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On the Use of a Local R to Improve MCMC
Convergence Diagnostic”

Théo Moins', Julyan Arbel*, Anne DutfoyS, and Stéphane Girard?

Abstract. Diagnosing convergence of Markov chain Monte Carlo is crucial and
remains an essentially unsolved problem. Among the most popular methods, the
potential scale reduction factor, commonly named R, is an indicator that monitors
the convergence of output chains to a target distribution, based on a comparison
of the between- and within-variances. Several improvements have been suggested
since its introduction in the 90s. Here, we aim at better understanding the R
behavior by proposing a localized version that focuses on quantiles of the target
distribution. This new version relies on key theoretical properties of the associated
population value. It naturally leads to proposing a new indicator Ifioo, which is
shown to allow both for localizing the Markov chain Monte Carlo convergence in
different quantiles of the target distribution, and at the same time for handling
some convergence issues not detected by other R versions.

Keywords: computational statistics, convergence diagnostics, Markov chain
Monte Carlo, potential scale reduction factor.

1 Introduction

Markov chain Monte Carlo (MCMC) algorithms have strongly contributed to the pop-
ularity of Bayesian models to sample from posterior distributions, especially in high-
dimensional or high computational settings. This success results in a variety of softwares
increasingly used for a wide range of applications: Stan (Carpenter et al., 2017), PyMC3
(Salvatier et al., 2016), NIMBLE (de Valpine et al., 2017), or Pyro (Bingham et al.,
2019), to cite a few. The fundamental idea behind these algorithms is the convergence
of the sampling distribution to the target (typically the posterior) when the number
of samples goes to infinity. A major challenge is therefore to know if the behavior for
a finite number of draws is satisfactory or not. This allows for a handle on the num-
ber of iterations to be drawn, which is all the more crucial in complex models with
costly sampling schemes. See Roy (2020) for a recent literature review on convergence
diagnostics.
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Figure 1: Traceplots illustrating convergence and two types of non-convergence of
MCMC. Left: nothing indicates a convergence issue, as the two chains seem to have
the same stationary distribution. Middle: the blue chain is still in an exploration phase
and therefore is not stationary. Right: example where having multiple chains helps de-
tecting a mixing issue despite a stationarity appearance of each.

1.1 Diagnosing MCMC convergence

Two frequently used properties to verify chains convergence are stationarity and mixing
(see Vats and Flegal, 2021, for a discussion). Stationarity is related to the invariance
property of the target distribution F' for standard MCMC algorithms like Metropolis—
Hastings or Gibbs sampling (Robert and Casella, 2004): if #(*) is the ith element of an
MCMC chain, then %) ~ F implies 87t ~ F, so that as soon as an element of the
chain is distributed according to F', all the following ones will be too. Thus, a chain
whose distribution changes drastically during iterations is still in the exploration phase
and is therefore not stationary (see middle panel in Figure 1). Mizing refers in practice
to the exploration of the support of F': slow mixing chains correspond to chains that only
explore a subset of the parameter space, which can lead to strong bias in the distribution
(see Robert, 1995, for a more rigorous definition). A common way to limitate mixing
issues is to run several chains in parallel with different starting points, which also allows
comparing the chains together. Stationarity and mixing are two properties that can
be treated separately: in principle, being stationary implies convergence to the target
distribution and thus necessarily also mixing, but in practice there are examples of
chains that seem to have reached stationarity but are not mixing (see right panel in
Figure 1), hence the need for comparing multiple chains.

We place ourselves in the case of several chains: consider m chains of size n, with
607 denoting the ith draw from chain j. We focus here on the Gelman-Rubin diagnostic
(Gelman and Rubin, 1992), named potential reduction scale factor and commonly de-
noted by R. Tt is by far one of the most popular methods to assess MCMC convergence,
used in particular in Stan, PyMC3, or NIMBLE. The original heuristic for R construc-
tion is the comparison between two estimators that converge to the target variance
Var[f], based on W and B , respectively the estimated within- and between-variances.
This diagnostic has the advantage of being scalar even in the case of a huge number of
chains and comes with a rule of thumb that makes it very easy to use: generally R > 1,
and if it is greater than a given threshold (for example 1.01), then a convergence issue



T. Moins, J. Arbel, A. Dutfoy, and S. Girard 3

is raised. This was originally constructed to diagnose mixing issues only, but Gelman
et al. (2013, Section 11.4) suggest splitting the chains in two before computing R to
check for stationarity at the same time. We will also always consider this split version
of R throughout this paper, thus focusing only on the problem of mixing diagnostic.

1.2 Different R versions and their limitations

The original R of Gelman and Rubin (1992) has some limitations that are listed here
with associated improvements suggested in the literature.

L1. It must be compared to an arbitrary chosen threshold. To use R, a threshold
must be set to determine a convergence issue. Originally set to 1.1, Vats and Knudson
(2021) note that this choice is arbitrary and usually too optimistic. Thus, the authors
propose a threshold according to a confidence level based on a relationship made with
effective sample size (ESS). This observation was then shared by Vehtari et al. (2021)
who suggest dropping the threshold to 1.01. Driven by practical arguments, this choice
remains unprincipled nor theoretically justified, which is related to the next limitation.

L2. It suffers from a lack of interpretability. How to interpret a given value of R? By
construction, R is a ratio of two quantities that must estimate the posterior variance.
Therefore, having a value close to one can be seen as having two correct estimations of
the same quantity, which is an indication of convergence. However to our knowledge, no
study investigates the theoretical or population value R that R aims at estimating, which
would shed light on what is actually diagnosed. Typically, chains such that R~1do
not necessarily correspond to mixing chains: Vehtari et al. (2021) exhibit some counter-
examples in order to motivate a more robust version called rank-R. Still, the different
versions of R only allow to draw conclusions when they are significantly greater than 1,
and the common properties of chains producing R ~ 1 are not well known as they are
constructed at the estimator level.

L3. It is not robust to certain types of non-convergence. Traditional R can be fooled,
in the sense that R ~ 1 without convergence. This motivates the construction of rank-R
(Vehtari et al., 2021), based on two cases where the original R is not robust:

(i) When the mean of the target distribution is infinite: in that case W and B are
ill-defined and R ~ 1 even though the chains follow different distributions. One
solution is to apply rank transformation on the chains before computing R (this
version is named bulk-R by Vehtari et al., 2021).

(ii) When the means of the chains are equal: in that case, the variance of means Bis
zero, and so R ~ 1 even if the variances of chains are different. Here in addition to
the rank-transformation, transforming the chains to get the deviation from their
median allows to overcome this problem (this version is named tail- R by Vehtari
et al., 2021).

