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Abstract

A Hawkes process on R is a point process whose intensity function at time t is a
functional of its past activity before time t. It is defined by its activation function Φ

and its memory function h. In this paper, the Hawkes property is expressed as an
operator on the sub-space of non-negative sequences associated to distances between
its points. By using the classical correspondence between a stationary point process
and its Palm measure, we establish a characterization of the corresponding Palm
measure as an invariant distribution of a Markovian kernel. We prove that if Φ is
continuous and its growth rate is at most linear with a rate below some constant, then
there exists a stationary Hawkes point process. The classical Lipschitz condition of the
literature for an unbounded function Φ is relaxed. Our proofs rely on a combination of
coupling methods, monotonicity properties of linear Hawkes processes and classical
results on Palm distributions. An investigation of the Hawkes process starting from
the null measure, the empty state, on R− plays also an important role. The linear case
of Hawkes and Oakes is revisited at this occasion.

If the memory function h is an exponential function, under a weak condition it is
shown that there exists a unique stationary Hawkes point process. In this case, its
Palm measure is expressed in terms of the invariant distribution of a one-dimensional
Harris ergodic Markov chain. When the activation function is a polynomial Φ with
degree > 1, there does not exist a stationary Hawkes process and if the Hawkes
process starts from the empty state, a scaling result for the accumulation of its points
is obtained.
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Non-linear Hawkes processes

1 Introduction

A point process N = (tn : n ≥ 0) on R+ has the Hawkes property if conditionally on
the points tn, n ≥ 1 of N up to time t, the rate at which a new jump occurs in the time
interval (t, t+ dt) is given by

Φ

 ∑
n:tn≤t

h(t− tn)

 dt = Φ

(∫ t

−∞
h(t− u)N (du)

)
dt,

This is described as a self-excitation property of the dynamic. It can be formulated as
the fact that the process(

N (0, t)−
∫ t

0

Φ

(∫ s

−∞
h(s− u)N (du)

)
ds

)
is a local martingale with respect to a convenient filtration.

The parameters of the Hawkes process

a. The function h, the memory function. The quantity h(t−s) gives the residual impact
at time t of a jump which has occurred at time s ≤ t. It is assumed that it is a
non-increasing continuous function, such that the function (th(t)) is converging to
0 at infinity and

α
def.
=

∫ +∞

0

h(u) du < +∞. (1.1)

b. The activation function Φ modulates the global impact of past jumps. It is assumed
that it is continuous and

β
def.
= lim sup

t→+∞

Φ(t)

t
< +∞. (1.2)

This class of models has been used in numerous situations such as, mathematical
finance, Bauwens and Hautsch [1], population dynamics, Boumezoued [2], biology,
Reynaud-Bouret and Schbath [41], queueing systems, Daw and Pende [9], learning
theory, Etesami et al. [13], or neurosciences, Gerhard et al. [15], . . . .

This work is initially motivated by our investigations of mathematical models of plastic
synapticity in neural networks, see Robert and Vignoud [43, 44, 45].

From a mathematical point of view, these processes have generated, and still generate,
a considerable interest. Pioneering works on the existence and uniqueness of stationary
point process, i.e. when the distribution of the point process is invariant with respect to
translation, are:

— Hawkes and Oakes [20] shows that when the activation function is affine, these
processes can be represented by an age-dependent branching process, a special
class of the so-called Crump-Mode-Jagers models. The branching property is an
important feature in the analysis of these models.

— Kerstan [26] gives an existence and uniqueness result of a stationary point process
in the more general context of a fixed point relation for the distribution of random
measures. A contraction argument in a convenient functional setting is the key
ingredient. The reference Brémaud and Massoulié [4] has considerably developed
this method in the case of Hawkes processes.

In this setting, the main existence and uniqueness result for an unbounded activa-
tion function Φ and a general memory function h is obtained under the condition
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Non-linear Hawkes processes

that Φ is Lipschitz with coefficient LΦ and that the relation αLΦ < 1 holds, where
α is defined by Relation (1.1). Note that LΦ ≥ β, with β defined by Relation (1.2).
We will see in this paper that the weaker conditions that Φ is continuous and that
αβ < 1 are enough for the existence result.

Up to now, these are mainly the two main approaches to investigate the existence of
stationary Hawkes processes. Renewal properties are also an important tool in the study
of Hawkes processes. See Graham [16], Raad [39], and Costa et al. [7]. Appendix B is
an attempt to present some aspects of the overwhelming literature of this domain in a
table. Functional limit theorems like law of large numbers or central limit theorems and
large deviations properties are also topics of interest for these processes.

In our framework, assuming that a point process is given on R−, the Hawkes property
on R+ is expressed with a solution of a Stochastic Differential Equation (SDE) satisfied by
its counting process. We reformulate this property in terms of the distance between the
jump times of the point process. In the case of a stationary Hawkes point process, this
gives a Markovian characterization of its Palm measure in terms of a positive recurrence
property.

The natural state space to study Palm measures is a sub-space of non-negative se-
quences, of distances between the successive points of the point process. Unfortunately
the appropriate state space is not complete as a metric space and, moreover, the Markov
process does not have the Feller property so that the classical tools to prove positive
recurrence do not seem to be available. See Hairer [17] for a quick presentation. Never-
theless, our main result, Theorem 6.2 shows that under appropriate, weak, conditions
on Φ there exists such a Palm measure and therefore a stationary Hawkes process. It
should be noted however that we have not been able to obtain a significant uniqueness
result under these weak conditions. Contraction arguments, which are apparently not
possible under our weak assumptions, may be required for that purpose. Nevertheless,
an interesting coupling property, Corollary 6.5, is proved.

Our approach uses the Markov chain starting from the empty state, i.e. the solution
of the SDE when the initial state is the Dirac measure at 0 (no activity on R− except
at 0). Proposition 4.5 shows that the points of the corresponding point process are
lower-bounded by a functional of a simple random walk. A simple characterization of
non-homogeneous point processes, see Proposition 3.2, plays an important role to derive
this result. The existing literature of Hawkes processes relies more on a stochastic
calculus approach, via a formulation in terms of previsible projections of stochastic
intensities.

A second ingredient is a coupling with an linear Hawkes process, the Hawkes process
of Hawkes and Oakes [20] when Φ is an affine function. Our analysis of linear Hawkes
processes does not explicitly use the natural branching property of this model. Mono-
tonicity properties and technical estimates give then the desired existence result under
weak conditions. See the discussions of Section B of the appendix and at the beginning
of Section 6.

When the memory function is exponential, an existence result of a stationary Hawkes
process is obtained under an even weaker condition and an explicit representation of the
Palm measure is obtained. We also analyze the transient case for which there are few
studies in general. In this case, the non-decreasing sequence of points of the Hawkes
dynamics blows-up, i.e. converges almost surely to a finite limit. The self-excitation
property of the dynamic leads to an explosion in finite time. We derive a scaling result,
see Theorem 7.9, for the sequence of point in terms of a Poisson process.

The paper is organized as follows. Section 2 introduces some basic definitions,
Section 3 expresses the Hawkes property in terms of a stochastic differential equation
and Section 4 gives a characterization of the Palm measure of a stationary Hawkes
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Non-linear Hawkes processes

process as an invariant measure of a Markov chain in the state space of non-negative
sequences. Section 5 revisits a classical Hawkes process, when the activation function
is affine. Section 6 gives the main existence of this paper with this approach and by
using coupling techniques and some monotonicity properties. Section 7 investigates
Hawkes process with an exponential memory function. Appendix A presents the main
definitions and results concerning stationary point processes. Appendix B gives a quick
review of the results and the methods for the existence and uniqueness of stationary
Hawkes processes.

2 Definitions and notations

2.1 Probability space

It is assumed that on the probability space (Ω,F ,P) is defined a Poisson point process
P on R+ ×R with intensity measure dx⊗ dy. See Kingman [27], Last and Penrose [30]
and Chapter 1 of Robert [42] for a brief account on Poisson processes.

Additionally (Ft) is a filtration such that, for t ∈ R, Ft is the σ-field generated by the
random variables P(A× (s, t]), where A is a Borelian set of R+ and s ≤ t. If λ and f are
non-negative Borelian functions f on R, we define∫

R

f(s)P((0, λ(s)],ds)
def.
=

∫
R+×R

f(s)1{v≤λ(s)}P(dv,ds),

and it is assumed that the σ-field F of the probability space verifies⋃
t≥0

Ft ⊂ F .

The martingale and stopping time properties are understood with respect to this filtra-
tion.

If H is R or R−, we denote by Cc(H) the space of continuous functions on H with
compact support and Mp(H), the set of Radon point measures on H, that is positive
Radon measures carried by points, for m ∈Mp(H) then

m =
∑
x∈S

δx,

where δx is the Dirac measure at x ∈ H and S is a countable subset of H with no limiting
points in H. We may also represent m as a sequence (xn, n ∈ N) of points. If A is a
subset of H, we denote by

m(A) =

∫
A

m(dx) =
∑
x∈S

1{x∈A},

the number of points of m in A. A point measure m is simple if m({x}) ∈ {0, 1}, for all
x ∈ H. The spaceMp(H) is endowed with the topology of weak convergence.

2.2 State space of non-negative sequences

We refer to Appendix A for general definitions concerning point processes. We denote
by S the sub-space of sequences of non-negative real numbers

S def.
=
{
x = (xk) ∈ (R+ ∪ {+∞})N\{0} : xk0

= +∞⇒ xk = +∞, ∀k ≥ k0

}
. (2.1)
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Non-linear Hawkes processes

Correspondence between S andMp(R−)

A functional from S to the space of positive measures with a mass at 0 is introduced
as follows, if x = (xk) ∈ S, the positive measure mx on R− is defined by

mx = δ0 +

+∞∑
k=1

δtk , with tk = −
k∑
i=1

xi, k ≥ 1, (2.2)

with the convention that δ−∞ ≡ 0.
The measure mx is a positive measure carried by points associated to x ∈ S. Note

that mx is not necessarily a point measure, i.e it may not have Radon property, since we
do not exclude the fact that the sequence (xk) converges to 0 sufficiently fast so that the
measure mx may have a finite limiting point.

With this definition 0 is always a point of mx and that the coordinates of x are the
inter-arrivals times of mx, in particular x1 is the distance to the first point of mx on the
left of 0. The point measures with a finite number of points correspond to sequences (xk)

which are constant and equal to +∞ after some finite index. In this case, if k0 is the first
index where xk0

= +∞, with a slight abuse of notation we will write it as a finite vector
x = (x1, x2, . . . , xk0−1,+∞) or x = (x1, x2, . . . , xk0−1).

On S, the distance, for x = (xk), y = (yk) ∈ S,

d(x, y) =

+∞∑
1

1

2k
min(|xk − yk|, 1), (2.3)

with the convention, for u ∈ R+, |u−∞| = |∞ − u| = +∞ and |∞ −∞| = 0.
An important subset of S is

Sh
def.
=

{
x = (xk) ∈ S : h(0) +

+∞∑
k=1

h

(
k∑
i=1

xi

)
=

∫ +∞

0

h(−u)mx(du) < +∞

}
, (2.4)

we have x ∈ Sh if and only if (h(−u)) ∈ L1(mx). Throughout the paper, we will use the
following convention, for t ≥ 0 and x ∈ Sh,

+∞∑
k=0

h

(
t+

k∑
i=1

xi

)
= h(t) +

+∞∑
k=1

h

(
t+

k∑
i=1

xi

)
. (2.5)

Definition 2.1. If Φ(0) > 0, for a ≥ 0 and x ∈ Sh, we set

T (x, a)
def.
= inf

t≥0


∫ t

0

Φ

h(s) +
∑
k≥1

h

(
s+

k∑
i=1

xi

)ds ≥ a

 (2.6)

= inf
t≥0

{∫ t

0

Φ

(∫
(∞,s)

h (s− u) mx(du)

)
ds ≥ a

}
,

and T (x, a)
def.
= 0 otherwise, i.e. if x ∈ S\Sh, with the convention h(+∞) = 0.

