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Warped Gradient-Enhanced Gaussian Process
Surrogate Models for Exponential Family
Likelihoods with Intractable Normalizing

Constants∗

Quan Vu†,‡, Matthew T. Moores‡, and Andrew Zammit-Mangion‡

Abstract. Markov chain Monte Carlo methods for exponential family models
with intractable normalizing constant, such as the exchange algorithm, require
simulations of the sufficient statistics at every iteration of the Markov chain,
which often result in expensive computations. Surrogate models for the likelihood
function have been developed to accelerate inference algorithms in this context.
However, these surrogate models tend to be relatively inflexible, and often provide
a poor approximation to the true likelihood function. In this article, we propose
the use of a warped, gradient-enhanced, Gaussian process surrogate model for
the likelihood function, which jointly models the sample means and variances of
the sufficient statistics, and uses warping functions to capture covariance non-
stationarity in the input parameter space. We show that both the consideration
of nonstationarity and the inclusion of gradient information can be leveraged to
obtain a surrogate model that outperforms the conventional stationary Gaussian
process surrogate model when making inference, particularly in regions where the
likelihood function exhibits a phase transition. We also show that the proposed
surrogate model can be used to improve the effective sample size per unit time
when embedded in exact inferential algorithms. The utility of our approach in
speeding up inferential algorithms is demonstrated on simulated and real-world
data.
Keywords: autologistic model, delayed-acceptance MCMC, exchange algorithm,
hidden Potts model, importance sampling, nonstationarity.

1 Introduction
Methods for statistical inference usually require the likelihood function to be evaluated
pointwise, up to an unknown normalizing constant. However, many important expo-
nential family models have an intractable likelihood that cannot be evaluated, but that
can be easily simulated from. In the case of the Potts model (Potts, 1952) used for
image analysis, and the exponential random graph model (ERGM; Frank and Strauss,
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1986) used for social network analysis, the likelihood function features a phase transition
where, on a small region of the parameter space, the model behavior changes rapidly
from one phase (known as the ordered phase) to another phase (known as the disordered
phase). This property makes inference with these models even more challenging.

A growing body of literature is concerned with computational methods for inference
with models that have intractable likelihoods. For example, pseudo-marginal methods
(Beaumont, 2003; Andrieu and Roberts, 2009) make use of an unbiased estimate of the
likelihood function, while in approximate Bayesian computation (ABC; Tavaré et al.,
1997; Pritchard et al., 1999), summary statistics are used to compare simulated pseudo-
data at given parameter values to observed data. One of the most popular approaches
involves the use of Markov chain Monte Carlo (MCMC) with auxiliary variables. Two
algorithms in this class include that introduced by Møller et al. (2006), and the exchange
algorithm (Murray et al., 2006). These MCMC methods require simulation of pseudo-
data from the likelihood at each iteration of the Markov chain. In practice, Gibbs or
Swendsen–Wang (SW) algorithms (Swendsen and Wang, 1987) are used for simulating
the sufficient statistics. Even these algorithms can be computationally expensive when
the data dimension is large, rendering inference infeasible in many applications.

To make inference for these models computationally tractable, surrogate likelihoods
are often employed to approximate the true likelihood function. Such methods can speed
up inference, as they do not require expensive simulations of the sufficient statistics at
every iteration. For example, Boland et al. (2018) used a deterministic function to em-
ulate ratios of normalizing constants, while Moores et al. (2020) used a deterministic
function to emulate the sufficient statistics. An attractive way for constructing surro-
gate models for the likelihood function is through Gaussian processes, which are flexible,
probabilistic models. Gaussian process emulators were proposed in the context of com-
puter experiments for modeling computationally expensive functions (e.g., Sacks et al.,
1989; Kennedy and O’Hagan, 2000). Gaussian process emulators were subsequently
used as surrogate models in approximate Bayesian computation by Meeds and Welling
(2014); Wilkinson (2014); Järvenpää et al. (2018) and Järvenpää et al. (2021). Drovandi
et al. (2018) and Park and Haran (2020) employed Gaussian process surrogate models
for facilitating Bayesian computation in an MCMC context.

Typically, Gaussian process surrogate models are constrained to be stationary. How-
ever, if the likelihood function undergoes a phase transition, the sufficient statistics can
abruptly change with small changes in the input parameters at the transition; this
sudden change in behavior is synonymous with nonstationarity when modeling using
stochastic processes. In Section 4.1 we show that using a stationary Gaussian process
surrogate model for the sufficient statistics may lead to large errors when emulating said
sufficient statistics. The surrogate model is often used directly, instead of the true likeli-
hood function, in an MCMC algorithm, resulting in an inexact-approximate algorithm.
In such cases, inferential accuracy heavily depends on the accuracy of the surrogate
model.

In this paper we build a surrogate model to emulate the sufficient statistics for
making computationally-efficient inference with exponential family models that have
an intractable normalizing constant. However, to rectify the aforementioned problems,
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we propose using a nonstationary Gaussian process to emulate the sufficient statistics,
specifically one based on the warped Gaussian process model introduced by Zammit-
Mangion et al. (2022) and Vu et al. (2022). The main contribution here, over these and
related works that also consider nonstationary Gaussian process models (e.g. Järvenpää
et al., 2018; Aushev et al., 2022) is the incorporation of gradient information in our
model (see Laurent et al., 2019, for a review). This modification leads to a multivariate
Gaussian process that jointly models the means and the variances of the sufficient statis-
tics. We show that gradient-enhanced nonstationary Gaussian process surrogate models
offer a large improvement over both univariate stationary, and nonstationary, Gaussian
process models when emulating the sufficient statistics, particularly in the vicinity of
phase transitions. We illustrate the use of our surrogate model in importance sampling
(Everitt et al., 2017; Vihola et al., 2020) and delayed-acceptance MCMC (Christen and
Fox, 2005; Sherlock et al., 2017), which target the exact posterior distribution over the
parameters. We show that our proposed methodology may be used to good effect in
both the complete-data setting and the incomplete-data setting.

