(x1,y1)≥c∗(φγ1 )−1(t1)

qγ(t1, x, y)µ(dy) +

∫
d(x2,y2)≥c∗(φγ2 )−1(t1)

qγ(t1, x, y)µ(dy)

≤
∫
d(x1,y1)≥c∗(φγ1 )−1(t1)

q1,γ(t1, x1, y1)µ(dy1)

+

∫
d(x2,y2)≥c∗(φγ2 )−1(t1)

q2,γ(t1, x2, y2)µ(dy2)

≤ c5 + c6
cγα1
∗

<
ε

4
.

(B.8)

In the same way, we can take and fix c∗ > 1 so large that for any z ∈ M × M and
t1 > 0, (B.8) holds and∫

{d(z1,y1)≥c∗(φγ1 )−1(t1)/2}∪{d(z2,y2)≥c∗(φγ2 )−1(t1)/2}
qγ(t1, z, y)µ(dy) <

ε

4
. (B.9)
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Next we assume that d(x1, z1) + d(x2, z2) ≤ c?((φγ1)−1(t0) ∨ (φγ2)−1(t0)). We now take
t1 > 0 so large that

c?((φ
γ
1)−1(t0) ∨ (φγ2)−1(t0)) ≤ c∗

2
((φγ1)−1(t1) ∧ (φγ2)−1(t1)). (B.10)

For each i = 1, 2, if d(xi, yi) ≥ c∗(φγi )−1(t1), then, by the triangle inequality and (B.10),

d(zi, yi) ≥ d(xi, yi)− d(xi, zi) ≥ c∗(φγi )−1(t1)− c?((φγi )−1(t0) ∨ φ−1
i (t0)) ≥ c∗

2
(φγi )−1(t1).

Therefore, it follows by (B.9) that∫
{d(x1,y1)≥c∗φ−1

1 (t1)}∪{d(x2,y2)≥c∗φ−1
2 (t1)}

qγ(t1, z, y)µ(dy)

≤
∫
{d(z1,y1)≥c∗φ−1

1 (t1)/2}∪{d(z2,y2)≥c∗φ−1
2 (t1)/2}

qγ(t1, z, y)µ(dy) <
ε

4
.

Combining this with (B.8), we obtain∣∣∣∣∣
∫
{d(x1,y1)≥c∗φ−1

1 (t1)}∪{d(x2,y2)≥c∗φ−1
2 (t1)}

(qγ(t1, x, y)− qγ(t1, z, y))µ(dy)

∣∣∣∣∣
≤
∫
{d(x1,y1)≥c∗φ−1

1 (t1)}∪{d(x2,y2)≥c∗φ−1
2 (t1)}

(qγ(t1, x, y) + qγ(t1, z, y))µ(dy) <
ε

2
.

(B.11)

Since the processes X1 and X2 satisfy (HR) by assumption, for each i = 1, 2, there
exist constants θi ∈ (0, 1] and Ci > 0 such that for any t > 0 and u, v, w ∈M ,

|pi(t, u, w)− pi(t, v, w)| ≤ Ci

V (w, φ−1
i (t))

(
d(u, v)

φ−1
i (t)

)θi
. (B.12)

Therefore, as in the proof of Lemma 3.1 (1), we can show that∫ ∞
0

|pi(s, u, w)− pi(s, v, w)|πt(s) ds ≤
∫ ∞

0

Ci

V (w, φ−1
i (s))

(
d(u, v)

φ−1
i (s)

)θi
πt(s) ds

≤ C ′i
V (w, (φγi )−1(t))

(
d(u, v)

(φγi )−1(t)

)θi
.

(B.13)

Hence, if d(u, v) ≤ c?((φγ1)−1(t0) ∨ (φγ2)−1(t0)), then there exist positive constants c7 and
η such that ∫

d(u,w)≤c∗(φγi )−1(t1)

(∫ ∞
0

|pi(s, u, w)− pi(s, v, w)|πt(s) ds

)
µ(dw)

≤ C ′′i
(
c?((φ

γ
1)−1(t0) ∨ (φγ2)−1(t0))

(φγi )−1(t1)

)θi V (u, c∗(φ
γ
i )−1(t1))

V (u, (φγi )−1(t1))

≤ c7cη∗
(
c?((φ

γ
1)−1(t0) ∨ (φγ2)−1(t0))

(φγi )−1(t1)

)θi
,

where in the second inequality we used (2.15). In particular, if we take t1 > 0 so large
that

c?((φ
γ
1)−1(t0) ∨ (φγ2)−1(t0)) ≤

{(
ε

4c7c
η
∗

)1/θ1

∧
(

ε

4c7c
η
∗

)1/θ2
}

((φγ1)−1(t1) ∧ (φγ2)−1(t1)),

(B.14)
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then ∫
d(u,w)≤c∗(φγi )−1(t1)

(∫ ∞
0

|pi(s, u, w)− pi(s, v, w)|πt1(s) ds

)
µ(dw) <

ε

4
.

