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A Tree-based Bayesian Accelerated Failure
Time Cure Model for Estimating
Heterogeneous Treatment Effect∗

Rongqian Sun† and Xinyuan Song‡,§

Abstract. Estimating heterogeneous treatment effects has drawn increasing at-
tention in medical studies, considering that patients with divergent features can
undergo a different progression of disease even with identical treatment. Such het-
erogeneity can co-occur with a cured fraction for biomedical studies with a time-
to-event outcome and further complicates the quantification of treatment effects.
This study considers a joint framework of Bayesian causal forest and accelerated
failure time cure model to capture the cured proportion and treatment effect het-
erogeneity through three separate Bayesian additive regression trees. Under the
potential outcomes framework, conditional and sample average treatment effects
within the uncured subgroup are derived on the scale of log survival time sub-
ject to right-censoring, and treatment effects on the scale of survival probability
are derived for each individual. Bayesian backfitting Markov chain Monte Carlo
algorithm with the Gibbs sampler is conducted to estimate the causal effects.
Simulation studies show the satisfactory performance of the proposed method.
The proposed model is then applied to a breast cancer dataset extracted from the
SEER database to demonstrate its usage in detecting heterogeneous treatment
effects and cured subgroups. Combined with popular mitigation strategies, the
proposed method can also alleviate confounding induced by immortal time bias.

Keywords: Bayesian additive regression trees, cured subgroup, heterogeneous
treatment effect, nonparametric methods, right-censored survival outcome.

1 Introduction
Clinical trials and observational studies with a time-to-event outcome have gained rapid
development in terms of statistical analysis from at least two aspects: causal inference
and prediction models. In the former case, the treatment effect on the scale of haz-
ard, survival time, or survival probability has been constructed with causal interpreta-
tions through regression models or G-formula under the counterfactual framework, while
mainly focusing on the average treatment effect (ATE) with a default homogeneity as-
sumption embedded (Andersen et al., 2017; Gran et al., 2010). Estimation of nuisance
functions is often sacrificed for the facility of interpretation. For the latter case, on the
contrary, flexible nonparametric and machine learning approaches have been developed
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to capture the unknown relationship between risk factors and the time-to-event out-
come and reach satisfactory prediction performance without any parametric or linear
assumptions (Ishwaran et al., 2008; Sparapani et al., 2016; Steingrimsson and Morri-
son, 2020). The two directions were almost developed in parallel, while the increasing
popularity of personalized medicine in recent years is drawing them together to address
heterogeneity in treatment effects.

Considering that patients with divergent features can go through a different pro-
gression of disease even with identical treatment, a rising number of causal ensem-
ble methods have been proposed to explore individualized treatment effects under the
context of survival analysis, including regression-tree based subgroup analysis (Foster
et al., 2011), causal survival forest (Cui et al., 2020), and Bayesian additive regression
trees (BART, Chipman et al., 2010)-based approaches. BART is a nonparametric sum-
of-trees prestigious for its flexibility in fitting a complex nonlinear regression surface,
where each single tree is penalized as a weak learner through regularization priors and
thereby avoids overfitting. It requires neither a prespecified functional form nor rescal-
ing of the predictors but possesses excellent out-of-sample prediction performance and
automatically ranks the importance of predictors. BART was first introduced to causal
inference to address the heterogeneity in treatment effect on a continuous outcome by
flexibly estimating the covariate-specific conditional average treatment effect (CATE)
(Hill, 2011), and consecutively found as the best-performing methods in the Atlantic
causal inference data analysis challenge (Dorie et al., 2019). It was further extended
to survival analysis with a binary outcome for decision making (Logan et al., 2019).
A recent work of Henderson et al. (2020) innovatively combined the accelerated failure
time (AFT) model (Wei, 1992) with BART to construct individualized treatment ef-
fect on the scale of survival time and has been found to outperform a series of popular
black-box models according to a recent overview on causal machine learning for sur-
vival analysis (Hu et al., 2021). However, this approach regards the treatment indicator
as just another covariate and is subject to two inherent weaknesses in heterogeneous
treatment effect estimation as pointed by Hahn et al. (2020): strong confounding and
vague regularization imposed on treatment effect. The former one can easily happen in
the existence of high-dimensional nuisance parameters, where regularization may falsely
attribute certain confounding to the causal effect (Hahn et al., 2018). Targeted selec-
tion, e.g., doctors may assign patients with better prognoses to a treatment group, can
also lead to this problem. The latter one follows from the fact that the original BART
prior is not tailored for CATE estimation despite its efficacious for good out-of-sample
prediction. Although the first problem can be tackled easily by including the estimated
propensity score as an additional covariate, the second is intrinsic for BART.

Besides, biomedical studies with specific interventions and a time-to-event outcome
sometimes confront particular problems such as patient compliance and the existence of
a cured fraction, which may lead to bias in treatment effect estimation. For the former,
units who disobey the treatment assignment fail to measure the actual efficacy of the
treatment, towards which Yu et al. (2015) proposed a solution by constructing treatment
effect within the compliers subgroup through a semiparametric transformation model
with mixture components. For the latter, there can exist a proportion of “long-term
survivors” or non-susceptible subjects who will never experience the event of interest,
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like disease-caused death or recurrence of cancer, even if they are followed abundantly
long (see, e.g., Conlon et al., 2014; Lambert et al., 2007; Rutqvist et al., 1984; Othus
et al., 2012). A common way to determine whether such a proportion might exist in
a survival dataset is to check the survival curves. If the curve levels off after a certain
time point and reaches a plateau at the end of the follow-up, a cure model may be
appropriate for analysis. Such data can be viewed as a mixture of cured and uncured
subjects, where the cured fraction corresponds to the proportion of long-term survivors.
Handling the data in a conventional way that assumes all subjects eventually experience
the event once the follow-up is adequately long can result in severe bias in parameter
estimation (Othus et al., 2017). To derive treatment effect under such circumstances,
Gao and Zheng (2017) considered the difference of cured rate between treatment and
control groups through a semiparametric transformation model. Zhou and Song (2021)
proposed a multiple-mediator structure with Cox mixture cure model and regarded the
cure group label as a special mediator. However, both studies assumed homogeneous
treatment effects, although heterogeneity and the existence of a cured fraction can co-
occur in real-world medical studies.

Another source of confounding faced by observational studies with survival data in
general is the immortal time bias (ITB), which occurs when there is a period of time
during which patients assigned to the treated group cannot experience the event of
interest. For instance, in pharmacoepidemiologic studies, treatment may be prescribed
with a delay after diagnosis, and subjects must remain event-free until the actual start
of treatment to be identified as treated (Suissa, 2008). Ignoring such an unexposed pe-
riod in study design can create an artificial survival advantage for the treated group and
lead to overestimation of the treatment effect. The issue of ITB has been recognized in
the survival literature since the 1970s and been accounted for within the causal infer-
ence framework in the past decade. Various mitigation strategies have been developed
to alleviate this specific source of confounding. A naïve approach is to exclude the im-
mortal time by redefining time zero as the actual start of treatment for subjects in the
treated group (Liu et al., 2012; Mi et al., 2013). Zhou et al. (2005) proposed imputing
the missing immortal times for subjects in the control group based on the observed ones
in the treated group to ensure the same distribution of immortal times across treatment
arms. More recent advances include modeling time-dependent treatment indicator and
covariates for longitudinal survival data (Andersen et al., 2021; Karim et al., 2016);
emulating target trials to align the eligibility criteria, treatment assignment, and time
zero for the exposure of interest (Hernán et al., 2016); and using sequential approaches
to stratify the time intervals, include only unexposed subjects within the correspond-
ing interval into analysis, and pool the results of each interval to estimate the overall
treatment effect (Mansournia et al., 2021). Nevertheless, as it is inherently challenging
to address all sources of confounding simultaneously, these mitigation strategies focus
primarily on ITB and do not fully consider treatment effect heterogeneity raised by
individual-specific features.

