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Default Bayes Factors for Testing the
(In)equality of Several Population Variances∗

Fabian Dablander†,∗∗, Don van den Bergh‡,∗∗, Eric-Jan Wagenmakers§, and Alexander
Ly¶,‖

Abstract. Testing the (in)equality of variances is an important problem in many
statistical applications. We develop default Bayes factor tests to assess the
(in)equality of two or more population variances, as well as a test for whether
a population variance equals a specific value. The resulting test can be used to
check assumptions for commonly used procedures such as the t-test or ANOVA,
or test substantive hypotheses concerning variances directly. We show that our
Bayes factor fulfills a number of desiderata. Researchers may have directed hy-
potheses such as σ2

1 > σ2
2 , they may want to extend H0 to have a null-region, or

wish to combine hypotheses about equality with hypotheses about inequality, for
example σ2

1 = σ2
2 > (σ2

3 , σ
2
4). We extend our Bayes factor test to allow for these

deviations from our proposed default and illustrate it on a number of practical
examples. Our procedure is implemented in the R package bfvartest.

Keywords: Bayes factors, model selection, comparing variances.

MSC2020 subject classifications: 62F03, 62F15.

1 Introduction
Testing the (in)equality of variances is important in many sciences and applied contexts.
In engineering, for example, researchers may want to assess whether a new, cheaper mea-
surement instrument achieves the same precision as the gold standard (Sholts et al.,
2011). In genetics and medicine, scientists are not only interested in studying the ge-
netic effect on the mean of a quantitative trait, but also on its variance (Paré et al.,
2010). In economics and archeology, ideas such as that increased economic production
should reduce variability in products directly lead to statistical hypotheses on variances
(Kvamme et al., 1996). In a court of law, one may be interested in reducing unwanted
variability in civil damage awards and may want to compare how different interventions
reduce this variability (Saks et al., 1997). In psychology, educational researchers may be

arXiv: 2003.06278
∗FD, DvB, EJW, and AL were supported by a Vici grant no. C.2523.0278.01.
†Department of Psychological Methods, University of Amsterdam, The Netherlands, dablander.

fabian@gmail.com
‡Department of Psychological Methods, University of Amsterdam, The Netherlands, donvdbergh@

hotmail.com
§Department of Psychological Methods, University of Amsterdam, The Netherlands, ej.

wagenmakers@gmail.com
¶Department of Psychological Methods, University of Amsterdam, The Netherlands
‖Centrum Wiskunde & Informatica, The Netherlands, alexander.ly.nl@gmail.com
∗∗These authors share first authorship.

© 2024 International Society for Bayesian Analysis https://doi.org/10.1214/23-BA1369

https://bayesian.org/resources/bayesian-analysis/
https://mathscinet.ams.org/mathscinet/msc/msc2020.html
https://arxiv.org/abs/2003.06278
mailto:dablander.fabian@gmail.com
mailto:dablander.fabian@gmail.com
mailto:donvdbergh@hotmail.com
mailto:donvdbergh@hotmail.com
mailto:ej.wagenmakers@gmail.com
mailto:ej.wagenmakers@gmail.com
mailto:alexander.ly.nl@gmail.com
https://doi.org/10.1214/23-BA1369


700 Comparing Variances

interested in studying how the variance in pupil’s mathematical ability changes across
school grades (Aunola et al., 2004).

While there exist several classical p-value tests for assessing the (in)equality of pop-
ulation variances (e.g., Levene, 1961; Brown and Forsythe, 1974; Gastwirth et al., 2009),
testing such hypotheses has received little attention from a Bayesian perspective. Such
a perspective, however, would offer practitioners the possibility to (a) quantify evidence
in favor of the null hypothesis (e.g., Morey et al., 2016), (b) allow one to incorpo-
rate prior knowledge (e.g., O’Hagan et al., 2006), (c) use sequential sampling designs
which in many cases is more cost-effective (e.g., than a fixed-N design, see Stefan et al.,
2019), and (d) translate substantive predictions more easily into statistical hypotheses
by specifying equality and inequality constraints (e.g., Böing-Messing and Mulder, 2018;
Hoijtink et al., 2008).

In light of these benefits and recent recommendations to go beyond p-value testing
(Wasserstein and Lazar, 2016), we develop default Bayes factor tests (e.g., Consonni
et al., 2018; Jeffreys, 1939; Ly et al., 2016a,b) for the (in)equality of several population
variances. Our work is inspired by Jeffreys (1939, pp. 222-224), who developed a test
for the “agreement of two standard errors”. Equipped with our procedure, researchers
are able to state graded evidence both for the case of testing assumptions of other tests
(e.g., the equality of variances assumption in the Student’s t-test), as well as testing
order-constrained hypotheses on variances directly.

This paper is structured as follows. In Section 2, we introduce the problem setup
and propose the default Bayes factor. In Section 3, we elaborate on the desiderata that
the proposed Bayes factor adheres to. In Section 4, we discuss the special case with
K = 2 groups, including directed and interval Bayes factors, compare our method to a
fractional Bayes factor procedure proposed by Böing-Messing and Mulder (2018), and
discuss testing all possible (in)equalities at once. We illustrate our default Bayes factor
test and deviations from it on a number of practical examples in Section 5. We conclude
in Section 6. All derivations and proofs can be found in the supplementary materials
(Dablander et al., 2023).

2 Default Bayes Factor for K Groups
2.1 Notation and Problem Setup
The problem of testing the (in)equality of variances can be equivalently expressed in
terms of variances σ2

j or precisions τj = σ−2
j . For the data we assume that Yji

iid∼
N (μj , τ

−1
j ), where i ∈ [nj ] and j ∈ [K] with the rectangular brackets embracing an

integer denoting the set of positive integers up to and including that integer, e.g., [K] :=
{1, 2, . . . ,K − 1,K} ⊂ N.

As the K groups are assumed to be independent of each other, the data y[K] can be
sufficiently summarized by the sample means ȳ = (ȳ1, . . . , ȳK), where ȳj = 1

nj

∑nj

i=1 yji

and the (unbiased) sample variances s2 = (s2
1, . . . , s

2
K), where s2

j = 1
νj

∑n
i=1(yji − ȳj)2

and where νj = nj − 1 is the degree of freedom of group j. As a convention, we denote
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K-dimensional vectors in bold, whereas an arrow is used to denote a K−1 dimensional
vector, e.g., s2 = (�s2, s2

K). A subscript + is used to denote summation over the vector’s
elements, e.g., τ+ =

∑K
j=1 τj , whereas �ϑ+ =

∑K−1
j=1 ϑj , since �ϑ ∈ R

K−1.

The null hypothesis H0 states that all precisions are the same, while the alternative
hypothesis H1 includes at least one inequality. Formally, we compare

H0 : τj = τk for all j, k ∈ [K], (2.1)
H1 : τj �= τk for some j �= k ∈ [K], (2.2)

regardless of the nuisance parameters μ = (μ1, μ2, . . . , μK) ∈ R
K . The null hypothesis

restricts the K precisions to a single but unknown precision, whereas the alternative
allows all precisions to vary freely. Including the means, the null model has K + 1 free
parameters, whereas the alternative model has 2K free parameters.