Set

I1(t, x, y, z) =

∫ ∞
0

p1(s, x1, y1)(p2(s, x2, y2)− p2(s, z2, y2))πt(s) ds,

and

I2(t, x, y, z) =

∫ ∞
0

p2(s, z2, y2)(p1(s, x1, y1)− p1(s, z1, y1))πt(s) ds.

Then, for any f ∈ Bb(M ×M), by (B.2) and the Fubini theorem,∣∣∣∣∣
∫
d(x1,y1)≤c∗(φγ1 )−1(t1),d(x2,y2)≤c∗(φγ2 )−1(t1)

I1(t1, x, y, z)f(y)µ(dy)

∣∣∣∣∣
≤ ‖f‖∞

∫
d(x2,y2)≤c∗(φγ2 )−1(t1)

(∫ ∞
0

p1(s, x1, y1)|p2(s, x2, y2)− p2(s, z2, y2)|πt1(s) ds

)
µ(dy)

≤ ‖f‖∞
∫
d(x2,y2)≤c∗(φγ2 )−1(t1)

(∫ ∞
0

|p2(s, x2, y2)− p2(s, z2, y2)|πt1(s) ds

)
µ(dy2)

≤ ε

4
‖f‖∞

(B.15)

and ∣∣∣∣∣
∫
d(x1,y1)≤c∗(φγi )−1(t1),d(x2,y2)≤c∗(φγ2 )−1(t1)

I2(t1, x, y, z)f(y)µ(dy)

∣∣∣∣∣ ≤ ε

4
‖f‖∞. (B.16)

Note that

p1(s, x1, y1)p2(s, x2, y2)− p1(s, z1, y1)p2(s, z2, y2)

= p1(s, x1, y1)(p2(s, x2, y2)− p2(s, z2, y2)) + p2(s, z2, y2)(p1(s, x1, y1)− p2(s, z1, y1)).

Hence, by (B.15) and (B.16),∣∣∣∣∣
∫
d(x1,y1)≤c∗(φγ1 )−1(t1),d(x2,y2)≤c∗(φγ2 )−1(t1)

(qγ(t1, x, y)− qγ(t1, z, y))f(y)µ(dy)

∣∣∣∣∣
=

∣∣∣∣∣
∫
d(x1,y1)≤c∗(φγ1 )−1(t1),d(x2,y2)≤c∗(φγ2 )−1(t1)

(I1(t1, x, y, x) + I2(t1, x, y, z))f(y)µ(dy)

∣∣∣∣∣
≤

∣∣∣∣∣
∫
d(x1,y1)≤c∗(φγ1 )−1(t1),d(x2,y2)≤c∗(φγ2 )−1(t1)

I1(t1, x, y, z)f(y)µ(dy)

∣∣∣∣∣
+

∣∣∣∣∣
∫
d(x1,y1)≤c∗(φγ1 )−1(t1),d(x2,y2)≤c∗(φγ2 )−1(t1)

I2(t1, x, y, z)f(y)µ(dy)

∣∣∣∣∣
≤ ε

2
‖f‖∞.

Therefore, if we fix t1 > 0 so that (B.10) and (B.14) hold, then, by (B.11) and the
inequality above,

∣∣P γt1f(x)− P γt1f(z)
∣∣ =

∣∣∣∣∫
M×M

(qγ(t1, x, y)− qγ(t1, z, y)) f(y)µ(dy)

∣∣∣∣ ≤ ε‖f‖∞. (B.17)
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(ii) Fix x ∈M ×M and A ∈ T γ . Then, by the martingale convergence theorem, we
have as t→∞,

Eγx [1A | Fγt ]→ Eγx [1A | Fγ∞] = 1A P γx -a.s. and in L1(P γx ).

Namely, for any fixed ε > 0, there exists t0 > 0 such that

Eγx
[∣∣Eγx [1A | Fγt0 ]− 1A

∣∣] < ε.

Hence, letting Y = Eγx [1A | Fγt0 ], we obtain

|P γx (A)− Eγx [Y ;A]| = |Eγx [(1A − Y );A]|
≤ Eγx [|1A − Y |] = Eγx [|1A − Eγx [1A | Fγt0 ]|] < ε

(B.18)

and
|P γx (A)− Eγx [Y ]| ≤ Eγx [|1A − Y |] < ε. (B.19)

Let t0 and t1 be the positive constants which are fixed in the argument in part (i).
Then, for A ∈ T γ , there exists an event C ∈ Fγ∞ such that A = C◦θt0+t1 . Let g(x) = P γx (C)

for x ∈M ×M . Since Y is Fγt0 -measurable and the Markov property yields

Eγx [1C ◦ θt1 ] = Eγx

[
P γXt1

(C)
]

= P γt1g(x),

we have

Eγx [Y ;A] = Eγx [Y ;C ◦ θt0+t1 ] = Eγx

[
Y EγXt0

[1C ◦ θt1 ]
]

= Eγx
[
Y P γt1g(Xγ

t0)
]

(B.20)

and
P γx (A) = Eγx

[
Pt1g(Xγ

t0)
]
. (B.21)

Let
At0 =

{
ω ∈ Ω : d(Xγ

t0(ω), x) ≤ c?((φγ1)−1(t0) ∨ (φγ2)−1(t0))
}
.