The remainder of the article is organized as follows. In Section 2, we present our
general approach for modeling the sufficient statistics to approximate the likelihood
of exponential family models with intractable normalizing constant. In Section 3, we
introduce the gradient-enhanced nonstationary Gaussian process surrogate models for
the sufficient statistics, and detail the algorithms that make use of the surrogate models
for inference. In Section 4, we demonstrate the use of the surrogate models on three
data sets. Section 5 concludes.

2 Background
In this section, we define the models our approach is suitable for, and detail the likelihood
function that we approximate with surrogate models in Section 3.

2.1 Intractable Likelihood

In this paper we consider models for which the likelihood function can be written in the
following, exponential family, form,

p(z | β) =
exp

{
βT s(z)

}
C(β) , (1)

where the normalizing constant is given by

C(β) =
∑
z∈Z

exp
{
βT s(z)

}
, (2)

z = (z1, . . . , zN )T are the observed data, s(z) =
(
s(1)(z), . . . , s(D)(z)

)T are the sufficient
statistics, and β = (β(1), . . . , β(D))T are the natural parameters. When the set of all
possible observed data, Z, is large, the computational cost of evaluating the sum (2)
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becomes infeasible. There are models of this form that will benefit from the methodology
developed in this work. These include the Potts model and the related autologistic model
(Besag, 1974) that we discuss in Sections 4.1 and 4.3, respectively, and the exponential
random graph model (ERGM, e.g., Robins et al., 2007).

2.2 Approximate Likelihood

We follow the approach of Price et al. (2018), and approximate the computationally
intractable likelihood in (1) using a Bayesian synthetic likelihood. Specifically, we ap-
proximate the intractable likelihood as a multivariate normal distribution of the suffi-
cient statistics, with mean μ(β) and covariance Σ(β). This yields the synthetic like-
lihood function p̃(z | β) = N (s(z);μ(β),Σ(β)). Note that if the sufficient statis-
tics are highly non-Gaussian, there are more robust synthetic likelihood approaches
that one can use (e.g., An et al., 2020; Frazier and Drovandi, 2021). We further as-
sume that the sufficient statistics in s(z) are mutually independent, that is, we let
Σ(β) = diag({σ2(d), d = 1, . . . , D}), so that

p̃(z | β) =
D∏

d=1

N (s(d)(z);μ(d)(β), σ2(d)(β)). (3)

To evaluate our synthetic likelihood function p̃(z | β∗) for any β∗, we build surrogate
models for the mean functions {μ(d)(β∗)}d and variance functions {σ2(d)(β∗)}d. We
first simulate pseudo-data (using the SW algorithm) at a fixed set of parameters for
fitting the surrogate model. Specifically, consider a fixed set of p parameter values
{β1, . . . ,βp}. For each βj , j = 1, . . . , p, we generate q simulations of the sufficient
statistics {sj,1, . . . , sj,q}, where sj,k = (s(1)

j,k , . . . , s
(D)
j,k )T . Then, we obtain the sample

means and the sample variances of the simulations at βj , that is, we compute

m(d)(βj) = 1
q

q∑
k=1

s
(d)
j,k ,

v(d)(βj) = 1
q − 1

q∑
k=1

(s(d)
j,k −m(d)(βj))2,

(4)

for j = 1, . . . , p, and d = 1, . . . , D. The sample means {m(d)(βj)}j,d and the sample vari-
ances {v(d)(βj)}j,d are treated as (noisy) observations of the true means {μ(d)(βj)}j,d
and variances {σ2(d)(βj)}j,d, respectively.

We note that, from (1), for d = 1, . . . , D,

μ(d)(β) = Eβ(s(d)(z)) = ∂

∂β(d) log C(β),

σ2(d)(β) = Varβ(s(d)(z)) = ∂2

∂β(d)2 log C(β),
(5)
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which implies σ2(d)(β) = ∂
∂β(d)μ

(d)(β). This property motivates us to model the means
and variances jointly in our surrogate model. Such models are often referred to as
gradient-enhanced models (Laurent et al., 2019).

2.3 Prior Distribution

In this paper we employ independent, bounded uniform priors for the model parame-
ter(s) β, largely for computational convenience and to facilitate comparison with other
related techniques that also employ uniform priors (e.g. Møller et al., 2006; Everitt,
2012; Lyne et al., 2015; Järvenpää et al., 2021). Other priors should be considered by
practitioners that take into account the context of their application. For example, in
the case of the (one-parameter) Potts model described in Section 4.1, it is often reason-
able to assume that neighboring variables (pixels) in a lattice are positively correlated.
A prior distribution that excludes negative values of the inverse temperature parameter
β is therefore reasonable with this model. In practice, there will also be a value of β,
βcrit say, beyond which realizations of the k-state Potts model will have fewer than k
unique labels with high probability. For this reason, it can be beneficial to put an upper
bound on β, or at least penalize large values by using an exponential prior for β; this
penalized complexity prior would be similar to those discussed by Simpson et al. (2017).

In many applications, there is also ample prior information available. For example, in
the case of Landsat data, such as those considered in the example of Section 4.2, satellite
imagery is available from 1972 to present (Wulder et al., 2022), and the historical data
could be used to construct a prior distribution. In these cases, calibrated log-normal,
gamma, truncated normal, or scaled beta distributions are all suitable candidates. Ex-
pert elicitation can also be used to construct informative priors (French, 2022). Prior
information is particularly useful in our context as it helps us select the appropriate
fixed set of parameters {β1, . . . ,βp} for fitting the Gaussian process surrogates (e.g.,
by sampling from the prior distribution).

3 The Surrogate Model
In Section 3.1, we introduce the gradient-enhanced nonstationary Gaussian process
surrogate model, which uses both deformation functions and gradient information to
improve the fit to the surrogate means. In Section 3.2, we describe approaches for eval-
uating the surrogate synthetic likelihood at arbitrary parameter values using the fitted
surrogate model. Section 3.3 presents a few ways with which one could use the surro-
gate synthetic likelihood for both inexact-approximate and exact-approximate Bayesian
inference.