Motivated by these problems, we propose an adaptation of Bayesian causal for-
est (BCF, Hahn et al., 2020) combined with AFT mixture cure model in this study
to accommodate heterogeneous treatment effect estimation for time-to-event data in
the presence of a cured fraction. Three separate BART are introduced to model the
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individual-specific cured probability, the unknown confounding raised by pre-treatment
covariates imbalance, and the targeted CATE for the uncured subgroup. Combining with
the probit BART that captures the cured rate, the BCF-based AFT model addresses the
aforementioned problems through a regularization prior tailored for CATE within the
uncured subgroup and enables a straightforward derivation of treatment effect on the
scale of log survival time and survival probability. By implementing the Bayesian back-
fitting Markov Chain Monte Carlo (MCMC) algorithm (Hastie and Tibshirani, 2000),
we obtain the posterior distribution of the causal estimands directly instead of altering
the treatment indicator and running the iteration again as the current BART-based
approach does, which turns out more efficient. Once the patient-specific CATE within
the uncured subgroup is obtained, we further explore their posterior distributions to
check the proportion of patients who possess a CATE that deviates a lot from the aver-
age level and patients with extremely high or low chance to benefit from the treatment.
The detailed pattern of how certain covariates induce such heterogeneity is further man-
ifested through partial dependence plot (Friedman, 2001), a popular visualization tool
for causal interpretations of black-box predictive models (Zhao and Hastie, 2021). The
proposed method contributes primarily to quantifying heterogeneous treatment effect on
a survival outcome in the presence of confounding raised by targeted selection, covariate
imbalance, and ignorance of a cured fraction. However, in cases where ITB is likely to
induce additional confounding, it is also straightforward to combine the proposed model
with some matching-based strategies (see, e.g., Wang et al., 2022) to mitigate ITB in a
two-stage way.

The rest of this article is organized as follows. Section 2 introduces the proposed
model and derivation of the causal estimands. Section 3 presents the Bayesian esti-
mation procedure with prior specification and posterior inference. Section 4 evaluates
the empirical performance of the proposed model through simulation studies. Section 5
applies the proposed method to a dataset extracted from the Surveillance, Epidemiol-
ogy, and End Results (SEER) database to further demonstrate its usage in detecting
heterogeneous treatment effects with a possible cured fraction, and in mitigating the
impact of ITB through a two-stage approach. Section 6 concludes the article. Technical
details and additional simulation results are presented in the Supplementary Material
(Sun and Song, 2023).

2 Model description
2.1 Overview of BART
Let x = (x1, . . . , xp)T be a p× 1 vector of explanatory variables and Y be the response
variable. BART treats the unknown regression function of Y on x as an ensemble of J
binary trees as follows:

E(Y | x) Δ= f(x) =
J∑

j=1
g(x; Tj ,Mj), (2.1)

where f(x) is the true unknown regression function, Tj denotes the structure of the
jth binary tree composed of a set of internal nodes with splitting rules and bj terminal



R. Sun and X. Song 5

Figure 1: Two binary trees (top left and right) and how each of them as well as their
sum partitions the covariate space (bottom left, middle, and right, respectively) in one
iteration of MCMC steps for τ(xi) in the analysis of SEER breast cancer data. The two
splitting variables are total number of in situ/malignant tumors (NIMT ∈ {1, 2, 3}) and
race (0 = white, 1 = black, 2 = others).

nodes, and Mj = (μj1, . . . , μjbj )T denotes the vector of parameter values assigned to
the terminal nodes. The splitting rules of each internal node are of the form {xk ≤ c}
vs. {xk > c} with xk (k ∈ {1, . . . , p}) being the kth component of x, while the top-down
sequence of all splitting rules of Tj , as a whole, partitions the original covariate space
R

p into bj subsets represented by the terminal nodes. g(x; Tj ,Mj) denotes the function
that assigns node parameter μjl ∈ Mj to x suppose that it is allocated to the lth
(l = 1, . . . , bj) terminal node of Tj according to the above rules. Note that a specific x
can be placed to one unique terminal node within each tree Tj , and E(Y | x) is thereby
expressed as a sum of the corresponding μjls over the J trees. Omitting the intercept
term from (2.1) requires some form of centering for the response but is typical for a
majority of BART-based algorithms. Figure 1 visualizes the structure of two simple
binary trees and the way covariate space is partitioned by their sum. Through such
partitioning, the tree-based regression repetitively splits the original dataset into more
homogeneous subsets and then fits a piecewise constant function with respect to this
partition. To put it to the extreme, a single binary tree can even fit the training data
perfectly through a one-observation-per-leaf structure as long as it grows deep enough,
but a severe overfitting problem follows. BART, instead, turns this single deep tree
into a sum of shallow trees with carefully designed regularization (or roughly speaking,
substitutes the single complex piecewise constant function with a sum of simpler ones).

2.2 Tree-based Bayesian accelerated failure time cure model
We consider an observational study with two-arm treatment and right-censored time-
to-event outcome with a cured fraction. For subject i = 1, . . . , n, let xi be the vector of
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pre-treatment covariates, Ti and Ci be the failure time of interest and censoring time,
respectively, δi = I(Ti < Ci) indicate whether the ith subject fails or is censored, and
Yi = min(Ti, Ci) be the observed time. Let Ai ∈ {0, 1} be the treatment indicator that
takes value 1 if subject i is enrolled into the treatment group and 0 otherwise, of which
the effect is of our primary interest. Let Gi ∈ {0, 1} be the partially observed group label
indicating whether the ith subject belongs to the uncured (Gi = 1) or cured (Gi = 0)
subgroup. For subjects who experience the event, Gi = 1 is observed together with
δi = 1; while for censored subjects with δi = 0, Gi remains unobservable. Subjects in
the uncured group are viewed as susceptible to the event of interest such that Ti < ∞,
while subjects in the cured group are viewed as non-susceptible with Ti = ∞. The cured
rate for subject i is modeled through BART with a probit link function as follows:

Pr(Gi = 1 | xi, Ai) = Φ(υc(xi, Ai)) = Φ
(

Jc∑
jc=1

gc(xi, Ai; T̃jc ,M̃jc)
)
, (2.2)

where υc(xi, Ai) =
∑Jc

jc=1 gc(xi, Ai; T̃jc ,M̃jc) is the mean of the underlying normal
random variable modeled as the sum of Jc binary trees {(T̃jc ,M̃jc), jc = 1, . . . , Jc} and
gc(xi, Ai; T̃jc ,M̃jc) reflects the implementation of the corresponding partition rules.

For the uncured subjects, an AFT model combined with BCF is further defined to
explore the treatment effect on survival time and the evidence of underlying hetero-
geneity. The distribution of the event time given Gi = 1 is determined by

log(Ti | xi, Ai, Gi = 1) = υ(xi) + τ(wi)Ai + εi

=
J∑

j=1
g1(xi; Tj ,Mj) +

H∑
h=1

g2(wi; T ′
h,M′

h)Ai + εi,
(2.3)

where wi is a subvector of xi representing covariates that possibly raise heterogeneity
of the treatment effect, i.e., the “effect modifiers”; υ(xi) =

∑J
j=1 g1(xi; Tj ,Mj) and

τ(wi) =
∑H

h=1 g2(wi; T ′
h,M′

h) are two separate BART that capture the confounding
induced by covariate imbalance (also referred to as prognostic effects) and the treatment
effect modified by wi, respectively; {(Tj ,Mj), j = 1, . . . , J} denote the J binary trees
comprising υ(xi), {(T ′

h,M′
h), h = 1, . . . , H} denote the H binary trees comprising τ(wi),

and g1(x; Tj ,Mj) and g2(w; T ′
h,M′

h) are the corresponding node-parameter-allocation
functions; εi is the residual term satisfying E(εi) = 0.

This BCF structure on the right-hand side of (2.3) directly models CATE for the
uncured subjects, explicitly controls the regularization imposed on it, and takes ac-
count of the fact that not every covariate serves as confounder and modifier simul-
taneously. Following the default settings of Chipman et al. (2010) and Hahn et al.
(2020), which have been proven to endow effective implementation of BART-based ap-
proaches, we fulfill specification of the proposed model through the following priors on
{(T̃jc ,M̃jc), jc = 1, . . . , Jc}, {(Tj ,Mj), j = 1, . . . , J}, and {(T ′

h,M′
h), h = 1, . . . , H}:

(i) the probability that a node at depth d (d ∈ {0, 1, 2, . . . }) continues splitting is as-
sumed as α(1 + d)−β , where α ∈ (0, 1) and β > 0 are pre-specified hyperparameters
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controlling scope of each individual tree; (ii) the splitting variable at each internal node
is uniformly chosen from the discrete set of all available variables; (iii) the splitting
value at each internal node with known splitting variable is uniformly selected from the
discrete set of all available splitting values constructed from the interpolated sample
quantiles, and (iv) given T̃jc , Tj , and T ′

h, the terminal node parameters μ̃jcl ∈ M̃jc ,
μjl ∈ Mj , and μ′

hl ∈ M′
h are assumed with normal prior distributions N(0, c2c

Jck2
c
),

N(0, c2μ
4Jk2

1
), and N(0, c2μ

4Hk2
2
), respectively, where {cc, cμ, kc, k1, k2} are pre-defined hy-

perparameters such that substantial probability is assigned within a desirable range. The
above regularization priors construct each binary tree as a weak learner that comprises
only a small portion of the overall fit and thereby efficiently circumvent overfitting, with
the strength and scope of such regularization determined through the hyperparameters
{α, β, cc, cμ, kc, k1, k2}. Full details of the original setting can be found in Chipman et al.
(2010), and our choices of the hyperparameters are described in Section 3.