Lemma 2.2. If Φ(0) > 0 and x ∈ Sh then,

lim
t→+∞

∫ t

0

Φ

(∫
(−∞,s)

h (s− u) mx(du)

)
ds = +∞.

In particular, for x ∈ Sh and a ≥ 0, the variable T (x, a) is finite.
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Non-linear Hawkes processes

Proof. Note that, for any t ≥ 0, the monotonicity property of h gives h(t − u) ≤ h(−u)

and, since x ∈ Sh, ∫
(−∞,0)

h(−u)mx(du) < +∞,

with Lebesgue’s dominated convergence Theorem we obtain the identity

lim
t→+∞

∫
(−∞,0)

h(t− u)mx(dx) = 0. (2.7)

Our lemma is proved since Φ is continuous with Φ(0) > 0.

3 Hawkes SDEs

We first recall the classical definition of an Hawkes process, see Hawkes and Oakes
[20].

Definition 3.1. A Hawkes process is a point process N on R such that, for any s ∈ R,
the process (

N ((s, t])−
∫ t

s

Φ

(∫
(−∞,u)

h(u− x)N (dx)

)
du, t ≥ s

)
is a local martingale with respect to the filtration (Ft, t ≥ s), where, for t ∈ R, Ft is the
σ-field containing the σ-field associated to the random variables N ((u, v]), u ≤ v ≤ t.

If N is a Hawkes process, for any s ∈ R the dual predictable projection of the process
of (N ((s, t]), t ≥ s) is almost surely,(∫ t

s

Φ

(∫
(−∞,u)

h(u− x)N (dx)

)
du, t ≥ s

)
,

see Theorem VI (21.7) of Rogers and Williams [46] for example. In the terminology of
random measures, see Jacod [23], the stochastic intensity of N is(

Φ

(∫
(−∞,u)

h(u− x)N (dx)

)
, u ∈ R

)
.

We now introduce a dynamical system extending a Radon measure on R− into a measure
on R exhibiting a Hawkes property on R+. The Markovian approach used in this paper
relies heavily on this construction.

Proposition 3.2 (Hawkes SDE). If m ∈ Mp(R−) is such that (h(−u)) ∈ L1(m), then
there exists a unique positive random measure Nm on R such that Nm ≡ m on R− and
the counting measure (Nm((0, t]), t ≥ 0) satisfies the stochastic differential equation

dNm((0, t]) = P

((
0,Φ

(∫
(−∞,t)

h(t− x)Nm(dx)

))
,dt

)
, (3.1)

for all t > 0.
If Φ(0) > 0, the points of Nm on R+ is a non-decreasing sequence of stopping times

(Tn, n ≥ 1), such that if

En
def.
=

∫ Tn

Tn−1

Φ

(∫
(−∞,s)

h (s− x)Nm(dx)

)
ds, n ≥ 1, (3.2)

with the convention T0 = 0, then (En, n ≥ 1) is an i.i.d. sequence of exponential random
variables with parameter 1 and, for n ≥ 1, the sequence (Ek, k > n) is independent
of FTn .
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Non-linear Hawkes processes

Proof. We construct by induction the sequence of points (Tn) of Nm. The first point is
defined as

T1
def.
= inf

{
t ≥ 0 :

∫
(0,t]

P

((
0,Φ

(∫
(−∞,0]

h(s− x)m(dx)

))
,ds

)
6=0

}
.

Let R be a Poisson process on R+ with intensity dx, the relation(∫
(0,t]

P

((
0,Φ

(∫
(−∞,0]

h(s− u)m(du)

))
,ds

)
, t ≥ 0

)
dist.
=

(
R

((
0,

∫
(0,t]

Φ

(∫
(−∞,0]

h(s− u)m(du)

)
ds

))
, t ≥ 0

)
(3.3)

between the processes of counting measures of two point processes is an easy conse-
quence of the equality of their respective Laplace transforms. See Chapter 1 of Robert
[42].

If E1 is the first point of R, we deduce therefore the identity∫
(0,T1]

Φ

(∫
(−∞,0]

h(s− u)m(du)

)
ds

dist.
= E1.

Using Definition 2.1, the random variable T1 has therefore the same distribution as the
random variable T (x,E1) where x is the unique element of Sh such that m = mx and
E1 is an exponential random variable with parameter 1. It is in particular almost surely
finite by Lemma 2.2.

By induction, for n ≥ 1, if T1 ≤ T2 ≤ · · · ≤ Tn < +∞, it is possible to define

Tn+1
def.
= inf

{
t ≥ Tn :

∫
(Tn,t]

P

(
Φ

(∫
(−∞,0]

h(s− x)m(dx)

)
+

n∑
k=1

h (s− Tk) ,ds

)
6=0

}
, (3.4)

The random variable Tn+1 as defined by (3.4) is clearly a stopping time, it is almost
surely finite with the same argument as for T1. With the strong Markov property of P for
the stopping time Tn and Relation (3.3), but conditionally on FTn ,(∫

(Tn,Tn+t]

P

(
Φ

(∫
(−∞,0]

h(s− x)m(dx)

)
+

n∑
k=1

h (s− Tk) ,ds

)∣∣∣∣∣FTn
)

dist.
=

(
R

((
0,

∫ Tn+t

Tn

Φ

(∫
(−∞,0]

h(s− u)m(du) +

n∑
k=1

h(s− Tk)

)
ds

))∣∣∣∣∣FTn
)
,

hence, as for the case n = 1, if En+1 is the distance between the nth and (n+ 1)th point
of R, it is an exponential random variable independent of FTn and

En+1 =

∫ Tn+1

Tn

Φ

(∫
(−∞,0]

h(s− u)m(du) +

n∑
k=1

h(s− Tk)

)
ds

=

∫ Tn+1

Tn

Φ

(∫
(−∞,s)

h (s− x)Nm(dx)

)
ds.

The proposition is proved.
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Non-linear Hawkes processes

In the proof we have seen that the condition Φ(0) > 0 in Lemma 2.2 guarantees that
there is almost surely an infinite number of points in R+ for SDE (3.1).

It cannot be excluded nevertheless that this non-decreasing sequence of points may
have a finite limit with positive probability and therefore that Nm may not be a point
process. As it will be seen, it can indeed blow-up in finite time, i.e. the limit of its
sequence (Tn) of points in R+ may be finite with positive probability. Proposition 4.5
gives a condition for which the sequence (Tn) converges almost surely to infinity when
m is the null measure. Theorem 7.9 considers a case when there is such a blow-up and
establishes a limiting result for the accumulation of these points.

However, when the sequence (Tn) is converging almost surely to infinity, Nm is a
point process, and it is not difficult to see that the dual predictable projection of the
process of (Nm((0, t]), t ≥ 0) is(∫ t

0

Φ

(∫
(−∞,s)

h(s− x)Nm(dx)

)
ds, t ≥ 0

)
.

see Theorem VI (27.1) of Rogers and Williams [46]. Consequently, the stochastic intensity
function of Nm on R+ is indeed(

Φ

(∫
(−∞,s)

h(s− x)Nm(dx)

))
.

Proposition 3.2 extends a point measure m on R− to a point process on R, it can be
also seen as a dynamical system on point processes on R− in the following way.

A dynamical system

If m ∈Mp(R−) is such that h(−x) ∈ L1(m) and the non-negative measureNm defined
by Relation (3.1) is a point process, for t ≥ 0, we introduce a (random) dynamical system
(Tt(m)) inMp(R−) as,∫

(−∞,0]

f(x)Tt(m)(dx) =

∫
f(x)θt(Nm)(dx) =

∫
(−∞,t]

f(x− t)Nm(dx), (3.5)

for any non-negative Borelian function on R−, Tt(m) is the point process Nm seen from
the point t.

A stationary point process is a distribution Q onMp(R) which is invariant distribution
for the group of transformations (θt). See Definition A.1 in Section A of the appendix.
By Relation (3.1), it can be formulated as the existence of a distribution on Mp(R−)

invariant by the operator Tt.
When Φ(0) = 0, the null measure is clearly a solution of Relation (3.1). The next

proposition shows that, under some mild condition, the null point process is the unique
stationary Hawkes process in such a case.

Proposition 3.3. Under the condition∫
R+

th(t) dt < +∞,

if for some K ≥ 0, the non-negative function Φ satisfies the relation Φ(x) ≤ Kx, for
all x ≥ 0, then there does not exist an ergodic stationary Hawkes process N which is
non-trivial, i.e. such that P(N 6≡0) > 0.

See Definition A.1 for the stationarity and ergodicity properties, they are with respect
to the flow of translation (θt). See Cornfeld et al. [6].
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Non-linear Hawkes processes

Proof. Assume that N is a non-trivial ergodic stationary Hawkes process. The Birkhoff-
Khinchin ergodic theorem, see [6], gives the almost sure convergence

lim
t→+∞

N ((0, t])

t
= λ

def.
= E(N ((0, 1]) > 0,

since N is non-trivial, we obtain therefore that N (R+) is almost surely infinite. If T1 is
the first positive point of N , the variable T1 is in particular finite with probability 1.

As in the proof of Proposition 3.2, we have

P(T1 ≥ t | F0) = exp

(
−
∫ t

0

Φ

(∫
(−∞,0]

h(s− x)N (dx)

)
ds

)
.

The stationary property of the point process gives the relation

E

(∫
R

f(s)N (ds)

)
= λ

∫
R

f(s) ds,

for all f ∈ Cc(R). If

V
def.
=

∫ +∞

0

Φ

(∫
(−∞,0]

h(s− x)N (dx)

)
ds,

we have, by Fubini’s Theorem,

E(V ) ≤ KE

(∫ +∞

0

∫
(−∞,0]

h(s− x)N (dx) ds

)

= λK

∫ +∞

0

∫
(−∞,0]

h(s− x) dxds = λK

∫ +∞

0

sh(s) ds < +∞,

hence V is an integrable random variable, it is in particular almost surely finite. As a
consequence we have that, almost surely, P(T1 = +∞|F0) > 0. This is a contradiction.
The proposition is proved.

4 A Markov chain formulation

In this section, we give another version of Proposition 3.2 in terms of a Markovian
dependence on the state space of sequences.

4.1 An alternative formulation

We begin with a characterization of the Palm measure of a stationary Hawkes process.

For m ∈Mp(R), if (τn(m), n ∈ Z)
def.
= (tn(m)− tn−1(m), n ∈ Z), where (tn(m)) is given

by Relation (A.1) of the Appendix. As a random variable onMp(R), the sequence is also
represented as (τn, n ∈ Z).

