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Stochastic differential equations with local interactions
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Abstract

An infinite system of stochastic differential equations for particle locations is consid-
ered. The particles exhibit local interactions through drift coefficients that depend
upon other particles within a fixed distance. Strong existence and uniqueness is
proved for this particle system with potentially discontinuous, local interactions.
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1 Introduction

Many real particle systems exhibit local interactions. For example, celestial bodies
experience gravitational pull and electrons face magnetic repulsion with forces decaying
atrates 1/ r2, where r is the distance between the particles. Further, individual motions
in a species are generally affected by close neighbours and not by those at a distance. We
consider extreme local interactions where particles only interact when within a distance
r and establish a sensible model by proving strong existence and uniqueness.

Interacting particle systems have been considered in classical mechanics in the
ordinary differential equation setting for over fifty years (see Lanford [10]). Further,
much work has already been done on systems of interacting stochastic differential
equations (SDEs). We mention just a few examples here and refer the reader to the
citations of these articles for more works on interacting SDEs. Lang [11] initiated the
study of a countable system of stochastic gradient differential equations of the form

dX} ==Y VU(X] - X{)dt + 0dB}, (1.1)
J#i
where {B'} are independent standard Brownian motions and U is a superstable potential.
Fritz [5] furthered this work, proving existence, strong uniqueness and regularity for
solutions of (1.1) with U chosen so the system had a finite radius interactions.
Kondratiev et al. [7] consider well-posedness and scaling limits of the interacting
diffusion dynamics X () = {x:}

1
dzy = V2exp 3 Z ¢(we —ye) | dBY (1.2)

Y €X (8),yr#Te
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Local interactions

on the space I' of locally finite configurations of R? using Dirichlet forms, where {B*}
are independent standard Brownian motions. This equation is decidedly different from
the one discussed above as there is no drift coefficient and the interaction is through the
diffusion coefficient. Ma and Rockner [12] and Réckner and Zhang [15] also consider
infinite systems of interacting diffusion processes using Dirichlet forms. The area
remains very active (see e.g. Conrad et al. [2], Fradon and Roelly [4], Tsai [16] and
Osada and Tanemura [14] and their references).

Athreya et al. [1] show weak existence and uniqueness of the interacting SDEs

dX} = —X\ibi(X)X[dt + > 045(X)dB] (1.3)

j=1

in any separable Hilbert space (H, (,-)), where { B’} are independent standard Brownian
motions and X} = (X, e;) with {e;} being a basis for H. Ellipticity, Holder continuity
and boundedness conditions are assumed and Strook-Varadhan techniques are used by
treating the system as a perturbation of an H-valued Ornstein-Uhlenbeck process. To
connect this system to the H-valued stochastic differential equation, they take (\;b;(x), ;)
to be an eigenvalue/vector pair of an operator b(z) and a;;(z) = (e;, a(x)e;) for another
operator a(z) for each 4,j and « € H and then assume \; * oo at a certain rate. The
well-posedness of the [{-space equation is related to earlier work by Zambotti [17].

Kurtz and Xiong [9] showed existence and uniqueness for systems of weakly-inter-
acting SDE particle and then ultimately for a class of stochastic partial differential
equations (SPDE). The conditions they used to facilitate their SPDE goals preclude the
type of strong local interactions we are interested in.

We consider the following system: The particle positions follow the R¢-valued SDEs
X; =1 +/ o(X:)dB; +/ b(X:, Ng)ds +/ a(X)dWs, Vi € Z, (1.4)
0 0 0

where {B'};cz, W are all independent standard R?-valued Brownian motions and Ny =
>0 xi 1s the configuration of the system of particles of mass 1 at time s. Our interests
are in the situation where the particles only interact with each other when they are
within a fixed radius r of each other. They could interact strongly within r and not at all
outside of r creating discontinuous interactions through our drift coefficient b.

2 Motivation and results

| - | will denote Euclidean distance. To motivate our conditions, re-consider (1.1) with
the mindset of replacing VU (z — y) with some general drift coefficient b.

