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Cross-Validatory Model Selection for Bayesian
Autoregressions with Exogenous Regressors

Alex Cooper∗, Dan Simpson§, Lauren Kennedy∗,†, Catherine Forbes∗,
and Aki Vehtari‡

Abstract. Bayesian cross-validation (CV) is a popular method for predictive
model assessment that is simple to implement and broadly applicable. A wide
range of CV schemes is available for time series applications, including generic
leave-one-out (LOO) and K-fold methods, as well as specialized approaches in-
tended to deal with serial dependence such as leave-future-out (LFO), h-block,
and hv-block.

Existing large-sample results show that both specialized and generic methods
are applicable to models of serially-dependent data. However, large sample con-
sistency results overlook the impact of sampling variability on accuracy in finite
samples. Moreover, the accuracy of a CV scheme depends on many aspects of the
procedure. We show that poor design choices can lead to elevated rates of adverse
selection.

In this paper, we consider the problem of identifying the regression component
of an important class of models of data with serial dependence, autoregressions
of order p with q exogenous regressors (ARX(p, q)), under the logarithmic scoring
rule. We show that when serial dependence is present, scores computed using
the joint (multivariate) density have lower variance and better model selection
accuracy than the popular pointwise estimator. In addition, we present a detailed
case study of the special case of ARX models with fixed autoregressive structure
and variance. For this class, we derive the finite-sample distribution of the CV
estimators and the model selection statistic. We conclude with recommendations
for practitioners.

Keywords: model comparison, cross-validation, uncertainty, serial dependence.

1 Overview
Many workflows for constructing predictive Bayesian models require the practitioner
to choose the best model among a number of candidates according to their predictive
power for the task at hand. Although many predictive model selection methods are
available (Vehtari and Ojanen, 2012), among the most popular is cross-validation (CV;
Geisser, 1975). CV is flexible and applicable to a wide variety of statistical applications.
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2 Cross-Validation for Bayesian Autoregressions

In finite samples, CV-based selection objectives are biased and subject to sampling
variation, which leads to uncertainty about model predictive ability and the possibility
of adverse model selection (Arlot and Celisse, 2010; Sivula et al., 2020). In the Bayesian
context, there is a large literature on the frequency properties (i.e. variability across
multiple realizations of a dataset) of model selection rules using information criteria
such as the widely-available information criterion (WAIC) and the Bayes factor (e.g.,
Ward, 2008; Schad et al., 2022). Despite its popularity in Bayesian applications, however,
less is known about the frequency properties of dependent CV procedures for Bayesian
model selection under log-predictive loss.

Recent work by Sivula et al. (2020) analyzed the frequency properties of leave-one-
out CV (LOO-CV) for Bayesian regression models of exchangeable data. The authors
identify at least three scenarios that lead to elevated uncertainty in CV model selection,
and therefore to an increased probability of adverse model choice. These pathological
cases include comparisons between candidate models that produce similar predictions,
where models are badly misspecified, and where training data sizes are small.

In this study, we extend the analysis of Sivula et al. (2020) to Bayesian models of
serially dependent data. We aim to characterize CV model selection uncertainty for
a simple but important class of models: autoregressions of order p with q exogenous
regressors, ARX(p, q). Our goal is to identify the regression component of the model
under the logarithmic scoring rule, leaving to one side the related task of identifying the
autoregressive component. In this context, a scoring rule is a loss function for assess-
ing the quality of probabilistic predictions (Gneiting and Raftery, 2007). While many
scoring rules are available, we focus on the logarithmic scoring rule, for which a mea-
sure of predictive performance is the expected log predictive density (elpd) described in
Section 2.2.

We address two important aspects of scoring rule design for models of correlated
data. First, whether the scoring rule used for model assessment will be univariate or
multivariate. Second, for multivariate scoring rules, whether it will be evaluated jointly
(as a multivariate predictive density) or pointwise (as univariate marginal densities).
We begin with a demonstration of the importance of the latter, showing improved
statistical power of model selection with a jointly-evaluated scoring rule. We continue
with a detailed case study of model selection under several popular CV schemes. This
comparison includes several specific univariate (pointwise) methods, and several joint
methods. Throughout, we find that joint methods achieve greater (statistical) efficiency,
measured as lower adverse selection rates, and the associated CV estimators tend to
have lower variability.

Figure 1 illustrates the importance of joint multivariate assessments when data are
correlated. The figure shows two bivariate normal distributions. In one the variates are
mutually independent, and in the other they are strongly correlated. The table shows
that points A and B have identical pointwise log densities under both distributions, even
though point B lies in a region of very low (joint) density in the correlated case. We
conclude that in contrast to the joint approach, when correlation is strong the pointwise
density fails to detect that point B is in a region of low probability for this model.
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Figure 1: Illustration of the distinction between joint and pointwise log density mea-
sures in correlated models. Both plots show bivariate normal densities centered at the
origin with unit marginal variance and correlation coefficients of 0 (Panel (a)) and
0.9 (Panel (b)). Panel (c) tabulates joint and pointwise log densities evaluated at the
marked points A and B, indicated in red on the plots. In the correlated case, only the
joint log density, log p(y1, y2), identifies point B as having low log density. In contrast,
the pointwise density log p(y1, y2) is the same for both.

To further motivate our approach, Figure 2 previews the results of a model selec-
tion experiment we will describe in more detail in Section 3. The figure compares the
distribution of CV model selection statistics for selecting between two candidate ARX
models. The panels show increasing degrees of dependence from left to right. As de-
pendence increases, the pointwise model selection statistic shows an increasing rate of
adverse model selection (red bars in the vertical margin). In contrast, there is little
change for the jointly-evaluated case (red bars in the horizontal margin). For a full
description of this experiment, please refer to Section 3.

Several CV strategies are available for models of serially dependent data, and there
seems to be little agreement in the literature about which one practitioners should
adopt, especially in the Bayesian modeling literature. Furthermore, much of the exist-
ing literature addresses different blocking strategies, but does not make a distinction
between joint and pointwise evaluation of the scoring rule. Moreover, we speculate that
different CV schemes will be useful when assessing different aspects of such a model.
Even when the analytical focus is not the autoregressive component, joint predictive
measures appear to be useful for identifying the regression components.