Proposition 4.1. If Φ(0) > 0 and if Q is the distribution on Mp(R) of a stationary

Hawkes process associated to Φ and h then, under its associated Palm measure Q̂, the
sequence of inter-arrivals (τn, n ∈ Z) is a stationary sequence. The sequence of random
variables ∫ τn+1

0

Φ

∑
k≤n

h

(
s+

n∑
i=k+1

τi

) ds, n ∈ Z

 , (4.1)

is i.i.d. with a common exponential distribution with parameter 1.
If there exists a stationary sequence (τn, n ∈ Z) satisfying Relation (4.1), then there

exists a stationary Hawkes process associated to Φ and h.
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From the point of view of Proposition 3.2 this proposition is quite intuitive, one has
nevertheless to be careful, as always in this setting, since Proposition 3.2 is stated under
the distribution Q.

Proof. For simplicity, in this proof we will use the canonical probability space Ω =Mp(R)

endowed with the weak topology and ER denotes the expectation with respect to a
probability distribution R onMp(R).

The stationary property of the sequence (τn, n ∈ Z) under Q̂ is clear, by definition
of Q̂. For t ≥ 0, if f is a bounded Borelian function onMp(R), we denote

Et
def.
= {m ∈Mp(R) : m([−t, 0])6=0}

then, Proposition 11.8, page 315 of Robert [42] shows that if t 7→f(θt(m)) is Q-almost
surely right continuous at t = 0, then the relation

lim
t↘0

EQ (f | Et) = EQ̂(f)

holds.

For n ∈ Z and m ∈Mp(R), define

Ψn(m)
def.
=

∫ tn+1(m)

tn(m)

Φ

(∫
(−∞,s]

h(s− x)m(dx)

)
ds,

since, Q-almost surely, t0(m) < 0 < t1(m) and tn(m) < tn+1(m), then for t ≥ 0 such that
0 ≤ t < t1(m), we have

Ψn(θt(m)) =

∫ tn+1(m)−t

tn(m)−t
Φ

(∫
(−∞,s+t]

h(s+ t− x)m(dx)

)
ds = Ψn(m).

Let F be a continuous bounded Borelian function on Rn+ then

lim
t↘0

EQ

(
F
(

(Ψi, 1 ≤ i ≤ n)
)∣∣∣ Et) = EQ̂

(
F
(

(Ψi, 1 ≤ i ≤ n)
))

.

Since the event Et is F0-measurable and that for any 1 ≤ k ≤ n, the random variable

m −→
∫ tk+1(m)

tk(m)

Φ

(∫
(−∞,s]

h (s− x)m(dx)

)
ds

is independent of Ftk and therefore of F0, by Proposition 3.2, by induction on k for
example, we obtain that

lim
t↘0

EQ

(
F
(

(Ψi, 1 ≤ i ≤ n)
)∣∣∣ Et) = E

(
F
(

(Ei, 1 ≤ i ≤ n)
))

,

where (Ei, 1 ≤ i ≤ n) are n independent random variables with a common exponential
distribution with parameter 1. By gathering these results we obtain that

EQ̂

(
F
(

(Ψi, 1 ≤ i ≤ n)
))

= E
(
F
(

(Ei, 1 ≤ i ≤ n)
))

.

Under the probability distribution Q̂, the random variables Ψi, 1 ≤ i ≤ n, are i.i.d. with a
common exponential distribution with parameter 1. Relation (4.1) is a consequence of
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the relation, for m ∈Mp(R),

Ψn(m) =

∫ tn+1(m)

tn(m)

Φ

∑
k≤n

h (s− tk(m))

ds

=

∫ τn+1(m)

0

Φ

∑
k≤n

h

(
s+

n∑
i=k+1

τi(m)

) ds,

hence Ψn+1(m) is the variable Ψn(m) associated to the sequence (τn+1) = θ̂(τn), see
Appendix A. By invariance of Q̂ with respect to θ̂, see Proposition 11.18 of Robert [42]
for example, the sequence (Ψn, n ∈ Z) is stationary under Q̂ and, therefore, it is i.i.d.
with a common exponential distribution with parameter 1.

Now we assume that there exists a stationary sequence τ = (τn, n ∈ Z) of integrable
random variables satisfying Relation (4.1). Recall that mτ is the point process defined
by Relation (2.2). Using a similar proof as in Proposition 3.2, we can show that mτ

satisfies an Hawkes SDE (3.1) on R. For u ∈ R, the same property clearly holds for
θu(mτ ), the point process mτ translated at u, see Definition (A.2). For K > 0, let UK be
an independent uniform random variable on [−K,K], the point process θUK (mτ ) satisfies
the Hawkes property. With the same method used for the proof of Proposition 11.2
of [42], we obtain that, as K goes to infinity, θUK (mτ ) converges in distribution to a
stationary point process whose Palm measure is given by the distribution τ . It is not
difficult to show that the Hawkes property is preserved in the limit. The proposition is
proved.

4.2 A Markov chain on S
The previous proposition has highlighted the importance of the Palm space, and there-

fore led us to develop a second formulation of the Hawkes property using a Markovian
kernel.

Definition 4.2. The sequence of random variables (X xn ) with initial point X x0 = x ∈ S is
defined by induction as follows, for n ≥ 0,

X xn+1 = (Xx
n+1,X xn ) (4.2)

where Xx
n+1 is defined by the relation

∫ Xxn+1

0

Φ

(∫
R−

h(Tn + s− u)m(du) +

n∑
k=1

h

(
s+

n∑
i=k+1

Xx
i

))
ds = En+1, (4.3)

with Tn = Xx
1 + · · · + Xx

n and (Ek) is an i.i.d. sequence of exponentially distributed
random variable with parameter 1.

The associated Markovian kernel is denoted by K∫
S
f(y)K(x,dy) = Ex(f(X x1 )), (4.4)

for a non-negative Borelian function f on S.

The element X xn+1 is obtained by shifting X xn and adding Xx
n+1 = T (X xn , En+1) at the

beginning of the sequence. T is the operator defined by Relation (2.6).

The sequence (X xn ) clearly has the Markov property.
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Proposition 4.3 (The Markov chain (X xn ) and Hawkes SDEs). If Φ(0) > 0 and m ∈
Mp(R−) is such that m({0}) > 0, then the distribution of Nm, the solution of Rela-
tion (3.1) can be expressed as

Nm
dist.
= m+

∑
n≥1

δTn ,

with T0 = 0 and, for n ≥ 1, Tn+1 − Tn = Xx
n+1, where the sequence (Xx

n) is defined by
Relation (4.3).

The process (X xn ) = ((Xx
n , . . . , X

x
1 ,X x0 )) is the Markov chain with transition kernel

K(·, ·) of Relation (4.4) and initial point

X x0 = (sn+1 − sn), if m = (sn, n ≥ 0)),

with the convention · · · ≤ sn ≤ sn−1 ≤ · · · ≤ s1 ≤ s0 = 0.

In (4.3), recall the convention of Relation (2.5), for s ≥ 0 and n≥ 2,

n−1∑
k=1

h

(
s+

n−1∑
i=k+1

Xx
i

)
= h(s) +

n−2∑
k=1

h

(
s+

n−1∑
i=k+1

Xx
i

)
.

Proof. This is a straightforward consequence that Relation (4.3) is a rewriting of Rela-
tion (3.2) of Proposition 3.2.

We can now state the main result concerning the relation between the Hawkes SDE
and the Markov transition kernel K.

Proposition 4.4. The Markov chain associated to transition kernel K of Definition (4.4)
has an invariant distribution on Sh if and only if there exists a stationary Hawkes process
associated to the functions Φ and h.

The distribution of the sequence of inter-arrival times of a stationary Hawkes process
associated to the functions Φ and h is an invariant measure for the Markov chain
associated to transition kernel K.

Proof. If there exists a stationary Hawkes point process (tn), Proposition 4.1 shows that
the distribution of (tn+1 − tn) under its Palm distribution is an invariant distribution of
the Markov chain (Xn). Conversely, if the Markov chain associated to transition kernel K
has an invariant distribution, then one can construct a stationary version of the Markov

chain X def.
= (Xn), in particular X satisfies Relation (4.1). Proposition 4.1 shows then that

there exists a stationary Hawkes point process in this case.

4.3 Markov chains starting from the empty state

We define Markov chains (X 0
n) with transition kernel K defined by Relation (4.4) when

the initial state empty, i.e. it is the constant sequence equal to +∞, i.e. X 0
0 = (+∞).

This initial state corresponds to the case of a point process with a point at 0 only. The
sequence (X 0

n) is in fact associated to the point process Nδ0 of Proposition 3.2.
The Markov chain can be defined by, for n ≥ 1,

X 0
n = (X0

n, X
0
n−1, X

0
n−2, . . . , X

0
2 , X

0
1 ,+∞),

where the sequence (X0
n) is defined by Relation (4.3) with m = δ0.

Proposition 4.5. If Φ(0) > 0 and α and β are defined by Relations (1.1) and (1.2), there
exist ν > 0 and β0 > β such that, almost surely, for all n ≥ 1,

n∑
k=1

(Ek − αβ0) ≤ ν
n∑
k=1

X0
k − β0

n∑
k=1

H

 n∑
j=k

X0
j

 , (4.5)
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with

H(x) =

∫ +∞

x

h(s) ds,

If αβ < 1, the random measure Nδ0 solution of Relation (3.1) of Proposition 3.2 is almost
surely a point process.

Proof. For any β0 > β, there exists some ν > 0 such that Relation Φ(x) ≤ ν + β0x, holds
for all x ≥ 0. Equation (4.3) gives, for n ≥ 1,

En =

∫ X0
n

0

Φ

(
n∑
k=1

h

(
s+

n−1∑
i=k

X0
i

))
ds

≤ νX0
n + β0

∫ X0
n

0

n∑
k=1

h

(
s+

n−1∑
i=k

X0
i

)
ds, (4.6)

and, therefore, with the definition of H,

En ≤ νX0
n + β0

∫ X0
n

0

h (s) ds+ β0

∫ X0
n

0

n−1∑
k=1

h

(
s+

n−1∑
i=k

X0
i

)
ds,

En − αβ0 ≤ νX0
n − β0H(X0

n) + β0

∫ X0
n−1+X0

n

X0
n−1

n−1∑
k=1

h

(
s+

n−2∑
i=k

X0
i

)
ds.

By using Inequality (4.6) for the index n− 1 and by adding these relations, we get

n∑
k=n−1

(Ek − αβ0) ≤ ν
[
X0
n +X0

n−1

]
− β0

[
H(X0

n) +H(X0
n +X0

n−1)
]

+ β0

∫ X0
n−2+X0

n−1+X0
n

X0
n−2

n−2∑
k=0

h

(
s+

n−3∑
i=k+1

X0
i

)
ds.

By proceeding by induction, we finally get the relation, for 0 ≤ p < n,

n∑
k=n−p

(Ek − αβ0) ≤ ν
n∑

k=n−p

X0
k − β0

n∑
k=n−p

H

 n∑
j=k

X0
j


+ β0

∫ X0
n−p−1+···+X0

n

X0
n−p−1

n−p−1∑
k=1

h

(
s+

n−p−2∑
i=k

X0
i

)
ds,

for p = n− 1 it gives Relation (4.5).
If αβ < 1, β0 can be chosen so that αβ0 < 1 for some ν > 0, hence, by the law of large

numbers

lim inf
n→+∞

1

n

n∑
k=1

X0
k ≥

1− αβ0

ν
> 0,

holds almost surely, which implies that Nδ0 is almost surely a point process. The
proposition is proved.