Since ‖g‖∞ ≤ 1, we get, by (B.17),∣∣Eγx [Y P γt1g(Xγ
t0);At0 ]− P γt1g(x)Eγx [Y ;At0 ]

∣∣ ≤ Eγx [Y |P γt1g(Xγ
t0)− P γt1g(x)|;At0 ] ≤ ε.

We also see, by (B.5), that∣∣Eγx [Y P γt1g(Xγ
t0);Act0 ]− P γt1g(x)Eγx [Y ;Act0 ]

∣∣ ≤ 2P γx (Act0) < 2ε.

Therefore, it follows by (B.20) that

|Eγx [Y ;A]− P γt1g(x)Eγx [Y ]| = |Eγx [Y P γt1g(Xγ
t0)]− P γt1g(x)Eγx [Y ]|

≤
∣∣Eγx [Y Pt1g(Xγ

t0);At0 ]− P γt1g(x)Eγx [Y ;At0 ]
∣∣+
∣∣Eγx [Y P γt1g(Xγ

t0);Act0 ]− P γt1g(x)Eγx [Y ;Act0 ]
∣∣

< 3ε.

Similarly, we have, by (B.21),

|P γx (A)− P γt1g(x)| = |Eγx [P γt1g(Xγ
t0)]− P γt1g(x)| < 3ε.

Combining two inequalities above with (B.18), we obtain

|P γx (A)− P γx (A)Eγx [Y ]|
≤ |P γx (A)− Eγx [Y ;A]|+

∣∣Eγx [Y ;A]− P γt1g(x)Eγx [Y ]
∣∣+
∣∣P γt1g(x)− P γx (A)

∣∣Eγx [Y ]

≤ ε+ 3ε+ 3ε = 7ε.
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Then, by (B.19), we further have

|P γx (A)− P γx (A)2| ≤ |P γx (A)− P γx (A)Eγx [Y ]|+ P γx (A)|Eγx [Y ]− P γx (A)| < 7ε+ ε = 8ε.

Since ε > 0 is arbitrary, we get P γx (A) = P γx (A)2 for any x ∈M ×M .
Fix t > 0 and h ∈ Bb(M ×M). Then, the same argument as for (B.17) implies that for

any ε > 0, there exists δ > 0 such that if x, z ∈ M ×M satisfy d(x1, z1) + d(x2, z2) < δ,
then

|P γt h(x)− P γt h(z)| < ε.

Namely, the function P γt h is uniformly continuous in M ×M . Moreover, since (B.21)
yields

P γx (A) = P γt0P
γ
t1g(x),

the function P γx (A) is continuous in x ∈M ×M . We also note that M ×M is connected
because so isM by assumption. As P γx (A) = P γx (A)2 for any x ∈M×M , we get P γx (A) = 1

for all x ∈M ×M , or P γx (A) = 0 for all x ∈M ×M .
(iii) Since (B.5) holds for all t0 > 0, one can see from the arguments in part (i) (in

particular (B.17)) that the semigroup of the process Xγ satisfies the Feller property,
i.e., the associated semigroup maps the set of bounded continuous functions into itself.
Then, according to [5, p. 57], the Blumenthal zero-one law holds as well. The proof is
complete.

B.3 Wiener test for recurrence

In this subsection, we establish the Wiener test for the recurrence relative to stable-
subordinate direct-product processes by using Proposition B.3. Let X1 and X2 be two
independent µ-symmetric Hunt processes on M satisfying Assumption (H), (WUHK) and
(HR), and let X be the direct product of X1 and X2 on M ×M . For γ ∈ (0, 1], Xγ denotes
the γ-subordinate process of X.

Fix x ∈M ×M and λ > 1. For B ∈ B(M ×M), define

Bx,λ,φn =
{
y ∈ B : λn ≤ φd(x, y) ≤ λn+1

}
, n ≥ 1. (B.22)

Suppose that Assumptions 4.8 is satisfied. Then, by Proposition B.3, one can apply the
argument of Lemma B.1 to the process Xγ and obtain that, if the process Xγ is transient,
then

P γx (LB <∞) = 1 ⇐⇒ P γx (LB <∞) > 0 ⇐⇒ P γx

(
lim inf
n→∞

{σBx,λ,φn
=∞}

)
= 1. (B.23)

Furthermore, using this equivalence, we can show the Wiener test, which is well known
for the transient Brownian motion (see, e.g., [31, p. 67, Theorem 3.3]), for the stable-
subordinate of direct product process on the metric measure space.

