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1. Introduction

Tree–based methods are among the most broadly used algorithms in statistics
and machine learning. This goes from single tree algorithms such as CART [4] or
Bayesian CART [13, 15], to the use of random forests [3, 12], that is ensembles
of trees. Due in particular to their ability to quantify uncertainty, there has been
much interest in Bayesian tree–based methods. While for frequentist methods
there is a by now well–established theory in quadratic loss for CART and related
algorithms, advances on the mathematical understanding of Bayesian counter-
parts are very recent. In [38, 27], L2–posterior contraction rates are obtained for
both trees and forests in a regression setting. Still in regression, the work [11]
addresses the case of the stronger supremum norm loss for Bayesian CART–type
priors. The present paper can be seen as a continuation of [11], investigating
the density estimation setting. In Bayesian density estimation, a classical tree–
method is that of Pólya trees (henceforth PTs, see e.g. [18], Chapter 3). For
well–chosen parameters, PTs’ samples are random densities, and contraction
rates for the corresponding posterior densities have been obtained in [7]. The
idea behind Pólya tree is to grow a fixed, infinite, tree; this is typically not
flexible enough to address refined statistical goals such as adaptation. Notably,
Wong and Ma introduced in [39] a flexible alternative to standard PTs that they
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call Optional Pólya Trees (OPTs in the sequel), which have been successfully
extended and applied to a number of settings in e.g. [31, 25, 30, 28, 14]. Yet,
from the theoretical point of view, only posterior consistency was established in
[39] and follow-up works. Not based on (flexible) trees, we also note the different
construction of spike–and–slab Pólya trees introduced in [8].

There are two main goals in the present paper. The first is to continue the
investigations of [11] for tree–methods in order to obtain inference in the practi-
cally very desirable supremum norm loss, but in the model of density estimation,
and the second to elaborate a theory for rates and uncertainty quantification
(henceforth, UQ) for Optional Pólya Trees. In fact, our methods enable to cover
also more general priors, although for simplicity we will mostly stick to OPTs
in this work. We now briefly review a number of related results. While the use
of a general theory based on prior mass and testing [17, 18] made a relatively
broad L2–theory possible [27, 38], results for the supremum norm are typically
more delicate, as uniform testing rates required in [17] appear to be slower [20].
Recent advances on this front include [6, 23, 34, 33, 40]. The first supremum
norm posterior rates for tree methods, optimal up to a logarithmic factor, were
obtained in [11] in regression models; we refer to [11] for more context and
references on rates for tree–based methods.

The main results of the paper are as follows

1. we prove that Optional Pólya Trees (OPTs) achieve optimal supremum–
norm posterior contraction rates (up to a logarithmic factor) in density
estimation: this provides an optimal rate–theory for the consistency
results of [39], who introduced the OPT prior, for the computationally
efficient case of dyadic splits.

2. we show that tree–based inference with OPTs leads to (near–) optimal
uncertainty quantification in terms of confidence bands, both for the
density f and the distribution function F =

∫ ·
0 f , in an adaptive way.

Those constitute the first results, to the best of our knowledge, showing that
tree–based methods in density estimation lead to near–optimal uncertainty
quantification in terms of the supremum norm. Apart from making the consis-
tency results of [39] precise, this work shows that the programme for inference
with tree–priors outlined in [11], who considered regression settings only, carries
over to density estimation; the techniques presented could also be used for other
tree priors beyond OPTs.

The paper is organized as follows. Section 2 introduces a class of tree–based
priors on density functions, of which OPTs are a special case. Section 3 states
our main result on tree–based supremum norm contraction, while Section 4 fo-
cuses on Uncertainty Quantification, both for the density function and smooth
functionals thereof. Section 5 illustrates our findings numerically through a sim-
ulation study. Section 6 briefly summarises and discusses the results and future
research directions. Proofs are gathered in Section 7 and the Appendix.
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2. Dyadic tree–based random densities and Optional Pólya trees
(OPTs)

2.1. Bayesian framework

Adopting a Bayesian point of view, the density estimation model on [0, 1) con-
sists in observing

X = (X1, . . . , Xn) | f ∼ P⊗n
f

f ∼ Π,
(1)

where Pf is the distribution on [0, 1) with density f with respect to Lebesgue
measure: dPf = fdμ, and where Π is a prior distribution on densities f to be
defined below. The posterior distribution is then the conditional distribution of
f given X and is denoted Π[· |X].

Frequentist analysis of Bayesian posteriors. To analyse mathematically the
behaviour of the posterior distribution Π[· |X], once the posterior is formed
using the Bayesian model, we make the frequentist assumption that the data
X has actually been generated from a ‘true’ parameter value f0, that is, in the
density estimation setting, X ∼ P⊗n

f0
. In the sequel, we thus study the behaviour

of Π[· |X] in probability under Pf0 = P⊗n
f0

. For more details and context, we
refer the reader to the book [18].

Motivated by recent work [11] on Bayesian CART in regression settings (see
e.g. the discussion in Section 5 of [11]), we introduce a family of tree-based prior
distributions on density functions. For simplicity, we mostly consider the case
of densities on the unit interval, but our results could be extended to higher
dimensions up to using slightly more complex notation, which we refrain to do
here – see, though, the discussion in Section 6 for more on this –.

Informal prior description. The prior on densities is defined in three steps,
which will be more formally introduced below

Step 1 a random tree T is sampled from a prior ΠT on trees;
Step 2 given T , a partition IT of the unit interval is produced, built recursively

in a tree fashion ‘along’ T with breakpoints placed at midpoints of the
successive intervals;

Step 3 given IT , the output density f is a histogram with random heights
whose distribution follows a Pólya tree–type law.

2.2. Priors ΠT on full binary trees

Definition 1. A full binary tree is a set of nodes T =
{
(l, k), l≥0, 0≤k≤2l−1

}
verifying the condition

(l, k) ∈ T =⇒ if l > 0,
(
l − 1, �k/2	

)
∈ T and

(
l, k + (−1)k

)
∈ T .

One then says that
(
l − 1, �k/2	

)
is the parent node of its children (l, k) and(

l, k + (−1)k
)
, and a node with no children is called an external node or leaf;
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(0, 0) belongs to every non-empty tree and is called the tree root. We denote by
Tint the set of non-terminal – or ‘internal’ – nodes in T (i.e. those with children),
and Text = T \ Tint the set of ‘leaves’ – also called ‘external’ nodes –.

The parent-child relationship of the pairs in a tree gives rise to the tree
representation depicted on Figure 1a. This justifies the following terminology as
we define the depth of T as the integer

d(T ) := max
(l,k)∈T

l.

One further denotes by T the set of all binary trees and, putting a slight restric-
tion on the maximum depth,

Tn := {T ∈ T : d(T ) ≤ Lmax} , with Lmax :=
⌊

log2
(
n/ log2(n)

) ⌋
. (2)

The prior distributions considered below put mass 1 to the subset Tn of T.

(0, 0)

(1, 0) (1, 1)

(2, 2) (2, 3)

(a) Tree pairs.

I00 = [0; 1)

I10 = [0; 1/2) I11 = [1/2; 1)

I22 = [1/2; 1/4) I23 = [1/4; 1)

(b) Tree partitioning IT .

Fig 1: Tree T = {(0, 0), (1, 0), (1, 1), (2, 2), (2, 3)}.

Next we give two examples of priors ΠT on full binary trees. Both are actually
considered in actual Bayesian CART implementations [13, 15].

Example 1 (GW(p) Markov process on tree). A random tree is recursively
defined by the following process. First, let us attribute to each possible pair (l, k)
a deterministic parameter plk ∈ [0, 1]. Starting at the root node (0, 0), either
the tree with only (0, 0) as node is returned with probability 1 − p00, or there
is a split and the tree contains not only (0, 0) but at least also (1, 0) and (1, 1).
The construction process then continues recursively until either there are no
further nodes to split, or a maximum depth Lmax is reached, after which (i.e.
for l ≥ Lmax) we do not further grow the tree. More precisely, the recursion is
from up to down (l grows) and left to right (k grows), as follows: given the tree
contains (l, k), with probability 1−plk the node (l, k) is a leaf; and with probability
plk, the tree further has a split at (l, k), i.e. the node (l, k) has (l + 1, 2k) and
(l + 1, 2k + 1) as children in the tree.
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The process producing such a random tree T is Markov (along the complete
dyadic tree) in the sense that the probability that a node (l, k) further splits only
depends on the fact that the node is present or not and on the parameter plk,
but not on the rest of the tree built so far (above and to the left of (l, k)). By
analogy to Galton–Watson processes, with here nodes having either two or zero
children with probabilities plk and 1 − plk respectively, we call ΠT as above a
GW(p) prior, with parameters p = (plk) = (pε) (we define the link between ε
and (l, k) below, in Section 2.3), pLmaxk = 0.

Example 2 (Conditioning on the number of leaves). In this construction, one
samples first a number K of leaves according to a prior on integers and given
K one then samples uniformly from the set of all full binary trees with K leaves
and depth at most Lmax.

2.3. Partitioning IT

Let us first introduce notation on dyadic numbers and intervals. For any binary
sequence ε ∈ {0, 1}l, its length is |ε| = l > 0. For any dyadic number r = k/2l
in [0, 1) with 0 ≤ k < 2l, l > 0, one writes ε(k, l) = ε1(r) · · · εl(r) ∈ {0, 1}l,
such that r =

∑l
k=1 εk(r)2−k, its unique decomposition in base 2−1 with |ε| = l.

Accordingly, one introduces the dyadic intervals, for ε = ε(k, l),

Iε := Ilk :=
[
k

2l ,
k + 1

2l

)
,

and one sets I∅ = I0,0 = [0, 1). In addition, for any ε and 0 < i ≤ |ε|, one writes
ε[i] = ε1 . . . εi. Also, we introduce E∗ = ∪∞

l=0 {0; 1}l where {0; 1}0 = {∅}.
To each full binary tree encoded as above as the collection of its nodes (l, k),

we associate a partition IT of the unit interval given by, with Text the external
nodes of T as in Definition 1,

[0, 1) =
⋃

(l,k)∈Text

Ilk.

Such a tree-based recursive partitioning of [0, 1) is illustrated on Figure 1b. The
deeper the tree locally, the more refined the corresponding partition becomes. By
definition of Ilk, note that the partition has split-points at dyadic numbers. The
final partition IT can also be seen as being obtained from recursively splitting
[0, 1) in halves, continuing to split locally only if the tree continues further
down at that location. For this reason we talk about splitting at midpoints.
Note that, still using full binary trees T , one could make splits at a different,
possibly random, location. Although this makes the construction even more
flexible, we shall not consider this here for simplicity (we note in passing that
computationally the split–at–midpoint construction appears often to be among
the easiest to simulate from, as it does not require to draw split locations; we
refer to [11], Section 4, for more on ‘unbalanced’ splits).
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2.4. Prior values given tree and partitioning

Once a tree T and partitioning IT are given, we draw a random histogram over
the partition given by IT by sampling heights over each sub-interval in such a
way that the overall histogram is a positive density f (i.e. f > 0 and

∫ 1
0 f = 1).

To do so, we use a mass–splitting process along the tree T , which actually
coincides with that of Pólya trees – we refer to the Appendix A for more on
those –. This choice is for simplicity but we could consider other choices too (in
this vein, the Beta(a, a) law at the end of Definition 2 could be taken to depend
on (l, k) or be a different distribution).

Definition 2 (Prior Π). Let ΠT be a prior on full binary trees. Let (Yε) be
a sequence of independent variables of distribution Beta(aε0, aε1), for some
aε0, aε1 ∈ [0, 1], indexed by ε ∈ E∗. The prior Π draws a random tree–based
histogram f as follows

T ∼ ΠT (3)

f | T ∼
∑

ε≡(l,k)∈Text

hε1lIlk , with hε = 2l
l∏

i=1
Yε[i] . (4)

The distribution f | T = T for a given T ∈ T is called a T–Pólya tree with
parameters (aε). In the sequel we set aε = a for some fixed a > 0, in which case
the distribution is denoted as T–PT(a).

It results from the definition that the overall prior Π is a mixture of T–Pólya
trees. When the mixing distribution ΠT is a GW(p) prior, it turns out that Π
coincides with Optional Pólya trees introduced in [39], in the case of splits at
midpoints.

Proposition 1. Let Π be the mixture distribution induced on densities f con-
structed as

T ∼ GW(p)
f | T ∼ T –PT(a).

Then Π coincides with the Optional Pólya tree of [39] corresponding to the recur-
sive partitioning {Iε, ε ∈ E∗} with splits at midpoints and parameters M(Iε) =
λ(Iε) = 1,K1(Iε) = 2, stopping probabilities ρ(Iε) = 1 − pε for any ε ∈ E∗ and
parameters for mass allocation α1

1 = α2
1 = a.