We rephrase the model comparison by generalizing the reparametrization proposed
by Jeffreys (1939, pp. 222-224); see also the supplementary materials. More specifically,
in the alternative model we reparametrize the K precisions τ in terms of an average pre-
cision τ̄ = 1

K τ+ and K−1 proportions �ϑ with ϑj = τj
τ+

. Note that this reparametrization
is invertible as it should be. In this parametrization the hypotheses translate into

H0 : ϑj = 1
K for all j ∈ [K − 1], (2.3)

H1 : ϑj �= 1
K for some j ∈ [K − 1], (2.4)

regardless of the values of the nuisance parameter μ ∈ R
K and the average precision

τ̄ > 0, which are common to both models.

From a Bayesian perspective, we assess the relative merits of H0 and H1 by virtue
of how well they predict the data, that is, by their respective marginal likelihoods. The
ratio of marginal likelihoods is known as the Bayes factor (Kass and Raftery, 1995),
and its specification requires assigning priors to both the free parameters of the null
and the alternative model. For the models being compared this implies one prior on
the 2K free parameters of the alternative model, and another prior on the K + 1 free
parameters of the null model. To simplify matters, we mimic the nesting of the null
model into the alternative model and choose π1(μ, τ̄ , �ϑ) = π0(μ, τ̄ )π1(�ϑ). The Bayes
factor we propose is constructed from a right Haar prior π0(μ, τ̄ ) ∝ τ̄−1 on the common
parameters and from a (proper) Dirichlet prior π1(�ϑ) on the test-relevant parameters �ϑ
with hyperparameters u, where uj > 0 for all j ∈ [K].

In the remainder of this section we show that this choice of priors results in a Bayes
factor that is analytic. In Section 3 we show that the proposed Bayes factor fulfills
certain Bayesian model comparison desiderata.

2.2 The Proposed Bayes Factor

The choice for π0(μ, τ̄ ) ∝ τ̄−1 is based on the observation that the hypotheses to
be tested are invariant under (1) scalar multiplications of all the data points, and (2)
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location shifts of the data points of each sample/group. The nesting π1(μ, τ̄ , �ϑ) =
π0(μ, τ̄ )π1(�ϑ) makes the use of the improper priors π0(μ, τ̄ ) ∝ τ̄−1 permissible as a
limit of proper priors with normalization constants canceling due to their appearances
in both the numerator and denominator of the Bayes factor (see also Hendriksen et al.,
2021; Ly et al., 2016b; Robert, 2016). The derivations in the supplementary materials
show that with π0(μ, τ̄ ) ∝ τ̄−1 on the nuisance parameters, the Bayes factor simplifies
to

BF10(y[K]) =

∫
Θ

( ∫
R>0

∫
RK

f(y[K] |μ, τ̄ , �ϑ)π0(μ, τ̄ )dμdτ̄
)
π1(�ϑ)d�ϑ

∫
R>0

∫
RK

f(y[K] |μ, τ̄ , �ϑ = 1
K )π0(μ, τ̄ )dμdτ̄

=
∫

Θ
h(s2 | �ϑ)π1(�ϑ)d�ϑ,

(2.5)

where R>0 denotes the positive reals, Θ := {�θ ∈ R
K−1 | �θ+ < 1} ⊂ R

K−1
>0 , and where

we refer to h(s2 | �ϑ) as the reduced likelihood, which is given by

h(s2 | �ϑ) :=
(
1 +

K−1∑
j=1

νjs
2
j

νKs2K

)ν+
2
[K−1∏

j=1
ϑ

νj

2
j

]
(1 − �ϑ+)

νK

2
(
1 −

K−1∑
j=1

[1 − νjs
2
j

νKs2K
]ϑj

)−ν+
2
,

(2.6)

where ν+ =
∑K

j=1 νj , and �ϑ+ :=
∑K−1

j=1 ϑj . Note that, for any proper prior π1(�ϑ), the
nesting and the choice π0(μ, τ̄ ) ∝ τ̄−1 leads to a measurement invariant Bayes factor,
as desired. This is because h(s2 | �ϑ) and therefore BF10(y[K]) = BF10(s2) only depend
on the data via the ratios of sums of squares νjs

2
j

νKs2K
, and because each s2

k is invariant
under location shifts within sample/group k.

The Dirichlet prior π1(�ϑ) on the test-relevant parameters is inspired by the form of
h(s2 | �ϑ) and makes the proposed Bayes factor analytic. By definition of the integral
form of the type D Lauricella function, the proposed Bayes factor is

BF10(s2) =
B(ν2 + u)
B(u)

(
1 +

K−1∑
j=1

νjs
2
j

νKs2K

)ν+
2
FD

(
ν+
2 ; �ν

2 + �u ; ν+
2 + u+ ; �1 −

−→
νs2

νKs2K

)
,

(2.7)

where B(u) = Γ(u1)···Γ(uK)
Γ(u+) is the multivariate beta function, �1 = (1, . . . , 1) ∈ R

K−1,
−→
νs2 = (ν1s

2
1, . . . , νK−1s

2
K−1) is the K − 1 vector of sums of squares, and where FD

is a type D Lauricella function which has the integral representation FD(a ; �b ; d ; �x) =
Γ(d)

Γ(a)Γ(d−a)
∫ 1
0 ta−1(1−t)d−a−1(1−x1t)−b1 · · · (1−xK−1t)−bK−1dt whenever d > a, which

holds trivially since u > 0 always. Observe that, with Equation (2.7) at hand, we also
have an analytic marginal posterior for �ϑ, namely,

π1(�ϑ | y[K]) =

[∏K−1
j=1 ϑ

νj

2
j

]
(1 − �ϑ+)

νK

2
(
1 −

∑K−1
j=1 [1 − νjs

2
j

νKs2K
]ϑj

)−ν+
2

B(ν2 + u)FD

(
ν+
2 ; �ν

2 + �u ; ν+
2 + u+ ; �1 −

−→
νs2

νKs2K

) . (2.8)
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The proposed Bayes factor can be computed from the sample variances and sample sizes
directly. This makes it possible to re-evaluate the published literature without the need
to have access to the raw data, as shown in Section 5. In the next section, we show that
the proposed Bayes factor fulfills a number of desiderata; all proofs can be found in the
supplementary materials.

3 Properties of the Proposed Bayes Factor
An important result of this paper is that our proposed Bayes factor fulfills a number
of desiderata (Bayarri et al., 2012; Consonni et al., 2018; Jeffreys, 1939; Ly et al.,
2016a,b). More specifically, we show that the proposed Bayes factor has the finite-
sample properties of being (i) labelling invariant, (ii) (exactly) predictively matched,
and (iii) information consistent. It also has the asymptotic properties of being (iv) model
selection consistent and (v) limit and across-sample consistent. Information consistency
requires uj ≤ 1/2 for j ∈ [K] while labelling invariance requires ui = uj for all i, j ∈ [K],
suggesting the default choice of uj = 1/2 for all j ∈ [K].1

3.1 Labelling Invariance
A Bayes factor is labelling invariant if it is independent of the arbitrary choice of which
group is labelled K.