Proposition B.5. Let M satisfy Assumptions 3.8, 3.9 and 4.8. Suppose that the two
independent processes X1 and X2 satisfy Assumption (H), (WUHK) and (HR). Fix a
constant λ > 1 so that φ−1

i (λt) ≥ 2φ−1
i (t) for i = 1, 2 and all t > 0. Assume that for some

γ ∈ (0, 1], Jγ <∞, (4.3) and (4.9) hold. Then, for any x ∈M ×M and B ∈ B(M ×M),

P γx (LB =∞) = 1 ⇐⇒
∞∑
n=1

P γx (σBx,λ,φn
<∞) =∞.

Proof. We first note that, by Remark 2.6 (iii), under the assumption of this proposi-
tion, the processes X1 and X2 satisfy (NDLHK). We also note that Xγ is transient by
Lemma 4.3. Then, we take an approach similar to the proof of [31, p. 67, Theorem 3.3].
In what follows, we simply write Bn for Bx,λ,φn .
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Let m, n be positive integers such that |m − n| > 1. Without loss of generality, we
suppose that m > n+ 1. For any z ∈ Bm and y ∈ Bn, if φ1(d(x1, z1)) ≥ φ2(d(x2, z2)), then

φ1(d(x1, z1)) = φd(x, z) ≥ λm ≥ λn+2 ≥ λφd(x, y). (B.24)

Noting that φ−1
1 (λφd(x, y)) ≥ 2φ−1

1 (φd(x, y)) by assumption, we have, by the triangle
inequality,

d(z1, y1) ≥ d(x1, z1)− d(y1, x1) ≥ φ−1
1 (λφd(x, y))− φ−1

1 (φd(x, y)) ≥ φ−1
1 (φd(x, y)).

Therefore,
φd(z, y) ≥ φd(x, y). (B.25)

Since (B.24) also implies that

d(x1, z1) ≥ φ−1
1 (λφ1(d(x1, y1))) ≥ 2φ−1

1 (φ1(d(x1, y1))) = 2d(x1, y1),

we have, by the triangle inequality,

d(z1, y1) ≥ d(z1, x1)− d(x1, y1) ≥ 1

2
d(x1, z1).

Hence, by (2.13), there exists a constant c1 ∈ (0, 1) such that

φd(z, y) ≥ φ1(d(z1, y1)) ≥ φ1(d(x1, z1)/2) ≥ c1φ1(d(x1, z1)) = c1φd(x, z).

Combining this with (B.25), we get

φd(z, y) ≥ c1(φd(x, y) ∨ φd(x, z)). (B.26)

In the same way, one can see that the inequality above is valid also when φ1(d(x1, z1)) ≤
φ2(d(x2, z2)).

Since (4.3) and (4.9) hold by assumption, Lemma 4.5 with (2.15) and (B.26) implies
that for any positive integers m,n with |m− n| > 1, and for any z ∈ Bm and y ∈ Bn,

uγ0(z, y) ≤ c2
∫ ∞
φγd(z,y)

1

V ((φγ1)−1(t))V ((φγ2)−1(t))
dt

≤ c2
∫ ∞
cγ1 (φγd(x,y)∨φγd(x,z))

1

V ((φγ1)−1(t))V ((φγ2)−1(t))
dt

≤ c3(uγ0(x, y) ∧ uγ0(x, z)).

(B.27)

On the other hand, since Bn is compact by Assumption 3.9, there exists a positive Radon
measure νn on M such that supp[νn] ⊂ Bn, and, for any z ∈ Bm,

P γz (σBn <∞) =

∫
Bn

uγ0(z, y) νn(dy) ≤ c3
∫
Bn

uγ0(x, y) νn(dy) = c3P
γ
x (σBn <∞).

Note that if σBm <∞, then Xγ
σBm

∈ Bm because Bm is closed. Therefore, by the strong
Markov property of the process Xγ ,

P γx (σBm <∞, σBn ◦ θσBm <∞) = Eγx

[
P γ
XγσBm

(σBn <∞);σBm <∞
]

≤ c3P γx (σBm <∞)P γx (σBn <∞).
(B.28)

By the same argument as before, we also see that for any y ∈ Bn,

P γy (σBm <∞) ≤ c4P γx (σBm <∞)
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and thus

P γx (σBn <∞, σBm ◦ θσBn <∞) ≤ c4P γx (σBm <∞)P γx (σBn <∞). (B.29)

Noting that

{σBm <∞, σBn <∞} = {σBm <∞, σBn ◦ θσBm <∞} ∪ {σBn <∞, σBm ◦ θσBn <∞},

we obtain, by (B.28) and (B.29),

P γx (σBm <∞, σBn <∞) ≤ c5P γx (σBm <∞)P γx (σBn <∞).

Hence, by combining (B.23) with Lemma B.10 below, we get the following equivalence:

P γx (LB =∞) = 1 ⇐⇒ P γx

(
lim sup
n→∞

{σBn <∞}
)
> 0 ⇐⇒

∞∑
n=1

P γx (σBn <∞) =∞.

The proof is complete.