3.1 Gaussian Process Surrogate Models

In this section, we introduce the Gaussian process surrogate models for the sufficient
statistics. The Gaussian process surrogates use the observed sample means {m(d)(βj)}j,d
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and sample variances {v(d)(βj)}j,d from (4) to emulate the true means and variances
at any β∗.

It is important that simulator “noise” is accounted for in surrogate models (e.g.,
Gramacy, 2020, Chap. 5). This is relevant for our surrogate models, since we build
them using sample (and not exact) means and variances. We therefore model each
m(d)(βj) and v(d)(βj) as a noisy observation of the (true) surrogate mean μ(d)(β) and
surrogate variance σ2(d)(β), respectively. Since the sample mean and the sample variance
are asymptotically normally distributed around the mean and variance of the sufficient
statistics, respectively, we let

m(d)(βj) ≡ μ(d)(βj) + ε
(d)
μj ,

v(d)(βj) ≡ σ2(d)(βj) + ε
(d)
σj ,

(6)

for j = 1, . . . , p, and d = 1, . . . , D, where ε
(d)
μj ∼ N (0, τ2(d)

μj ) and ε
(d)
σj ∼ N (0, τ2(d)

σj )
are Gaussian noise terms with variances τ

2(d)
μj and τ

2(d)
σj , respectively. Here, we assume

that the noise terms are independent, but these could also be modeled as more general
Gaussian processes (e.g., Gramacy, 2020, Chap. 10). For simplicity, here we estimate the
variances τ

2(d)
μj and τ

2(d)
σj under the assumption that the underlying sufficient statistics

are Gaussian. Hence, we set

τ
2(d)
μj =

v(d)(βj)
q

and τ
2(d)
σj =

2v2(d)(βj)
q − 1 .

Equation (6) does not respect nonnegativity of the variance parameter; this was not
found to be a problem in practice, and more complicated models could be considered
(at some computational cost) if needed.

Note that although one can obtain both the sample means and variances from the
observations (see (4)), one may choose to build just one surrogate model: one for the
surrogate means or one for the surrogate variances. For example, Moores et al. (2020)
built a surrogate model for the variances and used the mean–variance relationship given
in (5) to find the surrogate means by integration. Park (2021) built a surrogate model
for the means, and fixed the surrogate covariance matrices to be equal to the nearest
empirical covariance matrices. One could also employ coupled mean-variance Gaussian
process models in this context (e.g., Chapter 10 of Gramacy, 2020); however, these do
not take advantage of the mean-variance relationship given in (5).

In what follows we consider different Gaussian process surrogate models: first, a
stationary Gaussian process surrogate model for the means, and then a nonstationary
Gaussian process surrogate model for the means. Finally, we build a novel joint Gaussian
process surrogate for the means and variances that takes advantage of the relationship
in (5).
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Figure 1: Empirical means (left panel) and standard deviations (right panel) of the
simulated sufficient statistics for different values of β(1) for the Potts model on a 1000×
1000 image with 5 labels.

Stationary Gaussian Process Surrogate

We first consider a stationary Gaussian process for modeling the means of the sufficient
statistics. In this first case, independently, we let

μ(d)(·) = g̃(d)(·) = b(d)(·) + g(d)(·), d = 1, . . . , D, (7)

where b(d)(·) is the trend, and g(d)(·) is a zero-mean stationary Gaussian process. This
model serves as a baseline, against which we will evaluate the more sophisticated models
we discuss next.

Nonstationary Gaussian Process Surrogate

Phase transition is a property in many models with intractable likelihoods, such as the
Potts model and the ERGM. Figure 1 shows the sample means and sample standard
deviations of the sufficient statistic of the Potts model (the sum of all neighbor pairs
with the same label) for a 1000× 1000 image with 5 labels (see Section 4.1 for details).
When the parameter β(1) is between 1.15 and 1.2, the mean of the sufficient statistic
changes value rapidly with small changes in the parameters; this is in contrast to other
regions in the parameter space where the rate of change is relatively slow. This region in
the parameter space where the mean of the sufficient statistic changes rapidly is often
called a phase transition.

As we show in Section 4.1, a stationary Gaussian process surrogate model cannot
adequately capture the nonstationary behavior of the means of the sufficient statistics
at the phase transition. We therefore also consider a nonstationary Gaussian process
for the surrogate means. There are several approaches that could be adopted to model
nonstationarity; here, we use the deformation (or warping) approach (Sampson and
Guttorp, 1992) where nonstationarity is obtained via a deformation (or warping) of the
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parameter space. The warping function f(·) maps the parameter space onto a new do-
main on which a stationary Gaussian process is modeled, which induces a nonstationary
Gaussian process on the original domain. We construct a flexible warping function f(·)
by linking several simple warping functions (such as basis functions) through composi-
tion, as detailed by Zammit-Mangion et al. (2022). Warping of the parameter space is a
natural way forward when modeling the means of the sufficient statistics, as the warping
function can stretch the parameter space when these undergo a phase transition and
shrink the parameter space in other regions, in such a way that on the warped space it
would be reasonable to model the process as stationary.

Our nonstationary model for the means of the sufficient statistics is given by

μ(d)(·) = g̃(d)(·) = b(d)(·) + g(d)(f (d)(·)), (8)

where b(d)(·) is the trend, g(d)(·) is a zero-mean stationary Gaussian process, and f (d)(·)
is a deformation/warping function given by f (d)(·) ≡ f (d)

n ◦ · · · ◦ f (d)
1 (·) where each

f (d)
i (·) = Φ(d)(·)η(d)

i is constructed using basis functions Φ(d)(·) and weights η
(d)
i , that

need to be estimated. See Zammit-Mangion et al. (2022) for more details on the basis
functions and estimation.

Gradient-Enhanced Nonstationary Gaussian Process Surrogate

As shown in (5), the variance of the sufficient statistic, σ2(d)(β), is the derivative of the
mean of the statistic, μ(d)(β), with respect to the dth dimension of β. This motivates
us to use a gradient-enhanced Gaussian process to jointly model the means and the
variances of the sufficient statistics, to ultimately improve the fit to the surrogate means
(Riihimäki and Vehtari, 2010; Laurent et al., 2019). This joint model is expected to
improve the quality of the fit to the means of the sufficient statistics as, in this case,
the sample variances are also informative on the means of the sufficient statistics.