5 Affine activation function

In this section, we present quickly in a self-contained way a well-known existence
result for a stationary Hawkes process when the activation function is affine,

Φβ(x) = ν + βx, x ≥ 0, (5.1)
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where ν, β > 0. This is the model investigated in the classical reference Hawkes and
Oakes [20]. The results are presented in our Markovian setting (Xn). It is an important
ingredient in the proof of existence of stationary Hawkes processes of Section 6.

The associated Hawkes process can be interpreted in terms of birth instants of a
branching process: births of external individuals occur according to a Poisson process
with rate ν, each individual with age t > 0 gives birth to a new individual at rate βh(t),
the quantity αβ turns out to be the average number of births due to an individual. Recall
that α is the integral of h on R+, see Relation (1.1). This branching characterization of
the model will not be explicitly used in our arguments.

We denote by Y0
n = (Y 0

n , Y
0
n−1, . . . , Y

0
1 ,+∞) the Markov chain of Definition 4.2 for the

function Φ = Φβ , whose initial state is empty, i.e. Y0
0 = (+∞). For any n ≥ 1, we have∫ Y 0

n

0

Φ

(
n∑
k=1

h

(
s+

n−1∑
i=k+1

Y 0
i

))
ds = En, (5.2)

where (En) is an i.i.d. sequence of exponential random variables with parameter 1.

Proposition 5.1. Under the condition αβ < 1, the sequence (Y0
n) is converging in

distribution, for the topology induced by d of Relation (2.3), to a stationary sequence
Y∞ = (Y∞1 , Y∞2 , . . . , Y∞n , . . .) such that∫ Y∞n

0

Φβ

+∞∑
i=n

h

u+

i∑
j=n+1

Y∞j

 du

 ,

is an i.i.d. sequence of exponential random variables with parameter 1 and

E (Y∞1 ) =
1− αβ
ν

,

furthermore, if

(In)
def.
=

(
n∑
k=1

h

(
k∑
i=2

Y ni

))
and I

def.
=

+∞∑
k=1

h

(
k∑
i=2

Y∞i

)
,

the sequence (In) converges in distribution to the integrable random variable I.

The proposition gives in particular that Y∞1
dist.
= T ((Y∞n , n ≥ 2), E1). The variable

ν + βI is the intensity function of the stationary Hawkes process just after one of its
point, i.e. for its Palm distribution.

As it can be seen, compared to Y∞, the numbering of the coordinates of Y0
n is

reversed. This is mainly for a notational convenience in fact. The important fact is that
the sums inside the function Φ in both cases are depending on the past.

Proof. The proof is done in several steps.

Step 1. Backward Coupling.
The idea is of using a backward coupling idea. See Chapter 22 of Levin et al. [31] for

a general presentation and Loynes [34] for an early use of this method.
We define a sequence of random variables (Ỹ0

n) = (Ỹ n1 , . . . , Ỹ
n
n ,+∞) by induction as

follows, recall that (En) is an i.i.d. of random variables with an exponential distribution
with parameter 1,{

Ỹ nn = T ((+∞), En),

Ỹ nn−k = T
((
Ỹ nn−k+1, . . . , Ỹ

n
n ,+∞

)
, En−k

)
, 1 ≤ k ≤ n,
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in particular,

Ỹ n1 = T
((
Ỹ n2 , . . . , Ỹ

n
n ,+∞

)
, E1

)
.

It is easily checked that(
Ỹ n1 , . . . , Ỹ

n
n ,+∞

)
dist.
=
(
Ỹ n+1

2 , . . . , Ỹ n+1
n+1 ,+∞

)
(5.3)

and that

Ỹ0
n

dist.
= Y0

n, since (E1, E2, . . . , En)
dist.
= (En, En−1, . . . , E1). (5.4)

For any n ≥ 1 and 1 ≤ k ≤ n, we show that Ỹ n+1
k ≤ Ỹ nk holds. This is done by induction.

Since h is non-negative and non-increasing, we have

En =

∫ Ỹ nn

0

(ν + βh (u)) du ≤
∫ Ỹ nn

0

(
ν + β

(
h(u) + h

(
u+ Ỹ n+1

n+1

)))
du,

and, since,

En+1 =

∫ Ỹ nn

0

(
ν + β

(
h(u) + h

(
u+ Ỹ n+1

n+1

)))
du,

this implies that Ỹ nn ≥ Ỹ n+1
n holds. If the relation Ỹ ni ≥ Ỹ

n+1
i holds for any k + 1 ≤ i ≤ n,

then

Ek =

∫ Ỹ nk

0

ν + β

n∑
i=k

h

u+

i∑
j=k+1

Ỹ nj

du

≤
∫ Ỹ nk

0

ν + β

n∑
i=k

h

u+

i∑
j=k+1

Ỹ n+1
j

 du, (5.5)

which gives the relation Ỹ nk ≥ Ỹ
n+1
k . We can now define, for k ≥ 1,

Ỹ∞k = lim
n→+∞

Ỹ nk .

Relation (5.3) shows that the sequence (Ỹ∞k ) is stationary and Relation (5.4) gives the
desired convergence in distribution for (Y0

n).

Step 2. Convergence of the intensities (In). Proposition 4.5 shows that, for all 1 ≤ i ≤ n,

i∑
j=2

Ỹ nj ≥ Si
def.
=

1

ν

i∑
j=2

(Ej − αβ) . (5.6)

The assumption on αβ shows that, almost surely (Si) is converging to infinity. If a+ =

max(a, 0), then
n∑
i=2

h

 i∑
j=2

Ỹ nj

 ≤ n∑
i=2

h
(
S+
i

)
.

Since h is non-increasing converging to 0 at infinity, there exists a non-negative finite
Radon measure µ on R+ such that h(x) = µ((x,+∞)), with Fubini’s Theorem, we obtain

E

(
+∞∑
i=1

h
(
S+
i

))
=

∫ +∞

0

E (N+(0, x))µ(dx), (5.7)
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where N+ is the counting measure of the sequence (Sn), i.e. for x ≥ 0,

N+(0, x)
def.
=

+∞∑
i=2

1{x≥Si}. (5.8)

The Laplace transform of N+ on R+ is given by, for ξ ≥ 0 sufficiently small so that
ν exp(αβξ/ν) < (ν + ξ), we have

ω(ξ)
def.
= E

∑
n≥1

e−ξSn

 =
ν + ξ

ν + ξ − ν exp(αβξ/ν)

Hence,
lim
ξ→0

ξω(ξ) =
ν

1− αβ
,

A Tauberian theorem, see Theorem 2 of Chapter XIII of Feller [14], implies that

lim
x→+∞

E(N+(0, x))

x
=

ν

1− αβ
,

hence there exist D1 and D2 ≥ 0 such that for all x ≥ 0,

E(N+(0, x)) ≤ D1 +D2x. (5.9)

Hence, with Relation (5.7)

E

(
+∞∑
i=1

h
(
S+
i

))
≤ D1h(0) +D2

∫ +∞

0

xµ(dx)

≤ D1h(0) +D2

∫ +∞

0

µ(x,+∞) dx = D1h(0) +D2α, (5.10)

with the integration by parts formula.
For p ≥ 1 and n ≥ p,

n∑
i=p

h

 i∑
j=2

Ỹ nj

 ≤ n∑
i=p

h
(
S+
i

)
≤

+∞∑
i=p

h
(
S+
i

)
,

this last term converges almost surely to 0 as p gets large, hence we obtain the almost
sure convergence

lim
n→+∞

n∑
i=1

h

 i∑
j=2

Ỹ nj

 =

+∞∑
i=1

h

 i∑
j=2

Ỹ∞j

 ≤ +∞∑
i=1

h
(
S+
i

)
< +∞, a.s.

by Relations (5.6) and (5.9).

Step 3. Relation (5.5) with k = 1 gives

E1 =

∫ Ỹ 1
1

0

1{u≤Ỹ n1 }

ν + β

n∑
i=1

h

u+

i∑
j=2

Ỹ nj

du,

since

1{u≤Ỹ n1 }

ν + β

n∑
i=1

h

u+

i∑
j=2

Ỹ nj

 ≤ ν + β

n∑
i=1

h

 i∑
j=2

Ỹ nj


≤ ν + β

+∞∑
i=1

h
(
S+
i

)
< +∞,
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with the same argument as in the proof of the convergence (In), and with Lebesgue’s
dominated convergence theorem, we obtain the relation

E1 =

∫ Ỹ∞1

0

ν + β

+∞∑
i=1

h

u+

i∑
j=2

Ỹ∞j

 du.

With a standard argument, via Kolmogorov’s extension Theorem, see Section VII-38 of
Halmos [18], there exists a stationary sequence (Z̃∞n , n ∈ Z) of random variables such

that (Z̃∞n , n ≥ p)
dist.
= (Ỹ∞n , n ≥ 1), holds for all p ∈ Z. After integration of the last relation,

with a change of variable, we obtain

1− νE (Y∞1 ) = β

∫ +∞

0

h (u)

+∞∑
i=1

P

 i∑
j=2

Ỹ∞j ≤ u ≤
i∑

j=1

Ỹ∞j

du.

For i ≥ 1, we have

P

 i∑
j=2

Ỹ∞j ≤ u ≤
i∑

j=1

Ỹ∞j

 = P

 −1∑
j=−i+1

Z̃∞j ≤ u ≤
−1∑
j=−i

Z̃∞j


= P

i−1∑
j=1

Z̃∞−j ≤ u ≤
i∑

j=1

Z̃∞−j

 ,

hence

1− νE (Y∞1 ) = βP

(∫ +∞

0

h (u)

+∞∑
i=1

1{
∑i−1
j=1 Z̃

∞
−j≤u≤

∑i
j=1 Z̃

∞
−j}

)
du = βα,

by Fubini’s Theorem. The proposition is proved.

Proposition 5.2. The Markov chain with transition kernelK on Sh has a unique invariant
measure.

Proof. Let Λ a probability distribution on Sh invariant by K, and Z = (Z−p, p ≥ 0) a
random variable on S with distribution Λ. We construct the sample paths of Markov
chains starting (Zn) = (Zn, Zn−1, . . . , Z1) · (Z−p, p ≥ 0) and (Y0

n), from initial states Z
and (+∞) respectively, in the following way, for n ≥ 1,∫ Zn

0

ν + β

 n∑
i=0

h

s+

n−1∑
j=i

Zj

+

+∞∑
i=0

h

s+

i∑
j=0

Z−j

ds = En,

and ∫ Yn

0

ν + β

n∑
i=0

h

s+

n−1∑
j=i

Yj

ds = En.

It is easily seen by induction that, almost surely, for all n ≥ 1, the relation Zn ≤ Y 0
n holds,

hence, since Zn
dist.
= Z, for any k ≥ 1 and n ≥ k,

(Z0, . . . , Z−k) ≤st (Y 0
n , . . . , Y

0
n−k),

where ≤st denotes the stochastic order with respect to the order of the coordinates.
Proposition 5.1 gives therefore

(Z0, . . . , Z−k) ≤st (Y∞0 , . . . , Y∞k ).
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Non-linear Hawkes processes

Since (Zn) is invariant for K, the relation T (Z, E0)
dist.
= Z1 holds and, as in the proof of

Proposition 5.1 the relation E(Z1) = (1− αβ)/ν also holds, and therefore, for all k ≥ 1,

(Z0, . . . , Zk)
dist.
= (Y∞0 , . . . , Y∞k ).

The proposition is proved.

