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Consistent and Scalable Bayesian Joint Variable
and Graph Selection for Disease Diagnosis

Leveraging Functional Brain Network∗

Xuan Cao† and Kyoungjae Lee‡,§

Abstract. We consider the joint inference of regression coefficients and the in-
verse covariance matrix for covariates in high-dimensional probit regression, where
the predictors are both relevant to the binary response and functionally related
to one another. A hierarchical model with spike and slab priors over regression
coefficients and the elements in the inverse covariance matrix is employed to si-
multaneously perform variable and graph selection. We establish joint selection
consistency for both the variable and the underlying graph when the dimension of
predictors is allowed to grow much larger than the sample size, which is the first
theoretical result in the Bayesian literature. A scalable Gibbs sampler is derived
that performs better in high-dimensional simulation studies compared with other
state-of-art methods. We illustrate the practical impact and utilities of the pro-
posed method via a functional MRI dataset, where both the regions of interest
with altered functional activities and the underlying functional brain network are
inferred and integrated together for stratifying disease risk.

Keywords: joint selection consistency, Markov random field prior, Parkinson’s
disease.
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1 Introduction
Analyzing high-dimensional data is becoming increasingly prevalent and challenging as
technology advances facilitating the collection and storage of more extensive massive
data. When applying a generalized linear model (GLM) to such large-scale data, a
large number of variables can easily cause an overfitting problem. In this situation,
variable selection is one of the most commonly used techniques to avoid overfitting.
Numerous frequentist methods on variable selection have been introduced ever since
the appearance of Lasso (Tibshirani, 1996), and many analogous Bayesian methods
have also been proposed (Ishwaran et al., 2005; Narisetty and He, 2014; Ročková and
George, 2018).
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On the other hand, understanding the complex relationships between variables in
high-dimensional datasets is also important, where inverse covariance matrices (or equiv-
alently, precision matrices) are prevailingly exploited to capture the multivariate depen-
dence. This is often called a network structure between the variables. A variety of work
on algorithms and their theoretical considerations have emerged to investigate a net-
work structure (Wainwright, 2019). One of key developments was the introduction of
the neighborhood selection method (Meinshausen and Bühlmann, 2006), which lever-
ages the connection between the (i, j)th entry of the inverse covariance matrix Ω to the
partial correlation between the ith and jth variable estimated through a penalized re-
gression setup. Many other frequentist methods have been developed for sparse precision
matrix estimation based on the neighborhood selection (Yuan and Lin, 2007; Friedman
et al., 2007; Peng et al., 2009; Khare et al., 2015), and several Bayesian counterparts
have been proposed in the literature (Dobra et al., 2011; Wang, 2012, 2015). However, a
key challenge for these Bayesian approaches is their scalability to high-dimensional set-
tings. To address this issue, recently, Jalali et al. (2020) employed the regression-based
generalized likelihood function in Khare et al. (2015) combined the spike and slab pri-
ors over entries in Ω. They proposed a scalable Gibbs sampler that works well in high
dimensions and runs comparably fast compared with the Graphical Lasso (Friedman
et al., 2007).

It is often of interest to jointly perform variable selection and discover the network
structure among predictors. This type of problems is of wide clinical applications in
radiological and genomic studies. Magnetic resonance imaging (MRI) scans and genetic
traits are typical examples where the mechanism for effect on an outcome, such as
functional brain activities (Langer et al., 2012) or molecular phenotypes such as gene
expression, proteomics, or metabolomics (Nacu et al., 2007; Souza et al., 2020), often
displays a coordinated change along a pathway. In such cases, the impact of a single fac-
tor may not be apparent. Specifically for radiological studies, recent progress in imaging
analysis allows the development of a novel feature extraction method called radiomics
which converts large amounts of medical imaging characteristics into high-dimensional
mineable data pool to build a predictive and descriptive model. The method has been
applied to the diagnosis of neuropsychiatric diseases such as autism, schizophrenia, and
Alzheimer disease (Feng et al., 2019; Salvatore et al., 2021). These findings demonstrate
the validity of these radiomic approaches in discovering discriminative features that
can reveal pathological information. In such cases, the method of joint selection can
incorporate and highlight the underlying brain network to improve the classification
accuracy.

Several frequentist and Bayesian methods have been proposed for joint inference
on variables and graphs. Li and Li (2008, 2010) investigated a graph-constrained reg-
ularization procedure as well as its theoretical properties in order to account for the
neighborhood information of variables measured on a given graph. Dobra (2009) es-
timated a network among relevant predictors by first performing a stochastic search
to discover subsets of predictors, then using a Bayesian model averaging approach to
estimate a dependency network. Liu et al. (2014) developed a Bayesian method for reg-
ularized regression, which provides inference on the inter-relationship between variables
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by explicitly modeling through a graph Laplacian matrix. Peterson et al. (2016) simul-
taneously inferred a sparse network among the predictors based on the block Gibbs
sampler and performed variable selection using this network as guidance by incorporat-
ing it into a Markov random field (MRF) prior.

Despite recent advances in Bayesian methods for joint regression and covariance
estimation, theory related to joint selection consistency is not well-understood. Some
early attempts (Cao and Lee, 2021) focused solely on linear regression models, where
the predictors are linked through a directed graph with a known ordering. To the best
of our knowledge, joint variable and graph selection consistency in a high-dimensional
GLM has not been investigated under either directed or undirected graphical models.

In this paper, we consider a high-dimensional probit model with network-structured
predictors via a Gaussian graphical model. Our goal is to jointly perform variable and
graph selection with theoretical guarantees, and to develop a scalable algorithm for joint
inference in a high-dimensional regime. We fill the gap in the literature by establishing
joint selection consistency of the proposed posterior distribution, which guarantees that
the posterior probability assigned to the significant variables and the true graph tends to
1 as we observe more data. To perform joint selection, spike and slab priors, imposed on
the regression coefficients and the precision matrix of predictors, are linked by an MRF
prior. Furthermore, for scalable inference, we adopt the regression-based generalized
likelihood function (Khare et al., 2015) for the predictors. This enables the derivation of
a scalable Gibbs sampler by making available the conditional posteriors for the entries of
the precision matrix in closed form. We illustrate the practical impact and utilities of the
proposed method via a functional MRI dataset, where both the regions of interest with
altered functional activities and the underlying functional brain network are inferred
and integrated together for disease diagnosis.

We note here that we model the network among the covariates as an undirected
graphical model. Alternatively, the network can also be modeled using a directed acyclic
graph model, as was done in Chekouo et al. (2015), Peluso and Consonni (2020) and Cao
and Lee (2021). Furthermore, we use the term “joint variable and graph selection” in a
slightly different context from the meaning used in the existing multivariate regression
literature. For examples, in Bhadra and Mallick (2013), Chen et al. (2016), Consonni
et al. (2017), Deshpande et al. (2019) and Samanta et al. (2022), they considered mul-
tivariate regression models, where joint sparsity is imposed in the regression coefficient
matrix and the error covariance matrix.

The rest of the paper is organized as follows. In Section 2, we describe the general-
ized likelihood function for inverse covariance estimation and the spike and slab priors
for sparsity recovery under a probit regression. Posterior computation algorithms are
described in Section 3. Theoretical results of the proposed posterior including joint vari-
able and graph selection consistency are shown in Section 4 with proofs provided in the
supplementary material (Cao and Lee, 2023). We show the performance of the proposed
method and compare it with other competitors through simulation studies in Section 5.
In Section 6, a radiomic analysis is conducted for predicting Parkinson’s disease based
on functional MRI (fMRI) data, and a discussion is given in Section 7.
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2 Model Specification
Consider a case-control study to identify the radiomic features that are network-struc-
tured and may contribute to the disease risk by comparing patients who have certain
disease (the “cases”) with subjects who do not have that disease but are otherwise
similar (the “controls”). In particular, for i = 1, 2, . . . , n, let Yi ∈ {0, 1} be the binary
response variable indicating whether the ith subject has certain disease, and denote
Xi = (xi1, xi2, . . . , xip)T ∈ R

p as the covariate vector containing all the p radiomic
features for the ith subject. We consider the following probit model with covariates
that obey a multivariate Gaussian distribution: for 1 ≤ i ≤ n,

P (Yi = 1 | Xi, β) = Φ
(
XT

i β
)
, (2.1)

Xi | Ω i.i.d.∼ Np

(
0,Ω−1), (2.2)

where Φ(·) is the cumulative distribution function of the standard normal distribution,
β is a p × 1 vector of regression coefficients, and Ω = (ωjk) denotes the p × p inverse
covariance matrix. Our goal is to infer the regression coefficients β and underlying
network structure Ω simultaneously to identify all the significant features better.