Theorem 3.1 (Labelling invariance). The proposed Bayes factor with ui = uj for all
i, j ∈ [K] is labelling invariant. 	

3.2 Predictive Matching
A Bayes factor is (exactly) predictively matched if it equals 1 for all data sets of in-
sufficient size, that is, BF10(y[K]) = 1 for all y[K] with n = (n1, . . . , nK) smaller
than the minimal sample sizes (Bayarri et al., 2012). The insufficient sizes are: (a)
n1 = . . . = nK = 1 as then νjs

2
j = 0 for all j ∈ [K] regardless of the observations, and

(b) nk = 2 for some k ∈ [K] and nj = 1 for all j ∈ [K] \ {k}, in which case there is no
other sample variance to compare s2

k to.

Theorem 3.2 (Predictive matching). A Bayes factor constructed from the pair of
priors π1(μ, τ̄ , �ϑ) = π0(μ, τ̄ )π1(�ϑ) and π0(μ, τ̄ ) ∝ τ̄−1 with π1(�ϑ) proper is predictively
matched. This holds for our proposed Bayes factor. 	

3.3 Information Consistency
Information consistency implies that for all data sets of sufficient size, that is, fixed
n = (n1, . . . , nK) with at least two indexes j �= k ∈ [K] such that nj , nk ≥ 2, the

1Values 0 < u < 1/2 would also fulfill all desiderata, but would put even more mass on large
differences between the variances; we therefore use u = 1/2 as our default choice.
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Bayes factor in favor of the alternative over the null should tend to infinity whenever
it becomes abundantly clear that the null cannot hold true. This occurs in the limit
s2
j/s

2
K → 0, that is, when the observed variance s2

K is of a much higher order than
another sample variance s2

j .

Theorem 3.3 (Information consistency). The proposed Bayes factor is information
consistent if uj ≤ 1/2 for j ∈ [K]. 	

3.4 Model Selection Consistency
A Bayes factor is model selection consistent if it selects the correct model as n → ∞,
that is, if

BF10(Y [K],n) P→ 0 if P ∈ M0, and BF01(Y [K],n) P→ 0 if P ∈ M1, (3.1)

where P refers to the data generating distribution, and where Xn
P→ X denotes conver-

gence in probability, that is, limn→∞ P(|Xn −X| > ε) = 0 for all ε > 0.

To state the theorem and to allow the K sample sizes go to infinity independently of
each other, we let nK := n and nj := cjn for cj > 0, j ∈ [K], thus, cK = 1 by definition.
To also allow the (data-governing) variances to differ arbitrarily as well, we let γj be
the relative size of the variance σ2

j with respect to σ2
K , that is, σ2

j := γjσ
2
K where γj > 0

for j ∈ [K], thus, γK = 1 by definition. Note that the null hypothesis is equivalent to
γ = 1 ∈ R

K , whereas under the alternative there exists at least one j ∈ [K] such that
γj �= 1.

Theorem 3.4 (Model selection consistency). The proposed Bayes factor is model se-
lection consistent. Furthermore, let Yji

iid∼ N (μj , σ
2
j ) where σ2

j = γjσ
2
K for i ∈ [nj ],

nj = cjn, and nK = n for j ∈ [K], then as all the sample sizes tend to infinity, the
Bayes factor behaves as

BF10(s2, n) = C0(K, c,u |γ)n
1−K

2
( 〈c,γ〉

c+

)c+
2 n

(K−1∏
j=1

γ
− cj

2 n

j

)
exp(V (n)), (3.2)

where 〈c,γ〉 :=
∑K

j=1 cjγj, V (n) = OP (n−1/2) under the null and V (n) = OP (n1/2)
under the alternative, and where

C0(K, c,u |γ) =
(4π)

K−1
2 c

1
2
+

(∏K−1
j=1 γ

−uj

j

)
B(u)

(∏K−1
j=1 c

1
2
j

)
(c+ −

∑K−1
j=1

cjγj−1
γj

)u+

. (3.3)

This means that under the alternative, H1 : γj �= 1 for some j ∈ [K − 1], we have that

log(BF10(s2, n)) = log
(
C0(K, c,u |γ)

)
+ 1−K

2 log(n)

+
(
c+ log

( 〈c,γ〉
c+

)
−

K−1∑
j=1

cj log(γj)
)n

2 + OP (n1/2). (3.4)
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Under the null, H0 : �γ = �1, this simplifies drastically, and the logarithm of the Bayes
factor then behaves as

log(BF10(s2, n)) = 1−K
2

(
log(n) − log(4π)

)
+ 1

2

(
log(c+) −

K−1∑
j=1

log(cj)
)

− u+ log(K) − logB(u) + OP (n−1/2). (3.5)
Hence, BF10(s2, n) converges relatively slowly to zero under the null compared to the
exponential decay of BF01(s2, n) under the alternative. 	

Illustrating the Rate of Convergence

We illustrate the rate of convergence of our default Bayes factor by visualizing Equa-
tions (3.4) and (3.5) as a function of K ∈ [2, 12] and γ1 ∈ [2, . . . , 11] with γ2 = . . . =
γK = 1 and σ2

K = 1. Equation (3.4) shows that under the alternative the asymptotic
behavior of log(BF10) is mostly linear in n. The left panel in Figure 1 shows the slope
of this linear increase — termed the log Bayes factor growth — as a function of K and
γ1. We arrive at this slope by computing Equation (3.4) for a large number of n and
regressing the result on n. When H1 is true, the rate of convergence of the Bayes factor
is exponential, and so the log Bayes factor grows linearly. We visualize the slope of how
the log Bayes factor grows across the number of groups, with larger values indicating
more rapid exponential growth. We find that, as the number of groups increases, the
log Bayes factor grows more quickly. This increase is also dependent on γ1; for larger
values, the Bayes factor grows more quickly with increasing number of groups.

The right panel in Figure 1 illustrates log(BF01) as a function of the sample size per
group for different number of groups K under the null hypothesis, using Equation (3.5).
In contrast to the scenario when H1 is true, the rate of convergence when H0 is true is
no longer exponential (see also Johnson and Rossell, 2010; Jeffreys, 1961; Bahadur and
Bickel, 2009).

3.5 Limit and Across-Sample Consistency
A Bayes factor is limit consistent if it remains bounded as long as not all nj → ∞
for j ∈ [K] (Ly, 2018, Ch. 6). A Bayes factor is across-sample consistent if the limit
of the K-sample Bayes factor as a function of the fixed observations of the groups
i ∈ [K−1] results in a K−1 sample Bayes factor (Peña, 2018, Ch. 4). Note that we can
consider without loss of generality the situation where the first K − 1 samples are fixed
as nK → ∞ because of labelling invariance. For the following, we assume that S2

K is a√
nK-consistent estimator for the data-governing variance σ2

0 of the Kth group, which
by Chebyshev’s inequality is certainly the case when YKi ∼ N (μK , σ2

0).

