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Abstract

Wasserstein projections in the convex order were first considered in the framework
of weak optimal transport, and found applications in various problems such as con-
centration inequalities and martingale optimal transport. In dimension one, it is
well-known that the set of probability measures with a given mean is a lattice w.r.t.
the convex order. Our main result is that, contrary to the minimum and maximum
in the convex order, the Wasserstein projections are Lipschitz continuity w.r.t. the
Wasserstein distance in dimension one. Moreover, we provide examples that show
sharpness of the obtained bounds for the 1-Wasserstein distance.
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1 Introduction and main result

In mathematical finance, the risk neutral distributions at times T1 and T2 with T1 < T2

of the vector of discounted prices of d assets are in convex order. For an exotic option
with payoff depending on the vectors of prices at times T1 and T2, robust price bounds
are obtained by solving martingale optimal transport (MOT) problems [8, 14, 10]. Even
when d = 1, the distributions of the asset price are only imperfectly known, since one has
to recover them from prices (up to a bid-ask spread) of finitely many Call or Put options.
Furthermore, to numerically compute the robust price bounds the two distributions are
approximated by finitely supported measures which permits to reformulate the MOT
problem as a standard finite linear programming problem (LPP). The convex order may
be violated in these steps, which, in view of Strassen’s theorem, turns the corresponding
LPP infeasible. This necessitates the restoration of the convex order which motivates
the study of Wasserstein projections in the convex order, see [2].

For p ≥ 1, we denote the celebrated p-Wasserstein distance between µ and ν in the
set Pp(Rd) of probability measures on Rd with finite p-th moment by

Wp(µ, ν) :=
(

infπ∈Π(µ,ν)

∫
Rd×Rd |x− y|

pπ(dx, dy)
)1/p

, (1.1)
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Lipschitz continuity of the Wasserstein projection

where we write Π(µ, ν) for the set of couplings with marginals µ and ν. We say that µ is
smaller than ν in the convex order and denote µ ≤c ν if

∀f : Rd → R convex,
∫
Rd
f(x)µ(dx) ≤

∫
Rd
f(x) ν(dy). (1.2)

Then metric projections w.r.t. Wp of µ (resp. ν) onto {η ∈ Pp(Rd) : η ≤c ν} (resp.
{η ∈ Pp(Rd) : µ ≤c η}) are called Wasserstein projections in the convex order.

When d = 1, explicit formulas for the quantile functions of the Wasserstein projection
of µ (resp. ν) on the set of probability measures smaller than ν (resp. greater than µ) in
the convex order are derived in [2]. We denote the associated measure by I(µ, ν) (resp.
J (µ, ν)) and recall that the quantile function F−1

µ of a probability measure µ on R is
the left-continuous pseudo-inverse of its cumulative distribution function Fµ. Then [2,
Theorem 2.6 and Proposition 4.2] state, for u ∈ (0, 1),

F−1
I(µ,ν)(u) = F−1

µ (u)− ∂− co(G)(u) and F−1
J (µ,ν)(u) = F−1

ν (u) + ∂− co(G)(u), (1.3)

where G(u) :=
∫ u

0
(F−1
µ − F−1

ν )(v) dv, co denotes the convex hull, and ∂− the left-hand
derivative. More specifically, we have I(µ, ν) ≤c ν, µ ≤c J (µ, ν), and if µ, ν ∈ Pp(R)

Wp(µ, I(µ, ν)) = inf
η≤cν

Wp(µ, η) andWp(J (µ, ν), ν) = inf
µ≤cη

Wp(η, ν).

When p > 1, I(µ, ν) and J (µ, ν) are the unique respective metric projections but unique-
ness may fail when p = 1, c.f. [2, Remark 2.3]. Our main result reads as follows.

Theorem 1.1 (Lipschitz continuity). When d = 1 and p ∈ [1,∞), the Wasserstein projec-
tions I, J are Lipschitz continuous. For µ, ν, µ′, ν′ ∈ Pp(R), we have

Wp(I(µ, ν), I(µ′, ν′)) ≤ 2Wp(µ, µ
′) + Wp(ν, ν

′), (1.4)

Wp(J (µ, ν),J (µ′, ν′)) ≤ Wp(µ, µ
′) + 2Wp(ν, ν

′). (1.5)

1.1 Discussion on Wasserstein projections in dimension d and related prob-
lems

Wasserstein projections in the convex order have also been considered in general
dimension d ≥ 1. For µ, ν ∈ Pp(Rd) with p > 1, there exists by [2, Theorem 2.1] a unique
Ip(µ, ν) ≤c ν such thatWp(µ, Ip(µ, ν)) = infη≤cνWp(µ, η) but, unless d = 1, Ip(µ, ν) may
depend on p according to [2, Example 2.5]. Similarly, by [2, Theorem 4.1] there also
exists a Wp-projection Jp(µ, ν) of ν onto {η ∈ Pp(Rd) : ν ≤c η}, which is unique under
the additional assumption that ν is absolutely continuous w.r.t. the Lebesgue measure.
When d = 1, Theorem 1.1 is a generalization of [2, Propositions 3.1 and 4.3]. These
propositions state that for probability measures µ, ν, µ′, ν′ ∈ Pp(Rd) such that µ ≤c ν, and
Ip(µ, ν) = µ and Jp(µ, ν) = ν, then (1.4) and (1.5) hold true when I and J are replaced
with Ip and Jp, respectively. Hence, by Theorem 1.1, it is possible for d = 1 to drop the
convex ordering constraint µ ≤c ν. The extension of Theorem 1.1 to dimensions d > 1 is
to the authors’ understanding an interesting open question.