We model the means of the sufficient statistics using nonstationary Gaussian pro-
cesses as in (8). We then model the variances as the derivatives of the respective surro-
gate means. Therefore, our joint model of the mean μ(d)(·) and the variance σ2(d)(·) is
a bivariate Gaussian process (Banerjee et al., 2003),

(
μ(d)(·)
σ2(d)(·)

)
=

(
g̃(d)(·)
h̃(d)(·)

)
=

(
b(d)(·)
c(d)(·)

)
+

(
g(d)(f (d)(·))
h(d)(f (d)(·))

)
, (9)

where b(d)(·) is the trend, c(d)(·) = ∂
∂β(d) b

(d)(·), g(d)(·) is a zero-mean stationary Gaussian
process, f (d)(·) is a deformation function, and h(d)(·) = ∂

∂β(d) g
(d)(·). This joint Gaussian

process is a special case of the multivariate nonstationary Gaussian process with shared
warping function proposed by Vu et al. (2022).

The cross-covariance matrix function of the joint Gaussian process in (9) depends
on the covariance function of g(d)(·), which we denote by K(d)(·, ·). The cross-covariance
matrix function of the joint Gaussian process in (9), which we denote by C(d)(·, ·), is
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then given by

C(d)(βj ,βl) =
(

cov(g̃(d)(βj), g̃(d)(βl)) cov(g̃(d)(βj), h̃(d)(βl))
cov(h̃(d)(βj), g̃(d)(βl)) cov(h̃(d)(βj), h̃(d)(βl))

)
,

where,

cov(g̃(d)(βj), g̃(d)(βl)) = K(d)(f (d)(βj), f (d)(βl)),

cov(h̃(d)(βj), g̃(d)(βl)) =
∂K(d)(f (d)(βj), f (d)(βl))

∂β
(d)
j

,

cov(g̃(d)(βj), h̃(d)(βl)) =
∂K(d)(f (d)(βj), f (d)(βl))

∂β
(d)
l

,

cov(h̃(d)(βj), h̃(d)(βl)) =
∂2K(d)(f (d)(βj), f (d)(βl))

∂β
(d)
j ∂β

(d)
l

.

Our model does not naturally enforce positivity of the predicted variances, however
this was not found to be a problem in practice. If this does become an issue, one could
use basis functions when constructing the surrogate models, and add constraints to the
weights in order to ensure positivity everywhere (Zammit-Mangion et al., 2022). How-
ever, basis function surrogate models tend to be less flexible than (full-rank) Gaussian
processes.

3.2 Predicting the Surrogate Likelihood Elsewhere in the
Parameter Space

After fitting the surrogate models, we can predict the means and variances of the suf-
ficient statistics for an arbitrary parameter vector β∗ through Gaussian conditioning.
Using the joint model in (9), we can obtain predictions of both the means and the
variances of the sufficient statistics. However, while we found that the variance infor-
mation was very important for improving the estimates of the parameters when fitting
the Gaussian process, we found little benefit in using them to predict the means and
the variances, and predicting the variances as the derivative of the mean predictions
sufficed. Focusing on the prediction of the means also facilitates comparison between
the different surrogate models in Section 3.1, two of which do not consider the variance
of the sufficient statistics.

We consider two approaches for predicting the means and variances of the sufficient
statistics with our surrogate models. In the first approach, we let the surrogate mean
be equal to the prediction mean of the Gaussian process. That is, for some possibly new
parameter value β∗, we let

μ̃(d)(β∗) = E[g̃(d)(β∗)|M(d)], d = 1, . . . , D,

where M(d) = {m(d)(β1), . . . ,m(d)(βp)}. Then, we set the surrogate variance to be
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equal to the gradient of the surrogate mean, that is, we set

σ̃2(d)(β∗) = ∂

∂β(d)∗ E[g̃(d)(β∗)|M(d)], d = 1, . . . , D.

Then, the surrogate synthetic likelihood is given by,

p̃(z | β∗) =
D∏

d=1

N (s(d)(z); μ̃(d)(β∗), σ̃2(d)(β∗)).

The second approach we propose accounts for the uncertainty in the surrogate
model. In this approach, we sample r realizations of the surrogate means, {μ̂(d)

1 (β∗), . . . ,
μ̂

(d)
r (β∗)}, d = 1, . . . , D, from the fitted Gaussian process. Then, for each realization

μ̂
(d)
i (β∗), we evaluate the surrogate variance

σ̂
2(d)
i (β∗) = ∂

∂β(d)∗ μ̂
(d)
i (β∗), i = 1, . . . , r.

The surrogate synthetic likelihood is then given by,

p̃i(z | β∗) =
D∏

d=1

N (s(d)(z); μ̂(d)
i (β∗), σ̂2(d)

i (β∗)), i = 1, . . . , r.

Because we sample independently from the fitted Gaussian process, the surrogate like-
lihood for all the realizations is then just the average of the surrogate likelihoods for
each realization. Specifically,

p̃(z | β∗) ≈ 1
r

r∑
i=1

p̃i(z | β∗).

