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Abstract: We study the performance of shape-constrained methods for
evaluating immune response profiles from early-phase vaccine trials. The
motivating problem for this work involves quantifying and comparing the
IgG binding immune responses to the first and second variable loops (V1V2
region) arising in HVTN 097 and HVTN 100 HIV vaccine trials. We con-
sider unimodal and log-concave shape-constrained methods to compare
the immune profiles of the two vaccines, which is reasonable because the
data support that the underlying densities of the immune responses could
have these shapes. To this end, we develop novel shape-constrained tests
of stochastic dominance and shape-constrained plug-in estimators of the
squared Hellinger distance between two densities. Our techniques are ei-
ther tuning parameter free, or rely on only one tuning parameter, but their
performance is either better (the tests of stochastic dominance) or com-
parable with the nonparametric methods (the estimators of the squared
Hellinger distance). The minimal dependence on tuning parameters is es-
pecially desirable in clinical contexts where analyses must be prespecified
and reproducible. Our methods are supported by theoretical results and
simulation studies.
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1. Introduction

To date, the RV144 trial conducted in Thailand is the only vaccine efficacy
trial to show a signal of efficacy (31%) against HIV infection (Rerks-Ngarm
et al., 2009). RV144 inspired a phase 1b trial, named HIV Vaccine Trials Net-
work (HVTN) 097, which evaluated the safety and immunogenicity of the same
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regimen in a South African population (Gray et al., 2019). The predominant
subtype of HIV in South Africa is Clade C. Therefore, in an effort to increase
the potential for high efficacy against clade C infections, scientists modified the
HVTN 097 regimen to include HIV strains matched to the South African clade
C infections (Bekker et al., 2018). A phase 1/2 trial named HVTN 100 assessed
the safety and immunogenicity of the modified regimen in South Africa. How-
ever, the HVTN 702 phase 2B/3 trial of the HVTN 100 regimen in South Africa
met its non-efficacy criteria in February 2020 at a planned interim analysis.

In light of the above, the comparison between the immune response profiles of
HVTN 097 and HVTN 100 trials becomes important because the latter can shed
some light on why the HVTN 100 regimen lacks efficacy. To fix ideas, here we
focus on one class of immune responses, namely the binding of IgG antibodies
to the first and second variable loops (V1V2 region) of the HIV envelope. This
immune response is of particular interest because the RV144 trial revealed an
inverse association between HIV infection and this immune response among
vaccinees (Haynes et al., 2012). Using data from HVTN 097 and HVTN 100, we
focus on answering the following three questions:
Q1. How can we estimate the densities of the aggregated IgG binding immune

responses (to HIV-1 envelope proteins)?
Q2. Is there any ordering between the distributions of the immune responses

from the two trials?
Q3. How can we measure the discrepancy between the densities of the immune

responses from the two trials?
Although Q1 is not directly related with comparison of the two vaccine trials,

answering Q1 is important because the resulting density estimators can help in
designing subsequent vaccines. To answer Q2, we resort to testing for stochastic
dominance, which addresses the ordering of the underlying distribution func-
tions. To answer Q3, we rely on the squared Hellinger distance as a measure of
discrepancy between two densities, where, for densities f and g, the Hellinger
distance D(f, g) is defined by

D(f, g) =

√
1
2

∫
R

(√
f(x) −

√
g(x)

)2

dx.

The significance of Q3 may not be immediately obvious. However, the squared
Hellinger distance between the immune responses of HVTN 097 and HVTN
100 trials can serve as a benchmark when new pairs of vaccines are compared in
future vaccine trials. The reason behind choosing the squared Hellinger distance
as the measure of discrepancy in particular is discussed in Section 5.