Consistent with the default setting of Bayesian tree ensembles in Chipman et al.
(2010) and Hahn et al. (2020), Jc = J = 200 trees are set for υc(xi, Ai) and υ(xi)
while H = 50 trees are set for τ(wi), considering that the pattern of treatment effect
heterogeneity is usually much simpler than the pattern of confounding. In this way,
stronger regularization is imposed on τ(wi), which is indeed the CATE for the uncured
subgroup, as will be shown in the next section. Different choices for Jc, J , H, and the
hyperparameters are also considered in Section 4 to check the stability of the proposed
method under different prior regularizations on heterogeneity. Finally, considering that
all elements of xi can serve as modifiers of the treatment effect with an equitable chance
when lacking domain knowledge, for notation simplicity, we use τ(xi) in substitute of
τ(wi) in the rest of the article.

Up to now, the proposed method was introduced under an ideal circumstance that
enrollment and treatment initiation concur at certain time zero, but ITB can serve as
another source of confounding in causal survival analysis. For example, cancer patients
may have to wait for a period of time after diagnosis to receive the actual therapy,
and bias can be induced if this period of immortal time is considered as being exposed.
Figure S1(a) of the Supplementary Material illustrates the ideal case under which the
proposed method would work smoothly, while Figure S1(b) gives a more complex but
commonly encountered case with ITB. Given that the proposed method focuses primar-
ily on confounding raised by targeted selection and covariate imbalance and that solving
all sources of confounding at once is intrinsically challenging, a tailored solution to ITB
is beyond the scope of this article. Nonetheless, it is feasible to combine the proposed
method with some popular mitigation strategies to alleviate ITB in a two-stage way (see,
Wang et al., 2022, for an overview). Two specific strategies considered in this article
are directly excluding the immortal time and Prescription Time Distribution Match-
ing (PTDM, Zhou et al., 2005). For the former, the immortal time is first subtracted
from Yi for each subject i with Ai = 1, after which the proposed model is implemented
for treatment effect estimation. For the latter, the missing immortal times for subjects
with Ai = 0 are imputed from the observed ones in the treated group through random
sampling with replacement or propensity score matching. The immortal times are then
subtracted from the Yis for every subject in the sample, followed by the implementation
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of the proposed model. We provide a demonstration of the two-stage approach using
the SEER breast cancer data at the end of Section 5.

2.3 Assumptions and causal estimands

We construct causal estimands under the potential outcomes framework (Rubin, 1974,
2005, 1978; Splawa-Neyman et al., 1990). Denote Ti(1) and Ti(0) as the potential sur-
vival time of subject i suppose that he/she had been assigned to the treatment and
control groups, respectively. Similarly, we let Ci(1) and Ci(0) denote the corresponding
potential censoring times, and Gi(1) and Gi(0) denote the potential group indicators
under treatment and control, respectively. We focus on three causal estimands based on
these counterfactuals: the conditional average survival probability (CASP), CASP(t,x),

Pr
(
Ti(1) > t | xi = x

)
− Pr

(
Ti(0) > t | xi = x

)
, (2.4)

the uncured conditional average treatment effect (UCATE), UCATE(x),

E
{

log(Ti(1)) | xi = x, Gi(1) = 1
}
−E

{
log(Ti(0)) | xi = x, Gi(0) = 1

}
(2.5)

for uncured subjects with Gi = 1, and the uncured sample average treatment effect
(USATE)

1
n1

∑
i:Gi=1

[
E
{

log(Ti(1)) | xi = xi, Gi(1) = 1
}
−E

{
log(Ti(0)) | xi = xi, Gi(0) = 1

}]
(2.6)

for uncured subjects with Gi = 1, where n1 is the total number of subjects identified as
uncured.

The causal estimands defined above characterize treatment effect from two aspects.
First, the construction of UCATE and USATE within the uncured group borrows the
idea of complier average causal effect (Yu et al., 2015) in a sense that only uncured
subjects with finite event time reflect the treatment effect in terms of extending event
time, just as only the complier subgroup reflects the true treatment effect. However,
unlike the complier class, which can be viewed as independent of the treatment received,
the uncured group can vary with a different cured rate under different treatment arms
and thus produces four possible cases: (i) Gi(1) = Gi(0) = 1; (ii) Gi(1) = Gi(0) = 0; (iii)
Gi(1) = 0, Gi(0) = 1; and (iv) Gi(1) = 1, Gi(0) = 0. UCATE and USATE treat uncured
subjects with Gi = 1 as case (i) to formulate the (conditional) average treatment effect
on the scale of the logarithm of survival time and thereby serve as answers to the question
“How long will the treatment extend the survival time of a subject if he/she remains
susceptible to the event?” It is also worth noticing that case (ii) contributes nothing
to quantifying treatment effect on the scale of survival time with Ti(1) = Ti(0) = ∞,
while case (iv) is comparatively implausible unless the treatment jeopardizes survival by
turning subjects non-susceptible to the event into susceptible ones. Second, by excluding
case (iv) as suggested by the assumptions below, CASP covers cases (i)–(iii) and captures
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treatment effect on the scale of the conditional probability of surviving over certain time
t with

Pr
(
Ti(a) > t | xi = x

)
= Pr

(
Ti(a) > t | xi = x, Gi(a) = 1

)
Pr

(
Gi(a) = 1 | xi = x

)
+ 1 · Pr

(
Gi(a) = 0 | xi = x

)
, a = 0, 1,

which accommodates the treatment effect on improving the cured rate and serves as an
answer to a second question “How much more chance could the subject have to survive
more than t months/years from the event if he/she receives the treatment?”. Causal
estimands proposed in this work are tailored for the two questions that subjects are
most concerned about in practice. The following common assumptions of the potential
outcomes framework (Imbens and Rubin, 1997; Pearl, 1995; Rosenbaum, 1984; Stone,
1993; Yu et al., 2015) are required for identification of the causal estimands:

Assumption 1 (SUTVA). Ti = AiTi(1)+(1−Ai)Ti(0), i.e, treatment assignments for
each unit do not interfere and each treatment level defines a unique outcome for each
unit. Similarly, Ci = AiCi(1) + (1 −Ai)Ci(0), and Gi = AiGi(1) + (1 −Ai)Gi(0).

Assumption 2 (Positivity). 0 < Pr(Ai = 1 | xi) < 1, i.e, each unit has a positive
probability of allocation to either arm of the treatment. Similarly, 0 < Pr(Gi = 1 |
xi) < 1, i.e., each subject has a positive probability of being cured.

Assumption 3 (Weak unconfoundedness). Gi(a) ⊥⊥ Ai | xi for a = 0, 1, i.e., there
is no unmeasured confounding between treatment and cure rate. “A ⊥⊥ B” denotes
independence between A and B. Ti(a) ⊥⊥ Ai | xi, Gi(a) = 1 for a = 0, 1, i.e, there is no
unmeasured confounding between treatment and survival time for uncured subjects.

Assumption 4 (Independent censoring). Ci(a) ⊥⊥ Ti(a), Gi(a) | xi for a ∈ {0, 1}.
Assumption 5 (Exclusion restriction). Pr

(
Gi(1) ≤ Gi(0) | xi

)
= 1.