In contrast to much of the existing literature on CV for autoregressive models,
including many large-sample consistency results (e.g., Bergmeir et al., 2018; Racine,
2000), our emphasis is on the frequency properties of the CV estimator in finite samples.
Further to the three problematic scenarios identified by Sivula et al. (2020), our results
suggest that strong serial dependence and a cross-validatory objective function that
does not capture model dynamics (e.g. pointwise objectives) can pose difficulties for



4 Cross-Validation for Bayesian Autoregressions

Figure 2: Joint log-score differences versus pointwise log score differences, computed
using 10-fold-CV in a model selection statistics for 500 independent posteriors of the
‘hard’ case (see Section 3). The DGP is a stationary ARX(2, 3) and candidate models
are MA : ARX(1, 2) and MB : ARX(1, 1). Model selection statistics are expected log
pointwise predictive density (elpd) differences. The DGP has autoregressive parame-
ter φ∗ = α(0.75, 0.2) so that α selects increasing serial dependence from left to right.
Adverse selection increases for the pointwise method (vertical axis) as dependence in-
creases. See Section 3 for a full description.

CV-based model selection, even when the goal is not limited to identification of the
autoregressive component of the model. Our results stand as a counterpoint to large-
sample consistency results and suggest that mere consistency of the estimator is not
enough. That is, under certain choices of the CV scheme the variance of the model
selection statistic can be very high, leading to elevated rates of adverse selection.

1.1 Contributions

We present novel results for procedures that use CV methods under the logarithmic
scoring function when serial dependence is present. Working with the logarithmic scor-
ing function and focusing on identifying the regression component of the model, we
demonstrate that:

• Under serial dependence, CV schemes should be designed to account for the pre-
sumed dependence structure of the data in order to achieve good model selection
performance;
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• When serial dependence is strong, performance measures evaluated jointly are
much more (statistically) efficient than pointwise counterparts;

• When the sample size is finite, there is a U-shaped relationship between certain
CV scheme hyperparameters and the adverse selection rate;

• We present novel results on the variability of Bayesian CV procedures for ARX(p, q)
models. To our knowledge, these are among the first results describing the finite-
sample uncertainty of CV methods under serial dependence, particularly in a
Bayesian setting.

We offer the following advice for practitioners working with models of serially-dependent
data. Broadly speaking, since CV methods based on joint scoring rules are usually
more complex to implement, their improved efficiency should be traded off against
implementation burden. Following model criticism of each candidate model ahead of
model selection, we recommend:

• Where measured serial dependence in the data is not very strong, simpler pointwise
CV methods (like LOO-CV and LFO-CV) can be used as a first-pass, and relied
upon where the results are clear (see Sivula et al., 2020, for criteria);

• Otherwise, if serial dependence is strong or results are unclear then joint CV model
selection methods should be implemented instead.

• Even when the actual predictive task requires a univariate prediction (like a one-
step-ahead prediction), for model selection it may be better to use a CV scheme
that leaves out multiple observations, combined with a multivariate scoring rule.

The remainder of the paper proceeds as follows. In Section 2 we describe the model
class and summarize CV-based model selection and some relevant literature, highlight-
ing some key challenges associated with CV for dependent data. Section 3 presents a
short simulation experiment, and Section 4 presents a detailed case study of CV model
selection in a simplified form of ARX model, focusing on the properties of CV under
dependence and demonstrating where challenges can arise. Finally, Section 5 discusses
the results and concludes. See https://github.com/kuperov/arx for code and exper-
iments.

2 Background
In this section, we briefly review CV model selection and review some relevant literature.
We will suppose we have observed a data vector y = (y1, . . . , yT ), presumed to be drawn
from a joint distribution ptrue, the (typically unknown) data-generating process (DGP).
Our goal is to construct predictions by first selecting the best available model M∗ from
some set M of candidates (or candidate model families identified up to a parameter).
This selection is made according to candidate models’ ability to predict as-yet unseen
realizations of the process, that is, by their out-of-sample predictive power.

https://github.com/kuperov/arx
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To simplify our analysis, we will consider only pairwise comparisons (i.e. |M| = 2),
but we do explicitly allow that Mtrue �∈ M, i.e. the model associated with ptrue is not
in M.

2.1 Autoregressions with exogenous regressors
We will write ARX(p, q) for an autoregression with p lags of the dependent variable and
q exogenous regressors. Throughout we assume p � T and q � T , and that T is ‘small’,
corresponding to common applied settings where data are limited.

The ARX(p, q) class is a key building block for time series models in a wide range
of scientific, policy, and business applications. For instance, autoregressions underpin
the popular vector autoregression (VAR) models used by macroeconomic policymakers
(e.g., Sims, 1980) and spatial epidemiological studies (Lee, 2011).

The ARX(p, q) model is conditionally normal,

p(yt|φ, β, yt−1, . . . , yt−p) = N
(
yt|φ1yt−1 + · · · + φpyt−p + z�t β, σ2), (2.1)

for t = 1, . . . , T , where the first element of the q×1 vector of exogenous variables zt is 1.
For simplicity, we will initialize the sequence from zero, so that y1−p = · · · = y0 = 0.

In comparison to the linear regression (LR) model studied by Sivula et al. (2020), the
dependence structure of the ARX class substantially complicates the analysis. Naturally,
one could view the lags of yt as explanatory variables which would mean the ARX(p, q)
model is identical to that of the Gaussian linear regression (LR) analyzed by Sivula
et al. (2020). However, to restrict our attention to models in the stationary regime, we
must either impose informative priors on the autoregressive parameters (as we do in
Section 3) or fix them (as we do in Section 4). In both Sections 3 and 4 we have allowed
analytical convenience to guide the choice of prior.

It is worth emphasizing that all the results we present in this paper depend on
Z, the T × q matrix of exogenous covariates. Our results do not need to make any
assumptions about the distribution of Z, since they are assumed known and fixed. In
our experiments, we construct Z by drawing a matrix of independent standard normal
variates, a matrix we keep fixed across all replicates of each experiment.

2.2 Predictive model selection
When the goal of a modeling exercise is prediction, it is natural to use predictive per-
formance as a measure of model goodness or ‘utility’. Predictive performance can be
assessed using a scoring rule, a function that produces a numerical assessment of a
probabilistic prediction against actual observations (Gneiting and Raftery, 2007). Since
the choice of scoring rule governs the selection of M∗, an ideal choice for a scoring rule
would be tailored to the modeling task at hand. However, in the absence of a specific
application, general-purpose scoring rules are available.

