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Perspectives on Constrained Forecasting

Mike West∗

Abstract. This expository paper discusses Bayesian decision analysis perspec-
tives on problems of constrained forecasting. Foundational and pedagogic discus-
sion contrasts decision analytic approaches with the traditional, but typically inap-
propriate, inferential approach. Illustrative examples include development of novel
constrained point forecasting and entropic tilting methodology to explore consis-
tency of a predictive distribution with an imposed or hypothesized constraint.
Linear, aggregate constraints define illuminating examples that relate to broadly
important problems involving aggregate and hierarchical constraints in commer-
cial and economic forecasting. Discussion explores the impact of different loss
functions, questions of how constrained forecasting is impacted by dependencies
among outcomes being predicted, and promotes the broader use of decision anal-
ysis including routine evaluation of predictive distributions of loss under chosen
forecasts/decisions. Extensions to more general constrained forecasting problems,
connections with broader interests in forecast reconciliation and other considera-
tions are noted.
Keywords: Bayesian forecasting, Bayesian predictive synthesis, distributions of
loss, entropic tilting, forecast reconciliation, hierarchical forecasting, multivariate
time series forecasting, optimization.
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1 Introduction
There are many areas in which it is of interest to assess a constraint, or set of constraints,
against a posterior or predictive distribution. The goals may include conditioning a
distribution on constraints as well as understanding compatibility of constraints with
a given distribution. This paper discusses this general question using simple examples;
the perspective is foundational and pedagogic. The area is open for new research and
methodology development, and this is anticipated with discussion of decision theoretic
alternatives to traditional probabilistic approaches that are typically inappropriate.

The examples focus on constrained forecasting in which a constraint is to be explored
and/or imposed on a given predictive distribution. Motivating settings are in commercial
and economic systems where problems of aggregate and constrained forecasting are com-
mon and important. Broad issues include consistency of forecast models, distributions
and point forecast selection at different levels of aggregation in time and/or dimension,
and conditioning forecasts for sets of series on those of others, often higher-level aggre-
gates. The Bayesian forecasting literature has a long history in these areas, but core
challenges remain and are increasingly important in large-scale forecasting with many
intersecting levels of aggregation. Roles for Bayesian decision analytic approaches have
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been relatively unexploited; this paper highlights new opportunities for methodological
and applied progress using decision analysis.

Among practitioners of Bayesian forecasting, conditioning forecast distributions on
assumed values of totals or aggregates has been routine for decades, with early work
going back to the 1970s in formal models. Detailed discussion, with references, can be
found in West and Harrison (1997, section 16.3). Such approaches condition predictive
distributions on assumed constraints, i.e., take a purely probabilistic– or, more broadly
inferential– view that constraints are information to condition upon (e.g. Green and
Harrison, 1973; de Alba, 1988, 1992, 1993; West and Harrison, 1997). The increased
interest in constrained and hierarchical forecasting with major scaling of data, time
series and complex hierarchies has continued to build on these foundations. Beyond
fully subjective Bayesian approaches, the field has explored related Bayesian moment-
based approaches (de Alba, 2006) as well as related non-Bayesian approaches (Guerrero,
1989; Guerrero and Nieto, 1999; Wickramasuriya et al., 2019). One main theme in such
approaches is to exploit variants of constrained least-squares or linear Bayes’ meth-
ods (Goldstein and Wooff, 2007). Technically these approaches share features with the
inferential results in constrained multivariate normal distributions, while the perspective
is again that of adjusting inferences in estimation/prediction settings.

There are both foundational and technical challenges with the solely inferential ap-
proach. A first and main point is that probabilistic conditioning is generally not justi-
fied in settings where constraints are imposed as a matter of intervention. Implicit in
the probabilistic approach is routine Bayesian learning under which realized constraint
values– totals or other aggregates– arise as random draws from the underlying model
distributions for outcome quantities to be constrained. This is not often the case in
applications. There, assumed constraint values are often chosen to explore “what-if”
implications, so are imposed externally on the initial forecast distribution. In other
contexts they are taken as representative values from a different, external model with
a view to understand implications on relevant forecast values for the initial context.
Echoing Lindley (1992), this argues, in part, for a decision analytic view, at least as a
complement to the traditional inferential view. In addition to providing an alternative
view of the problem that may have technical advantages as well as conceptual moti-
vation, decision analysis allows for investigation of full predictive uncertainties of loss.
Exploring ranges of potential losses under a constrained predictive distribution– rather
that just following the typical “act on the optimal decision”– can highlight potentially
important practical considerations. This is well-recognized in areas such as finance (e.g.,
“value-at-risk” studies) but is under-appreciated in other areas. In the development of
a decision-analytic approach to imposing constraints on multivariate forecast distri-
butions, dependencies among variables being forecast can profoundly impact on the
implied loss distributions and hence should be routinely explored.

From a technical viewpoint, probabilistic conditioning of joint distributions on totals
or other aggregates becomes challenging outside of normal or related least squares ap-
proaches. Increasingly prevalent contexts involve time series of non-negative counts (e.g.
Chen and Lee, 2017; Chen et al., 2018; Aktekin et al., 2018; Chen et al., 2019; Berry
and West, 2020; Berry et al., 2020; West, 2020). In such settings, normal/linear Bayes’
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approaches are inappropriate and, if applied, can generate misleading results such as
negative point forecasts and always non-integer values. Further challenges arise with in-
creasingly high-dimensional time series for which posited deterministic constraints are
increasingly likely to represent outcome regions that are “rare events” (i.e., out in the
tails) of joint forecast distributions. This raises foundational and practical questions of
how, when and whether to proceed to condition probability forecasts. Finally, predic-
tive distributions are often represented as Monte Carlo samples. Conditioning Monte
Carlo representations of joint distributions on constraints can be addressed in various
ways, such as with importance sampling or adaptive ABC-style approaches (Bonassi
and West, 2015, and references therein). However, such approaches are, inherently lim-
ited theoretically (e.g. Li et al., 2013) and very challenged in realistic applied contexts
of even modest dimensions.

With this background, the current paper explores conditioning using Bayesian deci-
sion analysis to contrast with the probabilistic approach. This begins with discussion of
optimal Bayesian point forecast selection subject to constraints. Beyond the basics of
exploring the roles of different loss functions and the optimization questions to compute
constrained point forecasts, this discussion emphasizes the broader pay-offs of a full
Bayesian analysis that can come from exploring the full predictive distributions of out-
come losses. The second general decision analysis development involves entropic tilting
(ET). This defines a nice methodological bridge between traditional probabilistic condi-
tioning and the developments of Bayesian point forecast and optimization approaches.
This development also exemplifies the contrast of direct probabilistic conditioning with
the complementary decision analytic approach, showing how the latter can broaden
perspective and expand available technical methodology.

One specific motivating applied setting is that of commercial revenue forecasting in
large consumer sales companies. The examples draw on this in connection with company
revenues that are naturally hierarchically structured. For example, per time period
revenues in a large supermarket system can be considered at the company-wide level,
but these disaggregate to regional, supermarket store groups within region, individual
stores and then categories of items sold within stores. A canonical setting in which
constrained forecasting interests arise is that of “what-if?” analyses. One example begins
with a joint model of revenue flows across the collection of store groups categorized
geographically, and then asks questions about how the joint forecast distribution would
be modified conditional on various constraints that represent either potential policy-
decisions or “what-if?” values of overall revenues aggregated across the store groups. The
former might be, for example, a policy decision to implement a system-wide promotion
campaign that has initial costs and a specified target goal in terms of expected revenue
increase/impact. The latter might be, for example, a point forecast of system-wide
revenue (or revenue inflation) based on a macro-level model incorporating assumptions
about longer-term customer growth, inflation, and other factors not already integrated
into the finer-scale, store-group model and its resulting predictions.