Defining rank-R = maux{bulk—]%7 tail—]:?} overcomes the two issues at the same time.
However, this robustness can be seen as very specific and can easily be fooled by simple
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examples. One way is to consider chains with different distributions, but with (i) same
mean (to fool bulk-R), and (ii) same mean over the median (to fool tail-R). For example,
uniform U(p — 20, i + 20), normal N (p, 02), or Laplace L(u, o) distributions share
the same mean (equal to p) and same mean over the median (equal to o), and thus
mixing them yields rank-R ~ 1. We provide an example and a more general framework
to construct such cases in Appendix A of the supplementary material (Moins et al.,
2023). One illustration can also be found in the right column of Figure 3. Although
these counter-examples may never appear in practice, they do show some fairly counter-
intuitive results that the additional layer of computation carried by rank-R makes even
more difficult to analyse.

L4. It does not target a specific quantity of interest. Another point raised by Vehtari
et al. (2021) is that the convergence diagnostic does not depend on inferential features of
interest. It might be more precise to speak of convergence for a given posterior quantity,
typically a mean, higher order moment, or quantile. Typically, practitioners apply R
on quantities of interest such as the log-likelihood, the posterior density, or quantiles.
On their side, Vehtari et al. (2021) suggest a local transformation on ESS to obtain a
tail-ESS associated with 5% and 95% quantiles.

L5. It is associated with a univariate parameter. Although the vast majority of
Bayesian models have multivariate parameters, R focuses on univariate convergence
(i.e. convergence of margins). Some multivariate extensions exist, like Brooks and Gel-
man (1998) or Vats et al. (2019), but do not seem to be universally accepted: for example
Stan or PyMC3 use instead a table containing univariate R with one value per param-
eter. However, assessing convergence on margins misses the point of dependence among
parameter components, and does not guarantee the convergence of the joint distribution.
Another version of R called R* is suggested by Lambert and Vehtari (2021) and can
deal with multivariate parameters: the idea is to use a classification algorithm which,
in the case of converging chains, would not be able to identify to which chain a sample
belongs. To avoid a result depending on the seed of the experiment, the authors suggest
to draw several samples from the simplex obtained with the classification algorithm. In
addition to the interpretability issues mentioned previously, this method has the con-
straint of not being able to study only a scalar value but a histogram, to check to what
extent it contains or not the value 1.

We take a step forward in addressing all these limitations with a localized version
of R briefly introduced in Moins et al. (2021) and developed here: we analyze R(z), a
local version of R associated with a given quantile z, and the corresponding population
value R(z). This study leads us to propose a new indicator Ro.. In addition to being
more interpretable, Roo shows better results than R in terms of MCMC convergence
diagnostic, both on simulated experiments and on Bayesian models. As with all other
versions of R, this one can be applied to any MCMC algorithm: Metropolis—Hastings,
Hamiltonian Monte-Carlo (HMC, Neal, 2011), No-U-Turn Sampler (NUTS, Hoffman
and Gelman, 2014), etc.

The rest of the paper is organized as follows: we introduce in Section 2 the popu-
lation version R(x) and the corresponding sample version R(z), as well as their scalar
counterparts R, and R... Since this proposed version depends on a quantile x and is
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constructed at a population level, it is both targeting a specific quantity of interest and
interpretable, addressing respectively limitations L4 and L2. We also establish several
properties on the behavior of R(x) function and on the convergence of the estimator
I%(x), helping in establishing a threshold and addressing limitation L1. Our proposed
approach to deal with the multivariate case of limitation L5 is described in Section 3.
Some empirical results are given in Section 4, showing that our proposed solution helps
overcoming many of convergence issues identified in limitation L3. We conclude in Sec-
tion 5. All proofs and details of the calculations are provided in the supplementary
material, and experiments are available online! as well as the R package localrhat
(Moins et al., 2022) containing our diagnostic implementation.

2 Local version of R

Since the original version of Gelman and Rubin (1992), the heuristic for the construction
of R was based on an analysis of variance. It consists in comparing two estimators of the
posterior variance Var[f]. The first one is the within-variance W, which underestimates
Var[6)] as the bias of the estimator is (most of the time) strictly negative if the elements of
the chains are not i.i.d, see Vats and Knudson (2021). The second one adds the between-
variance B as a bias correction. This typically overestimates Var[] if the initial values
are chosen over-dispersed. As pointed out by Vats and Knudson (2021), following this
heuristic does not exclude the use of other estimators of the bias than B. Moreover,
defining R at the sample level hinders a theoretical study of a population version to be
conducted. Another justification can start with the law of total variance: assume that

a univariate @ is sampled using m chains, and let Z € {1,...,m} be the corresponding
index of the chain. Then,
Var[f] = Ez[Varg z[0 | Z]] + Varz[Eg z[0 | Z]]. (1)

The two terms in the right-hand side correspond respectively to the population ver-
sions of the within-variance W and the between-variance B. Replacing them by their
estimated versions yields the original R formula of Gelman and Rubin (1992). In the
following, we use (1) on a chains transformation which allows to localise convergence
at a given quantile. For the theoretical study, we suppose stationarity of the chains to
focus only on chain mixing issues. Thus, samples within a chain j € {1,...,m} may be
correlated but are all distributed according to the same distribution F; which may vary
with 7.

2.1 Population version

For all z € R, introduce the Bernoulli random variable I, = I{f < x}, where I{-} denotes
the indicator function. Similarly to the Raftery—Lewis diagnostic (Raftery and Lewis,
1992), the idea of our local convergence estimate is decidedly simple: we use I, in place of
6 in the original Gelman—Rubin construction. The population within-chain and between-
chain variances at point = are then defined respectively as W (z) = E [Var[l, | Z]] and

Thttps://theomoins.github.io/localrhat/Simulations.html.
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B(z) = Var[E[I, | Z]]. Note that both quantities exist whatever the tail heaviness of
f distribution thanks to introduction of the indicator function, thus relaxing moment
conditions of the original R. We define the associated population R(x) as

W(z) 4+ B(x)

By =\ "W

It turns out that under the assumption of stationarity for each chain, R(z) can be
expressed in closed-form with respect to the chains’ distribution.