3.3 Inference Using the Surrogate Model
Once we obtain the surrogate synthetic likelihood, there are different ways we can
use it when making Bayesian inference. The simplest way is to just substitute the
approximately-true likelihood (typically obtained from simulation via the SW algo-
rithm), with the surrogate likelihood in the Metropolis-Hastings ratio in the exchange
algorithm, as in Moores et al. (2020) and Park and Haran (2020). This is computation-
ally efficient, as it precludes the need for further simulations of the sufficient statistics,
but it is an inexact-approximate method. One exact-approximate MCMC method, which
uses the surrogate likelihood to reduce the computational cost, is delayed-acceptance
MCMC (Christen and Fox, 2005). The delayed-acceptance algorithm is a two-stage al-
gorithm, wherein the first step involves using the surrogate likelihood to quickly reject
any poor proposals: Only good proposals accepted in the first stage are passed through
to the second stage, where similarly to the exchange algorithm, auxiliary variables are
used to accept or reject the proposals. This algorithm prevents one from wasting compu-
tational resources on simulations of sufficient statistics at a poor proposal. The delayed-
acceptance algorithm is detailed in Algorithm 1.
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Algorithm 1: Delayed-acceptance MCMC.
Denote samples from the target posterior distribution as β̃i : i = 0, . . . , T ,
where T is the number of iterations. Initialize β̃0. For i = 0, . . . , (T − 1) do

1 Propose a new value βnew from a proposal distribution q(βnew | β̃i).
2 Stage 1: Pass βnew to Stage 2 with probability

min
(

1, q(β̃i | βnew)p(βnew)p̃(z | βnew)
q(βnew | β̃i)p(β̃i)p̃(z | β̃i)

)
.

3 Stage 2: Simulate pseudo-data xnew from the likelihood p(xnew | βnew). Accept
βnew with probability

min
(

1, p̃(z | β̃i) exp{βnewT

s(z)} exp{β̃T

i s(xnew)}
p̃(z | βnew) exp{β̃T

i s(z)} exp{βnewT s(xnew)}

)
.

4 If βnew is accepted at Stage 2, then set β̃i+1 = βnew, otherwise, if βnew is not
accepted at either Stage 1 or Stage 2, then set β̃i+1 = β̃i.

An alternative to MCMC methods is importance sampling (e.g., Everitt et al., 2017).
Importance sampling is an exact-approximate method, yet it affords a significant im-
provement in computational time, as the simulations of sufficient statistics (required
to determine the importance weights), can be performed in parallel. The importance
sampling algorithm shown in Algorithm 2 uses auxiliary variables in a similar fashion to
Møller et al. (2006). In our approach, we choose the proposal distribution for importance
sampling to be the surrogate posterior distribution, which we define to be that posterior
distribution obtained when using the surrogate likelihood function directly in place of
the true likelihood function. A fast approach to obtain the surrogate posterior is by
using grid approximation, wherein one evaluates the surrogate posterior density at reg-
ular points on a grid (e.g., Gelman et al., 2013); this is feasible in the low-dimensional
settings we consider. Once the grid approximation is found, it is straightforward to
draw samples from the surrogate posterior distribution prior to reweighing using the
simulations of the sufficient statistics.

4 Data Examples
In this section, we show examples that demonstrate the utility of our proposed Gaussian
process surrogate models when making inference on parameters that appear in the
Potts, the hidden Potts, the autologistic models, and the Kent distribution, using both
simulated and real-world data sets. All MCMC computations were done on a computer
with a 6-core Intel Core i7-8700 @3.2 GHz, 32 GB RAM, and an NVIDIA GeForce
GTX 1600 GPU. All computations with the importance sampling algorithm were done
on a server with 64 cores in Intel Xeon E5-2683 @2.1 GHz processors, 256 GB RAM,
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Algorithm 2: Importance sampling.
Denote samples from the target posterior distribution as β̃i : i = 1, . . . , T ,
where T is the number of samples.

1 Sample β̃1, . . . , β̃T from the surrogate posterior distribution p̃(z | β)p(β).
2 For each β̃i, simulate pseudo-data xi from the likelihood p(xi | β̃i).
3 Calculate the importance weight for each of the samples,

wi = exp{β̃T

i s(z)} exp{β̂T
s(xi)}

exp{β̃T

i s(xi)}p̃(z | β̃i)
,

where β̂ is fixed at an arbitrary point. Similar to Møller et al. (2006), we
choose the maximum likelihood estimate, which we approximate using the
surrogate likelihood.

4 Normalize the weights
w̃i = wi∑T

i=1 wi

.

5 Obtain the weighted posterior samples from which we can then make inference
on β.

and an NVIDIA GeForce GTX TITAN GPU, in order to take advantage of algorithm
parallelization. Code to reproduce the results in this section can be found at https://
github.com/quanvu17/warped_gradient_enhanced_GP_surrogate.

4.1 Potts Model

The Potts model is often used for analyzing spatial dependence between neighboring
labels in images. In the Potts model, the probability of observing a specific combination
of labels is defined as

p(z | β(1)) =
exp

(
β(1) ∑

u∼v δ(zu, zv)
)

C(β(1))
, (10)

where zu, u = 1, . . . , N , is the label of pixel u, u ∼ v denotes the neighboring pixels of
pixel u, and δ(·) is the Kronecker delta function. The sufficient statistic of the Potts
model, s(z) =

∑
u∼v δ(zu, zv), is the count of pairs of neighboring pixels that have

the same label. The normalizing constant C(β(1)) =
∑

z∈Z exp
(
β(1) ∑

u∼v δ(zu, zv)
)

involves a summation over all possible combinations of the labels over all the pixels,
and therefore is computationally infeasible to evaluate. The Potts model undergoes a
phase transition from a disordered state (where most neighboring pixels do not share the
same label) to an ordered state (where most neighboring pixels share the same label)
near a critical value of the parameter β(1), which is often referred to as the inverse
temperature parameter. As p(z | β(1)) involves a computationally intractable sum and

https://github.com/quanvu17/warped_gradient_enhanced_GP_surrogate
https://github.com/quanvu17/warped_gradient_enhanced_GP_surrogate
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also contains a phase transition, we use the proposed gradient-enhanced nonstationary
Gaussian process surrogate model to approximate this probability.

In this experiment we consider the Potts model for a 1000× 1000 size image, where
the number of labels is k = 5. The likelihood function exhibits a phase transition around
β(1) = 1.175; see Figure 1.

Comparison of Gaussian Process Surrogate Models

We chose a bounded uniform prior distribution on the interval [0.9, 1.3] for the inverse
temperature parameter β(1) (see Section 2.3 for a discussion on the choice of prior
distributions). We chose p = 51 equally-spaced points on this interval for training, and
50 points (in between the training data) for testing. For each of the 101 values of β(1)

we simulated sufficient statistics using the SW algorithm.