Gozlan, Roberto, Samson, and Tetali [17] introduced a generalization of optimal
transport, the weak optimal transport, in order to study measure concentration inequali-
ties. The following barycentric weak optimal transport problem received in recent years
special attention, see for example [17, 16, 15, 1, 2, 4, 5]: for µ, ν ∈ Pp(Rd), consider

Vpp (µ, ν) := infπ∈Π(µ,ν)

∫
Rd

∣∣x− ∫
Rd
y πx(dy)

∣∣p µ(dx), (1.6)

where we write (πx)x∈Rd for a disintegration kernel of π w.r.t. its µ-marginal: π(dx, dy) =

µ(dx)πx(dy). This problem has an intrinsic connection with the problem of finding Wasser-
stein projection. Indeed, we have that the values of Vp(µ, ν) andWp(µ, Ip(µ, ν)) coincide,
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Lipschitz continuity of the Wasserstein projection

see [2, 4]. Moreover, if π∗ is an optimizer of (1.6) then the image of the first marginal
µ under the map x 7→

∫
Rd
π∗x(y) dy is a minimizer of infη≤cνWp(µ, η) and coincides with

Ip(µ, ν) when p > 1. Therefore, when µ, ν ∈ Pp(Rd) are finitely supported, (1.6) can be
used to compute the Wasserstein projection. In particular, I2(µ, ν) can be computed by
solving a quadratic optimization problem with linear constraints. We refer to [17, 3]
for dual formulations of weak optimal transport problems with additional martingale
constraints, to [4] for the existence of optimal couplings and necessary and sufficient
optimality conditions, to [7] for continuity of their value function in terms of the marginal
distributions µ and ν, and to [6] for applications of such problems. We point out the
connection of Wasserstein projections to Cafarelli’s contraction theorem that was discov-
ered in [13]. Note that dual formulations of the minimization problems defining Ip(µ, ν)

and Jp(µ, ν) have recently been studied by Kim and Ruan [20].

1.2 Wasserstein projections in dimension one

In dimension d = 1, Wasserstein distance and convex order both can be characterized
in terms of quantile functions, which gives intuition why they appear in (1.3). It is
well-known that the comonotonous coupling is an optimizer in (1.1):

∀µ, ν ∈ Pp(R), Wp(µ, ν) =
(∫ 1

0
|F−1
µ (u)− F−1

ν (u)|pdu
)1/p

=: ‖F−1
µ − F−1

ν ‖p. (1.7)

Moreover, by [21, Theorem 3.A.5], for µ, ν ∈ P1(R) that share the same barycenter,

µ ≤c ν ⇐⇒ ∀u ∈ [0, 1],
∫ u

0
F−1
µ (v) dv ≥

∫ u
0
F−1
ν (v) dv. (1.8)

A complete geometric characterization of I(µ, ν) and J (µ, ν) is given in [5]. Note
that (1.3) implies

Wp(I(µ, ν), µ) =Wp(J (µ, ν), ν) andWp(I(µ, ν), ν) =Wp(J (µ, ν), µ), (1.9)

where, according to [2, Corollary 4.4], the first equality still holds for d ≥ 2 when I and
J are replaced by Ip and Jp respectively. The next examples show that the constants
in (1.4) and (1.5) are sharp for p = 1.

Example 1.2. Let µ ∈ Pp(R) and ν be a Dirac measure. As ν is the only measure
dominated by itself in the convex order, I(µ, ν) = ν and, as a consequence of (1.9),
J (µ, ν) = µ. When ν′ is also a dirac mass, we deduce for any µ′ ∈ Pp(R) that

Wp(I(µ, ν), I(µ, ν′)) =Wp(ν, ν
′) and Wp(J (µ, ν),J (µ′, ν)) =Wp(µ, µ

′).

Hence the factor 1 multiplyingWp(ν, ν
′) in the right-hand side of (1.4) and multiplying

Wp(µ, µ
′) in the right-hand side of (1.5) is optimal. 3

Example 1.3. We fix µ := δ0 and define, for α ∈ (0, 1),

να := (1− α)δ−α2 + αδ1.

We have I(να, να) = να and I(µ, να) = δα(1−α(1−α)), so that

W1(I(να, να), I(µ, να)) = 2
(
α+ α2(α(1− α)− 1)

)
,

W1(µ, να) = α+ α2(1− α).

Then, an application of the de l’Hôpital rule yields limα↘0
W1(I(να,να),I(µ,να))

W1(µ,να) = 2. Hence,

the factor 2 in (1.4) is optimal when p = 1. Since J (δα(1−α(1−α)), ν
α) = να and

J (δα(1−α(1−α)), δ0) = δα(1−α(1−α)), we find in the same way that the factor 2 is also
optimal in (1.5) when p = 1. 3
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Example 1.4. Let µ, µ′, ν, ν′ be the probability measures with quantile functions:

F−1
µ (u) = u1(0, 12 ](u) + 1+u

2 1( 1
2 ,1)(u), F−1

ν (u) = u
2 ,

F−1
µ′ (u) = u1(0, 12 ](u) + 12+5u

18 1( 1
2 ,1)(u), F−1

ν′ (u) = u
31(0, 12 ](u) + u

21( 1
2 ,1)(u).