Proposition 2.1. Suppose that, for any j € {1,...,m}, P(Z = j) = 1/m and 6 given
Z = j has cumulative distribution function (cdf) F;. Then, one has for any x € R:

Z;n:1 E;:n:j+1 (Fj(z) — Fk(x))Q
my il Fi(x)(1 = Fi(z))

R(z) = |1+ (2)

Thus, using I, instead of # defines a local convergence estimate at any point z which
quantifies a distance between the F;’s. This allows for diagnosing convergence relatively
to a quantile one wants to estimate (for a posterior credible interval for example). The
following proposition states straightforward properties of R(z) emanating from (2):

Proposition 2.2. The population R(x) satisfies the following properties:

(i) R(z) > 1 for all x € R.
(ii) R(x) =1 for allz € R if and only if F1 = --- = F,,.
(iii) R(z) — 1 as |z| — oo.
(iv) R(x) inherits continuity property of Fi, ..., Fpy, if the support of the F}’s are over-

lapping.

Based on these results and in order to summarize this continuous index into a scalar
one, we may also consider its supremum over R:

R =sup R(z). (3)
zeR

Note that, in view of Proposition 2.2(iv), R is finite simply as soon as the Fj’s are
continuous with overlapping supports. Considering R, amounts to considering the local
version R(z) corresponding to the quantile x with the poorest convergence when no
information is given on the posterior interval used for inference.

2.2 Sample version

Population version R(z) can be estimated by replacing the Fj(x)’s in (2) by their em-
pirical counterparts Fj(z) = LS {67 < z}. This is equivalent to computing
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the original version of R on indicator variables I/ = 1{¢(9) < z} instead of (9.
This connects with the Raftery—Lewis diagnostic (Raftery and Lewis, 1992) and more
recently with Vehtari et al. (2021) who suggest this transformation for effective sam-
ple size (ESS) to construct graphical diagnostics or “tail-versions” of this diagnostic.
Moreover, a rank-normalization step is added in Vehtari et al. (2021)’s to prevent from
infinite moments, although using Iy’j ) ensures the index existence whatever the 09
distribution is. Skipping this step for R yields an explicit expression of what is estimated
in the stationary case with (2). This makes the diagnostic more interpretable and allows
us to obtain key theoretical results for the associated theoretical R and R.

Note that for a given number of chains m and chain length n, R(x) can only take
m(n+ 1) different values, as the computation is based on nm indicator variables. Thus,
the best accuracy we can obtain for Re for a given n and m consists in evaluating f%(l‘)
at all the 0(%7)’s. This can be accelerated by subsampling, often with limited decrease
in accuracy.

2.3 Convergence properties

Let us assume that all m chains are mutually independent and have converged to a com-
mon distribution so that Fy = --- = F,,, = F. Assume, moreover, that a Markov chain
central limit theorem holds (see for instance Robert and Casella, 2004, Theorem 6.65),
so that we can write

~ d
Vi(Ej(x) = F(z)) == N (0,0%(x)), (4)
as n — oo, for all j € {1,...,m} and where o2(z) is some asymptotic variance.
In particular in the ii.d. setting, o%(z) = F(x)(1 — F(z)). Letting F(z) =

o D i {9 < 2} = L >t Fj(x) and taking into account of the inde-
pendence between chains yield

Vam(E(z) — F(z)) -5 N (0,0%(2)) (5)

as n — oo, and o(z)/v/nm can be interpreted as the Monte Carlo standard error
(MCSE) associated with F'(z). Following the definition of the ESS used in Gong and
Flegal (2016) or Vats et al. (2019), we can define a local-ESS as the ratio of the target
variance to the squared MCSE:

F(z)(1 - F(z))

ESS(z) = nm 2(2) . (6)
This quantity is in line with the definition of ESS for quantile of Vehtari et al. (2021),
and has already been studied by Raftery and Lewis (1992) who focus on this indicator
transformation and approximate the resulting process as a two-state Markov chain. This
yields an explicit expression of the stationary distribution F', which can be used to obtain
an expression of ESS(z) as a function of the transition probabilities. Several limitations
of this two-state Markov chain approximation are raised by Brooks and Roberts (1999);
Doss et al. (2014), for example. A more general way to estimate ESS(x) is to apply the
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same idea as in the definition of the local l%(x) use any estimator of ESS (Robert and
Casella, 2004; Gelman et al., 2013) on indicator variables 159 instead of 0(+9).

Combining the asymptotic result (5) with expression (6) yields the following large
n limiting distribution result on R(z) (x2,_; denotes the chi-square distribution with
m — 1 degrees of freedom).

Proposition 2.3. Assume that all m chains are mutually independent and have con-
verged to a common distribution F = Fy = --- = F,,. Then:

(i) The distribution of R does not depend on the underlying distribution F'.
(i) For any x € R, ESS(z)(R?(x) — 1) N X2,_1 asn — o0o.

Note that casting the problem of convergence monitoring in terms of analysing com-
ponents of variance from multiple sequences dates back to Gelman and Rubin (1992),
Section 2.2, and earlier works by Fosdick (1959); Gelfand and Smith (1990). Let us
highlight that the assumption Fy(z) = --- = F,,(x) is equivalent to the ANOVA (anal-
ysis of variance) hypothesis E(Ig(g"l)) == E(Iél’m)) and that the statistics studied
in Proposition 2.3(ii) can similarly be rewritten in terms of the ANOVA test statistics:
R2(z) — 1 = B(z)/W (x), where B(z) and W (z) are the respective empirical counter-
parts of B(x) and W (x). These interpretations can then be used to derive a statistical
test on the convergence of the chains. To this end, note also that the limit in distribu-
tion of Proposition 2.3(ii) still holds when ESS(x) is replaced by a consistent estimator
ETS\S(l') This result allows computing the type I error associated with the null hypoth-
esis that R(m) = 1, in other terms that all the chains have converged to a common
distribution at z. Let z,,—1,1-o be the quantile of level 1 — a of the x2,_; distribution,
and introduce the associated threshold

Zm—1,1—«
i = 1+ —=—.
Rijm,o () + ESS(x) (7)

The type I error is then given by P(R(z) > Riim,o(z)) ~ . As an illustration, some
values of « are reported for the threshold Rjim o(z) = 1.01, m = 4 chains and different
values of ESS(z) in the left panel of Table 1. For example, it appears that the probability
of having R(z) > 1.01 and ESS(z) = 400 when convergence is reached is 0.04, and
decreases quickly for larger values of ESS(z).