Next we will apply Proposition B.5 to derive a sufficient condition for the recurrence
of the subset of the diagonal set relative to the process Xγ . Let

diag(M) = {y = (y1, y2) ∈M ×M : y1 = y2}

be the diagonal set in M ×M with the relative topology. Then

diag(M) ∩ B(M ×M) = B(diag(M)),

where
diag(M) ∩ B(M ×M) = {diag(M) ∩B : B ∈ B(M ×M)} .

We also note that for any B ∈ diag(M) ∩ B(M ×M), the set AB = {w ∈M : (w,w) ∈ B}
is a Borel subset of M and B = {(w,w) ∈ M ×M : w ∈ AB}. On the contrary, for any
A ∈ B(M), A = {w ∈M : (w,w) ∈ diag(A)}, where diag(A) = {(w,w) ∈M ×M : w ∈ A}.
Hence, we have a one to one correspondence between diag(M) ∩ B(M ×M) and B(M).
Moreover, if η is a measure on B(M), then we can associate a unique measure νη on
diag(M)∩B(M×M) such that νη(diag(M)∩(C1×C2)) = η(C1∩C2) for any C1, C2 ∈ B(M).

In what follows, fix x ∈ M ×M and λ ≥ 2 ∨ φ1(2d(x1, x2)), and let F ⊂ M be an
(sF , tF )-set with (sF , tF )-measure η (see Definition A.8(ii)). For simplicity, we assume
that r0 = 1 in Definition A.8(ii). Let Bn = Bx,λ,φn be as in (B.22) with B = diag(F ). Define
φ(t) := φ1(t) ∨ φ2(t). Then φ−1(t) = φ−1

1 (t) ∧ φ−1
2 (t). Hence, by (A.10), there exists a

constant c1 > 0 such that for any n ≥ 1,

νη(Bn) ≤ c1(φ−1(λn))tF . (B.30)

We now discuss the lower bound of νη(Bn). By definition,

νη(Bn) = η
({
w ∈M : λn ≤ φ1(d(x1, w)) ∨ φ2(d(x2, w)) ≤ λn+1

})
= η

({
w ∈M : φ1(d(x1, w)) ∨ φ2(d(x2, w)) ≤ λn+1

})
− η ({w ∈M : φ1(d(x1, w)) ∨ φ2(d(x2, w)) < λn})

= (I)n − (II)n.

By (2.14), there exists ε ∈ (0, 1) so small that for i = 1, 2 and any r > 0, φ−1
i (εr)/φ−1

i (r) ≤
1/2. Since λ ≥ φ1(2d(x1, x2)), we have

(I)n ≥ η
({
w ∈M : (φ1 ∨ φ2)(d(x2, w)) ≤ ελn+1

})
= η

({
w ∈M : φ(d(x2, w)) ≤ ελn+1

})
,
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where we used the fact that if φ1(d(x2, w)) ≤ ελn+1, then

φ1(d(x1, w)) ≤φ1(d(x2, w) + d(x1, x2)) ≤ φ1(φ−1
1 (ελn+1) + φ−1

1 (λ)/2)

≤φ1(φ−1
1 (λn+1)/2 + φ−1

1 (λ)/2) ≤ λn+1.

On the other hand, one can see that there exists a constant c2 > 0, which is independent
of the choices of λ ≥ 2 ∨ φ1(2d(x1, x2)) and ε > 0, such that

(II)n ≤ η ({w ∈M : φ(d(x2, w)) ≤ c2λn}) .

Since η is an (sF , tF )-measure, by (A.10) and (A.11), we can further take λ ≥ 2 ∨
φ1(2d(x1, x2)) so large that

lim sup
n→∞

(II)n
(I)n

<
1

2
. (B.31)

In particular, there exist c3 > 0 and n0 ≥ 1 such that for all n ≥ n0,

νη(Bn) = (I)n − (II)n ≥ (I)n/2 ≥ c3(φ−1(λn))tF . (B.32)

Proposition B.6. Let M satisfy Assumptions 3.8, 3.9 and 4.8. Suppose that the indepen-
dent processes X1 and X2 satisfy Assumption (H), (WUHK) and (HR). Let F ⊂M be an
(sF , tF )-set for some positive constants sF and tF such that γ(sF ) < 1. Assume that the
following conditions hold for some γ ∈ (γ(sF ), 1]:

• Jγ <∞, (4.3) and (4.9) hold.

• There exists a constant c1 > 0 such that for any T ≥ 1,∫ T

1

((φγ)−1(t))tF

V ((φγ1)−1(t))V ((φγ2)−1(t))
dt≤c1((φγ)−1(T ))tF

∫ ∞
T

1

V ((φγ1)−1(t))V ((φγ2)−1(t))
dt.

(B.33)

Then for any x ∈M ×M , P γx (Ldiag(F ) =∞) = 1.

Remark B.7. We use Proposition B.6 with γ = 1 only for the proof of Theorem 4.9.

Proof of Proposition B.6. Let F ⊂M be an (sF , tF )-set, and η the corresponding (sF , tF )-
measure. We simply write ν for νη. Fix x ∈ M ×M , and λ ≥ 2 ∨ φ1(2d(x1, x2)) so large
that (B.32) holds. Let B = diag(F ) and Bn = Bx,λ,φn as in (B.22).