Example 2.1. Consider the case r = 1 for notational simplicity. Suppose U is a smooth
function with derivatives bounded by K say, U(z) = 0 if || > 1 (as in Fritz [5]) and

b(z,v) = — " VU(z — y)v(dy)

so b(X!, Ny) = — Z#i VU (X} — th). Then, it follows by the support property of U that

Z VU (x — 27)

jile—27]<1

<K Z 1[.’5—1,.’1;+1](Zj)a
jizite

b I,Z(Szj =
J
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which is a growth condition to replace the usual boundedness condition, and

’b(z,Zézqv,) fb(:z,z(sgi)] 2.1)

< Y VU@-#)- > vUE-#)
jilz—27]<1 JilE—27|<1
< Y VU@-#)-VU@E-#)+ >  |VU@-2)-VU@E-7)
Jile—2i|<1 J|E—29]<1
SKle—a#{j:lz— 2| <13+ K Y |F -2

lz—23]<1
+Kle—F#{: i -F| <13+ K ) |F -4

|#—27]<1

Conditions (Lip, B) to follow hold with » = 1 if «, 0 are bounded and Lipschitz continuous.

We adapt our existence-uniqueness definitions and Yamada-Watanabe implication
from Karatzas and Shreve [6, Chapter 5]. They use regular conditional probability, known

for complete separable metric spaces, but the metric ¢(z,y) = \/ZieZ e~ 1w |zt — yi 2

turns our particle state space (]Rd)Z into such a space. Also, the notion of solution
requires coefficient measurability so we consider N as a counting measure and the
counting measures, M.(R?), as Radon measures on R? with the vague topology. Let
B(X) denote the Borel o-algebra on a topological space X.

Definition 2.2. Let (0, 7, P) be a probability space with filtration {F, },>¢ satisfying the
usual conditions and W, {B'} be independent and adapted standard Brownian motions.
Suppose o, a are Borel measurable and b is also B(RY) ® B(M.(R%))/B(R¢) measurable.
Then, an (R%)%-valued process {X'} is a solution to (1.4) if:

a) {X'} is {F:};>0-adapted and has continuous paths,

b) N =3, 0x:,

c) P(fy|b;(XZ, Ny)| +02 (X)) + a2, (XI)ds <o0) =1, Vi€ Z 1<jk<dt>0,and
d) the equation (1.4) holds a.s.

Definition 2.3. {X'} is a weak solution to (1.4) if it is a solution and (2, F, P), {F:}+>0,
W, {B*} are found as part of the solution.
Definition 2.4. { X'} is a strong solution to (1.4) if it is a solution with respect to given
W, {B'} on a given (0, F, P) and F;, = o (G, UN'), where G, = o (W,, Bi;0 < s < t,i € Z),
Goo =0 (Ujo0G:) and N = {N C Q:3G € G, with N C G and P(G) = 0}.
Definition 2.5. The pathwise uniqueness holds for (1.4) if for any two solutions { X'},
{Y*} on the same probability space (£, F, P) with respect to the same initials {z'} and
Brownian motions W, {B'}, we have almost surely that X} =Y forallt > 0 and i € Z.
It follows by the proof of the Yamada-Watanabe theorem in e.g. Karatzas and Shreve
[6, Proposition 5.3.20 and Corollary 5.3.23] that the weak existence and the pathwise
uniqueness implies the existence of a unique strong solution that will have the form
X = h(z,W, B) for some measurable function h.
To consider the existence and the uniqueness for the solution to (1.4), we impose the
following regularity conditions:

I): ZieZ e—Plel < oo for all p > 0. Non-clumped initial configuration.
(B): There are constants K, r > 0 such that, for any x € RY, {z'};cz C R?

(Bo) max; [07(z)| < K, where ¢/ is the j'" row of &
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(Ba) max; |/ (x)| < K, where of is the j" row of «

Here and below, D(z,r) = {y € R%: |y — 2| < r} is the closed ball of radius r > 0.

(Lip): There are K, r > 0 such that, for any =,7 € R? and {2'};cz, {#' }icz C R?
l0(2) — o(@)] + la(z) — a(@)] < K|z 4] 2.2)

‘b(%Zazi) —b(@,z(sgi)‘ 2.3)

<Klz—2|(1+#{i: |2' =z <r}+#{i: 72| <r})

+E | Y 1=+ > A

|zt —z|<r |zt —|<r

While (B) stands for boundedness and (Lip) for Lipschitz, b satisfies a growth condition
not a bounded one. Its Lipschitz condition has growth and is over the configuration
space as well as the point x. Condition (Lip) restricts the interaction of the particle
system through b to neighbors of distance no larger than r. b is said to be bounded if

The maximum number of particles IM?%. in the ball of radius r around particle i up until
time T will be important in stating and proving our existence and uniqueness result.