There are numerous nonparametric methods that can be implemented to
carry out the aforementioned steps. However, traditional nonparametric meth-
ods do not exploit any information on the shape of the underlying densities. The
uniformity of the trial population and exploratory analyses bear evidence that
the underlying densities can be unimodal. The data are also consistent with the
possibility that the densities are log-concave. The latter is an important subclass
of unimodal densities, often advocated for use in modelling because it contains
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most of the well-known subexponential unimodal densities and allows powerful
density estimation tools (Walther et al., 2009). Of late, shape-constrained den-
sity estimation has gained much attention. Among other reasons, the reduced
burden of external tuning parameters (Samworth and Sen, 2018, Johnson et al.,
2018) makes shape-constrained density estimation an attractive alternative to
traditional nonparametric approaches like kernel-based or basis expansion type
methods, which are known to be sensitive to the choice of the tuning parame-
ters (cf. pp. 327, Efromovich, 2008, Laha, 2021). Also, shape-constrained den-
sity estimation methods require weaker smoothness assumptions for asymptotic
consistency than do the nonparametric methods. Shape-constrained techniques
are widely used in economics and operations research (Johnson et al., 2018),
and have seen application in other domains such as circuit design (Hannah and
Dunson, 2012). For a detailed account on the recent development of the shape
constraint literature, we refer the survey articles Samworth and Sen (2018) and
Samworth (2018).

Although leveraging shape information can potentially increase efficiency,
there is little to no literature on the application of shape-constrained tools in
vaccine trials. To answer our motivating questions, therefore, we develop new
methods using shape-constrained tools. The application of the new methods is
not limited to vaccine trials. For example, our tests can be applied to other
areas of medical research where tests of stochastic dominance are relevant. See
Leshno and Levy (2004) for an in-depth discussion of potential uses of tests of
stochastic dominance in medical research. In particular, our methods are ap-
plicable to the mortality data considered in Leshno and Levy (2004) to infer
whether a surgery increases the mortality of patients with abdominal aortic
aneurysma. See also Stinnett and Mullahy (1998) and DeFauw (2011) for the
use of stochastic dominance in cost effective analysis of healthcare. Outside
medical research, our tests have substantial applicability in finance, economics,
social welfare, and operations research, where stochastic dominance is a pop-
ular tool to compare portfolios, income, utility, poverty, opportunity etc.; see
Levy (1992), Sriboonchita et al. (2009), Le Breton (1991), among others, for
a detailed account. On the other hand, Hellinger distance has also seen suc-
cessful application as a measure of discrepancy in various disciplines ranging
from machine learning (Cieslak and Chawla, 2009, González-Castro et al., 2013,
2010) to ecology (Rao, 1995) to fraud detection (Yamanishi et al., 2004). How-
ever, for income data, log-concavity based methods should be used with caution
since distributions with log-concave density are always sub-exponential (Cule
and Samworth, 2010), whereas income data can have heavier tails. Diagnostic
tools such as those in Asmussen and Lehtomaa (2017) can be used to enquire if
the data has heavier tail, e.g. regular varying tails, in these cases.

1.1. Organization of article and main contributions

Although the methods developed in this paper are general, central to our ap-
plication lies the HVTN data, which we describe in Section 2. Below we briefly
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discuss our methods and main contributions. We write f097 and f100 for the
densities of the immune responses in the HVTN 097 and HVTN 100 trials re-
spectively, and F097 and F100 for the corresponding distribution functions.

Estimating f097 and f100

In vaccine trials, traditionally a kernel density estimator (KDE) is used for
the purpose of density estimation (cf. Miladinovic et al., 2014). However, using
cross-validation, in Section 3, we show that the log-concave maximum likelihood
estimator (MLE) based estimators of Dümbgen and Rufibach (2009) and Chen
and Samworth (2013) minimize the estimated mean integrated squared error
(MISE) among a class of shape-constrained density estimators and KDEs.

Shape-constrained tests of stochastic dominance

The claim of a stochastic ordering between two samples is made stronger when
it is backed by a test of stochastic dominance. We say a distribution function F
stochastically dominates another distribution function G in first order (F � G)
if F (x) ≤ G(x) for all x ∈ R. If X and Y are two random variables with distribu-
tion functions F and G, respectively, then in this case, we say X stochastically
dominates Y , and write X � Y . The dominance is regarded as “strict” (F � G
or X � Y ) if, in addition, there exists x ∈ R such that F (x) < G(x). If F
does not strictly stochastically dominate G, then this event is defined as the
non-dominance (F � G) of F over G (Whang, 2019, p. 25).