We call the K-sample Bayes factor BF[K]
10 (�s2, S2

K) across-sample consistent if, as
nK → ∞, it converges in probability under σ−2

0 to a K−1 Bayes factor BF[K−1]
10 ;σ2

0
(y[K−1]),

comparing the hypotheses

H[K−1]
0 ;σ2

0
: τj = σ−2

0 for all j ∈ [K − 1], (3.6)



706 Comparing Variances

Figure 1: Left: Shows the rate of the linear growth of the log Bayes factor under H1 for
increasing γ1 and number of groups. Right: Shows how log(BF01) grows as a function of
n when H0 is true for different number of groups K. All Bayes factors were computed
with the default value u = 1/2.

H[K−1]
1 ;σ2

0
: τj �= σ−2

0 for some j ∈ [K − 1]. (3.7)

Here the null hypothesis states that the K − 1 precisions are all equal to the known
constant σ−2

0 , whereas the alternative states that at least one precision is unequal to
σ−2

0 .

The theorem below implies that the proposed Bayes factor converges in probability
to a lower dimensional Bayes factor BF[K−1]

10 ;σ2
0
(�s2) that is based on uniform priors on the

nuisance parameters �μ ∈ R
K−1, and an inverse Dirichlet distribution on the precisions

�τ = (τ1, . . . , τK−1) ∈ R
K−1 scaled by 1/σ−2

0 , that is,

πσ2
0
(�τ |M[K−1]

1 ) =
(σ2

0)K−1 ∏K−1
j=1 (σ2

0τj)uj−1

B(�u,w)(1 + σ2
0�τ+)�u++w

, (3.8)

where we wrote w = uK so the statement only involves vectors of length K − 1. The
integral representation of the multivariable generalisation of Tricomi’s confluent hyper-
geometric function of the second kind U , see for instance (Ng et al., 2011; Phillips,
1988), shows that the resulting K − 1 sample Bayes factor is given by

BF[K−1]
10 ;σ2

0
(�s2) =

∫ (∏K−1
j=1 τ

νj

2
j

)
exp(−1

2
∑K−1

j=1 νjs
2
jτj)πσ2

0
(�τ |M[K−1]

1 )d�τ

(σ2
0)−

�ν+
2 exp(− (

−→
νs2)+
2σ2

0
)

,
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=

(∏K−1
j=1 Γ(νj

2 + uj)
)
U
(

�ν
2 + �u ; �ν+

2 − uK + 1 ;
−→
νs2

2σ2
0

)
B(�u,w) exp(− (

−→
νs2)+
2σ2

0
)

, (3.9)

where
−→
νs2 = (ν1s

2
1, . . . , νK−1s

2
K−1) denotes the vector of sums of squares, (

−→
νs2)+ =∑K−1

j=1 νjs
2
j , and �ν+ :=

∑K−1
j=1 νj , as before.

Theorem 3.5 (Limit and Across-Sample
√
nK-consistency). If S2

K is an √
nK-

consistent estimator for σ2
0, then the Bayes factor BF[K]

10 (�s2, S2
K) is a

√
nK-consistent

estimator of the K − 1-sample Bayes factor BF[K−1]
10 ;σ2

0
(�s2) given in Equation (3.9). Fur-

thermore, if YKi ∼ N (μK , σ2
0), then

√
nK(S2

K − σ2
0) is asymptotically normal, and

consequently so is the K-sample Bayes factor, that is,

√
nK

(
BF[K]

10 (�s2, S2
K) − BF[K−1]

10 ;σ2
0
(�s2)

)
d→ N

(
0, 2σ4

0T̆
2
1

)
, (3.10)

where T̆1 is given in the supplementary materials. 	

4 Special Cases, Deviations from the Default, and
Multiple Comparisons

The comparison of K = 2 groups occurs frequently in practice and we discuss the Bayes
factor for this special case in the following section. We also consider three modifications
of the default choice in order to incorporate a subject assessment of the test-relevant
parameter, and to accommodate directed tests and interval Bayes factors. Lastly, we
also consider the problem of testing all possible (in)equalities, that is, the multiple
comparisons problem.

4.1 The Bayes Factor for K = 2 Groups

For the K = 2 group case, the null model of equal precisions has three parameters
(μ1, μ2, τ̄) whereas the alternative has four (μ1, μ2, τ̄ , ϑ). The comparison of interest is
then between H0 : ϑ = 1

2 and H1 : ϑ �= 1
2 . In this case, the proposed Bayes factor

simplifies to

BF10(s2)= B(ν1
2 +u1,

ν2
2 +u2)

B(u1,u2)
(
1+ ν1s

2
1

ν2s22

)ν1+ν2
2 2F 1

(
ν1+ν2

2 , ν1+2u1
2 ; ν1+ν2+2(u1+u2)

2 ; ν2s
2
2−ν1s

2
1

ν2s22

)
,

(4.1)

where 2F 1 refers to the Gaussian or ordinary hypergeometric function, which has the
integral representation 2F 1(a, b ; c ; z) = Γ(c)

Γ(b)Γ(c−b)
∫ 1
0 tb−1(1− t)c−b−1(1− tz)−adt, with

Re(c) > Re(b) > 0 (Abramowitz and Stegun, 1972, eq. 15.3.1). Observe that across-
sample consistency implies that for Y2i

iid∼ N (μ2, σ
2
0) and n2 → ∞, the two-sample Bayes
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Figure 2: Prior on ϑ (left) and induced prior on φ (right) for u := u1 = u2 ∈
{4.50, 2.00, 0.50}; see Section 4.2 for the rationale behind these values.

factor is a
√
n2-consistent estimator of the one-sample Bayes factor

BF[1]
10 ;σ2

0
(s2

1) =
Γ(ν1

2 + u1)U
(

ν1
2 + u1 ; ν1

2 − u2 + 1 ; ν1s
2
1

2σ2
0

)
B(u1, u2) exp(−ν1s

2
1

2σ2
0

)
. (4.2)

This Bayes factor compares the alternative hypothesis H[1]
1 ;σ2

0
: τ1 �= σ−2

0 to the null
hypothesis H[1])

0 ;σ2
0

: τ1 = σ−2
0 with σ2

0 known. Here U(a ; b ; z) = 1
Γ(a)

∫∞
0 e−ztta−1(1 +

t)b−a−1dt is the (one-dimensional) Tricomi’s confluent hypergeometric function of the
second kind (Abramowitz and Stegun, 1972, Eq. 13.2.5).