The proof of Proposition 1 is presented in Appendix B. Our notation differs
slightly from [39] (which does not make the tree connection) for two reasons:
first, the tree–setting enables one to use the framework of [11] and second,
although in what follows we stick to OPTs for simplicity, the same proofs work
nearly unmodified for other tree–priors, such as the one in Example 2.
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2.5. Posterior distribution

Let us recall that the prior Π in Definition 2 is the mixture

T ∼ ΠT

f | T ∼ Π(· | T ),
(5)

where Π(· | T ) is, given T , a T –Pólya tree. For a given dyadic interval I, let
NX(I) denote the number of points Xi that fall in I. The next result is proved
in Appendix C.

Proposition 2 (Posterior given T ). Suppose the prior is given by (5), where
the prior given T is a T –Pólya tree with parameters (aε). Then, in the density
estimation model (1), the posterior Π[· |X, T ] is a T –Pólya tree with parameters
(aXε ) given by, for any ε ∈ E∗,

aXε = aε + NX(Iε).

Let us now move on to describe the posterior induced on trees. We denote

NT (X) =
∫ n∏

i=1
f(Xi)dΠ(f | T = T ) (6)

the marginal distribution of X given T = T . It follows from Bayes’ formula that
Π[· |X] induces a posterior distribution on trees given as: for any T ∈ T, and
NT (X) as in (6),

Π[T = T |X] = ΠT[T = T ]NT (X)∑
T∈T

ΠT[T = T ]NT (X)
. (7)

This is in general a fairly complicated distribution with no closed–form expres-
sion. In case the prior ΠT on trees is GW (p), it turns out that the posterior on
trees is GW (pX) for updated parameters pX . Let, for a > 0,

νXε = 2NX(Iε)B(a + NX(Iε0), a + NX(Iε1))
B(a, a) . (8)

Let us now consider parameters (pXε ) given by the equations

pXε
1 − pXε

(1 − pXε0)(1 − pXε1) = pε
1 − pε

(1 − pε0)(1 − pε1)νXε , (9)

Equations (9) together admit a unique solution (pXε ) obtained by a bottom–up
recursion noting that for |ε| = Lmax, pXε = pε = 0. This is verified along the
proof of Proposition 3 below.
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Proposition 3 (Special case of OPTs). In the setting of Proposition 2, suppose
further that the distribution ΠT on trees is GW(p) with split probabilities (pε).
Then the posterior distribution can be described as

Π[T = · |X] ∼ GW(pXε )
Π[· |X, T ] ∼ T –PT(aXε )

with splits probabilities (pXε ) verifying the recursion (9) and aXε as in Propo-
sition 2. In other words the posterior follows an OPT distribution with corre-
sponding hyperparameters as specified in Proposition 1.

The proof of this proposition is presented in Appendix C.

2.6. Notation and function spaces

Below we shall consider the Hölder class of functions with support in [0, 1) and
smoothness parameter 0 < α ≤ 1, defined as

Cα[0, 1) :=
{
f : [0, 1) �→ R, sup

x�=y

|f(x) − f(y)|
|x− y|α < +∞

}

and we similarly define Hölder balls with parameters α > 0 and K ≥ 0 as

Σ(α,K) :=
{
f : [0, 1) �→ R, sup

x�=y

|f(x) − f(y)|
|x− y|α ≤ K

}
.

Bounded Lipschitz metric. Let (S, d) be a metric space. The bounded Lips-
chitz metric βS on probability measures of S is defined as, for any μ, ν proba-
bility measures of S,

βS(μ, ν) = sup
F ;‖F‖BL≤1

∣∣∣∣
∫
S
F (x)(dμ(x) − dν(x))

∣∣∣∣ , (10)

where F : S → R and

‖F‖BL = sup
x∈S

|F (x)| + sup
x�=y

|F (x) − F (y)|
d(x, y) . (11)

This metric metrises the convergence in distribution, see e.g. [16], Theorem
11.3.3.

As shown in [7], it is also useful to introduce the Haar wavelet basis to
carry out an analysis of Pólya tree-like posterior distributions. Indeed, one can
relate the inclusion of a node (l, k) in a tree T to the fact that the coefficient
corresponding to the Haar wavelet function ψlk in the decomposition of f ∼
Π[·|T ] is non-zero almost surely. More precisely, the Haar basis of L2[0; 1) is the
family composed of the mother wavelet φ = 1[0;1) and the functions
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ψlk(·) = 2l/2ψ(2l · −k)

for l ≥ 0 and 0 ≤ k < 2l, where ψ = 1[1/2;1) − 1[0;1/2). However, as we consider
the problem of density estimation, maps f under scrutiny all verify 〈f, φ〉 =∫ 1
0 f(t)dt = 1, so that we only focus on the wavelets ψlk and the corresponding

coefficients flk := 〈f, ψlk〉 in the following. As for the true density, we define
f0,lk := 〈f0, ψl,k〉.

3. Posterior contraction rates for OPTs

For any α > 0, μ > 0, K ≥ 0, we define the regularity class of densities

F(α,K, μ) :=
{
f ≥ μ,

∫ 1

0
f = 1, f ∈ Σ(α,K)

}
,

as well as the sequence

εn(α) :=
(
n−1 log2 n

) α
1+2α . (12)

Up to a logarithmic factor, this corresponds to the minimax supremum norm
rate of estimation over the class F(α,K, μ), which equals (n/ logn)−α/(1+2α) up
to constants [24].

3.1. Supremum norm convergence for the whole posterior
distribution

We now show that the posterior distribution Π[· |X] asymptotically concentrates
most of its mass on a ‖ · ‖∞–ball of optimal radius.

Theorem 1. Suppose that f0 ∈ F(α,K, μ) for some μ > 0, 0 < α ≤ 1 and
K ≥ 0. Let Π be an OPT prior with split probabilities plk = Γ−l, l ≥ 0, 0 ≤
k < 2l, Γ > 0, and parameter a > 0. Then, for Γ large enough, any sequence
Mn → ∞, as n → ∞, and εn = εn(α) as in (12),

Ef0Π
[
‖f − f0‖∞ > Mnεn |X

]
→ 0.

Theorem 1 shows that an OPT posterior with split probabilities decreasing
exponentially fast with nodes depth concentrates most of its mass in a supre-
mum norm ball of (near–) minimax optimal radius, whenever the signal has
regularity α ≤ 1. Some comments are in order. First, the regularity requirement
α ≤ 1 is typical and expected for ‘hard trees’, which produce histogram-type
estimators. An alternative would be to use ‘soft trees’, where individual learner
are smooth [27, 11], see also the discussion in Section 6. Second, the slight loss of
a logarithmic term in the convergence rate can be shown to be intrinsic to trees
and is not due to a possible suboptimality of our rate upper–bounds: this has
been formally shown in [11], Theorem 2, in a regression context; an analogous
result could be shown in density estimation in a similar way.
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A consequence of Theorem 1 is that a posterior draw is close with high
probability to the true unknown density function of interest. This settles the
estimation problem, but it does not yet say much about the quantification of
uncertainty, i.e. the construction of confidence sets, a question addressed in
Section 4.

3.2. Convergence rate for the median tree

While Theorem 1 entails convergence in probability of a draw from Π[· |X], one
may ask what happens for aspects of such distribution, e.g. point estimators
derived from it. A natural such estimator from the point of view of tree priors is
the median tree estimator defined below, since there is a natural tree associated
to it. Such an estimator will also turn helpful for uncertainty quantification as
considered below.

The median tree is defined as the tree T ∗ whose interior nodes are

T ∗
int = {(l, k) : Π[(l, k) ∈ Tint|X] > 1/2} , (13)

and which is actually a tree as defined previously (see [11], Lemma 13). One
associates to it the median tree density estimator

f̂T ∗ = 1 +
∑

(l,k)∈T ∗
int

2l/2
NX

(
I(l+1)(2k+1)

)
−NX

(
I(l+1)(2k)

)
n

ψlk. (14)

Lemma 7 in the appendix shows that this estimator converges in probability
to the actual density f0 at the same almost-minimax rate εn in supnorm as in
Theorem 1. In Section 5, examples of T ∗ and f̂T ∗ are presented in Figures 2
and 3.

4. Uncertainty quantification for OPTs

In nonparametrics the problem of uncertainty quantification is well–known to
be more delicate than the one of estimation: first negative results to the am-
bitious goal of constructing confidence sets that both cover the unknown truth
and have a diameter that adapts in an optimal way to the smoothness of the
unknown function or density were due to [26] and [29]. The general picture that
emerged in recent years following these early works is that the difficulty of the
problem depends on the considered loss function and on certain testing rates
of separation, see [21], Chapter 8. Notably, for the supremum norm, contrary
to L2–losses for which some ‘window’ of adaptation is possible, constructing
adaptive confidence sets in full generality is impossible unless one restricts the
set of possible functions by assuming e.g. self–similarity conditions. Such condi-
tions can be shown to be essentially necessary; they are also fairly natural from
the practical perspective given that self–similarity is itself quite wide–spread in
natural phenomena.
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Let us briefly describe the uncertainty quantification results we derive. A
first confidence band based on the posterior median and using self–similarity is
built in Section 4.2. Next, we prove in Section 4.3 that the quantile posterior
credible set for the cumulative distribution function leads to optimal UQ; this is
a consequence of a more general result, an (adaptive) nonparametric Bernstein–
von Mises theorem, proved in Appendix E. Finally in Section 4.4 we construct
a confidence band integrating further information from some functionals that is
less conservative than the simple band constructed in Section 4.2 and achieves
a target confidence level. Our results can be seen as counterparts in density
estimation and for tree priors of the results in [36]. Another approach in density
estimation would be to use spike–and–slab Pólya priors as recently considered by
the second author in [8]. Nevertheless, the latter are expected to be less efficient
to compute in high–dimensions (as they, e.g., require to explore all wavelet
coefficients in the different dimensions), a setting that, while not investigated
in the present paper, is particularly promising for OPTs, see also the discussion
in Section 6.

4.1. A self-similarity condition

Here we take the same condition as in [36] (see also [21]). It is fairly simple to
state, and can be only slightly improved (see [5]).

Definition 3 (Set S of self–similar functions). Given an integer j0 > 0 and
α ∈ (0, 1], we say that f ∈ Σ(α,K) is self-similar if, for some constant η > 0,

‖Kj(f) − f‖∞ ≥ η2−jα for all j ≥ j0,

where Kj(f)=
∑

l<j

∑
k〈f, ψlk〉ψlk. The set of such f ’s is denoted S=S(α,K, η).

The condition assumes that at each resolution depth j ≥ j0, the overall
‘energy’ (measured in terms of supremum norm) of the wavelet coefficients at
levels larger than j is lower bounded by a typical amount for α–Hölder functions.
Indeed, for any j ≥ j0, the quantity ‖Kj(f) − f‖∞ is itself also upper–bounded
up to a constant by the same quantity (this follows from standard bounds on
the supremum norm and the definition of the Hölder class).

4.2. Simple confidence band

A first construction consists in defining a band from a centering function and a
radius. A first and simple possibility consists in defining those using the median
tree (13): the resulting median tree estimator (14) can serve as center, while a
radius can be defined as

σn = vn

√
logn
n

2d(T
∗)/2, (15)

where d(T ∗) is the depth of the median tree T ∗, for some slowly diverging
sequence (vn) as specified below. This allows us to define the confidence band,
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for f̂T ∗ as in (14),
Cn =

{
f :

∥∥∥f − f̂T ∗

∥∥∥
∞

≤ σn

}
. (16)

Under self–similarity as in Definition 3, the median tree can in particular be
shown to have a depth of the order of the oracle cut–off 2L∗

n ≈ n1/(2α+1) (up
to a logarithmic factor, see the Appendix for a precise statement in Lemma 5)
which in turn implies desirable properties for the band Cn as is made explicit in
the next theorem.

Theorem 2. Let 0 < α1 < α2 ≤ 1, K > 0, μ > 0 and η > 0. Let Π be the same
prior as in Theorem 1, Cn as in (16) with vn/ log1/2 n → ∞, then uniformly on
f0 ∈ S(α,K, η) ∩ F(α,K, μ), α ∈ [α1, α2],

|Cn|∞ = OP0

⎛
⎝vn

(
logn
n

)α/(2α+1)
⎞
⎠

and
P0 [f0 ∈ Cn] = 1 + o(1), Π[Cn |X] = 1 + oP0(1).

For a slowly diverging sequence (vn), the diameter of Cn is then within a
logarithmic factor of the minimax rate of estimation on Σ(α,K) with high prob-
ability. It is attained adaptively (the definition of Cn does not depend on α) for
any window [α1;α2]. The set Cn allows to quantify uncertainty on f0 as it is an
asymptotic confidence set, and it is also a credible set of credibility going to 1.