We fit the surrogate models introduced in Section 3.1 to the training data set:

1. A stationary Gaussian process model (S-GP),

2. A nonstationary Gaussian process model (NS-GP),

3. A gradient-enhanced nonstationary Gaussian process model (GE-NS-GP),

where the trend b(1)(·) was fixed to be the mean of the observed sample means, and the
stationary Gaussian process g(1)(·) was set to have the Matérn 3/2 covariance function

K(1)(βj ,βl) = cov(g(1)(βj), g(1)(βl)) = ξ2(1)(1 + a(1)‖h‖) exp
(
−a(1)‖h‖

)
,

where ξ2(1) is the process variance parameter, a(1) is the process scale parameter, and
h ≡ βl − βj . For Models 2 and 3 we used an axial warping unit for f (1)(·) (Zammit-
Mangion et al., 2022) comprised of 100 sigmoid basis functions.

For comparison purposes we also ran the parametric functional approximate Bayesian
(PFAB) algorithm (Moores et al., 2020), which uses a surrogate parametric model that
takes into account specific properties of the Potts likelihood (e.g., the critical value,
which can be calculated exactly for a 2D lattice). PFAB is specifically designed for the
Potts model and is therefore a good candidate for comparison. Note that our Gaussian
surrogate models are more general as they can be easily used with other exponential-
family models (e.g., with the autologistic model and the Kent distribution, as we show
in Section 4.3 and Section 4.4, respectively).

Fitting of the Gaussian process surrogate models 1–3 only took a few seconds using
maximum likelihood, while running the PFAB algorithm took nearly 30 minutes. The
predicted means and variances of the sufficient statistics at the testing locations were
then compared to those of the simulated sufficient statistics at these testing locations.
The mean absolute prediction error (MAPE) and root mean square prediction error
(RMSPE) are shown in Table 1. The PFAB algorithm produced substantially worse
predictions than all of the Gaussian process models for both the mean and the variance,
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Model PFAB S-GP NS-GP GE-NS-GP
MAE (mean, ×103) 4.224 1.258 1.007 0.817

RMSPE (mean, ×103) 12.581 3.554 2.978 1.528
MAE (variance, ×106) 6.387 5.810 5.783 5.699

RMSPE (variance, ×107) 4.185 3.819 3.792 3.748
Table 1: Comparison of the different surrogate models.

Figure 2: Left panel: Absolute errors of the means of the sufficient statistics for the
surrogate models. Green triangle: S-GP. Red square: NS-GP. Blue dot: GE-NS-GP.
Right panel: Posterior distribution of the parameter β(1) for the Potts model. Purple
dashed line: GE-NS-GP surrogate posterior. Blue dotted line: Importance sampling.
Green dot-dashed line: Delayed-acceptance MCMC. Red solid line: Exchange algorithm.
Vertical dashed line: True parameter value.

despite it being specifically designed for the Potts model. Focusing just on the Gaus-
sian process models, we see that in terms of predicting the mean, the stationary GP
performed the worst, while the gradient-enhanced nonstationary GP model performed
the best. The left panel of Figure 2 shows the absolute errors for Models 1–3. All three
models perform similarly in regions far away from the phase transition. However, near
the phase transition, we see that the stationary model results in large errors, while the
gradient-enhanced nonstationary model results in smaller errors. Table 1 shows that
the GE-NS-GP model also generates slightly better predictions of the variances, when
compared to those of the S-GP and NS-GP models, although the improvement is less
substantial.

Inference

In this sub-section, we conduct experiments where we infer the inverse temperature
parameter from images using the Gaussian process surrogate models. We set the true
inverse temperature parameter β(1) by simulating from a normal distribution centered
at the true critical value β(1) = 1.1744 (see Potts, 1952), with standard deviation 0.05:
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Method Surrogate Importance sampling Delayed-acceptance Exchange
Posterior mean 1.17056 1.17039 1.17013 1.17027
Posterior SD 0.000497 0.000252 0.000285 0.000333
Time (hours) 3 × 10−6 0.7 25.0 31.0

ESS/hour 3.6 × 109 79.8 7.2 5.7
Table 2: Posterior distribution for the Potts example of Section 4.1.

The simulated value was 1.1701. We then generated five different images from this
parameter value to show the repeatability of our experiment.

We used the GE-NS-GP surrogate model to do Bayesian inference using impor-
tance sampling and delayed-acceptance MCMC, and compared both these methods
to the exchange algorithm. We first generated 1000 samples from the surrogate pos-
terior distribution using grid approximation, which took less than one second. Then,
for importance sampling, we simulated pseudo-data to reweigh the samples. For both
the delayed-acceptance MCMC algorithm and the exchange algorithm, we used 2200
MCMC iterations (including 200 burn-in iterations). The posterior distributions ob-
tained from these methods from one of the five images are shown in the right panel of
Figure 2 and summarized in Table 2. Posterior distributions for the other four images
are shown in Figure S1 in Section S1 of the Supplementary Material (Vu et al., 2023).
We see that running the importance sampler only took 0.7 hours, since it is paralleliz-
able. The sampler also resulted in a much higher effective sample size (ESS) per hour
(79.8 samples per hour) than the other exact-approximate methods. Delayed-acceptance
took 25.0 hours, a bit less, relatively, than the 31.0 hours of the exchange algorithm, and
resulted in a small gain in ESS per hour of 7.2, when compared to 5.7 for the exchange
algorithm. In Figure 2, we also show the inexact-approximate posterior distribution
(i.e., the surrogate posterior distribution), where we simply use our surrogate model as
the likelihood and do grid-based inference. Note that this inexact posterior distribution
is slightly different from the posterior distributions obtained from the exact methods.
However, the speed at which this approximate posterior distribution was obtained (< 1
second in this case) can make it attractive for situations where computing time is a
serious concern.