4.2 Prior elicitation for K = 2 groups
For prior elicitation, it is arguably more intuitive to express the prior on the test-
relevant parameter in terms of the ratio of the standard deviations, φ = σ2

σ1
=

√
ϑ

1−ϑ ,

thus,
∫ 1
0 dϑ =

∫∞
0 2φ(1 + φ2)−2dφ. The prior ϑ ∼ Beta(u1, u2) underlying Equation

(4.1) induces a generalized beta prime distribution on φ with density

π(φ ; u1, u2) = 2φ2u1−1(1 + φ2)−(u1+u2)

B(u1, u2)
. (4.3)

Figure 2 visualizes the prior assigned to ϑ and φ for various values of u := u1 = u2. A
statistician may now elicit a researcher’s prior beliefs in terms of (a ratio of) standard
deviations conditional on the alternative holding true. For example, if the researcher
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believes that the probability of one standard deviation being twice as large or twice as
small as the other does not exceed 95%, then she should choose u = 4.50. Note that
the resulting Bayes factor is not information consistent anymore. It is also interesting
to note that on this scale φ the mth raw moment is given by Γ(m2 +u1)Γ(u2−m

2 )
Γ(u1)Γ(u2) . Hence,

it has no finite mean whenever u2 ≤ 1/2. A change of variables shows that the posterior
distribution in terms of φ is given by

π(φ |y(2)) =
2φν1+2u1−1(1 + φ2)−(u1+u2)(1 + ν1s

2
1

ν2s22
φ2)−

ν1+ν2
2

B(ν1
2 + u1,

ν2
2 + u2) 2F 1

(
ν1+ν2

2 , ν1
2 + u1 ; ν1+ν2

2 + u1 + u2 ; 1 − ν1s
2
1

ν2s22

) .
(4.4)

4.3 Interval Bayes Factors
Researchers may wish to extend the sharp null hypothesis ϑ = 1/2 to include a null-
region around the point null value. If the null-region overlaps with the prior under the
alternative, this leads to an (inconsistent) peri-null Bayes factor (e.g., Ly and Wagen-
makers, 2021; Morey and Rouder, 2011). If the null-region does not overlap with the
prior under the alternative, that is, if we compare the hypotheses

H0 : φ ∈ [a, b] (4.5)
H1 : φ �∈ [a, b], (4.6)

then this yields a non-overlapping interval-null Bayes factor (e.g., Berger and Delam-
pady, 1987; Rousseau, 2007). The null-region is usually informed by the problem at
hand, as we will see later on an example. For a potential default approach to specifying
the non-overlapping interval bounds, see the supplementary materials.

4.4 Directed Bayes Factors
Researchers sometimes desire to quantify evidence in favor of hypotheses such as H− :
σ2

1 > σ2
2 , or H+ : σ2

1 < σ2
2 . More generally, let Hr denote such an order-constrained or

directed hypothesis. Since σ2
1 = (2ϑτ̄ )−1 and σ2

2 = (2(1−ϑ)τ̄ )−1, we have that σ2
1 > σ2

2
implies ϑ < 1/2. We therefore restrict the beta prior on ϑ accordingly in the calculation
of the marginal likelihood for Hr (see also Ly et al., 2016a), which can then be used to
calculate directed Bayes factors.

In the more general K > 2 group case, we can similarly specify equality or inequality
constraints by encoding them in the prior distribution on �ϑ. An example of such a
constrained hypotheses is given by

Hr : ϑ1 = ϑ2 > (ϑ3, ϑ4, ϑ5 = ϑ6) > ϑ7 ,

which incorporates two equality constraints (ϑ1 = ϑ2 and ϑ5 = ϑ6), several order
constraints (e.g., ϑ1 > ϑ3, ϑ1 > ϑ4, ϑ3 > ϑ7, ϑ4 > ϑ7), and no constraints between
the ϑ3, ϑ4, ϑ5 = ϑ6 (and therefore also the standard deviations and variances). Note
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that while this hypothesis is formulated in terms of the parameter ϑ, it has immediate
implications for the precisions and thus for the standard deviations and variances. We
could also directly formulate the hypotheses on the variances or standard deviations,
for example, with (σ1 = σ2) > σ3 implying that (ϑ1 = ϑ2) < ϑ3. This flexibility allows
researchers to translate substantive predictions directly into statistical hypotheses.

We compute Bayes factors including mixed hypotheses such as Hr as follows. First,
we introduce a new auxiliary hypothesis Ha which does not include order-constraints.
In our example, this yields

Ha : ϑ1 = ϑ2, ϑ3, ϑ4, ϑ5 = ϑ6, ϑ7 .

We estimate the (auxiliary) Bayes factor BFra by dividing the proportion of samples ϑ
that respect the order-constraints in Hr in the posterior by the proportion of samples
that respect it in the prior (Klugkist et al., 2005). Separately, we then estimate the
Bayes factor in favor of Ha over H1 (or H0) using bridge sampling (Meng and Wong,
1996; Gronau et al., 2017). Combining these two Bayes factors yields the desired Bayes
factor in favor of Hr over H1 (or H0), that is, BFr1 = BFra × BFa1. The R package
bfvartest, which is available from https://github.com/fdabl/bfvartest, implements
this and all other procedures described above; see the supplementary materials for how
to use the package.

4.5 Comparison to a Fractional Bayes Factor

One alternative to choosing the prior based on desiderata, as done in this paper, is to
use the data to inform the prior. O’Hagan (1995) proposed the fractional Bayes factor,
which uses a fraction b = m0/n of the entire likelihood to construct a prior, where m0
is the size of the minimal training sample and n is the sample size. Böing-Messing
and Mulder (2018) developed a fractional Bayes factor for testing the (in)equality of
several population variances. Here, we compare our proposed default Bayes factor to
their fractional Bayes factor.

Since the likelihood is the same, the key difference between the two Bayes factors is in
their respective prior specification. As we are concerned with hypotheses that can feature
both inequality and equality constrains, we need to introduce additional notation. Let
Hr denote a hypothesis with qEr equality and qIr inequality constraints on K population
variances, such that there are Jr = K−qEr unique variances �σ2

r = (σ2
1 , . . . , σ

2
Jr

). Further,
let Kj be the number of populations sharing the unique variance σ2

j , and njk be the
sample size of the kth population sharing the unique variance σ2

j . Böing-Messing and
Mulder (2018) use population-specific fractions given by bjk = 2/njk

, where m0 = 2 is
the minimal training sample size for the automatic prior to be proper; it is in this sense
that their Bayes factor relies on minimal prior information. They calculate the marginal
likelihood for hypothesis Hr as

p(y[K] | Hr) =
∫
Ωt

∫
RK f(y[K];μ, �σr

2)π(μ, �σr
2)dμd �σr

2∫
Ωa

t

∫
RK f(y[K];μ, �σr

2)bπ(μ, �σr
2)dμd �σr

2 , (4.7)

https://github.com/fdabl/bfvartest
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where b is the vector of population-specific fractions, π(μ, �σ2
r) ∝

∏Jr

i=1 σ
−2
i is the Jeffreys

prior, Ωt specifies the region of integration depending on the inequality constraints in
Ht, and Ωa

t is the adjusted integration region given by

Ωa
t =

{
�σr

2 : RI [a1σ
2
1 . . . aJrσ

2
Jr

] > �0
}

, (4.8)

where RI encodes the inequality constraints among the Jr unique variances, and where
aj = Kj/2

