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Abstract: We consider functional data which are measured on a discrete
set of observation points. Often such data are measured with additional
noise. We explore in this paper the factor structure underlying this type
of data. We show that the latent signal can be attributed to the common
components of a corresponding factor model and can be estimated accord-
ingly, by borrowing methods from factor model literature. We also show
that principal components, which play a key role in functional data anal-
ysis, can be accurately estimated by taking such a multivariate instead of
a ‘functional’ perspective. In addition to the estimation problem, we also
address testing of the null-hypothesis of iid noise. While this assumption
is largely prevailing in the literature, we believe that it is often unrealistic
and not supported by a residual analysis.
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1. Introduction

Functional data analysis (FDA) is concerned with the analysis of data that can
naturally be described as curves. In mathematical terms, data are modeled as
random curves (X(s): s € S), where S is some continuum. Examples where such
data arise are very diverse, ranging from high frequency asset price curves over
growth curves or pollution level curves, to 2D satellite images or fMRI scans.
For a simple presentation we assume without loss of generality that S = [0, 1].
With technological advances, recording and storing this type of data becomes
more and more common and hence the corresponding FDA literature has seen
a big upsurge over the past years. For an introduction to the topic we refer, for
example, to the textbooks of Ramsay and Silverman [44], Ferraty and Vieu [18],
[31] or Kokoszka and Reimherr [34].

In practice functional data are not fully observed, but sampled on a discrete
set of time points. Consider functional observations (X;(s): 0 < s <1),t > 1,
and assume we have measurements of it at time points 0 < 51 < 89 < ... <
sp < 1. A very common additional working hypothesis in FDA literature is that
these measurements come with an additional error, so that we actually observe

}/t = (Xt(51)7 SPN ,Xt(Sp))/ + (Utla ceey Utp)/ = Xt(S) + Ut~ (11)

Henceforth we are going to write s for (s1,...,s,) and use the convention that
g(s) denotes (g(s1),...,9(sp))’. The errors U, can, for example, be related to
measurement errors. In this paper we focus on the setting where all data are ob-
served at the same time points s;. This is typically the case for machine recorded
data. The goal then is to separate the errors from X (s). Most papers (including
those cited below) assume that the components (Uy;: 1 <@ < p) are iid with zero
mean and variance of; > 0 and that X;(s) and U; are independent. To recover
the full curve X¢(s) or the discretisation X;(s) (henceforth we refer to both ob-
jects as the signal), a variety of fitting techniques exist. The goal is to acquire an
estimate X,(s) or X;(s) that is close to the true latent signal. A very common
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technique is the basis expansion approach, explained thoroughly in Ramsay and
Silverman [44]. Here, the fitted curve is a linear combination of suitable basis
functions. Most popular choices are the Fourier basis or B-splines. By adding a
roughness penalty to the least squares criterion the smoothness of the curves can
be controlled. Other common approaches employ local polynomial regression or
kernel smoothing. Notable publications (without claim of completeness) include
Cleveland [13], Miiller [36], Hardle et al. [28], Wand and Jones [49], Hall and
Opsomer [26], Claeskens et al. [12] and Wood [51]. All these methods are based
on a curve-by-curve principle, i.e., each curve is fit separately, ignoring the rest
of the sample. In contrast to this, Staniswalis and Lee [46] have proposed an
approach which takes the entire sample into account. The key idea is to esti-
mate the covariance kernel of the X;’s by some smoothing method, and then
expand the curve along the obtained (smooth) functional principal components.
A variant of this approach is the well known PACE algorithm established in Yao
et al. [52]. Rubin and Panaretos [45] focus on the estimation of latent curves
from sparsely sampled functional time series.

A common feature of many of these discussed approaches is a smoothing
step at some point during the procedure. The degree of smoothness of the la-
tent curves, which is needed to choose the appropriate number of basis func-
tions or the bandwidth of a kernel smoother, is typically unknown and then
the result of the analysis is influenced by a non-verifiable working hypothesis.
Cross-validation (CV) may look like an attractive route, since the parameter
choices then become data driven. To illustrate that the problem is still challeng-
ing, we look at the synthetic example in Figure 1. The two rows in the graph
illustrate realisations from two random samples (two observations each). The
red marks represent the raw data Y; and the solid lines the underlying signals
X:(s). In the first example (top row) the data generating process (DGP) is such
that curves are smooth, with one outlying measurement in the second curve. In
the second example (bottom row) the curves possess a non-smooth segment. In
order to distinguish between measurement errors or some systematic structure
in the signal, we will typically need a higher measurement frequency, i.e., an in-
crease of p. Thus, the accuracy in recovering the signal is tied to its smoothness,
and the relevant question is whether p is large enough relative to the degree of
smoothness to sufficiently justify a certain approach.

In this paper we want to complement the existing literature on preprocessing
discretely sampled functional data by the following topics:

(A) We propagate a method, which is not tied to the smoothness of the under-
lying curves.

(B) We develop tools for the analysis of the resulting model residuals in (1.1)—a
topic which is, to the best of our knowledge, widely ignored in existing
contributions.

In context of (A), we analyse the problem from a multivariate perspective.
We show in Section 2 that functional data sampled as in (1.1) follow some factor
model [see, e.g., 35]. The factor model is able to accommodate the functional
nature of X; without requiring smooth curves. The signal underlying the discre-
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Fi1G 1. In this illustrative ezample, the red marks correspond to measurements Y and the solid
lines to the underlying signal X (s).

tised observations is related to the common components of the factor model and
thus a natural strategy is to estimate these common components. The two most
common techniques for this purpose are either likelihood or PCA based. The
PCA technique was shown in our companion paper Héormann and Jammoul
[29] to lead to comsistent estimation of the signal under fairly mild assump-
tions. Here we complement the theoretical results in Hérmann and Jammoul
[29] by extending the estimators for X;(s) to consistent estimators for the full
curve X;(s) (Section 2.2) and its functional principal components (Section 2.3).
These extensions do not rely on smoothing steps either.

With regards to (B), we note that most papers impose iid error components
(Uti: 1 < i < p). However, the interpretation of the errors (aside from mea-
surement errors) is broadly ignored and a thorough residual analysis, which
is required for corresponding model diagnostics, is barely addressed in existing
contributions. We devote Section 3 to adequate diagnostic tools and explain how
the factor model approach leads to a sensible interpretation of the model errors,
going beyond measurement errors. In Section 3.1 we develop a frequency domain
based test statistic for iid errors and derive its asymptotic null-distribution by
exploring the double-asymptotics p, T — co. The test statistic in turn also blazes
a trail to an empirical approach to determine the number of factors of the un-
derlying factor model via an alternative version of the scree plot. This will be
discussed in some detail in Section 3.2.

The rest of the paper provides comprehensive numerical studies. In the sim-
ulation studies in Section 4 we consider not only smooth signals (Section 4.1)
but also signals which contain discontinuities (Section 4.2). After blurring those
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signals with noise, we investigate how well our propagated approach and com-
peting methods are able to recover the signals. Our test statistic for iid noise is
evaluated in Section 4.3. Finally, in Section 5 we illustrate our method on some
real data examples.

2. Factor model representation

We consider a set of functional data Xi,..., Xt defined on a common prob-
ability space. Throughout the paper we assume that observations are iid or
form a general stationary functional process. The curves (X;(s): s € [0,1]) are
square integrable on [0, 1], and hence can be expanded along a sequence of or-
thogonal basis functions {bg(s): k > 1} e. g the Fourier basis. Then we have
Xie(s) = > k1 (X, br)bi(s), where ( fo v)dv. The convergence is in
general only in L? sense, but under mlld regularlty condltlons on path properties
of X; we can also obtain pointwise or even uniform convergence. In particular,
if the covariance kernel IT'X (s, s") := Cov(X(s), X;(s')) is continuous and we
set by = @, which denote the eigenfunctions of I'X (s, s’), then we obtain as a
consequence of Mercer’s theorem [see, e.g., 23], that

Xt Z l’té@é

where x4 = fol(Xt(s) — 1(8))pe(s)ds. The functions ¢y, are the so-called func-
tional principal components, and define an optimal orthogonal basis system, in
the sense of minimising the mean square error

1
/ E

0
with respect to the basis functions (by). In typical applications the approxi-
mation error is already very close to zero with small L (say L = 5) or at most

moderately sized values of L (say L = 20), so that assuming a finite dimensional
representation

2

sup F
s€[0,1]

—0, L— oo, (2.1)

2

L
Xi(s Z Xt, bi)br(s)| ds
(=1

L
Z X, bi)bi(s for some L > 1 (2.2)
k=1

is no more than a theoretical restriction, which imposes no practical limitation
of generality, if L is allowed to be chosen large enough.