< K, Vo € RY {#'}iez € R

Definition 2.6. Mass functions {p!,} are uniformly non-heavy tailed if there are C' >
0,a € (0,1) so that pi, < Ca™ form € N, i € Z.

We will refer to « in the above definition as the tail-decay base. Our interest in
non-heavy tailed mass functions is in characterizing solutions to (1.4).

Definition 2.7. Solution {X'} is sub-explosive if for any T > 0, {M’} has uniformly
non-heavy tailed probability mass functions, where

M = M, :fggBi, Bl =#{j: |X] - Xj| <r}.

Note: We will use this notation Bi and M throughout this note.

Remark 1. The particles of sub-explosive solutions to (1.4) have finite moments. Indeed,
let T" > 0 and m be even. Then, Condition (B), Ito’s formula, Young’s inequality and
Gronwall’s inequality imply a C,,, = C,,(T") > 0 such that

E[X} — '™

t t
< m/ E[|X;‘ _g;i|m—1|b(xg‘,Ns)@ds+2K2 (”;)/ E|X? — 2i[™2ds
0 0
t
. . E|B:|™ — . . 2
§/ (m—1DEIX! —z'|™ + B ———ds +2K2/ (m 1) E|X, — 2| + —ds

< Cp, Vt€[0,T].

We also consider the Euler approximations to (1.4): If D, (s) = LS:J , Wa(s) = W(%)
and B! (s) = B’(%) then X,,, defined by the Euler equations

Xi(t) = a' + / (XL (s—))dBA(s) (2.4)

+ [ W) N5 D) + [ alxis)aw)
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for i € Z, where Ny (s) = >_, 0y, is the discretized particle configuration, exist in
DR, (R%)?%) for every n € IN. When we say that the Euler approximations are uniformly
sub-explosive we mean that the C, o implied from Definitions 2.6 and 2.7 can be chosen
independent of n. This implies the C,,, in Remark 1 is independent of n.

The principle result of this note is the following, which will be proved in later sections:

Theorem 1. Suppose Conditions (I, B, Lip) hold. If any solution is sub-explosive, then
the system of stochastic differential equations (1.4) is pathwise unique. If, in addition,
the Euler approximations are uniformly sub-explosive, then there exists a sub-explosive
solution.

We give a second example of coefficient b.

Example 2.8. Suppose ( is a bounded Lipschitz function in both variables, h is a
Lipschitz function with compact support B(0,r) and

o) = (s [ 1o = pian)).

Then, it follows by the support property of h that

‘b(z,ZZ:aﬁ) A—b(f,jz:éy>’ (2.5)
Yo on@E-z)- Y h(z-—z)

< K|z -3+ K

|F—zi|<r jo—zi|<r
SKlp—&+K Y [ME—z)-hlz-2)+K Y |h(z—2z")-h@-7)
|i—5i]<r o=zt |<r
SKlp—i|+ Ko —3#{i: g -2 <r}+ K> ) |5 -4
|#—z¢|<r
+ K2|lo —&|#{i: |z — 2" <r} + K? Z |20 — 2.
o=zt |<r

(Lip, B) follow if o, 0 are bounded and Lipschitz continuous. b is in fact bounded.

The following result, proved in Section 6, shows that our main result is not hol-
low.

Lemma 2.9. Suppose Conditions (I,B,Lip) hold, b is bounded, there is a k € (0,2) such
that )", v —a'|~" < oo for all i, and { X"} solves (1.4). Then, {X"} is sub-explosive.

The following directions for future work would likely require new or enhanced
methods. Interactions that die out quickly rather than cut off immediately would be
desirable for some applications. There is hope for building upon our results in this
direction by considering multiple radii with different levels of interaction in each. Next,
our results are independent of the possible attractive or repulsive nature of b. It would
be interesting to understand how the possible initial conditions depend upon choices
of b. Finally, it would be interesting to allow the diffusion coefficients to depend upon
the configuration.