The rejection of the null of non-dominance against the alternative of stochas-
tic dominance makes the strongest case for ranking one distribution over the
other (Davidson and Duclos, 2013, Álvarez-Esteban et al., 2016, Ledwina and
Wyłupek, 2012). However, the resulting test suffers from lack of power because
the overlap of distribution functions at the tails make unrestricted stochastic
dominance almost impossible to establish via hypothesis testing (cf. Davidson
and Duclos, 2013, Whang, 2019). There are many ways to deal with this dif-
ficulty. For example, Ledwina and Wyłupek (2012) exploits the fact that the
dominance between two distribution functions employs a dominance between
their Fourier coefficients under a carefully chosen basis. However, their method
rejects the null of non-dominance in some scenarios when the distribution func-
tions cross each other. Another remedy discussed in the literature (Kaur et al.,
1994, Davidson and Duclos, 2013, Álvarez-Esteban et al., 2016) involves ex-
cluding the tail region because it does not contain enough reliable information
for the problem at hand. This type of tests focus only on a compact set D
inside the interior of the combined support {0 < F + G < 2}. In Section 4,
we follow the latter strategy because it allows for many ways of incorporating
shape-constraints with desirable asymptotic properties.

To the best of our knowledge, we are the first to introduce the use of shape
constraints in the context of testing the null of non-dominance against stochas-
tic dominance. Moreover, one of our nonparametric test statistics in Section 4.1
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has not, to our knowledge, previously been studied in the context of testing
the null of non-dominance. In Section 4.2, we show that the shape-constrained
and nonparametric versions of our tests control the asymptotic type I error at
any null configuration under reasonable conditions. We also show that our tests
are asymptotically unbiased, and consistent against all alternatives lying in the
interior of the class of alternative distributions. In Section 4.3, we empirically
show that the shape-constrained tests have better power than their nonpara-
metric counterparts although they have the same asymptotic critical values.
Section 4.4 analyses the application of these tests to our data. The proofs are
deferred to Appendix A.

Shape-constrained plug-in estimators of the squared Hellinger
distance

In Section 5, we construct plug-in estimators of the squared Hellinger distance.
It is well known that, unless bias-corrected, plug-in estimators based on the
KDE generally have a first-order bias (cf. Section 2 of Robins et al., 2009). In
contrast, for some smooth functionals, shape constrained MLE based plug-in es-
timators do not require further bias correction (cf. Jankowski, 2010, Mukherjee
et al., 2019). The results in Lopuhaä and Musta (2019) indicate that the squared
Hellinger distance is an example of such a smooth functional. When the under-
lying density is unimodal, we show that our unimodal density based plug-in
estimator enjoys the same asymptotic guarantees as that of the bias corrected
KDE based estimators (Kandasamy et al., 2015) under some regularity condi-
tions. The simulation studies in Section 5.3 suggest that similar results hold
for our log-concave MLE based plug in estimators as well. In fact, our smooth
log-concave MLE based estimator shows stable performance across all settings,
where even the bias-corrected version of the KDE based estimator struggles in
some cases.

In the process, we develop theoretical tools for analyzing the asymptotic
behavior of plug-in estimators based on the unimodal density estimator of Birgé,
which may of independent interest. We defer the latter analysis to Appendix B.
The methods developed in this paper are implementable using the R package
SDNNtests (Laha and Luedtke, 2020), which is available on GitHub.

1.2. Notations and terminologies

Before proceeding further, we introduce some notation that will be used through-
out this paper. We consider two independent samples X1, . . . , Xm and Y1, . . . , Yn

drawn from distributions with densities f and g. We denote the correspond-
ing distribution functions by F and G, respectively. The respective empiri-
cal distribution functions will be denoted by Fm and Gn. The pooled sample
(X1, . . . , Xm, Y1, . . . , Yn) has size N = m + n. We denote the corresponding
empirical distribution function by HN .
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For k ≥ 1, we let ||·||k denote the usual Lk norm, i.e. ||μ||k = (
∫
R
|μ(x)|kdx)1/k,

where μ is a function supported on the real line. Also, we denote ||μ||∞ =
supx∈R

μ(x). For a density f , denote by supp(f) the set {x : f(x) > 0}.
For a concave function f : R �→ R, the domain dom(f) will be defined as in
(Rockafellar, 1970, p. 40), that is, dom(f) = {x ∈ R : f(x) > −∞}. For a
sequence of measures {Pn}n≥1, we say Pn converges weakly to P , and write
Pn →d P , if limn→∞

∫
μdPn =

∫
μdP holds for any bounded continuous func-

tion μ : R �→ R. For any two sets A,B ⊂ R, we denote by dist(A,B) the quantity
min{|x− y| : x ∈ A, y ∈ B}. We let int(A) denote the interior of the set A.