4.3. UQ for functionals: A Donsker–type theorem

OPTs with flat initialisation. Let us introduce a slight modification of the OPT
prior where trees from the prior distribution are constrained to include all nodes
of depth less than some number l0 = l0(n), slowly diverging to ∞.

Definition 4. A prior on densities Π of the type (5) is said to have flat initial-
isation up to level l0 = l0(n) if the prior on trees ΠT verifies

ΠT

⎡
⎣ ⋂
l≤l0(n),k

{(l, k) ∈ T }

⎤
⎦ = 1.

The next result considers the behaviour of the induced posterior on F (·) =∫ ·
0 f , that is on the distribution function for an OPT prior on f . Let us also

define, for f̂T ∗ the median tree estimator,

F̂med
n (t) =

∫ t

0
f̂T ∗(u)du. (17)

Let us recall that for Q a probability measure on [0, 1] of distribution function
H, a Q–Brownian bridge is a centered Gaussian process Z(t) with covariance
function E[Z(s)Z(t)] = min(H(s), H(t)) −H(s)H(t) and 0 ≤ s, t ≤ 1.
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Theorem 3 (Donsker’s theorem for OPTs). Let X = (X1, . . . , Xn) be i.i.d.
from law P0 with density f0. Let f0 ∈ F(α,K, μ), for some α ∈ (0; 1], K ≥ 0,
μ > 0. Let Π be an OPT prior with flat initialisation up to level l0(n) that
verifies

√
logn ≤ l0(n) ≤ logn/ log logn, and other than that for l > l0(n) with

same parameters as the prior in Theorem 1.
Let GP0 be a P0-Brownian bridge GP0(t), t ∈ [0, 1). For F̂med

n as in (17), as
n → ∞,

βC[0,1)

(
L(

√
n(F − F̂med

n ) |X),L(GP0)
)
→Pf0 0.

Furthermore, for Fn the empirical distribution function, as n → ∞,

βL∞[0,1)
(
L(

√
n(F − Fn) |X),L(GP0)

)
→Pf0 0.

This implies that the induced posterior distribution L(
√
n‖F − F̂med

n ‖∞ |X)
converges weakly in probability to L(‖GP0‖∞). Furthermore, for 0 < γ < 1, the
credible set

Fn = {F : ‖F − F̂med
n ‖∞ ≤ ρXn },

with ρXn chosen such that Π[Fn |X] = 1 − γ, is an asymptotically optimal
(efficient) confidence set of level 1− γ. We refer to [10] for more details on this;
note that in the latter paper the results are for priors of fixed regularity only,
whereas here the prior additionally enables adaptation to the smoothness of f .
The behaviour of the credible set Fn is illustrated in Figure 5.

4.4. Multiscale confidence band

Here we follow the approach introduced in [9, 10] and first briefly recall the
idea. One wishes to define a ‘multiscale’ space (i.e. defined from wavelet coef-
ficients) with an associated metric that is weak enough so that convergence of
the posterior distribution for f in that space converges at rate 1/

√
n, instead of

the slower nonparametric rate of order n−α/(2α+1). In such space one can then
formulate a convergence of the posterior to a Gaussian limit, namely a nonpara-
metric Bernstein–von Mises theorem. Below we only define the multiscale space
as it is used in the definition of the credible band and postpone details on the
precise statement of convergence to Appendix E.

Let us call the sequence w = (wl)l≥0 ‘admissible’ if wl/
√
l → ∞ as l → ∞.

For such a sequence, let us define

M0 = M0(w) =
{
x = (xlk)l,k, lim

l→∞
max

0≤k<2l

|xlk|
wl

= 0
}
. (18)

Equipped with the norm ‖x‖M0 = supl≥0 max0≤k<2l |xlk|/wl, this is a sepa-
rable Banach space [10]. In a slight abuse of notation, we write f ∈ M0 if the
sequence of its Haar wavelet coefficients (〈f, ψlk〉)l,k belongs to that space.

Let us consider a credible ball in the space M0: recalling the definition (14)
of the median tree estimator f̂T ∗ , let us choose Rn = Rn(X) in such a way that

Π[‖f − f̂T ∗‖M0(w) ≤ Rn/
√
n |X] = 1 − γ (19)
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(or possibly ≥ 1 − γ if the equation has no exact solution, in which case the
limit in the confidence statement of the next proposition is replaced by a liminf
and equality by ≥).

Let us define, for Rn as in (19), σn as in (15) and fT ∗ the median tree
estimator (14),

CM
n =

{
f : ‖f − f̂T ∗‖∞ ≤ σn

} ⋂ {
f : ‖f − f̂T ∗‖M0(w) ≤ Rn/

√
n
}
. (20)

The next result states that CM
n is under self–similarity asympotically a con-

fidence band of prescribed level 1 − γ.

Proposition 4. Let 0 < α1 < α2 ≤ 1, K > 0, μ > 0 and η > 0. Let CM
n be

defined by (20), for vn/ log1/2 n → ∞, and Π an OPT prior with flat initiali-
sation up to level l0(n) that verifies

√
logn ≤ l0(n) ≤ logn/ log logn, and other

than that for l > l0(n) with same parameters as the prior in Theorem 1. First,
for the admissible sequence wl = l2+δ for some δ > 0, the set CM

n is a (1− γ)−
credible band as, uniformly on α ∈ [α1, α2] and f0 ∈ S(α,K, η) ∩ F(α,K, μ),

Π[CM
n |X] = 1 − γ + oP0(1).

Further, under the same conditions,

∣∣CM
n

∣∣
∞ = OP0

⎛
⎝vn

(
logn
n

)α/(2α+1)
⎞
⎠ ,

P0
[
f0 ∈ CM

n

]
= 1 − γ + o(1).

Proposition 4 quite directly follows from combining Theorem 2, which con-
cerns Cn and the nonparametric BvM Theorem 4 proved in the Appendix, which
concerns the second part of the intersection in (20). Compared to Cn the ad-
vantage of CM

n is that it uses more ‘posterior information’ by intersecting with
the M0(w) credible ball, resulting in a credible ball with both credibility and
confidence close to a given user–specified confidence level 1−γ. By contrast, Cn
was more ‘conservative’ in this respect, having credibility and confidence both
going to 1. The behaviour of the credible band CM

n , in particular in comparison
to Cn from (16), is illustrated in simulations in the following Section 5.

Remark 1 (The choice of f̂T ∗ as centering). The median tree density estimator
can also be written

f̂T ∗ = 1 +
∑
l≥0,k

1Π[(l,k)∈Tint|X]≥1/2 · f̂lk · ψlk, (21)

where f̂lk = 2l/2(NX

(
I(l+1)(2k+1)

)
− NX

(
I(l+1)(2k)

)
/n. The median–tree es-

timator is (in part) Bayesian: it uses the median tree built from the posterior
distribution Π[· |X], and then a simple estimate f̂lk of the wavelet coefficient flk.
Note that this last choice is for simplicity, and other choices could be considered:
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for instance, one could take the mean of the posterior distribution induced on
the wavelet coefficient flk given the node (l, k) belongs to the tree. Yet, f̂lk above
makes for more transparent and less technical arguments, so we preferred it over
other possible choices (a similar in spirit median–tree–estimator is considered
in the regression context in [11], see Eq. (30)).

One main intuition and interpretation behind the median–tree–estimator is
that it performs a wavelet thresholding, with the thresholding quantile selected
automatically by the posterior. Lemma 4 proves that this thresholding is per-
formed at level O

(
n−1/2 logn

)
thanks to the exponential decay of the splitting

probabilities in the tree. In other words, (21) above automatically performs a
variable selection along a certain tree, the median tree. We find this enhances
the interpretability of the estimator (over other estimators such as the posterior
mean, which does not come with variable selection; other than this the posterior
mean in itself could possibly used as well, see below), which can be viewed as
a pair (T ∗, f̂), the median tree T ∗ specifying which nodes (l, k) are kept in the
wavelet decomposition.

Instead of T ∗, we could think of using a ‘mean tree’. Seeing that a tree is
defined as a set of pairs of non-negative integers, a possibility is to interpret it
as a weighted tree, that is, every node (l, k) is assigned a weight wlk ∈ (0, 1). For
instance, set

wlk(X) = Π [(l, k) ∈ Tint|X] ,

the weights of the ‘mean-tree’ and define a ‘mean-tree’ estimator as

f̃ = 1 +
∑
l≥0,k

wlk(X)f̂lkψlk.

While f̂T ∗ operates a ‘hard’ thresholding of wavelet coefficients, the mean tree
estimator f̃ is more akin to a ‘soft’ selection. Though this ‘soft’ selection proce-
dure would be of particular interest, we focus on the median tree in view of its
properties (see Appendix D), as well as for its ‘variable selection’/’tree selection’
interpretation.

Replacing the median–tree density estimator f̂T ∗ by the posterior mean∫
fdΠ(f |X) should conceivably lead to the same properties as in Proposition 4

(minimax adaptive L∞-diameter and exact confidence/credible level). Our pro-
posed confidence set is defined as the intersection of two balls centered on f̂T ∗ ,
in supremum and multiscale norms. For the multiscale ball, our results rely on
obtaining a Bernstein-von Mises theorem (see Appendix E). This requires a cen-
tering on an efficient estimator, converging at rate n−1/2 in multiscale distance.
Remark 2 of [10] gives conditions to verify that the posterior mean is actually
an efficient estimator as well, notably implying that∥∥∥E (f |X) − f̂T ∗

∥∥∥
M0(w)

= oPf0

(
n−1/2

)
.

One could also prove the latter directly. As for the supremum ball, our result
essentially relies on the fact that f̂T ∗ is an adaptive minimax estimator (in
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probability, see Lemma 7) of f0 for this norm (up to some logarithmic term).
Any other adaptive estimator should work. However, the posterior mean proves
to have a more involved explicit expression and to be more complex to analyze
than f̂T ∗ . Other estimators, potentially frequentist ones with thresholds based
on empirical wavelet coefficients, should work as well. Once again, the advantage
of the median–tree–estimator is its simplicity and interpretability, so that we
focus on this choice here.

Remark 2 (Necessity for flat initialisation). Our approach to uncertainty quan-
tification mainly relies on the obtention of a shape result for the posterior,
an adaptive Bernstein-von Mises theorem (Theorem 4). It states that a

√
n-

rescaling of the posterior converges weakly to a Gaussian limit, in a multiscale
space. Without the flat initialisation, selecting all nodes (or equivalent Haar
wavelet coefficients) up to level l0(n), the prior proves to be too sparse and
there can be ‘holes’ in the limit. This was observed first by K. Ray in [36]
(Proposition 3.7) in a white noise model setting, where the author proves that
without flat intitialisation there exists self-similar densities such that, with high
probability, the posterior (on the

√
n scale) allocates vanishing mass to any mul-

tiscale ball, if the prior is too sparse. As a consequence, it becomes impossible to
perform uncertainty quantification in this case, even under the good frequentist
self-similarity property which is a central assumption for the construction of
adaptive confidence regions. As explained in [36], the rescaled posterior behaves
like this because it actually selects wavelet coefficients by thresholding at level
n−1/2 logn, instead of level n−1/2 (see Lemma 4). For large l’s, it turns out that
the weighting sequence (wl)l≥0 can actually regularize the extra log factor. As
for small l’s, forcing the inclusion of all first nodes in the prior and the fitting
of the first wavelet coefficients corrects this shortcoming.

5. Simulation study

We consider the credible sets Cn and CM
n defined in (16) and (20) respectively

and illustrate their coverage and diameter properties numerically through a
simulated study.

We focus on a prior as in Proposition 4, with parameters Γ = 1.1, a = 1 and
l0(n) =

√
logn. We take four fairly different densities f0, illustrating different

aspects of inference and UQ with Optional Pólya trees:

• The triangular density x �→ (.5+2∗x)10≤x<0.5+(1.5−2∗(x−.5))10.5≤x<1
that is Lipschitz regular.

• The density

t �→ eWt∫ 1
0 eWsds

where (Wt)t∈[0;1) is a Brownian motion that is almost surely (1/2 −
δ)–Hölder regular for any 0 < δ < 1/2.

• The density
t �→ C

(
eWt10≤t<0.5 + c10.5≤x<1

}
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Fig 2: Interior nodes T ∗
int of the median tree - n = 105.

for (Wt)t∈[0;1) a Brownian motion and C, c real numbers such that this
actually defines a continuous density function. In this case, the regular-
ity is different and of a higher order on the second half of the interval.

• The sine density t �→ 1 + 0.5 ∗ sin(2πx) ∈ C∞([0; 1)).