The model in Fritz [5] seems more general than (1.4) in the sense that the diffusion
term can be interactive. Still, it has a structure mimicking that of (1.1). The state space is
Q={RYHYZ%: H(w) < oo}, where H is a functional defined through the potential U. The
boundedness and Lipschitz conditions (through assumptions on U) are not comparable
to (B, Lip), which we think are natural. Finally, instead of the sub-explosive solutions,
the concept of tempered solutions, defined through the potential U again, is employed.
The results in these two papers appear to supplement each other.
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3 Proof of uniqueness

We use a function from in Mitoma [13]. Let ¢, be such that p is a density, where

p(z) = cpljp<rexp (—1/(1 — x2)) , o(x) = /]Re_lalp(x —a)da, x € R.

Then, ¢ is a smooth function, and for each n € IN, there exists constants C,, > 1 and
K,, > 1 such that the nt" derivative, sz(”), of ¢ satisfies

™M (z) < Cre 1l < Kpp(z), VazeR. (3.1)
It is also easy to verify that
p(z') < e2p(¥) exp (2" — &'| + |77 — 7). (3.2)

For simplicity of notation, we take » = 1 in our proofs. Also, fix 7" > 0.

Proposition 1. Suppose Conditions (I, B, Lip) hold. If any solution is sub-explosive, then
the system (1.4) satisfies pathwise uniqueness.

Proof. For simplicity of notation, we assume d = 1 here. Let {Xz, i € Z} be another
solution to (1.4) satisfying Condition (I) with N; being defined as N; = Zi 1) X

Suppose tp = ké for all £ € IN; and some fixed § = klo with kg € IN to be determined
later. Moreover, assume our two systems are indistinguishable on [0, #x] for some k < ko,
which is known to be true for k = 0. We will show {X;, ¢t € [0,¢511]} = { X3, t € [0,t541]}
a.s. Applying Itd6’s formula for s € (¢, t;4+1], we have

d|X; — Xi|? = 2(X{ — X0)(o(X2) — o(X2))dB]
+2(X! = XD(b(XE, N,) — b(XE, N,))ds
+2(X] — XD (al(X]) — a(X2)dW,
+{lo(XD) = o (XD + a(X2) ~ a(XD[* | ds.

As ¢ € C%*(R), we have by Itd’s formula again that

S

do(X;) = ¢'(X){o(X3)dB; + a(X)dW; + b(X;, Ny)ds} + %¢"(X§)(02(X§) +a*(X]))ds.
Next, by integration by parts and the previous two equations, we have
d|X{ - XIP(X]) = p(XD)2(XE — X2)(b(XL, Ny) — b(XL, Ny))ds (3.3)

+ G(X2(X] = XD [(o(X7) — o(X2)dB; + (a(X7) — al( X{))dW]
+0(x2) { (0(X) = o(XD)? + (a(X]) — a(X1)*} ds
+ X = X0 (X))o (XDdBS + a(X()dWs + b(X{, Ny)ds]
+ 5 IXE = RIPG (XD (0*(XD) + 02 (XD)ds
+2(X{ = X{)(o(X2) — o(XD))[¢ (X))o (X0)]ds
+2(X] = X)) (a(XY) = a(X)[¢ (XDa(X{)]ds.

Now, it follows by Conditions (B,Lip) as well as the properties of ¢ that there is a constant

ECP 28 (2023), paper 59. https://www.imstat.org/ecp
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K > 0 (depending only on K, K; and K3) such that
[6(x2) {(0(x2) = (X)) + (a(X2) — a(X1)?}|
1. o~ . , ,
+ 5| X5 = X6 (X0) (0 (X)) + o(XD))

+2(XE - X{(o(XY) — (XD (XD (XD] + (a(X) — a(XD)[¢' (XDa(XD)]}

S S

< K|x] - Xi[o(X0). (3.4)
Next, it follows by Condition (Bb) and the properties of ¢ that
¢ (XX, N,)| < K (14 B)(X7) (3.5)
and, if BY = #{j : |XJ — X/| <1}, that
(X5, N) = b(XE, N)[6(X0) < K (2 + B + BY)o(XD), (3.6)
which is used when |X? — X?| > 1. But, if [X? — X¢| < 1, then by (2.3) with N, = 3", 6x,
X7 = XUIb(XE, No) = b(XE, Ny o(XY) (3.7)
< KIXI = X7 (14 B+ BL) 0(X)
K| D XD XX - X+ Y IXE - XUIXT - X o(XD).
JEB] JEB]