We check that F−1
I(µ,ν)(u) = u

2 and F−1
I(µ′,ν′)(u) = u

31(0, 12 ] + 3+5u
18 1( 1

2 ,1)(u), whence,

Wp
p (I(µ, ν), I(µ′, ν′)) =Wp

p (µ, µ′) +Wp
p (ν, ν′)

with two positive summands. 3

1.3 On the convex-order lattice in dimension one

In dimension one, when µ and ν share the same barycenter, it is possible to restore
convex ordering by using that P1(R) is a complete lattice for the increasing and decreas-
ing convex orders (see [19]). Both orders coincide with the convex order on the subset
Px0
p (R) of Pp(R) consisting in probability measures with barycenter x0 ∈ R. On Px0

1 (R),
the minimum ∧c and maximum ∨c can be expressed in terms of potential functions: the
potential function of µ ∈ P1(R) is defined by

uµ(x) :=
∫
R
|x− y|µ(dy).

For µ, ν ∈ Px0
1 (R), µ ∧c ν and µ ∨c ν are uniquely determined by

uµ∧cν = co(uµ ∧ uν) and uµ∨cν = uµ ∨ uν .

On the domain Px0
p (R)× Px0

p (R),

(µ, ν) 7→ µ ∧c ν and (µ, ν) 7→ µ ∨c ν

are continuous mappings into Px0
p (R): [9, Lemma 4.1] provides continuity for p = 1 and

[2, Lemma 4.3], which ensures uniform integrability, permits to deduce continuity for
general p ≥ 1. However, unlike I and J , the minimum and maximum in the convex order
are not Lipschitz continuous.

Example 1.5. Consider for n ≥ 3 the measures in Pp(R):

ν :=
1

2n
δ0 +

1

n

n−1∑
i=1

δ i
n

+
1

2n
δ1,

µ :=
1

n

n∑
i=1

δ 2i−1
2n

,

η :=
3

2n
δ 1
n

+
1

n

n−2∑
i=2

δ i
n

+
3

2n
δn−1

n
.

ν• • • • • • •• • • • •

µ• • • • • •• • • • • •

η

0 1
n

. . . . . . . . . n−1
n 1

•
• • • • •

•• • • • •

Observe that, for the martingale kernel K(x, dy) := 1
2δx− 1

2n
+ 1

2δx+ 1
2n

, µ(dx)K(x, dy) ∈
Π(µ, ν). By Strassen’s theorem [22] we find that µ ≤c ν, η ≤c µ̃ where µ̃(dy) :=∫
x∈RK(x, dy) η(dx) is such that µ − µ̃ = 1

4nδ 1
2n

+ 1
4nδ 2n−1

2n
− 1

4nδ 3
2n
− 1

4nδ 2n−3
2n

so that
µ̃ ≤c µ. Hence η ≤c µ ≤c ν and µ∨c ν = ν, µ∨c η = µ, µ∧c ν = µ, µ∧c η = η. We compute

Wp(µ, ν) =Wp(η, µ) = 1
2n and Wp(η, ν) = 1

n1+1/p ,

from where we conclude that

Wp(µ∨cν,µ∨cη)
Wp(η,ν) =

Wp(µ∧cν,µ∧cη)
Wp(η,ν) = n1/p

2 . (1.10)

Consequently, ∧c and ∨c are not Lipschitz continuous. 3
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In particular, this example shows that for probability measures with the same barycen-
ter, in general, the Wasserstein projections do not coincide with the minimum and
maximum in the convex order. Beyond that, they satisfy the following order relation.

Proposition 1.6. Let µ, ν ∈ Pp(R) have the same barycenter. Then

I(µ, ν) ≤c µ ∧c ν and J (µ, ν) ≥c µ ∨c ν. (1.11)

Proof. The map u 7→ F−1
I(µ,ν)(u) − F−1

µ (u) is non-increasing due to (1.3). Therefore,

monotonicity of the integrand yields, for u ∈ (0, 1) that

1
u

∫ u
0

(F−1
I(µ,ν)(v)− F−1

µ (v)) dv ≥
∫ 1

0
(F−1
I(µ,ν)(v)− F−1

µ (v)) dv =
∫
R
y ν(dy)−

∫
R
xµ(dx),

where the last equality comes from the inverse transform sampling and the fact that
I(µ, ν) and ν share the same barycenter, which is a consequence of I(µ, ν) ≤c ν. If µ and
ν have the same barycenter, then I(µ, ν) shares this barycenter and we deduce by (1.8)
that I(µ, ν) ≤c µ, thus, I(µ, ν) ≤c µ∧c ν. Analogously, we have µ ≤c J (µ, ν), and if µ and
ν share the same barycenter, ν ≤c J (µ, ν), hence, µ ∨c ν ≤ J (µ, ν).

2 Proof of Theorem 1.1

The proof of Theorem 1.1 relies on the next two results whose proofs are postponed.

Lemma 2.1. For p ≥ 1, I and J are continuous maps on Pp(R)× Pp(R) to Pp(R).