We first illustrate the behaviour of the median tree T ∗ and the associated
estimator f̂T ∗ defined in (14) in these different situations. In Figure 2, we observe
how this tree adapts to the regularity of the underlying sampling density f0
via the interior nodes it selects. First, in the case of the smoother sine and
triangular densities, fewer nodes are included, while the tree grows deeper with
the other two more irregular signals. Indeed, as mentioned before and explicited
in Lemma 5, the median tree can be shown to have a depth close to the oracle
cut-off L∗

n, satisfying 2L∗
n ≈ n1/(2α+1). However, although the sine density is

even more regular than the triangular one, their respective median trees have a
similar behaviour and grow at the same pace. Indeed, since we use a piecewise
constant tree estimator which relates to the Haar wavelet basis, our method
cannot leverage additional regularities, beyond C1[0, 1). Finally, when it comes
to the mixed density, the median tree has a spatial-dependent behaviour. It
includes much more nodes in regions that corresponds to the first half of the
sampling space, where the target regularity is that of the exp-Brownian density.
As for the other half of the sampling space, it doesn’t get deeper than l0(n).
It highlights a desirable feature of tree-based methods, that is their spatial
adaptivity. While we consider adaptation to global regularity in our theoretical
results, one could also consider local adaptation, as was recently considered in
[37], where results on local adaptation for tree–based priors (among others) are
obtained in a regression setting.

In Figure 3, for the four sampling densities, we illustrate the estimator f̂T ∗

(orange) and the bounds of the credible set Cn (red), where we took vn =
(logn)0.501 in (15). The estimator (14) struggles to approximate the ‘spiky’
portions of the most irregular signals. Still, in any case, the credible band covers
the true density f0 as expected.

Then, to illustrate the intersected set CM
n , defined in (20) via a multiscale
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Fig 3: Median tree estimator f̂T ∗ and credible set Cn - n = 104

Table 1

Credibility of sets CL∞
n and CM

n for the triangular density f0.

Chosen significance γ 0.99 0.95 0.9 0.85
n = 104

Credibility of CL∞
n 0.99 0.95 0.9 0.85

Credibility of CM
n 0.99 0.95 0.8981 0.85

Credibility of CL∞
n ∩ CM

n 0.9801 0.9029 0.8108 0.725
Credibility of the intersection if independence 0.9801 0.9025 0.81 0.7225

n = 105

Credibility of CL∞
n 0.99 0.95 0.9 0.85

Credibility of CM
n 0.9894 0.9494 0.8994 0.8494

Credibility of CL∞
n ∩ CM

n 0.9801 0.9028 0.8118 0.7254
Credibility of the intersection if independence 0.9795 0.9019 0.8095 0.722

condition, we sampled 10000 draws from the posterior and plotted, in Figure 4,
100 of those belonging to the confidence band (blue), for γ = 0.05. We use the
admissible sequence wl = l2+δ for some δ = 0.01 to compute the multiscale dis-
tance, complying with the requirements of Proposition 4. Most of those samples
do not seem to lie close to the bounds of Cn which is consistent with the fact
that Cn, resp. CM

n , has a posterior mass close to 1, respectively 0.95. Though
our illustrations concern the intersection of CM

n with the support the posterior,
via the representation of posterior draws, it appears that CM

n is actually smaller
than Cn.

As for the confidence sets Fn on the cumulative distribution function F0(·) =∫ ·
0 f0(t)dt, we illustrate an example in Figure 5 for a smaller sample size of
n = 103 and γ = 0.05. The bounds of Fn follow tightly the true signal and the
set covers it, in spite of the fewer number of observations available compared
to previous plots. Indeed, following the discussion after Theorem 3, Fn has a
radius decreasing at the parametric rate

√
n
−1.
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Fig 4: Posterior sample in the confidence band CM
n - γ = 0.05 and n = 104.

Fig 5: Posterior samples in the confidence set Fn - n = 103.



Optional Pólya trees 6287

We end this section with an illustration of a phenomenon that was no-
ticed and established in [36] for a spike-and-slab prior in a regression setting.
Namely, since we constructed an adaptive (1 − γ)-confidence bands whose di-
ameter in supnorm shrinks at an almost optimal rate, one may wonder how
much it differs from the (1 − γ)-credible band in the supremum norm CL∞

n :={
f :

∥∥∥f − f̂T ∗

∥∥∥
∞

≤ Qn(γ)
}

, where Qn(γ) is chosen such that Π
[
CL∞

n |X
]
≥

1 − γ. In a white noise regression setting, [36] proved that these two sets
are asymptotically independent (see Theorem 5.3 therein), in the sense that
Π
[
CL∞

n ∩ CM
n |X

] Pf0→ (1 − γ)2. As above, we sampled 104 draws from the pos-
terior to estimate de posterior credibility of the different sets, which we present
in Table 1. The results seem to indicate that the independence phenomenon of
the credible sets as described above still hold in the present density estimation
setting, as the margin of difference observed is of the order of the Monte-Carlo
error. Intuitively speaking, this independence under the posterior if true (at least
asymptotically) would mean that the two credible sets reflect different aspects
of the posterior distribution. Although this result from [36] is seemingly verified
in density estimation with an OPT prior, we did not investigate this question
from a theoretical point of view in the present paper; we expect the proof to be
significantly more involved than in the (conjugate) Gaussian white noise setting
and we leave this point for future work.

6. Discussion

In the present work we establish an inference theory for Optional Pólya trees
introduced in [39] by deriving posterior contraction rates as well as confidence
bands for the problem of uncertainty quantification. By contrast, only posterior
consistency had been previously obtained until now for such priors. Although we
focus on this class of prior distributions, we point out that our proofs and results
also apply to different tree priors, such as ones conditioning on the number
of leaves as in Example 2. The results and proofs highlight how beneficial a
multiscale approach to study tree-based methods, as introduced in [11], can be.

As for related priors in density estimation, non-adaptive contraction rates
were obtained in [7] for Pólya trees for carefully chosen regularity-dependent
parameters of the Beta random variables. The addition of a hyperprior on the
tree structure in OPTs allows for adaptation, so that the Beta parameters can
be set as an arbitrary constant (a similar comment can be done about Spike-
and-slab Pólya trees [8]). The Beta variables in the Pólya-like mass allocation
mechanism could be replaced by another distribution, but we sticked to them
for simplicity of analysis and presentation.

In Section 5, we mentioned some further results on OPTs to be investigated.
First, tree-based methods have a natural ability to adapt to the local regularity.
While this has been proved in [37] in a regression setting, this should also be the
case with OPTs in density estimation. Another expected advantage of trees is
that in high-dimensional settings, they induce a ‘tree–structured’ sparsity, which
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could help in addressing the curse of dimensionality. As original OPTs [31] have
been introduced in arbitrary dimensions, it is natural to further our theoretical
analysis in this direction, Also, the interesting alleged posterior independence
of sets CL∞

n and CM
n still needs to be proven and would confirm that the two

constructions rely on somewhat different aspects of the posterior distribution in
density estimation too.

Finally, since we use a ‘hard’-tree construction (i.e. a histogram), it is quite
expected that similar limitations arise as with typical histograms estimators, for
which adaptation to smoothness is often limited to α ∈ (0, 1]. But indeed, it is
natural to wonder if one could possibly adapt beyond regularity one. In order to
achieve faster rates for smoother densities, one possibility explored in [27] con-
sists in replacing ‘hard’ (histogram) trees with ‘smooth’ trees. Another promis-
ing possibility is to look at forests priors. Indeed, the aggregation of many trees
tends to result in estimators that are more ‘regular’ and thereby more suitable
to the estimation of smoother objects: for frequentist estimators in regression,
this was noted in [1, 32] for regularities α ≤ 2. We also recently considered this
question in the paper [35] for the Hellinger loss, where it is shown that a certain
aggregation of Pólya trees can adapt to any Hölder–regularity α > 0 under this
loss. Note that in the present paper we consider the stronger supremum norm
loss, which is typically more challenging (e.g. the general Ghosal–Ghosh–van
der Vaart concentration theorems [17], as used in [35], do not directly apply).

7. Proof of the main results

Below, the depth Ln = Ln(α) defined as

2Ln = c0(n/ logn)
1

1+2α , (22)

for some c0 > 0, will be helpful in our theoretical analysis. Also, C stands for a
generic constant whose precise value we do not track and can change from line
to line.

7.1. Proof of Theorem 1

Let’s write Tn = {T | d (T ) ≤ Ln, S(f0, τ) ⊂ T }, S(f0, τ) as in Lemma 2,
and En = {f : ∃T ∈ Tn, f piecewise constant on IT }. Moreover, we write,
for Ln as in (22) and any tree T ∈ Tn, the following othogonal projections of
f0: fT

0 onto the span {ψlk | (l, k) ∈ T }, f
Lc

n
0 onto {ψlk | l > Ln}, and fT c,Ln

0
onto the orthocomplement of the union of the two last spans. For f0 ∈ Cα[0, 1),
0 < α ≤ 1, we have in particular that

||fLc
n

0 ||∞ ≤
∑
l>Ln

2l/2 max
0≤k<2l

|f0,lk| �
∑
l>Ln

2−lα �
(
n−1 logn

) α
1+2α , (23)

(see for instance [7]). Then, for any density f0, we have the upper bound, for
BM as in Lemma 8,
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Π [‖f − f0‖∞ > Mnεn |X]
≤ Π[Ec

n |X]1BM
+ Π [‖f − f0‖∞ > Mnεn, f ∈ En |X]1BM

+ 1Bc
M
.

On one hand, Lemma 8 guarantees that P0 (Bc
M ) = o(1) for M large enough

and Lemmas 1 and 2 ensures that

Ef0 {Πf [Ec
n |X]1BM

} = o(1).

On the other hand, we also have the inequality ‖f − f0‖∞ ≤
∥∥f − fT

0
∥∥
∞ +∥∥∥fT c,Ln

0

∥∥∥
∞

+
∥∥∥fLc

n
0

∥∥∥
∞

. This allows us to control the last term in the above
upper bound by mean of the Markov inequality:

Π
[
f ∈En, ‖f−f0‖∞ > Mnεn |X

]
1BM

≤(Mnεn)−1
∫
En

‖f−f0‖∞ dΠ[f, T |X]1BM

≤ (Mnεn)−1
[ ∫

En

∥∥f − fT
0
∥∥
∞ dΠ[f, T |X]1BM

+
∫
En

∥∥∥fT c,Ln

0

∥∥∥
∞

dΠ[T |X]1BM
+
∥∥∥fLc

n
0

∥∥∥
∞

]
,

(24)

and (23) ensures that the last term above is o(1). Similarly, for the second
term, using the definition of En and denoting L∗ the largest integer such that
2−L∗(α+1/2) ≥ n−1/2 logn,

||fT c,Ln

0 ||∞ ≤
∑
l≤Ln

2l/2 max
k:(l,k) �∈T

|f0,lk| �
∑
l≤Ln

2l/2
(

max
0≤k<2l

|f0,lk| ∧ logn /
√
n

)

�
∑
l≤L∗

2l/2 logn√
n

+
∑

L∗<l≤Ln

2l/22−l(1/2+α) �2L
∗/2 logn√

n
+2−L∗α�2−L∗α.

This allows us to conclude that the second term in the bound (24) is also of the
order o(1). It remains to bound the first term in the bound that is also of order
o(1) according to Lemma 3. This concludes our proof.

It remains to prove the different lemmas we used to upper bound the different
terms above.

Lemma 1. Suppose f0 ∈ F(α,K, μ), for some μ > 0, 0 < α ≤ 1, K > 0, and
assume f follows a prior as in Theorem 1. Then, for any M > 0 as in Lemma 8
and Γ large enough, on events BM , we have, as n → ∞,

Π[d(T ) > Ln |X] → 0,

where Ln is as in (22).

Proof. Let T be a tree of depth Ln < d (T ) = l ≤ Lmax. Then, for

k̃ = min
(2k,l)∈T

k, ε = ε
(
k̃, l − 1

)
,
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let T − be the corresponding tree whose nodes (l, 2k̃) and (l, 2k̃ + 1) have been
removed, i.e. T = T − ∪

{
(l, 2k̃), (l, 2k̃ + 1)

}
. From (8) and (9), we have

Π[T |X] = Π[T − |X] pXε
1 − pXε

(
1 − pXε0

) (
1 − pXε1

)
= Π[T − |X]pε

(1 − pε0) (1 − pε1)
1 − pε

νXε

≤
(
1 − Γ−Ln

)−1 Π[T − |X] 2
NX(Iε)

Γl+1
B(a + NX(Iε0), a + NX(Iε1))

B(a, a)︸ ︷︷ ︸
=:Q

.

(25)

Then, from Lemma 10, we have for ñ0 = NX (Iε0), ñ1 = NX (Iε1) and ñ =
NX (Iε), that

Q � (2a + ñ1 − 1/2)ñ1 (2a + ñ2 − 1/2)ñ2

(2a + ñ− 1/2)ñ︸ ︷︷ ︸
=:Q1

(2a + ñ1 − 1/2)a−1/2 (2a + ñ2 − 1/2)a−1/2

(2a + ñ− 1/2)2a−1/2︸ ︷︷ ︸
=:Q2

.