Section 2 discusses constrained forecasting in the simplest setting of overlaying a sum
constraint on an outcome vector to be predicted. With examples, this section discusses
the traditional probabilistic approach, Bayesian decision analysis perspectives to define
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constraint point forecasts, and introduces the Bayesian entropic tilting approach. Sec-
tion 3 details relevant loss functions, highlighting some of central use and importance in
commercial and economic forecasting with positive outcomes, with additional technical
development in the Supplementary Material (West, 2023). Section 4 discusses examples
using multivariate lognormal forecast distributions, including a 100-dimensional exam-
ple related to applications in constrained commercial forecasting. Section 5 concludes
with general comments and discussion of extensions. Supporting technical details and
additional illustrative examples are given in the Supplementary Material.

2 Total Constrained Forecasting
2.1 Setting and Background

At one time point in a forecasting analysis of a set of n series, the outcome of interest
y = (y1, . . . , yn)′ has predictive distribution P (y) with margins Pi(yi), (i = 1 :n).
The corresponding p.d.f.s are p(y) and pi(yi) whether the distributions are discrete,
continuous or mixed; the density (p.d.f.) terminology is used with the corresponding
general Stieltjes notation for expectations with the understanding that this covers all
cases. Key interests are in discrete time series including binary and non-negative counts
as well as in more traditional contexts where the yi are continuous and often positive.

Total constrained forecasting of y is the simplest but most important example con-
text of linear constrained analysis. This conveys the foundational concepts and issues,
provides access to some analytically tractable examples that generate insights, and forms
the basis of more general cases based on sets of constraints, including hierarchical con-
straints. In an hierarchical context, conditioning forecasts of the yi may be defined via a
cascade in which the forecasts of Y are themselves based on higher-level totals or other
aggregates, with obvious recursive extension to multi-level hierarchies.

With 1 = (1, . . . 1)′ as the n-vectors of ones, let Y = 1′y =
∑

i=1 :n yi with implied
distribution P (Y ) and p.d.f. p(Y ). Interest lies in forecasting y given a specific value F
for this total. The value F may be a chosen point forecast, such as E(Y ) = F under
P (·), a point forecast generated from some external model or source, or a “what-if?”
value from a set being explored to understand impact of potential total constraints on
the yi. It may also be just one value generated from an external or alternative model
for Y alone, representing one of a set of Monte Carlo draws against which interest lies
in understanding implications for y based on p(y) coupled with the information defined
by that external source.

2.2 Traditional Inferential Perspective: Probabilistic Conditioning

The traditional Bayesian/probabilistic view is that conditioning on the value of F is
a purely inferential question, and that it implies modifying P (y) to P (y|Y = F ), the
conditional distribution of y given Y = F . The implied analysis identifies P (y|Y ) for
any total Y , and then plugs-in the value Y = F (West and Harrison, 1997, section 16.3).
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Theoretical Examples

Examples 1: Normal, and Other Elliptically Symmetric Cases. If P (y) is given by y ∼
N(m,V), then Y ∼ N(M,w) where M = 1′m and w = 1′c in which c is the covariance
vector c ≡ C(y, Y ) = V1. It follows that P (y|Y = F ) is (singular) normal with mean
mF = m + c(F −M)/w and (singular) variance matrix VF = V − cc′/w.

If P (y) is a multivariate T, or other elliptically symmetric distribution, the location
of P (y|Y = F ) is modified as in the normal case, while dispersion depends on F
and increases in |M − F |. The construction of elliptically symmetric distribution as
normal scale mixtures defines the underlying probability calculus and interpretation.
For example, y ∼ Tk(m,V), implies y|Y = F ∼ Tk(mF , vFVF )– now singular Tk– with
mF ,VF as above and vF = {k + (F − M)2/q}/(k + n). Uncertainty in P (y|Y = F )
naturally inflates as a function of the lack of concordance of the value of F with p(Y ).

Examples 2: Lognormal and Log-T Cases. Major areas of application in business and
economic analysis use conditionally normal, linear models– such as dynamic linear mod-
els (DLMs: West and Harrison, 1997; Prado et al., 2021)– for log transformed data.
Implied predictive distributions are log-T distributions on the original y data scale.
Normal approximations may be used, but are inadequate in contexts of restricted T
degrees of freedom such as arise routinely, for example, in multivariate volatility mod-
elling (e.g., Prado et al., 2021, chapter 10, and West, 2020, section 2). The challenge
then is that p(Y ) and p(y|Y ) are not available analytically, so raising difficult questions
of computation. This is a severe constraint generally, but particularly when interest lies
in fast and scalable analysis to accurately evaluate aspects of p(y|Y = F ).

Examples 3: Discrete Cases. Similar comments apply to distributions arising in increas-
ingly large-scale models for discrete time series, including binary and non-negative count
data (Berry and West, 2020; Berry et al., 2020). Even in relatively simple models based
on conditional Poisson forms for univariate series, dependencies across series destroy
the ability to evaluate joint and conditional distributions analytically.

Simulation-Based Analysis

In many realistic models P (y) is represented via a Monte Carlo sample, so that evalu-
ating and using p(y|Y ) is a major challenge. Approaches such as adaptive importance
sampling (e.g. West, 1993) and sequential Monte Carlo including approximate Bayesian
computation (ABC: e.g. Bonassi and West, 2015) can be considered. However, such
methods do not reliably deal in any generality with the problem of conditioning on
totals, or other aggregates, in problems of practicable dimension. The problem has been
considered in other areas too, and shown to be a very major challenge as well as NP-hard
(non-deterministic polynomial-time hard) in discrete contexts (Li et al., 2013); it stands
as an open challenge to computational statistics. Again, applied contexts increasingly
require fast, reliable and scalable analysis, which is simply not (yet) available.

In low-dimensional problems, a vanilla ABC-style accept/reject method can some-
times prove useful. Such an approach defines a subspace S of the sample space of y
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consistent with values of Y = 1′y “near” F . Simulated values y ∼ P (y) are then ac-
cepted if and only if Y ∈ S. The example in Section 4 has positive Y, F and takes
S = {y : (1 − τ)F ≤ Y ≤ (1 + τ)F} for positive, small τ so that the maximum per-
centage error 100τ defines “nearness” of simulated Y values to the target F . Accepted
values are then approximately distributed as P (y|Y = F ) with approximation based on
τ . The acceptance probability pS = Pr(y ∈ S) under P (y) can be trivially estimated
from the Monte Carlo samples and gives a guide to how effective the approach is given
any value of τ .

2.3 Decision-Guided Probabilistic Conditioning: Entropic Tilting

Imposing constraints in forecasting is often essentially not an inference problem. Asking
questions about how to forecast y given the total Y = F imposed from an external model
or source moves outside the formal probability model; the imposed value of Y = F , or
a collection of values to consider, did not arise from the p(Y ) implied by p(y). The
value of F is imposed by intervention, so that asking about how fixing Y = F should
impact forecasts for y is more naturally a decision question. At the least, exploring
decision analysis perspectives is an opportunity to broaden the framework and examine
approaches complementary to the traditional, probabilistic view. Entropic tilting (ET)
is one fully Bayesian decision analysis approach.