2.1 CONCORD Generalized Likelihood for Predictors
In the frequentist setting, one of the most popular methods to achieve a sparse estimate
of Ω is the graphical lasso (Friedman et al., 2007; Yuan and Lin, 2007), where the objec-
tive function is composed of the negative Gaussian log-likelihood and an �1-penalty term
for the off-diagonal entries of the inverse covariance matrix over the space of positive
definite matrices. This objective function is also proportional to the posterior density of
Ω under Laplace priors for the off-diagonal entries, leading to a Bayesian inference and
analysis framework (Wang, 2012). Note that the requirement on the positive definite-
ness of Ω translates to the expensive computational need of inverting (p− 1) × (p− 1)
matrices in each iteration of both graphical lasso or Bayesian Markov Chain Monte
Carlo (MCMC) algorithms.

To mitigate this issue, Khare et al. (2015) relaxed the parameter space of Ω from
positive definite matrices to symmetric matrices with positive diagonal entries. Note
that it cannot be achieved under the graphical lasso framework due to the determinant
of Ω in the likelihood function. Let S = n−1 ∑n

i=1 XiX
T
i denote the sample covariance

matrix. They introduced the CONvex CORrelation selection methoD (CONCORD)
generalized likelihood function, for a given p× p symmetric matrix Ω,

L(Ω) = exp
{
n

p∑
j=1

logωjj −
n

2 tr(Ω2S)
}

= exp
{
n

p∑
j=1

logωjj −
1
2

p∑
j=1

n∑
i=1

(
ωjjxij +

∑
k �=j

ωjkxik

)2
}
, (2.3)

which is motivated by the regression-based neighborhood selection method (Meinshausen
and Bühlmann, 2006). The quadratic nature of the objective function (2.3) and the
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relaxation of the parameter space lead to an entire order of magnitude decrease in com-
putational complexity compared to that required by graphical lasso-based approaches.
Hereafter, we proceed with the CONCORD generalized likelihood (2.3) instead of the
Gaussian likelihood corresponding to (2.2), and show that asymptotic properties as well
as the computational efficiency can be achieved under the Bayesian framework of joint
inference.

2.2 Spike and Slab Priors for Graph Selection
The main goal of this paper is to simultaneously infer the sparsity pattern in both β
and Ω. To facilitate this purpose, we adopt the prior on precision matrix Ω suggested
by Jalali et al. (2020). Specifically, we first introduce the following spike and slab priors
for every off-diagonal entry of Ω,

ωjk
ind∼ (1 − q)δ0(ωjk) + qN(0, 1/λjk) for 1 ≤ j < k ≤ p, (2.4)

where δ0(·) denotes the point mass at 0, λjk > 0 is the precision of slab part, and
q ∈ (0, 1) is the prior inclusion probability. For the diagonal entries of Ω, we assume

ωjj
ind∼ Exp(λj) for 1 ≤ j ≤ p, (2.5)

where λj > 0. Let ξ = (ωjk, 1 ≤ j < k < p)T ∈ R
(p2) and δ = (ω11, ω22, . . . , ωpp)T ∈ R

p

be the collection of all the off-diagonal and diagonal entries of Ω, respectively. Let a
symmetric matrix G = (Gjk) ∈ {0, 1}p×p with zero diagonals represent the adjacency
matrix corresponding to the precision matrix Ω where Gjk = Gkj = 1 if and only if
ωjk �= 0, and Gjk = Gkj = 0 otherwise. If we further restrict our analysis to only
realistic models, i.e., precision matrices with nonzero entries no more than R1 > 0,
spike and slab priors (2.4) can be alternatively represented as

ξ | G ∼ N|G|(0,Λu),

π(G) ∝ q|G|(1 − q)(
p
2)−|G|I(|G| < R1),

where |G| =
∑p−1

j=1
∑p

k=j+1 Gjk is the number of nonzero entries in the upper triangular
part of G, Λ is a diagonal matrix with diagonal entries {λjk, 1 ≤ j < k < p}, and Λu

is the sub-matrix of Λ after removing the columns and rows corresponding to the zero
indices in the upper triangular part of G (Jalali et al., 2020). In the above, I(·) stands
for the indicator function.

The main difference of this approach compared to other existing Bayesian methods
is that it does not consider the positive definiteness constraint of Ω, which enables
us to use discrete spike and slab priors for each off-diagonal entry of Ω. This prior,
together with the CONCORD generalized likelihood, enables us to calculate π(Gjk, ωjk |
Ω−jk, γ,X) in a closed form. Thus, we can use the entrywise Gibbs sampler described
in Section 3.1. In contrast, for example, Wang (2015) used continuous spike and slab
priors for each off-diagonal entry of Ω under the positive definiteness constraint. Due
to the constraint, it does not allow a closed form of π(Gjk, ωjk | Ω−jk, γ,X), and the
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entrywise Gibbs sampler cannot be used in this case. Wang (2015) instead used the
blocked Gibbs sampler that samples each column of Ω in turn. This is indeed more
efficient and scalable compared to other traditional Bayesian methods, but requires
inversions of (p− 1)× (p− 1) matrices to sample each column of Ω, which causes heavy
computation for large p.

2.3 Incorporating Graph Structure for Variable Selection
We denote a variable indicator γ = {γ1, γ2, . . . , γp} such that γj = 1 if and only if
βj �= 0, for 1 ≤ j ≤ p. Let βγ ∈ R

|γ| be the vector formed by the active components in
β corresponding to model γ, where |γ| =

∑p
j=1 γj is the number of nonzero entries in

γ. For any matrix A ∈ R
n×p with p columns, let Aγ ∈ R

n×|γ| represent the submatrix
formed from the columns of A corresponding to the nonzero indices in model γ.

For variable selection, we consider the following hierarchical prior over β:

βγ | γ ∼ N|γ|
(
0, τ2I|γ|

)
, (2.6)

π(γ | G) ∝ exp
(
−a|γ| + bγTGγ

)
I(|γ| < R2), (2.7)

for some constants a > 0, b ≥ 0 and a positive integer 0 ≤ R2 ≤ p. Prior (2.6) can be seen
as a collection of slabs of spike and slab priors for regression coefficients (Narisetty and
He, 2014; Yang et al., 2016), where τ2 is the variance of the slab. Prior (2.7) is called an
MRF prior on the variable indicator γ. It encourages the inclusion of variables connected
to other variables through the adjacency matrix G. MRF priors have been used in the
variable selection literature including Peterson et al. (2016); Li and Zhang (2010) and
Stingo and Vannucci (2010). Note that the hyperparameter a in (2.7) corresponds to a
penalty for large models, and b determines how strongly an adjacency matrix G affects
inclusion probabilities of variables. We can jointly infer a variable indicator γ and an
adjacency matrix G by considering b > 0, whereas b = 0 leads to a separate inference
of γ and G.

3 Posterior Computation
Model (2.1) is equivalent to letting Yi = I(Zi ≥ 0), where Zi is an underlying continu-
ous variable that has a normal distribution with mean XT

i β and variance 1 (Albert and
Chib, 1993). As we shall demonstrate subsequently, one can exploit this reparameteri-
zation to formulate a Gibbs sampler for posterior inference. Let Z = (Z1, Z2, . . . , Zn)T .
Combining this with the CONCORD generalized likelihood (2.3) and priors (2.4)–(2.7),
the full posterior of Z, β, γ,Ω and G is given by

π(Z, β, γ,Ω, G | Y,X)

∝ exp
{
− 1

2(Z −Xγβγ)T (Z −Xγβγ)
} n∏

i=1

{
YiI(Zi ≥ 0) + (1 − Yi)I(Zi < 0)

}
× π(γ | G)

∏
j:γj=1

(2πτ2)−1/2 exp
{
−β2

j /(2τ2)
} ∏

j:γj=0
I(βj = 0)
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× exp
{
n

p∑
j=1

logωjj −
1
2

p∑
j=1

n∑
i=1

(
ωjjxij +

∑
k �=j

ωjkxik

)2
−

p∑
j=1

λjωjj

}

× π(G)
∏∏

1≤j<k≤p

{
(1 −Gjk)δ0(ωjk) + Gjkλ

1/2
jk /(2π)1/2 exp

(
− λjkω

2
jk/2

)}
.