A basic requirement for our proposed method is that all curves are sampled
at the same time points 0 < 51 < 5o < ... < 5, < 1. This is a very com-
mon setting for machine recorded data. We note that sampling points need not
be equidistant though. We will assume throughout a general signal-plus-noise
structure as in (1.1).

The following representation theorem for functional data observed as in (1.1)
holds.
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Proposition 2.1. Suppose (1.1) and (2.2) hold. Let U; be independent of X
and assume that EU; = 0 and Var(U,) is diagonal. Then Y; follows an L-factor
model.

Proof. We show that there exists a matrix B € RP*E such that
Y: = u(s) + BF; + Uy, (2.3)

where u(s) = EXy(s), EF; = 0, Var(F;) = I, (the identity matrix in RY) and
Cov(Fy, Uy) = 0. We note that by the imposed stationarity the covariance kernel
I'% (s, s") does not depend on ¢. Using (2.2) the Karhunen-Loéve expansion gives

L
Xo(s) = puls) + 3 wpels), (2.4)
=1

where ;(s) are the eigenfunctions of the covariance operator I'*. The scores
(zge: £ > 1) are uncorrelated and Var(zy) = Mg, where Ay are the eigenval-
ues of T'X (in decreasing order). See, e.g., Bosq [7] for details. Define B :=
(VA1¢1(8), ...,V Arwr(s)). Moreover, define

Ft = (xtl/\/xa s 7th/\/E)/'

This yields the desired representation. O

In factor model language BF; are called the common components of Y; and
our problem is reduced to the estimation of these common components. For
this purpose we can resort to a rich literature, especially from macroeconomics,
where factor models are used to model markets with many assets. See, e.g., Stock
and Watson [47, 48] and Forni and Lippi [19]. In this context, Chamberlain and
Rothschild [10] have shown that it is useful to allow also for a certain degree of
dependence in the idiosyncratic noise components Ug;. This setting then refers
to approximate factor models. Some of the features employed in econometric
applications are natural and useful in our context, too: (1) The dimension p of
our sampling points s is large and allowed to diverge with increasing sample
size. (2) The functional data X; may be time-dependent, i.e., form a functional
time series. (3) In a realistic framework, the errors (Uy: 1 < i < p) in (1.1)
might be correlated at small lags.

Next to conceptual papers proposing different variants of factor models, there
is also a profound literature on estimation theory for these models. In particular
we refer to the papers of Bai [1], Bai and Li [2], Choi [11], Fan et al. [16], Bai
and Liao [4] and Bai and Li [3]. In context of dynamic factor models we refer
to Forni et al. [20, 21]. How these methods may be used in the current context
will be discussed in the next section.

We conclude here with two important remarks.

Remark 1. [t is common in FDA to smooth data, even if by their very nature
they come without relevant measurement errors (e.g., annual temperature curves
generated from daily data, intraday stock prices, etc.). In this case it needs to be
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clarified how the residual noise is to be interpreted. The translation of our prob-
lem into factor model language gives a mathematical/statistical meaning to the
noise Uy which goes beyond measurement errors. The Uy define the idiosyncratic
components of Y;, which are characterised by being uncorrelated or, more gen-
erally, being weakly correlated in a certain sense to be specified. The components
of Uy represent “unsystematic” fluctuations in our functional trajectories.

Remark 2. We consider the representation/approzimation of X(s) via (2.4)
as the essence of the functional nature of the data. It is manifested by the “co-
movement” of X¢(s) and X¢(s') via linear combinations with a limited number
of basis functions at abscissae s and s'. The common component in a factor
model is the multivariate analogue of this. Specific smoothness conditions on the
we(s) are not relevant for such an interpretation.

2.1. Estimation approach

As mentioned above, the signal X,(s) is related to the common components
of Y;. The core idea of the algorithm that we pursue is simple and can be
summarised as follows:

Core algorithm:

Estimate p(s) by (s) = (Y1 + -+ Y7).

Center the data by fi(s).

Choose an appropriate order L.

Approximate X(s8) — u(s) through the estimated common components:
BF;.

5. Set X,(s) = j(s) + BE.

= W

Steps 3. and 4. can be carried out by many existing approaches for fac-
tor models. Bai and Ng [5] is a key reference for determining the dimension
L. Hallin and Liska [27] expanded the approach to dynamic factor models.
Onatski [38] proposes an approach that uses the empirical distribution (ED)
of the eigenvalues of the sample covariance matrix. Owen and Wang [39] use a
Bi-Cross-Validation (BCV) technique to estimate the number of factors. Con-
trary to other approaches, Owen and Wang [39] are not specifically interested
in recovering the true number of factors, but rather the number of factors best-
suited to recover the underlying signal. In the process of our empirical work, we
have investigated the behaviour of the above mentioned estimators. We found
that the BCV and ED approaches work best in our FDA context. In Section 3.2
we will propose an empirical method to choose L.

Once L is fixed, there are two main approaches for factor model estimation.
One strategy is to utilize principal component analysis, e.g., Chamberlain and
Rothschild [10] use this method. PCA is particularly simple to implement and
does not require numerically intense stochastic optimization methods. Bai [1]
investigated the asymptotic behaviour of both the factors as well as the factor
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loadings and—under technical conditions—proved consistency as well as robust-
ness to mild correlation in the error terms.

The second popular strand is based on maximum likelihood. Choi [11] ex-
panded upon previous ideas by describing an efficient estimation for factor
models, where the conditional distribution of U;|F},... Fr is assumed to be
normal with a covariance matrix that is not necessarily diagonal. Bai and Li
[2, 3] provide a method involving a quasi-maximum-likelihood approach.

Let us discuss the PCA approach in detail, which can be motivated as follows.
Let Y = (Y3,...,Yr) and define U = (Uy,...,Ur) and F' = (F},..., Fr). Then,
assuming zero mean, we can write our model equation (2.3) in the compact
matrix form

Y = BF' +U. (2.5)

In this notation, the objective is to estimate BE’ through some estimator BE.
Suppose that F is already known. Then Y7 = F bj + U7, which leads to the
common least-squares estimator BJLS = (F'F)"'F'Y7. Here V] is the j-th row
of B and Y7 and U’ denote the j-th column of Y’ and U’, respectively. If our
data are independent (or satisfy some appropriate weak dependence condition),
it holds by the law of large numbers and orthogonality of principal components

scores that

1
FF'F 51, (T— ). (2.6)

This motivates é‘ F o= %YF as estimator for B conditional on F. For F in
turn we use the empirical principal components and set F = JTE, where

E = (éy,...,e1) are the eigenvectors of Y'Y (T x T) associated to the L
largest eigenvalues 417 > ... > 4. Then %F’F = I;. In summary F =

\/TE' and B= %YF, which implies that
(X1(s),...,X7(s)) = BF' := BF' = YEE'. (2.7)

We have analysed this estimator for the signal in Hérmann and Jammoul [29]
and have shown that under mild technical conditions (see Assumptions 2-4 in
the Appendix) this estimator converges uniformly, i.e.,

sup sup | X¢(s;) — Xe(si)] = 0 (p, T — o0)
1<t<T 1<i<p

in probability and explicit convergence rates can be obtained. In applications
the user is free to choose any estimation method that leads to satisfactory and
plausible results. (See Section 3.)