2.4 Threshold elicitation

Threshold for the local R(x) Proposition 2.3(ii) allows us to associate a threshold
for R(z) to a type I error a, using the definition of Ry o(2) in (7). Some values are
displayed in the right panel of Table 1 for a fixed ESS(z) = 400 and « = 0.05. It
appears that the value of 1.01, the recent recommendation of Vehtari et al. (2021),
seems to be coherent for R(m) and a moderate number of chains, typically the default
configuration in Stan (m = 4), JAGS (Just Another Gibbs Sampler, Plummer, 2003)
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m  Rim,a(x) ESS(z) o m  Rim,a(z) ESS(z) o
50 0.80 2 1.005
100 0.57 4 1.010
200 0.26 8 1.017

4 101 400 0.04 15 1.029 400 0.05
800 <1073 50 1.080
1500 < 10-6 100 1.144

Table 1: Left: Type I error « as a function of ESS(z) when Rjiy o(z) = 1.01 and m = 4.
Right: Rjim o () as a function of m when ESS(z) = 400 and a = 0.05.

(m = 3) or PyMC3 (m = max{n., 2} with n. the number of cores). However, the value
of m must be doubled if a split version is used, and when m increases the threshold
becomes more severe and it may be appropriate to consider a higher (i.e. less stringent)
one: for example, a threshold of 1.1 can be enough provided the number of chains m
is larger than 100. The case of a large number of chains has been recently studied by
Margossian et al. (2022) who suggest a new version of R for this configuration. Note that
a similar observation about the stringency of the threshold can be made with rank-R,
see Appendix C for more details.

Therefore, we recommend to keep the threshold of 1.01 as a general rule of thumb
for ﬁ(x), except if the number of chains is too large or if one wants to have a more
precise threshold. In such a case it only requires to provide a, m and a target value
ESS(z) to compute Rijim,qo(z) using (7).

Threshold for the supremum Reo Proposition 2.3 does not induce any threshold
R lim for R, since Proposition 2.3(ii) only establishes the pointwise convergence
of the empirical process ]:Z() However, Proposition 2.3(i) shows that under the null
hypothesis where all chains follow a common distribution F, the latter F' is irrelevant
to the Ro statistic. Such an independence to the underlying distribution F' makes it
possible the use of a quantile of R as a threshold associated with a given probability
o and number of chains m. Table 2 provides estimations of Ro 1im using replications
for several values of @ and m and a fixed number of effective samples of 400, as rec-
ommended by Vehtari et al. (2021) (more details are provided in Appendix C). Here,
we can see that a fixed rule of thumb for a range of m would be too imprecise, as
the quantile values increase rapidly with m. Nevertheless, Table 2 illustrates a linear
relationship between m and the appropriate threshold for a given a.

In the simulations in Section 2.5 and in the experiments in Section 4, we mostly
consider m = 4 and therefore choose a threshold of 1.02, which is a little more accurate
than 1.01 by looking at Table 2. Note that if m = 8 or if a split version of R is used
with m = 4, then a threshold of 1.03 should be preferred. In the localrhat R package
(Moins et al., 2022), the computation of R, comes with the associated threshold at 5%
based on the calculations in Table 2, as well as a p-value associated with the obtained
R.
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Roo,lim
S 0.005 001 005 0.1 1.08 5 a=001

2 1.018 1.016 1.012 1.010 106 /'

3 1.023 1.022 1.016 1.014 N ,,’

4 1.027 1.025 1.020 1.018 D:? xd

8 1.038 1.037 1.031 1.028 1.041 & ~

10 1.043 1.041 1.036 1.033 27

20 1080 1.076 1.062 1.056 1.024%%
Table 2: Empirical quantiles Ro jim of 276 10 m 20
the Roo distribution under the null hy-
pothesis that all chains follow the same Figure 2: Illustration of the values in
distribution for a target ESS of 400, Table 2 and of the linearity with m for
based on 2000 replications. a fixed a.

2.5 lllustrative examples

In this section, we consider toy distributions for the chains, where the computation of
R, can be done explicitly. In particular, we first focus on two cases raised by Vehtari
et al. (2021) of deficient behavior of the traditional R. Then, we exhibit a failure situation
for rank-R. All these theoretical behaviors are illustrated on a simulation study. Further
applications to Bayesian inference are provided in Section 4, and other examples where
R and rank-R fail in Appendix D.

Example 1: Chains with same mean and different variances. To tackle the first
situation of poor behavior of the traditional I%, we consider m chains following centered
uniform distributions with different variances. More specifically, assume that the m — 1
first chains have the cdf Fy = --- = F,,—1 of the uniform distribution U (—o, o) while
the last chain has the cdf F,, of the uniform distribution U(—0,,, 0,,) with 0 < o < oy,
In such a case, the between-variance is zero and it is thus expected that R~ 1. In
contrast, Lemma D.2 in Appendix D provides an explicit expression for R(x) as well as

m—1 2
=41 1-— :
R \/ * m ( 1—|—O’m/0)

It appears that R, is an increasing function of o,,/c starting from R,, = 1 when
om/o = 1, and upper-bounded by /2 — 1/m when o,,/c — oo. Results are illustrated
in the left column of Figure 3. In the bottom row, the histograms of replications confirm
that R is able to spot the same convergence issue as the one Vehtari et al. (2021)
suggests.

Example 2: Chains with heavy-tails and different locations. As a second example of
poor behavior of R, we consider chains following Pareto(c, n) distributions, with cdf

F(z|a,mn)=1—(z/n)"", Vze&ln+o0),
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Example 1: Example 2: Example 3:
U(—0,0) - U(—0Om, om) Pareto(a, ) - Pareto(a,,,)  Exp(1)-U (1— 3,1+ 3)

- — F)
— Ful0)

Densities

500 500

400

300

200

Counts

100

0

0
1. " 102 104 106 1.08 1.1 1 1.02 104 1.06 1.08 1.00:1.02 1.04 106 1.08 1.10

R rank-R R R rank-R R R rank-R Roo

Figure 3: Illustrations with m = 4 chains, n = 200 independent iterations each. Top
row: Simulation of F} = --- = F,,,_1 in green distinct from F}, in blue. For the uniform
example (left), o = 3/4 and o, = 1, for the Pareto (middle) » = 1 and 7, = 1.5,
and for the uniform (right) A = 4log(2). Second row: The corresponding population
version R(x) and empirical version R(z) as functions of  for one replication. Bottom
row: Histograms of 500 replications of R, rank-1 and R... Dashed lines correspond to
the threshold of 1.01 for R and rank-72 and 1.02 for R, (see Section 2.3).

shape parameter o > 0 and lower bound 7 > 0. Let us recall that such a distribution
is heavy-tailed (Embrechts et al., 2013, Table 3.4.2) and has an infinite first moment
when o < 1. We focus on the case where one chain is shifted from the other ones:
Fi(z) = = Fpn1(x) = F(z | a,n) and Fp(x) = F(z | a,nm) with 0 < n < nyp,
and a < 1. Here, the within- and between-variances do not exist and it is expected in
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practice that R ~ 1. In contrast, R can be written as

2 ()

see Lemma D.3 in the supplementary material. Clearly, R, is an increasing function
of N, /n starting from R, = 1 when 7, = 1 and such that R., — 00 as n,,/n — oo.
Results are shown in the middle column of Figure 3. This experiment corresponds
to the second example of convergence issue raised by Vehtari et al. (2021). The same
observations as for Example 1 can be made here: Roo is prone to indicating a convergence
issue than rank-R.