6 Stationary Hawkes processes

We start with a coupling result between a general non-linear Hawkes process and the
Hawkes process of Hawkes and Oakes [20]. The idea of the coupling with the “classical”
Hawkes process is also mentioned in Karabash [25] but in a space of functions. The
existence result of this reference seems to be incomplete since the topology used is
not clearly defined and an important continuity property, the Feller property in fact, is
apparently missing. This is the main technical difficulty of the proof of Theorem 6.2.

6.1 A monotonicity property

Throughout this section, (En) denotes an i.i.d. sequence of exponential random
variables with parameter 1.

Let m be a point measure on R−, with Definition 4.2, the sequences (Xm
n , n ≥ 1) and

(Y mn , n ≥ 1) are defined by induction by, for n ≥ 1,∫ Xmn

0

Φ

(∫ 0

−∞
h

(
s+

n−1∑
i=1

Xm
i − x

)
m(dx) +

n−1∑
k=0

h

(
s+

n−1∑
i=n−k

Xm
i

))
ds = En, (6.1)

∫ Ymn

0

Φβ0

(∫ 0

−∞
h

(
s+

n−1∑
i=1

Y mi − x

)
m(dx) +

n−1∑
k=0

h

(
s+

n−1∑
i=n−k

Y mi

))
ds = En, (6.2)

where β0 is, for the moment, a positive constant and Φβ0
(x)

def.
= ν + β0x for x ∈ R.

The affine function Φβ0
will be used as follows. If β defined by Relation (1.2) is such

that αβ < 1, then there exists some β0 > β such that αβ0 < 1 and a constant ν such that

Proposition 6.1 (Coupling). If ν and β0 > 0 are such that the relation Φ(x) ≤ Φβ0
(x), for

all x ≥ 0, with Φβ0
defined by Relation (5.1), and if m be a point measure on R− with∫ 0

−∞
h(−x)m(dx) < +∞,

then, for β0 > β there exists ν > 0 such that, almost surely, the sequence (Y mn ) defined
by Relation (6.2) satisfies the relation Y mn ≤ Xm

n , for all n ≥ 1.

Proof. The proof is straightforward. If, by induction, the relation holds up to index
n− 1 > 0. For t ≥ 0,∫ t

0

Φ

(∫ 0

−∞
h

(
s+

n−1∑
i=1

Xm
i − x

)
m(dx) +

n−1∑
k=0

h

(
s+

n−1∑
i=n−k

Xm
i

))
ds

≤
∫ t

0

Φβ0

(∫ 0

−∞
h

(
s+

n−1∑
i=1

Xm
i − x

)
m(dx) +

n−1∑
k=0

h

(
s+

n−1∑
i=n−k

Xm
i

))
ds

≤
∫ t

0

Φβ0

(∫ 0

−∞
h

(
s+

n−1∑
i=1

Y mi − x

)
m(dx) +

n−1∑
k=0

h

(
s+

n−1∑
i=n−k

Y mi

))
ds,

by the monotonicity properties of h and Φβ0
. Hence we deduce that the relation Y mn ≤ Xm

n

holds.
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6.2 Existence theorem

We can now formulate our main existence result.

Theorem 6.2. If the activation function function Φ is continuous with Φ(0) > 0 and the
quantities

α =

∫ +∞

0

h(t) dt and β = lim sup
y→+∞

Φ(y)

y

are such that αβ < 1, then there exists a stationary Hawkes point process.

Proof. The assumptions imply that there exist ν > 0 and β0 ≥ 0 such that αβ0 < 1 and
Φ(x) ≤ Φβ0

(x) for all x ≥ 0, where Φβ0
is defined by Relation (5.1).

The Markov chain (X 0
n), resp. (Y0

n), associated to Φ, resp. to Φβ0
, with initial point

(+∞), is denoted by

X 0
n = (X0

n, X
0
n−1, . . . , X

0
1 ,+∞) and Y0

n = (Y 0
n , Y

0
n−1, . . . , Y

0
1 ,+∞),

see Definition 4.2.
We proceed in the spirit of Kryloff and Bogoliouboff [29], let R+ = R+∪{+∞} and

Qn the distribution on R
N

+ given by

Qn(F ) =
1

n

n∑
i=1

E
(
F (X0

i , X
0
i−1, . . . , X

0
i−k+1)

)
,

if F is a Borelian function on R
N

+ depending only on the first k coordinates, with the

convention that X0
i = +∞ for i ≤ 0. The space R

N

+ is endowed with the topology defined
by the distance (2.3).

The sequence of probability distributions (Qn) on the compact space R
N

+ is clearly
tight. Let (Qnp) be convergent sequence whose limit is Q∞. We now prove that Q∞ is
an invariant distribution for the Markov chain (X 0

n). Due to definition of (Qn), it is clear

that the probability Q∞ on R
N

+ is invariant by the shift operator (xi)→ (xi+1).

Let Zp = (Zp1 , Z
p
2 , . . .) be a random variable on R

N

+ with distribution Qnp and E0 an
independent exponential random variable with parameter 1, Z∞ = (Z∞1 , Z∞2 , . . .) is a
random variable with distribution Q∞.

If F1 is an exponential random variable independent of Zp, by definition of (Qnp) we
have, for the convergence in distribution,

lim
p→+∞

(T (Zp, F1), Zp1 , Z
p
2 , . . .) = Z∞,

If we prove that, for the convergence in distribution,

lim
p→+∞

T (Zp, E0) = T (Z∞, E0), (6.3)

the probability distribution Q∞ will be an invariant distribution for the Markov chain
(Xn) and therefore that there exists a stationary Hawkes process by Proposition 4.1.

We fix T > 0, p ≥ 1, we have, by definition of Qnp

P(T (Zp, E0) ≥ T ) =
1

np

np∑
i=1

E

exp

− ∫ T

0

Φ

 i∑
k=0

h

s+

i∑
j=i+1−k

X0
j

 ds

 . (6.4)

Our proof is carried out in four steps.

Step 0: an integrability property of Z∞.
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We use the notations of Section 6.1. With Proposition 6.1, we can construct a coupling
such that Y 0

n ≤ X0
n holds almost surely for all n ≥ K > 0.

K∑
k=0

h

 i∑
j=i+1−k

X0
j

 ≤ i∑
k=0

h

 i∑
j=i+1−k

Y 0
j

 ,

we get,

1

np

np∑
i=K

K∑
k=0

h

 i∑
j=i+1−k

X0
j

 ≤ 1

np

np∑
i=K

i∑
k=0

h

 i∑
j=i+1−k

Y 0
j

 ,

and, by taking the expected value, this gives the relation

1

np

np∑
i=K

E

 K∑
k=0

h

 i∑
j=i+1−k

X0
j

 ≤ 1

np

np∑
i=K

E

 i∑
k=0

h

 i∑
j=i+1−k

Y 0
j

 .

As p goes to infinity, the right-hand side is converging to E(I), where I is the random
variable defined in Proposition 5.1. The left-hand side can be expressed as

E

 K∑
k=0

h

 k∑
j=1

Zpj

 ,

and this term is converging to

E

 K∑
k=0

h

 k∑
j=1

Z∞j

 .

We have thus obtained that,

E

 K∑
k=0

h

 k∑
j=1

Z∞j

 ≤ E(I) < +∞,

by letting K go to infinity, this gives the relation

E

+∞∑
k=0

h

 k∑
j=1

Z∞j

 < +∞, (6.5)

Step 1: A truncation argument.
For i > 0, by using the monotonicity property of h, we obtain the relations, for s ≥ 0,

i∑
k=0

h

s+

i∑
j=i+1−k

X0
j

 ≥ C
 ⊂


i∑

k=0

h

 i∑
j=i+1−k

X0
j

 ≥ C


hence, with the couplings of Propositions 5.1 and 6.1 and the notations of its proof, and
Relation (5.4), we obtain

P

inf

 i∑
k=0

h

s+

i∑
j=i+1−k

X0
j

 : s ≥ 0

 ≥ C
 ≤ P

 i∑
k=0

h

 i∑
j=i+1−k

X0
j

 ≥ C


≤ P

 i∑
k=0

h

 i∑
j=i+1−k

Y 0
j

 ≥ C
 = P

 i∑
k=0

h

 k∑
j=1

Ỹ ij

 ≥ C


≤ P

+∞∑
k=0

h

 k∑
j=1

Ỹ∞j

 ≥ C
 .
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For ε > 0, Proposition 5.1 gives therefore the existence of C0 > 0 such that

sup
i≥1

P

sup
s≥0

i∑
k=0

h

s+

i∑
j=i+1−k

X0
j

 ≥ C0

 ≤ ε. (6.6)

For δ > 0, the function Φ being uniformly continuous [0, C0], there exists some η0

such that |Φ(x)− Φ(y)| ≤ δ, for all elements x and y of [0, C0] such that |x− y| ≤ η0.

Step 2.
For s ≥ 0, i > K ≥ 0, with the same arguments, we get

∣∣∣∣∣∣Φ
 i∑
k=0

h

s+

i∑
j=i+1−k

X0
j

− Φ

 K∑
k=0

h

s+

i∑
j=i+1−k

X0
j

∣∣∣∣∣∣ > δ


⊂

sup
s≥0

i∑
k=0

h

s+

i∑
j=i+1−k

X0
j

 ≥ C0

⋃


i∑
k=K+1

h

s+

i∑
j=i+1−k

X0
j

 > η0


⊂

sup
s≥0

i∑
k=0

h

 i∑
j=i+1−k

X0
j

 ≥ C0

⋃


i∑
k=K+1

h

 i∑
j=i+1−k

X0
j

 > η0

 ,

and, as before,

P

 i∑
k=K+1

h

 i∑
j=i+1−k

X0
j

 > η0

 ≤ P
 i∑
k=K+1

h

 i∑
j=i+1−k

Y 0
j

 > η0


= P

 i∑
k=K+1

h

 k∑
j=1

Ỹ ij

 > η0.

 ≤ P
 i∑
k=K+1

h

 k∑
j=1

Ỹ∞j

 > η0.


≤ P

 +∞∑
k=K+1

h

 k∑
j=1

Ỹ∞j

 > η0.

 .

The random variable I being almost surely finite, Proposition 5.1, gives that there exists
K0 such that

P

 +∞∑
k=K0+1

h

 k∑
j=1

Ỹ∞j

 > η0

 ≤ ε.
By gathering these results, with Relation (6.6), we obtain

sup
i≥K0

P

sup
s≥0

∣∣∣∣∣∣Φ
 i∑
k=0

h

s+

i∑
j=i+1−k

X0
j

− Φ

K0∑
k=0

h

s+

i∑
j=i+1−k

X0
j

∣∣∣∣∣∣ > δ

 ≤ 2ε,

hence

lim
K→+∞

sup
i≥K

∣∣∣∣∣∣E
exp

−∫ T

0

Φ

 i∑
k=0

h

s+

i∑
j=i+1−k

X0
j

 ds


− E

exp

−∫ T

0

Φ

 K∑
k=0

h

s+

i∑
j=i+1−k

X0
j

 ds

∣∣∣∣∣∣ = 0. (6.7)
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Step 3.
Relations (6.4) and (6.7) show that, for ε > 0, there exists K0 such that the relation∣∣∣∣∣∣P(T (Zp, E0) ≥ T )− 1

np

np∑
i=K0

E

exp

−∫ T

0

Φ

K0∑
k=0

h

s+

i∑
j=i+1−k

X0
j

 ds

∣∣∣∣∣∣ ≤ ε
(6.8)

holds for all p ≥ 1. Relation (6.5) shows that one can choose a constant K0 sufficiently
large so that∣∣∣∣∣∣E

exp

−∫ T

0

Φ

K0∑
k=0

h

s+

1∑
j=−k

Z∞j

 ds

−
E

exp

−∫ T

0

Φ

+∞∑
k=0

h

s+

k∑
j=1

Z∞j

ds

∣∣∣∣∣∣ ≤ ε.
With the convergence of the sequence (Qnp), we have

lim
p→+∞

1

np

np∑
i=K0

E

exp

−∫ T

0

Φ

K0∑
k=0

h

s+

i∑
j=i+1−k

X0
j

 ds


= E

exp

−∫ T

0

Φ

K0∑
k=0

h

s+

k∑
j=1

Z∞j

 ds

 .