Entropic Tilting and Moment Constraints

With respect to the baseline distribution P (y), ET is a maximum entropy related ap-
proach that aims to choose a distribution G(y) as a modification of P (y) that satisfies
a set of expectation constraints Eg[q(y)] = 0 where q(y) is a q-vector of functions of
y. An example with q = 2 takes q(y) = (Y − F, Y 2 − F 2 − S)′ with Y = 1′y and
some specified F and S > 0; then G(y) implies a distribution for Y that has mean
F and variance S (relevant only, of course, in contexts where variances exist). ET is
an explicit decision analytic approach that aims to select G(y) “close” to P (y) sub-
ject to the expectation constraints; ET defines “close” in terms of the Kullback-Leibler
divergence (KLD) of P (y) from G(y). With p.d.f.s p(y) and g(y), the solution is the
exponentially-tilted form g(y) = cγ exp{γ′q(y)}p(y) where the q-vector γ explicitly
enforces the expectation constraints and cγ > 0 is the normalizing constant. Detailed
theoretical background, including well-known aspects of the theory of KLD, foundations
of ET and illuminating examples, appear in Tallman and West (2022b).

The KLD optimal γ can typically be numerically computed using a Newton-Raphson
(NR) algorithm to solve the q-vector equation

∫
y q(y) exp{γ′q(y)}p(y)dy = 0, with

NR utilizing the second derivative matrix
∫
y q(y)q(y)′ exp{γ′q(y)}p(y)dy (with sum-

mations replacing integrals in cases of discrete P (y), of course). In introducing ET to
the econometrics community, one of the key contributions of Robertson et al. (2005)
was to note that Bayesian analysis of P (y) is often/typically based on Monte Carlo
simulation; this makes the integrals in such optimization computations accessible via
direct Monte Carlo approximation.
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In recent years the use of ET in Bayesian econometrics has expanded with applica-
tions in policy-oriented macro-economics, in particular (e.g. Krüger et al., 2017; Koop
et al., 2019). These and other authors address questions of constraining forecast dis-
tributions based on information from external sources, alternative models (e.g., when
using models for time series at different frequencies), and related sources such as forecast
surveys. The main technical use of ET in these areas has been to impose expectation
constraints on some subset of variables being forecast; that is, to modify a predictive
P (y) so that the mean of some (possibly vector) function of y is constrained to an
imposed value. The connections with the broad area of Bayesian (and other) forecast
combination methods is also evident here; some of these works explicitly take the view
that ET is a tool for “reconciling” forecasts from different models by matching specific
sets of forecast means across models. This is naturally related to the constrained fore-
casting perspectives here, while the following development takes the ET approach in
new directions including that of exploring “almost exact” constraints.

Novel Development of ET for Conditioning on Constraints

ET can be used to define G(y) to approximately conform with deterministic constraints.
Focus now explicitly on the context of a single constraint (whether linear or non-linear),
so q = 1, q(y) = q(y) is a scalar function and γ = γ is scalar. Take the specific choice
q(y) = I(y ∈ S) − (1 − ε) for some subspace S of the sample space of y, indicator
function I(·) and a specified probability ε. Applying ET then yields a distribution G(y)
under which Pr(yi ∈ S) = 1 − ε. This is very general and can be used, for example,
to map P (y) to a G(y) having a specified median. Applying this to approximate the
constrained problem of the current paper involves taking: (i) the subspace S very small
and concentrated around a constrained value of a deterministic function of y; and (ii)
the tolerance ε small, i.e., 1 � ε > 0. The resulting G(y) approximately satisfies the
constraint with level of approximation defined by how small S and ε are. The example
in Section 4 for the context with Y = 1′y takes S = {y : (1 − τ)F ≤ Y ≤ (1 + τ)F}
where 1 � τ > 0; here τ defines concentration of S based on percentage error of Y from
F being no more than 100τ .

In this very specific ET context, the solution G(y) can be directly evaluated without
resort to numerical optimization. Note that the p.d.f is g(y) ∝ exp{γI(y ∈ S)}p(y),
or g(y) = c{exp(γ)I(y ∈ S) + 1 − I(y ∈ S)}p(y) where c is the normalizing constant;
clearly, c−1 = exp(γ)ps + 1 − ps where ps = Pr(y ∈ S) under P (y). Then, since the
expectation of q(y) under G(·) is constrained to be 1 − ε, the optimal γ is the solution
to 1 − ε = c exp(γ)ps; this is easily solved to give γ = log{(1 − ε)(1 − ps)/(εps)}. Note
that this is decreasing in both ε and ps, and will generate exp(γ) � 1 when ε and/or τ
are small, consistent with an increasingly binding constraint.

Considering cases when P (y) is represented as a Monte Carlo sample, this ties
intimately with the ABC-style accept/reject approach noted above. Suppose, with no
loss of generality, that the Monte Carlo sample is equally weighted. The ABC analysis
leads to a weighted sample in which a sampled vector y ∼ P (y) is given a weight of
1 if y ∈ S, 0 otherwise. The ET analysis defines weights proportional to exp(γ) for
samples y ∈ S, and proportional to 1 otherwise. As noted, γ will tend to be large in
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practice, so that this ET reweighting is close to accept/reject. It can further be shown
that, with a large Monte Carlo sample size, the effective sample size of the normalized
ET weights converges around c−2/{exp(2γ)ps + 1 − ps}; in practical cases with γ � 1,
this is approximately ps, the acceptance probability of the ABC-style analysis.

2.4 Point Forecast Decision Analysis Perspective

More traditional Bayesian decision analysis approaches focus on optimal point forecast
selection under P (y) but now subject to the imposed constraints.

Let L(y, f) be a loss function chosen to score a point forecast vector f of outcome y.
Standard Bayesian decision analysis chooses that point forecast vector f∗ that minimizes
the expected loss subject to the constraints. That is,

f∗ = argminf R(f) subject to 1′f = F, where R(f) =
∫
y
L(y, f)dP (y). (2.1)

The following section concerns technical developments using specific loss functions. Some
general comments on loss function structure and the broader applied perspective on
Bayesian decision analysis are first noted.

Additive Losses. In many applied problems, loss functions will be additive over out-
comes, i.e., L(f ,y) =

∑
i=1 :n Li(yi, fi) for individual loss functions Li(·, ·) in each

dimension. In forecasting sales or demand for sets of items i, for example, the trans-
lation to revenue (gained or lost) per item is a primary consideration. Other contexts
might extend to loss functions reflecting cross-item scores. Development below focuses
on additive loss functions, leaving extensions to the reader and future, customized ap-
plications.

Generalizations with Multiple Constraints. The broader class of problems for hier-
archical and other sets of constraints simply extends the above formulation to involve
the constraint A′f = F where A is a specified n × k matrix of full rank k < n, and F
is a specified k-vector. Analysis then targets minimization of R(f) subject to these k
constraints. For example, constraints on sets of intersecting subtotals can be defined by
a matrix A of zeros and ones, while other, more general weighted averages are obvious
extensions.

Broader View: Distributions of Loss. Section 1 has already raised the central ques-
tion and potential importance of exploring predicted loss distributions, i.e., considering
aspects of P (L(y, f)) implied under P (y) for f = f∗ (and possibly other values, perhaps
“close to” f∗). This perspective is one of evaluation and presentation of uncertainties in
loss outcomes in decision analysis akin to the usual “uncertainty quantification” view
in inference. Again, this simply argues for the broader view of decision analysis in ex-
ploring loss distributions, and this is a point of emphasis throughout this paper in the
specific settings of constrained forecasting.
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3 Decision Analysis and Classes of Loss Functions
3.1 Lagrangian Formulation

The Lagrangian formulation for optimization in (2.1) is to choose (f , λ) to minimize

R(f) + λ(F − 1′f) (3.1)

with a real-valued Lagrange multiplier λ. Assuming a minimizing solution f∗(λ) given
any allowable value of λ, solving F = 1′f∗(λ) for λ∗ defines the optimal forecast vector
f∗ ≡ f∗(λ∗) = (f∗

1 , . . . , f
∗
n)′.