2. Background: HVTN 097 and HVTN 100

This section presents an exploratory analysis of the dataset. For both trials, we
consider the magnitude of IgG binding to the V1V2 region of seven clade C
glycoprotein 70 antigens. The immune responses were measured by an HIV-1
binding antibody multiplex assay (BAMA). Following Haynes et al. (2012), Gray
et al. (2019), and Bekker et al. (2018), we use the log-transformed net median
fluorescence intensity (MFI) as the measure of immune response for statistical
analysis.

In HVTN 097 and HVTN 100, four injections of HIV vaccines were given at
months 0, 1, 3, and 6. In this study, we only consider the responses measured
two weeks after the month six vaccination, which is considered to be the peak
immune response time point. We include only those vaccinees in this study who
(a) completed the first four scheduled vaccinations and provided samples at
two weeks after the month six vaccination (known as vaccinated per-protocol
participants), and (b) developed a positive immune response for at least one
of the seven clade C V1V2 antigens. There are 68 and 180 vaccinees in the
HVTN 097 and HVTN 100 trial, respectively, who satisfy the above criteria.
We base our analysis on the aggregated response, averaged over the seven clade
C antigens mentioned above, and refer only to the latter when we say “immune
response”. We let F097 and F100 denote the distribution functions corresponding
to the aggregated response from the two trials.

Figure 1 illustrates the empirical CDFs, the histogram, the boxplot, and the
KDES of the immune responses from the two trials. Figure 1i illustrates that
F100 is always greater than F097 except at the tails, hinting at the stochastic
dominance of the HVTN 097 immune response over the HVTN 100 immune
response. The histogram in Figure 1ii, the boxplot in Figure 1iii, and the plot
of the KDEs in Figure 1iv also suggest that the HVTN 097 trial induces higher
immune response. Bekker et al. (2018) also indicated that the magnitude of
positive responses in the HVTN 100 trial is lower than that of the RV144 trial,
which, on the other hand, is reported to be slightly lower than the responses
in the HVTN 097 trial (Gray et al., 2019). Therefore, it makes sense to posit
the null of non-dominance of F097 over F100 against the alternative that F097
stochastically dominates F100. Note also that the comparisons between the two
sets of immune responses is reasonable because the trials were conducted on
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Fig 1: Plots (i), (ii), (iii), (iv) display the empirical distribution functions
(ECDF), the histogram, the boxplot, and the KDEs of the average IgG binding
responses corresponding to the HVTN 097 and HVTN 100 regimens.

similar populations and share approximately the same support (cf. Figure 1).
See also Table 6 in Appendix D for a comparison between the two trials.

3. Density estimation

This section compares different estimators of f097 and f100. Since our study
includes some unimodal and log-concave density estimators, we begin by pre-
senting some observations in support of the shape-restriction assumptions.

As mentioned previously, the unimodality assumption is not unreasonable
owing to the homogeneity of the trial populations. The histogram in Figure 1ii
and the KDEs displayed in Figure 1iv both support this claim. Although uni-
modality is a naturally occurring shape constraint, the class of all unimodal
densities is too large to admit an MLE (Birgé, 1997). The class of log-concave
densities is a subclass of the class of unimodal densities, which is small enough
to admit an MLE (Pal et al., 2007), but contains most of the commonly used
subexponetial unimodal densities (Walther et al., 2009). The log-concave MLE
can be computed efficiently using the R package logcondens. Furthermore,
there is a smoothed version of the log-concave MLE, which is also free of tuning
parameters (Chen and Samworth, 2013), and thus can potentially replace the
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smoothed unimodal density estimators, which generally depend crucially on ex-
ternal tuning parameters. In view of the above, many researchers, e.g. Walther
(2002) and Walther et al. (2009), advocate opting for log-concavity shape con-
straint in situations where unimodality may seem plausible.

Although it is difficult to provide visual evidence in favor of the assumption
of log-concavity, the KDE plot in Figure 1iv does not indicate a departure from
log-concavity either. Using the test of log-concavity in Chen and Samworth, we
test the null of log-concavity against the alternative of violation of log-concavity
for f097 and f100. The corresponding p-values for f097 and f100 are 0.4890 and
0.4631, respectively, which implies that our data does not have enough evidence
for rejecting the null of log-concavity. We briefly describe below the density
estimators that we consider in this section.