However, in this | X! — X?| < 1 case

DO X - XUIXT - XI|e(X1) (3.8)
i jEBL
1 i i i 1 i 5y i
< 5 Z Z ‘Xs - Xs|2¢(Xs) + 5 ZZ ‘Xg - Xg|2¢(Xs)1|X§—X§|§1
1 jEB? i g

IN

1 iy i (2 i e’ i v 712 i
5;]BS|XS—XS| ¢(X5)+5§7:IB§\X£ - XIPo(X)),

where we used (3.2). Similarly, when | X/ — X?| < 1

DN X - XI|IXT - XI|g(X0) (3.9)
i jeBi
<e? )N |XI- Xi||IX] - XI|o(XD)
i jeBi

62 ~ . . ~ . ~ . e4 ~ . . ~ . ~ .
<7§ BiX! — X2p(X? 7§ Bi|X: — XU2p(XE
— 2 i S| S S| ¢( S)+2 - S| S S| (b( S)

so, combining the cases, we have by (3.6)-(3.9) a constant K>0 (depending only upon
K, K1, K5 and ¢) such that

DXL = XUB(XE, N) = b(XE N)|o(X2) (3.10)

?

< K IXE - X1 (0(XD) + BLo(X) + Blo(X1) + Blo(X)))
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Summing up and taking expectation on both sides of (3.3), we have by (3.4), (3.5) and
(3.10) a K > 0 (depending only upon K, K7, K5) such that

ft) = E[Z X}~ XZ%(XZ)} <K [/ f(s)ds + I, + I, + J}] : (3.11)
where
Ft) = E[sz - XiPa( ~z’>] <k [/ F(s)ds + 7o+ +It} 7

t t
I, = / ES BI|Xi - Xi[26(X!)ds, I = / ESBUX! - XI20(X)ds,
tr i tr i

and

t t
Ji = / ES BIX! - Xi[26(X!)ds, J, = / ESBIIX! - Xi[26(X1)ds.
tr i 123 i

Now, by Holder’s inequality and Remark 1 (for E|X? — z?|%, E| X — 27|%) there is a K| so

that

2

I, — n/t f(s)ds < /t E {Z |XT — X! Pp(XE) (B — n)1]Bi>n} ds (3.12)
< Ko [ S {BAS CRIES (B — )10 s

Thus, if M* = SUp,<¢ ]Bi, then by Lemma 5.1 and Lemma 5.2 (both to follow) as well as (I)
thereisa Ky >0,ap € (0,1) and a ¢ = ¢(T') such that

¢ ¢ v
L <n f(s)ds—l—K#/ Ze‘g‘xl‘a%ds (3.13)
t tr i

¢
< n/ f(s)ds + coas.
tr

Hence, by symmetry
= t n = t ~ n
I; < n/ f(s)ds + céas, vV Jp < n/ f(s)ds + céas

tr ty

SO

f)+ft) <K [/ (14 3n)(f(s) + f(s))ds + 6c5a§] : (3.14)

ty

By Gronwall’s inequality, for ¢ < (¢; + d), we have
F@&) + F(t) < 6ea s eKAH3mE—te) _y o

provided 0 < § < —182 Hence, {X;, t € [tx,tx11]} and {X;, t € [ty, tx41]} are indistin-

9K
guishable by their continuous paths. Pathwise uniqueness on [0, 7] follows by induction.
Pathwise uniqueness on [0, co) follows since T > 0 was arbitrary. O
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4 Existence

Proposition 2. Suppose Conditions (I, B, Lip) hold. If, in addition, the Euler approxima-
tions are uniformly sub-explosive, then there exists a sub-explosive solution.