Details for specific loss functions commonly used in forecasting applications are noted
below (with additional technical details in Supplementary Material). The standard use
in unconstrained Bayesian decision analysis– in forecasting and parameter estimation–
is background (e.g. French and Insua, 2010; Smith, 2010). A main interest is to present
examples of optimal constrained forecasts for such loss functions, and highlight differ-
ences and implications. As noted above, the development uses an additive loss function
L(f ,y) =

∑
i=1 :n Li(yi, fi) so that

R(f) =
∑

i=1 :n
Ri(fi) with Ri(fi) =

∫
yi

Li(yi, fi)dPi(yi)dyi, i = 1 : n, (3.2)

where Pi(yi) is the marginal predictive distribution of yi. The resulting f∗ does not
involve dependencies among the yi. However, it is critical for practical application to
be aware that the resulting distributions of loss at the optimum (or at any other value
of f) are of course very much impacted by the joint structure of P (y), as examples in
Section 4 below illustrate.

In most practical contexts, there is no direct analytic solution to the implied opti-
mization problem; numerical methods are needed. Assuming f∗(λ) is available for any
λ, the optimal λ∗ is solution to q(λ) = 0 where q(λ) = 1′f∗(λ) − F . A direct Newton-
Raphson (NR) algorithm is typically most efficient and effective in solving this, relying
on the derivative function q̇(·). The basis of NR iterations is as follows.

• Initialize: Set iterate count t = 0, and Lagrange multiplier value λ = λ0, a chosen
initial value; set F 0 = 1′f∗(λ0).

• Iterate: For steps t ≥ 1, compute λt = λt−1 − q(λt−1)/q̇(λt−1), then update the
implied f∗(λt) and the sum F t = 1′f∗(λt).

• Stop: When changes in the sequence of scalars λt and/or |F − F t| become “small
enough”, set λ∗ = λt and f∗ = f∗(λ∗), and stop.

Examples in Section 4 utilize this, with NR iterations typically converging very fast.
Depending on the chosen loss function, the range of values of λ is restricted. This allows
the analysis to be self-monitoring in that NR iterates moving λ to a lower or upper
bound would indicate incompatibility of the conditioning value F with the predictive
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distribution P (Y ). Such contexts are those in which enforcing the constraint might be
questioned, and the algorithm will signal that. Finally, in contexts where predictions
are based on Monte Carlo samples from P (y), implied Monte Carlo estimates will be
used to evaluate f∗(λ) via direct, weighted or importance sampling.

3.2 Squared Error Loss

Squared error (SE) loss is not of main applied interest in commercial forecasting
applications compared to other choices noted below. However, details are tractable
and illuminating. SE loss is, of course, restricted to models in which P (y) has fi-
nite second-order moments. Supposing this, let mi be the mean of Pi(yi) and m =
(m1, . . . ,mn)′ with sum M = 1′m. The mi are optimal unconstrained point forecasts
under SE.

Take Li(yi, fi) = (yi−fi)2/ci where the ci > 0 can represent different scales or simply
different weightings of forecast errors across the n outcomes. Write c = (c1, . . . , cn)′
and C = 1′c. Then simple quadratic optimization yields f∗

i (λ) = mi + λci/2 for each
i = 1 :n. Imposing the total constraint yields λ∗ = 2(F −M)/C and thus f∗

i = mi +
(F −M)ci/C. These are the marginally optimal means mi corrected by the term (F −
M)ci/C; this naturally represents an upward (downward) correction if F exceeds (falls
short of) the forecast mean of the total E(Y ) = M . While natural, it is clear that
the scope for relevant application is proscribed; in addition to earlier comments on
constraints for relevant applications, many applied interests concern integer, count, non-
negative or bounded outcomes, and the inherent “constrained least squares” results lead
to theoretically optimal forecasts that violate such inherent requirements.

3.3 Absolute Deviation Loss

Absolute Deviation (AD) loss is perhaps the most important and widely used loss func-
tion in commercial forecasting as in other areas. Take Li(yi, fi) = |yi−fi|/ci where again
ci > 0 are known weights. Assuming finite first moments of the Pi(yi), it follows that, for
any given λ, (3.1) is minimized over the fi at the values satisfying 2Pi(fi)−1 = ciλ (see
details in Supplementary Material). Thus f∗

i (λ) = P−
i ((1 + λci)/2) where P−

i (·) is the
inverse c.d.f. (quantile function) for each i, whether discrete or continuous. Note that
the usual unconstrained forecast is the median of Pi(yi) in the case λ = 0. Otherwise,
f∗
i (λ) is the 100(1 + λci)/2 percentile of Pi(yi). Note further that λ must lie in [−r, r)

where r = 1/maxi=1 :n ci.

Example: Exponential Models. A purely illustrative, analytically tractable example high-
lights the analysis. Suppose the yi are marginally exponential, yi ∼ Exp(1/mi) with
mi = E(yi). The marginal medians are f̃i = mi log(2). Take ci = 1 so C = n
and λ ∈ [−1, 1). It follows that f∗

i (λ) = mi log(2/(1 − λ)) for each i, and impos-
ing F = 1′f∗(λ) yields λ∗ = 1 − 2 exp(−F/M). As a result, the optimal forecast is
f∗ = f∗(λ∗) = mF/M . That is, each marginal mean mi is simply– and very naturally–
scaled by the positive constant F/M so that the resulting f∗

i = miF/M sum to F .
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More generally, the direct Newton-Raphson (NR) algorithm for optimization solves
q(λ) = 0 where q(·) and its derivative q̇(·) are now given by

q(λ) =
∑

i=1 :n
f∗
i (λ) − F and q̇(λ) =

∑
i=1 :n

ci{2pi(f∗
i (λ))}−1.

These are easily calculated when the marginal forecast distributions are of parametric
forms, and via Monte Carlo approximations using forecast samples in other cases.

3.4 Absolute Percent Error Loss and Variants
APE Loss

For strictly positive outcomes yi > 0, the modification of AD loss to a percent scale
defines the absolute percent error (APE) loss that is simply key in commercial appli-
cations. APE puts forecast errors on a common scale (percent revenue, percent sales
of numbers of items, etc.) so as to enable easy comparisons across outcomes and con-
texts (e.g. Berry and West, 2020). Assuming Pi(·) has support yi > 0 (perhaps bounded
above), take Li(yi, fi) = |yi − fi|/(yici) where again ci > 0 are known weights. Then
the risk function component Ri(fi) for outcome i has the form of the expected value
of AD loss |yi − fi|/ci with respect to the modified distribution with density function
gi(yi) ∝ pi(yi)/yi. If this defines a p.d.f., then gi(yi) = kipi(yi)/yi for some normalizing
constant ki > 0 and

Ri(fi) = c−1
i

∫
yi>0

|yi − fi|y−1
i dPi(yi) = (ciki)−1

∫
yi

|yi − fi|dGi(yi),

where Gi(·) is the c.d.f. implied by p.d.f. gi(·). Hence the AD analysis above applies with
each Pi(·) replaced by Gi(·) and the weights ci replaced by ciki. That is, theoretically
and in the numerical evaluation using NR, each f∗

i (λ) is the 100(1+λciki)/2 percentile
of Gi(yi). The following details and examples are to be noted.