Note that the K0 first terms in the expression of Qnp can be arbitrarily small as p gets
large. With Relation (6.8), by letting ε go to 0, we obtain Relation (6.3). The theorem is
proved.

6.3 Coupling properties

We have not been able to obtain an analogue, sufficiently strong, result for the
uniqueness of a stationary Hawkes point process. Without a contracting scheme available,
one of the few possibilities is of using a coupling argument of the trajectories of the
Markov chain (X zn). In this section, we investigate the coupling of the Markov chain (X zn)

with the Markov chain starting from the empty state.
We assume that the activation function Φ has the Lipschitz property,

|Φ(x)− Φ(y)| ≤ LΦ|x− y|, ∀x, y ≥ 0, (6.9)

for some constant LΦ > 0. Let f be a non-negative Borelian function on R+, and τf be
the random variable such that the random variable∫ τf

0

f(u) du

has an exponential distribution with parameter 1, i.e. for t ≥ 0,

P(τf ≥ t) = exp

(
−
∫ t

0

f(u) du

)
.

Lemma 6.3. If f and g are non-negative integrable functions on R+, then there exists a
coupling of τf and τg, such that

P(τf 6=τg) ≤
∫
R+

|f(u)− g(u)|du.
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Proof. Define hf = (f − g)+, hg = (g − f)+, we can take the random variables τhf , τhg
and τf∧g independent, then it is easily checked that

Tf = τhf∧τf∧g
dist.
= τf and Tg = τhg∧τf∧g

dist.
= τg,

and
P(Tf = Tg) ≥ P(τhf∧τhg ≥ τf∧g) = P(τhf+hg ≥ τf∧g) = P(τ|f−g| ≥ τf∧g),

hence, we obtain,

P(Tf 6=Tg) ≤ E
(

exp

(
−
∫ τ|f−g|

0

f(u)∧g(u) du

))
=

∫ +∞

0

(|f(v)− g(v)|) exp

(
−
∫ v

0

f(u)∧g(u) + |f(v)− g(v)|du
)

dv

≤
∫ +∞

0

|f(v)− g(v)|dv.

The lemma is proved.

The next proposition gives an upper bound on the probability that the Markov chain
(X zn) do not couple right from the beginning with the Markov chain starting from the
empty state.

Proposition 6.4. For z ∈ Sh, if Φ is Lipschitz with constant LΦ, there exists a coupling
of the Markov chains (X 0

n) and (X zn) of Definition 4.2, and D1, D2 ∈ R+ such that

P
(
∃n ≥ 1, X0

n 6=Xz
n

)
≤ LΦ

(
D1

∫
R−

∫ +∞

0

h (s− u) dsmz(du) +D2

∫
R−

∫ +∞

0

sh (s− u) dsmz(du)

)
. (6.10)

Proof. Since the random variables X0
1 and Xz

1 can be expressed as τf0
and τfy , with

f0(s) = Φ(h(s)) and fy(s) = Φ

(
h(s) +

∫ +∞

0

h(s− u)mz(du)

)
,

Lemma 6.3 shows that

P (X0
1 6=Xz

1 ) ≤
∫ +∞

0

∣∣∣∣∣Φ (h (s))− Φ

(∫
R−

h(s− u)mz(du) + h (s)

)∣∣∣∣∣ ds

≤ LΦ

∫ +∞

0

∫
R−

h(s− u)mz(du) ds.

By induction, we obtain that, for n ≥ 1,

P (X0
n+1 6=Xz

n+1|X0
k = Xz

k ,∀1 ≤ k ≤ n)

≤
∫ +∞

0

∣∣∣∣∣Φ
(
n+1∑
k=1

h

(
s+

n∑
i=k

Xz
i

))

− Φ

(∫
R−

h

(
s+

n∑
i=1

X0
i − u

)
mz(du) +

n+1∑
k=1

h

(
s+

n∑
i=k

X0
i

))∣∣∣∣∣ ds

≤ LΦ

∫ +∞

0

∫
R−

h

(
s+

n∑
i=1

X0
i − u

)
mz(du) ds.
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With Proposition 4.5, there exists some β0 such that αβ0 < 1 and

n∑
i=1

X0
i ≥ S+

n , with Sn
def.
=

n∑
i=1

Ei − αβ0,

hence

P
(
∃n ≥ 1, X0

n 6=Xz
n

)
≤ LΦ

+∞∑
n=0

∫ +∞

0

∫
R−

E

(
h

(
s+

n∑
i=1

X0
i − u

))
mz(du) ds

≤ LΦ

+∞∑
n=0

∫ +∞

0

∫
R−

E
(
h
(
s+ S+

n − u
))
mz(du) ds.

For u > 0, in the same way as in the proof of Proposition 5.1, with Fubini’s Theorem, we
obtain

+∞∑
n=0

∫ +∞

0

E
(
h
(
s+ S+

n + u
))

ds =

+∞∑
n=0

∫ +∞

0

E
(
h (s+ u)1{s≥S+

n }

)
ds

=

∫ +∞

0

h (s+ u)E (N+([0, s])) ds,

where N+ is defined by Relation (5.8), with Inequality (5.10) we obtain the desired
estimate.

Corollary 6.5. For x0 = (zi, i ≥ 1) ∈ Sh, if Φ is Lipschitz with constant LΦ and∫
R−

∫ +∞

0

sh (s− u) dsmx0
(du) < +∞,

then there exists K0 > 0 such that if a ≥ K0 and x1(a) = (a, z2, z3, . . .), then

P
(
X0
n = Xx1(a)

n ,∀n ≥ 1
)
>

1

2
.

Proof. It is enough to note that, by monotonicity of h, the right-hand side of Rela-
tion (6.10) goes to 0 if z1 is replaced by a quantity a sufficiently large and, in particular
less that 1/2 if a ≥ K0, for some K0 > 0.

7 The case of exponential memory

In this section we assume that the function h associated to the memory of previous
jumps is exponentially decreasing.

h(u) = exp(−u/α),

for some α > 0. In this case, the past activity of the Hawkes process can be encoded
by a one-dimensional Markov process. One of the early analyses is Oakes [38]. Duarte,
Aline et al. [11] considers a more general model for which h is the density of the sum
of identically exponential random variables. The approach is of describing the Hawkes
process in terms of a multi-dimensional Markov process, to encode the past activity of
the Hawkes process.

In this section, we give a existence and uniqueness result of the stationary Hawkes
chain with a weaker condition than the classical relation αL < 1, where L is the Lipschitz
constant associated to Φ. The result is obtained by using the Markov process of Section 4.
At the same time an explicit representation of the distribution of the corresponding Palm
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measure in terms of the invariant distribution of a one-dimensional Markov chain is
obtained. We conclude this section with non-Lipschitz activation functions Φ for which
the solution of the Hawkes SDE blows-up in finite time. A limit result gives a scaling
description of how accumulation of the points of Hawkes process occurs in this case.

Proposition 7.1. Let x ∈ Sh, mx defined by Relation (2.2) and Nmx = (Tn) of Proposi-
tion 3.2, then

(Zn)
def.
=

(∫
(−∞,Tn]

h(Tn − s)Nmx(ds)

)

=

∫
(−∞,0]

exp (−(Tn − u)/α)mx(du) +

n∑
k=1

exp (−(Tn − Tk)/α)

is a Markov chain on (1,+∞) such that, for n ≥ 0,

Z0 =

∫
(−∞,0]

es/αmx(ds), and Zn+1 = 1 + e−Xn+1/αZn, (7.1)

where Xn+1 = Tn+1 − Tn is the unique solution of the equation∫ Xn+1

0

Φ
(
e−s/αZn

)
ds = En+1, (7.2)

where (En) are i.i.d. random variables with an exponential distribution with parameter 1.

Proof.

Zn+1 =

∫
(−∞,Tn+1]

exp(−(Tn+1 − s)/α)Nmx(ds)

= 1 + exp(−(Tn+1 − Tn)/α)

∫
(−∞,Tn]

exp(−(Tn − s)/α)Nmx(ds)

= 1 + exp(−Xn+1/α)Zn,

and Relation (4.3) gives that

En+1 =

∫ Tn+1

Tn

Φ

(∫
R−

h(s− u)mx(du) +

n∑
k=1

h (s− Tk)

)
ds

=

∫ Tn+1−Tn

0

Φ

(
e−s/α

(∫
R−

h(Tn − u)mx(du) +

n∑
k=1

h (Tn − Tk)

))
ds

=

∫ Xn+1

0

Φ
(
e−s/αZn

)
ds

is an exponentially distributed random variable with parameter 1 and that the sequence
(En) is i.i.d.

Proposition 7.2 (Harris ergodicity). If Φ satisfies Condition A-2, and if αβe < 1, where

βe
def.
= lim sup

u→+∞

∫ u

u−1

Φ(s)

s
ds (7.3)

then the sequence (Zn) is a Harris Markov chain on [1,+∞).

For a general introduction on Harris Markov chains, see Nummelin [37].
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Proof. The proof will be in two steps. We will first prove, via a Lyapunov function, that
the set [1,K] is recurrent, for some K > 0. Then, we will show that the subset [1, 2] is
also recurrent and small, see [37] for example. Proposition 5.10 of [37] gives then that
the Markov chain (Zn) is Harris ergodic.

We first exhibit a Lyapunov function for this Markov chain. Equation (7.2) can be
rewritten as, if Z0 = z0,

E1 =

∫ X1

0

φ
(
e−s/αz0

)
ds = α

∫ z0

z0e−X1/α

Φ (u)

u
du = α

∫ z0

Z1−1

Φ (u)

u
du. (7.4)

Let, for y > 1,

F (y) =

∫ y−1

1

Φ (u)

u
du.

Relation (7.2) give the identity∫ z0 exp(−X1/α)

z0

Φ(u)

u
du =

E0

α
,

and consequently,

Ez0(F (Z1)− F (z0)) =

∫ z0

z0−1

Φ (u)

u
du− 1

α
,

hence there exist η > 0 and K > 0 such that if z0 ≥ K then

Ez0(F (Z1))− E(F (z0)) ≤
(
βe + η − 1

α

)
< 0.

The function F is a Lyapunov function for the Markov chain (Zn). The interval [1,K] is a
recurrent set for the Markov chain. See Theorem 8.6 of Robert [42].