Remark 3. A well known problem in factor model theory is that factor loadings
and the factor scores are not unique. If O € REXL 4s some orthogonal matriz,
then BF = (BO)(O'F), and Var(O'F) = Iy,. This identification issue is not
a problem here, because we are primarily interested in the common components
BEF, which remain well identified.
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2.2. Estimating the full curve

The factor approach does not return a full curve, but an estimate of the noise-
free curves at the points 0 < 51 < s9 < ... < sp < 1. If the goal is to work with
full curves, then it is up to the experimenter to choose a discrete-to-function
transformation which is designated for noise-free data. The simplest approach,
namely linear interpolation, will be considered in this section.

Theorem 2.1. We consider a sample Y1,...,Yr of discretely observed func-
tional data as in (1.1). Let Xy(s;) be the PCA based factor model estimates for
the underlying signal at the points 0 = s1 < s9 < ... < sp = 1 as defined in (2.7)
and let Xi(s), s € [0,1], be the linear interpolation of these estimates Xi(s;).
Denote § = maxi<;<p—1|Si+1 — Si|. Assume that for some a € (0,1] we have a
random variable M; such that

[ Xi(s) = Xi(u)] < Myls — ul® (2.8)

holds, where EM; = m < oo. Then under Assumptions 2—4 in the Appendiz we
have

s€[0,1] r o \p

Remark 4. In the formulation of this theorem it is assumed that L is fized and
known. Like in [29] the result can be extended to the cases where L is replaced
by a consistent estimator. It is also possible to derive variants of this theorem
where L is allowed to diverge with the sample size T. This, however, requires
further technical assumptions. We refer to Theorem 2 in [29].

. 1 1
sup | X(s) — Xi(s)| = Op ( %P, —=+ 6&) . (2.9)

In order to extend our results to the full sample paths we require the Lipschitz
condition (2.8), which has, for example, been previously considered in Bosq
[7, p.169] or in Kallenberg [32]. Prominent examples of processes that fulfill
this property include the Brownian and fractional Brownian Motion, hence also
processes which are by no means smooth. Note that under these assumptions,
the observation points need not be equidistant in order to control size of the
modulus of continuity, but merely the largest distance between two knots needs
to become small. It is natural to assume that § = O(p~!) holds, implying that
the term 0% is negligible if a@ > 1/2.

2.3. Estimation of eigenfunctions

Functional principal components take a central role in FDA literature [see, e.g.,
44]. When data are fully observed, the estimation theory is well established [33,
14, 25]. When data are discretely observed and subject to measurement errors,
then obviously estimation theory has to be adapted. The most common strategy
is to first estimate the curves using techniques described in the introduction and
then to estimate principal components from the empirical covariance operator of
the fitted data. Alternatively, one may use eigenfunctions of the non-parametric
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estimates of the covariance kernel as suggested in Staniswalis and Lee [46] or
Yao et al. [52].

We now show that functional principal components can be estimated quite
well from discretely observed and noisy data. Unlike the procedures mentioned
before, this does not involve a smoothing step. Let us begin by noting that
Lemma 1 in Hérmann and Jammoul [29] shows that under some mild tech-
nical assumptions the /-th eigenvalue A, of the covariance kernel I'X (s,s’) =
Cov(X;(s), X¢(s")) may be consistently estimated by 4 /p, which denotes the
p-th fraction of the (-th eigenvalue of £ := T-1YY” (€ RP*P). A similar result
has been obtained in Benko et al. [6]. These authors also work with the raw data
when estimating the eigenvalues. For estimation of eigenfunctions they do, how-
ever, use a smoothing step. To formulate our result, we denote the eigenvectors
associated to the eigenvalues 4} by 1/33/ In order to properly describe the rela-
tionship between the function ¢, and the vector QZ)Z we define @y(s) = \/}—9[1&1}/]1
if s € [$4,8i+1), where [v]; denotes the i-th component of a vector v. The step-
function @, is the proposed estimator for the eigenfunction ¢,. Note that the
scaling ensures that ||@[|? := 01 B%(s) = 1.

Remark 5. Eigenfunctions and eigenvectors are of course uniquely defined only
up to the sign. In order to ensure that @, indeed is the estimate for @, we
assume that (g, @¢) > 0 holds. To lighten the notation, we henceforth assume
in the proof of Theorem 2.2 that the inner product is nonnegative for any pair
of eigenfunctions and eigenvectors whose difference is being investigated.

Theorem 2.2. Let Assumptions 2 and 3 (a) and (b) hold. Assume that the
sampling points s; are equidistant and that

Sl[lp]E|X(8+h) —X(s)2=0(h) (h—0). (2.10)
s€[0,1

Then if ay = min{ Ay — Apy1, \e—1 — Ae} # 0, we have

1 1
ol =0p (—=+—=), ¢>1
||(,0€ @E“ P(\/ﬁ \/T)

Benko et al. [6] have compared their eigenfunction estimators from discretely
observed and noisy data to the empirical eigenfunctions ¢, from fully observed
data. They show that the error is of smaller order of magnitude than the error
between ¢y and ,. Since their result is pointwise in s, it is not directly com-
parable to our L? distance. From a technical point of view both results have
advantages and disadvantages. Our result holds under milder smoothness con-
ditions. We merely need Assumption (2.10), while they request second order
derivatives with a uniformly bounded fourth order moment. Furthermore, we
allow for dependence in both the errors and the observations. Benko et al. [6]
focus on the iid setup. On the other hand, they allow for more general errors
with 8 moments and do not request a regular sampling design.
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3. Model diagnostics

A simple diagnostic tool which may help to discern inadequate signal extraction
is the inspection of the covariance of the residuals. Consider the fits X;(s), ...,
X7(s) and denote by U; = Y; — X,(s) the residual vectors. Each residual vector
Ut defines a time series Un, ... Utp. For example, if (Uy: 1 <i < p) is assumed
to be white noise, then this should be reflected in the empirical autocorrelation
functions (acf’s)

—|n
1PH

Yg,(h) = » Z (Uri4n — ﬁt)(ﬁtz - [}t) (3.1)
i=1

Since we have replicates, we may also conclude that
. 1 T ~ ~
o N A ~
r~ .= T tEZI(Ut —U)(Uy — U) = Var(Uy), (3.2)

where U is the grand mean of Ul,‘..,UT. If there is doubt that the noise
components are stationary (e.g., if the homogeneous variance assumption is
likely to be violated) analysing v may be preferable over investigating the
act’s 4y, . If the residual covariances do not conform with the assumptions on the
noise variables (e.g., iid noise), this indicates that either these assumptions were
incorrect, or that the transformation from discrete to functional data introduced
some bias.

In our real data examples (Section 5) we investigate daily mean tempera-
tures and corresponding annual temperature curves from Canada. Following
Ramsay et al. [42], the daily data were transformed to annual curves using 65
basis functions and a roughness penalty. In Figure 2 we show the acf’s (3.1)
of the residual vectors of this penalized B-spline approach at a weather station
in St. Margaret’s Bay, Nova Scotia, in the year 1993. We also show the heat
map representing the lefthand side in (3.2). For better visibility, the heat map
is restricted to the first 2 months of the year. Details on the data and the imple-
mentation will be given in Section 5. At this stage, we want to draw the readers
attention to the spurious oscillation in the acf. If the components of the error
vectors were iid—as it is commonly assumed—then the acf should be zero for
all lags # 0. In a slightly more realistic setting we would expect some moderate
positive correlation of the errors, which tapers to zero with increasing lag.

3.1. Testing for independent errors

In FDA literature the iid assumption for the error components Uy, ..., Uy,
is strongly prevailing. Below we refer to this assumption as the null hypothesis
Ho. Surprisingly, however, on real data this assumption is typically used without
providing empirical evidence. To the best of our knowledge, no specific statistical
tests have been developed for this problem. Of course, a straight forward strategy
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Fic 2. Autocorrelation function of residual vectors for Penalized B-Splines in the St. Mar-
garet’s Bay Data example for the year 1993 and the heat map corresponding to the lefthand
side in (3.2).

is to employ some of the existing white noise tests individually to each residual
vector and then to aggregate the information from the resulting 7" tests. Below
we propose a tailor-made test statistic for our setting. To this end we introduce
some further notation. We assume throughout that the error vectors U, 1 < t <
T, are iid. The components will also be iid or stationary, depending on whether
we operate under the null hypothesis or the alternative hypothesis.