• When λ = 0 so that the constraint does not apply, the optimal forecasts f∗
i are

the medians of the Gi(·), also known as the (−1)-medians of Pi(·). With typical
positively skewed distributions on yi > 0, these lie below the medians due to
the greater mass at lower values under Gi(·) than under Pi(·). This feature is
inherited in the constrained decision analysis as the relevant percentiles of Gi(·)
for any given λ will be similarly lower than those of Pi(·).

• Practical models include cases when the predictive distributions have forms related
to those of compound shifted Poisson, compound gamma, lognormal and others.
As one theoretically tractable example revisited in Section 4 below, suppose that
Pi(·) is lognormal, yi ∼ LN(mi, vi) with mode, median and mean of yi given by
f̂i = exp(mi − vi), f̃i = exp(mi) and f̄i = exp(mi + vi/2), respectively. It easily
follows that Gi(·) is LN(mi−vi, vi) and ki = exp(mi−vi/2). Note that the (−1)-
median of Pi(yi) is exactly its mode in this case. Percentiles of Gi(·) relevant in
the constrained decision analysis solutions can be very substantially smaller than
those of Pi(·) when predictions are uncertain.
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• In contexts where predictions are based on Monte Carlo samples from P (y), im-
plied Monte Carlo estimates of the percentiles of Gi(·) are easily evaluated using
weighted or importance sampling.

• In some cases, this analysis is infeasible as pi(yi)/yi is not integrable, whether
available analytically or via simulation. Key cases with real practical importance
again include models generating log-T predictive distributions; truncating the dis-
tributions to finite ranges is one modification enabling the analysis.

ZAPE Loss

In discrete cases when forecast distributions have non-zero probabilities on yi = 0 for
some i = 1 :n, APE loss is not applicable. Extension to zero-adjusted absolute percent
error (ZAPE) loss functions is then of interest (Berry and West, 2020; Berry et al.,
2020). Suppose yi ≥ 0 and that the predictive distribution has a non-zero point mass
πi0 = Pi(0) at yi = 0. A ZAPE loss function is Li(yi, fi) = wi(fi)I(yi = 0) + |yi −
fi|/(yici)I(yi > 0) where wi(fi) > 0 penalizes point forecast fi when yi = 0. Berry
and West (2020) show the relevance of ZAPE in forecasting sales of large numbers of
consumer items when there are appreciable probabilities of “no sales”. In the current
context, the constrained APE analysis is easily extended; the emerging f∗

i (λ) may now
include exact zero values for some outcomes i across ranges of values of λ.

For example, take wi(fi) = fi/ci so that a point forecast fi = 1 when yi = 0 is
penalized exactly as a point forecast fi = 0 when yi = 1 (Berry and West, 2020).
Define the c.d.f. P+

i (·) for the c.d.f. Pi(·) constrained and renormalized on yi > 0, with
corresponding p.d.f. p+

i (yi). Then

Pi(yi) = πi0I(yi = 0) + (1 − πi0)P+
i (·)I(yi > 0).

Then, define Gi(·) as the c.d.f. with p.d.f. gi(yi) = kip
+
i (yi)/yi on yi > 0 where ki is the

with appropriate normalizing constant. With wi(fi) = fi/ci, the risk component Ri(fi)
satisfies

ciRi(fi) = πi0fi + (1 − πi0)k−1
i

∫
yi>0

|yi − fi|dGi(yi).

It follows that, for any given λ, (3.1) is minimized over the fi at values given by

f∗
i (λ) =

{
0, if ui(λ) ≤ 0,
G−

i (ui(λ)), if ui(λ) > 0,
with ui(λ) = 1

2

{
1 + ki

(λci − πi0)
(1 − πi0)

}
,

and where G−
i (·) is the inverse of the c.d.f. Gi(·) (see additional details in Supplementary

Material). Here λ must lie in [s, r) with bounds given by s = maxi=1 :n{((ki + 1)πi0 −
1)/(ciki)} and r = mini=1 :n{((ki−1)πi0+1)/(ciki)}. The results for APE are confirmed
when πi0 = 0 for all i. Otherwise, higher probabilities πi0 will lead to optimal point
forecasts at zero. Extending to constrained forecasting is particularly interesting in such
contexts. Technically, only minor modifications to the NR algorithm arise, with q(·) and
its derivative now given by

q(λ) =
∑

i=1 :n
f∗
i (λ) − F and q̇(λ) =

∑
i=1 :n

I(ui(λ) > 0)ciki{2gi(f∗
i (λ))}−1.
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Practically important modifications of the above example of ZAPE include choices of
the wi(fi) penalty at yi = 0 that less heavily penalize larger values of the point forecasts
fi. In some contexts, the linear in fi penalty is too dominant for larger values of fi,
pushing the optimal f∗

i to zero more aggressively than desired. In such settings, bounded
weight functions such as wi(fi) = fi/(1+ fi) or min{1, fi} are more relevant. Examples
using these forms can be easily implemented using extensions of the above optimization
method, and bear out the effectiveness in reducing the overly aggressive shrinkage to
zero of optimal forecasts while adding only modestly to computational load.

4 Illustrative Examples
4.1 General Comments

As discussed above, some motivating applications involve non-negative outcomes in
commercial and allied areas. Two illustrative examples reflect this, with multivariate
lognormal distributions that allow ranges of dependencies among the yi. This setting
provides access to some analytic tractability that aids in generating insights. Related
examples (not shown) using count data in which conditional Poisson models linked
via latent factors share similar general features, though lack analytic tractability. The
examples touch on differences in constrained point forecasts based on choice of loss
function, and on how these vary with dependencies among the yi. They also focus on
aspects of predictive distributions of losses as well as optimal point forecasts, a point
stressed earlier that should always be part of the broader Bayesian decision analysis.

4.2 Bivariate Lognormal Example

Setting and Optimal Forecasts

A first set of examples has n = 2 so that y′ = (y1, y2). The contours in Figure 1 are
those of three bivariate lognormal distributions y ∼ LN(m,V) whose parameters are
the mean and variance matrix of the underlying bivariate normal for (log(y1), log(y2))′.
The examples have m′ = (log(7), log(14)), diag(V) = (v1, v2) = (0.04, 0.09), and the
off-diagonal entry of V is 0.06ρ for dependence parameter ρ ∈ (−1, 1). The univariate
lognormal margins Pi(yi) have modes– that are also the (−1)-medians– at {6.73, 12.80},
medians at {7, 14} and means at {7.14, 14.64}. The contours are those of the highest
predictive density regions under P (y) with {0.01, 0.25, 0.5, 0.75, 0.9, 0.95} probability
content. The three examples show contours for the cases of ρ ∈ {−0.7, 0, 0.7}.

Under P (y), the sum of medians of the yi is 21, and the mean is E(Y ) = 21.9.
Figure 1 is based on F = 14.7, well into the lower tail of the forecast distribution
P (Y ) so will lead to larger adjustments to constrained point forecasts. The dashed
lines define the total constraint, so optimal point forecasts lie on these lines. The NR
algorithm converges in two or three steps to a high degree of precision. Searching for
the AD optimal is initialized at marginal medians, and for the APE optimal at marginal
(−1)-medians. The figures show the values of the constrained AD, APE and SE point
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Figure 1: Bivariate lognormal example with F = 14.7, lying quite far into lower tail
of P (Y ). Left column: Contours of p(y) for three different levels of dependence ρ ∈
{−0.7, 0, 0.7} and with the constraint 1′y = F indicated as the dashed line. The symbols
indicate the optimal point forecast vector f∗ under AD loss (+), APE loss (#) and SE
loss (X). While marginal APE optimal forecasts are always lower than those under AD
loss, the joint constrained APE optimal forecast can be higher than AD optimal in
some dimensions, simply due to the total constraint. Right column: Scatter plots of the
corresponding joint predictive distributions of the outcome total and the per dimension
loss at the value of f∗ i.e., a Monte Carlo sample from P (Y, L(y, f∗)/2). The vertical
dashed line marks the value of the constraint, Y = F ; the horizontal dashed line marks
the value of the expected loss at the minimum, i.e., the optimized risk R(f∗).
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forecasts, showing differences due to the choice of loss function. While marginal (−1)-
medians are always lower than marginal medians, the imposition of the constraint will
often change the ordering in some dimensions. Note also that the use of SE loss would be
questioned in this context. The Supplementary Material provides additional illustration
with the same model but now using two other values of F– one in the center of the
predictive distribution P (Y ) and one in the upper tail– with corresponding summaries.