Under our assumptions on f0, on the event BM and for n large enough,

nX (Il,k) ≥
μ

2n2−l → ∞

for any l ≤ Lmax. Under the same conditions,

|ñ1 − ñ2| ≤ n |P0(Iε0) − P0(Iε1)| + 2MMn,l ≤ nK2−l(1+α) + 2MMn,l.

The last inequality stems from the fact that f0 is α-Hölder regular. Therefore,
on BM , for n large enough, if we note vñ1,ñ2 = ñ1 − ñ2, since ñ = ñ1 + ñ2 and
log(1 + x) ≤ x for x > −1,

Q1

= exp
(
ñ1 log

(
1
2 + ñ1 − ñ2+2a−1/2

2(2a− 1/2 + ñ)

)
+ñ2 log

(
1
2 − ñ1 − ñ2 − 2a + 1/2

2(2a− 1/2 + ñ)

))

= 1
2ñ exp

(
ñ1 log

(
1 + vñ1,ñ2 + 2a− 1/2

2a− 1/2 + ñ

)
+ñ2 log

(
1− vñ1,ñ2 − 2a + 1/2

2a− 1/2 + ñ

))

≤ 1
2ñ exp

(
v2
ñ1,ñ2

2a− 1/2 + ñ
+ ñ(2a− 1/2)

2a− 1/2 + ñ

)

≤ C

2ñ exp
(

8K2n22−2l(1+α)

μn2−l
+

16M2M2
n,l

μn2−l

)

≤ C

2ñ exp
((

8K2μ−1c−1−2α
0 + 32M2(μ log 2)−1

)
logn

)
.

The last inequality stems from l > Ln and the definition of Ln. The last factor
is even easier to control as, on BM ,
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Q2 �
[
n2−l

]−1/2 � n− α
1+2α log(n)−

1/2
1+2α .

Finally, this leads us to

Π[T |X] = o

⎛
⎝Π[T − |X]n

(
8K2μ−1c−1−2α

0 +32M2(μ log 2)−1− α
1+2α

)
Γl

⎞
⎠

uniformly on T such that Ln < d (T ) = l ≤ Lmax. The application T −→ T −

defined above is surjective and is such that each tree T − is the image of at
most 2l−1 trees T . Then, the event of interest verifies for Γ > 2 and C̄ =
8K2μ−1c−1−2α

0 + 32M2(μ log 2)−1 − α
1+2α ,

Π[d(T ) > Ln |X] =
Lmax∑

l=Ln+1

Π[d(T ) = l |X] =
Lmax∑

l=Ln+1

∑
T :d(T )=l

Π[T |X]

= o

⎛
⎝ Lmax∑

l=Ln+1

∑
T :d(T )=l

Π[T − |X]n
C̄

Γl

⎞
⎠

= o

(
Lmax∑

l=Ln+1

∑
T −

Π[T − |X] 2
lnC̄

Γl

)
= o

(
2LnnC̄

ΓLn

)
(26)

which is o(1) whenever {log Γ/ log 2−1}/(1+2α) ≥ C̄, that is, if Γ ≥ 21+C̄(1+2α).

Lemma 2. Under the same assumptions on f0 as in Lemma 1, for Π as in
Theorem 1 and on the events BM from Lemma 8, for τ > 0 large enough and
Ln as in (22), the set

S(f0, τ) :=
{

(l, k) : |f0,lk| ≥ τ
logn√

n

}
satisfies, as n → ∞,

Π[{T : S(f0, τ) �⊂ Tint} |X] → 0.

Proof. First, since f0 ∈ Σ(α,K) for some α,K > 0, there exists C > 0 such
that, for any l ≥ 0, 0 ≤ k < 2l, |f0,lk| ≤ C2−l(α+1/2). Thus, for τ large enough,
(l, k) ∈ S(f0, τ) implies l ≤ Ln.

Now, let’s take (lS , kS) a node in S(f0, τ). Then, let’s define

Tn,(lS ,kS) := {T ∈ Tn | (lS , kS) /∈ Tint},

the set of trees in the support of our prior distribution on tree structures that
do not have (lS , kS) as an internal node, and ε = ε (kS , lS). To any tree T ∈
Tn,(lS ,kS), it is possible to associate the full binary tree T + which is the smallest
extension of T with (lS , kS) as an interior node,

T + = arg min
T ′∈Tn: T ⊂T ′, (lS ,kS)∈T ′

int

|T ′| .
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This new tree is realized with the completion of the route from the root to the
node (lS , kS), starting from the leaf node (l0, k0) of this route which is included
in T . Then, as in (25) and using Lemma 10, we now have for some constant
C > 1,

Π[T |X]
Π[T + |X]

≤ ClS
2

lS∏
l=l0

(
2nX

(
I
ε[l]

)
B
(
a + nX (Iε[l]0) , a + nX (Iε[l]1)

))−1

≤ ClS
2

lS∏
l=l0

(2a + nX

(
Iε[l]
)
− 1/2)2a−1/2

(a + nX

(
Iε[l]0

)
− 1/2)a−1/2(a + nX

(
Iε[l]1

)
− 1/2)a−1/2︸ ︷︷ ︸

=: Q1

lS∏
l=l0

(2a + nX

(
Iε[l]
)
− 1/2)nX

(
I
ε[l]

)
2nX

(
I
ε[l]

)
(a + nX

(
Iε[l]0

)
− 1/2)nX

(
I
ε[l]0

)
(a + nX

(
Iε[l]1

)
− 1/2)nX

(
I
ε[l]1

)
︸ ︷︷ ︸

=: Q2

.

(27)

where we recall that ε[l] denotes the l first elements of the sequence ε. On the
event BM , for all l ≤ Ln + 1 and possible k, we have, using that f0 ≥ μ > 0,
NX (Il,k) � n2−l � n2−Ln → ∞ as n → ∞. Since it is also upper bounded (as
f0 is a Hölder density), we have NX (Il,k) � n2−l. Therefore, since these bounds
are uniform on l ≤ Ln + 1,

Q1 ≤
lS∏

l=l0

C
(
n2−l

)1/2 ≤ ClS
√
n
lS
.

Also, in Q2, the factor at index l is equal to, writing ñ0 = NX (Iε[l]0) , ñ1 =
NX (Iε[l]1) , ñ = NX (Iε[l]),

exp
[
ñ0 log

(
2a− 1/2 + ñ

2a− 1 + 2ñ0

)
+ ñ1 log

(
2a− 1/2 + ñ

2a− 1 + 2ñ1

)]
.

If we write KL(a; b) the Kullback-Leibler divergence between Bernoulli distri-
butions of parameters 0 ≤ a, b ≤ 1, then, for n large enough, on BM , this is
bounded by

exp
[
−CñKL

(a− 1/2 + ñ0

2a− 1 + ñ
; 1/2

)]
exp

[
ñ log

(
1 + 1

4a− 2 + 2ñ

)]
.

The second factor can be bounded by a constant, uniformly on l ≤ Ln + 1. The
first factor can be bounded by 1 for l < lS , while for l = lS , we can use the
bound KL(a; b) ≥ ‖Be(a) − Be(b)‖2

1 /2 to write

exp
[
−CñKL

(a− 1/2 + ñ0

2a− 1 + ñ
; 1/2

)]
≤ exp

[
−Cñ−1(ñ0 − ñ1)2

]
.
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By definition |f0,lSkS
| = 2lS/2

∣∣P0(I(lS+1)(2k+1)) − P0(I(lS+1)(2k))
∣∣, so that on

BM , |ñ0 − ñ1| ≥ n |f0,lSkS
| 2−lS/2 − 2MMn,lS+1, hence the upper bound for τ

large enough:

exp
[
−C(τ logn− 2M

√
lS + 1 + Ln)2

]
≤ exp

[
−Cτ2 log2 n

]
,

where we used the definition of S, Mn,lS+1, Ln and lS ≤ Ln.
Finally, for τ large enough and using that lS ≤ Ln ≤ logn, we can conclude

that there exists constants C1, C2 > 0 such that

Π[T |X]
Π[T + |X] ≤ C

l2S
1 n−(C2τ

2−1/2) logn ≤ n−(C2τ
2−1/2−logC1) logn. (28)

Since any tree verifying (lS , kS) ∈ T is the image of at most lS + 1 trees by the
map

Tn,(lS ,kS) → {T ′ ∈ Tn : (lS , kS) ∈ T ′
int}

T �→ T + ,

as it is the length of the path from the root to the node (lS , kS) in a tree T ∈ Tn,

Π[(lS , kS) /∈ T |X] =
∑

T :(lS ,kS)/∈T

Π[T |X]
Π[T + |X]Π[T + |X]

≤ n−(C2τ
2−1/2−logC1) logn(lS + 1)

∑
T :(lS ,kS)∈T

Π[T |X]

≤ n−(C2τ
2−1/2−logC1) logn logn,

which allows us in conjunction with the definition of Ln to conclude that

Π[{T : S(f0, τ) �⊂ T } |X] ≤
∑

(l,k)∈S(f0,τ)

Π[(l, k) /∈ T |X]

≤ 2Ln+1n−(C2τ
2−1/2−logC1) logn logn

→ 0

as n → ∞ for τ large enough.

Lemma 3. Let Tn = {T ∈ Tn : d (T ) ≤ Ln, S(f0, τ) ⊂ T } for Ln as in (22),
c0 > 0 small enough, and τ > 0 as in Lemma 2. Then, under the conditions of
Lemma 1 and on the event BM for M > 0 large enough, there exists a constant
C > 0 such that for n sufficiently large, uniformly on T ∈ Tn,

∫
max

(l,k)∈Tint
|flk − f0,lk| dΠ[f | T , X] ≤ C

√
logn
n

.
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Proof. Given a tree T , let us define the map f̄T such that, for each terminal
node (l, k) in Text and x ∈ Ilk,

f̄T (x) = 2l
l∏

i=1
Ȳε[i] , ε = ε (k, l) ,

where
Ȳε = E [Yε |X, T ] = a + NX(Iε0)

2a + NX(Iε)
.

This defines the mean posterior density given the tree structure T . Similarly,
for each (l, k) ∈ T , with ε = ε (k, l), the mean probability measure of Iε is

P̄ (Iε) =
|ε|∏
i=1

Ȳε[i] =: p̄ε.

Then, expressing the coefficients of the decomposition in the Haar wavelet
basis of this mean posterior density, we obtain that for each (l, k) ∈ Tint, ε =
ε (k, l),

f̄T ,lk := 〈f̄T , ψlk〉 = 2l/2 (p̄ε − 2p̄ε0) = 2l/2p̄ε
(
1 − 2Ȳε0

)
,

while f̄T ,lk = 0 for (l, k) �∈ Tint. When it comes to the true sampling density f0,
we obtain the similar expression, denoting p0,ε := P0(Iε) and yε0 := P0(Iε0)

P0(Iε) ,

f0,lk = 2l/2p0,ε(1 − 2yε0),

and, for densities f sampled from the posterior distribution given T , with pε :=∏|ε|
i=1 Yε[i] ,

flk = 2l/2p̃ε (1 − 2Yε0)1(l,k)∈Tint .

From now on, for simplicity of notations, ε = ε(k, l) as the context will make
it clear what the pair (l, k) is. For any T ∈ Tn, one can bound |flk − f0,lk| ≤∣∣flk − f̄T ,lk

∣∣ + ∣∣f̄T ,lk − f0,lk
∣∣. Using the above expressions, the second term is

rewritten as

∣∣f̄T ,lk − f0,lk
∣∣ =

∣∣∣∣∣f0,lk

[
p̄ε
p0,ε

− 1
]

+ 2l/2+1(yε0 − Ȳε0)

∣∣∣∣∣.
Then, as we are on the event BM , we bound the two terms above by means of
Lemmas 1 and 2 from [7] (which are valid for some c0 small enough) and the
bound p0,ε � 2−|ε| (as f0 is upper bounded), which give uniformly on T ∈ Tn

and (l, k) ∈ Tint,

∣∣f̄T ,lk − f0,lk
∣∣ � |f0,lk|

[
a
2l

n
+
√

Ln2l
n

]
+
[
|f0,lk|

a2l

n
+
√

Ln

n

]

� |f0,lk|
[
a
2l

n
+
√

Ln2l
n

]
+
√

logn
n

as Ln � logn.
(29)
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Since f0 is α-Hölder, |f0,lk| � 2−l(1/2+α), and the last quantity in the above
inequality is smaller (up to a constant) than

√
n−1 logn as l ≤ Ln. It then

remains to bound the term∫
max

(l,k)∈Tint

∣∣flk − f̄T ,lk

∣∣ dΠ[f | T , X].