We focus on the popular logarithmic scoring rule, which enjoys the mathematical
properties of being local and strictly proper and is closely related to the KL divergence
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(Gneiting and Raftery, 2007; Vehtari and Ojanen, 2012; Dawid, 1984). Under the log-
arithmic score, we call the expected score for some model M� the expected log joint
predictive density (eljpd),

eljpd(M�|y) = Eỹ∼ptrue

[
log

∫
p(ỹ|θ,M�)p(θ | y,M�) dθ

]
(2.2)

= Eỹ∼ptrue

[
log p(ỹ|y,M�)

]
(2.3)

where ‘joint’ refers to the fact that the multivariate predictive p(ỹ|y,M�) is a joint
density. Here, the T × 1 random variable ỹ is independent of the data y.

If ptrue were known or unlimited independent replicates ỹ ∼ ptrue were available so
that (2.2) could be evaluated, the utility-maximizing model M∗ could be selected by
‘external validation’ (Gelman et al., 2014) of the model M� joint predictive p(·|y,M�)
with respect to ptrue,

M∗ := arg max
M�∈M

eljpd(M�|y) = arg max
M�∈M

Eỹ∼ptrue

[
log p(ỹ|y,M�)

]
. (2.4)

In many cases it is computationally convenient to compute (2.3) in a pointwise fashion,
which yields the expected log pointwise predictive density (elppd),

elppd(M�|y) = Eỹ∼ptrue

[
log

T∏
t=1

∫
p(ỹt|θ)p(θ | y,M�) dθ

]
(2.5)

= Eỹ∼ptrue

[
T∑

t=1
log p(ỹt|y,M�)

]
, (2.6)

The pointwise predictive p(ỹt | θ,M�) that appears in (2.6) is simply the multivariate
predictive with all but one ỹ element marginalized out,

p(ỹt|y,M�) =
∫

· · ·
∫

p(ỹ|y,M�)
∏
s �=t

dỹs. (2.7)

The resulting utility measure for model M� ∈ M given observed data y can be
computed using the model joint predictive density. We will often want to discuss both
classes of expected predictive densities in a generic sense, in which case we will use the
umbrella term expected log predictive density (elpd).

We adopt (2.4) as our benchmark for the preferred model. From this perspective,
the pointwise density (elppd) is useful to the extent that it is a computationally con-
venient approximation of the joint density (eljpd). It is important to note that while
elppd and eljpd are both useful for making comparisons against similarly-constructed
measures, they are fundamentally different quantities. See, for instance, Madiman and
Tetali (2010) for inequalities between joint and pointwise densities.

When observations are conditionally independent given global model parameters, it
is often the case that the elppd and eljpd are close or even identical. However, under
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serial and other forms of dependence, this is rarely the case because the eljpd captures
additional information about serial dependence of the observations not reflected by the
pointwise measure.

Unfortunately, the expected utility maximization framework described above suffers
a crucial drawback: ptrue is rarely ever known in practice, and thus the elpd must be
estimated purely from observed data. While one might be tempted to simply substitute
p(y | y,M�) into (2.3) or (2.6), this will lead to a positively biased (over-optimistic)
estimate due to model overfit (Vehtari and Ojanen, 2012; Gelman et al., 2014). Instead,
we need a method for estimating elppd and eljpd using only the available data.

2.3 Cross-validation
CV is a method for estimating the elpd purely from observed data by data splitting
and repeated re-fits of the model. Suppose for a moment that independent replicates of
the data ỹ(s) ∼ ptrue, s = 1, . . . , S, were available, and the predictive were able to be
evaluated pointwise. Then the utility (2.6) under model M� could be targeted by the
following Monte Carlo estimator,

êlppd(M� | y) = 1
S

S∑
s=1

T∑
t=1

[
log p

(
ỹ
(s)
t | y,M�

)]
. (2.8)

In applications where such replicates are unavailable, CV estimators exploit the fact
that the data y are distributed according to ptrue, even if ptrue is itself unknown. CV
proceeds by repeatedly splitting the data into disjoint testing and training data subsets,
estimating the model on the training set, then constructing an estimator using pointwise
predictions for the testing set. The CV estimator for elppd(M�|y), which divides y into
K test sets, can be defined as

êlppdCV (M� | y) = T

K

K∑
k=1

1
|testk|

∑
t∈testk

log p(yt | ytraink
,M�), (2.9)

where testk denotes the subset of y to be evaluated under the predictive, traink denotes
the subset of y to be used to train the data. The scaling factors normalize the measure
to ‘sum scale’. The corresponding joint measure is given by

êljpdCV (M� | y) = T

K

K∑
k=1

1
|testk|

log p(ytestk | ytraink
,M�). (2.10)

We stress that CV schemes with multivariate test sets, like hv-block and K-block,
can be evaluated in either a joint or pointwise fashion. In comparison, univariate schemes
like LOO can only be evaluated pointwise.

The CV scheme blocking design is fully described by the triple (K, {testk}Kk=1,
{traink}Kk=1). Classic LOO, for instance, has K = T , testk = {k} and traink includes all
but the kth element.
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Figure 3: Cross-validation blocking schemes described in Section (2.4) for a sequence of
length T = 20. The various schemes have hyperparameters h = 3 (h- and hv-block CV,
LFO), v = 2 (hv-block CV and LFO), K = 5 (K-fold CV), and w = 3 (LFO).

Model selection using cross-validation selects the model with the greatest estimated
utility—or at least the simplest model similar to the best model. For a pairwise com-
parison between M = {MA,MB}, the CV estimate of the utility-maximizing objective
is the sign of the difference

êlppdCV (MA,MB | y) = êlppdCV (MA | y) − êlppdCV (MB | y). (2.11)

We have omitted from this formulation of the model selection objective the bias cor-
rection term that is sometimes included to account for the fact that there are fewer
elements in the training set for each CV fold than in the full-data posterior. Typically
a first-order correction is used, and it is usually very small (see Gelman et al., 2014).

Under correct model specification, the summands in the CV estimator (2.9) will
usually be weakly correlated. Under relatively mild regularity conditions êlppdCV should
converge to the expected utility elppd as T grows large (see Bergmeir et al., 2018, for
an analysis of LOO-CV, for instance).