By using Relation (7.4), we obtain, for z0 ∈ [1,K],

Pz0(Z1 < 2) = P

(
E1

α
>

∫ z0

1

Φ(u)

u
du

)
= exp

(
−α

∫ z0

1

Φ(u)

u
du

)
≥ exp

(
−α

∫ K

1

Φ(u)

u
du

)
> 0,

the interval [1, 2] is a recurrent set for the Markov chain (Zn).
For 0 < t ≤ z0, the relation

P(Z1 − 1 ≤ t) = exp

(
−α

∫ z0

t

Φ (u)

u
du

)
gives that the density of Z1 − 1 is given by, for z0 ≤ K,

α
Φ (t)

t
exp

(
−α

∫ z0

t

Φ (u)

u
du

)
≥ αΦ (t)

t
exp

(
−α

∫ K

t

Φ (u)

u
du

)
.

There is a positive lower bound independent of z0 ≤ K. We can now use the same
argument as in example of Section 4.3.3 page 98 of Meyn and Tweedie [35] to prove that
[1, 2] is a small set. The proposition is proved.

Definition 7.3. For z > 1 and y > 0, we define GΦ(z, y) by the relation∫ GΦ(z,y)

0

Φ
(
e−s/αz

)
ds = y. (7.5)
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Theorem 7.4. [Invariant distribution of (Xn)] If αβe < 1, then for any x ∈ Sh, the Markov
chain (Xn) of Definition 4.2 converges in distribution to the law of(

GΦ

(
Z∗−n, α

∫ Z∗−n

Z∗−n+1−1

Φ(u)

u
du

)
, n ≥ 1

)
where GΦ is defined by Relation (7.5) and (Z∗n, n ∈ Z) is the stationary version of the
Harris Markov chain (Zn) of Proposition 7.1.

Proof. For n ≥ 1, with the above notation, by definition Xn+1 = GΦ(Zn, En+1), i.e.

En+1 = α

∫ Zn

Zn+1−1

Φ (u)

u
du.

For n ≥ k ≥ 1, (Xn, Xn−1, . . . , Xn−k+1) are the k-first coordinates of Xn, they can be
expressed as

(GΦ(Zn−1, En), GΦ(Zn−2, En−1), . . . , GΦ(Zn−k, En−k+1))

=

(
GΦ

(
Zn−1, α

∫ Zn−1

Zn−1

Φ(u)

u
du

)
, . . . GΦ

(
Zn−k−1, α

∫ Zn−k−1

Zn−k−1

Φ(u)

u
du

))
.

The Harris ergodicity of (Zn) implies that the random variable (Zn, Zn−1, . . . , Zn−k) is
converging in distribution to (Z∗0 , Z

∗
−1, . . . , Z

∗
−k). The mapping (z, y)7→GΦ(z, y) is continu-

ous, the continuous mapping theorem concludes the proof of our result.

Theorem 7.4 shows that in the case of exponential memory, the invariant distribution
of (Xn) can be expressed in terms of a one-dimensional stationary Markov chain. The
following corollary rephrases this result in terms of Hawkes processes. This is a direct
application of Proposition 4.4.

Corollary 7.5. If Φ is a continuous function such that Φ(0) > 0 and αβe < 1, where βe is
defined by Relation (7.3), then there exists a unique stationary Hawkes process.

Note that the condition αβe < 1 is weaker than the classical conditions of the
literature: Φ Lipschitz with Lipschitz constant β such that αβ < 1.

Transient Hawkes processes

From now on, we assume a polynomial behavior for Φ so that, for x > 0,

Φ(x) = (ν + βx)γ ,

where ν, β and γ are positive real numbers.
Theorem 7.4 shows that (Xn) is converging in distribution for all α, ν and β when

γ < 1, and, when γ = 1, the convergence occurs if αβ < 1.

Proposition 7.6. If Φ(u) = (ν+βu)γ and if γ > 1 with β, ν > 0, then the Markov process
(Zn) is transient.

Proof. From Relation (7.4), we have

E1 = α

∫ z0

Z1−1

Φ (u)

u
du,

where E1 is an exponentially distributed random variable with parameter 1. Let, for

u ≥ 0, Φp(u)
def.
= (βu)γ and, on the event {γE1 < αβγzγ0 }, we define the variable Z1,p such

that

E1 = α

∫ z0

Z1,p−1

Φp (u)

u
du =

αβγ

γ
(zγ0 − (Z1,p−1)γ) ,
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then, since Φp ≤ Φ, we have z0 − Z1,p + 1 ≥ z0 − Z1 + 1 ≥ 0 and E2
def.
= γE1/(αβ

γ), then

z0 − Z1,p + 1 = z0

(
1−

(
1− E2

zγ0

)1/γ
)
.

The elementary inequality

1− (1− h)1/γ ≤ 2

γ
h, 0 ≤ h ≤ 1/2,

gives the relation, for a ≥ 1

Ez0 ((z0 − Z1 + 1)a) ≤ za0P(2γE1 ≥ αβγzγ0 ) + E
(

(z0 − Z1,p + 1)a1{2γE1≤αβγzγ0 }

)
≤ za0 exp

(
−αβ

γ

2γ
zγ0

)
+

2a

αaβaγ
E (Ea1 )

z
a(γ−1)
0

.

Since γ > 1, we deduce that

lim
z0→+∞

Ez0 (Z1 − z0) = 1 and sup
z0≥1

Ez0
(
(Z1 − z0)2

)
< +∞. (7.6)

Theorem 8.10 of Robert [42] shows that the Markov chain is transient. Strictly speaking
Theorem 8.10 is for a Markov chain with a countable state space, nevertheless a glance
at the proof of this result shows that it is also valid in our setting. The proposition is
proved.

Relation (7.2) of Proposition 7.1 gives that the Hawkes Point Process (Tn) of Proposi-
tion 3.2 is such that

En+1 ≥ βγZγn
∫ Tn+1−Tn

0

e−sγ/α ds =
α

γ
βγZγn

(
1− e−γ(Tn+1−Tn)/α

)
, (7.7)

where (En) is an i.i.d. sequence of exponential random variables with parameter 1.
Under the assumptions of Proposition 7.6 the sequence (Zn) is converging in distribution
to infinity and, with the last relation, the relation

lim
n→+∞

Tn+1 − Tn = 0

holds for the convergence in law. This result suggests that the points (Tn) are closer and
closer asymptotically. We investigate this aspect in the rest of the section.

We now study the asymptotic behavior of (Zn) in the transient case. We start with a
technical lemma.

Lemma 7.7. If γ ≥ 2 then, for any δ > 0,

sup
z0>1

Ez0

(
eδ|Z1−z0|

)
< +∞. (7.8)

Proof. From Relation (7.4), we get, for z0 ≥ 1 and 1 ≤ t ≤ z0,

Pz0 (z0 − Z1 + 1 ≥ t) = P

(
E1 ≥ α

∫ z0

z0−t

Φ(u)

u

)
≤ exp

(
−bzγ0

(
1−

(
1− t

z0

)γ))
, (7.9)
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with b
def.
= αβγ/γ. Note that, by Definition (7.1) of Z1, z0 − Z1 + 1 ≥ 0, hence, for δ > 0,

Ez0

(
eδ|Z1−z0−1|

)
− 1 = δ

∫ z0

0

eδtPz0 (z0 − Z1 + 1 ≥ t) dt

≤ δ
∫ z0

0

exp

(
δt− bzγ0

(
1−

(
1− t

z0

)γ))
dt

= δz0

∫ 1

0

exp (δuz0 − bzγ0 (1− (1− u)
γ
)) du.

When z0 is sufficiently large, we split the integral into two terms,

z0

∫ 1

1−(1−2δ/(bzγ−1
0 ))1/γ

exp (δuz0 − bzγ0 (1− (1− u)
γ
)) du ≤ z0 exp (−δz0) ,

and

z0

∫ 1−(1−2δ/(bzγ−1
0 ))1/γ

0

exp (δuz0 − bzγ0 (1− (1− u)
γ
)) du

≤ z0

1−

(
1− 2

δ

bzγ−1
0

)1/γ
 exp

(
δz0

(
1− (1− 2δ/(bzγ−1

0 ))1/γ
))

.

The lemma is proved.

Proposition 7.8. If γ ≥ 2, then, almost surely,

lim
n→+∞

Zn
n

= 1.

Proof. This is a consequence of Relations (7.6) and (7.8). Theorem 8.11 of Robert [42]
shows that, almost surely, the relation

lim inf
n→+∞

Zn
n
≥ 1

holds. Condition b) of Theorem 8.11 of Robert [42] follows from Lemma 7.7 and Con-
dition c) of this proposition is replaced in this context by the fact that if z0 < K0, then
there exists n0 ≥ 1 such that Pz0(Zn0 ≥ K0) > 0.

Notice that Zn ≤ n+ z0 holds for all n ≥ 1, we get therefore that almost surely

lim
n→+∞

Zn
n

= 1.

The proposition is proved.

For x ∈ Sh and mx defined by Relation (2.2), if Nmx = (Tn) the point process of
Proposition 3.2, we know that the sequence (Tn+1 − Tn) is converging in distribution to
0. The following proposition gives a much more detailed description of the accumulation
of points:

For n ≥ 1, the point process (Tn − Tk, 1 ≤ k ≤ n), the point process seen from the nth
point, scaled by the factor nγ converges in distribution to a Poisson point process.

Theorem 7.9 (Asymptotic behavior of points of a transient Hawkes process). Assume
that Φ(u) = (ν + βu)γ with γ ≥ 2 and β, ν > 0, if x ∈ Sh, mx defined by Relation (2.2)
and Nmx = (Tn) the point process of Proposition 3.2, then the point process

(nγ(Tn − Tk), 1 ≤ k < n)

converges in distribution to a Poisson process with rate βγ .
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Proof. Define Pn = (nγ(Tn − Tk), 1 ≤ k < n). Relation (7.2) and the representation of
(Tn) in terms of the Markov chain (Zn) of Proposition 7.1 give the identity

En+1 =

∫ Xn+1

0

(
ν + βZne

−s/α
)γ

ds, (7.10)

where (En) is an i.i.d. sequence of exponential random variables with parameter 1 and,
as before, Xn+1 = Tn+1 − Tn.

For any δ > 0 and n ≥ 1, Relation (7.10) gives the inequality

P (Xn+1 ≥ δ) ≤ P
(
α

γ
βγ
(

1− e−δγ/α
)
Zγn ≤ En+1

)
. (7.11)

On the event En,δ,

En,δ
def.
=

{
Xn+1 ≤ δ,

ν

β
eδ/α ≤ Zn

}
.

Relation (7.10) shows that
βγe−δγ/αZγnXn+1 ≤ En+1,

and therefore that the sequence of random variables (ZγnXn+1) is therefore tight.
The elementary relation

(1 + h)γ − 1 ≤ C1h, 0 ≤ h ≤ 1,

with C1 = γ2γ−1 and Relation (7.10) give the following inequality

0 ≤ En+1 − βγZγn
∫ Xn+1

0

e−sγ/α ds

≤ C1ν (βZn)
γ−1

∫ Xn+1

0

e−(γ−1)s/α ds ≤ C1νβ
γ−1Xn+1Z

γ−1
n ,

on the event En,δ. Using the fact that (ZγnXn+1) is tight and the almost sure conver-
gence of (Zn/n) to 1 of Proposition 7.8 shows that the random variables (Xn+1Z

γ−1
n ) is

converging in distribution to 0. For a sufficiently large n, Relation (7.11) shows that
the probability of the event En,δ is arbitrarily close to 1, we obtain that the sequence of
random variables

(Yn)
def.
=

(
βγZγn

∫ Xn+1

0

e−sγ/α ds

)
is converging in law to an exponential distribution with parameter 1.