∑Kj
k=1

(
1−

s2jk
njk

)
. Böing-Messing and Mulder (2018) show that this setup leads to

the following expression for the marginal likelihood of Hr:

p(y[K] | Hr) =

∫
Ωr

∏Jr

j=1 Inv-Gamma
(
σ2
j ;

∑Kj
k=1 njk

−Kj

2 ,
∑Kj

k=1
(
njk

−1
)
s2jk

2

)
dσ2

j

∫
Ωr

∏Jr

j=1 Inv-Gamma

⎛
⎝ Kj∑Kj

k=1

(
2− 1

njk

)
s2jk

σ2
j ;

Kj

2 ,
Kj

2

⎞
⎠ dσ2

j

× π
−

∑Jr
j=1

∑Kj
k=1(njk

−2)
2

⎛
⎝ Jr∏

j=1

Kj∏
k=1

(njk

2

) 1
2

⎞
⎠ Jr∏

j=1

Γ
(∑Kj

k=1 njk
−Kj

2

)(∑Kj

k=1

(
2 − 1

njk

)
s2
jk

)Kj
2

Γ
(

Kj

2

)(∑Kj

k=1(njk − 1)s2
jk

)∑Kj
k=1 njk

−Kj

2

,

(4.9)

where Inv-Gamma(x;α, β) is the density of the inverse Gamma distribution, and the
ratio of the two integrals gives the probability that the constraints hold in the posterior
divided by the probability that they hold in the prior. This ratio equals 1 when testing
hypotheses without order-constraints, i.e., Ωα

t = Ωt. From Equation (4.9) it follows that
the prior distribution assigned to σ2

j under hypothesis Hr is given by

σ2
j ∼ Inv-Gamma

⎛
⎝Kj

2 ,

∑Kj

k=1

(
2 − 1

njk

)
s2
jk

2

⎞
⎠ ,

where njk and s2
jk

are the sample size and the sum of squares of the kth group sharing
population variance σ2

j . Note that, in contrast to our proposed default prior, the prior
for the fractional Bayes factor proposed by Böing-Messing and Mulder (2018) depends
on the data. Similarly, our prior specification results in a joint distribution on σ2 that
cannot be factorized, that is, it results in a dependent prior, where the dependence is
created through the weights �ϑ. The prior specification by Böing-Messing and Mulder
(2018) induces a Dirichlet prior on �ϑ with u = Kj/2 and a non-standard prior on τ̄
(it follows a Gamma distribution if and only if all sample sizes and sum of squares are
equal). Figure 3 shows our default Bayes factor and the fractional Bayes factor for K = 2,
sample sizes n := n1 = n2 ∈ [5, . . . , 200], and different values of φ = {1, 1.2, 1.3, 1.4, 1.5}.
While our proposed default Bayes factor and the fractional Bayes factor differ, they show
very similar results for u = 1/2.
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Figure 3: Comparison of the Bayes factor proposed by Böing-Messing and Mulder (2018)
and our Bayes factor for K = 2 groups as a function of n := n1 = n2, prior specification
u := u1 = u2, and effect size φ = {1, 1.1, 1.2, 1.3, 1.4, 1.5}.

There an interesting discrepancy between the two Bayes factors when testing directed
hypotheses. In case there is overwhelming evidence for the hypothesis that Hr : σ2

1 >
. . . > σ2

K , the Bayes factor in favor of it over H1 : σ2
1 �= . . . �= σ2

K reaches the bound K!.
However, in case there are the same J equalities in both hypotheses, the fractional Bayes
factor does not reach the bound of (K − J)!, while our proposed default Bayes factor
does. This is because Böing-Messing and Mulder (2018) set bjk = 2/njk

for all groups.
While this is desirable in the sense that one thus uses the same ‘minimal’ amount of
information under each hypothesis, this results in a different shape parameter of the
inverse gamma prior distribution, and the bound is therefore not reached, which can be
considered a shortcoming of the fractional Bayes factor.

4.6 Multiple Comparisons

So far, we have focused on comparing the null hypothesis H0 in which all variances
are equal against the alternative hypothesis H1 in which all variances were free to
vary or against mixed hypotheses Hr which allow for inequalities, equalities, and order-
constraints. However, researchers are sometimes also interested in assessing all possible
(in)equalities. Statistically, all possible configurations of equality and inequality con-
straints can be uniquely represented as partitions of the groups, where any number of
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groups are equal if they are in the same partition. Given K groups, the number of par-
titions of size j is given by the Stirling numbers of the second kind, denoted

{
K
j

}
. The

total number of partitions is given by the Kth-Bell number, which is defined as a sum
over the Stirling numbers:

BK =
K∑
j=0

{
K

j

}
. (4.10)

The Bell numbers grow quickly, with K = 10 already yielding 115, 975 models. This
results in a multiple comparisons problem, which in a Bayesian framework can be ad-
dressed by suitable adjusting the prior model odds (e.g., Jeffreys, 1961; Westfall et al.,
1997). Inspired by the work on variable selection in regression (Scott and Berger, 2006,
2010), van den Bergh and Dablander (2022) recently proposed a beta-binomial prior
for this problem, comparing it to a Dirichlet process prior proposed by Gopalan and
Berry (1998) as well as to other methods to multiple comparisons that do not require
specifying a prior over all models (Westfall et al., 1997; de Jong, 2019; Jeffreys, 1961).
For a small number of groups, one can directly calculate the marginal likelihood of each
model and use the posterior model probabilities for inference:

p(Hj | y[K]) = p(y[K] | Hj)π(Hj)∑BK

i=0 p(y[K] | Hi)π(Hi)
= BFj0π(Hj)∑BK

i=0 BFi0π(Hi)
, (4.11)

where BK is the Kth Bell number and the prior models probabilities π(Hj) are suitable
adjusted, as detailed in van den Bergh and Dablander (2022). Table 1 shows the results
of an analysis detailed in Section 5.6 for a K = 4 group case under different model priors.
For details, we refer the interested reader to van den Bergh and Dablander (2022), who
also develop a stochastic search method to deal with larger K.

5 Practical Examples
In the following sections we apply our proposed Bayes factor test on a number of ex-
amples.

5.1 Sex Differences in Personality

There is a rich history of research and theory about differences in variability between
men and women, going back at least to Charles Darwin (Darwin, 1871). Borkenau et al.
(2013) studied whether men and women differ in the variability of personality traits.
Here, we focus on peer-rated conscientiousness in Estonian women and men (s2

f = 15.6,
s2
m = 19.9, nf = 969, nm = 716). The left panel in Figure 4 visualizes the raw data,

and the middle panel shows the prior (using u = 1/2) and the posterior distribution for
the effect size φ. The default Bayes factor yields BF10 = 12.98 in favor of a difference in
variance, and the right panel shows a sensitivity analysis to the specification of u in the
default Bayes factor (note that the x-axis scale is 1/u); as expected, a smaller value of
u corresponds to a wider prior of φ under H1 and decreases the predictive performance
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Beta-binomial Prior Dirichlet Process Prior