Grenander-type unimodal density estimator (Birgé, 1997): Although
the class of all unimodal densities does not permit an MLE (Birgé, 1997), when
the mode of a unimodal density f is known, the MLE f̂0

m exists (Rao, 1969),
and it is a piecewise constant unimodal density with mode at the true mode.
However, the MLE f̂0

m is generally not useful due to the lack of knowledge
on the location of the true mode. The estimator f̂m presented in Birgé (1997)
is a piecewise constant estimator of f , constructed in such a way so that the
Kolmogorov-Smirnov distance between the corresponding distribution functions
can be made arbitrarily small, in particular, smaller than a pre-fixed number η >
0. Although this η > 0 is an external parameter, unlike the kernel bandwidth, a
smaller η always leads to a more accurate estimation (Birgé, 1997), and hence it
does not require actual tuning. Indeed, if we choose the parameter η = o(m−1),
then our Lemma A.5 in Appendix A ensures that the total variation distance
between f̂m and f̂0

m is o(m−1/2) with probability one, where f̂0
m was defined to

be the MLE of f had the true mode been known. Therefore, we choose η to be
the inverse of the combined sample size of the two trials.

Smooth unimodal estimator: There is a substantial body of literature on
smooth unimodal density estimators. See for instance, Eggermont and LaRiccia
(2000), Mammen et al. (2001), Hall and Huang (2002), Wolters (2012), Meyer
(2012), Turnbull and Ghosh (2014), and Wolters and Braun (2018), among
others. The smooth unimodal density estimators generally depend crucially on
external tuning parameters, as mentioned previously. Since we opt for shape
constraints mainly to avoid tuning parameters and we already have at our dis-
posal the tuning free smooth log-concave MLE estimator, the smooth unimodal
density estimators are not particularly attractive to us. Still, since the current
section solely focuses on density estimation, we include some smooth unimodal
estimators for comparison here, namely the estimators of Turnbull and Ghosh
(2014), Hall and Huang (2002), Wolters (2012), and Wolters and Braun (2018).

Turnbull and Ghosh (2014) approximates the unknown unimodal density us-
ing Bernstein polynomial. We use the condition number approach of Turnbull
and Ghosh (2014) to select tuning parameters related to the degree of the poly-
nomial. The estimators in Hall and Huang (2002), Wolters (2012), and Wolters
and Braun (2018) are kernel based. To compute them, we use the R package
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Fig 2: Birgé’s estimator (left), log-concave MLE (middle), and the smoothed
log-concave MLE (right) based on the immune responses in the HVTN 097 and
the HVTN 100 trial.

scdensity with the default choice of bandwidth.
Log-concave estimators: Our first log-concave estimator is the MLE among

the class of all log-concave densities. The MLE is continuous but non-smooth
(Dümbgen and Rufibach, 2009). The second estimator is a smoothed version
of the MLE (Dümbgen and Rufibach, 2009, Chen and Samworth, 2013). The
smoothing parameter for the latter is data dependent and has a closed form
formula, and hence it does not require external tuning. Figure 2 displays these
two density estimators. For more on the properties of the log-concave density
estimators, see, e.g., Balabdaoui et al. (2009), Dümbgen et al. (2011), Cule and
Samworth (2010), and Doss and Wellner (2016).

Kernel density estimators: We consider kernel density estimators (KDE)
with Gaussian kernel. The optimal bandwidth was chosen either by the univari-
ate plug-in selector of Wand and Jones (1994), or the univariate least square
cross-validation (LSCV) selector of Bowman (1984) and Rudemo (1982) (see
Figure 1iv).