2.4 CV schemes for serial dependence
In models of cross-sectional data where all observations can be assumed conditionally
independent, the data structure imposes relatively few constraints on the sequence of
training and test sets used for CV.

Under serial dependence, care is needed to ensure the contributions to (2.6) are mutu-
ally independent, or at least as independent as we can make them. To this end, a number
of CV schemes have been developed specifically for models of serially dependent data.

A key consideration when selecting a CV scheme is the nature of the intended
prediction task, for instance, whether the model will be used for one-step-ahead or
M -step-ahead predictions.
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Existing analyses of these schemes refer to specific contexts that do not necessarily
align with our Bayesian framework. Most use different scoring functions and all but a
few are analyzed with reference to classical models that yield point predictions. For our
purpose, what we take from this earlier work is the design of the blocking scheme, i.e.
the choices of (K, {testk}Kk=1, {traink}Kk=1). These are summarized below and illustrated
in Figure 3.

Burman et al. (1994) present h-block CV, an adaptation of CV for stationary depen-
dent sequences. In order to nearly eliminate the bias arising from dependence between
train and test sets in LOO-CV, their procedure deletes a buffer of size h around the
training set, while retaining just a single test observation (see Figure 3). This reduces
the size of the training set by 2h observations, but still leaves a total of n test sets. They
propose h be a fixed proportion of the data length. Although this is ‘conservative’ (the
authors refer to Györfi et al. (1989), whose results allow consistency if h/T −→ 0 so
long as certain conditions on the underlying dependence structure are met), they argue
this is appropriate because in practice the dependence structure is typically unknown.
Since each h-block fold has a single test element, it is by definition a pointwise CV
framework.

Racine (2000) proposes hv-block CV as an extension of h-block CV, which increases
the test set dimension from 1 to 2v + 1. The author claims this provides selection
consistency in a wider range of circumstances, including nested models, which may
be of interest in the case where model identification is the goal. Since hv-block has a
multivariate test set, it can be evaluated jointly.

Another blocking scheme specific to serially dependent data is leave-future-out (LFO-
CV; Bürkner et al., 2020). LFO-CV trains the model only on past observations, starting
with a warmup period 0 < w � T , and leaves future observations unused. To be com-
parable to the other methods, our implementation of LFO mirrors the structure of
hv-block CV (Figure 3). That is, we write LFO(h, v, w) for a LFO scheme that includes
a halo h ≥ 0, size parameter v, and initial buffer w. This generalized form of LFO
contains the usual formulation, which is LFO(0, 0, w).

We have also included K-fold CV. This method is not specific to serial dependence,
although it is commonly applied under serial dependence in the literature (Cerqueira
et al., 2020; Bergmeir and Benítez, 2012; Bergmeir et al., 2018). We use a variant of
K-fold CV that partitions the sample into K contiguous sub-blocks each roughly of
size T/K. Typical values for K are 5 or 10. The predictive may be evaluated jointly or
pointwise, depending on the context.

3 A model selection experiment
In this section, we illustrate the behavior of CV model selection under serial dependence
by repeatedly performing a model selection experiment on simulated data. We have
chosen this experiment because we believe it is illustrative of general behaviors of CV
for autoregressive models. We use a sequence of experiments, where we control the
degree of serial dependence.
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Consider the following model selection problem. Let the vector y = y1, . . . , yT be
distributed according to an ARX(2, 3) of the following form,

DGP : yt = α

(
0.75
0.2

)� (
yt−1
yt−2

)
+ β∗1 + β∗2z2t + β∗3z3t + σ∗εt, (3.1)

where εt
iid∼ N (0, 1). The fixed parameter α ∈ [0, 1] allows us to select the degree

of serial dependence. When α = 0 the observations are mutually independent, and
α = 1 generates a highly persistent series for the model in (3.1). All α ∈ [0, 1] generate
stationary series. While the upper bound α = 1 is arbitrary, corresponding to φ∗ =
(0.75, 0.2), it is a useful upper limit for our experiments that generates a persistent but
nonetheless stationary series. We observe similar results for other choices of the upper
bound and ratio between elements of φ. For simplicity, we fix initial conditions yt = 0
for t ≤ 0.

The experiment selects between two candidate models:

MA : yt = φ1yt−1 + β1 + β2z2t + εt ARX(1, 2) (3.2)
MB : yt = φ1yt−1 + β1 + εt ARX(1, 1). (3.3)

We choose the analytically-convenient (although non-conjugate) prior,

β|σ2 ∼ N
(
β∗, σ

2Ip
)
, σ2 ∼ IG(a0, b0), φ ∼ BE(−1,1)(c0, d0), (3.4)

where a0 = b0 = c0 = d0 = 1. IG denotes the inverse-gamma density and BE(−1,1) the
beta distribution scaled to have support on (−1, 1).

This model is ‘fully Bayesian’ is the sense that we regard all three parameters (β,
σ2, and φ) as unknown, and we allow them all to be estimated. For computational
tractability, we have chosen conjugate priors for β and σ2, and we will conduct inference
only on stationary ARX(1, q) models. In this special case, φ is univariate with support
on the interval (−1, 1). We center the β prior on the truth β∗ to avoid distortions as
the effective sample size changes with α.

Both candidate models are ‘misspecified’ in the sense that neither has the same
functional form as (3.1). However, while both models omit the second yt lag and effect
β3, the candidate MA is nonetheless the better model in the sense that it is closer in
KL divergence to the DGP. This is because it includes β2, which is also omitted by MB .

We will work with two vectors of true DGP parameters β∗, distinguished by the
relative ease with which CV is able to select the better model in our experiments:

‘easy’ case: βeasy
∗ = (1, 2, 1), ‘hard’ case: βhard

∗ =
(

1, 1
2 , 1

)
.

These arbitrary parameter values were chosen for convenience in the context of our
experiments and simulated covariates. βeasy

∗ is an example of the case where CV has
little difficulty separating MA and MB under logarithmic loss, and under βhard

∗ model
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identification by CV is much more challenging. Naturally, the relative difficulty of βeasy
∗

and βhard
∗ depends on a range of factors, including the covariates zit, noise variance, and

data length. This setup does not make any assumptions about the distribution of the
matrix Z with elements zit, other than that it is known. In our simulations, we have
drawn zit

iid∼ N (0, 1), which remain fixed throughout.