For the selection of shrinkage parameters λjk and λj , following Park and Casella (2008)
and Jalali et al. (2020), we assign independent gamma prior distributions on each shrink-
age parameter, i.e., λjk ∼ Gamma(r, s) for 1 ≤ j < k ≤ p and λj ∼ Gamma(r, s) for
1 ≤ j ≤ p, where r and s are some fixed positive hyperparameters.

3.1 Gibbs Sampler

We suggest using the standard Gibbs sampling for posterior inference. In particular,
when sampling the off-diagonal entries of Ω and G, we modify the entrywise Gibbs
sampler proposed by Jalali et al. (2020) due to the MRF prior. For any matrix A =
(ajk) ∈ R

p×p and 1 ≤ j ≤ k ≤ p, let A−jk denote all the upper triangular entries of A,
including diagonals, except ajk. For 1 ≤ j ≤ p, let β−j ∈ R

p−1 and X−j ∈ R
n×(p−1)

denote the β vector without the jth predictor and the submatrix of X corresponding to
β−j , respectively. Let X̃j ∈ R

n be the jth column of X. The above full posterior leads
to the following Gibbs sampler.

• For 1 ≤ i ≤ n, generate Zi via the following conditional distribution,

π(Zi | Y,X, β) ∝
{
N(Zi | XT

i β, 1)1 (Zi > 0) , if Yi = 1,
N(Zi | XT

i β, 1)1 (Zi < 0) , if Yi = 0.

• For 1 ≤ j ≤ p, set γj = 0 if |γ−j | = R2 − 1. Otherwise, generate γj from the
conditional distribution,

γj | X,Z,G, γ−j , β−j ∼ Bernoulli
( dj

1 + dj

)
,

where dj = (σj/τ
2)1/2 exp

{
−a+2b

∑
i �=j γiGij+μ2

j/(2σj)
}
, σj = (X̃T

j X̃j+τ−2)−1

and μj = σjX̃
T
j (Z −X−jβ−j).

• For 1 ≤ j ≤ p, generate βj based on the following spike and slab distribution,

βj | X,Z,G, γj , β−j ∼ (1 − γj)δ0 + γjN(μj , σj).

• For 1 ≤ j < k ≤ p, set Gjk = 0 if |G−jk| = R1 −1. Otherwise, generate Gjk based
on

Gjk | Ω−jk, γ,X ∼ Bernoulli
( cjk

1 + cjk

)
,



902 Bayesian Joint Selection for Disease Diagnosis

where S = n−1 ∑n
i=1 XiX

T
i = (sjk) and

ajk = sjj + skk + λjk

n
, bjk =

∑
k′ �=k

ωjk′skk′ +
∑
j′ �=j

ωj′ksjj′ ,

cjk = q

1 − q

( λjk

najk

) 1
2 exp

(nb2jk
2ajk

+ 2bγjγk
)
.

• For 1 ≤ j < k ≤ p, generate ωjk based on the following spike and slab distribution,

ωjk | Gjk,Ω−jk, γ,X ∼ (1 −Gjk)δ0(ωjk) + GjkN
(
− bjk

ajk
,

1
najk

)
.

• For 1 ≤ j < k ≤ p, the conditional distribution of λjk is given by

λjk | Ω ∼ Gamma
(
r + 1/2, ω2

jk/2 + s
)
.

• For 1 ≤ j ≤ p, the conditional distribution of λj is given by

λj | ωjj ∼ Gamma
(
r + 1, ωjj + s

)
. (3.1)

• For 1 ≤ j ≤ p, the conditional distribution of ωjj is π(ωjj | Ω−jj , X) ∝ ωn
jj exp

{
−

nsjjω
2
jj/2−ωjj(λj +nbj)

}
, whose normalizing constant is intractable, where bj =∑

j′ �=j ωjj′sjj′ . As suggested by Jalali et al. (2020), we set ωjj as the unique mode
of π(ωjj | Ω−jj , X),

ω�
jj =

−(λj + nbj) +
√

(λj + nbj)2 + 4n2sjj
2nsjj

. (3.2)

When sampling γj and Gjk, we are using the conditional posteriors after integrating
out βj and ωjk respectively, rather than using the full conditional posterior. This is to
ensure that the Markov chain will be irreducible and converge, where the same trick has
been commonly used, for examples, in Yang and Narisetty (2020) and Xu and Ghosh
(2015).
Remark 1. An extensive numerical study conducted by Jalali et al. (2020) showed that
π(ωjj | Ω−jj , X) puts most of its mass around the mode (3.2). By using this fact, we
simply approximate the nonstandard density using the degenerate distribution at the
mode for fast inference. Otherwise, one can employ a Metropolis-Hastings algorithm to
obtain samples from π(ωjj | Ω−jj , X).

4 Theoretical Properties
For any positive sequences an and bn, we denote (i) an 	 bn if an/bn −→ ∞ as n → ∞,
(ii) an = O(bn) if there exists a constant C > 0 such that an/bn ≤ C for all large
n, (iii) an ∼ bn if an = O(bn) and bn = O(an) as n → ∞, and (iv) an = o(bn) if
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an/bn −→ 0 as n → ∞, For any a = (a1, a2, . . . , ap)T ∈ R
p, we denote vector norms

by ‖a‖1 =
∑p

j=1 |aj |, ‖a‖2 =
(∑p

j=1 a
2
j

)1/2 and ‖a‖max = max1≤j≤p |aj |. For any p× p
matrix A, let λmin(A) and λmax(A) be the minimum and maximum eigenvalues of A,
respectively.

In this section, we investigate asymptotic theoretical properties of the proposed
Bayesian joint variable and graph selection method. We are interested in whether the
joint posterior for the variable and graph is concentrated on each true value. Let β0 =
(β0,j) ∈ R

p be the true coefficient vector, and γ0 = (γ0,j) ∈ {0, 1}p be the binary
vector indicating locations of nonzero entries in β0, i.e., γ0,j = I(β0,j �= 0) for j =
1, 2, . . . , p. Let Ω0 = (ω0,jk) ∈ R

p×p be the true precision matrix of Xi, and G0 =
(G0,jk) ∈ {0, 1}p×p be the corresponding adjacency matrix. Based on these quantities,
we assume that the true data-generating mechanism is Yi | Xi, β0

ind∼ Ber(Φ(XT
i β0))

with a random predictor vector Xi such that Cov(Xi) = Ω−1
0 , for i = 1, 2, . . . , n. The

following assumptions were made in order to demonstrate the theoretical properties.
In the below, P0 and E0 denote the probability measure and expectation, respectively,
under the true data-generating mechanism.

Condition (A1) (Conditions on n and p) p = pn ≥ n and log p = o(n) as n → ∞.

Condition (A2) (Conditions on the design matrix) For Xi ∈ R
p, i = 1, 2, . . . , p, we

assume the following:

(i) (sub-gaussianity) There exists a constant C > 0 such that E0 exp(αTXi) ≤
exp(C‖α‖2

2) for all α ∈ R
p.

(ii) (bounded eigenvalues) There exists a constant 0 < ε0 < 1 such that ε0 ≤
λmin(Ω0) ≤ λmax(Ω0) ≤ ε−1

0 .

(iii) (boundedness) P0
(
‖Xi‖max ≤ M

)
= 1 for some constant M > 0.

Condition (A3) (Conditions on β0) |γ0| = O(1), ‖β0‖1 = O(1) and β2
0,min ≡

minj∈γ0 β
2
0,j ≥ Cβ0 log p/n for some constant Cβ0 > 0.

Condition (A4) (Conditions on Ω0) (|G0| + 1)2 log p = o(n) and Ω0,min ≡
min(j,k):G0,jk=1 ω

2
0,jk 	 {|G0| log p + (logn)/2}/n.

Condition (A5) (Conditions on the hyperparameter q) q = p−Cq|G0|, where Cq =
16(1 ∨ c0)2/(1 ∧ ε0), for some constant c0 > 0 defined in Lemma S3 of Jalali et al.
(2020).