Proposition 2.2. Let f and g be real-valued càdlàg functions on [0, 1] with respective
antiderivatives F and G. We have, for p ≥ 1,

‖∂+ (co(F )− co(G))‖p ≤ ‖f − g‖p . (2.1)

Proof of Theorem 1.1. Let µ, µ′, ν, ν′ ∈ Pp(R). Assume for a moment that (1.4) and (1.5)
hold for probability measures with bounded support. Since such measures are dense in
Pp(R), there exist µn, µ′n, νn, ν

′
n ∈ Pp(R), n ∈ N with bounded support such that

lim
n→+∞

Wp(µ, µn) +Wp(µ
′, µ′n) +Wp(ν, νn) +Wp(ν

′, ν′n) = 0. (2.2)

We have by Lemma 2.1 that (J (µn, νn))n∈N and (J (µ′n, ν
′
n))n∈N converge to J (µ, ν) and

J (µ′, ν′) resp. in Pp(R). Therefore,

Wp (J (µ, ν),J (µ′, ν′)) = lim
n→+∞

Wp (J (µn, νn),J (µ′n, ν
′
n))

≤ lim
n→+∞

2Wp(µn, µ
′
n) +Wp(νn, ν

′
n)

= 2Wp(µ, µ
′) +Wp(ν, ν

′).

Hence, we may assume that µ, ν, µ′, ν′ have bounded supports. This implies that the
associated quantile functions are bounded on (0, 1) and since they are non-decreasing
and have at most countably many jumps, coincide λ-a.s. with càdlàg functions on [0, 1],
where λ denotes the Lebesgue measure on [0, 1]. Therefore,

G : v 7→
∫ v

0
(F−1
µ − F−1

ν )(u) du and G′ : v 7→
∫ v

0
(F−1
µ′ − F

−1
ν′ )(u) du,

are the antiderivatives of càdlàg functions on [0, 1]. By Proposition 2.2 and (1.7),

‖∂+ (co(G)− co(G′)) ‖p ≤ ‖∂+(G−G′)‖p = ‖F−1
µ − F−1

ν − F−1
µ′ + F−1

ν′ ‖p
≤ ‖F−1

µ − F−1
µ′ ‖p + ‖F−1

ν − F−1
ν′ ‖p =Wp(µ, µ

′) +Wp(ν, ν
′).
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By (1.3), we have for λ-almost every u ∈ (0, 1) that

F−1
I(µ,ν)(u) = F−1

µ (u)− ∂+ co(G)(u) and F−1
I(µ′,ν′)(u) = F−1

µ′ (u)− ∂+ co(G′)(u),

F−1
J (µ,ν)(u) = F−1

ν (u) + ∂+ co(G)(u) and F−1
J (µ′,ν′)(u) = F−1

ν′ (u) + ∂+ co(G′)(u).

Therefore, using (1.7), we obtain

Wp(I(µ, ν), I(µ′, ν′))=
∥∥∥F−1
I(µ,ν) − F

−1
I(µ′,ν′)

∥∥∥
p

=
∥∥∥F−1

µ − ∂+ co(G)− F−1
µ′ + ∂+ co(G′)

∥∥∥
p

≤
∥∥∥F−1

µ − F−1
µ′

∥∥∥
p

+ ‖∂+ (co(G)− co(G′))‖p ≤ 2Wp(µ, µ
′) +Wp(ν, ν

′).

In the same way,

Wp(J (µ, ν),J (µ′, ν′)) =
∥∥F−1

ν + ∂+ co(G)− F−1
ν′ − ∂+ co(G′)

∥∥
p

≤ Wp(µ, µ
′) + 2Wp(ν, ν

′).

Proof of Lemma 2.1. In the following we will only show continuity of J and remark that
continuity of I follows mutatis mutandis (and can be even shown with a simpler line of
argument, since I(µ, ν) ≤c ν). Let (µn)n∈N, (νn)n∈N be sequences that converge to µ∞,
ν∞ resp. in Pp(R).

Step 1. We show that (J (µn, νn))n∈N is a precompact subset of Pp(R). As a conse-
quence of the de la Vallée-Poussin theorem, see for example [12, Theorem 4.5.9 and
proof], there exists a continuous, increasing and strictly convex function θ : R+ → R+

such that limr→∞
r
θ(r) = 0 and

supn∈N
∫
θ(|x|p)µn(dx) <∞, supn∈N

∫
θ(|y|p) νn(dy) <∞.

Note that, when p > 1, θ ◦ (| · |p/2p) is also strictly convex as the composition of a convex,
increasing function with a strictly convex function. On the other hand, when p = 1, x 6= y

and α ∈ (0, 1), either |x| 6= |y| or the inequality |αx+ (1− α)y| ≤ α|x|+ (1− α)|y| is strict,
so that, since θ is increasing and strictly convex, θ ◦ (| · |/2) is again strictly convex. We
conclude that in any case θ ◦ (| · |p/2p) is strictly convex.

Consider the transport problemWθ given by

Wθ(η, ν) := infπ∈Π(µ,ν)

∫
θ
(
|x−y|p

2p

)
π(dx, dy), (2.3)

for η, ν ∈ Pp(R), and observe that

Wθ(η, ν) ≤
∫
θ
(
|x|p+|y|p

2

)
η ⊗ ν(dx, dy) ≤ 1

2

(∫
θ(|x|p) η(dx) +

∫
θ(|y|p) ν(dy)

)
.