Loss Distributions

Figure 1 also explores distributions of AD loss. For each value of ρ, Monte Carlo samples
of y give samples from the joint distribution of {Y, L(y, f)} at any chosen f . The figure
shows resulting scatter plots at the AD-optimal f = f∗, with the simulated loss values
scaled by 1/n = 1/2 so that the vertical axis is on a per dimension loss scale. While
f∗ is the same in all three cases, the distributions of optimized losses depend on the
full joint P (y). The predictive distribution p(Y ) is more diffuse for positive values of
ρ than for zero or negative values, and this naturally translates into greater dispersion
of the resulting distribution of losses. As ρ varies in {−0.7, 0, 0.7}, the medians of the
loss distributions are approximately {2.9, 2.7, 2.5}, and the means are approximately
{3.38, 3.18, 3.10}; in each case, the minimum value of the risk function reduces as ρ
increases. However, the loss uncertainty increases as ρ increases; for example, the upper
95% points of the loss distributions are approximately {6.86, 7.45, 7.90} at these three
values of ρ. Thus, while average or median risks define one order, the tail behaviour
of loss distributions raises additional considerations of possible “downside” losses. Note
also that there is appreciable probability on loss outcomes that are lower than the
optimized risk, i.e., corresponding to the potential “upside” outcomes. This argues for
the broader view of decision analysis to understand aspects of loss distributions at
optimal– or other– chosen point forecasts. It should be stressed that this is a general
point– not specific to constrained forecasting, but highlighted in this context. While the
general concept has been well-recognized in areas such as finance (with “value-at-risk”
studies resulting) it is not generally appreciated in other areas of decision analysis.

Probabilistic Conditioning

This example is a case in which the conditioning value of F lies is well into the tails
of p(Y ) which, as discussed earlier, represents challenges to the purely probabilistic
approach of summarizing aspects of p(y|Y = F ). That said, in this simple illustrative
example in only 2-dimensions, it is easy to generate very large Monte Carlo samples
from p(y) and apply vanilla ABC-style methods. Figure 2 gives examples in the case
of ρ = 0.7. A large sample from p(y) was conditioned to simulated values of y such
that Y = 1′y was “close” to the conditioning F value, illustrating results for both
the low and high values of F . Closeness was specified by |Y − F |/F < τ where 100τ
is the percent tolerance on this natural “closeness to constraint” metric. Examples
displayed use τ = 0.005; resulting scatter plots (not shown) of the constrained samples
appear visually indistinguishable from the line 1′y = F . ABC acceptance rates at this
tolerance are around 0.5–1.5%, and smaller for negative values of ρ, indicative of the
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Figure 2: Bivariate lognormal example with ρ = 0.7, showing marginal and approximate
constrained p.d.f.s. Analysis generates a large Monte Carlo sample and accepts y if,
and only if, the sum Y satisfies |Y − F |/F < τ with percent tolerance 100τ = 0.5. The
histograms represent ABC-approximate conditionals pi(yi|Y = F ) based on the joint
prior p(y) whose lognormal margins pi(yi) are displayed as curves. Analyses are based
on the very low value of F = 14.7 (left) and the high value of F = 24.15 (right).

challenges of using probabilistic conditioning. In realistic, higher-dimensional settings,
this ABC-style analysis is simply not an option as (i) it becomes really challenging to
define relevant tolerance ranges, and even with that in place (ii) the acceptance rates
decay exponentially with dimension. In contrast, the decision analysis approach has
different goals, and generates useful and informative results of direct applied value in
such contexts, and is at least complementary to the purely probabilistic approach.

Entropic Tilting

In the setting of Section 2.3, take ET function q(y) = I(y ∈ S) − (1 − ε) where the
probability ε is close to zero and S = {y : (1 − τ)F ≤ Y ≤ (1 + τ)F}. This leads
to ET optimal G(y) ≈ P (y|Y = F ) with p.d.f. g(y) ∝ exp{γI(y ∈ S)}p(y) with
γ = log{(1−ε)(1−ps)/(εps)}. In the current example, P (y) is defined in terms of a direct
Monte Carlo sample yj for j = 1 : J where J is the Monte Carlo sample size. These are
reweighted according to weights wj = exp(γ) for y ∈ S, and wj ∝ 1 for y /∈ S, subject to
summing to 1. As noted earlier, the optimal solution has γ = log{(1− ε)(1−ps)/(εps)}.
The optimal set of weights wj represent an importance sampling approximation to the
optimal G(y) subject to the assessment of importance sampling accuracy using the usual
metrics (e.g. West, 1993). Inference on y conditional on the constraints then follows;
one easy and oft-used step in importance sampling is to simply resample y from the set
yj according to the weights wj , and then proceed based on that resample (which, of
course, will generally include replicates).
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In the running bivariate lognormal example with ρ = 0.7, the ET analysis has been
explored for a range of choices of small values of the tolerance parameters τ, ε. There is a
high level of robustness with respect to these values. Take τ = 0.005 as in the accept/re-
ject analysis, and, for example, ε = 0.001. Monte Carlo samples of J = 1× 106 generate
empirical distributions of resampled yj values that are visually indistinguishable from
the direct accept/reject results shown in Figure 2. The resulting constrained medians
of each element of y are equal to those from the traditional accept/reject analysis up
to two decimal places (on the practically relevant scale of 0–20). This, and multiple
other examples, supports ET as a novel approach to decision-guided conditioning on
almost-exact deterministic constraints.

Concordance of ET with probabilistic conditioning is also clear in questions about
constrained values that are extreme under P (y). One gauge of this in the ABC ac-
cept/reject analysis is the empirical estimate of acceptance rate 100ps%. In the ET
analysis, the percentage effective sample size (ESS) of the importance sampling weights,
ESS = 100/

∑
j(Iw2

j ), is comparable. In the example with τ = 0.005 and ε = 0.001 at
the optimized values of γ, the summaries are as follows. When F = 14.7, the low value,
the effective % sample size of the importance sampling weights, these two measures
are each 0.56% to two decimal places; when F = 24.15, the high value, they are each
approximately 1.36%. These very low values are again indicative of the challenges of
conditioning. Constraints that are unlikely under P (y) will generate low ESS and show-
ing the instability of the results. In such contexts, taking ε very small and m closer to
1– as required for theoretical reliance on the approach– is increasingly fragile without
access to very large samples from P (y). That said, it is very worthwhile to explore both
probabilistic conditioning using ABC-style analysis and the ET approach together in a
given context. The formal Bayesian decision analysis approach– with its different goals
and outputs– generates additional results and insights, as is now further exemplified.