Example 3: Chains with same mean and mean over the median. Finally, we come
back to the example described in Section 1.2 where both R and rank-R fail to detect
non-convergence. Following the method described in Appendix A, we consider m —1 ex-
ponential chains Exp(1) and one uniform U(1—2log 2,1+ 21log2). This results in chains
with same mean and mean over the median. Results are illustrated in the right panel of
Figure 3: the histograms of replications confirm that R is able to detect the conver-
gence issue that neither R nor rank-R are able to detect. Here, the explicit calculation
of Ry is not feasible, but Lemma D.4 in the supplementary material provides another
example where the computation can be done, with uniform and Laplace distributions.

3 Multivariate extension

3.1 Population version and algorithm for multivariate diagnosis

Our R(x) can naively be adapted to the multivariate case: assume now that the param-
eter is multivariate and write 8 = (61, ...,04) € R? with d > 2, and denote by 9;3) the

coordinate p € {1,...,d} from chain j € {1,...,m}. Similarly to the univariate case,
R can be computed on the indicator variables Ig) = ]I{ng) < xq,... ,ng) < x4} for
any & = (71,...,74) € R% Under the assumptions of Proposition 2.1, all calculations

remain valid in dimension d and therefore the expression of R(x) is formally the same
as in (2):

m m 5
R(z) = W(z) + B(@) _ 1+ Dt 2o (Fj(®) — Fi(x)) '

W (x) mY L Fi(x)(1 - Fj(z))

(8)

The properties listed in Proposition 2.2 in the univariate case remain true as well. The
associated Ro, is defined as Roo(Fl, . .., Fi) = supgega R(z), while R(z) is computed
by replacing the cumulative distribution functions in (8) by their empirical counterparts.
Note also that all values computed in Table 1 and Table 2 remain identical in this
multivariate extension. However, those results are not giving information about the
sensitivity to convergence issues, which in the multivariate case can come from margins
but also from the dependence structure.
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It is easily seen that, if the marginal distributions of Fy, ..., F,, coincide, then R,
is the same as the one associated with uniform margins (see Lemma B.1 in the supple-
mentary material). In other words, we have Ry (F1,..., F,) = Roo(C4,...,Cy,) where

C; is the copula defined in [0, 1]¢ associated with F}, j € {1,...,m}. This suggests that
a multivariate diagnosis can be conducted in two steps as follows:

1. Compute the univariate ]%004, separately on each of the coordinates p € {1,...,d}.
If I:ZOO,p < Rg/ﬁ)im forallp € {1,...,d}, with Rg{l)im a choice of margins threshold,

then all of them are deemed to have converged and to be identically distributed.

2. Compute the multivariate Roo to check the dependence structure convergence. If
Ry < RO with RC). copula threshold, then the dependence structure is

00,lim? oo, lim
also deemed to have converged, and so has the multivariate distribution.

The test for convergence is now separated in two parts: 1. convergence of the margins,
and 2. convergence of the copula knowing that the margins have converged. It can easily
be shown that, up to a first order approximation, one way to obtain a type I error «
for the global two-step test is to consider a level /2 for each of the two components.
The first step corresponds to d univariate tests, so for Rgl)im one can use the univariate
threshold R 1im defined in Section 2.4 with a level a/2d, corresponding to a Bonferroni
correction for the error level /2. In the following subsections, we focus on the second

step of the algorithm: the theoretical properties of the multivariate R in the case of
RO

convergence on the margins, which will provide insights for choosing R ;. Values of

R™) and R are then given as functions of (a, d, m) in Table 1. As a general rule,

00,lim 0o, lim

one can reasonably use for & = 0.05 the values (R(M) R ) = (1.03,1.03) in the

00,lim? * Yoo, lim
case of m = 4 chains, and (Riﬁ?im, R(()i)hm) = (1.04,1.05) if m = 8 or if a split version is

used with m = 4, with limited variations around these values for varying dimension d.

3.2 Upper bounds

Let us first consider the case of m = 2 chains with uniform margins and associated
copulas C; and Cy. For all w = (ug, ..., uq) € [0,1]¢, one has

_ (Cr(w) = Ca(w))*
filw = \/1 T 2w = Cr(w) + Ca(w)(1 = Co(w) ¥

In addition to having the usual lower bound of 1, the next lemma allows establishing
an upper bound on R, (C1,Cs).

Lemma 3.1. Let C1,Cy,C_ and Cy be copulas such that:

C-(u) < Ci(u) < Cy(u),

C_(u) < Cy(u) < Cy(u). (10)

for all w € [0,1]¢, {

Then, Roo(C1,C2) < Roo(C—,CY).
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Let Wy and My the lower and upper Fréchet-Hoeffding bounds in dimension d (see
Nelsen, 2006, Theorem 2.10.12):

=1

d
Wa(u) == max{1d+2ui,0} and Mgy(w) = min{uy,...,uq} .

Any copula is bounded from below and from above by W, and My respectively, in the
sense of (10). Thus, applying Lemma 3.1 with (C_,C}) = (Wy, My) yields:

Proposition 3.1. For any d-variate copulas Cy and Cs,

1
Reo(Ch, Cy) < ,/d%.

Unlike the univariate version (see for instance Example 2 in Section 2.5), the value
of R, associated with the convergence of the dependence structure is upper-bounded,
with a bound that grows with the dimension. This difference of behavior could be
used for example to tune the threshold for the multivariate case. However this bound,
although it is the “best possible” (Nelsen, 2006, Theorem 2.10.13), is tight only in the
case d = 2 since Wy is no more a copula when d > 2. It may also be too loose since it
compares the extreme case of one chain with comonotonic dependence and another one
with anti-comonotonic dependence. Some refinements are proposed in Section 3.3.

In the case of m > 2 chains, the previous bounding technique does not apply any-
more, and we propose the following result based on bounding pairwise R,’s:

Corollary 3.1. For any m > 2 and d-variate copulas (C1,...,Chp),

m—1

Roo(C,...,Cn) < \/1+T(d—1).