We have by [5, Theorem 1.4] that

Vθ(µ, ν) := inf
µ≤cη

Wθ(η, ν) =Wθ(J (µ, ν), ν) ≤ Wθ(µ, ν),

from which we deduce that (Vθ(µn, νn))n∈N is a bounded sequence. For n ∈ N, let πn be
an optimizer ofWθ(J (µn, νn), νn) in Π(J (µn, νn), νn). We then find by monotonicity of θ
combined with |x|p

2p−1 ≤ |x− y|p + |y|p and convexity of θ,∫
θ
(
|x|p
4p

)
J (µn, νn)(dx)≤

∫
θ
(
|x−y|p+|y|p

2×2p

)
πn(dx, dy)

≤ 1
2

(
Vθ(µn, νn) +

∫
θ
(
|y|p
2p

)
νn(dy)

)
≤ 1

2

(
Vθ(µn, νn) +

∫
θ (|y|p) νn(dy)

)
.
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Therefore, the left-hand side is uniformly bounded in n ∈ N. Recall that r
θ(r) vanishes for

r →∞ and so does sups≥r
s
θ(s) . Since∫

1[r,∞)

(
|x|p
4p

)
|x|p
4p J (µn, νn)(dx) ≤ sups≥r

s
θ(s)

∫
θ
(
|x|p
4p

)
J (µn, νn)(dx),

with the integrals on the right-hand side uniformly bounded in n ∈ N, we deduce that

limr→∞ supn∈N
∫
1[r,∞)(|x|p)|x|p J (µn, νn)(dx) = 0.

In particular, by Markov’s inequality, we get that the sequence (J (µn, νn))n∈N is tight
and by [23, Definition 6.8] precompact in Pp(R).

Step 2. Precompactness allows us to pass to a subsequence convergent in Pp(R)

with limit γ. Consider the continuous, increasing, and strictly convex function θ̂(x) :=√
x2p + 1 on R+ with θ̂(x) ≤ xp + 1. By stability, that is [5, Theorem 1.5], we obtain

Vθ̂(µ, ν) = lim
n→∞

Vθ̂(µn, νn) = lim
n→∞

Wθ̂(J (µn, νn), νn) =Wθ̂(γ, ν).

SinceWp-convergence preserves convex ordering, we get that µ ≤c γ and by uniqueness
of the optimizer of Vθ̂(µ, ν), γ = J (µ, ν). Hence, (J (µn, νn))n∈N converges to J (µ, ν) in
Pp(R).

The proof of Proposition 2.2 relies on the next three lemmas. The proof of the first
one is postponed after the one of the proposition.

Lemma 2.3. Let 0 ≤ a < b and F,G : [0, b] → R be continuous on [0, b], convex on [0, a)

and affine on [a, b]. Then for any non-decreasing convex function θ : R→ R we have∫ b

0

θ (|∂+(co(F )− co(G))|) (u) du ≤
∫ b

0

θ (|∂+(F −G)|) (u) du (2.4)

where co denotes the convex hull and ∂+ the right-hand derivative.

Lemma 2.4. Let 0 ≤ a < b <∞, F : [0, b]→ R, and

H(x) :=

{
co(F |[0,a))(x) if x ∈ [0, a)

F (x) if x ∈ [a, b].
(2.5)

Then co(H) = co(F ).

Proof. The function co(H) is convex and satisfies co(H) ≤ H ≤ F . By definition of the
convex hull, we deduce that co(H) ≤ co(F ). Conversely, co(F ) is convex and bounded
from above by F , so that the restriction co(F )|[0,a) is convex and bounded from above by
F |[0,a). Hence co(F )|[0,a) ≤ co(F |[0,a)) and, since co(F ) ≤ F , we have co(F ) ≤ H by (2.5).
By definition of the convex hull, co(F ) ≤ co(H), which concludes the proof.

Lemma 2.5. Let f : [0, 1]→ R be a càdlàg function. Then there exists for every ε > 0 a
piecewise constant, càdlàg function g : [0, 1]→ R with at most finitely many jumps such
that supx∈[0,1] |f(x)− g(x)| < ε.

Proof. This follows from [11, Section 12, Lemma 1] and the discussion below.

Proof of Proposition 2.2. For the moment we assume that the assertion of the proposition
holds true for antiderivatives of piecewise constant, càdlàg functions. Since f and g are
càdlàg, there exist by Lemma 2.5 for every n ∈ N∗ := N \ {0} piecewise constant, càdlàg
functions fn, gn : [0, 1]→ R with finitely many discontinuities such that

sup
x∈[0,1]

{|f(x)− fn(x)|+ |g(x)− gn(x)|} < 1/n.
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Lipschitz continuity of the Wasserstein projection

Therefore, (fn)n∈N∗ and (gn)n∈N∗ converge in Lp(λ) to f and g, respectively. Let, for
n ∈ N∗, u ∈ [0, 1],

Fn(u) := F (0) +

∫ u

0

fn(v) dv and Gn(u) := G(0) +

∫ u

0

gn(v) dv.

We have ‖F − Fn‖∞ < 1
n , ‖G − Gn‖∞ < 1

n . Since co(F ) − ‖F − Fn‖∞ (resp. co(Fn) −
‖F − Fn‖∞) is a convex function bounded from above by F − ‖F − Fn‖∞ ≤ Fn (resp. F ),
‖ co(F ) − co(Fn)‖∞ ≤ ‖F − Fn‖∞ < 1

n and, in the same way, ‖ co(G) − co(Gn)‖∞ < 1
n .