Constraint Sensitivity Analysis

Exploring loss outcomes under perturbations of the chosen conditioning value F defines
a local sensitivity analysis: perturb a “nominal” constrained value F and reevaluate
f∗ across perturbed values F + δ for some δ in a specified discrete range of values. In
this example context with positive outcomes, perturbations of a chosen sum F are best
couched as percentage changes, i.e., taking δ = ±εF for small ε on a discrete range of
specified values. To illustrate this here, Figure 3 summarizes results in this bivariate
lognormal example for two cases of the nominal F , low and high values with respect
to p(Y ), and taking ε = 0.1. The resulting ranges of f∗ values as F varies within 10%
of the chosen nominal values indicate quite tight ranges, in this example context. Note
how the optimal point forecast values track the levels of the joint p.d.f. as F varies,
with trajectories that appear to move very naturally along a “ridge” in the p.d.f. Also,
while these regions of optimal point forecasts are of course very different conceptually
to probability intervals under the purely probabilistic framework, note the concordance
with the ABC-approximate conditional p.d.f.s in Figure 2.

The NR algorithm is fast; running it for multiple values F+δ is computationally easy.
A first-order approximation is available to define a computational short-cut, perhaps at
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Figure 3: Bivariate lognormal example with ρ = 0.7, showing the joint p.d.f. and its
margins with constrained ranges of each f∗

i indicated. This is based on the sensitivity
analysis under AD loss and varying the constrained total in {0.9F, 1.1F}– i.e., within
±10% of the nominal value F . Implications of the earlier used low (F = 14.7, left figures)
and high (F = 24.15, right figures) values for the– now nominal– constrained total are
shown. The upper frames show three straight lines representing the nominal constraint
with now lower and upper bounds also indicated; the central of the three lines is that
defining the nominal constraint. Superimposed is a shaded region (in red) that maps
how f∗ changes as F varies across its range. The lower frames show the marginal p.d.f.s
with ranges of each f∗

i indicated by the shaded regions.

least for initial exploratory analysis. Based on the NR update equation, a perturbation
of F to F + δ for some small δ yields the update to λ = λ∗ + δ/q̇(λ∗). In the current
example context this translates to λ = λ∗ + εF/q̇(λ∗) where ε takes value in a small
range of % changes. This provides a trivial short-cut approximation to evaluating λ over
the range, and then computing the implied ranges f∗(λ) in the sensitivity analysis.



M. West 19

Finally, in some applied settings it may be of interest to explore sensitivity analyses
with different ranges of values of F , such as defined by predictive intervals for Y under
some external model for the outcome total that is imposed on the predictive model p(y)
in the spirit of information aggregation, or predictive synthesis (West and Crosse, 1992;
West, 1992; West and Harrison, 1997, section 16.3; McAlinn and West, 2019).

4.3 A 100-Dimensional Example
Some of the main motivating areas of application are in constrained forecasting in com-
mercial or economic settings. In commercial sales forecasting in large companies, key
example contexts including those of projecting point forecasts throughout hierarchies
of sales or revenues, and of ensuring consistency of forecasts for sales at increasingly
fine levels of disaggregation. Forecasts for “high-level” sales or revenue must be consis-
tent with sets of forecasts at “lower levels” (e.g. Green and Harrison, 1973; West and
Harrison, 1997, section 16.3). Here the general framework concerns conditioning sets of
forecasts on information about totals and aggregates, all of which can be represented
via sets of linear constraints on the uncertain outcomes being predicted. Such questions
arise commonly in “what-if” evaluation in policy decision contexts such as above and in
other areas including macro-economic forecasting over multiple time periods (McAlinn
et al., 2020). Related questions arise in ensuring compatibility of forecasts at differ-
ent resolutions in time, often with different forecast models generating predictions at
different time scales (e.g. Ferreira and Lee, 2007; Molina et al., 2010; Berry et al., 2020).

An example in n = 100 dimensions is summarized in Figure 4, linked to applied stud-
ies in supermarket sales modelling and forecasting. The data come from n = 100 stores
with monthly revenue $yi in the same consumer goods sector in each store, recorded
each month over several years. The data are scale transformed for confidentiality. The
snapshot here concerns a forecast distribution P (y) where y represents the one-month
ahead revenue vector at a chosen time point. Here P (y) is a 100-dimensional lognormal
y ∼ LN(m,V) with (m,V) set at values based on the historical record and model
analysis. Conditioning on the sales total Y is then of relevance from the above noted
perspectives. A point forecast of Y may be generated from an “external” source and the
goal is to explore consistency with P (y) and/or to proceed to constrained forecasting
of y. The external source may be an alternative model of aggregate sales, or one of a
number of values generated as “what-if” or scenario values for consideration. A main
point for illustration is to complement the above examples in highlighting the role of
dependencies in a total-constrained decision analysis and the impact of the decision
perspective. This is also a higher-dimensional example and it should be noted that
the computational load in evaluation of decision analytic constrained forecasts remains
almost trivial using the NR algorithm.

Figure 4 displays summaries of correlations in V. There are dependencies across
stores, with both negative and positive dependencies exhibited in the displays of corre-
lations defined by V. The decision analysis is summarized through evaluation of optimal
point forecasts using absolute deviation (AD) loss; revenue outcomes are all on the $
scale so are directly comparable and APE loss is less relevant, while the context is such
that results under AD, APE and SE are in any case similar. Marginal point forecasts
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Figure 4: Supermarket sector sales revenue example with n = 100 and y ∼ LN(m,V).
The top frames exhibit the correlations underlying V in heat-map and histogram forms.
The lower left frame plots the marginal (−1)-medians, medians and means of the yi
against their medians, and overlays a scatter plot of the AD-optimal f∗

i point forecasts
in the case of a total constraint F = 4,281. This value of Y = F lies somewhat in the
lower tail of P (Y ) as exhibited in the lower right frame that scatter plots a Monte Carlo
sample from P (Y, L(y, f∗)/n) (blue +). The vertical dashed line marks the value of the
constraint, Y = F ; the horizontal dashed lines mark the value of the expected loss at
the minimum, i.e., the optimized risk R(f∗) (black dashed line) and the median of the
loss distribution (red dashed line). Overlaid is a scatter plot (+) of a corresponding
sample from a modified P (y) that has the same location and scale parameters but sets
dependencies to zero, i.e., y ∼ LN(m,V0) where V0 has the same diagonal elements
as V but zero off-diagonal entries.

for each yi are closely similar across stores i, as illustrated in the figure. Using AD loss
and constraining to the total F = 1′f that is fixed at a value somewhat (though not
extreme) in the lower tail of p(Y ) shows optimal constrained forecasts that are clearly
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downward adjustments to the marginal values. The figure then displays Monte Carlo
samples from P (Y, L(y, f∗)/n) as in the earlier examples of Section 4.2. That is, a scat-
ter plot of samples from the joint distribution of the total revenue over stores together
with the realized loss per store under the AD loss function. The imposed conditional
total value here is F = 4,281, lying in the tail– though not really substantially extreme–
of the forecast distribution P (Y ) that is close to symmetric with median 4,775.

The distribution of loss at the AD-optimal value f∗ is spread over 2–12 on the scale
defined in this analysis, while the mean and median of the loss distribution are around
5.1–5.2. There is appreciable probability of loss values much less than this, as well as
reasonable chances of higher losses up to the 9–12 range (akin to “value at risk”). These
are key and potentially critical presentations of realistic outcomes from the decision
analysis.