Although this limit is not tight in the general case, it coincides with the upper bound
of Proposition 3.1 when m = 2. Let us also note that, for any fixed m > 2, the upper
bound of Roo(C1,...,Cp) diverges at a fixed v/d rate as the dimension increases.

3.3 Influence of the dependence direction on the sensitivity of R

When m = 2, one way to refine the upper bound established in Proposition 3.1 is to
assume that both copulas are modelling either positive of negative dependence. More
specifically, let us recall the notions of positive lower orthant dependence (PLOD) and
negative lower orthant dependence (NLOD) (see Nelsen, 2006, Section 5.7). The random
vector (61,...,604) is

e PLOD if V& € RY, P(0) < zy,...,00 < zq) >[I0, P(O; < 2,),

1=

e NLOD if V& € RY,  P(6) < 1, ...,00 < x4) <[], P(6; < ).
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Both properties can be characterized in terms of the associated copula. The PLOD
(resp. NLOD) property holds if and only if C'(u) > IIz(u) (resp. C'(u) < Ii(u)) for all
u € [0,1]¢ where I, is the independent copula defined by I1;(u) = H?Zl u;. Note that
this does not define a total order on copulas since some copulas are neither PLOD nor
NLOD. Nevertheless, it allows us to derive refined bounds for R, in the NLOD and
PLOD cases.

For PLOD, the upper bound is in not closed-form for any dimension d, but simple
bounds can be derived in the two extreme cases d = 2 and d — oo.

Corollary 3.2. Let m = 2. For any two PLOD d-variate copulas C1 and Cs,
ROO(Cl,CQ) S Roo(Hd,Md) with

Roo(Ily, M) = /4 + % ~1.038 ifd=2,

21ggd(1+0(1)) < Roo(Hg, My) < /4 asd — .

Conversely, the upper bound can be computed explicitly in the NLOD case.

Corollary 3.3. Let m = 2. For any two NLOD d-variate copulas C7 and Cs,
Roo(Cl,Cg) S Roo(HdaWd) with

1
Roo (g, Wa) = \/1 + §m~

Let us stress that positive and negative dependence are handled differently by R...
When d = 2, the PLOD and NLOD bounds (respectively equal to 1.04 and 1.08) are
significantly lower than the value m = 1.22 corresponding to the global bound, with
a value higher in the NLOD case than in the PLOD one. However, this observation is
quickly inverted when d increases: for NLOD, R (II4, W) is bounded and converges
to /1 + ﬁ ~ 1.136 as d — oo, which strongly constrains the range of values that

can be obtained whatever the dimension. In contrast, the upper bound R, (I, My)
in the PLOD case diverges with the dimension, at the same rate (up to a logarithmic
factor) as in the general case, see Proposition 3.1. Thus, the sensitivity of R, strongly
depends on the sign of dependence and asymptotically favors PLOD dependence when
d increases.

This difference can be explained by the construction of R(z) itself (and thus R),
which favors a dependence direction in R? due to the computation of 11{99 <z,...,
93) < z4}. One way to overcome this issue in the bivariate case is to compute two
versions of R.., denoted respectively by RY and R, based respectively on ]I{t‘)? <
X1, 95) < x5} and H{Hs) <y, Hé‘) > xz5}. Note that R} coincides with the construction
proposed in Section 3.1.

Corollary 3.4. Let m = 2. Then, RY (Il, My) = R, (Wa,1ls) and RE (W, 1) =
R (Hg7 Mg)
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It appears that PLOD and NLOD upper bounds are exchanged by computing R_
instead of RY,, which makes R, more sensitive to negative dependence than positive de-
pendence (in the bivariate case). One way to consider symmetrically both dependencies
would be to consider RS™™) = max (R, RZ). However, in dimension d, considering all
directions would imply the computation of 21 different R, which would be too ex-
pensive for large d. Similar curse of dimensionality occurs in the multivariate extension
of the Kolmogorov—Smirnov test, see for example Lopes et al. (2007) for improvements
of the naive multidimensional version of the test. Computing RE;? ) is still feasible for

small values of d: typically for d < 6 we were able to replicate values in our experi-
()

0o, lim

ments. Therefore, we provide in Table 1 (Appendix C) the estimated threshold R

associated with the maximum of RX, in all possible directions when d < 6.

One alternative in the high-dimensional case could be to apply R on an indicator
function associated with a univariate function of the parameters, to return to the case
described in Section 2. Typically in a Bayesian model, one could use the log-likelihood
lo = logp(y | ) when it is available, and compute Ro, with I{lg < x}. Similarly, the log
posterior as implemented in Stan can also be used, as suggested in the Stan reference
manual (Carpenter et al., 2017). Ensuring convergence for all  on the log posterior
may be satisfying for multivariate diagnosis, as it is illustrated in Example 9.

3.4 Multivariate illustrative examples

Similarly to Section 2.5, we illustrate our theoretical study in the multivariate case with
simulations based on toy distributions for the chains. Especially, we consider multivari-
ate normal distributions, and focus on the case where all the margins are the same
(typically distributed according to a standard normal distribution). This leads to

0" ~ N (0, ),

ie{l,...,n}and j € {1,...,m}, where X, is the covariance matrix of the chain j,
with diagonal elements equal to one to keep standard Gaussian margins.

Example 4: Bivariate normal distributions with different correlation terms. In the
bivariate case, the dependence structure is driven by only one value, which is the off-
diagonal element p; € (—1,1) of 3;. Similarly to other examples, we suppose that we
have m — 1 converging chains with identity covariance matrix (p; = -+ = pp—1 = 0)
while p,,, € (—1,1) for the last one.

Results are shown in Figure 4, with a comparison of R with the multivariate R
of Brooks and Gelman (1998). The histogram on the left represents the values of the
two diagnostics for 100 replications with m = 2, n = 200 and p,, = 0.9. Despite a
large difference on the covariance term between the chains, we can see that Brooks—
Gelman R fails to correctly diagnose this difference, as most of the values are between
1 and 1.01, contrary to R Due to the i.i.d nature of the example, the recent proposal
of Vats and Knudson (2021) for a multivariate R does not detect any convergence
issue as the diagnostic is not based on a comparison between chains. This difference of
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Example 4: Bivariate normal Brooks—Gelman R, R, and Ry wrt py,
w
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Figure 4: Behavior of Brooks-Gelman R (in orange) and multivariate R.. (in violet)
in the case of chains with bivariate normal distributions, with different off-diagonal
elements in the covariance matrix. On the left: Histograms with 100 replications with
one standard normal chain and one with p,, = 0.9. On the right: The same experiment
with 10 replications for different values of p,,, plotted as a function of p,,, and the
corresponding population R, in blue.

behavior is confirmed on the right panel of Figure 4, which illustrates 10 replications of
both diagnostics as a function of p,,. For instance, if p,, = 0 then the four chains are
identically distributed and no convergence issue should be raised. Conversely, the value
of R should increase when |pm| — 1, as the difference between the last chain and the
other ones increases. For the Brooks—Gelman version, we can see that the value of Ris
almost constant and thus insensitive to p,,, which is not satisfactory, contrary to Roo
which has a parabolic shape.