Condition (A6) (Conditions on the other hyperparameters) For some constants 1/2 <

d < 1, δ > 0 and Ca > 0, R1 = (n/ log p) 1
2 , R2 = (n/ log p) 1−d

2 , τ2 ∼ n−1p2+2δ,
a = Ca log p and b = o

(
(log p/n)1−d

)
.

Condition (A1) demonstrates the high-dimensional setting, where the number of
variables p is larger than the sample size n. It allows p to grow at a rate exp{o(n)} as
n → ∞. Similar conditions have been used in the literature including Narisetty and He
(2014) and Lee and Cao (2021a) to prove selection consistency of coefficient vector.
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Condition (A2) shows the conditions for each row, Xi, of the random design matrix
X. The first condition implies that a linear combination of Xi = (xi1, xi2, . . . , xip)T has
a sufficiently light tail satisfying sub-gaussianity. The second condition requires that
the eigenvalues of precision matrix Ω0 are bounded. Liu and Martin (2019) and Cao
and Lee (2021) also used this condition for linear regression models with random design
matrix. The third condition requires each component of Xi is bounded with probability
1, where Narisetty et al. (2019) adopted a similar condition for a deterministic design
matrix. By assuming these conditions for X, we can efficiently control the eigenvalues of
n−1XT

γ Xγ and the Hessian matrix of (2.1) for any reasonably large model γ, with large
probability tending to 1. For example, condition (A2) holds if Xi = Ω−1/2

0 Zi, where
Zi

i.i.d.∼ Unif([−
√

3,
√

3]p) for i = 1, 2, . . . , n and ‖Ω0‖1 = O(1). Here, ‖ · ‖1 denotes the
matrix �1-norm.

Condition (A3) means that the true regression coefficient β0 has finite numbers of
nonzero entries and a bounded �1-norm. It holds that if we assume ‖β0‖max = O(1).
For examples, Johnson and Rossell (2012) and Narisetty and He (2014) assumed similar
conditions. Note that we still allow, as the number of variables increases, the magnitude
of the smallest coefficient converge to zero at the rate of log p/n. This can describe a
situation in which the importance of meaningful variables decreases as the number of
variables grows.

Condition (A4) requires the number of nonzero off-diagonal entries in Ω0 is at most
O(

√
n/ log p). Banerjee and Ghosal (2015), Xiang et al. (2015) and Lee and Cao (2021b)

used similar conditions for high-dimensional precision matrices. Furthermore, condition
(A4) allows the magnitude of the smallest nonzero off-diagonal elements of Ω0 converge
to zero at the rate (|G0| log p + logn)/n. We adopt these conditions from Jalali et al.
(2020) to use their results.

Among conditions (A5) and (A6), q = p−Cq|G0| and a = Ca log p mean that the prior
should impose a sufficient penalty to large |G| and |γ|, respectively. These are standard
assumptions for Bayesian inference of high-dimensional precision matrix and regression
vector. For examples, see Liu and Martin (2019), Jalali et al. (2020), Cao et al. (2019)
and Martin et al. (2017). The condition τ2 ∼ n−1p2+2δ implies that the variance of slab
part should be sufficiently large, where τ2 essentially plays a role as a penalty for large
|γ|. The other conditions, R1 = (n/ log p) 1

2 and R2 = (n/ log p) 1−d
2 control the size of |G|

and |γ|, respectively, while b = o
(
(log p/n)1−d

)
controls the strength of γTGγ term in

π(γ | G). Similar conditions can be found in Jalali et al. (2020) and Cao and Lee (2021).

With these conditions at hand, we are now ready to state asymptotic properties of
the posterior. Theorem 4.1 shows the proposed prior enjoys posterior ratio consistency
of γ given any G. This implies that for any fixed G, the true variable indicator γ0 is
the mode of the conditional posterior π(γ | G,Y,X) with probability tending to 1. Note
that consistency of γ is achieved for any G, even with a G very distant from the true G0.
Theorem 4.1 (Posterior ratio consistency of γ). Suppose conditions (A1)–(A3) and (A6)
hold. Then, for any γ �= γ0 and G,

π(γ,G | Y,X)
π(γ0, G | Y,X)

P−→ 0 as n → ∞.
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To establish posterior ratio consistency of G given γ0, we assume the existence of ac-
curate estimates of diagonal entries δ = (ω11, ω22, . . . , ωpp), say δ̂ = (ω̂11, ω̂22, . . . , ω̂pp),
satisfying

‖δ − δ̂‖max = O
(√

log p/n
)

(4.1)

with probability at least 1−n−c for any constant c > 0. The existence of these estimates
have been commonly assumed for high-dimensional precision matrix estimation (Peng
et al., 2009; Khare et al., 2015); for example, Proposition 1 in Peng et al. (2009) provides
one way to obtain such estimates of δ. Because our main focus is selection of γ and G,
not the estimation of Ω, we will work with the conditional posterior of γ and G with the
estimates δ̂ plugged in. The next theorem states the posterior ratio consistency result
of G given γ0 and δ̂, which implies the true graph G0 is the mode of π(G | γ0, δ̂, Y,X)
with probability tending to 1.
Theorem 4.2 (Posterior ratio consistency of G). Suppose conditions (A2), (A4), (A5)
and |γ0| = O(1) hold. Assume that the existence of accurate estimates of diagonal
entries satisfying (4.1). Then, for any G �= G0,

π(γ0, G | δ̂, Y,X)
π(γ0, G0 | δ̂, Y,X)

P−→ 0 as n → ∞.

For any γ and G, note that
π(γ,G | Y,X)
π(γ0, G | Y,X) = f(Y | Xγ , γ)π(X | G)π(γ | G)π(G)

f(Y | Xγ0 , γ0)π(X | G)π(γ0 | G)π(G)

= f(Y | Xγ , γ)π(X | δ̂, G)π(γ | G)π(G)
f(Y | Xγ0 , γ0)π(X | δ̂, G)π(γ0 | G)π(G)

= π(γ,G | δ̂, Y,X)
π(γ0, G | δ̂, Y,X)

,

where f(Y | Xγ , γ) =
∫
f(Y | Xγ , βγ)π(βγ | γ)dβγ , π(X | G) =

∫
π(X | Ω, G)π(Ω |

G)dΩ and π(X | δ̂, G) =
∫
π(X | ξ, δ̂, G)π(ξ | G)dξ. Then, by using the above equality,

Theorems 4.1 and 4.2 imply joint posterior ratio consistency of γ and G. Corollary 4.3
states the joint selection consistency result.
Corollary 4.3 (Joint posterior ratio consistency of γ and G). Suppose conditions
(A1)–(A6) hold. Assume that the existence of accurate estimates of diagonal entries
satisfying (4.1). Then, γ �= γ0 and G �= G0,

π(γ,G | δ̂, Y,X)
π(γ0, G0 | δ̂, Y,X)

P−→ 0 as n → ∞.

In fact, the proposed method enjoys called joint selection consistency. Theorem 4.4
shows that the joint posterior of γ and G given δ̂ is concentrated around the true values,
γ0 and G0. Joint selection consistency guarantees that the posterior mass assigned to
γ0 and G0 converges to 1 as n → ∞. This is a more powerful result than Corollary 4.3,
because joint selection consistency implies joint posterior ratio consistency, but not vice
versa.
Theorem 4.4 (Joint selection consistency of γ and G). Suppose conditions (A1)–(A6)
hold. Assume that the existence of accurate estimates of diagonal entries satisfying (4.1).
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Then,

π(γ0, G0 | δ̂, Y,X) P−→ 1 as n → ∞.

5 Simulation Studies
In this section, we demonstrate the performance of the proposed method in various
settings. For i = 1, 2, . . . , n, we simulate the data from Yi = I(Zi ≥ 0), where Zi =
Xiβ0 + εi, εi ∼ N(0, 1) and Xi = (xi1, xi2, . . . , xip)T

i.i.d.∼ Np(0,Σ0), with the sample
size n and the number of predictors p. Throughout the simulation study, we fix n = 100.
If the atlas segments the brain into p different anatomical sections, then, for example,
we can consider p as the number of brain regions. In this case, the objective of joint
inference would be to learn the abnormal functional activities among the significant
brain regions that contribute to the disease onset.

Among these p predictors, we assume that the first ten are active and consider the
following six settings for the true coefficient vector β0 to include different combinations
of small and large signals.