To do so, let’s first define the event

A = ∩
ε:|ε|<Ln

{
|Ȳε0 − Yε0| ≤ M ′

√
Ln

nP0(Iε0)

}

for M ′ > 0. By Lemma 9, it follows that, for d a small constant,

Π [Ac | T , X] �
∑
l≤Ln

2l exp(−CM ′2 logn) � 2Ln exp(−CM ′2 logn), (30)

which is smaller than (n/ logn)1/(1+2α)
n−CM ′2 . Then,

∣∣flk − f̄T ,lk

∣∣ =
∣∣∣∣∣2l/2+1p̄ε

(
Ȳε0 − Yε0

)
+
[
pε
p̄ε

− 1
](

f̄T ,lk + 2l/2+1p̄ε(Ȳε0 − Yε0)
) ∣∣∣∣∣.

Applying Lemmas 2 and 3 from [7] (valid once again for some c0 small enough),
on the events BM and A, uniformly on ε such that |ε| = l for some l ≤ Ln,∣∣∣∣pεp̄ε − 1

∣∣∣∣ � l∑
i=1

√
Ln

nP0(Iε[i])
�
√

Ln2l
n

.

Therefore, we directly have that on the events BM and A,

∣∣flk − f̄T ,lk

∣∣ � ∣∣f̄T ,lk

∣∣√Ln2l
n

+ 2l/2p̄ε

[√
Ln

nP0(Iε0)
+ Ln

n

√
2l

P0(Iε0)

]

�
∣∣f̄T ,lk

∣∣√Ln2l
n

+
√

Ln

n
,

(31)

where we used that on BM , p̄ε � 2−|ε| for n large enough as f0 is upper bounded,
and P0(Iε0) � 2−|ε|. Finally, with

∣∣f̄T ,lk

∣∣ ≤ ∣∣f̄T ,lk − f0,lk
∣∣+ |f0,lk| and using the

same computation as for (29), we have
∣∣flk − f̄T ,lk

∣∣ �√ logn
n . This gives∫

max
(l,k)∈Tint

|flk−f0,lk| dΠ [f | T , X]�
√

logn
n

+
∫
Ac

max
(l,k)∈Tint

∣∣flk−f̄T ,lk

∣∣ dΠ[f | T , X]

�
√

logn
n

+ 2Ln/2Π[Ac | T , X]�
√

logn
n

+
(

n

logn

) α/2
2α+1

(
n

logn

) 1
1+2α

n−dM ′ 2

�
√

logn
n

for M ′ large enough,
(32)

where the second inequality comes from the fact that, for a density f , |〈f, ψlk〉| ≤
2l/2. This concludes the proof as this bound holds uniformly on T ∈ Tn.
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7.2. Proofs for confidence bands

Proof of Proposition 2. On the event E from Lemma 4, the bound on the median
tree depth implies that for any h, g ∈ Cn,

‖h− g‖∞ ≤ ‖h− fT ∗‖∞ + ‖g − fT ∗‖∞
≤ 2σn

≤ 2A1/2vn

√
logn
n

2Ln/2 � vn

(
logn
n

) α
2α+1

.

Also, Lemma 7 ensures that

‖f̂T ∗ − f0‖∞ = OP0

((
log2 n

n

) α
2α+1

)
.

Then, according to the proof of Proposition 3 in [22], for any f0 ∈ S(α,K, η)
and l1 large enough

sup
(l,k): l≥l1

|〈f0, ψlk〉| ≥ C2−l1(α+1/2).

For Δn > 0 and ζ > 0 such that

ζ

(
n

log2 n

)1/(2α+1)

≤ 2Δn ≤ 2ζ
(

n

log2 n

)1/(2α+1)

,

this implies that

sup
(l,k): l≥Δn

|〈f0, ψlk〉| ≥ Cζ−α−1/2 logn√
n

.

Therefore, if ζ is small enough, there exists l ≥ Δn and 0 ≤ k < 2l such that
|〈f0, ψlk〉| > A logn/

√
n, and then (l, k) ∈ T ∗ on E according to Lemma 4. As

a consequence,

σn ≥ vn

√
logn
n

2Δn/2 ≥ C ′ vn

log1/2 n

(
log2 n

n

)α/(2α+1)

, (33)

and since log1/2 n = o(vn), ‖f0 − fT ∗‖∞ ≤ σn/2 for n large enough. This allows
us to conclude that

P0 [f0 ∈ Cn] = P0 [{f0 ∈ Cn} ∩ E ] + o(1) = 1 + o(1).

It remains to determine the credibility level of the set Cn. From Theorem 1
and Lemma 7, the posterior contracts towards f0 and the f̂T ∗ converges to f0
on an asymptotically certain event E , both at a faster rate than σn (see (33)).
Therefore, an application of the triangular inequality gives

Π [Cn |X] ≥ Π [‖f − f0‖∞ ≤ σn/2 |X]1E + Π [Cn |X]1Ec = 1 + oP0(1).
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Proof of Proposition 4. The credibility statement follows from the fact that Cn
(respectively the multiscale ball) has credibility 1 (respectively 1−γ) asymptoti-
cally. The diameter statement follows from the inclusion CM

n ⊂ Cn. For coverage,
one combines Theorem 2 which gives that Cn has asymptotic coverage 1, with
Theorem 5 in [10] which from the nonparametric BvM (Theorem 4) enables to
deduce frequentist coverage of ‖ · ‖M0(w)–balls (hence the multiscale ball in the
intersection defining CM

n has asymptotic coverage 1 − γ).

Appendix A: The classical Pólya tree and T–Pólya trees

Let us partition the sample space I∅ = [0, 1) as I1,0∪I1,1, these two subsets being
the level-1 elementary regions. These can in turn be partitioned as I1,0 = I2,0 ∪
I2,1 and I1,1 = I2,2 ∪ I2,3, involving level-2 elementary regions. Continuing this
partitioning scheme gives the general level-k elementary region, k ≥ 1, whose
set will be written as Ak. More precisely, we partition Il,k = Il+1,2k ∪ Il+1,2k+1,
l ≥ 0, 0 ≤ k ≤ 2l − 1. From this recursive partitioning scheme, one defines a
random recursive partition of I∅ and an associated random density.

The Pólya Tree prior corresponding to the partitioning ∪∞
l=1Al is the dis-

tribution on probability measure on [0; 1), whose samples are defined by the
conditional probabilities

ε ∈ E∗, P (Iε0|Iε) = Vε0 ∼ Beta(νε0, νε0). (34)

For an appropriate choice of Beta parameters νε, ε ∈ E∗, samples from this
prior actually extends almost surely to an absolutely continuous measure, so
that it can be seen as a prior on densities. The Beta random variables Vε0 then
corresponds to the share of the mass on Iε that is allocated to Iε0. This mass
allocation scheme is illustrated on Figure 6: the random mass of each interval
Iε is the product of Beta variables on the edges of the path from the root to the
corresponding node. As a consequence, the random mass on Iε, ε ∈ E∗, is equal
to
∏|ε|

i=1 Vε[i] .
A simpler related prior on densities, the truncated Pólya Tree prior, stops the

splitting of the mass at some level L < ∞ and has sampled densities which are
constant on each set Iε in AL, with value μ (Iε)−1∏|ε|

i=1 Vε[i] . If one introduces
the tree T as

T =
{
(k, l), l ≤ L, 0 ≤ k < 2l

}
,

that is the complete binary tree of depth d(T ) = L, it corresponds to a T-Pólya
tree distribution with ΠT = δT .

Appendix B: Tree posteriors: the Galton–Watson/Pólya tree case

As shown in Subsection 2.3, the Markov process on trees GW (p) can be seen as
a distribution on partitions. We first show that it corresponds to the distribution
introduced in [39].



6298 I. Castillo and T. Randrianarisoa

I∅ = [0; 1)

I0 = [0; 1/2)

I00 = [0; 1/4)

Y00 ∼ Beta (ν00, ν01)

I01 = [1/4; 1/2)

Y01 = 1 − Y01

Y0 ∼ Beta (ν0, ν1)

I1 = [1/2; 1)

I10 = [1/2; 3/4)

Y10 ∼ Beta (ν10, ν11)

I11 = [3/4; 1)

Y11 = 1 − Y10

Y1 = 1 − Y0

Fig 6: Pólya Tree process on the dyadic recursive partitioning, with splits at
midpoints.

In the Optional Pólya Tree (OPT) construction, different recursive partition-
ing mechanism are allowed: each level-k elementary region A ∈ Ak can be split
in M(A) different ways, the j-th being written as

A = ∪Kj(A)
i=1 Aj

k, (35)

where the Aj
k are level-(k + 1) elementary regions (see Appendix A). Then, a

random partition of the sample space [0; 1) is produced recursively. For 0 ≤
ρ([0, 1)) ≤ 1, the partition is the sample space itself with probability ρ([0, 1)).
Otherwise, one of the M([0, 1)) partitions are drawn according to probability
vector λ([0; 1)) =

(
λ1, . . . , λM([0,1))

)
. The partitioning then continues: each el-

ementary region A stays intact with probability ρ(A), otherwise it is split (a
decision encoded by the variable S(A) ∼ B(ρ(A))) and its partition is chosen
according to probability vector λ(A). Following the discussion in Subsection 2.3,
the GW (p) is a particular case, where M(A) = 1, λ(A) = 1 and K1(A) = 2, as
the intervals are only ever split at their midpoints,

Il,k = Il+1,2k ∪ Il+1,2k+1. (36)

The level-k elementary regions are the Iε with |ε| = k. Also, it corresponds to
the choice of

ρ(Il,k) = 1 − plk, l < Lmax, ρ(ILmax,k) = 0.

Given a partition I, in OPT, a probability measure Q is defined by the condi-
tional probabilities, for A an elementary region split as in (35),(
Q(Aj

1|A), . . . , Q(Aj
Kj(A)|A)

)
=Q(A)θ(A), θ(A) ∼ Dir

(
αj

1(A), . . . , αj
Kj(A)(A)

)
,

with Dirichlet random variables θ mutually independent and independent from
the variables S(A′) for A �⊂ A′, and Q([0, 1)) = 1. For M(A) = 1 and K1(A) = 2,
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it is similar to the mass allocation mechanism in (34) when α1
1 = α1

2 = a.
However, whenever the recursive partitioning stops and gives a finite partition,
these equations do not completely characterize a measure on Borelians of [0, 1),
so that the measure Q is defined on Borelians B as

Q(B) =
∑
A∈I

Q(A)μ (A ∩B)
μ(A) .

This corresponds to the absolutely continuous measure with density constant
on the elements of I. Therefore, the distribution from Proposition 1 is actually
a special case of OPT.

Appendix C: The OPT posterior on trees

In the following, we prove Propositions 2 and 3. We first obtain a general formula
for the posterior on trees, which implies an explicit formulation of Π[· |X, T ],
and then focus on the OPT prior. The posterior distribution on trees is given
for T ∈ Tn by Bayes’ formula as

Π [T |X] =
∫

Π [X,T |f ] dΠ [f ]∫
Π [X|f ] dΠ [f ]

.

Since Π [X,T |f ] = 1T =T

∏n
i=1 f (Xi), the numerator is equal to

∑
T ′∈Tn

Π [T = T ′]1T =T

∫ n∏
i=1

f (Xi) dΠ [f |T ′] = Π [T = T ]
∫ n∏

i=1
f (Xi) dΠ [f |T ].

Writing NT (X) :=
∫ ∏n

i=1 f (Xi) dΠ [f |T ] the marginal likelihood, the denomi-
nator can be expressed as

∑
T ′∈Tn

Π [T = T ′]
∫

Π [X, T = T ′|f ] dΠ [f ] =
∑

T ′∈Tn

Π [T = T ′]NT ′(X).

Let’s compute NT (X). By definition, for any i = 1, . . . , n,

f (Xi) =
∏

(l,k)∈Text

⎛
⎝ l∏

j=1
2Yε(k,l)[j]

⎞
⎠1Xi∈Ilk

,

and

n∏
i=1

f (Xi) =
∏

(l,k)∈Text

⎛
⎝ l∏

j=1
2Yε(k,l)[j]

⎞
⎠NX(Ilk)

=
∏

(l,k)∈T\{(0,0)}

(
2Yε(k,l)

)NX(Ilk)



6300 I. Castillo and T. Randrianarisoa

=
∏

(l,k)∈Tint

(
2Yε(k,l)0

)NX

(
Iε(k,l)0

) (
2(1 − Yε(k,l)0)

)NX

(
Iε(k,l)1

)
.