For some generic random vector Z = (Z1,...,Z,)" we denote the empirical

variance of the components of Z by S = zﬁ S¥_1(Zx—Z)%. The periodogram

is defined as
P
Z Zkefike
k=1

Here i = /=1 and |z| is the modulus of a complex number z. We refer to the
frequencies 6, = %, 1<¢<q:=|p/2] as the fundamental frequencies.

Now we choose a subset of fundamental frequencies 8 = {0, { € F C
{1,...,q}} and denote f := |F|. We allow F (and hence f) and p to de-
pend on T and our asymptotic statements below are then for T — oo. Set
E=T71 ZZ;I Iy, (@) and note that & is an estimator of the spectral density of
the U; at the fundamental frequencies contained in 6. If the components Uy; are
iid, then the spectral density is constant and the components of £ will be roughly
constant as well. Our test statistic is thus based on the empirical variance 552,
which under #Hy shall be accordingly small. Proposition 3.1 below establishes
the essential asymptotic result related to the proposed test under the null.

Proposition 3.1. Assume that Ho holds and that EUy; = 0, EU}, = o and
EU}, < oco. Let 6% denote a consistent estimator of the variance. Then

1 2
I7(0) =5

A o= (f = DTS2/6% 53,
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If additionally EUY, < oo and f — oo, and f/T — 0, then

A = (TS2/6* = 1) V(F = 1)/2 % N(0,1).

If p is of the same order or of a bigger order of magnitude than T (e.g.,
this is the case in our real data in Section 5), then taking F = {1,...,q} is
not theoretically justified by the proposition, since then f ~ p/2 and hence
f/T 4 0. We can overcome this problem by thinning out the frequencies F,
i.e., we choose some large enough m and only take every m-th frequency. Then

~ P

~ 2m"
In our next result we want to show the proposed test is consistent under the

following alternative:

Assumption 1. [Alternative Hyptothesis] We assume that the process U :=
{Uti : i > 1} is stationary with absolutely summable autocovariance vy function
and spectral density
9(0) =Yy (h)e™.
heZ

Additionally we assume that Var(Iy, (0e)) is uniformly bounded for all L € F and
all dimensions p. Finally, denoting g = % > ver 9u(0e) we assume that there is
some § > 0 such that

o 00 9 > 6 (33

When f diverges, (3.3) should hold uniformly in f.

Besides mild technical moment assumptions (which hold, e.g., for certain
linear processes), our basic requirement under the alternative is that the noise
is correlated and hence that the spectral density is not constant. In order to
detect such a non-constant spectral density, we have to assure that it varies
at the frequencies we have incorporated in our test statistic. This is assured
by (3.3). Note that the term in (3.3) does not just depend on f but also on
the choice of frequencies. If we select the frequencies 6§, on a regular grid and

f — oo, then we can replace our condition by fo7r (9(0) — foﬂ g(s)ds)2 dg > ¢.

Proposition 3.2. Consider the setting of Proposition 3.1 and assume that (1)
holds. Let 0 < hp = o(T). Then Agn/hr — oo (T — o0). If additionally f =
f(T) = oo, f/T — 0 and if 0 < hy = o(T/f) then Aing/hr — o0 (T — o).

In practice the Uy; are latent and the test will be applied to the residuals Uti =
Y — Xt(-si)- This gives then rise to the test statistics Aﬁn and Ainf. The results
above do not account for the effect of the estimation error dy := ﬁti — Uy =
X (si)—X(s;). We have experienced in simulations that frequencies close to zero
seem to get eliminated in the time series {ﬁti: 1 <4 < p} and hence we do not
accurately estimate the spectral densities at very low frequencies; see Figure 3.
One can think of the low frequency part of the noise as a superposition of
slowly swinging sinusoids, which seem to be erroneously attributed to the latent
signal. Note that even a very small perturbation error, such as sup;<;<, 61 =
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Fic 3. Components of the averaged periodograms é =71 Zle IUt (0). We use the simu-

lation setting of Section 4.1 with Uy; i N(0,4), p = 365 and T = 200. The dotted line at
¢ = 0.1 indicates the 10% of lowest fundamental frequencies.

Op (p_l/ %), does not suffice to guarantee the same asymptotic distribution as in
the iid case. For example, if d;; = % cos(2mki/p) then this noise is within the
above margins and a simple calculation shows that I, (6;,) = 1/4, while it is zero
for the other fundamental frequencies. Hence, in such a case the contribution
of the error d¢; is non-negligible. In our real data experiments we overcome the

problem by excluding ¢ € F if £ < ¢ x g, where, e.g., ¢ = 0.1.

3.2. A wvariant of the scree plot

Determining the number of factors is a difficult problem. As previously men-
tioned in Section 2.1, among the existing approaches the methods by Onatski
[38] and Owen and Wang [39] were the most accurate in our context. In this
section we would like to propose an empirical approach, which is a visual tool
similar to the widely used scree plot from Cattell [9]. We recall that the classical
scree plot is based on the eigenvalues 41,42, ... of the empirical covariance ma-
trix %YY/. It shows the eigenvalues in descending order. A kink (or an ‘elbow’)
in the graph, where the rate of descent drops, indicates the number of factors.

Instead of eigenvalues we propose to use the values of our test-statistics Ainf
or Ag, established in Section 3.1. The logic behind is as follows: assume that
the errors (U : 1 <4 < p) are iid and suppose we fit a factor model with £ < L
factors. Then, a certain amount of cross-sectional dependence still prevails in
the residuals (Uti: 1 <4 < p), since the estimator does not yet fully account for
the common component. Hence, underestimating L is likely to result in a large
value for the test statistics. When increasing the number ¢ of factors included in
the model, the cross-sectional dependence is expected to diminish and finally to
drop to a baseline level, when ¢ surpasses the true L, i.e., when in principle we
move from a dependent to an independent sequence. Since our estimators Xt(s)
are robust to overestimation of L [see, e.g., 16], we expect the test statistics
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Fic 4. Scree plots for choosing L in a simulation setting of Section 4.1. We use Uy; i N(0,4),
p =365 and T = 200. The true number of factors L = 21 is indicated by the dotted red line.

to approximately remain constant for £ > L. The method can be theoretically
justified if the noise variables are iid, e.g., when we know that the noise can
be related to measurement errors. In practice we may use it in a more general
context. There we move from a long-range type dependence to weak dependence,
which is likely to be reflected by a corresponding change in the decay rate of
the test values.

We illustrate this approach in Figure 4, where we show plots of Ainf (figure
on the left) and 4, (figure on the right) against the chosen number of factors
£. Details of the related data is again provided in Section 4.1. We have chosen
T = 200 and p = 365. These numbers are comparable to our real data example
in Section 5. Due to the very large dimension, we are thinning out frequencies
with m = 20 and as suggested in Section 3.1 and we also drop 10% of the lowest
frequencies, so that f/T =~ 0.04. Given these parameters, it seems natural to
employ f\inf (instead of Aﬁn). In this example the true number of factors is
L = 21 (marked by the dashed vertical line). This is also the value where
our variant of the scree plot begins to approximately stay constant. From the
standard scree plot we would deduce L = 8 in this case.

In Figure 5 below we consider another setting, where p = 48 is relatively
small compared to T = 500. In this example we simply use F = {1,...,q}.
Since we get huge values for small ¢ we plot log /A\?nf. We can see that the ‘scree’
in our approach is much steeper and levels off near the true value of L. For the
standard eigenvalues-based scree plot no accentuated kink can be spotted at
L = 21. According to the ‘elbow-rule’, we would again chose L=s.

Remark 6. While the eigenvalue based scree plot is monotone, this property
cannot be guaranteed for our proposed scree plot.