• Setting 1: Generate β0,γ0 from Unif(−3,−1.5).

• Setting 2: Generate β0,γ0 from Unif(1.5, 3).

• Setting 3: Generate β0,γ0 from Unif
(
(−3,−1.5) ∪ (1.5, 3)

)
.

• Setting 4: Generate β0,γ0 from Unif(0.5, 1.5).

• Setting 5: Generate β0,γ0 from Unif(−1.5,−0.5).

• Setting 6: Generate β0,γ0 from Unif
(
(−1.5,−0.5) ∪ (0.5, 1.5)

)
.

For the true precision matrix Ω0 = Σ−1
0 , we consider the following four scenarios.

• Scenario 1: For p = 150, we set all the diagonal entries to be 1 and Ω0,i1 = Ω0,1i =
0.3 for i = 2, 3, . . . , 10, and set all the remaining entries to be 0.

• Scenario 2: For p = 150, we consider a banded structure of Ω0 with all the unit
diagonals, where Ω0,i,i+1 = Ω0,i+1,i = 0.3, for i = 1, 2, . . . , p− 1.

• Scenario 3: For p = 150, we consider another banded structures of Ω0 with all
the unit diagonals, where Ω0,i,i+1 = Ω0,i+1,i = 0.5,Ω0,j,j+2 = Ω0,j+2,j = 0.25, for
i = 1, 2, . . . , p− 1, j = 1, 2, . . . , p− 2.

• Scenario 4: The true precision matrix Ω0 is set to be the same as in Scenario 1, but
with p = 300. This scenario will show the performance of the proposed method in
high dimensions.

Lastly, we consider a scenario where both the inverse covariance matrix and the
true regression coefficient possess a lower degree of sparsity compared with previous
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settings. Specifically, we generate the covariates Xi
i.i.d.∼ Np(0,Σ0), i = 1, . . . , n, where

n = 100, p = 150, Σ0 = Σ̃0 + {0.01 − λmin(Σ̃0)}Ip and

(Σ̃0)ij =
{

2 max
(
1 − |i−j|

10 , 0
)
, if |i− j| ≤ 5,

0, otherwise,

which results in roughly 25% of the entries in Ω0 being nonzero. Next, for the true
regression coefficient vector, we consider the first 20 entries of β0 to be active and their
magnitudes are set as in Settings 1 to 4. We call this simulation setup Scenario 5, and
the results for this setting are reported at Table 5.

We will refer to our proposed joint selection method coupled with Bayesian spike
and slab CONCORD as J.BSSC (Joint Bayesian Spike and Slab Concord). In terms
of variable selection, we first compare the performance of J.BSSC with other existing
methods including Lasso (Tibshirani, 1996), elastic net (Zou and Hastie, 2005) and the
Bayesian joint selection method based on stochastic search structure learning (SSSL)
(Peterson et al., 2016; Wang, 2015), hereafter referred to as J.SSSL.

The tuning parameters in Lasso and elastic net were chosen by 10-fold cross-valida-
tion. For Bayesian methods, as discussed by Peterson et al. (2016), we suggest using the
hyperparameters a = 2.75 and b = 0.5 for the MRF prior as default, but we also tune
the value of a over a grid from 2 to 2.75 and the value of b from 0.1 to 0.5 based on
cross-validation. Furthermore, to show the benefits of joint modeling, we also implement
the setting with b = 0 for J.BSSC, which corresponds to the Bayesian method modeling
the variable and precision matrix separately. The other hyperparameters were set at
a0 = 0.1, b0 = 0.01, τ2 = 1, q = 0.005, r = 10−4 and s = 10−8. The initial state for γ
was set at p-dimensional zero vector, i.e., the empty model, while the initial state for
the inverse covariance matrix was chosen by the graphical lasso (GLasso) (Friedman
et al., 2007). For posterior inference, 2,000 posterior samples were drawn with a burn-
in period of 2,000. As the final model, we chose the indices having posterior inclusion
probability larger than 0.5, which is called the median probability model. When the
posterior probability of the posterior mode is larger than 0.5, the median probability
model corresponds to the posterior mode (Barbieri and Berger, 2004). The R code
implementing the proposed J.BSSC is publicly available at https://github.com/xuan-
cao/Joint-Selection-in-Probit-Regression.

To evaluate the performance of variable selection, the sensitivity, specificity,
Matthews correlation coefficient (MCC) and mean-squared prediction error (MSPE)
are reported at Tables 1 to 4. The criteria are defined as

Sensitivitiy = TP

TP + FN
,

Specificity = TN

TN + FP
,

MCC = TP × TN − FP × FN√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

,

MSPE = 1
ntest

ntest∑
i=1

{
Φ(XT

test,iβ̂) − Ytest,i
}2

,

https://github.com/xuan-cao/Joint-Selection-in-Probit-Regression
https://github.com/xuan-cao/Joint-Selection-in-Probit-Regression
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Setting 1 Setting 2
Sensitivity Specificity MCC MSPE Sensitivity Specificity MCC MSPE

J.BSSC (b > 0) 0.72 1 0.83 0.15 0.79 0.99 0.80 0.10
J.BSSC (b = 0) 0.42 0.99 0.58 0.23 0.46 1 0.63 0.18

J.SSSL 0.68 0.79 0.27 0.16 0.64 0.76 0.23 0.22
Lasso 0.79 0.97 0.72 0.08 0.80 0.98 0.75 0.12
Elastic 0.98 0.92 0.70 0.20 1 0.94 0.70 0.20

Setting 3 Setting 4
Sensitivity Specificity MCC MSPE Sensitivity Specificity MCC MSPE

J.BSSC (b > 0) 0.78 1 0.84 0.11 0.54 1 0.68 0.17
J.BSSC (b = 0) 0.60 1 0.76 0.15 0.31 1 0.54 0.21

J.SSSL 0.74 0.77 0.29 0.23 0.72 0.77 0.27 0.21
Lasso 0.55 0.95 0.46 0.12 0.82 0.98 0.79 0.09
Elastic 0.62 0.79 0.26 0.20 0.84 0.97 0.75 0.19

Setting 5 Setting 6
Sensitivity Specificity MCC MSPE Sensitivity Specificity MCC MSPE

J.BSSC (b > 0) 0.60 1 0.72 0.12 0.64 0.99 0.72 0.13
J.BSSC (b = 0) 0.40 1 0.61 0.17 0.21 0.99 0.31 0.23

J.SSSL 0.70 0.79 0.28 0.18 0.64 0.78 0.24 0.17
Lasso 0.76 0.97 0.70 0.10 0.71 0.92 0.48 0.16
Elastic 0.98 0.89 0.61 0.19 0.52 0.93 0.47 0.24

Table 1: The summary statistics for Scenario 1 are represented for different settings,
which corresponds to different choice of the true coefficient β0.

Setting 1 Setting 2
Sensitivity Specificity MCC MSPE Sensitivity Specificity MCC MSPE

J.BSSC (b > 0) 0.96 1 0.97 0.08 1 1 1 0.05
J.BSSC (b = 0) 0.72 1 0.84 0.15 0.88 1 0.90 0.14

J.SSSL 0.87 0.79 0.37 0.22 0.84 0.77 0.34 0.24
Lasso 0.77 0.91 0.49 0.19 0.66 0.90 0.41 0.18
Elastic 0.59 0.84 0.34 0.24 0.50 0.93 0.38 0.24

Setting 3 Setting 4
Sensitivity Specificity MCC MSPE Sensitivity Specificity MCC MSPE

J.BSSC (b > 0) 0.88 1 0.92 0.14 0.90 0.99 0.89 0.11
J.BSSC (b = 0) 0.49 0.98 0.53 0.20 0.76 0.99 0.84 0.18

J.SSSL 0.57 0.74 0.17 0.26 0.53 0.77 0.18 0.24
Lasso 0.65 0.91 0.42 0.14 0.61 0.89 0.36 0.17
Elastic 0.78 0.72 0.34 0.23 0.60 0.86 0.32 0.23

Setting 5 Setting 6
Sensitivity Specificity MCC MSPE Sensitivity Specificity MCC MSPE