Proof. Let {F]*} be the filtration generated by X,,, defined in (2.4). Now,
(X}, (s—), Nn(s—))| < KBj,

by Condition (B), where B!, . = #{j : |Xj( —) — Xi(s—)| < 1}. For n > 0, there is an

mn such that P(sup,<r KIBnys > m! ) < Ca™n < de” il by the assumption that the Euler
approximations were uniformly sub- exploswe Hence by Markov’s inequality

, , [12K2s , [12K2s
i i 1 1 > —
P (Xn(s) € I | ' —mys — 77767'“ ;' +mys + T 1) 1—-n

i€Z
for all n € 7Z, so the pointwise compact containment condition is satisfied. Next, moving
to the modulus of continuity condition and taking ¢ € (0, 1), we have

E[q?(X,(t + h), Xn(t)|FP] = Ze"l‘E\Xl(t—i—h) XL Fp] (4.1)

I€EZL
forall¢,t + h € [0,T] with h € (0,9) but
. A [(t+h)n] /il s /i1
Xit+h) - X)) =] Y {J<X; (J >) {B; <]) — B (3 )] (4.2)
n n n
j=ltn]|+1

2

(5 ) R) - (50 (e (5 (7))

Hence, it follows by independence and Condition (B) that

E[| X, (t +h) — X, (t)° \f”] (4.3)
L(t+h)n] L(t+h)n] .
K> (11 g1
< 7E i n 2 i J 2 ‘ n
> B ’]-' 3 IE)[J (Xn< . )>+a <X< >)f}
Jj=[tn]+1 j=|tn]+1

and so by Condition (B) again

Elg(Xn(t + h), Xa(1))?|F] < Ze—wKzE[ M [ ‘ft"} ’ |(t+ h)zj —|tn)|? )
1E€EZ
+3 el 2K Lt + h)ZJ — [tn]
1EZ
< s (e ) {zenlmiarlz) (o41) )
IE€EZ
= 7n(6).

However, by Condition (I) and the uniform sub-explosive assumption of the Euler approx-
imations there is ¢, > 0 (see (5.6) below with n = 0 and k = 2) such that

lim sup E[v,,(6)] < ¢,d. (4.5)

n—oo

Hence, {X,,} is tight in D(R, R%) and {X,,, W,,, B,,} is distributionally relatively compact
by Ethier and Kurtz [3, Theorem 3.8.6 and Remark 3.8.7]. Now, as in Kurtz and Protter
[8, Proposition 7.4] the limit (X, W, B) of any convergent subsequence (X,,, W,,, B,,) is a
distribution solution to (1.4), which we know is pathwise hence distributionally unique.
Hence, a solution to (1.4) exists weakly and hence strongly. O
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5 Auxilliary lemmas

Lemma 5.1. Suppose Conditions (I, B, Lip) hold, m > 1, T > 0 and {X'} is a sub-
explosive solution to (1.4). Then, there are constants C > 0, p € (0,1) (depending on T')
such that

E[¢™(X])] < Cexp(—p|2]), i€ Z,te]0,T] (5.1)
Proof. By ¢ properties (3.2) and (3.1)
P(X]) < e*¢(z) exp(| X} — z'[) (5.2)

so noting ¢™ < ¢, ¢ for p € (0,1) and using (B), one finds Ky, Ky > 0 such that

. t ) ) t ) t )
6™ (XD) < Koe 7'l exp(y) / o(X))dBi + / a(X1)dW,| + p / (X, N,)|ds)
0 0 0

< Kle*p‘“;ilexp(p sup [(BLL, ..., By + ptK sup BY). (5.3)
ULy ug <2K2t s<t

Here, each /3% is a d-dimensional Brownian motion such that
| oaxias+ [ aiaaw, = 52,
0 0 u
and, by Condition (Bo, Ba), 757 is a stopping time such that

Thi = / oI (XM oI (XEMT 4 o (XM (XEMYT s < 2Kt
0

42
for u <t. But, P (supuSU |Bul > y) < 4e~ v is a standard large-deviation-type bound for
scalar standard Brownian motion S so

» x — 2pKmt _ (@=2pKmt)®
P(2p sup [/ > —07—— | <4de @rE)?at
( o Vi

u<2K?2t
and consequently
i1 i d _ (@—2pKmt)?
P(2p sup (B s Bud)l =z —2pKmt | < 4dde  (wr%ar (5.4)

U, ug S2K 2t

If we let M’ = sup, o #{j : |X] — X| <1}, then by (5.3), (5.4), Holder’s inequality and
the Gaussian moment generating function, there are Ky, K; > 0 such that