Remark 7. The proposed method is based on the assumption of independent
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Fic 5. Scree plots for choosing L in a simulation setting of Section 4.1. We use Uy; i N(0,4),
p =48 and T = 500. The true number of factors L = 21 is indicated by the dotted red line.

noise. An important message of our paper is that in several real data examples
the errors are not necessarily related to measurement errors and a certain degree
of dependence is well expected. This is also the case for the data we consider
in Section 5. A modification of the approach which allows for weakly dependent
errors would be interesting, but is out of the scope of this paper and will be
subject of future research.

4. Simulation experiments

In this section we investigate the performance of our methods on simulated data
examples. We have performed extensive simulation studies that can be separated
into two types: smooth data (Section 4.1) and data where the underlying signal
and its derivative contains discontinuities (Section 4.2). The following simula-
tions were performed in R version 4.0.3 [41].

4.1. Recovering smooth signals

We consider bi-hourly measurements of particulate matter pm10 in Graz from
October 1st 2010 to March 31st 2011. Thus, we have 48 observations per day
over the course of 182 days. To have control over the actual structure of the
data, we generated synthetic curves by the following four steps: (1) transform
the raw data to functional data; (2) create a bootstrap sample of size T thereof;
(3) evaluate the resulting sample on a grid of intraday time points; (4) add noise
asin (1.1). In Step (1) we chose to do a least squares fit using 21 cubic B-splines.
This gives rise to relatively smooth curves. Then T' = 50, 100, 200, 500 curves
were obtained by the bootstrapping in Step (2). These curves are considered as
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our signals X1 (s), ..., Xr(s). The signals in turn were evaluated at p = 24, 48, 96
equidistant points in [0, 1], giving rise to X;(s) (Step (3)). In the final step we

generated Y; = X;(s) + Uy with U, i N, (0,9). For © we chose the covariance
of a sample (e1,...,¢&p)" from the stationary AR(1) process e = Oer_1 + &,
where (£;) is white noise with zero mean and variance 2. Hence Q = Q(6, 0?).
We then consider €(0,4), ©(0,16), £2(0.4,1) and €©(0.8,1).

Our goal is now to recover the signal X;(s). First we compare our proposed
method with a B-spline (B) and penalized B-spline smoothing approach (Bpen)-
Since the actual signal in this simulation setting is already contained in a space
spanned by B-splines, we consider in fact a setup which is favourable for these
competitors. The B-spline smooth was computed using p/3 basis functions and
methods from the fda package [43] in R. When p = 48 this yields a number which
is comparable to the actual number of B-splines used to create the signal, oth-
erwise it is bigger. This is in line with Wood [51], who suggests using more basis
functions than one believes necessary and then using a penalization approach
to smooth the result. We use penalized B-splines with a roughness penalty of
the form [ X"(s)?ds. The penalty is added to the regular least squares equation
and weighted with a parameter A\, which needs to be chosen. This has been done
using a GCV (generalized cross validation) technique as described in Ramsay
et al. [42].

Furthermore, we compare our approach to the functional principal compo-
nents (FPC) approach as motivated in Staniswalis and Lee [46]. To this end,
we have used the function fpca.sc from the refund package [24] in R, which
smooths the empirical covariance prior to obtaining an estimate for the func-
tional scores and subsequently, the estimated signal. The number of principal
components was automatically chosen to be large enough to explain 99% of the
variance. Note that in this approach, the smoothing of the covariance operator
is done via penalized splines, which is in line with a suggestion in Di et al.
[15]. The number of basis functions we used in this smoothing is p/3 as well. In
our exploration we found that increasing the number of splines in this function
requires immense computational effort while giving little improvement.

For the factor analysis, we used two different approaches. First, we used
the PCA driven approach, as described in Fan et al. [16] and explained in our
Section 2.1 (FApca). Second, we use a Maximum-Likelihood approach (FAyr,)
with the EM algorithm as described in Bai and Li [2] and implemented in the
package cate. As for choosing the number of factors, we used the methods
BCV and ED, which are described in Section 2.1. We note that the method we
proposed in Section 3.2 provides a powerful visual tool, but choosing L in this
way for hundreds of simulation runs is not practically feasible.

Implementation of BCV and ED can also be found in the package cate (see
[50]). Note that for the implementation, a maximum number of factors rmax to
be considered can be selected. We have chosen rmax = 23. Estimates tend to be
robust to the overestimation of the dimension L, but sensitive to too small L,
see for example Fan et al. [16]. This is intuitive, as a too small choice of L will
result in important information being excluded from the fit, whereas we only add
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potentially “insignificant” information if L is chosen too large. Thus, we have
used L = max(ﬁBCV,iED). Practically we experience that in most settings
ﬁBCV > f/ED. Hence the results remain basically unchanged if L = ﬁBCV is
used.

In order to evaluate the quality of the respective approaches we are interested
in the error X,(s)—X;(s). While for real data X, (s) is not observable, the signals
are known in our simulation setting and we can hence define

T
SSEPPT — D (Xi(si) = X(si)). (4.1)

pT 1t=1

12

The results of our Monte Carlo study with 250 iterations can be found in
Tables 1 and 2. Methods that produce the minimal SSE*PP' in each instance are
bold.

Dimensions SSE?PPT (02 = 4) SSE?PPT (52 = 16)

p T |L B Bpem FPC FAyp FApca B Bpen FPC FAyL FApca
24 50 |8 39.50 41.76 39.45 22.07 16.59 43.07 45.62 42.58 31.64 27.07
24 100 |11 39.55 42.11 39.94 15.02 10.33 42.61 45.85 42.14 25.04 21.18
24 200 |14 39.79 42.39 39.82 11.16 7.32 43.54 47 42.85 22.63 18.4
24 500 |18 39.07 41.51 39.95 6.07 4.34 43.30 47.44 42.91 19.28 14.93

BE o

48 50 12 6.87 6.92 14.32 7.09 5.51 |10 10.68 10.66 16.95 15.34 14.12
48 100 |21 6.74 6.75 14.40 3.02 2.62 |13 10.83 10.9 17.21 11.70 10.82
48 200 |21 6.76 6.77 13.91 2.14 2.1 |16 10.77 10.91 16.85 9.82 9.08
48 500 |22 6.77 6.79 14.06 1.99 1.96 |21 10.80 11.01 16.82 8.05 7.87

96 50 16 1.33 1.19 6.91 295 2.69 [12 524 4.13 9.14 9.88 9.67
96 100 |21 1.32 1.18 7.02 1.72 1.68 |16 524 4.14 9.03 7.08 6.96
96 200 |22 1.32 1.18 7.21 1.32 133 |19 5.24 4.17 9.00 553 542
96 500 |22 1.32 1.18 7.16 1.10 1.09 |21 524 4.2 878 430 4.34

Table 1: Simulation results A(SSEappr) for the synthetic pm10 data under settings
Q(0,4) and £2(0, 16). Here L is median value of the estimates max(Lpcv, Lrp).

The most important observations are summarised below:

1. The factor model approach outperforms the B-splines largely when p is
growing slower than 7T'. The penalized B-splines work best if p is very large
and T is small. In this case the noise can be very well smoothed on a local
level.

2. As expected, for the B-splines based approaches the SSE*PP" does not
decrease with growing sample size only with increasing p. Against our
expectations, the FPC method did not improve in practice with increasing
T either, though theoretically it should (see the results in Miiller et al.
[37]). It seems that the eigenfunctions from the smoothed covariances are
oversmoothing the data and then local features of the data cannot be
accurately recovered. In contrast, for both factor model estimators SSE*PP*
decreases significantly with increasing 71" as well as increasing p.
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Dimensions SSE?PPT (§ = 0.4) SSE?PPT (§ = (.8)

p T |L B Bpen FPC FAyy FApca B  Bpen FPC FAyy FApca
24 50 8 38.50 40.46 38.99 20.7 14.61 39.51 41.56 39.95 21.07 15.15
24 100 12 38.63 40.71 39.22 12.37 7.34 39.71 41.78 40.07 13.44 8.51
24 200 18 38.42 40.49 39.14 4.52 2.88 40.35 42.17 40.63 5.76 4.19
24 500 19 38.88 40.69 39.62 2.23 1.63 40.09 41.66 40.51 4.31 3.47

==
© 00 o X

48 50 21 6.05 6.12 13.55 1.21 1.08 (21 8.00 8.06 14.83 2.71 2.66
48 100 |21 6.18 6.25 14.00 0.92 0.91 |21 791 7.98 15.71 2.6 2.58
48 200 |22 6.13 6.21 13.65 0.88 0.87 |22 7.90 7.97 1541 258 2.56
48 500 (22 6.16 6.23 13.71 0.86 0.85 |22 7.87 7.94 15.08 2.57 2.56

96 50 21 0.70 0.69 6.55 0.89 0.84 (21 243 2.42 7.73 2.58 2.5
96 100 |22 0.70 0.69 6.58 0.71 0.69 |22 2.42 242 794 24 2.36
96 200 |22 0.70 0.69 6.79 0.64 0.62 |23 242 241 7.93 237 2.32
96 500 (22 0.70 0.69 6.65 0.56 0.56 |23 2.43 242 8.03 235 2.29

Table 2: Simulation results (SSE*PP") for the synthetic pm10 data with AR(1)
noise.