By [18, Theorem 6.2.7], we have λ-almost sure convergence of (∂+ co(Fn))n∈N∗ and
(∂+ co(Gn))n∈N∗ to ∂+ co(F ) and ∂+ co(G), respectively. Again, as f and g are càdlàg,
we have max(‖f‖∞, ‖g‖∞) + 1 =: K < ∞, and max(‖fn‖∞, ‖gn‖∞) ≤ K for all n ∈ N∗,
which yields by definition of the convex hull that co(Fn)(u) ≥ Fn(0)−Ku and co(Fn)(u) ≥
Fn(1)−K(1− u). Hence,

co(Fn)(u)− co(Fn(0))

u
≥ −K, co(Fn)(1)− co(Fn)(u)

1− u
≤ K,

and by monotonicity of the one-sided derivatives (and the same reasoning for Gn) we
obtain that max(‖∂+ co(Fn)‖∞, ‖∂+ co(Gn)‖∞) ≤ K. Then dominated convergence yields
that (∂+ co(Fn))n∈N∗ and (∂+ co(Gn))n∈N∗ converge in Lp(λ) to ∂+ co(F ) and ∂+ co(G),
respectively. Finally, by applying (2.1) and the triangle inequality we get the desired
inequality:

‖∂+(co(F )− co(G))‖p = lim
n→∞

‖∂+(co(Fn)− co(Gn))‖p
≤ lim
n→+∞

‖fn − gn‖p = ‖f − g‖p .

It remains to show (2.1) for piecewise constant, càdlàg functions f and g with finitely
many jumps. To this end, let (ak)0≤k≤n be a partition of [0, 1] adapted to f and g, i.e.,
0 = a0 < . . . < an = 1 and for all k ∈ {0, · · · , n− 1}, f |[ak,ak+1) and g|[ak,ak+1) are constant.
For k ∈ {0, · · · , n}, we consider

F k : x 7→

{
co(F |[0,ak))(x) if x ∈ [0, ak),

F (x) else;

Gk : x 7→

{
co(G|[0,ak))(x) if x ∈ [0, ak),

G(x) else,

and write fk = ∂+F
k and gk = ∂+G

k.
Note that F 0 = F 1 = F , G0 = G1 = G and Fn = co(F ), Gn = co(G). By induction we

will show that, for k ∈ {0, . . . n− 1}.

‖fk+1 − gk+1‖p ≤ ‖fk − gk‖p. (2.6)

As the initial case is trivial, we assume that (2.6) holds for 0 ≤ k ≤ n− 2. First, observe∥∥fk+1 − gk+1
∥∥p
p

=
∥∥(fk+1 − gk+1)|[0,ak+1)

∥∥p
p

+
∥∥(fk+1 − gk+1)|[ak+1,1]

∥∥p
p

=
∥∥∂+

(
co(F |[0,ak+1))− co(G|[0,ak+1))

)∥∥p
p

+
∥∥(fk − gk)|[ak+1,1]

∥∥p
p
.

Applying Lemma 2.4 with a = ak, b = ak+1 yields co(F |[0,ak+1)) = co(F k|[0,ak+1)) and
co(G|[0,ak+1)) = co(Gk|[0,ak+1)), so that,∥∥fk+1 − gk+1

∥∥p
p

=
∥∥∂+

(
co(F k|[0,ak+1))− co(Gk|[0,ak+1))

)∥∥p
p

+
∥∥(fk − gk)|[ak+1,1]

∥∥p
p
.
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Since f and g are absolutely bounded by some constant C > 0, we have co(F |[0,ak))(u) ≥
F (ak) − C(ak − u), co(G|[0,ak))(u) ≥ G(ak)− C(ak − u), thus, limu↗ak co(F |[0,ak))(u) =

F (ak) and limu↗ak co(G|[0,ak))(u) = G(ak). In particular, F k and Gk are continuous. We
can apply Lemma 2.3 with a = ak, b = ak+1 to obtain∥∥∂+(co(F k|[0,ak+1))− co(Gk|[0,ak+1)))

∥∥
p
≤
∥∥(fk − gk)|[0,ak+1)

∥∥
p
,

from which we deduce (2.6). In particular, we have shown the assertion:

‖∂+(co(F )− co(G))‖p = ‖fn − gn‖p ≤
∥∥f0 − g0

∥∥
p

= ‖f − g‖p .

The proof of Lemma 2.3 relies on the next two lemmas.

Lemma 2.6. Let θ : R→ R be convex, x, z ∈ R with x < z, and y, ŷ ∈ [x, z]. Then

θ(y)− θ(x) ≤ y−x
z−ŷ (θ(z)− θ(ŷ)) . (2.7)

Proof. Since θ is convex, we have

θ(y)− θ(x) ≤ y−x
z−x (θ(z)− θ(x)) and z−ŷ

z−x (θ(z)− θ(x)) ≤ θ(z)− θ(ŷ).

Combining these two inequalities yields (2.7).

Lemma 2.7. Let µ ∈ P1(R) and f : R→ R be a measurable map such that µ is equal to
the image f#λ of the Lebesgue measure λ on (0, 1) by f . Then

∀v ∈ [0, 1],
∫ 1

v
f(u) du ≤

∫ 1

v
F−1
µ (u) du.