On the one hand, we obtain that

Π[f |X, T ] = NT (X)−1Π[f,X | T ] = NT (X)−1Π[X | f, T ]Π[f | T ]

= C(X,T )
n∏

i=1
f (Xi)

∏
(l,k)∈Text

l∏
j=1

Y a
ε(k,l)[j]

(
1 − Yε(k,l)[j]

)a
= C(X,T )

∏
(l,k)∈Tint

Y
a+NX

(
Iε(k,l)0

)
ε(k,l)0

(
(1 − Yε(k,l)0)

)a+NX

(
Iε(k,l)1

)
,

for C(X,T ) a constant depending on X and T only, which proves the claim of
Proposition 2. On the other hand, for any variable Y ∼ Beta(a, a), one obtains

E
[
Y N (1 − Y )M

]
=
∫ 1

0
yN (1 − y)M ya(1 − y)a

B(a.a) dy = B(a + N, a + M)
B(a, a) .

Therefore,

NT (X) =
∏

(l,k)∈Tint

2NX

(
Iε(k,l)

)
B
(
a + NX

(
Iε(k,l)0

)
, a + NX

(
Iε(k,l)1

))
B(a, a) .

Let’s now focus on the special case of the GW(p) tree prior, as in Propo-
sition 3. For any possible pair (l, k), take T ∈ Tn such that (l, k) ∈ Text and
let

T+ = T ∪ {(l + 1, 2k), (l + 1, 2k + 1)} .

Then,
Π[T+] = Π[T ] plk

1 − plk
(1 − pl+1,2k)(1 − pl+1,2k+1), (37)

and

Π[T+|X]
Π[T |X] = Π [T = T+]LT+(X)

Π [T = T ]LT (X)

= plk
1 − plk

(1 − pl+1,2k)(1 − pl+1,2k+1)

2NX

(
Iε(k,l)

)
B
(
a + NX

(
Iε(k,l)0

)
, a + NX

(
Iε(k,l)1

))
B(a, a) .

(38)

This last quantity is independent of T and T+ and depends only on (l, k).
Therefore, if we can find pXlk, p

X
l+1,2k, p

X
l+1,2k+1 such that the last quantity in (38)

is equal to
pXlk

1 − pXlk
(1 − pXl+1,2k)(1 − pXl+1,2k+1),
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for any appropriate (l, k), we obtain a formula similar to (37) and the posterior
on trees is a GW (pX) process. This defines a set of equations that has a solution,
as for any 0 ≤ k < 2Lmax , we necessarily have pLmaxk = 0 and the equations
can be solved to obtain pX , starting from l = Lmax and solving the successive
equations in a “bottom–up” way up to the level l = 0.

Appendix D: Median tree properties

Lemma 4. Under the same prior and assumptions as in Theorem 1, there exists
an event E, such that P0 [E ] = 1+ o(1), on which the following is true: for some
constants A > 0, B > 0,

• 2d(T ∗) ≤ A2Ln � (n/ logn)1/(2α+1), Ln as in (22),
• For any (l, k) such that |f0,lk| ≥ Bn−1/2 logn, (l, k) ∈ T ∗

int.

Proof. On the event BM from Lemma 8, Lemma 2 shows that the set T
(2) of

trees satisfying the second condition in the lemma, for B large enough, is such
that Π

[
T

(2)| X
]
→ 1. Therefore the event

Ẽ =
{

Π
[
T

(2)| X
]
≥ 3/4

}
⊃ BM

is asymptotically certain.
For any node (l, k) such that |f0,lk| ≥ Bn−1/2 logn, since it belongs to the

interior nodes of any tree in T
(2) by definition,

Π [(l, k) ∈ Tint| X] =
∑

T ∈Tn: (l,k)∈Tint

Π [T | X] ≥ Π
[
T

(2)| X
]
.

Then, on Ẽ , (l, k) ∈ T ∗ by definition and T ∗ satisfies the second condition of
the lemma.

Let’s now turn to the set T
(1) of trees satisfying the first condition in the

lemma. Using the same arguments as for (26), there exists C > 0 such that for
any l such that 2l � 2Ln and Γ > 0 large enough,

Π
[
d
(
T
)
> l | X

]
≤ nC (2/Γ)l ,

which holds on the event BM . Then, since

Π [(l, k) ∈ Tint| X] ≤ Π [d (T ) > l| X] ,

Markov’s inequality implies

P0

[{
T ∗ /∈ T

(1)} ∩ BM

]
= P0

[{
∃(l, k) : 2l > A2Ln , (l, k) ∈ T ∗} ∩ BM

]
≤

Lmax∑
l: 2l>A2Ln

∑
0≤k<2l−1

P0
[{

Π[(l − 1, �k/2	) ∈ Tint | X] > 1/2
}
∩ BM

]
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≤
Lmax∑

l: 2l>A2Ln

2
∑

0≤k<2l−1

E0 [Π[(l − 1, �k/2	) ∈ Tint | X]1BM
]

= o(1) for Γ large enough.

One concludes by noting that BM is asymptotically certain according to Lemma
8, and E =

{
T ∗ ∈ T

(1)} ∩ BM satisfies the conditions of the lemma.

Lemma 5. Let 0 < α ≤ 1, K > 0, μ > 0 and η > 0. Let Π be the same prior
as in Theorem 2, then for f0 ∈ S(α,K, η) ∩ F(α,K, μ),(

n/ log2 n
)1/(2α+1) � 2d(T

∗) � (n/ logn)1/(2α+1)
,

on an event of probability converging to 1.

Proof. Using the same argument as above (33), we obtain the lower bound.
Lemma 4 gives the upper bound.

Lemma 6. Let f0 and �0 be as in Theorem 4, Π as in Proposition 4 and f̂T ∗

as defined in (14). The median tree estimator then satisfies

max
l>�0(n)

max
k

|f̂T ∗,lk − f0,lk| = OP0

(
logn√

n

)
.

Proof. Let Q = maxl>�0(n) maxk |f̂T ∗,lk − f0,lk|. On the event E from Proposi-
tion 4, one has for B as in the proposition,

Q ≤
(
B

logn
n1/2

)
∨ max

(l,k)∈T ∗
int,l>�0(n)

|f̂T ∗,lk − f0,lk|.

Indeed, for (l, k) �∈ T ∗
int, we necessarily have f̂T ∗,lk = 0 and |f0,lk| < Bn−1/2 logn

on E . From (42), it also follows that for A as in the proposition and Ln defined
in (22)

max
(l,k)∈T ∗

int, l>�0(n)
|f̂T ∗,lk − f0,lk| ≤ max

(l,k), 2�0(n)<2l<A2Ln

|Pnψlk − P0ψlk| =: Qn.

We have that

|Pnψlk − P0ψlk|
≤ 2l/2n−1 (|N(Il+1,2k) − nP0(Il+1,2k)| + |N(Il+1,2k+1) − nP0(Il+1,2k+1)|) .

Therefore, on the event BM from Lemma 8, for some constant C depending on
M,A, c0 and α only, and any l as in the above supremum,

|Pnψlk − P0ψlk| ≤ C

√
logn
n

. (39)

It follows that Q � n−1/2 logn on the event E∩BM that is such that P0 (E∩BM )=
1 + o(1).
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Lemma 7. Let T ∗ as in (13) and f̂T ∗ as in (14). Then, for f0 ∈ F(α,K, μ),

‖f̂T ∗ − f0‖∞ = OP0

((
log2 n

n

) α
2α+1

)
.

Proof. Let E as in Lemma 4 and BM as in Lemma 8. On E ∩ BM , for M large
enough,

‖f0 − fT ∗‖∞

≤
∑

l: 2l<A2Ln

2l/2 max
[

max
0≤k<2l, (l,k)∈T ∗

int

|〈f0−fT ∗ , ψlk〉|, max
0≤k<2l, (l,k)/∈T ∗

int

|〈f0, ψlk〉|
]

+
∑

l: 2l≥A2Ln

2l/2 max
0≤k<2l

|〈f0, ψlk〉| ,

using the usual inequality for densities h, g, ‖h− g‖∞ ≤
∑

l≥0 2l/2 max
0≤k<2l

|〈h− g, ψlk〉|. Since f0 ∈ Σ(α,K), the second term is smaller than 2−αLn =
O
(
(n/ logn)−α/(2α+1)) (up to a constant depending only on α, K and the con-

stant A from Lemma 4). Then, the first term can itself be upper bounded by
the sum of ∑

l: 2l<A2Ln

2l/2 max
0≤k<2l, (l,k)∈T ∗

int

|〈f0 − fT ∗ , ψlk〉|

� 2Ln/2
√

logn
n

= o

(( log2 n

n

)α/(2α+1)
)
,

where we used that the argument of 39 can be extended to l ≤ �0(n) on E ∩BM ,
and the term ∑

l: 2l<A2Ln

2l/2 max
0≤k<2l, (l,k)/∈T ∗

int

|〈f0, ψlk〉|.

It remains to upper bound this last quantity. Let’s introduce

L∗ = max
{
l : max

0≤k<2l
|〈f0, ψlk〉| ≥ Bn−1/2 logn

}

which is such that 2L∗ �
(

n1/2

logn

)1/(α+1/2)
since max

0≤k<2l
|〈f0, ψlk〉| � 2−l(1/2+α).

Then, on the event E , the term in the above display is bounded by
∑

l: 2l<A2Ln

2l/2
(
B

logn√
n

)
∧ max

0≤k<2l
|〈f0, ψlk〉| ≤

∑
l: l≤L∗

2l/2
(
B

logn√
n

)

+
∑

l: 2L∗<2l<A2Ln

2l/2 max
0≤k<2l

|〈f0, ψlk〉|

�

√
2L∗ log2 n

n
+ 2−αL∗ �

(
log2 n

n

)α/(2α+1)

.
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Combining the previous bounds leads to, on E ∩ BM ,

‖f0 − fT ∗‖∞ ≤ C
(
log2 n/n

)α/(2α+1)
.

Appendix E: Nonparametric BvM theorem

E.1. Space M0 and limiting Gaussian process N

Recall the definition of the space M0 from (18), using an ‘admissible’ sequence
w = (wl)l≥0 such that wl/

√
l → ∞ as l → ∞,

M0 = M0(w) =
{
x = (xlk)l,k ; lim

l→∞
max

0≤k<2l

|xlk|
wl

= 0
}
.

Equipped with the norm ‖x‖M0 = supl≥0 max0≤k<2l |xlk|/wl, this is a sep-
arable Banach space. In a slight abuse of notation, we write f ∈ M0 if the se-
quence of its Haar wavelet coefficients belongs to that space (〈f, ψlk〉)l,k ∈ M0
and for a process (Z(f), f ∈ L2), we write Z ∈ M0 if the sequence (Z(ψlk))l,k
belongs to M0(w) almost surely.

White bridge process. For P a probability distribution on [0, 1], following [10]
one defines the P -white bridge process, denoted by GP , as the centered Gaussian
process indexed by the Hilbert space L2(P ) = {f : [0, 1] → R;

∫ 1
0 f2dP < ∞}

with covariance

E[GP (f)GP (g)] =
∫ 1

0
(f −

∫ 1

0
fdP )(g −

∫ 1

0
gdP )dP. (40)

We denote by N the law induced by GP0 (with P0 = Pf0) on M0(w). The
sequence (GP (ψlk))l,k indeed defines a tight Borel Gaussian variable in M0(w),
by Remark 1 of [10].

Admissible sequences (wl). The main purpose of the sequence (wl) is to ensure
that (GP (ψlk))l,k belongs to M0. We refer to [10], Section 2.1 and Remark 1,
for more background on the choice of (wl) in the present multiscale setting, and
to [9], Section 1.2, for a similar discussion in an Hilbert space setting where the
targeted loss is the L2–norm.

To establish a nonparametric Bernstein–von Mises (BvM) result, following
[10] one first finds a space M0 large enough to have convergence at rate

√
n

of the posterior density to a Gaussian process. One can then derive results
for some other spaces F using continuous mapping for continuous functionals
ψ : M0 → F .

Recentering the distribution. To establish the BvM result, one also has to find
a suitable way to center the posterior distribution. A possible centering is the
median tree estimator f̂T ∗ as in (14). Other centerings are possible, typically
appropriately ‘smoothed’ versions of the empirical measure Pn associated to the
sample X1, . . . , Xn

Pn = 1
n

n∑
i=1

δXi . (41)
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Let us now also note that another way to write the median tree estimator (14)
is

fT ∗ = 1 +
∑

(l,k)∈T ∗
int

(Pnψlk) · ψlk, (42)

where Pnψlk = n−1∑n
i=1 ψlk(Xi) are the empirical wavelet coefficients, and

only terms corresponding to interior nodes (l, k) in the median tree T ∗ are
active in the sum from the last display. From this we see that the median tree
estimator (14) can also be interpreted as a smoothed (or ‘truncated’) version of
the empirical measure Pn in (41), with truncation occuring along the median
tree T ∗. Note also that if the prior Π has flat initialisation up to level l0(n), then
all nodes (l, k) with l ≤ l0(n) are present in the above sum over (l, k) ∈ T ∗

int.