E¢™(X}) (5.5)

exp(p sup I( ;11, ol ;j)\ + tpKm)lppizr,
ULy Ug <2K 2t

< Koe—p\wi\ Z E

meN
< Koe P 7'l Z E? exp(2p sup (8L, ..., ;dd)| + 2tpKm) IP%(]Mi =m)
meN ULy Ug <2K 2t
i 0 . . 1 .
SKoe_p‘z‘Z / IP(Zp sup (Bat, ..., fjj)|Za:—2met)exdeP§(IMl:m)
melN 2tpm UL yeery ug<RK?2t
i o0 _L 1 .
< Koe P17 / dde @rEO%dteydy Z ePEM P2 (M = m)
0 meN
< Kie P 18120 e N7 opKmt pi (N = ).
melN
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Since our solutions are sub-explosive there are constants « € (0,1) and C > 0 such that

Z emetIP%(]Mi =m)<C Z (epKTa%)m < 00
meN melN

by choosing p > 0 small enough. The lemma follows easily by the last two equations. O

Lemma 5.2. Suppose Conditions (I,B,Lip) hold and { X'} is a sub-explosive solution to
(1.4) with base «. Then, there exists positive constant C' > 0 (depending on T') such that

E{(Bg - n)’“1B§>n} <Ca" YieZsel0T).
Proof. Recalling IM? = SUps<r B:, one finds by the sub-explosive assumption that

E [(]Bg - n)’ﬂBM} < E[ M — )" 1 pgion, (5.6)

—~

(m —n)*P(IM* = m)

3

Il
]

mkan+m,.

NE

<C

m=1

The lemma follows immediately. O

6 Prevalence of sub-explosive solutions

Proof of Lemma 2.9. To ease the notation, we take i = 0 and abbreviate M} to IM.
Particle 0 is within a distance 1 of itself. Testing the others, we have by the boundedness
of b (recall |b| < K for this lemma) that

]P(]M>a:)§IP<#{|j|>O: 13fT|X5—X3§1}>x—1)

<P (#{m >0:  sup (8L, BEO+2KT > [of — 2| - 1} > = 1)

UL, ug KT

since, for |j| > 0, there exists a d-dimensional Brownian motion 37 such that

/ [0 (X2)dB] — o' (X{)dBY + o' (X7)dW, — o (X0)dW,] = 57
0

1,59
where 717 < Kp = 6 KT is a stopping time. Thus, for |j| > 0,1 € {1,...,d}

0|2

P <\/& sup |84 > |of — 2% —1— 2KT> < cre— el =2"F (6.1)
’U.SKT

(142KT)2
where ¢; = 4e” 275t and ¢y = ﬁ, by a standard large-deviation-type bound for the

Brownian motion and Young’s inequality, so

P( sup I(Bj’1~~~,ﬁigd)2|xjw°|12KT>§cldeC2z'jf”°2. 6.2)
up

uy )
s Ud <K

Now, take p; = ¢, |27 — 2| where ¢, = 37,1 o [¢/ — 2% 7% s0 30 ;- -~ = 1. Then, by
J
Markov’s and Holder’s inequalities as well as the facts

Eexp(pjla) =1+ (e —1)P(A), log(l+z) <z
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one has from above that:

P (M > z) < eEexp Z 1supu1 vy (BEL o BLD) | +2KT> 27 —a0]| 1 (6.3)

,,,,, ﬁul s Pug

1/p;
< elljji>o (IE exp (pjlsupul ,,,,, . |(ﬁﬂ’11,...,[3i’:)\+2KT2\mf_zo\—l))

P 1 , , .
Seexp(Z ‘ IP( sup |( {;},...,B{;jﬂzxj—x0|—1—2KT)>.

X UL,y Ug <K
15]>0 1y--Ud ST

Thus, it follows from (6.2), (6.3), Taylor’s theorem as well as the fact that for any p > 0
there is a K} such that y* < K7’ + py?, Vy > 0 that

P(M,; >z) < e “exp <cld Z ep-f_”lmj_”””) (6.4)

l71>0

< e Texp (K > 6—622|3:J_x02>

l71>0

for some K > 0. However, it follows from elementary inequalities that

|27 — 297" = exp(—rIn |27 — 2°)) > exp (—KCQ2 - %|x3 - x0|2) (6.5)
for some K 22 > 0. Hence, the sum within the exponential function in (6.4) is finite by the
hypothesis 3 ;- |27 — 207" < oo O
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