Under the above assumptions, it is straightforward to see that by viewing uncured
subjects as case (i), we have Gi(1) = Gi(0) = Gi = 1 and E

{
log(Ti(a)) | xi =

x, Gi(a) = 1
}

= E
{

log(Ti) | xi = x, Ai = a,Gi = 1
}

for a ∈ {0, 1}. The UCATE
defined in (2.5) can thereby be expressed as

E
{

log(Ti) | x, 1, 1
}
−E

{
log(Ti) | x, 0, 1

}
= υ(x) + τ(x) − υ(x) = τ(x),

while the USATE is derived as τ̄ = 1
n1

∑
i:Gi=1 τ(xi). Similarly, with Pr

(
Ti(a) > t |

xi = x, Gi(a) = 1
)

= Pr(Ti > t | xi = x, Ai = a,Gi = 1) and Pr
(
Gi(a) = z | xi

)
=

Pr(Gi = z | xi = x, Ai = a) for a, z ∈ {0, 1}, CASP defined in (2.4) can be expressed
as

Fε

(
log(t) − υ(x)

)
Φ
(
υc(x, 0)

)
− Fε

(
log(t) − υ(x) − τ(x)

)
Φ
(
υc(x, 1)

)
,

where Fε denotes the cumulative distribution function of residual εi. Considering that
the nonparametric tree ensembles are fully capable of capturing nonlinear interrelation-
ships among variables, we assume that εi

i.i.d∼ N(0, σ2) for simplicity. In this way, the
causal estimands are identified with the regression surface fitted by Models (2.2)–(2.3).
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While a more flexible alternative is to model the residual distribution as a location mix-
ture of Gaussian distributions (see, e.g., Henderson et al., 2020; Yang et al., 2010), we
found through a pilot simulation study that such a combination of BCF and Dirichlet
process prior did not work synergistically in improving point or interval estimation of
the treatment effect on the time-to-event outcome. The unnecessary model complexity
brought about thereby makes it less preferable to the normal assumption on residual
distribution.

3 Bayesian analysis
3.1 Prior specification
Assuming independence among the individual trees and residual variance σ2, the prior
distribution for the proposed model is formulated as

p
(
{(T̃jc ,M̃jc)}Jc

jc=1, {(Tj ,Mj)}Jj=1, {(T ′
h,M′

h)}Hh=1, σ
2
)

=
Jc∏

jc=1
p(T̃jc ,M̃jc)

J∏
j=1

p(Tj ,Mj)
H∏

h=1
p(T ′

h,M′
h)p(σ2)

=
Jc∏

jc=1

bjc∏
l=1

p(μjcl | T̃jc)p(T̃jc)
J∏

j=1

bj∏
l=1

p(μjl | Tj)p(Tj)
H∏

h=1

bl∏
l=1

p(μ′
hl | T ′

h)p(T ′
h)p(σ2).

Among the hyperparameters {α, β, cc, cμ, kc, k1, k2}, α and β control the height of each
individual binary tree through p(T̃jc), p(Tj), or p(T ′

h), while cc, cμ, kc, k1, and k2 confine
the prior probability for υc(x), υ(x), and τ(x) as the sum of trees through p(μjcl | T̃jc),
p(μjl | Tj), and p(μ′

hl | T ′
h), respectively. Following the default choices suggested by

Chipman et al. (2010), of which remarkable efficacy has been shown under a variety
of cases, we set α = 0.95 and β = 2 for υc(x) and υ(x) such that shallow trees with
2 or 3 terminal nodes are preferred. A stronger regularization with α′ = 0.25 and
β′ = 3 suggested by Hahn et al. (2020) is considered for τ(x) to evade misidentified
heterogeneity in treatment effects. The default choices are also applied to check the
stability of the estimation results under different prior knowledge on heterogeneity.

To assign plausible prior distributions for the prognostic and treatment effects, we
follow the procedure of Henderson et al. (2020) to first center the observed time Yi by
Y ∗
i = Yi exp(−μ̂AFT ) and set cμ = 4σ̂AFT , where μ̂AFT and σ̂AFT are the intercept

and scale estimates of the parametric AFT model fitted with intercept only and log-
normal residuals. As a sum of J terminal node parameters, the prognostic effect υ(x)
is thereby assigned normal prior N(0, 4σ̂2

AFT

k2
1

) such that the interval (−4σ̂AFT

k1
, 4σ̂AFT

k1
)

covers around 95% of its prior probability. Similarly, the UCATE τ(x) is concentrated
within (−4σ̂AFT

k2
, 4σ̂AFT

k2
) with a prior probability of around 95%, and the choice of k1 = 2

and k2 = 4 assigns approximately 99.6% prior probability of the expected logarithm of
survival time under treatment within μ̂AFT ± 3σ̂AFT . For the probit cure model, we
follow the suggestion of Tan and Roy (2019) to set cc = 3 and kc = 2, resulting in a
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plausible range (−3, 3) with a prior probability of 95% for the normal random variable
underlying Gi.

For variance of the residual terms, an inverse-chi-squared prior is imposed as σ2 ∼
κν/χ2

ν , where κ and ν are pre-determined hyperparameters. According to the common
practice, κ is chosen such that the prior probability of σ2 larger than some known rough
estimate σ̂2

r approximately equals 1− q, where q ∈ (0, 1) is a pre-specified constant that
adjusts the magnitude of σ2 relative to σ̂2

r . We take the default setting of Chipman et al.
(2010) to set ν = 3 and let σ̂r be the scale estimates of the corresponding parametric
AFT model with the same set of covariates. Considering that such a parametric model
neglects the cured fraction and can thus lead to an overestimated σ̂2

r , we set q = 0.99 in
the sense that σ2 for the uncured subgroup is very likely no larger than σ̂2

r . Besides, a
smaller choice of q = 0.95 is also applied to check the stability of the estimation results
under different prior knowledge on the cured fraction.

3.2 Posterior inference

Considering that Model (2.2) is designed for the cured rate of every subject across the
sample while Model (2.3) is proposed for the event time of only the uncured subgroup,
we aim to derive the posterior distribution of binary trees {(T̃jc ,M̃jc)}Jc

jc=1 based on
the entire sample, and that of {(Tj ,Mj)}Jj=1 and {(T ′

h,M′
h)}Hh=1 based on the uncured

subgroup (across the iterations). By augmenting the observed data with the latent
failure times and group labels, full conditional distribution of the binary trees can be
derived with the complete-data likelihood and prior distributions in Section 3.1. The
Bayesian backfitting MCMC algorithm is employed to sequentially update the individual
trees for each BART, combined with the Gibbs sampler to obtain the full conditional
distributions of the latent components. Derivation of the posterior distributions and
implementation of the algorithm is provided in Web Appendix A of the Supplementary
Material.

After discarding the first N0 burn-in iterations, we collect N posterior draws of
{(T̃jc ,M̃jc)}Jc

jc=1, {(Tj ,Mj)}Jj=1, and {(T ′
h,M′

h)}Hh=1 and obtain the Bayesian estimate
of the causal estimands and their 95% credible interval. The convergence of the algorithm
can be easily checked from the trace plot of σ2. For every individual, the estimated CASP
is given by

1
N

N0+N∑
itr=N0+1

[
Φ
(

log(t) − υ(itr)(xi)
σ

)
Φ
(
υ(itr)
c (xi, 0)

)

− Φ
(

log(t) − υ(itr)(xi) − τ (itr)(xi)
σ

)
Φ
(
υ(itr)
c (xi, 1)

)]
; (3.1)

while for the uncured subgroup, the estimated UCATE is given by

τ̂(xi) = 1
N

N0+N∑
itr=N0+1

τ (itr)(xi) = 1
N

N0+N∑
itr=N0+1

g2

(
xi; T ′(itr)

h ,M′(itr)
h

)
,
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and the estimated USATE is accordingly calculated as

ˆ̄τ =
∑n

i=1 I(Ĝi = 1)τ̂(xi)∑n
i=1 I(Ĝi = 1)

.

Evidence of heterogeneity in treatment effects can thus be verified through assessing
the CASP and UCATE for each uncured subject, as Figures 3(a) and 3(b) depict.
An alternative approach to quantifying the degree of heterogeneity is the posterior
probability of differential treatment effect (Henderson et al., 2020) defined as

Di = Pr
(
τ(xi) ≤ ˆ̄τ | D

)
, D∗

i = max{1 − 2Di, 2Di − 1},

where either a too large or too small Di indicates a fair deviation from the USATE for the
ith uncured subject. Henderson et al. (2020) suggests D∗

i > 0.95 (i.e., Di > 0.95 or Di <
0.05) as strong evidence of individual-specific differential treatment effect while D∗

i > 0.8
(i.e., Di > 0.90 or Di < 0.10) as mild evidence, and further regards the proportion of
subjects with such strong/mild evidence as a summary measure of heterogeneity. We
adopt this procedure in the following simulation and real data analyses to get a sight
of the possible heterogeneity. Similarly, deviation from the sample average CASP at
certain fixed time t can also be assessed for each individual.