Although the posteriors associated with the above candidate models have no closed
form, we are able to estimate them relatively computationally cheaply using one-dimen-
sional quadrature or MCMC; see Appendix E for the complete computational details
(Cooper et al., 2024). The availability of efficient estimation procedures is important for
our experiments because we perform CV by brute force for each simulation draw. That
is, we avoid computational shortcuts like importance sampling to ensure our results are
not being driven by approximation error.

Figure 2 summarizes the results of this model selection experiment. It plots model
selection statistic for 500 independent simulated data sets for the ‘hard’ model variant,
comparing model selection statistics from two variants of 10-fold CV. The vertical axis
shows the CV objective evaluated pointwise, that is êlppdCV(MA,MB |y), and the hor-
izontal axis shows the objective evaluated jointly, that is êljpdCV(MA,MB |y). Adverse
selection for both measures is indicated by negative selection statistics, that is those that
would selection MB . Points lying in the first quadrant, for instance, represent correct
selection by both joint and pointwise methods.

Some stylized facts are evident in the Figure 2. First, when data are mutually in-
dependent (the dependence parameter α = 0, left panel) the marginal distribution and
relative performance of both methods is approximately equal. However, as α → 1 we
see that the variance of the pointwise estimates grows sharply and the location of the
distribution shifts in a negative direction, indicating a sharp increase in the adverse
selection rate. In contrast, the joint estimates are little changed as α varies. Further
note that many LOO estimates fall in the fourth quadrant, indicating that the wrong
model would be selected in those cases.

An equivalent experiment with the ‘easy’ parameter variant (not shown) displays a
similar increase in the variability of the pointwise model selection statistic, but because
the entire distribution lies far enough from the x-axis there is no appreciable increase
in the adverse selection rate.

Figure 4 offers one explanation for the rising variance of the pointwise CV statistic.
It plots the true elppd and eljpd for the 500 posteriors in Figure 2, i.e. the underlying
quantities that the joint and pointwise CV estimators are targeting. The change in
distributions evident in both figures is quite similar, suggesting that it is a difference
between the underlying quantities, rather than some problem with the CV estimators
under serial dependence, that is driving the differences between joint and pointwise
10-fold CV.
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Figure 4: Joint and pointwise theoretical model selection statistics under log score for
500 independent posteriors, as dependence increases from left to right. This is the ‘hard’
example described in Section 4: the DGP is an ARX(2, 3) and the candidates are MA :
ARX(1, 2) and MB : ARX(1, 1). Positive values select the MA, the better model. The
gray line is the 45 degree line where both estimators are equal. Marginal histograms are
also shown, with red bars indicating adverse selection.

4 Detailed case study
In this section, we focus on the problem of identifying the regression component within
the ARX class. We will work with a simplified version of the ARX(p, q), where we regard
only the regression parameter β as random, with a Gaussian prior centered on the
truth, β ∼ N (β∗,Σ0). This simplification allows us to focus our attention narrowly on
the task of identifying β. It also makes available analytical expressions for the posterior
distribution, as well as the distribution of the theoretical elppd and eljpd, associated
CV estimators, and model selection statistics.

This approach circumvents a key challenge associated with analyzing the variability
of CV procedures: in general there are no closed-form expressions for the variance of
elpd measures (Bengio and Grandvalet, 2004). However, when φ and σ2 are fixed, a
closed form does exist. The existence of closed form expressions allows us to derive the
finite-sample distribution of the elpd for all of the CV procedures we consider.

4.1 Utility measures and model selection statistic
In this simple case, we can obtain exact distributions for the joint eljpd and pointwise
elppd for the ARX class with fixed φ∗ and σ2

∗, as well as their associated CV estimators.
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The results in this section extend earlier results for the elppd and LOO-CV derived by
Sivula et al. (2020), in the case of i.i.d. Gaussian linear regressions with fixed variance.

For arbitrary ARX models MA and MB, we show that the stochastic variables
eljpd(MA | y) and êljpdCV(MA | y) (for all of the CV schemes listed in Subsection 2.4),
as well as the model selection criteria eljpd(MA,MB | y) and êljpdCV(MA,MB | y), all
have generalized χ2 distributions with parameters that depend on parameters of the
DGP, the posited model, and the exogenous covariates.

Following the setup in Section 3, suppose that y is distributed as ARX(p∗, q∗) as
described above, and suppose an experimenter posits a candidate ARX(p�, q�) model
M� for y. This and other results are proven in Appendix F.

Proposition 1 (Quadratic polynomial form of utility measures). Let y be distributed
according to an ARX(p∗, q∗) process, and let M� be the simplified ARX(p�, q�) model
described in Section 2.1. Then the theoretical pointwise and joint measures eljpd(M�|y)
and elppd(M�|y) respectively defined in (2.3) and (2.6), as well as the corresponding CV
estimates êljpdCV(M�|y) and êlppdCV(M�|y), can be expressed as second-degree vector
polynomials in y,

ω�(y) = y�A�y + y�b� + c�, (4.1)

for nonrandom coefficients A� (a T × T matrix), b� (a T -vector), and scalar c�. The
coefficients are functions of φ(�), σ2

� , Z�, and the CV blocking scheme parameters. All
are defined in Appendix D.

A reviewer pointed out the similarity between the quadratic polynomial form of
(4.1) and that of the likelihood ratio test for non-nested models by Vuong (1989).
Although the latter’s results are frequentist and asymptotic in character, the similarity
is nonetheless interesting considering that the intent of these test statistics are so similar.

4.2 ‘Oracle’ plug-in values for fixed parameters

Our candidate models require appropriate choices for the noise variance parameter σ2

and autoregressive parameter φ. Especially when the model is misspecified, it would not
necessarily be optimal to use the true DGP value σ2

� = σ2
∗, in the sense that this choice

would not produce the best possible predictions with respect to log score for the chosen
model class.

Inference requires suitable choices for σ2
� and φ(�) that would correspond as closely

as possible to the behavior of an inference procedure where φ and σ2 are unknown.

Suppose some hypothetical Oracle happens to know the true DGP, and offers to
select the best-performing autoregressive and variance parameters φ� and σ2

� for our
particular model and covariates. Naturally, this choice will be independent of any specific
realization of y since we are interested in utility distributions across all potential values
of y. Consider two approaches our Oracle might use for selecting these parameters. She
might choose to minimize the distance (in KL divergence) between the DGP and the
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model K predictive. Alternatively, she could directly target the objective function by
maximizing the achievable E[elpd(M� | y)].