E.2. Nonparametric BvM: Statement

For the following result, we work with OPTs with flat initialisation as defined
in Section 4.3. This is discussed below the next statement.

We have the following Bernstein-von Mises phenomenon for f0 in Hölder
balls. For Cn a function to be specified, we denote by τCn the map τCn : f →√
n(f − Cn).

Theorem 4. Let N denote the distribution induced on M0(w) by the P0–white
bridge GP0 as defined in (40) and let Cn = f̂T ∗ the median tree estimator as
in (14). Let Π be an OPT prior with flat initialisation with l0(n) that verifies√

logn ≤ l0(n) ≤ logn/ log logn, and other than that for l > l0(n) with same
parameters as the prior in Theorem 1. Then for every α ∈ (0, 1], for μ > 0,
K ≥ 0 and η > 0,

sup
f0∈F(α,K,μ)

Ef0

[
βM0(w)(Π(·|X) ◦ τ−1

Cn
,N )

]
→ 0,

as n → ∞, for the admissible sequence wl = l2+δ for some δ > 0.

Remark 3. Recalling that the typical nonparametric cut–off sequence L veri-
fies 2L � n1/(1+2α), assuming �0(n) = o(logn) amounts to say that �0(n) does
not ‘interfere’ with the nonparametric cut-off L. Similar choices are made in
[36], Corollary 3.6. Other choices of sequence �0(n) would also be possible, up
to adjusting the sequence (wl) – one can check that it suffices to have an in-
creasing sequence (wl) such that wl0(n)/ logn → ∞ (see, e.g. Theorem S–3 in
the Supplement of [11]) –; we do not consider these refinements here.

Theorem 4 states that the posterior limiting distribution is Gaussian after
rescaling; note that, similar to the first such result recently obtained in [36],
one slightly modifies the OPT prior to fit the first levels by assuming a flat
initialisation. This is in fact necessary for the result to hold, as otherwise the
posterior would not be tight at rate 1/

√
n in the space M0(w), as was noted

in the white noise model in [36], Proposition 3.7. Let us also briefly comment
on the recentering Cn: as follows from the proof of Theorem 4, one can replace
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Cn = f̂T ∗ by another estimator that fits all first wavelet coefficients up to �0(n)
and such that ‖Cn − f0‖M0(w̄) = OP0(1/

√
n), for w̄ as in that proof, see also

Remark 4 for more on this.

E.3. Nonparametric BvM: Implications

Using the methods of [10], this result leads to several applications. A first direct
implication (this follows from Theorem 5 in [10]) is the derivation of a confidence
set in M0(w). Setting

Dn =
{
f = (flk) : ‖f − Cn‖M0(w) ≤

Rn√
n

}
, (43)

where Rn is chosen in such a way that Π[Dn |X] = 1 − γ, for some γ > 0
(or taking the generalised quantile for the posterior radius if the equation has
no solution) leads to a set Dn with the following properties: it is a credible
set by definition which is also asymptotically a confidence set in M0(w) and
the rescaled radius Rn is bounded in probability. Other applications are BvM
theorems for functionals, as given a continuous map ψ : M0(w) → E for some
metric space E , convergence results in M0(w) can be translated into convergence
in E via the continuous mapping theorem, see [10]. This is also at the basis of
the proof of the Donsker Theorem 3.

Appendix F: Proof of limiting shape results

In this section we prove the nonparametric BvM Theorem 4 and, as a fairly
direct consequence given the results of [10], the Bayesian Donsker Theorem 3.

Proof of Theorem 4. The proof is similar to the corresponding proofs for Pólya
trees or spike–and–slab Pólya trees, so we highlight only the few differences.
The proof consists in two steps. First, proving convergence of finite–dimensional
distributions and second, showing tightness of the rescaled posterior in a slightly
smaller space.

Regarding convergence of finite–dimensional distributions, it suffices to note
that for a fixed depth L > 0, the prior on wavelet coefficients of levels l ≤ L (for
large enough n so that �0(n) > L) coincides with the prior induced by a standard
Pólya tree, for which the convergence of finite–dimensional distributions is shown
in [7].

Regarding tightness, let w̄ = (w̄l) be the sequence w̄l = wl/l
δ/2 = l2+δ/2.

This sequence is increasing in l and verifies w̄l �
√
l, w̄l = o(wl) as l → ∞, and

w̄�0(n) ≥ logn, using the assumption on �0(n). Now by the same argument as in
the proof of Theorem 3 in [8], to establish the nonparametric BvM it suffices to
prove that the distribution L(

√
n(f −Cn) |X) is tight in M0(w̄), which is true

if both laws L(
√
n(f − f0) |X) and L(

√
n(f0 − Cn)) are tight.
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Focusing first on the tightness of L(
√
n(f − f0) |X), we wish to show that

for any η ∈ (0, 1), one can find M = M(η) large enough such that

Ef0Π[‖f − f0‖M0(w̄) > M/
√
n |X] ≤ η. (44)

We split, for g = f − f0,

‖g‖M0(w̄) ≤ max
l≤�0(n),k

|glk|/w̄l + max
l>�0(n),k

|glk|/w̄l =: (I) + (II).

For the term (I), as noted above, since the prior has a flat initialisation up
to level �0(n), the induced prior and posterior on the first layers l ≤ �0(n) of
wavelet coefficients coincide with the prior/posterior of a standard Pólya tree,
for which the corresponding tightness is proved in [7] (proof of Theorem 3). For
the term (II), it follows from the proof of Theorem 1 (noting that the proof goes
through with a prior with flat initialisation) that for Tn as in that proof and
given l > �0(n), for any T ∈ Tn and on the event BM ,∫

max
k: (l,k)∈Tint

|flk − f0,lk|dΠ(f | T , X) ≤ C

√
logn
n

and
max

k: (l,k)/∈Tint

|f0,lk| ≤ C
logn√

n
.

Since w̄�0(n) ≥ logn as verified above, one deduces that for any T ∈ Tn and
on BM the term (II) above is O(1/

√
n). Putting pieces together what precedes

implies, with E = {fT , T ∈ Tn} as in the proof of Theorem 1,∫
E
‖f − f0‖M0(w̄)dΠ(f |X) = OP0(1/

√
n),

which in turn implies (44) using Π[Ec |X] = oP0(1).
It remains to prove tightness of L(

√
n(f0 −Cn)) in M0(w̄). Again, one splits

along indices: for l ≤ �0(n), the posterior median tree estimator has same wavelet
coefficients as the empirical measure Pn, and the estimate

EP0 max
l≤�0(n)

max
k

|〈P0 − Pn, ψlk〉|/w̄l ≤ C/
√
n

follows from the proof of Theorem 1 in [10] (see equation (36) there and lines
below). For l > �0(n), one invokes the properties of the median tree estimator,
namely

max
l>�0(n)

max
k

|f̂T ∗,lk − f0,lk| = OP0

(
logn√

n

)
, (45)

as in Lemma 6, noting that the argument in that proof is unchanged for a prior
with flat initialisation. This gives, using again w̄�0(n) ≥ logn, that

max
l≤�0(n)

max
k

|f̂T ∗,lk − f0,lk| = OP0(1/
√
n),

which gives the desired tightness property and concludes the proof.
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Remark 4. It follows from the proof of Theorem 4 that there is quite some
flexibility in the choice of the centering Cn. For instance, the projection Pn(Ln)
of the empirical measure Pn onto the first Ln levels of wavelet coefficients, with
Ln the oracle supremum–norm cut–off (n/ logn)1/(2α+1) can be used. This is
because for l ≤ �0(n) the projection Pn(Ln) has by definition same wavelet
coefficients as the empirical measure Pn, while for l > �0(n) equation (45) holds
for 〈Pn(Ln), ψlk〉 instead of fT ∗,lk (with the even better bound OP0(

√
logn/n)),

as in the proof of Theorem 1 in [10].

Proof of Theorem 3. The results follows by applying Theorem 4 in [10]: since
the posterior distribution on f satisfies the nonparametric BvM theorem 4, it
suffices to check that the sequence (wl) satisfies the condition

∑
l wl2−l/2 < ∞,

which clearly holds, and to note that the centering Cn = fT ∗ belongs to L2.
This shows that the Bayesian Donsker holds with centering F̂med

n =
∫ ·
0 fT ∗ . By

using remark 4, the same result also holds with F̂med
n replaced by the primitive,

say Zn(·), of Pn(Ln). But as noted in the proof of Corollary 1 in [10] (see also
Remark 9 in [19]), we have ‖Zn − Fn‖∞ = oP0(1/

√
n), which implies the result

with centering at Fn.

Appendix G: Miscellaneous

We quickly remind that

Ȳε = E[Yε |X(n)] = a + NX(Iε0)
2a + NX(Iε)

and we define Ln as in (22).

Lemma 8. Let α > 0, K > 0 and P0 be a distribution with a bounded density
f0 ∈ Σ(α,K) w.r.t. Lebesgue density. Then, for any

M >
1
3

(√
log 2

√
18 ‖f0‖∞ + log 2 + log 2

)
,

the event

BM :=
{
∀l ≥ 0, ∀0 ≤ k ≤ 2l − 1,

M−1|NX(Il,k) − nP0(Il,k)| ≤
√

n(l + Ln)
2l ∨ (l + Ln) =: Mn,l

}
is asymptotically certain under the law P0 of the observations, i.e.

P0 (Bc
M ) = o(1).

Proof. According to Bernstein’s inequality, for any l ≥ 0, 0 ≤ k ≤ 2l − 1,

P0 (|NX(Il,k) − nP0(Il,k)| > MMn,l)
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≤ 2 exp
(
−

M2M2
n,l/2

nP0(Il,k)(1 − P0(Il,k)) + MMn,l/3

)
.

By assumption, P0(Il,k)(1−P0(Il,k)) ≤ ‖f0‖∞ 2−l. Then, whenever Mn,l = l+Ln

(which is equivalent to l+Ln ≥ n2−l) or Mn,l =
√

n(l+Ln)
2l , we can further upper

bound the above quantity as

P0 (|NX(Il,k) − nP0(Il,k)| > MMn,l) ≤ 2 exp
(
− M2

2 ‖f0‖∞ + 2M/3(l + Ln)
)
.

Therefore,

P0 (Bc
M ) ≤ 2

∑
l≥0

2l exp
(
− M2

2 ‖f0‖∞ + 2M/3(l + Ln)
)

= O(2−Ln)

= O

(( logn
n

) 1
2α+1

)
,

the latter equality being true whenever

M2

2 ‖f0‖∞ + 2M/3 > log 2,

i.e. M > 1
3
(√

log 2
√

18 ‖f0‖∞ + log 2 + log 2
)
.

Lemma 9. Suppose f0 ∈ Σ(K,α), with 0 < α ≤ 1. For M ′ > 0, on the event
BM from Lemma 8, the set

A = ∩
ε:|ε|<Ln

{
|Ȳε0 − Yε0| ≤ M ′

√
Ln

nP0(Iε0)

}

is such that
Π[Ac |X] �

∑
l≤Ln

2le−M ′2 logn/4

Proof. This proof comes from Lemmas 4 and 5 of [8]. For completeness, we give
here some details of the proof. We have already explained that

Yε0 ∼ Beta(a + NX(Iε0), a + NX(Iε0)).

We also noticed that on the event BM , NX(Iε) → ∞ uniformly for all |ε| ≤ Ln

for n → ∞. Therefore, for n sufficiently large, a + NX(Iε0) ∧ a + NX(Iε0) ≥ 8
for |ε| < Ln. Also, under our assumptions, Lemma [2] from [7] allows us to say
that, for n large enough, there exist μ, ν such that

0 < μ ≤ a + NX(Iε0)
2a + NX(Iε0) + NX(Iε1)

≤ ν < 1
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uniformly on all |ε| < Ln. In addition, if i = |ε|, we have that

2a + NX(Iε0) + NX(Iε1) ≥ NX(Iε0) ≥ nP0(Iε0) −M
√

2nLn2−i.

Under our assumptions on f0 and Ln, the last bound is itself lower bounded by
nP0(Iε0)/2 for n large enough. As a consequence, an application of Lemma 6
from [7] gives, for x = M ′L

1/2
n /2,

Π
[
|Ȳε0 − Yε0| >

x√
nP0(Iε0)

∣∣∣ X
]
≤ De−x2/4

for some constant D. Finally, a union bound helps us to conclude that

Π[A |X] �
∑
l≤Ln

2le−M ′2 logn/4.

Lemma 10 (Theorem 1.5 of [2]). For any x > 0,

a

(
x + 1/2

e

)x+1/2
≤ Γ(x + 1) ≤ b

(
x + 1/2

e

)x+1/2
,

where Γ is usual Gamma function, and a =
√

2e and b =
√

2π are the best
possible constants.
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