A further point speaks to the impact of dependencies in P (y) on the implied loss
distributions. The figure highlights this in contrasting summaries of the predictive distri-
bution P (Y, L(y, f∗)/n) under the dependent model with a model in which V is replaced
by a diagonal matrix V0 having the same diagonal elements. This is not a strange choice
for comparison; applied analyses of such problems will often analyze data independently
across stores, so this is a relevant benchmark. The resulting P (Y ) and hence the joint
P (Y, L(y, f∗)/n) are very concentrated relative to the original model analysis. In the
dependent model, there are ranges of negative and positive dependencies among the
yi, but the preponderance and magnitudes of positive values lead to overall increased
uncertainty about Y and hence about the potential loss outcomes. This is typical in
such commercial applications, where dependencies often arise through common factors
such a seasonality and management policies that are comparable across stores (Berry
and West, 2020; Berry et al., 2020). The comparison analysis that fixes all correlations
in V0 to zero defines, in contrast, a rather concentrated predictive distribution for Y
and hence losses. While the optimized expected losses are the same under the two mod-
els, the independence model massively understates the levels of realistic uncertainty
in the outcome total Y and hence in the loss distribution; this leads to the poten-
tial to generate substantial over-confidence in the selection of the optimal constrained
point forecasts. Other comparisons could be made, but this practically-grounded exam-
ple serves to again highlight the main point of examining loss distributions along with
optimal point forecasts.

5 Summary Comments
Integrating decision analysis into problems of constrained forecasting is complementary
to the traditional inferential view, and examples here illustrate the benefits of ensuring
attention to the decision theoretic “Yang” of Bayesian analysis as well as to the inferen-
tial “Yin”. This view is, of course, not specific to the contexts of Bayesian constrained
forecasting, but decision perspectives are under-regarded and under-represented in ap-
plied forecasting as in other areas (e.g. Lindley, 1992; Lavine et al., 2021; West, 2020,
section 2.3). The potential for methodological advance as well as more comprehensive
analysis is highlighted in the motivating context of constrained forecasting. Examples
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with features faithful to applied settings demonstrate the relevance of the broader view
of decision analysis that expands from a main focus on optimal decisions to always
explore implied loss distributions. Constrained forecasting examples where multivariate
dependencies can have major impact on ranges of likely losses highlight the practical
import. It is also noted that, in many common, practical contexts, expected loss func-
tions are undefined while distributions of losses are valid and accessible. Key examples
involve log-T distributions that routinely arise in linear models of many kinds, including
dynamic linear models (DLMs) in time series forecasting. Here blind adoption of opti-
mal point forecasts based on minimizing expected losses is unfounded implied predictive
distributions of losses are perfectly well defined.

Methodologically, connections of decision analysis and inferential approaches are
nicely enhanced by new ideas and methodology exploiting entropic tilting. As an ap-
proach to understanding compatibility of constraints with a forecast distribution, and
to minimally modifying the distribution to approximately accord with deterministic
constraints, ET is a fully Bayesian decision analysis framework that can be exploited
to extend methodology in practical ways. Its connections to Monte Carlo methods for
probabilistic conditioning nicely highlight its use and complementarities relative to con-
strained point forecasting alone. Technically, use of more elaborate, non-linear con-
straints will raise challenges of optimization. While many, general algorithms exists for
numerical optimization problems, linkages with Bayesian emulation approaches such as
have been used in portfolio optimization subject to various constraints (e.g. Irie and
West, 2019) may provide relevant and novel opportunities for progress.

Detailed application in live forecasting require extensions to contexts of multiple
constraints such as arise in hierarchies. Extension of the basic decision problem of (2.1)
to a set of constraints is theoretically immediate. That is, the optimization is generalized
to condition on k constraints A′f = F where A is a given n × k matrix of full rank
k < n and F a given constraint k-vector. Developments with intersecting sets of subtotal
constraints– in which case A is a matrix with zero/one entries– are one main class of
interest. Evaluation of optimal constrained forecasts based on multivariate Newton-
Raphson is immediate.

Problems in which the loss functions are not additive in outcomes i = 1 :n are also
of interest. In commercial forecasting with positive, or non-negative, outcomes (such as
with consumer sales of items or batches of items, revenues in multiple sectors or markets)
it can be relevant to consider loss functions that involve cross-talk between outcomes.
Sales of one product may be inversely related to those of another due to substitution
effects, and overall sales across categories might be of main interest; similar comments
apply to revenue forecasting over multiple sectors. Customized losses L(y, f) that are
not additive will be of interest.

Important extensions concern problems in which the predictive distribution P (y) is
itself impacted by the future actions based on chosen optimal point forecasts. As one
example, consider supermarket sales where yi is the sales outcome, and f∗

i defines the
store manager’s decision to stock f∗

i (or, perhaps, f∗
i + a few more) items of a specific

consumer item. Then, necessarily yi ≤ f∗
i since no more than that are available for sale

in the next time period. Extension of this applies to cases of other constraints on y,
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such as are relevant in macro-economic forecasting where one or more of the yi are pu-
tatively controllable as policy instruments. A macro-economic forecasting model is then
applied across a range of “what-if?” values of one variable, corresponding to one (lin-
ear) constraint on the outcome vector rather than a total constraint. Such conditional
forecasting across multiple time periods lies at the heart of applied Bayesian forecast-
ing in macro-economics (e.g. Del Negro and Otrok, 2008; Nakajima and West, 2013;
McAlinn et al., 2020). This argues for extensions in which P (y) is modified by multiple
constraints in the optimization setting. This is not a new concept (e.g. Harrison and
Smith, 1980) but is certainly under-regarded in both forecasting and Bayesian analysis
literatures. It is an extension of significant potential practical importance.

Connections with forecast reconciliation and combination in Bayesian econometrics
go beyond the use of entropic tilting (as discussed in Section 2.3). In particular, there
is much interest in questions of constraining forecasts (based on point forecasts from
alternative models, or information from surveys of forecasters, etc) in settings where
there are multiple, intersecting hierarchies (e.g. Koop et al., 2020). A key such area is
that of mixed-frequency time series, where some variables are observed at finer time
scales than others, so naturally inducing temporal aggregation questions (e.g. Koop
et al., 2019). Coupled with this are questions of consistency of forecasts with respect
to aggregation over time, as well as contexts where there are inherent cross-sectional
hierarchies (e.g., monthly consumption is an aggregate over several sectors). The decision
analysis approach coupled with ET methodology offers promise for expanding Bayesian
methodology in such areas.

Finally, the discussion has touched on connections to the broader area of integration
of forecast information, and so-called forecast reconciliation. In the Bayesian literature,
this area has evolved from basic forecast combination to more fully subjective Bayesian
approaches to correcting for biases and more general calibration, and combining fore-
casts from multiple, potentially related sources. This line of literature (e.g., West and
Crosse, 1992; West, 1992; West and Harrison, 1997, section 16.3; McAlinn and West,
2019) intersects intimately with the apparently narrower and more specific goals of
constrained forecasting, but as detailed in examples in West and Harrison (1997, sec-
tion 16.3), clearly forms part of a broader context; decision analytic perspective of this
paper can be expected to be applicable in these broader settings. The use of entropic
tilting opens up new directions for exploiting constraints generally, as well as in broad-
ening the Bayesian thinking about comparison, calibration and combination of forecasts
from multiple models. Some recent relevant developments in Tallman and West (2022a),
that integrate decision goals into forecast model combination and explicitly rely on some
new uses of entropic tilting, indicate some such opportunities. Further, the constructive
use of ET also yields computational benefits that will be of use in more complicated
settings. For example, in settings with non-linear constraints and/or non-additive loss
functions the ET methodology based on Monte Carlo samples from forecast distribu-
tions is accessible and no more computationally demanding than in the simpler example
settings of this paper.
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Supplementary Material
Perspectives on Constrained Forecasting. Supplementary Material: Further Details and
Examples (DOI: 10.1214/23-BA1379SUPP; .pdf). Supplementary details and examples
are provided in West (2023).
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