In addition, the effect modifiers will be of major interest once a considerable level of
heterogeneity is found in the above way. Based on the collected posterior draws for each
binary tree, it is easy to check the frequency of usage for each component of x in υ(x),
τ(x), and υc(x), and thus get the set of “top” confounders and effect modifiers of survival
time and modifiers of the cured rate. With the effect modifiers recognized, a natural
question arises as to the explicit way they give rise to heterogeneity in the treatment
effects. A popular tool to visualize this mechanism is the partial dependence plot, which
has been used to obtain causal interpretation for black-box predictive models, including
BART with a time-to-event outcome (Henderson et al., 2020). Under Model (2.3), the
partial effect of a specific modifier xl (the lth component of x) on UCATE is defined by

τPE
l (x) = 1

n1

∑
i:Gi=1

τ(x,xi,−l), l = 1, . . . , p,

i.e., averaging the UCATE over the sample with xl fixed at certain value x. The esti-
mated partial effect of each recognized modifier is directly obtained through the pos-
terior draws {(T ′

h,M′
h)}Hh=1. For a discrete xl, the posterior density plot of the partial

effect at different categories can serve as a visualization tool of the induced heterogene-
ity, as shown in Figures 4(a) and 4(b).

4 Simulation study
This simulation evaluates the empirical performance of the proposed methodology. We
followed the data generating process of Hahn et al. (2020), the groundbreaking work on
BCF structure, to achieve a fair comparison between the proposed model accommodat-
ing cured fraction and the conventional one-BART structure under the survival context.
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To mimic the dimensionality of covariates in the real data analysis, datasets were gen-
erated with p = 8 covariates, with the first three, the sixth, and the seventh drawn as
standard normal random variables, the fourth drawn as a categorical random variable
with three levels {1, 2, 3}, the fifth drawn from Bernoulli distribution with a success
probability of 0.5, and the last drawn from the uniform distribution on (0, 1). The true
group label was generated by Gi ∼ Bernoulli

(
0.8Φ(−0.5x7+x4A)+0.05+0.1x8

)
with a

cured proportion around 35% or Gi ∼ Bernoulli
(
0.8Φ(−1−0.5x7+x4A)+0.05+0.1x8

)
with a cured proportion around 50%. For the uncured subgroup, both a homogeneous
treatment effect of τ(x) = 1.5 and a heterogeneous one as τ(x) = 1 + 0.5x2 − 0.25x2x5
were considered, whereas the prognostic function was assumed with a nonlinear form
of υ(x) = −1.2 + 0.4I(x4 = 1) − 0.2I(x4 = 2) − 0.8I(x4 = 3) + 0.2|x3 − 1|. The true
propensity score for each subject was generated by

π(xi)
Δ= Pr(Ai = 1 | xi) = 0.8Φ

(
3υ(xi)
sυ

− 0.5xi1

)
+ 0.05 + 0.1ζi, i = 1, . . . , n,

where sυ is the sample standard deviation of υ(x) and ζi
i.i.d∼ Uniform(0, 1). Selection

bias exists under such a setting since π(xi) is monotone in υ(xi), where x1, x3, and
x4 serve as confounders. Contrastingly, x2 and x5 are true modifiers of the treatment
effect. Finally, we considered a normal residual distribution εi

i.i.d∼ N(0, 0.25) and then
generated the true failure times for uncured subjects with Gi = 1 based on Model (2.3).
The censoring time Ci was independently generated from the exponential distribution
exp(λ), where λ was selected to keep a censoring rate of around 70% or 80% corre-
sponding to the cured proportion of 35% and 50%, respectively. Three sample sizes
n = 500, 1,000, and 2,000 were considered.

We fitted the parametric AFT model with intercept only and log-normal residuals to
obtain the intercept estimates μ̂AFT and scale estimates σ̂AFT based on the generated
data. The parametric AFT model with the full set of covariates was also fitted to
obtain a rough scale estimate σ̂r. The estimated propensity scores were included as a
covariate to circumvent regularization-induced confounding. The following prior inputs
were considered as specified in Section 3.1:

Prior (I) cc = 3, cμ = 4σ̂AFT , kc = 2, k1 = 2, k2 = 4, ν = 3, q = 0.99,
α̃ = α = 0.95, β̃ = β = 2, α′ = 0.25, β′ = 3.

(4.1)

The algorithm converged within 200 iterations, and 2,000 posterior samples were col-
lected by taking every two iterations after a burn-in stage of 1,000 iterations to obtain
Bayesian estimates of the causal estimands. Table 1 summarizes the average root mean
square error (RMSE) of the estimated UCATE, USATE, and CASP as well as the
coverage rate (Cover.) and average length (Len.) of their 95% credible intervals based
on 100 replications with the cured proportion being 35%. As expected, performance
improves in terms of RMSE and interval coverage rate/length for both UCATE and
USATE when the sample size increases, despite that interval coverage rate for CASP
being lower than the nominal level. Such a lower coverage rate is possibly attributed to
an inevitable misjudgment on Gi for a certain proportion of the censored subjects. We
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compared the performance of the proposed model in terms of the estimated UCATE,
USATE, and CASP with that of the AFTrees approach proposed by Henderson et al.
(2020), which outperforms a series of machine learning approaches while still taking
no account of the cured fraction or regularization tailored for CATE. Simulation re-
sults reported in Table 1 suggest that our proposed model possesses smaller RMSE and
shorter credible intervals with higher (or at least comparable) coverage probability for
the estimated UCATE and USATE compared with the results of AFTrees. In terms of
the estimated CASP, the proposed method brings smaller RMSE and slightly wider in-
tervals with a notably higher coverage rate than the competing methods. Such strength
holds with a similar pattern when the sample size increases and the cured proportion
increases to 50%, while the coverage rate for USATE turned lower due to the high cen-
soring rate. Detailed estimation results can be found in Table S1 of the Supplementary
Material.

Considering that one key advantage of Model (2.3) is the controllable regulariza-
tion priors imposed directly on the treatment effect through the BCF structure, we
assessed how the Bayesian estimates are affected by changes in the strength and scope
of such regularization imposed on τ(xi) through varying choices of hyperparameters.
The varying conditions we considered are: (II)α′ = α = 0.95, β′ = β = 2, such that a
weaker shrinkage toward homogeneity relative to Prior (I) was imposed on the UCATE;
(III) Jc = J = H = 200; (IV) Jc = J = H = 100; (V)Jc = J = H = 50; and
(VI) q = 0.95 such that the prior probability Pr(σ2 > σ̂2

r) is slightly higher. All other
hyperparameters remain unchanged. The Bayesian estimates at sample size n = 500
and 1,000 with a cured proportion of 35% are given in Table S2 of the Supplementary
Material, whereas the estimates obtained under Prior (I) are also presented in the first
line for the ease of comparison. Overall, the average RMSE, coverage rate, and interval
length for each causal estimand remain stable under the above settings, which is possi-
bly due to the relatively large sample size of 1,000 we chose to mimic the size of SEER
breast cancer data in Section 5. When the true treatment effect is indeed heterogeneous,
alleviating the shrinkage to homogeneity through the BART prior on τ(x) as setting
(II) slightly improves interval coverage rate for the estimated CASP, but at the cost of
a mild increase in interval length and RMSE of UCATE and USATE. If the true treat-
ment effect is homogeneous, on the contrary, the additional chances of misidentified
heterogeneity allowed by setting (II) lead to increased RMSE and slightly decreased
coverage rate for UCATE and USATE, which are likely due to nuisances learned by
the comparatively deeper trees in τ(x). Varying the number of binary trees inside each
BART or the residual-variance related hyperparameter q also makes little difference to
the estimation results, somehow concurring with the cross-validation result obtained
in Chipman et al. (2010). Similar patterns were obtained with n = 500, except that
the increase in RMSE of UCATE and USATE gets even larger under settings (II)–(III)
with less shrinkage to homogeneity and more noises captured by the redundant trees
(e.g., H = 200). Overall, Bayesian estimates obtained are insensitive to prior inputs and
almost the best under the default Prior (I).

For the ease of conveying the common causal assumptions and defining the causal
estimands as in Section 2.3, we have adopted the most frequently used binary treatment
indicator Ai with fixed coding one for the treated subjects and zero for the controls.
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Heterogeneous: τ(xi) = 1 + 0.5xi2 − 0.25xi2xi5

n Method UCATE USATE CASP
RMSE Cover. Len. RMSE Cover. Len. RMSE Cover. Len.