Take ε0 ∈ (0, 1) so small that for i = 1, 2 and for any r > 0, φ−1
i (ε0r)/φ

−1
i (r) ≤ 1/2. Let

z ∈ M ×M . We first assume that φd(z, x) ≥ λn+1/ε0. Then, for any y ∈ Bn, it follows
from the triangle inequality that φd(z, y) ≥ λn+1 by taking ε0 small enough if necessary.
This and Lemma 4.5 imply that

uγ0(z, y) ≤ c1
∫ ∞
φγd(z,y)

1

V ((φγ1)−1(t))V ((φγ2)−1(t))
dt

≤ c1
∫ ∞

(λn+1)γ

1

V ((φγ1)−1(t))V ((φγ2)−1(t))
dt.

Then, by (B.30),∫
Bn

uγ0(z, y) ν(dy) ≤ c1ν(Bn)

∫ ∞
(λn+1)γ

1

V ((φγ1)−1(t))V ((φγ2)−1(t))
dt

≤ c2(φ−1(λn))tF
∫ ∞

(λn+1)γ

1

V ((φγ1)−1(t))V ((φγ2)−1(t))
dt.

(B.34)
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We next assume that φd(z, x) < λn+1/ε0. Then, there exists a constant c3 > 0 such
that φd(z, y) ≤ c3λn+1 for any y ∈ Bn. Hence, by Lemma 4.5 and the Fubini theorem,∫

Bn

uγ0(z, y) ν(dy) ≤
∫
φd(z,y)≤c3λn+1

uγ0(z, y) ν(dy)

≤ c4
∫
φd(z,y)≤c3λn+1

(∫ ∞
φγd(z,y)

1

V ((φγ1)−1(t))V ((φγ2)−1(t))
dt

)
ν(dy)

= c4

{∫ (c3λ
n+1)γ

0

1

V ((φγ1)−1(t))V ((φγ2)−1(t))
ν({y ∈M ×M : φγd(z, y) ≤ t}) dt

+

(∫ ∞
(c3λn+1)γ

1

V ((φγ1)−1(t))V ((φγ2)−1(t))
dt

)
ν({y ∈M ×M : φd(z, y) ≤ c3λn+1})

}
=: c4((I) + (II)). (B.35)

Since η is an (sF , tF )-measure, there exists a constant c5 > 0 such that for any r ≥ 0,

ν({y ∈M ×M : φd(z, y) ≤ r}) ≤ c5
(
(φ−1(r))sF 1{0<r<1} + (φ−1(r))tF 1{r≥1}

)
.

Then, by this inequality and (B.33) with (2.13) and (2.15), we obtain

(I) ≤ c5

(∫ 1

0

((φγ)−1(t))sF

V ((φγ1)−1(t))V ((φγ2)−1(t))
dt+

∫ (c3λ
n+1)γ

1

((φγ)−1(t))tF

V ((φγ1)−1(t))V ((φγ2)−1(t))
dt

)

≤ c6(φ−1(c3λ
n+1))tF

∫ ∞
(c3λn+1)γ

1

V ((φγ1)−1(t))V ((φγ2)−1(t))
dt

≤ c7(φ−1(λn+1))tF
∫ ∞

(λn+1)γ

1

V ((φγ1)−1(t))V ((φγ2)−1(t))
dt

and

(II) ≤ c8(φ−1(λn+1))tF
∫ ∞

(λn+1)γ

1

V ((φγ1)−1(t))V ((φγ2)−1(t))
dt.

According to (B.34) and (B.35), there exists a constant c∗ > 0 so that for any n ≥ 1,∫
Bn

uγ0(z, y) ν(dy) ≤ Γn(λ), z ∈M ×M, (B.36)

where

Γn(λ) = c∗(φ
−1(λn+1))tF

∫ ∞
(λn+1)γ

1

V ((φγ1)−1(t))V ((φγ2)−1(t))
dt.

For any n ≥ 1, define

νn =
1

Γn(λ)
ν|Bn .

Then by (B.36), ∫
M×M

uγ0(z, y) νn(dy) ≤ 1, z ∈M ×M

and ∫
M×M

∫
M×M

uγ0(z, y) νn(dz) νn(dy) ≤ νn(Bn) <∞.