3. The FApca approach gave better results than the FAyy, approach.

We have also experimented with further simulations settings. Not surpris-
ingly, by further increasing o2, SSE*PP" increases for all methods. Nevertheless
we observe that in comparison to each other the methods behave similarly as
in the settings described. The combination large o2, large p and very small T
(e.g., T = 10) favours our competitors, while our proposed approach improves
considerably with growing 7" in all instances. For only mildly larger 7" and much
larger p (e.g., p = 96,192 and T" = 30) we immediately obtain estimates that
are competitive with the other approaches.

Since the signals in our simulations are relatively smooth, it is no surprise
that smoothing methods perform well for large p. For curves with rough signal,
smoothing approaches are not able to recover specific features of the signal due
to oversmoothing. This is discussed in the following section.

4.2. Recovering signals with discontinuities

We check in the following simulation setting the practical impact of “rough”
signals on the respective methods. More specifically, the signals X;(s) are defined
on [0, 1] and are constructed as follows:

3
Xi(s) =D Ewpn(s),
k=1

where ¢1(s) = Tes1/sy, @2(s) = (=1)%94(0.2 — |5 — 0.5)) 1 feepr/s,2/3]y and
©3(s) = cos 6ms, where k(s) = ly,e(1/2,2/3)3- The associated scores are indepen-
dent and normally distributed & ~ N(0,272=1) for k = 1,2, 3. The noisy
observations are obtained via Y; = X;(s;) + Uy, where for Uy; we consider again
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Gaussian processes as in the previous section. In particular we use covariances
2(0,0.01), ©(0,0.05) and €©(0,0.1). We consider equidistant observation points
s; = (i—0.5)/p for i =1,...,p. Thus, the signals may be disrupted at s = 1/3
(through 1), and they have a discontinuous derivative at s = 1/2 (through
©2). Figure 6 shows two sample curves (black line) and the corresponding noisy
observations (circles).

We consider the configurations p = 20, 50,70 and T' = 50, 100, 200, 400. With
the three different o?’s this gives rise to a total of 36 different settings, which
have been repeated 200 times each. The signal is estimated by the methods
FApca, Bpen and FPC. The rest of the procedure is the same as in Section 4.1.
The results are summarized in Table 3.

Dimensions SSE2PPT (52 = 0.01) SSE2PPT (52 = (.05) SSE2PPT (52 = 0.1)
p T |L Bpen FPC FApca |L Bpen FPC FApca |L Bpen FPC FApca
20 50 |4 56 46 0.4 |3 72 50 1.2 |3 94 56 2.5
20 100 |5 57 46 04 |3 72 51 1.0 |3 97 55 2.0
20 200 |5 57 46 0.3 |3 69 49 1.0 |3 97 55 1.8
20 400 |5 57 45 03 |3 69 49 1.0 |3 98 54 1.7
50 50 |5 1.5 11 03 |3 26 14 0.8 |3 35 18 1.5
50 100 |5 15 11 0.2 |3 26 13 0.6 |3 34 16 1.1
50 200 (3 15 10 0.1 |3 26 13 0.4 |3 34 16 0.8
50 400 |3 15 10 0.1 |3 26 13 0.4 |3 34 16 0.7
70 50 |5 11 06 0.2 |3 20 09 07 |3 28 1.2 14
70 100 |3 11 06 0.1 |3 20 08 0.4 |3 28 10 0.9
70 200 |3 1.1 06 01 |3 20 08 03 |3 28 10 0.6
70 400 |3 11 06 0.1 |3 20 07 03 |3 28 10 0.5

Table 3: Simulation results (100 x SSE*PP") for discontinuous signals under setups
0(0,0.01), ©(0,0.05) and €(0,0.1).

FApca broadly outperforms its competitors. It is evident that the penalized
B-spline as well as the FPC approach both fail to accurately estimate the signal
at the discontinuity s = 1/3; see Figures 6 and 7.

We also mention that L can be overestimated as can be seen in the case of
02 = 0.01. Despite the mild overestimation of the required number of factors,
we see no negative impact on the recovery of the signal.

We note that the function 11 (s) = 1/3/2¢1(s) is an eigenfunction of this
process. As outlined in Section 2.3 we may estimate this eigenfunction from
the raw data. Our estimate is subsequently compared to the first functional
principal component obtained using the method motivated by Staniswalis and
Lee [46] and implemented in the package refund. Furthermore, we compare our
result to the principal components obtained from using the penalized B-spline
model, using the package fda. The resulting estimates are shown in Figure 7.
Both, FPC and Bpen cannot appropriately recover the jump around s = 1/3.
Our suggested approach recovers this particular feature very accurately.
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4.3. Testing for independent noise

In this section, we investigate the size and power of the tests Ain and Agy
developed in Section 3.1. To this end, we consider the setting of Section 4.1, with
p = 365 observations per curve for T" = 200 curves. This sample size compares
to the real data settings we consider in the next section. As for the errors we
investigate Q(0, 16) for determination of the size and €2(0.05,1) and ©(0.1,1) for
the power. We then fit a factor model using the true number of factors L = 21
and test whether the model residuals are iid. As mentioned in Section 3.1, the
spectral densities of the model residuals are not well-estimated at very low
frequencies. This may be mitigated by only considering frequencies 6, with £ >
cq for some small ¢ > 0. Furthermore, our theoretical results only support the
case of f/T — 0, where f is the number of frequencies considered. In order to
justify this setting, we only include every m—th frequency in our test statistic. As
a point of comparison we have also applied the testing procedure to the actual
(latent) errors. Following Gasser et al. [22] we estimate the variance o2 in each
instance by 62 := T-'Y",_,[6(p —2)]! 5;21 [Ut,j+1 + Ut j—1 — 2Uy ;)% Each
setting has been repeated 1000 times and we check how often the test rejects Hg
at significance levels 0.01,0.05,0.1. The results are displayed in Table 4. With
iid variables the size matches the level very well. For the actual residual errors,
the tests are slightly too sensitive, but give decent results if we use a not too
dense set of frequencies, in particular avoiding frequencies around 0.

Aing Afin
level o 0.01 0.05 0.1 0.01 0.05 0.1
(& m
0.10 10 | 0.046 0.098 0.145 | 0.022 0.090 0.146
0.10 20 | 0.046 0.092 0.131 | 0.022 0.084 0.145
0.20 10 | 0.035 0.079 0.137 | 0.018 0.065 0.123
0.20 20 | 0.031 0.072 0.108 | 0.012 0.057 0.114
UNorm 0.10 20 | 0.019 0.053 0.092 | 0.007 0.045 0.103

Table 4: Empirical test sizes using f\inf and [\ﬁn on the setting Q(0, 16).

Finally, we investigate the power of the test under the covariance settings
2(0.1,1) and ©(0.4,1). The results are shown in Table 5. We have only con-
sidered tests with m = 20 and ¢ = 0.2, since here the size was closest to the
nominal level. We see the very good power of our tests confirmed.