500
TBAFTcure 0.364 0.940 1.385 0.143 0.94 0.560 0.179 0.879 0.505
AFTrees:np 0.383 0.951 1.592 0.183 0.96 0.665 0.210 0.619 0.293
AFTrees:sp 0.513 0.931 1.931 0.348 0.82 0.948 0.219 0.674 0.343

1000
TBAFTcure 0.283 0.955 1.159 0.094 0.96 0.374 0.155 0.889 0.437
AFTrees:np 0.319 0.947 1.277 0.157 0.80 0.426 0.199 0.582 0.239
AFTrees:sp 0.546 0.877 1.712 0.401 0.40 0.690 0.203 0.631 0.301

2000
TBAFTcure 0.229 0.959 0.937 0.062 0.96 0.261 0.143 0.873 0.367
AFTrees:np 0.274 0.940 1.025 0.147 0.53 0.288 0.194 0.523 0.194
AFTrees:sp 0.574 0.799 1.533 0.417 0.05 0.509 0.185 0.568 0.263

Homogeneous: τ(xi) = 1.5

n Method UCATE USATE CASP
RMSE Cover. Len. RMSE Cover. Len. RMSE Cover. Len.

500
TBAFTcure 0.206 0.999 1.431 0.146 1 0.614 0.152 0.917 0.496
AFTrees:np 0.216 0.999 1.741 0.137 1 0.761 0.167 0.691 0.328
AFTrees:sp 0.298 0.999 2.143 0.208 1 1.106 0.177 0.675 0.339

1000
TBAFTcure 0.187 0.995 1.147 0.123 0.93 0.422 0.146 0.904 0.429
AFTrees:np 0.203 0.998 1.380 0.123 0.95 0.496 0.165 0.643 0.277
AFTrees:sp 0.349 0.986 1.895 0.216 0.91 0.810 0.171 0.621 0.291

2000
TBAFTcure 0.144 0.993 0.886 0.082 0.94 0.291 0.139 0.874 0.361
AFTrees:np 0.188 0.994 1.073 0.118 0.84 0.331 0.157 0.627 0.244
AFTrees:sp 0.409 0.947 1.662 0.189 0.92 0.604 0.164 0.541 0.248

� np denotes nonparametric AFTrees with error distribution treated as a location mixture of Gaussian
distributions; sp denotes semiparametric AFTrees with error distribution treated as normal.

Table 1: Average RMSE, coverage rate and interval length of the 95% credible interval
for UCATE, USATE, and CASP estimated by the proposed TBAFTcure approach and
AFTrees in Henderson et al. (2020) under n = 500, 1000, 2000 with εi

i.i.d∼ N(0, 0.25),
cured rate around 35%, and censoring rate around 70%.

Nonetheless, it is trouble-free to incorporate the invariant parameterization of Hahn
et al. (2020), which is a data-adaptive way of treatment coding, to the proposed model.
By substituting Ai = 1 for the treated subjects with a parameter b1 and Ai = 0 for the
controls with a parameter b0, the AFT model in (2.3) becomes

log(Ti | xi, Ai, Gi = 1) = υ(xi) + τ(wi)bAi + εi

=
J∑

j=1
g1(xi; Tj ,Mj) +

H∑
h=1

g2(wi; T ′
h,M′

h)bAi + εi,
(4.2)
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but identification of the causal estimands remains the same and only minor adjust-
ments are required in the posterior inference. Due to space limitations, details are
provided in Web Appendix A. To compare model performance under the two choices
of treatment coding, we conducted an additional simulation and followed the origi-
nal work of Hahn et al. (2020) to assign a normal prior for the scale parameter bAi ,
i.e., bAi ∼ N(0, 1

2 ). Jc, J , and H were set as default and all other hyperparameters
were set as Prior (I). Bayesian estimates of the causal estimands under the settings of
n = 500 and 1,000 with a cured proportion of 35% are reported as condition (VII) in
Table S2. The average RMSE, coverage rate, and interval length for the estimated US-
ATE and CASP are relatively stable under the two different ways of treatment coding,
while for the estimated UCATE, it turns out that invariant parameterization favours
the case when the true treatment effect is homogeneous, with lower average RMSE
and shorter credible intervals. When the true treatment effect is heterogeneous, slightly
higher RMSE and lower coverage rate are observed for UCATE estimated under in-
variant parameterization, suggesting that stronger regularization to homogeneity can
be induced by treatment coding in the AFT cure model. Overall, such discrepancies
diminish as sample size increases to 2000 and above, and strengths of the proposed
method over the AFTrees hold regardless of treatment coding when a cured fraction
does exist.

We also evaluated robustness of the proposed method by varying (i) the level of
residual variance σ2 and (ii) the censoring and cured proportion under the setting of
n = 1,000 and default Prior (I). For the former, Bayesian estimates of the causal es-
timands are given in Table S3 of the Supplementary Material. An increase in residual
variance degrades estimation accuracy by inducing larger RMSE and lower coverage
rate for the UCATE and USATE, but the proposed model still performs better than
the AFTrees in both aspects, except that coverage rate for the UCATE obtained un-
der invariant parameterization is slightly lower under the heterogeneous setting. Es-
timation of the CASP is not weakened for both methods, possibly because that the
induced bias in the numerator of (3.1) is counteracted by the increasing σ in the de-
nominator. For the latter, Table S4 provides estimation results under two relatively
lower censoring rates, 25% and 55%, and a lower cured proportion of around 12%. De-
tailed settings are provided in Web Appendix B of the Supplementary Material. As
the proportion of uncured subjects goes up (and the cured proportion goes down),
the UCATE and USATE are estimated with better accuracy by both the proposed
method and the AFTrees approach for comparison, including smaller average RMSE
and shorter credible intervals with improved coverage rate. This is within expectation
since more information can be acquired for the AFT model within the uncured sub-
group. On the contrary, less information regarding the censored/cured subgroup can
deteriorate the accuracy of estimating unobserved Gis by affecting performance of the
probit cure model. However, the CASP is still estimated with better RMSE and cov-
erage rate by the proposed method as shown in Table S4, while little improvement is
obtained by the AFTrees approach even with the censoring rate decreased to 25% and
the cured proportion as low as 12%. Across 100 replications, the average proportion
of correctly identified Gis for the censored subjects remains relatively stable at around
85% as the censoring/cured rate decreases, somehow supporting robustness of the pro-
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posed method to different levels of complexity in estimating the unobserved cured group
labels.

To further verify the chance of misidentifying a cured subgroup for the proposed
method, we conducted an additional simulation under the setting of n = 1,000,
heterogeneous treatment effect, without a cured fraction, and a censoring rate around
50%. Across the 100 replications, the number of misidentified cured subjects was
consistently no larger than 2 and the estimated sample average cured rate (i.e.,
1

nN

∑n
i=1

∑N0+N
itr=N0+1 I(G

(itr)
i = 0)) was no larger than 5%, indicating a very slight chance

of misidentifying a nonexistent cured fraction. Table S5 of the Supplementary Material
presents the corresponding causal estimands and those obtained based on the AFTrees
approach. The proposed model performs comparably to the AFTrees approach, con-
firming a reliable performance of the proposed method regardless of the presence or
absence of a cured subgroup. Considering that non-normal residuals from heavy-tailed
distributions violate the model assumption and may hinder identification of the unob-
served group label Gi, we also assessed performance of the proposed method under the
setting of n = 1,000, heterogeneous treatment effect, a censoring rate around 50% with-
out a cured fraction, and residuals from t or Gamma distribution. The causal estimands
were presented in the middle and lower panel of Table S5. The proposed model and the
semiparametric AFTrees performed alike, with slightly larger RMSE and lower cover-
age rate of the credible intervals compared with the nonparametric AFTrees tailored for
handling non-normal residuals. Besides, the coverage rate of credible intervals for the
CASP decreased for both approaches when the residuals turned non-normal. Despite
that, the chance of misidentifying Gi remained low. The number of misidentified cured
subjects was no larger than 7 across the 100 replications, with the estimated sample
average cured rate again no larger than 5%.