Under the logarithmic loss function, it follows from Dawid (1984) that these two
options represent equivalent calculations. That is, maximizing the loss function,(

φ̂�, σ̂2
�

)
:= arg max

σ2
� ∈ R+
φ ∈ Φ�

E
[
elpd(M� | y)

]
. (4.2)

and minimizing the expected KL divergence between the DGP and model predictive,(
φ̂�, σ̂2

�

)
:= arg min

σ2
� ∈ R+
φ� ∈ Φ�

E
[
D
(
ptrue(ỹ) ‖ p

(
ỹ | y, σ2

� , φ
(�),M�

))]
, (4.3)

yield the same answer. In the above Φ� ⊂ Rp� denotes the parameter space for φ associ-
ated with stationary ARX(p�, ·) models. In our experiments, we solve the optimization
(4.3) using the Nelder-Mead algorithm.

4.3 Distribution of the model selection statistic
The purpose of conducting CV on the candidate models is to determine which candidate
has the greatest predictive performance, in our case under log score. The CV model
selection statistic (2.11) is the difference between the estimated scores of the two models.

The form of the model selection statistic used in this experiment is characterized by
the following corollary, implied by Proposition 1.

Corollary 2 (Form of model selection objectives and CV estimates). Let y be distributed
according to an ARX(p∗, q∗) process, and let both MA and MB be simplified ARX(pA, qA)
and simplified ARX(pB , qB), respectively. Then the theoretical model selection statistics
eljpd(MA,MB | y) and elppd(MA,MB | y), and their corresponding CV estimators
êljpdCV(MA,MB | y) and êlppdCV(MA,MB | y), can be expressed as second-degree
polynomials in y.

Proposition 1 and Corollary 2 imply that all of the quantities of interest follow gen-
eralized χ2 distributions (see Definition 6 in Appendix D.4). Proposition 3 describes the
mean and variance, and further states the parameters of this distribution. The associ-
ated distribution function Fω(y)(w) = Pr(ω(y) < w) must be approximated numerically.
This can be done by simulation or the method of Davies (1973).

Proposition 3 (Distribution of ω(y)). Let ω(y) be a quadratic polynomial in y with
coefficients A, b, and c as described in Proposition 1 and Corollary 2, where A = A�.
Then ω(y) has mean and covariance:

E
[
ω(y)

]
= σ2

∗ tr(AV∗) + m�
∗ Am∗ + b�m∗ + c, (4.4)

var
(
ω(y)

)
= 2σ4

∗ tr
(
A2V 2

∗
)

+ σ2
∗b

�V∗b + σ2
∗4b�V∗Am∗ + 4σ2

∗m
�
∗ AV∗Am∗, (4.5)
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Figure 5: Model selection objectives for the ‘hard’ case (β∗ = βhard). Column (a) shows
the theoretical model selection objectives, and columns (b) and (c) the associated CV
estimates. The top row plots the standard deviation of the relevant ω(y) for the cor-
responding column. The bottom row shows its mean and 98% interval. The model
parameter α governs the degree of serial dependence. Notice that the adverse selection
rate for both joint and pointwise methods is close to zero for all but the strongest depen-
dence. This model selection experiment compares MA : ARX(1, 2) vs MB : ARX(1, 1)
under an ARX(2, 3) DGP, as described in Section 4. The autoregressive parameter is
φ∗ = α(0.75, 0.2), and data length T = 100. See also Figure 8 for the ‘easy’ case.

for a fixed T -vector m∗ and fixed T × T matrix V∗. Moreover, it has a generalized χ2

distribution,
ω(y) ∼ χ̃2(λ,1, δ, μ, σ),

where λ is the vector of k ≤ T nonzero eigenvalues in the eigendecomposition QΛQ−1

of σ2
∗L

−1
φ∗

AL−�
φ∗

, 1 is a k-vector of ones, δ is the k-vector with elements δj = b̃j/(2λj),
where b̃ = QL−�

φ∗
(2σ2

∗Am∗ + σ∗b), μ = m�
∗ Am∗ + σ∗m�

∗ b + c − 1
4
∑k

j=1 b̃
2
jλ

−2
j , and

σ2 =
∑T

j=k+1 b̃
2
j if T > k, or 0 otherwise.

Several interesting features of the distribution of ω(y) are evident in Figure 5, which
summarizes the results for the ‘hard’ (β∗ = βhard

∗ ) case under increasing dependence α.
These features are consistent with the findings of Section 3. First, notice the striking
difference between the behavior of the pointwise and joint theoretical elpds as α in-
creases (column (a)). When data are mutually independent (α = 0), both distributions
are basically equal. For the joint measure, variability and location are little changed
as dependence increases. In contrast, the pointwise objective exhibits sharply rising
variability and shifts in a negative direction as dependence gains strength. Most of
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the distribution changes signs entirely to favor the simpler, worse candidate MB as α
approaches 1, indicating an adverse selection rate near 100%.

Second, the different profiles exhibited by pointwise and joint CV methods (columns
(b) and (c), respectively). While there are clearly differences between the specific joint
and pointwise methods, whether the method is computed jointly or pointwise clearly has
the greatest bearing on its behavior as dependence increases. The pointwise methods in
column (b) exhibit a similar increase in variability and negative shift as the pointwise
objective, while the joint methods are little changed as α → 1. In addition, the pointwise
CV methods (joint methods too, to a lesser extent) display an interesting decrease in
variability as α approaches 1. A possible explanation for this drop-off is the decrease
in effective sample size (Berger et al., 2014) for autoregressive models as dependence
grows, all else being equal.

Under stronger dependence, increased variability and downward movement together
reduce model selection power, consistent with the known bias of CV procedures toward
simpler models under small sample sizes. See, for instance Burman (1989) for an analysis
of CV bias and sample size. In contrast, for the ‘easy’ experiment variant (β∗ = βeasy

∗ )
where the results are much clearer, cross-validation generates correct model selections
for all but the most strongly dependent data (see Figure 8 in Appendix A).