Aing Afin
level 0.01 0.05 0.1 0.01 0.05 0.1
0 c m
0.05 0.2 20 | 0.302 0415 0.492 | 0.171 0.333 0.432
0.1 0.2 20 | 0.951 0971 0979 | 0.902 0.960 0.974

Table 5: Empirical power on the settings €(0.1,1) and (0.4, 1).
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5. Real data illustrations

In the following two subsections we analyse annual temperature curves from
Canada. We differentiate between two settings: On the one hand, we analyse a
temporal setting in the sense that we consider curves over several years in one
location. On the other hand, we consider a spatial setting, where we investigate
the same year for different weather stations. Our objective is to transform daily
mean temperature data throughout a year into annual temperature curves. The
data was acquired from https://climate.weather.gc.ca/ and curves with more
than 10% missing observations were discarded in both the temporal and spatial
setting. Remaining missing observations were imputed using interpolation.

Ramsay et al. [42] have smoothed this type of data with 65 Fourier basis
functions and a penalization term. We follow this route, but instead use a B-
spline basis (also with 65 basis functions) and a roughness penalty of the form
J(f"(z))*dz (Bpen)- The tuning parameter controlling the size of the penaliza-
tion term is chosen with generalized cross validation techniques as in Ramsay
et al. [42]. The second method of comparison is FPC. These two approaches are
then compared to FApca.

5.1. Temporal Data: St. Margaret’s Bay

We consider annual temperature curves from St. Margaret’s Bay in Nova Scotia,
Canada. This weather station has a long history of recorded data, from which
we will use a selection of 91 yearly curves ranging from 1923 to 2020. The first
goal is to determine the number of factors. We can see in Figure 8 that the
regular scree plot, ED and BCV indicate L = 3. For our variant of the scree
plot we use Amf with ¢ = 0.1 and m = 20 and deduce from this I = 14. The
values of the test statistic remain very large for all choices of L, which indicates
that the residuals are not iid.

The residual covariance with L = 14 is shown in Figure 9. In contrast to
Bpen (sce Figure 2) we observe a strong concentration of the covariances on the
diagonal and no oscillation in the empirical autocovariance function. Using FPC
we got similar results as with Bpen.

For any of the approaches the residuals are obviously not iid and the tests
discussed in Section 3.1 (using ¢ = 0.1 and m = 20) clearly reject this hypothesis.
The averaged periodogram ordinates %Zthl I;(6) which we compute for the
residuals obtained from the three investigated methods can be used as estimators
for the corresponding spectral densities (see Figure 10). Observe that we have a
strong bias towards zero at frequencies close to 0 for all methods. This indicates
that low frequencies are removed and attributed to the signals. This phenomenon
is most pronounced for Bpep.

5.2. Spatial Data: Canadian weather stations

Now we consider a spatial setting, where each of the annual curves corresponds
to a weather station. To this end, we have compiled the data from weather
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F1¢ 9. We use FApca and show the empirical autocorrelation function for the residuals in St.
Margaret’s Bay in 1993 (left) and a heat map of the empirical residual correlation matrices
(right, restricted to the first two months of a year).

stations in the provinces of Quebec and Ontario with daily mean temperature
measurements available in 2013. After imputing scarcely scattered missing val-
ues and removing stations with too much missing data, we have T' = 213 curves
left. While the same general structure as in the temporal setup can be observed,
we expect a different residual behavior. The idiosyncratic components now de-
scribe a station-specific error. Since spikes in the temperature curves are likely
to occur across several stations, we expect a close co-movement resulting in

much smaller idiosyncratic noise terms.
We begin by choosing the number of factors. The scree plot (see Figure 11)
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Fic 11. Alternative (left) and classic (right) Scree plots to estimate the number of factors for
the spatial data ezample. The estimates Lgp and Lpoy are indicated in red.

A

indicates L = 6, which coincides with the choice by the ED criterion, whereas
BCV sets L = 27. Our alternative scree plot (using again ¢ = 0.1 and m = 20
for Ajns) suggests L = 11, and this is number we choose.

Looking at the residual covariances (Figure 12) we see that Bpen and FPC
produce rather spurious results, whereas FApca reasonably supports our as-
sumptions on the idiosyncratic noise. Although the factor model has chosen
fewer factors in the spatial setting compared to the temporal setting, we ob-
serve that now the signal follows the raw data more closely (see Figure 13) than
we have conjectured above. In contrast, Byen and FPC essentially produce the
same results in the spatial and temporal setup. We indicate this in Table 6,
where we show the estimated variance of the residuals.
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and FPC (right) approach for the spatial Canadian Weather Station Data. We show the first
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Fic 13. Estimated signal for station Quebec from the spatial data (left) and estimated sig-
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observations. We show the first 60 days of the year.

| FApca  Bpen FPC
Temporal 8.109 6.791 9.534
Spatial 1.718 5.046  7.351

Table 6: Estimated residual variances for the real life data examples.

6. Conclusion

In this paper we give a multivariate perspective to the modelling of discretely
observed functional data. We outline that such data follow some approximate
factor models which play an important role in macroeconomics. This perspective
yields ready to use methods to estimate the latent signal without requiring
smoothness of the curves. We show that this approach works extremely well
on simulated data and leads to interesting results on real data. Moreover, this
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paper offers some tools for analysing the model residuals. Typically those are
assumed to be iid, but very often no residual analysis is done in order to justify
this strong assumption. A theoretical foundation of the proposed estimation
method is provided in our companion paper, Hérmann and Jammoul [29].

Appendix A: Appendix
A.1. Technical assumptions

Assumption 2. The noise process (U;) is #id zero mean and independent of
the signals (X¢). The processes (Uy: 1 < i < p) are stationary and Gaussian
with covariance function ¥V (h) = Cov(Uy (yny, Us), such that 3, ., 177 (h)]| <
Cy < .

Assumption 3. (a) The process (X;:t > 1) is zero mean and L*-m-approz-
imable. (b) The curves X, = (X (s): s € [0,1]) define fourth order random
processes (i.e., SUPycio ] EX{(s) < Cx < o0) with a continuous covariance
kernel. (c) It holds that Esupcg 1 X2(s) < oo. (d) Observations X lie in
some L-dimensional function space.

Assumption 4. For the eigenfunctions g it holds that

max
1<k <L

= o(1)

p " Z@k(si)w(&')

as T — 00.

A.2. Proofs

We begin with an elementary lemma.

Lemma 1. Let us denote by Xt(s), s € [0,1], the interpolation of the esti-
mates X,(s;) as defined in (2.7) and let w!(5) = SUD, o ef0,1]: [s—s'|<6 |/ (8) —
f(")] be the modulus of continuity of a function f:[0,1] — R. Then with
0 = maxi<;<p—1 |Si+1 — Si| we have

sup [ X(s) — Xi(s)] < 20%(8) + max [ X (s:) = Xelsi)].
s€[0,1] 1<i<p
The lemma shows that the approximation error of the full curve can be
decomposed into the modulus of continuity of the functional data and the ap-
proximation error on the observation grid. The proof of Lemma 1 can be easily
seen and will thus be omitted.

Proof of Theorem 2.1. The main part of the proof essentially follows from the
proof of Theorem 1 in Hérmann and Jammoul [29], noting that the bound

R 1 T1/4
112?%(17|Xt(5i) — Xi(si)| = Op (T1/4 + NGz )
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obtained there can be easily improved. In fact, in this companion paper our
bound for the estimation error involved an unnecessary uniform term R() =
max Rgl) instead of the specific R,gl). (The variables Rgl) are defined right after
equation (8) in Hérmann and Jammoul [29].) Observing that the uniformity in
t is not needed here, the proof reveals that

max X (s:) = Xi(si)| = Op (R + R®),

1<i<p
where it follows from Lemma 5 in Hormann and Jammoul [29] that R(?) =
Op (T’l/zw/log p). Following the arguments of Lemma 4 in Hérmann and Jam-
moul [29], where a bound for R() is derived, it can be readily shown that
Rﬁl) _ OP(T—l/z —|—p_1/2).