J.BSSC (b > 0) 0.90 1 0.93 0.11 0.62 0.99 0.70 0.16
J.BSSC (b = 0) 0.62 1 0.77 0.19 0.58 1 0.73 0.18

J.SSSL 0.50 0.74 0.13 0.24 0.66 0.79 0.27 0.27
Lasso 0.71 0.89 0.42 0.20 0.72 0.95 0.56 0.15
Elastic 0.83 0.57 0.22 0.24 0.81 0.73 0.32 0.22

Table 2: The summary statistics for Scenario 2 are represented for different settings,
which corresponds to different choice of the true coefficient β0.

where TP, TN, FP and FN are the true positive, true negative, false positive and false
negative, respectively, and β̂ denotes the estimated coefficient based on each method. For
Bayesian methods, the usual GLM estimates based on the selected variables were used as
β̂. We generated test samples and corresponding predictors Ytest,1, Ytest,2 . . . , Ytest,ntest

and Xtest,1, Xtest,2 . . . , Xtest,ntest , respectively, with ntest = 50 to calculate the MSPE.
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Setting 1 Setting 2
Sensitivity Specificity MCC MSPE Sensitivity Specificity MCC MSPE

J.BSSC (b > 0) 1 1 0.99 0.05 0.92 1 0.95 0.07
J.BSSC (b = 0) 0.42 0.99 0.52 0.22 0.82 0.99 0.85 0.10

J.SSSL 0.50 0.72 0.12 0.25 0.67 0.74 0.23 0.24
Lasso 0.57 0.92 0.38 0.20 0.41 0.94 0.33 0.22
Elastic 0.54 0.83 0.25 0.24 0.48 0.89 0.32 0.24

Setting 3 Setting 4
Sensitivity Specificity MCC MSPE Sensitivity Specificity MCC MSPE

J.BSSC (b > 0) 0.76 1 0.83 0.11 0.80 1 0.85 0.12
J.BSSC (b = 0) 0.70 1 0.82 0.13 0.67 0.99 0.73 0.19

J.SSSL 0.52 0.71 0.13 0.25 0.50 0.71 0.12 0.23
Lasso 0.66 0.92 0.45 0.15 0.56 0.92 0.38 0.19
Elastic 0.66 0.85 0.38 0.24 0.55 0.91 0.37 0.23

Setting 5 Setting 6
Sensitivity Specificity MCC MSPE Sensitivity Specificity MCC MSPE

J.BSSC (b > 0) 0.80 0.99 0.82 0.11 0.66 0.99 0.75 0.14
J.BSSC (b = 0) 0.51 1 0.70 0.17 0.51 0.98 0.55 0.20

J.SSSL 0.53 0.73 0.15 0.31 0.66 0.73 0.21 0.23
Lasso 0.45 0.90 0.26 0.23 0.53 0.95 0.45 0.12
Elastic 0.38 0.86 0.18 0.24 0.82 0.53 0.19 0.20

Table 3: The summary statistics for Scenario 3 are represented for different settings,
which corresponds to different choice of the true coefficient β0.

Setting 1 Setting 2
Sensitivity Specificity MCC MSPE Sensitivity Specificity MCC MSPE

J.BSSC (b > 0) 0.58 0.99 0.66 0.18 0.74 1 0.85 0.08
J.BSSC (b = 0) 0.40 0.99 0.46 0.18 0.48 1 0.65 0.13

J.SSSL 0.47 0.86 0.18 0.18 0.50 0.87 0.21 0.16
Lasso 0.78 0.97 0.57 0.11 0.73 0.98 0.61 0.06
Elastic 0.94 0.90 0.51 0.21 0.75 0.99 0.77 0.18

Setting 3 Setting 4
Sensitivity Specificity MCC MSPE Sensitivity Specificity MCC MSPE

J.BSSC (b > 0) 0.40 1 0.56 0.13 0.64 1 0.72 0.13
J.BSSC (b = 0) 0.22 1 0.45 0.15 0.38 1 0.51 0.16

J.SSSL 0.66 0.86 0.29 0.22 0.43 0.86 0.17 0.13
Lasso 0.74 0.95 0.47 0.15 0.70 0.97 0.60 0.13
Elastic 0.42 0.93 0.37 0.24 0.59 0.99 0.65 0.19

Setting 5 Setting 6
Sensitivity Specificity MCC MSPE Sensitivity Specificity MCC MSPE

J.BSSC (b > 0) 0.56 0.99 0.68 0.15 0.50 1 0.62 0.13
J.BSSC (b = 0) 0.30 0.99 0.34 0.21 0.30 0.99 0.41 0.20

J.SSSL 0.62 0.85 0.28 0.18 0.70 0.87 0.32 0.16
Lasso 0.78 0.97 0.58 0.10 0.63 0.92 0.34 0.19
Elastic 0.96 0.78 0.32 0.19 0.70 0.78 0.24 0.23

Table 4: The summary statistics for Scenario 4 are represented for different settings,
which corresponds to different choice of the true coefficient β0.

The sensitivity, specificity, MCC and MSPE, under different scenarios, are reported
at Tables 1–5 to evaluate the variable selection performance. We notice that compared
to regularization methods (Lasso and elastic net), the proposed joint selection approach
(J.BSSC) tends to have better specificity and MCC. The poor specificity of the regular-
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Setting 1 Setting 2
Sensitivity Specificity MCC MSPE Sensitivity Specificity MCC MSPE

J.BSSC (b > 0) 0.56 0.98 0.63 0.15 0.60 0.98 0.68 0.10
J.BSSC (b = 0) 0.25 1 0.47 0.25 0.35 0.98 0.48 0.11

J.SSSL 0.44 0.75 0.13 0.28 0.38 0.69 0.06 0.29
Lasso 0.81 0.91 0.62 0.09 0.70 0.93 0.60 0.11
Elastic 1 0.77 0.55 0.19 0.99 0.74 0.53 0.18

Setting 3 Setting 4
Sensitivity Specificity MCC MSPE Sensitivity Specificity MCC MSPE

J.BSSC (b > 0) 0.34 0.99 0.50 0.22 0.55 0.98 0.62 0.12
J.BSSC (b = 0) 0.22 0.97 0.29 0.27 0.30 0.98 0.43 0.20

J.SSSL 0.33 0.67 0.01 0.28 0.48 0.73 0.16 0.24
Lasso 0.62 0.80 0.33 0.14 0.71 0.91 0.56 0.12
Elastic 0.82 0.57 0.28 0.21 1 0.71 0.50 0.18

Setting 5 Setting 6
Sensitivity Specificity MCC MSPE Sensitivity Specificity MCC MSPE

J.BSSC (b > 0) 0.41 1 0.57 0.19 0.27 0.98 0.41 0.21
J.BSSC (b = 0) 0.25 1 0.47 0.26 0.21 0.99 0.37 0.24

J.SSSL 0.46 0.73 0.14 0.26 0.42 0.69 0.08 0.25
Lasso 0.58 0.89 0.41 0.13 0.48 0.82 0.25 0.18
Elastic 0.80 0.66 0.32 0.19 0.73 0.77 0.38 0.22

Table 5: The summary statistics for Scenario 5 are represented for different settings,
which corresponds to different choice of the true coefficient β0.

ization methods has also been discussed in previous literature in the sense that selection
of the regularization parameter using cross-validation is optimal with respect to pre-
diction but tends to include too many noise predictors (Meinshausen and Bühlmann,
2006). This leads to relatively larger numbers of errors for the regularization methods
compared with those for the Bayesian joint selection methods. This pattern becomes
more noticeable in Scenario 5 as a large number of beta entries are set to nonzero.
Note that in our theoretical analysis, we assume the true complexity of γ0 to be fi-
nite compared with the increasing dimension, suggesting our proposed method may
prefer a relatively sparse setting. Among all Bayesian approaches, under most of set-
tings, the proposed J.BSSC approach (with b > 0 or b = 0) outperforms J.SSSL based
on all criteria, which shows the benefit of the proposed joint method incorporating
the graph structure through the CONCORD generalized likelihood. Interestingly, com-
pared with J.SSSL that adopts the Metropolis-Hastings algorithm for variable selection,
the performance of the proposed Gibbs sampler is significantly better in terms of al-
most all the measures. Furthermore, J.BSSC with b > 0 tends to have a slightly lower
specificity but significantly higher sensitivity, MCC and lower MSPE compared with
J.BSSC with b = 0. This could be caused by the proposed method frequently visit-
ing graph-linked variables due to the MRF prior. We also found that the proposed
J.BSSC overall works better in the strong signal settings where the signs of all true
nonzero coefficients are consistent (i.e., Settings 1 and 2) compared with other set-
tings. This is because as signal strength gets stronger, the consistency conditions of
our method are easier to satisfy which leads to better performance. To sum up, the
above observation indicates that the proposed method can achieve good variable se-
lection performance under a variety of configurations with different data generation
mechanisms.
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Variable Classification Inclusion probability True classificationJ.BSSC J.SSSL J.BSSC J.SSSL
γ2 Nonzero Zero 1 0.01 Nonzero
γ3 Nonzero Zero 0.96 0 Nonzero
γ11 Zero Nonzero 0.03 0.69 Zero
G35,9 Zero Nonzero 0.01 0.78 Zero
G130,52 Zero Nonzero 0.10 0.57 Zero
G136,115 Zero Nonzero 0.21 0.98 Zero
(γ2, G2,1) Nonzero Zero 1 0.01 Nonzero
(γ3, G3,1) Nonzero Zero 0.96 0 Nonzero
(γ6, G6,1) Nonzero Nonzero 1 0.76 Nonzero