Hypothesis α = 1, β = 1 α = 1, β = 4 α = 1 α = 1.817

{Flemish, German, Estonian, Czech} 0.250 (0.446) 0.571 (0.739) 0.250 (0.368) 0.116 (0.192)
{Flemish}, {German, Czech}, {Estonian} 0.042 (0.029) 0.019 (0.007) 0.042 (0.016) 0.064 (0.034)
{Flemish, Estonian}, {German}, {Czech} 0.042 (0.005) 0.019 (0.001) 0.042 (0.003) 0.064 (0.006)
{Flemish, Czech}, {German}, {Estonian} 0.042 (0.000) 0.019 (0.000) 0.042 (0.000) 0.064 (0.000)
{Flemish}, {German, Estonian}, {Czech} 0.042 (0.083) 0.019 (0.018) 0.042 (0.053) 0.064 (0.118)
{Flemish, German}, {Estonian}, {Czech} 0.042 (0.015) 0.019 (0.004) 0.042 (0.009) 0.064 (0.023)
{Flemish}, {German}, {Estonian, Czech} 0.042 (0.018) 0.019 (0.004) 0.042 (0.015) 0.064 (0.029)
{Flemish, Estonian}, {German, Czech} 0.036 (0.030) 0.041 (0.017) 0.042 (0.014) 0.035 (0.019)
{Flemish, German}, {Estonian, Czech} 0.036 (0.060) 0.041 (0.038) 0.042 (0.056) 0.035 (0.049)
{Flemish, Czech}, {German, Estonian} 0.036 (0.004) 0.041 (0.002) 0.042 (0.003) 0.035 (0.004)
{Flemish, Estonian, Czech}, {German} 0.036 (0.005) 0.041 (0.004) 0.083 (0.009) 0.070 (0.007)
{Flemish, German, Estonian}, {Czech} 0.036 (0.061) 0.041 (0.041) 0.083 (0.105) 0.070 (0.111)
{Flemish, German, Czech}, {Estonian} 0.036 (0.003) 0.041 (0.002) 0.083 (0.005) 0.070 (0.005)
{Flemish}, {German, Estonian, Czech} 0.036 (0.211) 0.041 (0.120) 0.083 (0.339) 0.070 (0.390)

{Flemish}, {German}, {Estonian}, {Czech} 0.250 (0.029) 0.029 (0.001) 0.042 (0.003) 0.116 (0.012)

Table 1: Prior (and posterior) probabilities of the different hypotheses under different
model priors illustrated on the example discussed in Section 5.6. Groups with the same
population variance are put into the same set, e.g. σ1 = σ2 �= σ3 = σ4 corresponds to
{{σ1, σ2}, {σ3, σ4}}.

of H1 compared to H0. Nevertheless, across the range of u visualized in Figure 4, there
is strong evidence that Estonian men show larger variability in conscientiousness than
Estonian women. For comparison, a frequentist analysis using Bartlett’s test (Bartlett,
1937) yields χ2(1) = 12.54, p = 0.0004. The Vovk-Sellke bound 1/(−e · p log(p)) (Vovk,
1993; Sellke et al., 2001) gives the maximum possible odds in favor of H1 over H0 based
on the p-value, and yields 118.11.

5.2 Testing Against a Single Value

Polychlorinated biphenyls (PCB), which are used in the manufacture of large electri-
cal transformers and capacitors, are hazardous contaminants when released into the
environment. Suppose that the Environmental Protection Agency is testing a new de-
vice for measuring PCB concentration (in parts per million) in fish, requiring that the
instrument yields a variance of less than 0.10 (a standard deviation σ0 ≤ 0.32), thus
φ > 1. This suggests the use of a directed Bayes factor. Seven PCB readings on the
same sample of fish are subsequently performed, yielding a sample standard deviation
of s = 0.22 and a sample effect size of φ̂ = σ0

s = 1.42 (see Mendenhall and Sincich,
2016, p. 420). We compare the following hypotheses

H0 : φ = 1
H+ : φ > 1,
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Figure 4: Left: Peer-rated conscientiousness of Estonian men and women. Middle: Prior
and posterior of φ (with u = 1/2). Right: Bayes factor sensitivity analysis for u ∈
[1/2, 100].

which yields BF+0 = 0.51 for the default value u = 1/2, a value slightly higher than for an
undirected test, BF10 = 0.41. To illustrate prior elicitation, assume that the makers of
the new device are highly confident, assigning 50% probability to the outcome that the
new device reduces the required standard deviation at least by half. Defining φ = σ0

σdevice
,

this formally translates into π(φ ∈ [2,∞]) = 1/2, which is fulfilled by a (truncated) prior
with u = 2.16. Using this prior specification results in BF+0 = 0.83.

5.3 Comparing Measurement Precision

In paleoanthropology, researchers study the anatomical development of modern humans.
An important problem in this area is to adequately reconstruct excavated skulls. Sholts
et al. (2011) compared the precision of coordinate measurements of different landmark
types on human crania using a 3D laser scanner and a 3D digitizer. They reconstructed
five excavated skulls and found — for landmarks of Type III, that is, the smooth part
of the forehead above and between the eyebrows — an average (across skulls) standard
deviation of 0.98 for the Digitizer (n1 = 990) and an average standard deviation of 0.89
for the Laser (n2 = 990). We define φ = σDigitizer

σLaser
and observe that the sample effect size

is 1.10. We demonstrate two tests. First, we test whether the Laser has a lower standard
deviation than the Digitizer, writing

H0 : φ = 1
H+ : φ > 1 .

The default Bayes factor in favor of H1 is BF+0 = 4.93 — about double the undirected
Bayes factor BF+0 = 2.47 — indicating moderate evidence for the hypothesis that a 3D
Laser is a more precise tool for measuring Type III landmarks on the excavated human
scull compared to a 3D Digitizer. Second, in this specific scenario, a researcher might
treat the Digitizer as being equally as precise as the Laser when its standard deviation
differs by a maximum of 10%. She might then choose to compare the following non-
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overlapping hypotheses:

H′

0 : φ ∈ [0.90, 1.10]

H′

+ : φ > 1.10 .

The Bayes factor with u = 1/2 in favor of H′
0 is BF

′

0+ = 7.03, indicating moderate sup-
port for the hypothesis that the Laser and the Digitizer have about equal performance. In
general, we recommend researchers use the default Bayes factor unless substantive prior
knowledge or particular circumstances justify a different test. For comparison, Bartlett’s
test for H0 yields χ2(1) = 9.16, p = 0.0025, with a Vovk-Sellke bound of 24.76.