Additionally, to gain some insights into how the proposed model scale to an increas-
ing number of covariates, particularly irrelevant ones, we ran a simulation by adding
eight or 24 irrelevant covariates in addition to the aforementioned x1–x8, leading to
p = 16 or p = 32, respectively. Table S6 of the Supplementary Material summarizes
the estimation results under the setup with n = 1,000, εi

i.i.d∼ N(0, 0.25), a cured rate
around 35%, and a censoring rate around 70%. As the number of irrelevant covariates
goes up, the performance of the proposed method gradually deteriorates, with slightly
increased RMSE and decreased interval coverage rates obtained for each causal esti-
mand compared to those reported in Table 1. These results are not surprising. Given
that the proposed method involves pre-treatment covariates as splitting variables in
the tree ensembles uniformly and randomly, accurately identifying the true prognostic
factors and effect modifiers can be challenging as the number of irrelevant covariates
increases. Detailed setups and discussions can be found in Web Appendix B of the
Supplementary Material for the sake of space.

To obtain the results reported in Table 1 with n = 1,000 using the proposed method,
it takes approximately 2 minutes of computing time per replication on a Linux machine
running R with a CPU block speed of 2.60 GHz. The code for implementing the pro-
ceeding analysis is written in R with Rcpp and will be freely available at https://
github.com/roxiesun/TBAFTcure.

https://github.com/roxiesun/TBAFTcure
https://github.com/roxiesun/TBAFTcure
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5 Analysis of SEER breast cancer data
The proposed methodology was applied to a dataset regarding inflammatory breast can-
cer among U.S. females to further demonstrate its usage in estimating heterogeneous
treatment effects on the time-to-event outcome in the existence of a cured fraction. The
dataset is extracted from the SEER 17 Registries database (November 2021 submission),
containing demographic and clinical records of 3,065 females aged between 15 and 85
years diagnosed with inflammatory breast cancer between 2001 and 2008. More detailed
information can be found at the official website (https://seer.cancer.gov/). Inflam-
matory breast cancer is a relatively rare and aggressive type of breast cancer with an
incidence of around 1% to 5% in the United States (Levine et al., 1985), well known for
its fast-growing at onset and poor prognosis than other types of breast cancer. Neither
surgery, radiation therapy, nor hormonal therapy alone was proved efficient in altering
the natural history of this disease. However, developments in combined modality treat-
ment over the past decades suggested evidence in improving disease-free survival of the
patients (Jaiyesimi et al., 1992; Low et al., 2004). Such combined modality strategy usu-
ally includes chemotherapy followed by cancer-directed surgeries and radiation therapy.
Notably, the prognosis of patients with the disease can vary across age, tumor stage,
and overall health conditions. Moreover, over half of the patients collected did not take
cancer-directed surgery with radiation therapy. Therefore, we focused on 1,382 patients
with complete records and clearly defined tumor stage to investigate the possibly het-
erogeneous treatment effect of such cancer-directed surgery with radiation therapy on
their lifespan.

The treatment indicator Ai was coded as 1 if the ith patient took cancer-directed
surgery with radiation therapy and 0 otherwise. Eight pre-treatment covariates, includ-
ing age at diagnosis, race (0 = white, 1 = black, 2 = others), Hispanic (1 = yes), tumor
stage (0 = regional, 1 = distant), marital status (0 = single, 1 = married, 2 = others
including divorced/widowed/separated), chemotherapy (1 = yes), total number of in
situ/malignant tumors, and total number of benign/borderline tumors were considered
as possible confounders or effect modifiers. The propensity scores estimated through
pbart function of R package BART (Sparapani et al., 2021) were also included as a
covariate. We examined the common support of the propensity score distributions un-
der each treatment arm in Figure S2 of the Supplementary Material to check if the
positivity assumption holds for the extracted dataset. Positivity violation is usually
indicated by lack of sufficient overlap in the propensity score distribution, while the
overlapped range observed in Figure S2 suggests only a slim chance of such violation.
In general, a common solution to positivity violation is to truncate the propensity score
distribution by using only subjects whose propensity scores fall within the common
support for analysis and discarding those with extreme propensity score values of zero
or one (see, Ju et al., 2019; Kang et al., 2016; Petersen et al., 2012). Nonetheless, re-
cent discussions have highlighted that truncating the propensity score distribution to
address positivity violation can come at a cost of changing the target population of
interest and inducing extra bias or residual confounding. Such strategies should there-
fore be used with caution, where situations with high-dimensional covariates and rare
outcomes are more likely to truly benefit from them (Shiba and Kawahara, 2021). Con-
sidering the overlapped range in Figure S2, we chose not to truncate the propensity

https://seer.cancer.gov/
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Figure 2: The Kaplan-Meier curves for patients who took cancer-directed surgery with
radiation (Treatment = 1) and who not (Treatment = 0) in the inflammatory breast
cancer data. For both group, the curves level off after 100 months although the patients
were followed as long as 15 years and such proportion is higher in the treatment group,
thereby indicating possible existence of a cured subgroup.

score distributions to avoid inducing any additional bias. The survival times obtained
from the SEER database were reported in months. The event of interest was defined as
death caused by this cancer and recorded with a median observed time of 36 months
and a censoring rate of 33.4%. Figure 2 depicts the Kaplan-Meier curves for patients
under the treatment group (n = 586) and control group (n = 796) with obvious level-
ing off after 100 months even if patients were followed as long as 15 years, suggesting
a possible cured subgroup. Therefore, we implemented the proposed model to verify
the existence of the cured subgroup and delve into whether patients with a divergent
level of pathological and demographic traits benefit differently from being treated. The
hyperparameters specified in (4.1) were adopted for analysis. The convergence of the
algorithm was checked by trace plots of σ2 in Figure S3 of the Supplementary Mate-
rial, where chains with different initial values mixed well very soon. We collected 5,000
iterations by keeping every two after discarding 1,000 burn-in iterations to derive point
estimates and credible intervals of the causal estimands. The results are summarized as
follows.

Among the 462 censored subjects for whom the group label is unobservable, 384
were estimated by the proposed method with Ĝi = 0 and thus identified as cured, while
the rest were estimated with Ĝi = 1 and recognised as uncured and just censored. The
overall cured proportion was therefore calculated as 384/1382 = 27.8%. The estimated
USATE for the uncured subgroup is 0.498 with a 95% credible interval of (0.334, 0.667),
indicating that patients within the uncured subgroup could benefit from the treatment
with a survival time which is on average 1.645 (exp(0.498)) times of that if they were not
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Figure 3: (a) Sorted UCATE for the 998 uncured subjects estimated by the proposed
TBAFTcure model and (b) Sorted CASP with t = 36, the median observed time, for
every subject. Red dots are the posterior means of UCATE/CASP for each (uncured)
patient and the grey lines are the corresponding 95% credible intervals.

treated. Figure 3(a) depicts the estimated UCATE for each of the 998 uncured subjects
along with the 95% credible intervals. In contrast, Figure 3(b) presents the estimated
CASP(t = 36,xi) for every subject in the dataset, which is the probability of surviving
over the median observed time, 36 months, increased by the treatment. The median
observed time is chosen for illustration purpose, and other values of t are completely
feasible. It is worth noticing that although the estimated USATE is significantly positive,
from both the plotted UCATE and CASP, we found a small portion of patients for whom
the treatment effect is indeed nonsignificant in terms of a credible interval containing
zero, thereby indicating a possible evidence of heterogeneity for the treatment effect.
In other words, although cancer-directed surgery with radiation therapy decelerated
the disease-caused death for 1.645 times averagely inside the uncured subgroup and
increased the probability of surviving over 36 months by 0.198 (s.e. 0.024) on average,
patients with certain features can have large or slim hope of benefiting more than that.
Besides, estimation results under invariant parameterization was almost the same with
those under 0/1 coding, including an overall cured proportion of 27.6% (381/1382), an
estimated USATE of 0.487 with a 95% credible interval of (0.325, 0.651), and almost
identical posterior probabilities as reported in Table 2.

To further quantify the degree of heterogeneity, in Table 2 we summarized the pos-
terior probability of differential treatment effect as well as treatment benefit using the
estimated UCATE. Results obtained by the AFTrees approach, which omits possible
cured fraction, were also listed on the right column for a fair comparison. The proposed
TBAFTcure found no strong or mild evidence of heterogeneity according to the D�

i , nor
did the AFTrees approach for comparison. However, it is worth noticing that the cured
subgroup identified by TBAFTcure can also be viewed as benefiting far beyond the
average level from the treatment and serve as evidence of heterogeneity. In other words,
we can capture heterogeneity from two aspects: patients for whom the decelerated event
time brought by treatment is limited but deviates from the sample average level and
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TBAFTcure AFTrees
D∗

i > 0.95 0% 0%
D∗

i > 0.8 0% 0%
Pr(τ(xi) > 0 | D) ∈ (0.95, 1] 94.3% 100%
Pr(τ(xi) > 0 | D) ∈ (0.75, 0.95] 5.7% 0%
Pr(τ(xi) > 0 | D) ∈ (0.25, 0.75] 0% 0%
Pr(τ(xi) > 0 | D) ∈ [0, 0.25] 0% 0%

� D∗
i > 0.95/0.8 suggests strong/mild evidence of differential treatment effect according to Henderson

et al. (2020).