Hence, by the 0-order version of [18, Exercise 4.2.2], νn is of finite 0-order energy
integral relative to the process Xγ , and the function g(z) :=

∫
Bn

uγ0(z, y) νn(dy) is a

EJP 29 (2024), paper 6.
Page 51/56

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP1069
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Inverse images and collision time sets for symmetric Markov processes

quasi-continuous and excessive µ-version of the 0-potential of νn. Since Bn is compact, it
follows by (2.4) and (B.32) that for all sufficiently large n ≥ 1,

Capγ(0)(Bn) ≥ νn(Bn) =
ν(Bn)

Γn(λ)
≥ c9(φ−1(λn))tF

Γn(λ)
,

where Capγ(0) is the 0-order capacity relative to (Eγ ,Fγ). Furthermore, if νγn denotes the
equilibrium measure of Bn, then, by Lemma 4.5,

P γx (σBn <∞) =

∫
Bn

uγ0(x, y) νγn(dy) ≥ c10ν
γ
n(Bn)

∫ ∞
(λn+1)γ

1

V ((φγ1)−1(t))V ((φγ2)−1(t))
dt

= c10Capγ(0)(Bn)

∫ ∞
(λn+1)γ

1

V ((φγ1)−1(t))V ((φγ2)−1(t))
dt

≥ c11(φ−1(λn))tF

Γn(λ)

∫ ∞
(λn+1)γ

1

V ((φγ1)−1(t))V ((φγ2)−1(t))
dt ≥ c12

c∗
.

Therefore, Proposition B.5 yields the desired assertion.

B.4 Wiener test for regularity

In this subsection, we show the Wiener test for the regularity of points relative to
the process Xγ . Let X1 and X2 be two independent µ-symmetric Hunt processes on M
satisfying Assumption (H), (WUHK) and (HR), and let X be the direct product of X1 and
X2 on M ×M . For γ ∈ (0, 1], Xγ denotes the γ-subordinate process of X.

For any x ∈M ×M , λ ∈ (0, 1) and B ∈ B(M ×M), define

Bx,λ,φn =
{
y ∈ B : λn+1 ≤ φd(x, y) ≤ λn

}
, n ≥ 1. (B.37)

It follows from the proof of Lemma B.2 that the following equivalence holds: if the
process Xγ is transient and {x} is polar relative to Xγ , and the Blumenthal zero-one law
holds for the process Xγ , then

P γx (σB = 0) = 1 ⇐⇒ P γx (σB = 0) > 0 ⇐⇒ P γx

(
lim sup
n→∞

{
σBx,λ,φn

<∞
})

= 1. (B.38)

Using this equivalence, we can prove

Proposition B.8. Let M satisfy Assumptions 3.8, 3.9 and 4.8. Suppose that the indepen-
dent processes X1 and X2 satisfy Assumption (H), (WUHK) and (HR). Take λ ∈ (0, 1) so
that φ−1

i (t/λ) ≥ 2φ−1
i (t) for i = 1, 2 and any t > 0. If for some γ ∈ (0, 1], the process Xγ

is transient and {x} is polar relative to Xγ , then, for any B ∈ B(M ×M),

P γx (σB = 0) = 1 ⇐⇒
∞∑
n=1

P γx (σBx,λ,φn
<∞) =∞.

Proof. It follows from Proposition B.3 that, under the assumptions of this proposition,
the Blumenthal zero-one law holds for the process Xγ . We then take an approach similar
to the proof of [31, p. 67, Theorem 3.3]. To simplify the notation, we write Bn for Bx,λ,φn .
Let m and n be positive integers such that |m − n| > 1. Without loss of generality, we
assume that n > m+ 1. For any z ∈ Bm and y ∈ Bn, if φ1(d(x1, z1)) ≥ φ2(d(x2, z2)), then

φ1(d(x1, z1)) ≥ λm+1 ≥ λn−1 ≥ φd(x, y)/λ.

Hence, by the triangle inequality and φ−1
1 (φd(x, y)/λ) ≥ 2φ−1

1 (φd(x, y)),

d(y1, z1) ≥ d(x1, z1)− d(x1, y1) ≥ φ−1
1 (φd(x, y)/λ)− φ−1

1 (φd(x, y)) ≥ φ−1
1 (φd(x, y)),
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which yields
φd(y, z) ≥ φd(x, y).

This argument is valid also when φ1(d(x1, z1)) ≤ φ2(d(x2, z2)) holds. Hence, by following
the proof of Proposition B.5, there exists a constant c1 > 0 such that for any m,n ∈ N
with |m− n| > 1,

P γx (σBm <∞, σBn <∞) ≤ c1P γx (σBm <∞)P γx (σBn <∞).

By combining (B.38) with Lemma B.10 below, the proof is complete.

Let F ⊂M be a locally sF -set, and η the corresponding sF -measure. Fix x ∈ diag(F )

and λ ∈ (0, 1). Let B = diag(F ) and Bx,λ,φn as in (B.37). Then, there exists a constant
c1 > 0 such that for all n ≥ 1,

νη(Bn) ≤ c1(φ−1(λn))sF . (B.39)

Furthermore, we can also follow the argument of (B.31) to show that there exist c2 > 0

and n0 ≥ 1 such that for all n ≥ n0,

νη(Bn) ≥ c2(φ−1(λn))sF . (B.40)

For B ∈ B(M ×M), let Brγ be the totality of regular points for B relative to the
process Xγ , i.e.,

Brγ =
{
y ∈M ×M : P γy (σB = 0) = 1

}
.

If B is closed, then Brγ ⊂ B by the right continuity of sample paths of Xγ .