Table 6: Illustration of classification based on marginal and joint posterior inclusion
probabilities using J.BSSC and J.SSSL for selected entries of γ and G.

n p Sensitivity Specificity MCC
50 75 1 1 1
50 100 1 1 1
100 150 1 1 1
100 200 1 1 1
150 225 1 1 1
150 300 0.96 1 0.98

Table 7: The summary statistics for variable selection with varying dimensions averaged
over 20 replicates for J.BSSC.

Next, we illustrate the uncertainty quantification for J.BSSC and J.SSSL using
marginal as well as joint inclusion probabilities. We first consider the simulation setup
under Setting 1, Scenario 1, and randomly choose one out of the 20 replicated data sets.
Table 6 shows the estimated inclusion probabilities for selected entries in γ and G using
both the J.BSSC method and the J.SSSL approach. Entries γ11, G35,9, G130,52, and
G136,115 are all falsely identified as nonzero by J.SSSL based on inclusion probabilities
greater than 0.5, but correctly identified as zero by J.BSSC. Entries γ2, γ3 along with
pairs of (γ2, G2,1) and (γ3, G3,1) are correctly identified as nonzero by J.BSSC while
J.SSSL incorrectly identifies those as zero with inclusion probabilities close or equal to
0. The last entry corresponding to the pair of (γ6, G6,1) is correctly identified as nonzero
by both methods, but J.SSSL has a lower inclusion probability. The pattern reflected
in Table 6 is consistent with the significantly better selection performance of J.BSSC
compared with J.SSSL.

We also conduct another simulation study under Setting 2 and the covariance struc-
ture specified in Scenario 2 to examine the selection performance of J.BSSC with in-
creasing dimensions as stated in our technical assumption. The sparsity level is set at
p/30 and the results are given in Table 7. We can tell that as dimension grows, our
method is able to consistently recover the true signals under sparse settings.

We also briefly present the performance of graph selection and precision matrix esti-
mation for J.BSSC. We compare the performance of J.BSSC with other existing methods
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Sensitivity Specificity MCC #Error
J.BSSC 1 1 0.90 2
J.SSSL 1 1 0.87 3
GLasso 1 0.98 0.19 239
CLIME 1 0.98 0.18 256
TIGER 1 1 0.73 8

Table 8: The summary statistics for graph selection under Setting 1 and Scenario 1 are
represented.

E1 E2 E3 E4
J.BSSC 0.13 0.21 0.08 0.28
J.SSSL 8.01 7.26 1.86 11.95
GLasso 0.37 0.24 0.19 0.19
CLIME 1.51 2.22 0.58 4.16
TIGER 1.47 1.91 0.31 3.48

Table 9: The summary statistics for precision matrix estimation under Setting 1 and
Scenario 1 are represented.

including J.SSSL (Peterson et al., 2016; Wang, 2015), GLasso (Friedman et al., 2007),
the constrained �1-minimization for inverse matrix estimation (CLIME) (Cai et al.,
2011) and the tuning-insensitive approach for optimally estimating Gaussian graphical
models (TIGER) (Liu and Wang, 2017). The tuning parameters for GLasso and TIGER
were chosen by the criterion of stability approach to regularization selection (StARS)
(Liu et al., 2010). We used 10-fold cross-validation to select the penalty parameter for
CLIME. For GLasso and TIGER, the final models were constructed by collecting the
nonzero entries in the estimated precision matrix. In our simulation settings, CLIME
could not produce exact zeros, so we chose the final graph estimate by thresholding the
absolute values of the estimated precision matrix at 0.1.

To evaluate the performance of graph selection and precision matrix estimation,
we report the results at Tables 8 and 9, where each simulation setting is repeated for
20 times. The results under different scenarios are omitted because they gave similar
conclusions, and only the results under Scenario 1 are presented in the tables. In Table 8,
#Error denotes the number of errors, i.e., FP+FN. For a matrix norm ‖ · ‖ and an
estimator Ω̂, the relative error ‖Ω0 − Ω̂‖/‖Ω0‖ is chosen as a criterion. In Table 9, E1,
E2, E3 and E4 represent the relative errors based on the matrix �1-norm, the matrix
�2-norm (spectral norm), the vector �2-norm (Frobenius norm) and the vector �∞-norm
(entrywise maximum norm), respectively.

Based on the results in Table 8, in terms of graph selection, joint selection approaches
(J.BSSC and J.SSSL) outperform other contenders estimating a graph G without incor-
porating information about γ. This suggests that joint selection using an MRF prior can
benefit not only variable selection performance but also graph selection performance.
Furthermore, Table 9 shows that J.BSSC performs significantly better than J.SSSL
in terms of precision matrix estimation. In fact, J.BSSC also outperforms the other
contenders for all the criteria considered. Therefore, it can be interpreted that joint
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Figure 1: The comparison of average wall-clock seconds per iteration under different
dimensions.

selection improves the estimation performance, and in particular, it is more preferable
to use CONCORD for precision matrix estimation.

In addition, as noted in Jalali et al. (2020), BSSC is computationally much more
efficient compared with SSSL. In Figure 1, we plot the run time comparison between
J.BSSC (b > 0), J.BSSC (b = 0) and J.SSSL under different values of p coded in R.
The averaged computation times for J.BSSC are significantly smaller than those for
J.SSSL, and the gap between the two gets larger as p grows. Note that with parallel
processing, under b = 0, one can perform the variable selection and inverse covariance
estimation simultaneously, which leads to a relatively lower runtime for J.BSSC (b = 0)
compared with J.BSSC (b > 0). Even in terms of the memory requirement, J.BSSC
needs a significantly smaller memory than SSSL. For example, J.SSSL requires more
than 20 GB while J.BSSC achieves the goal with 0.22 GB of memory when p = 300.
Furthermore, based on asymptotic results, one can expect that our method will give
accurate inference results as we have more observations, while asymptotic properties of
the Bayesian method proposed by Peterson et al. (2016) are still in question.

6 Aberrant Functional Activities in the Parkinson’s
Disease Cohort

Parkinson’s disease (PD) was first described by Dr. James Parkinson in 1817 as “shaking
palsy”. It is a chronic, progressive neurodegenerative disease characterized by both motor
and nonmotor features. As one of the most common neurodegenerative disorders, the
disease has a significant clinical impact on patients, families, and caregivers through its
progressive degenerative effects on mobility and muscle control. Research suggests that
the pathophysiological changes associated with PD may start before the onset of motor
features and may include a number of nonmotor presentations, such as sleep disorders,
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depression, and cognitive changes. Evidence for this preclinical phase has driven the
enthusiasm for research that focuses on early diagnosis and preventive therapies of PD
(Schrag et al., 2015).

In recent years, neuroimaging has been increasingly employed to aid the risk strat-
ification in PD. Among a variety of neuroimaging technologies, resting-state fMRI (rs-
fMRI) is regarded as a promising technique for precisely locating the abnormal sponta-
neous activities in neuropsychological disease (Wang et al., 2019). Several rs-fMRI-based
methods including regional homogeneity (ReHo), the amplitude of low-frequency fluctu-
ation, and functional connectivity provide a task-free approach to explore spontaneous
brain activity and connectivity among networks in different brain regions of PD pa-
tients. In this section, we apply the proposed joint selection method to rs-fMRI data for
simultaneously identifying aberrant functional brain activities and inferring the under-
lying functional brain network to aid the diagnosis of PD (Wei et al., 2017; Cao et al.,
2020).