Proof. The conclusion being obvious when v = 1, we suppose v ∈ [0, 1). The image η of
1(v,1)(u)λ(du) by f is such that η ≤ µ. We have µ

1−v ≥
η

1−v =: η̂ ∈ P1(R) and thus

1− Fη̂(F−1
µ (1− (1− v)u)) ≤ µ((F−1

µ (1−(1−v)u)),+∞))

1−v =
1−Fµ(F−1

µ (1−(1−v)u))

1−v ≤ u,

where u ∈ (0, 1), so that F−1
η̂ (1 − u) ≤ F−1

µ (1 − (1 − v)u). With the inverse transform
sampling, this implies∫ 1

v
f(u) du = (1− v)

∫ 1

0
F−1
η̂ (1−u) du ≤ (1− v)

∫ 1

0
F−1
µ (1− (1− v)u) du =

∫ 1

v
F−1
µ (u) du.

Proof of Lemma 2.3. Let f, g : [0, b)→ R be given by the right-hand derivative of F and
G resp., that is f := ∂+F , g := ∂+G. Since F and G are convex on [0, a) and affine on
[a, b], f and g are non-decreasing on [0, a) and constant on [a, b).Our first goal is to find an
explicit representation of the convex hulls of F and G. To this end, consider the infimum

c := inf
{
x ∈ [0, b) | f(x) ≥ F (b)−F (x)

b−x

}
, (2.8)

which is well-defined and not greater than a as f(a) = F (b)−F (a)
b−a . Moreover, the infimum

in (2.8) is attained by continuity of F and right-continuity of f . When c > 0, we get by (2.8)
and monotonicity of f on [0, a) that supx∈[0,c) f(x) = limx↗c f(x) ≤ limx↗c

F (b)−F (x)
b−x =

F (b)−F (c)
b−c . Under the convention supx∈[0,c) f(x) = −∞ when c = 0, we therefore find

supx∈[0,c) f(x) ≤ F (b)−F (c)
b−c =: φ ≤ f(c). (2.9)

For x ∈ [c, a], using (2.9) and the fact that f is non-decreasing on [0, a), we obtain

F (b)− F (x)= F (b)− F (c) + F (c)− F (x) = (b− c)φ−
∫ x
c
f(u) du

≤ (b− c)φ+(c− x)φ = (b− x)φ ≤ (b− x)f(x). (2.10)
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F

co(F )

c a b

Figure 1: Illustration of F and its convex hull co(F ).

We claim that
co(F )(x) = F (min(x, c)) + max(x− c, 0)φ, x ∈ [0, b]. (2.11)

Denote the right-hand side of (2.11) by F̃ . Note that F̃ is convex on [0, b] since the right-
hand derivative ∂+F̃ (x) = 1[0,c)f(x) + 1[c,b)φ is non-decreasing by (2.9). We calculate

F (x) = F (c) + F (x)− F (b) + F (b)− F (c) ≥ F (c)− (b− x)φ+ (b− c)φ = F̃ (x),

for x ∈ [c, a], which yields that F̃ ≤ F on [0, a] ∪ {b}. Since both functions are affine on
[a, b] we conclude that F̃ ≤ F and therefore, by definition of the convex hull, F̃ ≤ co(F ).

In order to show (2.11), it remains to verify that co(F ) ≤ F̃ . By convexity of co(F )

and the inequality co(F ) ≤ F , we have, for x ∈ [c, b],

co(F )(x) ≤ x−c
b−cF (b) + b−x

b−cF (c) = F (c) + (x− c)φ = F̃ (x),

and co(F )(x) ≤ F (x) = F̃ (x) for x ∈ [0, c], thus, co(F ) ≤ F̃ .
Reasoning the same way for G, we deduce that d defined analogously to (2.8)

d := inf
{
x ∈ [0, b) : g(x) ≥ G(b)−G(x)

b−x

}
is not greater than a and has the properties

supx∈[0,d) g(x) ≤ G(b)−G(d)
b−d =: γ ≤ g(d), (2.12)

co(G)(x) = G(min(x, d)) + max(x− d, 0)γ. (2.13)

After this preparatory work we proceed to show the assertion, that is (2.4). Without
loss of generality, we assume that c ≤ d. Note that, by (2.11) and (2.9), ∂+ co(F )(x) =

min(f(min(x, c)), φ) and, by (2.13) and (2.12), ∂+ co(G)(x) = min(g(min(x, d)), γ). There-
fore, the left-hand side of (2.4) coincides with∫ c

0
θ (|f(u)− g(u)|) du+

∫ d
c
θ (|φ− g(u)|) du+

∫ b
d
θ (|φ− γ|) du.

To conclude, we thus have to show∫ d
c
θ (|φ− g(u)|) du+

∫ b
d
θ (|φ− γ|) du ≤

∫ b
c
θ (|f(u)− g(u)|) du. (2.14)

Case 1 : Suppose that φ ≥ γ. By (2.9), the monotonicity of f on [0, a) and (2.12),

g(u) ≤ γ ≤ φ ≤ f(u) u ∈ [c, d).