For the modulus of continuity w*¢(J) we may conclude with Markov’s in-
equality that

P(w™*(6) > k6“) < EM;/x.
Thus we see that w**(§) = Op(d%) and the result follows using Lemma 1. O

Proof of Theorem 2.2. We decompose the ||¢¢ — @¢|| into three pieces. To this
end, we define the empirical covariance operator ['X of the fully observed X1, ...,
Xr and its eigenfunctions ¢y. Let X[ (s) := Xi(s;) for s € [s;,8,41) be a
discretized version of the fully observed data and let the associated empiri-
cal covariance operator be denoted by I'X" and its eigenfunctions by ;. Fi-
nally, let us define the empirical covariance matrix $X = 71X X' where
X = (X1(s),...,Xr(s)) and its associated eigenvectors ). Consider

e = @ell < lloe = @ell + 1Be = @71l + 1167 — Bell- (A.1)
We may deduce from Weyl’s theorem that

2v/2

lee — @ell < —IIFX -, (A.2)

L 2\f
e — @71l < —— IIFX 0, (A.3)

where Gy = min{j\g —5\g+1, 3\4_1 —5\4} and where 5\5 are the empirical eigenvalues
of the fully observed data. From Hoérmann and Kokoszka [30] it follows under
Assumption 3 (a) that (A.2) is Op (T~1/?) and that & — a, > 0, as T — oo.
Note that when a(s,t) is the kernel of the bounded linear operator A, then
IA|I2 < [ Jo a®(t, s)dsdt. Hence

T 2
DX — DX < //( th )X (s) — X7 (r) X} (s ))) drds.
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In the proof of Lemma 1 in Hérmann and Jammoul [29] it is shown that (2.10)
implies that the right hand side is Op (pfl) as p — oo. We hence conclude
that (A.3) is Op (p~1/2).

In the final step, we have to move from the functional setting to the matrix
setting. It can be readily seen that the eigenvector 1[15( of X satisfies \/1_)[7];5( li =
@Y (s) for s € [(i —1)/p,i/p). Thus, we may rewrite the last term in (A.1) as

167 — @ell> = (92 =9} (93" — 7).

Again by Weyl’s theorem the right hand side is Op(éiﬂfly — 3X), where 3, =
14

min{9¢ — 4e+1,9¢—1 — Y¢}- Lemma 1 in Hormann and Jammoul [29] implies that

under Assumptions 2 and 3(a) and (b) we have

Ao — Aer1 ~ p(Ae — Aeg1).

Moreover, it is shown in this lemma that

ISv - $X| = Op(y/p), if p/T — v € [0,00);
Op(p/VT), if p/T — .

Combining all bounds yields the desired convergence. O

Proof of Proposition 3.1. Suppose that the Z = (Z1,...,Z,)" has iid compo-
nents with EZ; = 0 and EZ? = 02 and EZ{ < cc. Denote x := EZ{ — 3. Then
it is well known that for any fundamental frequency we have that EIz(0,) = o2
and

otk/p+ot if =1

otk/p else.

COV(Iz(eg), 12(94/)) = {

We thus have that the random vectors V; = Iy, (6) — 0?1 are iid zero-mean
and ¥ := Var(V;) = o* (I + S1y) € Rf*f holds. Consider the centering matrix

Pp:=1Ip— f~'14 (1 is the matrix with entries equal to 1) and note that

2
TS:=(f—1)"

T
T71/2 ZPf‘/t
t=1

We also note that Py¥ = 0 Py and recall the well known fact that Py has f —1
non-zero eigenvalues which are all equal to 1. If ) denotes the orthogonal matrix
which has in its columns the related eigenvectors, then

2

==

2
TS =(f-1)""

)

T
T71/2 ZQ/P)"‘/I‘,
t=1

T
T71/2 Z W,
t=1

where (W/,0) := Q'P;V;. The vector W; is zero-mean and Var(W,) = o*I;_;.
By the central limit theorem the expression inside the norm converges to a
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normally distributed vector with variance o1 #—1. The weak convergence of Ajn¢
then follows by the continuous mapping theorem and Slutsky’s lemma.

For growing f we consider the variable Ajps = (TS?/OA—:[) (f —1)/2and we
wish to compare its distribution to the normal distribution, with its distribution
function denoted by ®(z). To this end let Z ~ N(0,I7_1) be a (f — 1)-variate
standard normal random vector. For any z € R we get by the central limit
theorem that

(e -y g <) e

Hence, it suffices to show that for all real z we have

Iz - 1)y 5H < 2)

— 0.

— 0.

e <) - P((i7

By Slutsky’s lemma we can replace 6% in the definition of A,y by o*. With
Z= \/( 2V 1)(f — 1) we hence need to show that

N

T
P23 wi/o?| < 2) - P(12] < 2)].

t=1

(A.4)

If we can show that E|Wy;|* are uniformly bounded (in ¢ and 4), then by Corol-
lary 3.1 in Fang and Koike [17] we get that for any Z the term (A.4) is bounded
by

O (175 4 (/1))

for some constant C' which is independent of T" and f. Thus we can guarantee
convergence if f/T — 0.

We want to show that max;<;<s_1 maxi<¢<7 E|[W4[* < C, where C does
not depend on the dimension parameters f, p and T'. It holds that W;; = vjV4,
where v; denotes the i-th column of the matrix @) and is thus an eigenvector of
P; belonging to a non-zero eigenvalue. It can be easily checked that for f > 3
the v; can be written as (0,...,1/v/2,0,...,0,—1/+/2)’, with non-zero entries
at the i-th and the last coordinate. Since we assume iid noise (U, ¢t > 1), it
follows that (Wy;, t > 1) are iid as well and thus the expectations do not depend
on t. Hence, let us consider E[vjV|*, where V = (Iy(6;,),...,Iu(6;,)) — 0?1y,
with {j1,...,js} = F and U = (u1,...,up)" ~ Us. We assume without loss of
generality that 02 = 1. Then the k-th component of V is given by

2 2
VE+ Ve = <Zurcos6‘ r) —-1/24 - <Zursm0 r) —1/2.

We have

E@'VE+0'V) <16 (E(@'VE)* + E(W'V*)?)
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<64 (E(VO)' '+ E(VH) '+ E(V)' + E(V)Y).

All the terms on the right can be bounded in the same way. Let us consider
E(V&)*. Noting that ;.7 = 6,7, and > *_, cos®(0,jx) = p/2 it can be written
as

4

BV == <Zurcos rjk) —p/2
1 8
p_ (Z Uy cos (0, J ) .

The last inequality follows from the fact, that E(X — EX)* < EX* when X
is a positive random variable. Now apply the Rosenthal inequality (see, e.g.,
[40]). O

Proof of Proposition 3.2. For the proof it suffices to show that P(SE2 >0/2) =
1, T — oo. Now we have

552 = SS + Sg_g +2S5 69> 53 — 2|84l

where Sg_ , 1s defined analogously to 552 and where

1
Sge—g = F_1

-

(9(0e;) — 9)(& — 9(6e,) — (€~ 9))

~

<
Il
—

(9(0¢;) = 9)(&5 — 9(0,))-

<
Il
—_

I
~
| | =
—_
-

By (3.3) Sz > ¢ and it remains to show that |[Sg¢_o[ — 0 in probability for

p — oo. It is easy to see that S’é < 2(X ez o(h )|)2 < oo and by Markov’s
inequality we have |Sy ¢ 4[> < S 52 . Hence the claim follows if we can show

that S 2_ s — 0 in probability.
To this end we recall that

P |Ely, (6) — g(0)] = 0 (p— o0). (A.5)
e|—m,T

(See e.g. Proposition 10.3.1 in Brockwell and Davis [8].) Hence, when p is large

enough, we have
1 Z
Z IUt 0@ )) > &
t=1

P(max|§]—99g > ZP(
T
Z EIUf 0@ (9@)‘ > 6)

LeF

’ﬂ \

T
(Iy,(0¢) — Ely, (0y)

<fmaxP<
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> 5/2)

< 4f max E <% Z(IUt (0,) — Ely, (W)))

T T
4 4f
< = — .
< max g g Cov(Iy,(0¢), Iu,, (0¢)) =7 I}leaﬁ_c\/arIUt (6¢) >0 O
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