5.4 The “Standardization” Hypothesis in Archeology
Economic growth encourages increased specialization in the production of goods, which
leads to the “standardization” hypothesis: increased production of an item would lead
to it becoming more uniform. Kvamme et al. (1996) sought to test this hypothesis
by studying chupa-pots, a type of earthenware produced by three different Philippine
communities: the Dangtalan, where ceramics are primarily made for household use;
the Dalupa, where ceramics are traded in a non-market based barter economy; and
the Paradijon, which houses full-time pottery specialists that sell their ceramics to
shopkeepers for sale to the general public. Thus, there is an increased specialization
across these three communities. Kvamme et al. (1996) use circumference, height, and
aperture as measures for the chupa-pots; here, we focus on the latter two. The authors
test whether the standard deviations across these three groups are different, comparing

H0 : σ1 = σ2 = σ3

H1 : σ1 �= σ2 �= σ3 ,

where σ1, σ2, and σ3 correspond to the standard deviations of chupa-pots in the Dan-
gtalan, Dalupa, and Paradijon communities, respectively. Since our Bayes factor test
only requires summary statistics, we can test these hypotheses using the data from
Table 4 in Kvamme et al. (1996). The authors observed n = 55 pots from the Dang-
talan community with a standard deviation in aperture of 12.74; n = 171 pots from
the Dalupa community with a standard deviation of 8.13; and n = 117 pots from the
Paradijon community with a standard deviation of 5.83. Using our default prior choice
of u = 1/2, we find overwhelming evidence for a difference in the standard deviations
of the aperture measurements, log(BF10) = 20. Note that we can formulate a stronger
statistical hypothesis based on the substantive “standardization” hypothesis, namely
that the standard deviations in aperture increase from the Paradijon to the Dangtalan
community, Hr : σ1 > σ2 > σ3. This yields even stronger evidence, log(BFr0) = 21.80,
such that the Bayes factor in favor of Hr compared to H1 is very close to its theoretical
maximum, BFr1 = 5.98 ≈ 3!. If we were to use height instead of aperture measurements
of the pots, which yield standard deviations of 9.60, 7.23, and 7.81, respectively, the ev-
idence in favor of H1 and Hr compared to H0 would be much weaker, BF10 = 2.27 and
BFr0 = 2.87, respectively. For comparison, Bartlett’s test for H0 yields χ2(1) = 49.94,
p < 0.00001 with a (log) Vovk-Sellke bound of 20.75 for the aperture measurements and
χ2(1) = 7.18, p = 0.0277 with a Vovk-Sellke bound of 3.71 for the height measurements.
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Figure 5: Left: Shows Math Garden rating scores across school grades. Right: Shows
posterior of φ for pairwise consecutive class comparisons. Virtually all probability mass
is assigned to φ > 1, implying that, indeed, the variance increases with every school
grades.

5.5 Increased Variability in Mathematical Ability

Aunola et al. (2004) find that the variance in mathematical ability increases across
school grades. Using large-scale data from Math Garden, an online learning platform
in the Netherlands (Brinkhuis et al., 2018), we assess the evidence for this hypothesis
using our Bayes factor test. Math Garden assigns each pupil a rating, similar to an Elo
score used in chess, and which increases if the pupil solves problems correctly. We have
data from n = 41, 801 different pupils across school grades 3 – 8, which is visualized in
the left panel of Figure 5. From grade 3 upwards, the standard deviations of the Math
Garden ratings are 3.08, 3.69, 4.62, 4.97, 5.39, and 5.99, for respective sample sizes of
6, 410, 9, 395, 9, 160, 7, 549, 6, 007, and 3, 280. Following Aunola et al. (2004), we wish
to compare the following three hypotheses:

H0 : σi = σj ∀(i, j)
H1 : σi �= σj ∀(i, j)
Hr : σi > σj ∀(i > j) .

Using the default choice u = 1/2, we find overwhelming support in favor of a difference
in the standard deviations, log(BF10) = 1660.53. As is suggested by the raw data
visualized in the left panel of Figure 5, we also find overwhelming support for an increase
in variability with increased school grade, log(BFr0) = 1667.11. The order-constrained
hypothesis again strongly outperforms the unrestricted hypothesis, yielding evidence
close to its theoretical maximum, BFr1 = 719.69 ≈ 6!. The right panel in Figure 5
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shows the posterior distribution of φ for pairwise comparisons across school grades. For
comparison, Bartlett’s test for H0 yields χ2(1) = 3366.70, p < 0.00001 with a (log)
Vovk-Sellke bound of 1664.07.

5.6 Country Differences in Conscientiousness

As our last example, we illustrate how researchers could use our default Bayes factor
combined with the work by van den Bergh and Dablander (2022) to test all possible
(in)equalities between variances. We utilize the data set by Borkenau et al. (2013) again,
but now test whether the Czech (s2

C = 20, n = 714), Estonian (s2
E = 17.7, n = 1685),

German (s2
G = 17.3, n = 303), and Flemish (s2

F = 14.2, n = 291) population differ in
their variances of peer-rated conscientiousness. The posterior probability for each hy-
pothesis under a different prior model specification can be found in Table 1. We find
that the null hypothesis of no differences generally yields the highest posterior prob-
ability, followed by the hypothesis which states that the Flemish population variance
differs from the rest. The left panels in Figure 6 show the posterior distributions for
each variance under the full model (top) and when model-averaging across all models
(bottom) using the beta-binomial(α = 1, β = 4), which is recommended by van den
Bergh and Dablander (2022). We see that there is pronounced shrinkage towards the
average variance, which is an indication that the model in which all variances are equal
is strongly supported (see also Table 1). The right panel shows the probability that
any two populations show the same variance in their peer-rated conscientiousness. We
find that the German and Estonian population are most likely and the Flemish and
Czech population least likely to have the same variance. This is also reflected in the
unconstrained variance estimates shown in the left panel. For comparison, a Bartlett’s
test for H0 yields χ2(1) = 11.51, p = 0.0093 with a Vovk-Sellke bound of 8.48.

6 Conclusion
In this paper, we proposed a default Bayes factor test for assessing the (in)equality
of several population variances and showed that it fulfills a number of desiderata for
Bayesian model comparison (e.g., Bayarri et al., 2012; Consonni et al., 2018; Jeffreys,
1939; Ly et al., 2016a; Ly, 2018; Peña, 2018). In addition, we extended the Bayes factor
test to cover the K−1-sample case, non-overlapping interval nulls, and mixed restrictions
for the K > 2 case. The proposed procedure allows researchers to inform their statistical
tests with prior knowledge. It also generalizes Jeffreys’s test for the agreement of two
standard errors (Jeffreys, 1939, pp. 222-224); see the supplementary materials. We have
also illustrated how our method — combined with specifying suitable model priors —
can be used to test all possible (in)equalities between variances while adjusting for
multiplicity (van den Bergh and Dablander, 2022)

A limitation of the proposed methodology is that it assumes that the data follow a
Gaussian distribution, which might not always be adequate in practical applications. A
potential extension would be to use a t-distributions with a small number of degrees of
freedom ν ≥ 3, so as to better accommodate outliers, and then test whether the scales
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Figure 6: Left: Posterior means of the full model where all variances are assumed to
be different (top) and posterior means when averaging across all models using a beta-
binomial(α = 1, β = 4) prior (bottom). Right: Posterior probabilities for pairwise equal-
ity across all populations.

of these t-distributions differ. Another future avenue is to allow for data from the same
unit, that is, allow for correlated observations or dependent groups. For the present,
we believe that our work provides an elegant Bayesian complement to popular classical
tests for assessing the (in)equality of several independent population variances, ready
for routine applications.
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