6.1 Subjects and Data Preprocessing

This study was approved by the Medical Research Ethical Committee of Nanjing Brain
Hospital (Nanjing, China) in accordance with the Declaration of Helsinki, and writ-
ten informed consent was obtained from all subjects. Seventy PD patients and fifty
healthy controls (HCs) were recruited. Image data were acquired using a Siemens 3.0-
Tesla signal scanner (Siemens, Verio, Germany) in the department of radiology within
Nanjing Brain Hospital. Functional imaging data were collected transversely by using
a gradient-recalled echo-planar imaging pulse sequence and retrieved from the archive
by neuroradiologists. Image preprocessing steps including slice-timing correction and
spatial normalization were carried out using the Data Processing Assistant for Resting-
State fMRI based on Statistical Parametric Mapping (SPM12) operated on the Matlab
platform (Yan and Zang, 2010).

6.2 Image Feature Extraction

Zang et al. (2004) proposed the method of Regional Homogeneity (ReHo) to analyze
characteristics of regional brain activity and to reflect the temporal homogeneity of neu-
ral activity. ReHo is defined as a voxel-based measure of brain activity which evaluates
the similarity or synchronization between the time series of a given voxel and its near-
est neighbors. Abnormal ReHo signals, which are associated with changes in neuronal
activity in local brain regions, may be exploited to analyze the abnormal brain activ-
ities and to depict the dynamic brain functional connectivities (Xu et al., 2019; Deng
et al., 2016). In particular, we focus on the mReHo maps obtained by dividing the mean
ReHo of the whole brain within each voxel in the ReHo map. We further segmented
the mReHo maps and extracted all the 112 region of interest (ROI) signals based on
the Harvard-Oxford atlas (HOA) using the Resting-State fMRI Data Analysis Toolkit
(Song et al., 2011).
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Sensitivity Specificity MCC MSPE
J.BSSC (b > 0) 0.86 0.86 0.77 0.10
J.BSSC (b = 0) 0.67 0.76 0.43 0.18

J.SSSL 0.53 0.78 0.32 0.24
Lasso 0.85 0.75 0.58 0.15
Elastic 0.80 0.75 0.55 0.15

Table 10: The summary statistics for prediction performance on the testing set for all
methods.

6.3 Model Fitting

We now consider a probit regression model with the binary disease indicator as an
outcome and 112 ReHo radiomic variables as predictors. Various models including the
proposed method and other competing approaches will then be implemented to classify
subjects based on these extracted features and to learn functional connectivities of the
brain. The dataset is randomly divided into a training set (80%) and a testing set (20%)
while maintaining the PD:HC ratio in both sets. The hyperparameters for all methods
are set as in simulation studies. For Bayesian methods, we first obtain the identified
variables and then evaluate the testing set performance using standard GLM estimates
based on the selected features. The penalty parameters in all frequentist methods are
tuned via 10-fold cross validation in the training set. The final prediction results based
on the testing set for both Bayesian and frequentist approaches are evaluated using a
common threshold 0.5 and averaged over 10 random splits.

6.4 Results

In this section, we report eight discriminative radiomic features that are most frequently
identified among 10 random splits. Specifically, our method is able to consistently iden-
tify abnormal functional brain activities for PD that occur in the regions of interest
including right superior frontal gyrus (F1.R) (10 times), left middle temporal gyrus,
anterior division (T2a.L) (10 times), left angular gyrus (AG.L) (6 times), right angular
gyrus (AG.R) (8 times), right temporal fusiform cortex, anterior division (TFa.R) (9
times), right occipital fusiform gyrus (OF.R) (10 times), left frontal operculum cortex
(FO.L) (8 times) and left putamen (Put.L) (10 times). It is also worthwhile to mention
that similar to the findings in simulation studies, J.BSSC identifies more features con-
nected through the estimated network compared with the separate inference and tends
to be more conservative in selecting the regions compared with frequentist approaches.
In Figure 2, we plot the inferred functional brain network overlaid with selected nodes
that correspond to the aforementioned brain regions. The predictive performance of
various methods in the test set is summarized in Table 10. We can tell from Table 10
that the predictive performance of the proposed joint selection approach based on BSSC
is overall better than that of all the other methods. The proposed J.BSSC approach has
higher sensitivity and lower MSPE compared with all the other methods, but yields
a lower specificity than Lasso. Based on the most comprehensive measure MCC, our
method outperforms all the other methods.
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Figure 2: The lateral and medial view of the functional brain network inferred by
J.BSSC. Nodes selected by J.BSSC are marked in orange.

Furthermore, J.BSSC identifies regions of interest that are coherent with the altered
functional features in cortical and subcortical regions discovered in previous studies
(Martin et al., 2009; Zhang et al., 2021; Mihaescu et al., 2019). These findings suggest
disease-related alterations of functional activities that provide physicians sufficient in-
formation to get involved with early diagnosis and treatment. The inferred functional
brain connectivities also seem plausible and are primarily located in the typical resting-
state network (RSN) including default-mode network (DMN), visual network (VIN) and
basal ganglia network (BGN). The identified regions in DMN include the left middle
temporal gyrus, anterior division and angular gyrus. We also discover abnormal VIN in
the right temporal fusiform cortex, anterior division and right occipital fusiform gyrus,
as well as unusual BGN in the left putamen. RSN reflects the spontaneous neural ac-
tivities of the blood oxygenation level-dependent signals between temporally correlated
brain regions. Compared with the control group, the DMN plays a crucial role in neu-
rodegenerative disorders and normal aging. Several fMRI studies have indicated that
the DMN was injured before the cognitive decline in PD (Sandrone and Catani, 2013;
Koshimori et al., 2016). The BGN has also been observed in pathologies with motor
control and altered neurotransmitter systems of dopaminergic processes (Griffanti et al.,
2018; De Micco et al., 2019). A previous study on functional connectivity markers in
advanced PD also found functional connectivity features located in the VIN and cere-
bellar networks that are significantly relevant to classification and provide preliminary
evidence that can characterize PD patients compared with HCs (Lin et al., 2020). In
conclusion, the radiomics-based joint selection approach proposed in this paper has
shown that high-order radiomic features that quantify functional brain connectivities
and activities can be used for the diagnosis of PD with satisfactory prediction accuracy.
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7 Discussion
We propose a Bayesian joint selection method for probit models. Although it should
be rigorously investigated, it is possible to extend the proposed method to other GLMs
with network-structured predictors and binary responses. For example, an extension to
logistic regression models, in terms of computation, is straightforward by approximating
a logistic distribution to mixture of normal distributions (Albert and Chib, 1993; O’brien
and Dunson, 2004). This approximation enables us to derive a similar Gibbs sampler
presented in Section 3 with some minor changes; for example, see Lee and Cao (2021a).
Furthermore, in theoretical aspect, it is highly expected that joint selection consistency
(Theorem 4.4) can be achieved in logistic regression models with CONCORD generalized
likelihood by applying the techniques in Lee and Cao (2021a), which efficiently control
the score function and Hessian matrix of logistic models.

Theoretical results in this paper, except Theorem 4.1, are based on the conditional
posteriors given accurate estimates of diagonal entries, δ̂. This is because we adopt the
selection consistency result in Jalali et al. (2020). It would be interesting to investigate
whether one can obtain selection consistency without conditioning δ̂ to conduct a fully
Bayesian inference. This would need a significant amount of technical modification, so
we leave it as future work.

Furthermore, by using CONCORD generalized likelihood, we can enjoy fast compu-
tational speed but at the cost of possibly losing the positive definiteness of the precision
matrix. Although it does not harm the primary goal of this paper, the selection of
the support of the precision matrix and coefficient vector, it will obviously not be sat-
isfactory when the estimation of the precision matrix is of interest. Thus, modifying
the CONCORD algorithm to ensure positive definiteness of the precision matrix while
maintaining fast computation would be another possible direction of future work.

Supplementary Material
Supplementary to “Consistent and scalable Bayesian joint variable and graph selection
for disease diagnosis leveraging functional brain network”
(DOI: 10.1214/23-BA1376SUPP; .pdf). We present the proofs for the main results and
other auxiliary results.
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