As discussed in Section 3.3, the behavior of Ry is not symmetric when p,, — —1
and p,, — 1: the upper bound corresponding to positive dependence diverges with the
dimension (Corollary 3.2 for PLOD copulas) whereas the one for negative dependence
is bounded by approximately 1.14 (Corollary 3.3 for NLOD copulas). This leads to the
intuition that the convergence diagnostic is more sensitive in the PLOD case than in
the NLOD, but this observation is asymptotic and when d = 2, the two bounds are
respectively equal to 1.08 and 1.04, so the statement is reversed. This asymmetry is
illustrated in Figure 4 on theoretical Roo (in blue) and estimations R.. (in purple).

Example 5: Evolution of the behavior when the dimension increases. In the general
case of dimensionality d > 2, we still compare m — 1 chains that follow a multivariate
standard normal distribution with one that has a given covariance matrix 3,,. To
obtain X,,, we generate a matrix S according to Wishart distribution with d degrees
of freedom, and we transform S in order to have one on the diagonal to keep the same
margins for all chains (while remaining semi definite positive):

S, =D 28D % with D =diag(s11,..,54.q)-

To illustrate the influence of the dependence direction (Section 3.3), a new matrix X,
is generated for each simulation, in order to have varying directions across replications.
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Example 5: Multivariate normal with d € {2,...,6}

Dimensions
o
n
o

O 1 Dir
O AIlDir
d=4
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Reo Réﬂ?a") Values

Figure 5: Comparison between 2., computed on one direction (in green), and Rimex)
the maximum of R, computed on all possible indicator functions (in blue). For each
d € {2,...,6}, 200 replications are done where a new covariance matrix is generated for
the normal distribution, which leads to different directions of dependence among the
replications.

Then, we compare Roo with REJ.? ax), the maximum of R+, over all

for the indicator functions.

2¢4=1 possible directions

Results are shown in Figure 5, where 200 replications are shown for R, and RS;I ax)

ford € {2,...,6}. As Rmax) requires the computation of 29! different Rn, obtaining
these histograms quickly becomes infeasible for larger dimensions. When d = 2, we can
see that there is no significant difference between ]%OO and Ré‘;‘ ax), but as the dimension
increases the values of R become more concentrated and closer to one. Indeed, as the
number of possible directions increases exponentially, it is more and more rare to obtain
the one to which R is sensitive. On the contrary, R(f.fl ) seems to stay robust with
respect to this curse of dimensionality in terms of sensitivity, as the histograms look
invariant when d increases.

4 Empirical results

In Section 2.5 and Section 3.4, we considered toy examples where the distribution of
the chains is known in order to control the value of the population R., and illustrate
the robustness when other versions of R fail. Here we extend to other models in a
more practical case for Bayesian inference. We adopt a baseline similar to the one used
by Lambert and Vehtari (2021) to illustrate the behavior of R on Bayesian models,
and add a multivariate example studied in Vats et al. (2019). For all examples in this
section, we choose 4 chains and therefore a threshold R jim = 1.02 in the univariate
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Example 6: Autoregressive model
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Figure 6: Behavior of R on the autoregressive example described in Section 4, with
m = 4 chains of size n = 500 and (0, oy, p) = (1,2,1/2). On the left: R(z) as a function

qf x for one replication. On the right: Histograms of 50 replications of R, rank-1 and
R.. The dashed lines correspond to thresholds of 1.01 and 1.02.

case (according to Section 2.3), and (R(C) RM) ) = (1.03,1.03) in the multivariate

0o,lim? * Yoo, lim

one (according to Section 3.1). For each univariate study, we plot an example of R(z)
as a function of z, and we recommend this illustration to users who want to analyse
more carefully a given value of Ree. Together with this figure, we also show histograms
of replications to check the behavior of the different R more rigorously. All experiments
are done on R using rstan library (Stan Development Team, 2021) and the package
localrhat that we propose with this paper (Moins et al., 2022). Additional experiments
have also been conducted on Python using OpenTURNS (Baudin et al., 2017). All the
code concerning these experiments and the additional ones are available in the online
appendix (link in the Introduction).

Example 6: Autoregressive model with different variances. The first example is a
basic autoregressive model to study the behavior of R in the case of Markov chains
with different variances: we consider m chains of size n such that for ¢ € {1,...,n — 1}
and j € {1,...,m},

gUtLa) = pe(id) 4 €., Wwith ¢ ; NN(O’UJZ)’

where p € (0,1) and o; > 0. In particular, assume that the first m — 1 chains are
generated using the same process: 01 = -+ = o0,,—1 = o, while for the last chain
Om # 0.

Results are illustrated in Figure 6 with m = 4, ¢ = 1, 0, = 2 and p = 1/2 on
50 replications, and an example of R(IE) as a function of x on the left panel. Similarly
to the rank-R replications, the Ro, values remain far from the threshold of 1.02 which
confirms the sensitivity to this convergence defect. This corroborates in a more practical
case the results of Example 1 in Section 2.5, on the sensitivity of R on chains with
same mean and different variances. Note that the value R(0) = 1 is due to the fact that
all the chains share the same median equal to zero.
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Example 7.a: HMC on nominal Cauchy
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Example 7.b: HMC on alternative Cauchy
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Figure 7: Behavior of R on the Cauchy example described in Section 4 for the two
parameterisations. On the left: ]:2(90) as a function of z for one replication. On the right:
Histograms of 50 replications of R, rank-1? and R... The dashed lines correspond to
thresholds of 1.01 and 1.02.

Example 7: HMC on Cauchy distribution. As an extension of Example 2 in Sec-
tion 2.5, we analyze the behavior of R in the case of heavy-tailed distributions. We
run Hamiltonian Monte Carlo (HMC) (Neal, 2011) using Stan on Cauchy distributions
for 50 variables. We consider the one with the most important mixing issue diagnosed
with R. Due to the tail heaviness of Cauchy distributions, the HMC iterations on a
given chain can get trapped in a tail, which causes mixing issues. One solution to avoid
this is to use an alternative parameterisation (Moins et al., 2023) that avoids sampling
from a heavy-tailed distribution:

Example 7.a. Nominal parameterisation

xj ~ Cauchy(0,1), je€{1,...,50}.