On the event En,δ, we have

Yn ≤ βγZγnXn+1 ≤ eδγ/αYn,

hence, for x ≥ 0,

P(βγZγnXn+1 ≥ x) ≤ P
(
eδγ/αYn ≥ x

)
+ P

(
Ecn,δ

)
,

hence
lim sup
n→+∞

P (βγZγnXn+1 ≥ x) ≤ exp
(
−xe−δγ/α

)
,

and, by letting δ go to 0, we obtain

lim sup
n→+∞

P (βγZγnXn+1 ≥ x) ≤ e−x.
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An analogue lower bound holds for the lim inf, hence (βγZγnXn+1) is converging in
distribution to an exponential distribution with parameter 1. By using the almost sure
convergence of (Zn/n) to 1, the same property holds for (βγnγXn+1).

For p ≥ 1, the same argument may be used to prove that the sequence of random
variables (βγnγXn−k, 0 ≤ k ≤ p − 1) is converging in distribution to the product of p
exponential distributions with parameter 1. The key argument is again the almost sure
convergence of (Zn/n) to 1.

Final step. Let f be a continuous function on R+ with compact support included in
[0,K0] for some K0 > 0. The relations Zn ≤ n+ z0 and (7.10) give the inequality, for all
n ≥ 1,

En+1 ≤ (ν + β(n+ z0))
γ
Xn+1 ≤ C0(n+ 1)γXn+1,

for some constant C0 independent of n.
For p ≤ n, we thus have

P(nγ(Tn − Tn−p) ≤ K0) ≤ P

 n∑
k=n−p+1

kγXk ≤ K0

 ≤ P( 1

C0

p∑
k=1

Ek ≤ K0

)
.

We denote Nβγ a Poisson process with rate βγ , with associated exponential random
variables (Eβ

γ

n ).
The last inequality gives that Pn is stochastically dominated by NC0+βγ , a Poisson

process with rate C0 + βγ , in the sense that

P(Pn((0,K0]) ≥ p) ≤ P(NC0+βγ ((0,K0]) ≥ p), for p ≤ n. (7.12)

Clearly Nβγ is also stochastically dominated by NC0+βγ .∣∣∣∣E(exp

(
−
∫
f(u)Pn(u)

))
− E

(
exp

(
−
∫
f(u)Nβγ (u)

))∣∣∣∣
≤

∣∣∣∣∣∣E
exp

− n∑
k=n−p+1

f(nγ(Tn − Tn−k))

− E
exp

− n∑
k=n−p+1

f
(
Eβ

γ

k

)∣∣∣∣∣∣
+ 2P(NC0+βγ ((0,K0]) ≥ p) + 2P(Nβγ ((0,K0]) ≥ p),

with Relation (7.12). By using the convergence in distribution of the random variables
(βγnγXn−k, 0 ≤ k ≤ p− 1), the first term of the right-hand side of this inequality can be
made arbitrarily small for n sufficiently large. We can take an integer p independent of n
sufficiently large such that the last two terms can be made arbitrarily small.

We have thus proved that

lim
n→+∞

E

(
exp

(
−
∫
R+

f(u)Pn(u)

))
= E

(
exp

(
−
∫
R+

f(u)Nβγ (u)

))

holds for all continuous functions with compact support. We can use Theorem 3.2.6 of
Dawson [10] to conclude the proof of the proposition.

A General results on point processes

Point processes

We recall the notations on point measures and the associated random variables, the
point processes used throughout this paper. See Neveu [36], Chapter 1 and 11 of Robert
[42], and Dawson [10] for a general introduction on random measures.
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Stationary point processes

If m is a simple point measure on R, the points of m are enumerated by an increasing
sequence (tk(m), k ∈ Z), numbered so that the relations

t−1(m) < t0(m) ≤ 0 < t1(m) < · · · (A.1)

hold, with the convention that tk(m) = +∞ if there are less than k ≥ 1 points of m in
R+, and similarly on R−. The flow of translation operators (θt) onMp(R) is defined by,
for t ∈ R and m ∈Mp(R),∫

R

f(s)θt(m)(ds)
def.
=

∫
R

f(s− t)m(ds), (A.2)

for any non-negative Borelian function f on R.
A distribution on Mp(H), an element of the set P(Mp(H)), is defined as a point

process on H.

Definition A.1 (Stationarity). A point process N on R is stationary with intensity λ > 0,
if the random variableN ([0, 1]) is integrable and E(N ([0, 1])) = λ, and if its distribution is

invariant by translation, i.e. for t ∈ R, θt(N )
dist.
= N , where θt is the translation operator

defined by Relation (A.2).

Palm space of point processes

The setM0
p(R) is a subset of elements m ofMp(R) such that m(0)6=0. If m ∈M0

p(R)

then m can be represented either by the non-decreasing sequence (tk, k ∈ Z) of its
points, or by the sequence

x = (xk) = (t−k − t−k−1, k ≥ 0)

of increments between them, with the convention that t0 = 0.
An operator θ̂ onM0

p(R) is defined by,

θ̂(m)
def.
= θt1(m)(m)1{t1(m)<+∞}, (A.3)

for m ∈M0
p(R), where t1(m) and (θt) by defined respectively by Relations (A.1) and (A.2).

A simple point process ofM0
p(R) can be identified to its sequence of inter-arrival times

and it is easily seen that the relation(
(tk+1 − tk)(θ̂(m)), k ∈ Z

)
=
(

(tk+2 − tk+1)(m), k∈Z
)
,

holds.
The mapping θ̂ is the classical shift operator on sequences. If m = (tn, n ∈ Z) is in

M0
p(R) and x = (xn) = (tn − tn−1, n ∈ Z), then m = mx and θ̂(m) = mx̄, with x̄ = (xn+1)

if m(R−) = m(R+) = +∞.

Equivalence between stationary point processes and Palm measure

We now recall some classical results on stationary point processes on R. A stationary
simple point process with intensity λ > 0 can be equivalently defined by either by

a. a distribution Q on Mp(R) which is invariant for the continuous flow of transla-
tions (θt);

b. a distribution Q̂ onM0
p(R) called the Palm measure of Q which is invariant for the

operator θ̂.
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When a) is given, a distribution Q̂ onM0
p(R) is constructed via Mecke’s Formula so that

property b) holds. See Chapter II of Neveu [36] or Proposition 11.6 of Robert [42].
If b) holds, i.e. if Q̂ is given, then the construction of Q is done with a fundamental

construction of ergodic theory, it is the special flow associated to the operator θ̂ and
the function m7→t1(m) onM0

p. See Chapter 11 of Cornfeld et al. [6], and Chapter 10 of
Robert [42]. The distribution Q is expressed as∫

Mp(R)

F (m)Q(dm) = λ

∫
M0

p(R)

∫ t1(m)

0

F (θs(m)) ds Q̂(dm), (A.4)

for any non-negative Borelian function onMp(R). The probability distribution Q̂ is simply
determined by a distribution of the sequence of inter-arrival times which is invariant by
the shift operator. The space (M0

p(R), θ̂, Q̂) can be seen as a probability space whose
elements are positive sequences. It is sometimes called the Palm space of Q.

B Hawkes processes: a quick review

Hawkes processes have been introduced by Hawkes in 1974 in Hawkes [19] as a
class of point processes N , whose stochastic intensity (λ(t)) depends on previous jumps,
i.e through,

(λ(t)) =

(
Φ

(∫
(−∞,t)

h(t− s)N (ds)

))
.

The first Hawkes processes investigated were restricted to affine activation function Φ

of the form,

Φ(x) = ν + βx,

which have a nice representation in terms of age-dependent branching processes, see
Lewis [32], Vere-Jones [47], and Daley and Vere-Jones [8]. The condition of existence
and uniqueness of stationary Hawkes process in this case is

β

∫ +∞

0

h(s) ds < 1,

see Hawkes and Oakes [20].
The special case where ν = 0 was investigated in Brémaud and Massoulié [3], where

a particular interest was dedicated to the critical Hawkes process,

β

∫ +∞

0

h(s) ds = 1.

The same critical Hawkes process, with general immigration rate ν is investigated in
Kirchner [28]. A more precise study of the statistics of stationary Hawkes processes is
developed in Jovanović [24] using a Poisson cluster process representation. The addition
of an external jump process to the linearized Hawkes process, in view of applications in
neuroscience example, has been considered in Boumezoued [2].

Hawkes processes with exponential functions h(x) = exp(−x/α) have attracted a
particular interest because the associated counting process has the Markovian property,
see Oakes [38].

Having an affine activation function Φ is very helpful because of the corresponding
branching process representation, However, when studying auto-inhibiting point pro-
cesses, non-linear activation functions Φ are natural candidates to use. In this setting
the investigation of sufficient conditions for the existence of stationary versions is more
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Table 1: Existence of stationary Hawkes processes.
Branching Processes

References Hawkes and Oakes [20], Lewis [32], and
Vere-Jones [47]

Assumptions 1
a. Φ(x) = ν + βx with ν > 0 and β ≥ 0 Oakes [38], and Errais et al. [12]
b. h(x) = exp(−x/α)

Assumptions 2
a. Φ(x) = ν + βx with ν > 0 and β ≥ 0 Hawkes [19], Hawkes and Oakes [20], Brémaud

and Massoulié [3], Jovanović [24], Boumezoued
[2], and Kirchner [28]

b. h : R+ → R+

Analytical Methods
References Kerstan [26]
Assumptions 3
a. Φ : R→ R+ Lipschitz Brémaud and Massoulié [4], Chen et al. [5], and

Karabash [25]b. h : R+ → R general

Renewal Properties/Markov Processes
General References Lindvall [33], Nummelin [37], and Hairer [17]
Assumptions 3
a. Φ : R→ R+ general Brémaud and Massoulié [4], Hodara [21], Raad

et al. [40], Graham [16], Raad [39], and Costa et
al. [7]

b. h : R+ → R general

Assumptions 4
a. Φ : R→ R+ general Duarte, Aline et al. [11]
b. h(x) = exp(−x/α)

delicate. Most proofs in this domain are based on the functional relation defining sta-
tionary Hawkes processes that can be expressed as a fixed point equation which can
be solved through a Picard scheme, see Kerstan [26] for one of the pioneering papers
on this subject. Brémaud and Massoulié [4] has developed this approach when Φ is
unbounded and supposed to be β-Lipschitz, with the following condition,

β

∫ +∞

0

|h(s)|ds < 1.

Thinning techniques have been applied to the case of a bounded Lipschitz function Φ in
the same reference, where the condition∫ +∞

0

s|h(s)|ds < +∞

is sufficient to prove the existence and uniqueness of the stationary version of the
Hawkes process.

In Brémaud and Massoulié [4], renewal theory is used to investigate Hawkes pro-
cesses, with finite memory. This approach has been extended in Graham [16], Raad
[39], and Costa et al. [7]. It is also possible to limit the influence of intensity rate to
the last jump of the Hawkes process as done in Hodara and Löcherbach [22]. A recent
study (Raad et al. [40]) has added a refractory effect to prevent explosion in the study of
non-linear Hawkes processes.

To go further, it is interesting to consider Hawkes processes as Markov process in a
general state space, either using counting processes (Duarte, Aline et al. [11]) or Markov
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theory in the state of càdlàg functions (Karabash [25]). Coupling methods (Lindvall [33])
and general Markov theory (Nummelin [37], and Hairer [17]) are natural tools in this
setting.
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