Table 2: The posterior probabilities of differential treatment effect and treatment benefit
using UCATE estimated by the proposed TBAFTcure approach and CATE estimated
by AFTrees approach in Henderson et al. (2020) for patients with inflammatory breast
cancer.

patients who become cured and possess an event time of infinity, which in total takes up
27.8% of the whole sample. Although barely any evidence of heterogeneity was found
by both approaches, we can still look in to some possible origins of heterogeneity in
the treatment effect. The top three covariates used by τ(x) of the proposed model for
splitting were Hispanic, race, and chemotherapy; while the top three splitting variables
for υc(x, A) were chemotherapy, tumor stage, and age. In contrast, the top variables
other than treatment used by the AFTrees were Hispanic, tumor stage, chemotherapy,
and the number of benign/borderline tumors. Unlike our method, however, the AFTrees
could not shed light on whether these covariates were selected because of modifying the
treatment effect or interpreting mixture components of the population, thereby fail-
ing to differentiate between confounders and treatment modifiers. Finally, Figure 4(a)
shows the posterior density of the estimated UCATE under different levels of Hispanic,
and Figure 4(b) gives the partial dependence plot for the number of in situ/malignant
tumors. It is straightforward to see that Hispanic females benefit more from receiving

Figure 4: The partial effect of (a) Hispanic and (b) number of in situ/malignant tumors
on the estimated UCATE for patients with inflammatory breast cancer.
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cancer-directed surgery with radiation therapy, while the number of in situ/malignant
tumors is less likely an effect modifier. This is also consistent with previous findings that
the incidence and death rate of invasive breast cancer are relatively lower for Hispanic
individuals than for Non-Hispanic White (see, e.g., Miller et al., 2021) and the fact
that the number of in situ/malignant tumors was not among the top frequently used
splitting variables for τ(x) across the MCMC iterations.

The above estimation results were obtained by implicitly assuming no ITB. The
reasons are twofold: (i) although the SEER database contains the variable “Months
from diagnosis to treatment” (MDT), it cannot serve as a rigorously defined immortal
time. Patients subject to inflammatory breast cancer were usually treated with a com-
bined modality strategy including chemotherapy followed by cancer-directed surgeries
and radiation, while MDT was calculated with respect to the initial treatment, which,
without clear specification, was more likely the chemotherapy status; (ii) ITB-related
confounding can be trivial given that MDT is no larger than 2 months for around 95%
of the subjects while over 95% of the treated subjects survived over 10 months as shown
in Figure S4 of the Supplementary Material. Despite that, we adopted MDT as the im-
mortal time to verify reliability of the above causal estimates and demonstrate how the
proposed model can be used in conjunction with two popular mitigation strategies, i.e,
excluding immortal time and PTDM. For the former, we simply subtracted the immor-
tal time from Yi for patients in the treated group, such that time zero for the treated is
the time of actual exposure and time zero for the control is the time of enrollment. The
proposed method gave an overall cured proportion of 27.7%, a slightly smaller USATE
of 0.450 with a 95% credible interval of (0.282, 0.618), and almost identical posterior
probabilities as those reported in Table 2. With the latter strategy, we first randomly
sampled the missing immortal time for each subject in the control group with replace-
ment from the observed immortal times in the treated group, and then subtracted the
immortal times from the corresponding observed times for every subject in the sample.
The same distribution of immortal time was thus ensured for the two treatment arms. If
the sampled immortal time was larger than the observed time for a subject in the con-
trol group, they would be excluded from further analysis. Combined with PTDM, the
proposed method produced distinct results with no cured proportion, a smaller USATE
of 0.368 with a 95% credible interval of (0.187, 0.545) and obviously different posterior
probabilities. Possible reasons include the intrinsic drawbacks of PTDM, the potential
conflicts between causal assumptions and altered distribution of the survival time, and
the fact that MDT is not a well-defined immortal time. The estimated causal estimands
are presented in Figure S5. Further details and discussion are provided in Web Ap-
pendix C of the Supplementary Material due to space limitations. It is worth noting
that the two-stage analysis presented in this section is for demonstration purposes only,
as the SEER breast cancer dataset does not cover rigorously defined immortal times.
Once thorough information on immortal times and time-varying covariates can be ac-
quired, more advanced mitigation strategies can be employed to improve the two-stage
procedure.
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6 Discussion
In this article, we proposed a tree-based AFT cure model to achieve estimation, de-
tection, and causal interpretation of the possibly heterogeneous treatment effect on the
scale of survival time and probability, accommodating the existence of a cured frac-
tion. In cancer survival analysis, many studies focus on progression-free survival since
death cannot be “cured”, and cure models are useful to explore the heterogeneity among
patients who are long-term survivors and those who are not. The proposed methodol-
ogy can also be suitable in such cases to quantify heterogeneity raised by such cured
fraction and effect modifiers. Compared with the current BART-based causal infer-
ence for survival data that regards the treatment indicator as just another covariate,
the BCF structure adopted in our model enables controllable regularization imposed
directly on the UCATE through a separate BART and selects the top-used effect mod-
ifiers straightforwardly with easy visualization of the induced heterogeneity. The probit
BART component differentiates the uncured subjects for whom treatment effects on
extending event time are further assessed. Meanwhile, it selects covariates that ex-
plain variation in cured rate for each subject. We developed a Bayesian approach with
backfitting MCMC algorithm and the Gibbs sampler to estimate the causal estimands
efficiently. Simulation results showed the proposed model outperformed one of the most
advanced causal machine learning approaches in survival analysis when a cured fraction
did exist. Finally, an application to SEER breast cancer data further manifested the
usage of the proposed method.

This study has several limitations. First, we chose the AFT model for its straight-
forward interpretation of the treatment effect on decelerating/accelerating the event
time. But this led to ill-defined CATE on the scale of survival time for cured subjects
and thereby a combination of causal estimands with different scales. A joint framework
of the BCF and Cox mixture cure model is likely to unify the scale of causal esti-
mands for both the cured and uncured subgroup in terms of the hazard ratio. Other
than the logarithm of survival time, modeling the hazard function or survival func-
tion with the nonparametric ensemble of trees may improve estimation accuracy of the
CASP and facilitate treatment effect characterization on the scale of survival or cured
probability. But with link functions or transformation functions involved in this way,
how to achieve the straightforward linkage between the target causal estimand and the
“modifier” BART τ(x) efficiently through reparametrization remains a future direction.
Second, the proposed method was applied with two naïve mitigation strategies to allevi-
ate ITB-related confounding, considering that the SEER breast cancer dataset does not
possess thorough information on ITB. Once sufficient knowledge on enrollment, treat-
ment initiation, and immortal time is accessible, future investigation with emulated trial
or more advanced mitigation strategies including landmark analysis and stratified Cox
model with time-varying treatment (Wang et al., 2022) are promising and of great inter-
est. But it is also worth noticing that such mitigation strategies can more or less change
the original data distribution and distort the underlying causal relationship of interest.
Further investigation is required to connect ITB-targeted approaches to causal inference
in a more flawless way. Third, the effect modifiers were selected based on merely the
frequency of usage in the “modifier” BART τ(x) rather than rigorous variable selection
procedures and thereby cannot guarantee consistency or adapt sparsity, especially in
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high-dimensional circumstances. Introducing a sparsity-inducing Dirichlet hyperprior
(Caron et al., 2022; Linero, 2018) or spike-and-tree prior (Ročková and van der Pas,
2020) on splitting rules of the proposed model, or a permutation-based variable selec-
tion approach (Bleich et al., 2014) alternatively, are promising solutions to this problem.
Despite the black-box nature as a causal machine learning approach, tree-based ensem-
ble methods have experienced rapid development in theories on posterior consistency in
recent years. Extending the theoretical results to the proposed model with time-to-event
outcome and a cured fraction is important and worthy of consideration. The fulfillment
of these extensions is of great interest and requires further investigation in the future.

Supplementary Material
Supplementary Material for “A tree-based Bayesian accelerated failure time cure model
for estimating heterogeneous treatment effect” (DOI: 10.1214/23-BA1402SUPP; .pdf).
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