Example 7.b. Alternative parameterisation

zj=a;/\/bj, a; ~N(0,1), by ~x3.

One would expect convergence issues with the nominal parameterisation and not with
the alternative one. For both, the process of selecting the worst parameters among the
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50 ones is iterated for the generation of replications, and results are shown in Figure 7.
Histograms on the top right confirm the risk of diverging chains with the nominal
parameterisation, as all the values are above 1.02 for all the versions of R. This means
that it is very likely to have at least one chain out of the 50 with a convergence issue
in this experiment. This divergence can be really extreme, as it is shown on the top
left panel where the value of R is over seven, due to a mixing issue in the right
tail of the distribution. The opposite occurs with the other parameterisation, as all
the convergence diagnostics indicate no mixing issues (see bottom row of Figure 7),
which means no counter-indications that the chains for the 50 variables have converged.
Looking at ]%(I) function on one replication in the bottom left panel, the curve seems
to be very noisy and close to 1 compared to 1.02 (even sometimes less than 1) so the
difference with 1 seems only due to Monte Carlo noise.

Example 8: Hierarchical Bayesian model on two parameterisations. As a classical
Bayesian example, we consider using HMC on a hierarchical Bayesian model and in par-
ticular the eight-school (Gelman et al., 2013, Section 5.5), where two parameterisations
are possible to model the problem:

Example 8.a. Centered parameterisation (CP)

0; ~ N(n,7), y; ~N(b;,07).

Example 8.b. Non-centered parameterisation (NCP)
éjNN(O71), Hj:M"‘Téj, yjNN(Hj,U?).

In the CP parameterisation, a prior dependence is between (u,7) and the population
parameters 0;, whereas in the other case (NCP), éj is a priori independent of (u,7),
and 6; is just a function of éj and (u, 7) (see for example Papaspiliopoulos et al., 2003).
Vehtari et al. (2021) argue in favor of the NCP for the eight-school example, by analysing
the convergence of the chains associated with the parameter 7.

We also focus on computing Ro for 7: results and comparison with other versions of
R are shown in Figure 8. In the first row, we can see that the Reo diagnostic confirms the
one of rank-R, as the two corresponding histograms are similar in the top right panel and
conclude for a lack of convergence in most of the cases. However, for both diagnostics,
a significant number of cases are also below 1.02 (respectively 1.01 for rank—R), which
is represented on the top left panel. In spite of this, the bottom row of Figure 8 shows
a clear difference and NCP seems to help for chain convergence.

Example 9: Bayesian logistic regression. This example is related to the extension
of Re in the multivariate case as proposed in Section 3. As a multivariate Bayesian
example, we run Stan on a basic hierarchical logistic model using the dataset logit
available in the R package mcmc:

1
B~ N(0,0.35°1,), y; ~ Bernoulli <7T> .
14+e %P
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Example 8.a: Centered eight schools
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Example 8.b: Non-centered eight schools
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Figure 8: Behavior of Ru on the hierarchical example for 7 described in Section 4 for
the centered and non-centered version. On the left: R(z) as a function of z for one
replication. On the right: Histograms of 50 replications of R, rank-1? and R.. The
dashed lines correspond to thresholds of 1.01 and 1.02.

Here the posterior is intractable and Vats et al. (2019) showed that the posterior co-
efficients B could be significantly correlated, encouraging a multivariate diagnostic to
check the convergence of the dependence structure. We run m = 4 chains each of size
n = 200 after a burn-in of 100. In this configuration, despite a low number of iterations,
all the different univariate R, are mostly below 1.02 when replicated, and the rank-R
are below 1.01.

When applied to the log posterior, the diagnostic is less clear and results are shown
in the left panel of Figure 9: a significant part of the histogram for R. is below the
threshold, meaning that the number of iterations is almost sufficient but is not yet.
Looking at the right plot of Figure 9, we notice in this example that the sensitivity of

RS;!“ ) g approximately the same as the univariate version on the left, as the proportion

(@)

o dim = 1.03 is made according

of values over the threshold is similar (the choice of R

to Table 1). Although the computation of RSI.? ) g possible here as the number of
dimensions is small, computing a univariate R, on the log posterior instead seems
satisfactory here.



T. Moins, J. Arbel, A. Dutfoy, and S. Girard 23

Example 9: Bayesian logistic regression
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Figure 9: Behavior of multivariate and univariate R on the Bayesian logistic regression
example, with m = 4 chains of size n = 200. On the left: Histograms of 50 replications of
R, rank-R and univariate R, all applied on the log-posterior. On the right: Histograms

of 50 replications of Brooks—Gelman R and Ré{? ) The dashed line corresponds to

different thresholds: on the left, 1.01 in black for R and rank-f{, 1.02 in violet for ]%Oo,
and on the right 1.03 in blue for Rmax),

5 Discussion

In this paper we propose a new version of the Gelman—Rubin diagnostic called Roo,
which improves MCMC convergence diagnostics on several aspects. Firstly, it uses a
localized version f%(x) which assesses convergence at a given quantile x of the target
distribution. Moreover, it is also based on a theoretical study of what R(z) is actually
estimating: assuming stationarity to focus only on the mixing property, the population
version can be seen as a distance measure between the distributions of the chains. This
allows us to obtain convergence properties of R(x) and to tune the usual threshold
of 1.01 (Section 2.3) based on a given confidence level and on the number of chains.
We show theoretically (Section 2.5) and using experiments (Section 4) that our ver-
sion is efficient to diagnose convergence. Finally, we suggest a two-step algorithm for a
multivariate diagnosis (Section 3.1), and reinforce the second step to consider all the
directions of the space, as we show that the natural extension cannot be used directly
(Section 3.3). Therefore, in the high-dimensional case where this computation is likely
to be too expensive, we suggest to replace it by a univariate calculation on the log-
likelihood or the log-posterior. Diagnosing convergence in the multivariate case remains
an open problem, and this is our hope that the local approach advocated here will
trigger more research in this direction in the future.

Supplementary Material

Supplementary material for “On the use of a local R to improve MCMC convergence
diagnostic” (DOIL: 10.1214/23-BA1399SUPP; .pdf). Proofs, details on calculations and
additional experiments can be found on the supplementary material of the paper.
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