Then, by applying Lemma 2.6 (with, in the notation of this lemma, x = φ−γ, y = f(u)−γ,
ŷ = φ− g(u), z = f(u)− g(u), which satisfy y−x

z−ŷ = 1), we find

θ (f(u)− g(u))− θ (φ− g(u)) ≥ θ (f(u)− γ)− θ (φ− γ) , u ∈ [c, d)

so that
∫ d
c
θ (|f(u)− g(u)|)− θ (φ− g(u)) du ≥

∫ d
c
θ (f(u)− γ)− θ(φ− γ) du. (2.15)

ECP 28 (2023), paper 18.
Page 10/13

https://www.imstat.org/ecp

https://doi.org/10.1214/23-ECP525
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


Lipschitz continuity of the Wasserstein projection

Denoting by φ̃ the fraction F (b)−F (d)
b−d , we have, since θ is non-decreasing and convex,

∫ b
d
θ (|f(u)− g(u)|) du

b−d ≥ θ
(∣∣∣∫ bd f(u)−g(u)

b−d du
∣∣∣) = θ

(
|φ̃− γ|

)
. (2.16)

We bring all terms of (2.14) to one side and find∫ b
c
θ (|f(u)− g(u)|) du−

∫ d
c
θ(φ− g(u)) du−

∫ d
b
θ(φ− γ) du

≥
∫ d
c
θ(f(u)− γ)− θ(φ− γ) du+

∫ b
d
θ(|φ̃− γ|)− θ(φ− γ) du

≥ (b− c)
(
θ
(

1
b−c

(∫ d
c
f(u)− γ du+

∫ b
d
|φ̃− γ|du

))
− θ(φ− γ)

)
, (2.17)

where we use (2.15) and (2.16) for the first inequality and then convexity of θ. Since

θ is non-decreasing and 1
b−c

(∫ d
c
f(u)− γ du+

∫ b
d
φ̃− γ du

)
= φ − γ, we find that the

right-hand side of (2.17) is non-negative, from which we derive (2.14).
Case 2 : Suppose that φ < γ and let e := inf{u ∈ [c, d] | g(u) ≥ φ} where, by convention,

the infimum over the empty set is defined as d. By (2.9), the monotonicity of f on [0, a)

and d ≤ a, we have g(u) ≤ φ ≤ f(u) for u ∈ [c, e), thus, by monotonicity of θ,∫ e
c
θ(|φ− g(u)|) du =

∫ e
c
θ(φ− g(u)) du ≤

∫ e
c
θ(f(u)− g(u)) du=

∫ e
c
θ(|f(u)− g(u)|) du.

(2.18)
On the other hand, by (2.11),

∀x ∈ [c, b], F (x) ≥ co(F )(x) = F (b) + (x− b)φ (2.19)

so that φ̃ = F (b)−F (d)
b−d ≤ φ. As θ is non-decreasing and convex, we obtain

∫ b
d
θ (|f(u)− g(u)|) du

b−d ≥ θ
(
γ − φ̃

)
. (2.20)

As consequence of (2.18) and (2.20), the following inequality suffices to get (2.14):∫ d
e
θ(g(u)− φ) du+ (b− d)θ(γ − φ) ≤

∫ d
e
θ (|f(u)− g(u)|) du+ (b− d)θ(γ − φ̃). (2.21)

Showing (2.21) is equivalent to proving that the respective images µ and ν of the
Lebesgue measure λ on (0, 1) by the maps

T 1(u) :=

{
g(e+ (b− e)u)− φ u < d−e

b−e ,

γ − φ else,

T 2(u) :=

{
|f(e+ (b− e)u)− g(e+ (b− e)u)| u < d−e

b−e ,

γ − φ̃ else

are in the increasing convex order. By [21, Theorem 4.A.3], this is equivalent to∫ 1

v
F−1
µ (u) du ≤

∫ 1

v
F−1
ν (u) du, v ∈ [0, 1]. (2.22)

Since T 1 is non-decreasing, we have by [2, Lemma A.3] that T 1(u) = F−1
µ (u) for λ-almost

every u ∈ (0, 1). This observation combined with Lemma 2.7 leads to∫ 1

v
F−1
µ (u) du =

∫ 1

v
T 1(u) du and

∫ 1

v
F−1
ν (u) du ≥

∫ 1

v
T 2(u) du, v ∈ [0, 1]

and (2.22) is implied by ∫ 1

v
T 1(u) du ≤

∫ 1

v
T 2(u) du, v ∈ [0, 1]. (2.23)
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Recall that φ̃ ≤ φ, so that this inequality holds for v ∈ [d−eb−e , 1]. Next, abbreviate d−e
b−e =: w,

let v ∈ [0, w), and write ê := e+ (b− e)v. Using g ≤ f + |f − g|, we have that∫ 1

v
T 1(u) du≤

∫ w
v
f(e+ (b− e)u) + T 2(u)− φdu+

∫ 1

w
γ − φdu

= F (d)−F (ê)−(d−ê)φ+(b−d)(γ−φ)
b−e +

∫ w
v
T 2(u) du.

Remember that (b− d)φ̃ = F (b)− F (d) and (2.19) applies to x = ê since ê ≥ e ≥ c. Thus,

F (d)− F (ê) = F (b)− F (ê)− (b− d)φ̃ ≤ (b− ê)φ− (b− d)φ̃.

As 1− w = b−d
b−e , we obtain∫ 1

v
T 1(u) du≤ (b−d)(φ−φ̃+γ−φ)

b−e +
∫ w
v
T 2(u) du

= b−d
b−e (γ − φ̃) +

∫ w
v
T 2(u) du =

∫ 1

v
T 2(u) du.
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