Proposition B.9. Let M satisfy Assumptions 3.8, 3.9 and 4.8. Suppose that the indepen-
dent processes X1 and X2 satisfy Assumption (H), (WUHK) and (HR). Let F ⊂M be a
locally sF -set for some sF > 0 with γ(sF ) < 1. Assume that the following conditions hold
for some γ ∈ (γ(sF ), 1]:

• Jγ <∞ and ∫ 1

0

1

V ((φγ1)−1(t))V ((φγ2)−1(t))
dt =∞. (B.41)

• (4.3) holds.

• There exists a constant c1 > 0 such that for any T ∈ (0, 1/2),∫ T

0

((φγ)−1(t))sF

V ((φγ1)−1(t))V ((φγ2)−1(t))
dt ≤ c1((φγ)−1(T ))sF

∫ 1

T

1

V ((φγ1)−1(t))V ((φγ2)−1(t))
dt.

(B.42)

Then, for any x ∈ diag(F ), P γx (σdiag(F ) = 0) = 1, that is, (diag(F ))rγ = diag(F ).

Proof. We prove this proposition by applying Proposition B.8 to the process Xγ . To do
so, we first verify that Xγ is transient and any one point set is polar relative to Xγ . Since
Jγ <∞ by assumption, Xγ is transient by Lemma 4.3 (2). By Lemma 4.1 and (B.41) with
Remark 2.6 (iii), there exists a constant c0 > 0 such that for any x ∈M ,

uγ1(x, x) ≥ c0
∫ 1

0

1

V ((φγ1)−1(t))V ((φγ2)−1(t))
dt =∞.

Hence, by Lemma 3.6, any one point set is polar relative to Xγ .
Let F be a locally sF -set, and η the corresponding sF -measure. We simply write ν

for νη. We take ε0 ∈ (0, 1) so small that φ−1(ε0r)/φ
−1(r) ≤ 1/2 for any r > 0. For fixed

x ∈ diag(F ) and λ ∈ (0, 1), let B = diag(F ) and Bn = Bx,λ,φn .
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Let z ∈M×M . We first assume that φd(z, x) ≥ λn/ε0. Then, by the triangle inequality,
we have for any y ∈ Bn, φd(z, y) ≥ λn. Combining this with Lemma 4.5 and (B.39), we
get ∫

Bn

uγ0(z, y) ν(dy) ≤ c1
∫
Bn

(∫ ∞
φγd(z,y)

1

V ((φγ1)−1(t))V ((φγ2)−1(t))
dt

)
ν(dy)

≤ c1ν(Bn)

∫ ∞
(λn)γ

1

V ((φγ1)−1(t))V ((φγ2)−1(t))
dt

≤ c2(φ−1(λn))sF
∫ ∞

(λn)γ

1

V ((φγ1)−1(t))V ((φγ2)−1(t))
dt. (B.43)

We next assume that φd(z, x) < λn/ε0. Since φd(z, y) ≤ c3λn for any y ∈ Bn and (B.42)
holds, we can follow the calculation in (B.35) and its subsequent argument to prove that∫

Bn

uγ0(z, y) ν(dy) ≤
∫
φd(z,y)≤c3λn

uγ0(z, y) ν(dy)

≤ c4
∫
φd(z,y)≤c3λn

(∫ ∞
φγd(z,y)

1

V ((φγ1)−1(t))V ((φγ2)−1(t))
dt

)
ν(dy)

≤ c5(φ−1(λn))sF
∫ ∞

(λn)γ

1

V ((φγ1)−1(t))V ((φγ2)−1(t))
dt. (B.44)

According to (B.43) and (B.44), we have for any n ≥ 1,∫
Bn

uγ0(z, y) ν(dy) ≤ Γn(λ), z ∈M ×M,

where c∗ = c2 ∨ c5 and

Γn(λ) = c∗(φ
−1(λn))sF

∫ ∞
(λn)γ

1

V ((φγ1)−1(t))V ((φγ2)−1(t))
dt.

For any n ≥ 1, define

νn =
1

Γn(λ)
ν|Bn ,

so that ∫
M×M

uγ0(z, y) νn(dy) ≤ 1, z ∈M ×M,

and ∫
M×M

∫
M×M

uγ0(z, y) νn(dz) νn(dy) ≤ νn(Bn) <∞.

Hence, by following the proof of Proposition B.6, there exists a constant c6 ∈ (0, 1] such
that P γx (σBn <∞) ≥ c6 for any n ≥ 1. Then, by Proposition B.8, the proof is complete.

B.5 Generalized Borel-Cantelli lemma

We state the following generalized Borel-Cantelli lemma for the readers’ convenience.

Lemma B.10. ([31, p. 65, Proposition 3.1]) Let (Ω,F , P ) be a probability space, and
{An}∞n=1 a sequence of events. Assume that there exists a constant c1 > 0 such that for
any m,n ≥ 1 with |m− n| > 1,

P (Am ∩An) ≤ c1P (Am)P (An).
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Then,

P

(
lim sup
n→∞

An

)
> 0

if and only if
∞∑
n=1

P (An) =∞.
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