4.2 Hidden Potts Model
The hidden Potts model is an extension of the Potts model, and is used for analyzing
spatial dependence when the labels are not directly observed. The model links the
observed pixel intensity, yu, with the latent label, zu, through the following relationship

p(yu | zu = λ, μλ, σ
2
λ) = Gau(μλ, σ

2
λ), λ = 1, . . . , k,

where the {μλ}λ and the {σ2
λ}λ are unknown and equipped with informative prior

distributions; see Moores et al. (2020) for details. In this example, we consider a nor-
malized difference vegetation index (NDVI) 1000×1000 image of Brisbane derived from
Landsat-8 satellite data on 03 May 2015,1 shown in the left panel of Figure 3. We ana-

1Data available from https://hpc.niasra.uow.edu.au/ckan/dataset/ndvip089r079_20150503

https://hpc.niasra.uow.edu.au/ckan/dataset/ndvip089r079_20150503
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Figure 3: Images used in the analysis in Section 4.2 and Section 4.3, respectively. Left
panel: NDVI image of Brisbane derived from Landsat-8 data on 03 May 2015. Right
panel: Cropped satellite image of ice floe, originally published in Banfield and Raftery
(1992), available in the R package PAWL.

Method Surrogate Delayed-acceptance Exchange
Posterior mean 1.23593 1.23592 1.23576
Posterior SD 0.000842 0.000777 0.000845
Time (hours) 3.2 14.6 28.3

ESS/hour 112.8 7.8 6.5
Table 3: Posterior distribution for the hidden Potts example of Section 4.2.

lyzed spatial dependence in the data by classifying pixels using five labels: forest, light
vegetation, urban area, suburban area, and water. We use the hidden Potts model and
make inference on the inverse temperature parameter β(1), which determines the spatial
dependence between these labels. As we do not directly observe the labels we cannot
use importance sampling for this model. We therefore used MCMC to update the latent
labels, as well as the parameters {μλ}λ and {σ2

λ}λ, at each iteration of the chain.

We chose the prior distribution over β(1) to be a uniform distribution on the in-
terval [0.9, 1.3]. The satellite image in this section has the same dimension and num-
ber of labels as the simulated image in Section 4.1; hence we used the same GE-NS-
GP model we fitted in Section 4.1 when making inference. We compared the inexact-
approximate method to the two MCMC exact-approximate methods we consider in this
work: delayed-acceptance MCMC and the exchange algorithm. We ran 2200 MCMC it-
erations (including 200 burn-in iterations) for each method. The posterior distributions
obtained from these methods are shown in Figure 4 and summarized in Table 3. We
see that all the posterior distributions are very similar. However, with the same num-
ber of iterations, evaluating the surrogate inexact-approximate posterior distribution
took 3.2 hours. On the other hand, delayed-acceptance MCMC took 14.6 hours, while
the exchange algorithm took 28.3 hours. Unsurprisingly, the highest ESS per hour of
112.8 was obtained with the inexact-approximate method. Delayed acceptance and the
exchange algorithm yielded an ESS per hour of 7.8 and 6.5, respectively.
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Figure 4: Posterior distribution of the parameter β(1) for the hidden Potts model. Purple
dashed line: Surrogate posterior. Green dot-dashed line: Delayed-acceptance MCMC.
Red solid line: Exchange algorithm.

4.3 Autologistic Model

The autologistic model is another extension of the Potts model, where the sufficient
statistics also include the number of pixels associated with each label. The two-label
autologistic model, proposed by Besag (1974), has as likelihood function

p(z | β) =
exp

(
β(1) ∑

u zu + β(2) ∑
u∼v δ(zu, zv)

)
C(β) ,

where the label zu of pixel u takes the value 1 or −1.

We use the autologistic model to analyze spatial dependence in a satellite image
of ice floe originally published in Banfield and Raftery (1992); here we consider the
cropped 40× 40 image (Bornn et al., 2013), available in the R package PAWL, and shown
in the right panel of Figure 3.

We chose the prior distribution to be a uniform distribution on [−0.2, 0.1]× [0.7, 1.2],
and we chose training data from a 7×11 equally-spaced grid on this rectangular domain
to fit the GE-NS-GP surrogate model. We fixed the trend b(1)(·), b(2)(·) to the means
of the observed sample means for each sufficient statistic, and chose the covariance
functions for g(1)(·) and g(2)(·) to be Matérn 3/2 covariance functions, and used axial
warping units in each dimension for the deformation functions f (1)(·) and f (2)(·).

We first took 2000 samples from the surrogate posterior distribution using grid ap-
proximation. For importance sampling, we simulated sufficient statistics at these 2000
values to reweigh the samples. We compared the results to those using the exchange
algorithm, which was run for 4200 iterations (200 were discarded as burn-in). The poste-
rior distributions obtained from the two methods are shown in Figure 5 and summarized
in Table 4. As we saw in Section 4.1, all posterior distributions are largely similar, and
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Method Surrogate Importance sampling Exchange
Posterior mean β(1) −0.00167 −0.00154 −0.00208
Posterior SD β(1) 0.00176 0.00176 0.00272

Posterior mean β(2) 0.88361 0.88312 0.88315
Posterior SD β(2) 0.01647 0.01748 0.02028

Time (mins) 0.001 1.8 29.2
ESS/minute β(1) 3 × 106 201 7.1
ESS/minute β(2) 3 × 106 201 5.3

Table 4: Posterior distribution for the autologistic example of Section 4.3.

Figure 5: Posterior distribution of the parameter β(1) (left panel) and β(2) (right panel)
for the autologistic model. Purple dashed line: Surrogate posterior. Blue dotted line:
Importance sampling. Red solid line: Exchange algorithm.

we again see the huge computational gain of importance sampling over the exchange
algorithm in terms of time taken and ESS per unit time.