4.4 The cost of an inefficient CV scheme

The distribution of the model selection statistic in Proposition 3 provides a direct
method for computing the probability of adverse selection. Noting that a positive se-
lection statistic indicates the correct model choice (corresponding to MA), it follows
that

Pr(adverse selection) = Pr
(
ω(y) < 0

)
= Fω(y)(0). (4.6)

The quantity Fω(y)(0) can be interpreted visually in Figure 5 as the share of the ω(y)
distribution that falls below the x-axis. Where the probability of adverse selection is
very small we say that the models are well-separated under that particular CV scheme.
While the infinite support of ω(y) means that (4.6) can never be zero, for practical
purposes we define a small threshold γ as the cutoff for well-separatedness. For the
remainder of this paper, we will use γ = 0.01.

Definition 4 (Well-separated). We say the CV model selection procedure defined above
is well-separated at level γ ∈ (0, 1) when Fω(y)(0) < γ.

A particular CV scheme may be well-separated in one situation and poorly separated
in another. Whether a model selection procedure is well-separated is determined by all
aspects of that procedure, including the details of the data generating process, candi-
date models, any hyperparameters for the procedure, and the values of the exogenous
covariates.

We have seen that an inappropriate choice of CV scheme can result in an elevated
probability of adverse selection. In this section, we attempt to quantify this cost.
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Figure 6: Adverse selection rate for pointwise and joint CV methods as data dependence
increases. This experiment compares MA : ARX(1, 2) vs MB : ARX(1, 1), under an
ARX(2, 3) DGP with φ∗ = α(0.75, 0.2), for α ∈ [0, 1] as described in Section 4. Greater
values of α denote stronger serial dependence. The ‘hard’ case (βhard) with T = 100 is
shown.

Perhaps the simplest way to measure the cost of any model selection procedure is
the rate of adverse model selection, also known as the ‘0-1 loss’ because it scores all
errors equally. The adverse selection rate is the probability (with respect to repeated
samples) that the selection procedure will select the wrong model.

Framing the loss as a probability over all realizations of y makes good sense for
this paper, since our focus is on the properties of CV methods for ARX models in
general, without reference to a particular data realization y. Panels (a) and (b) of
Figure 6 compare the adverse selection rate for joint and pointwise CV methods for
the ‘hard’ variant of our model selection experiment (losses for the ‘easy’ variant are
negligible, and are not shown). The adverse selection rate picks up as α → 1 and for
pointwise procedures reaches almost 100 per cent, indicating that CV incorrectly prefers
the simpler model when dependence is very strong.

The adverse selection rate overlooks a key fact, however: it does not account for
the severity of the prediction error, scoring all incorrect selections equally. When there
is very little difference between candidates’ model predictions, it matters little which
model is chosen. On the other hand, when predictions differ significantly this should be
reflected in the cost of the error.

An alternative measure of the cost of adverse selection is the reduction in log util-
ity that results from choosing the incorrect model for a given y ∼ ptrue. Under this
formulation, we use the underlying finite-sample theoretical elpd for each y that CV
is trying to estimate as the benchmark. This is by its nature a finite-sample loss func-
tion.

That is, in the case where CV does not select the elpd-maximizing model we can
regard the CV utility cost relative to the counterfactual where the correct model was
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chosen as the difference between the chosen and maximal elpd:

costCV (y) = max
M∈M

elpd(M |y) − elpd
(
M∗

CV |y
)
, (4.7)

where M∗
CV = arg maxM∈M êlpdCV (M |y).

Pointwise elppd and joint eljpd are of course not directly comparable. To put joint
and pointwise CV measures on an equal footing, we specify the cost measure measured
in terms of joint utility for both pointwise and joint CV procedures,

c̃ostCV (y) = max
M∈M

eljpd(M |y) − eljpd
(
M∗

CV |y
)
, (4.8)

where M∗
CV = arg maxM∈M êlpdCV (M |y) and êlpdCV (·) can represent either the joint

estimate êljpdCV (·) or the pointwise estimate êlppdCV (·).
Figure 11 in Appendix A plots the log loss defined in the previous display. While

excess log loss is an attractive concept, the resulting relative measures are practically
indistinguishable from the adverse selection rate. For the remainder of this paper, we
will use the adverse selection rate.

4.5 Joint and pointwise objectives
Our results suggest that under dependence, joint estimators usually have lower variabil-
ity and consequently a lower rate of adverse selection than their pointwise counterparts.
In our experiments, these differences are typically negligible for independent observa-
tions (α = 0) and are most pronounced as α approaches 1 and the underlying data
become highly persistent. This comparison is quite evident in Figure 6: when α = 0,
joint and pointwise estimators perform roughly equally. As α → 1, there is little change
in performance for joint estimators, compared with a dramatic increase in the error rate
for the pointwise estimators.

To construct an apples-to-apples comparison between joint and pointwise CV meth-
ods, abstracting from other details of the CV scheme design, we construct pointwise
analogs to joint designs. For the present experiment this amounts to diagonalizing the
covariance matrix of the Gaussian predictive distribution, setting σ2

�V
pw
� = σ2

� (IT �V�),
for � the elementwise product operator. The results confirm a sharp increase in the
error rate for pointwise CV methods under strong dependence (α = 1), compared with
almost no difference in the independent case (α = 0). (See Figure 9 in Appendix A.)

4.6 Specific CV scheme design considerations
We have seen that CV design parameters can have a significant bearing on the overall
efficiency, and therefore performance, of CV model selection. In this section we look
more closely at hyperparameter choices for specific CV schemes for time-series data.

Note that hv-block CV schemes require the choice of a validation block size v (the
total validation set dimension is 2v+ 1) and halo size h. Consistent with earlier results,
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for dependent data we find that by far the most important choice is to ensure that v is
large enough to capture the dynamic behavior of the model. Either parameter can harm
CV performance if it is too large, since both reduce training set size, which imposes a
cost on statistical efficiency, resulting in a U-shaped relationship between the adverse
selection rate and both h and v when dependence is present. (Figure 13 in Appendix A
compares error rates with various choices of these parameters.)

The importance of preserving the size of the training set is evident in the under-
performance of LFO, which represents an extreme case for dealing with contamination
by discarding the entire future sample. Several authors have pointed out that this is
unnecessarily conservative (Bergmeir et al., 2018). Moreover, the analyst should care-
fully weigh the tradeoff between the bias resulting from the use of future data and the
benefit of increasing the training set size. See Figure 12 in Appendix A for a comparison
between LFO and methods that use future data. In each case, the adverse selection rate
for LFO is substantially higher, a consequence of LFO’s reduced training set size.