4.4 Kent Distribution

In this section, we illustrate the use of our proposed methodology with the Kent dis-
tribution (Kent, 1982). This distribution is used to model data on a sphere, and is
analogous to a bivariate normal distribution on a Euclidean plane. The likelihood is
given by,

p(z | γ1,γ2,γ3, κ, β) = 1
C(κ, β) exp

{
κ(γ′

1z) + β[(γ′
2z)2 − (γ′

3z)2]
}
, (11)

where z ∈ S
2, γ1 determines the mean direction, γ2 and γ3 are the major and minor

axes, κ determines the concentration, and β determines the ellipticity (0 < β < κ/2).
To simplify the illustration, we have assumed that the parameters γ1,γ2 and γ3 are
fixed and known (in this case to (1, 0, 0)′, (0, 1, 0)′, and (0, 0, 1)′, respectively). We can
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Figure 6: Posterior distribution of the parameter κ (left panel) and β (right panel) for
the Kent distribution. Blue dotted line: Importance sampling using the warped gradient-
enhanced Gaussian process surrogate model as proposal distribution. Black solid line:
Grid-based approximation to the true posterior distribution. Vertical dashed line: True
parameter value.

see from (11) that the Kent distribution is an exponential-family model. In this case the
normalizing constant C(κ, β) is known; hence, with this model we can easily compare the
posterior distribution obtained using our warped gradient-enhanced Gaussian process
surrogate model with the true posterior distribution evaluated on a fine discretization
of the parameter space.

We performed a simulation study using a sample of 100 data points generated from
the Kent distribution with parameters κ = 2 and β = 0.5 (chosen close to the “phase
transition” of the distribution). We used the GE-NS-GP surrogate model to do Bayesian
inference using importance sampling with the prior distribution a uniform distribution
on the triangular part of the domain [0.2, 10]× [0.1, 5] that lies below the line β = κ/2.
To train the GE-NS-GP, we simulated data from the Kent distribution with parameters
κ and β on an equally-spaced grid on this triangular domain. The setup of the surrogate
model was otherwise identical to that used in the autologistic model example. For im-
portance sampling we first took 2000 samples from the surrogate posterior distribution
(this was done via a grid approximation), and then simulated sufficient statistics at
these 2000 values to obtain a weighted sample. The resulting posterior distribution is
shown in Figure 6, where we also show the (true) posterior distribution obtained using
grid-based methods. As expected, the posterior distributions are very similar.

5 Discussion
In this article, we have introduced a warped gradient-enhanced Gaussian process sur-
rogate model for modeling the means and variances of the sufficient statistics of models
with intractable likelihoods. In particular, we showed that the inclusion of nonstation-
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arity and gradient information in this surrogate model resulted in smaller errors at the
phase transition than the stationary Gaussian process surrogate model, and that the sur-
rogate model can easily be used to speed up parameter inference in exact-approximate
methods such as importance sampling and delayed-acceptance MCMC. Note that it
is also possible to employ the surrogate model directly without a correction (such as
by sampling directly from the surrogate posterior distribution, or in a non-Bayesian
approach by maximizing the surrogate likelihood), but this might lead to slightly inac-
curate results (as shown in Section 4.1).

In Section 4, we showed examples for the Potts, the hidden Potts, the autologistic,
and the Kent models. Inference for other models with exponential-family intractable
likelihoods can also be done using our approach. One such model is the exponential
random graph model (ERGM). ERGMs have, however, some distinct properties. In
particular, there are some ERGMs for which the sufficient statistics do not result in any
phase transitions; inference with these models can be done effectively using stationary
Gaussian process surrogate models (Park and Haran, 2020). Sufficient statistics in other
ERGMs experience steep phase transitions, and simulations at the phase transitions
often result in bimodal distributions. Inference with these types of models is a future
direction of research.

In this work, we have assumed independence between the sufficient statistics (see
(3)). Although this assumption does not seem to have affected our inferences, one can
envisage the use of surrogate models where the sufficient statistics are modeled as depen-
dent. One would need a Gaussian process which jointly models all the surrogate means
and covariances of the sufficient statistics; in this case, the cross-covariances between the
means of the different sufficient statistics are non-zero. The cross-covariances between
the variances of the different sufficient statistics are also non-zero. This leads to the
question of what is the appropriate form of the cross-covariance function. The answer
to this question is non-trivial, as the covariance between two different sufficient statistics
can be written as two different gradients of the means of these sufficient statistics with
respect to a different dimension of the parameter, that is,

covβ(s(d1)(z), s(d2)(z)) = ∂2

∂β(d1)∂β(d2)
log C(β)

= ∂

∂β(d1)
μ(d2)(β) = ∂

∂β(d2)
μ(d1)(β).

In future work we will also address the scalability of our approach to high-dimen-
sional parameter space; in this article, we only showed examples with one-dimensional
and two-dimensional parameter spaces. In a high-dimensional parameter space, we
would need to simulate sufficient statistics at a much larger number of parameter val-
ues in order to get a good fit to the means and variances of the sufficient statistics.
This will entail investigating the use of approximation methods to Gaussian processes
(e.g., Quiñonero-Candela and Rasmussen, 2005) in the context of surrogate likelihood
models.

The relationship between the mean and the variance shown in (5) holds only for
exponential-family models, and therefore, the gradient-enhanced Gaussian process sur-
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rogates is only applicable to models in that class. However, there still are elements in
our work that can be used to construct representative synthetic likelihood functions for
more general (non-exponential) intractable models. In these cases, we would approx-
imate the likelihood as a multivariate normal distribution of summary statistics. For
the means of the summary statistics, we could then use the (warped) nonstationary
Gaussian process surrogate model (8) introduced in Section 3.1. For the (log) variances,
we could also use a nonstationary Gaussian process surrogate model; that is, we could
employ the model

log σ2(d)(·) = c(d)(·) + h(d)(f (d)(·)), (12)

where c(d)(·) is a trend, h(d)(·) is a zero-mean stationary Gaussian process, and f (d)(·) is
a warping function. One would need to use a different warping function for the variance
than from the mean, since unlike in the exponential-family case there is no pre-defined
relationship between the mean and the variance. The resulting model can be seen as
a warped version of the coupled mean and variance Gaussian processes presented by
Gramacy (2020, Chap. 10). Developing a flexible class of models on these lines for
non-exponential family models is the subject of future research.

Supplementary Material
Supplementary Material to “Warped Gradient-Enhanced Gaussian Process Surrogate
Models for Exponential Family Likelihoods with Intractable Normalizing Constants”
(DOI: 10.1214/23-BA1400SUPP; .pdf).
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