4.7 Required sample size

One important practical consequence of an inefficient CV scheme design is that a larger
sample size is needed for the models under consideration to be well-separated. This
either requires the experimenter to collect more data than is necessary or for the adverse
selection rate to be higher than it otherwise would be. In this section we demonstrate
that the required sample size increases with dependence, all else being equal. When
the underlying process is highly persistent, the required sample size can be significantly
larger than for the independent case.

The required sample size for a model to be well-separated goes beyond the well-
known principle of the effective sample size (ESS) for a time series model (see e.g. Berger
et al., 2014). In this section we demonstrate that properties of the CV procedure—
especially whether the scoring rule is evaluated joint or pointwise—strongly determines
the data length required.

Figure 7 compares the minimum sample size required for several more joint and
pointwise CV methods. Consistent with earlier results, there is little difference required
sample size between pointwise and joint methods in the independent case (α = 0). Under
stronger dependence, however, the greater variability of pointwise methods leads to a
requirement for larger sample sizes for the two candidate models to be well-separated, all
else being equal. These results underscore the importance of using efficient CV designs—
especially the use of joint scoring rules—when strong dependence is present. See also
Figure 10 in Appendix A.

As we might expect, the benefit of using more efficient CV methods is greatest
when candidate models are more challenging to separate. In Figure 7, required sample
size is greatest for the ‘hard’ variant, especially under a high degree of dependence.
In comparison, under the ‘easy’ variant the differences between joint and pointwise
methods are smaller, although there is nonetheless a pickup in the sample size required
for pointwise CV methods.
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Figure 7: Minimum data length T to be well-separated at the 1% level, found by
binary search over the range 10-2500. This model selection experiment compares
MA : ARX(1, 2) vs MB : ARX(1, 1) under an ARX(2, 3) DGP, as described in Sec-
tion 4. The DGP autoregressive parameter is φ∗ = α(0.75, 0.2). See also Figure 10 in
Appendix A.

Figure 7 also underscores the benefit of using as much of the available sample as
possible, rather than discarding future observations as in LFO methods. As dependence
increases, the additional statistical efficiency associated with allowing the model to learn
from future data results in a well-separated model with shorter overall data lengths.

5 Discussion and conclusion
We have demonstrated that in settings where serial dependence is present, appropriate
CV procedure design can dramatically improve model selection performance. Working
with the logarithmic scoring rule and the ARX(p, q) class of autoregressive models, we
have shown that evaluating the score pointwise can yield highly inefficient CV estimators
that perform poorly when compared with procedures that target joint densities. Our
experiments show that pointwise CV estimators exhibit greater variability and require
larger sample sizes than joint designs.

We are not the first to compare the performance between joint and pointwise den-
sities in predictive model assessment. Osband et al. (2022), for instance, apply model
assessment with joint densities in the context of neural networks.

Our results show that the consequences of using an inefficient CV procedure can
be particularly pernicious under strong serial dependence. One consequence is that CV
procedures become biased toward overly simple models. In extreme cases where serial
dependence is greatest, this can result in different CV procedures assigning completely
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different orderings to candidate models. Viewed another way, the consequence of the
use of inappropriate CV procedures is the need for larger sample sizes to achieve good
separation between models.

Relatively conservative methods like LFO can be a good choice in applied contexts,
especially when CV is able to clearly separate models even without the use of the full
sample for reducing estimator variability. Furthermore, some authors have advocated for
the use of LFO (e.g., Bürkner et al., 2020) when the dependence structure is unknown.
While LFO certainly eliminates the possibility that contamination will bias results, the
results of Section 4.6 suggest that contamination arising from the use of future data
and training set size does need to be carefully traded off against the benefit of retaining
a larger training set. In general, it seems unlikely that the optimal CV design would be
the corner solution that excludes all future observations. Risks associated with contam-
ination can also be avoided by the use of specification tests on candidate models before
conducting model comparison, including standard Bayesian model criticism procedures
and testing for autocorrelation in the residuals (Bergmeir et al., 2018). Model assess-
ment is especially important when the underlying process is highly persistent. Not only
is the need for larger effective sample sizes greatest under persistence processes, but the
adverse impact of contamination is most pernicious.

Our goal throughout this paper has been model selection. We are not claiming that
exploiting future observations in CV schemes yields nearly unbiased estimators of the
elpd. Instead, here we are targeting relative measures that are efficient model selection
objectives.

This analysis has focused on serial dependence, which most often appears in time
series models. However, we expect that similar results would apply for other forms of de-
pendence such as spatial and spatio-temporal data, especially where the autoregressive
signal is relatively strong compared with the global conditional mean. Naturally, depen-
dence structures in more than one dimension presents additional analytical challenges,
so further research is warranted for these and other dependence structures. Further-
more, many of our conclusions are not specific to the logarithmic score and would also
apply under other scoring rules (Gneiting and Raftery, 2007).

From a practical standpoint, it should be noted that implementing joint CV meth-
ods tends to be computationally costly when compared with pointwise procedures like
LOO. In situations where the difference between two models is absolutely clear, as for
the ‘easy’ variant of our examples under weak serial dependence, pointwise CV estima-
tors may be adequate for performing model selection and are far more convenient to
construct. This is particularly relevant considering the availability of efficient computa-
tional shortcuts for computing pointwise CV procedures, such as PSIS-LOO (Vehtari
et al., 2017; Bürkner et al., 2020), and a lack of similar shortcuts for joint procedures.
Although in principle PSIS-LOO can also approximate joint CV procedures, in practice
the thick tails of the weight distributions tend to cause importance sampling to fail.

With the complexity of implementing joint procedures in mind, we recommend the
following workflow for model selection under serial dependence. Begin with a thorough
model criticism of each of the candidate models, and iterate model specification until the
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candidate models are well-specified. Where inference results show that serial dependence
is relatively weak, pointwise CV methods such as PSIS-LOO can be used as a first
pass for model selection. If the pointwise CV results show a clear preference for one
candidate, then that candidate can be selected. Otherwise, a joint CV procedure should
be implemented and relied upon instead.

The present paper represents a first look at the uncertainty of CV-based model
selection under serial dependence, but there is considerable work remaining. We have
focused on identification of the regression parameter, leaving to one side the tasks of
identifying the autoregressive component, theoretical analysis of these results, choosing
suitable priors for model identification procedures, and constructing efficient compu-
tational methods for CV under serial dependence. We leave these aspects for future
work.
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