We prefer the estimator f̂m of a density f with the smallest mean integrated
squared error (MISE), which is given by E

∫
R
(f̂m(x) − f(x))2dx. Noting mini-

mizing the MISE with respect to f̂n is equivalent to minimizing

MISE-err = E

∫
R

f̂2
m(x)dx− 2E

∫
R

f̂m(x)f(x)dx, (3.1)

we estimate the latter quantity using a ten folds cross-validation. We also esti-
mate the negative log-likelihood

−lm = −m−1
n∑

i=1
log f̂m(Xi). (3.2)

Based on these risks (see Table 1), our recommended estimators are the log-
concave estimators which exhibit the lowest risk in an overall sense. Table 1
indicates that Birgé’s estimator excels in minimizing the −lm risk but it has
higher estimated MISE when compared to the other estimators. This can be
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Table 1

Table of the estimated risks for different density estimators of the aggregated immune
response in trials HVTN 097 and HVTN 100

HVTN 097 HVTN 100
Estimators MISE-err −lm MISE-err −lm

Unimodal (Birgé’s estimator) −0.172 1.662 −0.126 2.071
Unimodal (Bernstein) −0.191 1.797 −0.130 2.133
Unimodal (Wolters, 2012) −0.190 1.878 −0.102 2.549
Unimodal (Wolters and Braun, 2018) −0.190 1.795 −0.124 2.300
Unimodal (Hall and Huang, 2002) −0.190 1.965 −0.124 2.288
Smooth log-concave MLE −0.196 1.758 −0.129 2.127
Log-concave MLE −0.193 1.758 −0.130 2.127
KDE (plug-in bandwidth selector) −0.189 1.750 −0.128 2.140
KDE (LSCV bandwidth selector) −0.189 1.777 −0.128 2.140

attributed to its spikes at the mode (see Figure 2), which contributes large
positive terms to ln and MISE. Grenander type unimodal estimators are known
to exhibit such “spike-problem” at the mode (Walther et al., 2009), which is
caused by the inconsistency of the density estimator at the mode (for more
details, see Woodroofe and Sun, 1993, Balabdaoui et al., 2009).

4. Test of stochastic dominance

To provide an answer to Q2, we construct tests for the null of non-dominance
against that of stochastic dominance using the log-concave MLEs and the uni-
modal estimator of Birgé. We compare the resulting shape-constrained tests
with their nonparametric counterparts.

Our shape-restricted methods rely on estimating the densities f and g. We
denote the corresponding unimodal estimators of Birgé by f̂m and ĝn, respec-
tively. The construction of Birgé’s estimators requires a tuning parameter η,
which we set to be N−1 where N = m + n. We let f̃m and g̃n denote the log-
concave MLEs of f and g (Dümbgen and Rufibach, 2009), and write f̃sm

m and
g̃smn for their respective smoothed versions (Chen and Samworth, 2013). The
corresponding distribution functions will be denoted by F̂m, Ĝn, F̃m, G̃n, F̃ sm

m ,
and G̃sm

n , respectively.
As m and n approach ∞, we assume that m/N → λ ∈ (0, 1).
Letting H = λF + (1 − λ)G, for p ∈ (0, 1/2), we also define the sets

Dp(F,G) :=Dp=[H−1(p), H−1(1−p)] and Dp,m,n := [H−1(p),H−1(1−p)].
(4.1)

4.1. Construction of the tests

Suppose D ⊂ supp(f) ∪ supp(g) is compact. Following Kaur et al. (1994) and
Davidson and Duclos, we formulate the hypotheses as follows:

H0 : F (z) ≥ G(z) for some z ∈ D vs. H1 : F (z) < G(z) for all z ∈ D.
(4.2)
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The null configuration H0 occurs if F = G, or G stochastically dominates F ,
or if F and G touch or cross each other on D. Thus our formulation is unable
to reject the null when F and G touch at a point in D even if F � G. This
limitation seems to be unavoidable because such a configuration (F,G) lies on
the common boundary shared by {(F,G) : F � G} and {(F,G) : F � G}, and
hence can not be discriminated from the null without sacrificing control over
the size of test. Notably, our exploratory analysis (see Fig 1i) suggests that it
is unlikely that F097 and F100 fall in this category. See Figure 3 for examples of
different scenarios associated with our hypotheses.

Regarding the choice of D, we need to ensure that D is inside the combined
support of f and g because otherwise, infz∈D[G(z) − F (z)] will always be 0.
The set Dp defined in (4.1) satisfies this criterion. In practice, we replace this
unknown Dp by Dp,m,n defined in (4.1), which always utilizes 100(1 − 2p)%
of the combined data. Naturally, if p is too small, rejection of the null will be
difficult, where a large p will exclude a large portion of the data, which might be
unnecessary. If only some particular interval of the data is of practical interest
(e.g. some particular range of immune responses or biomarkers), we suggest
setting D to be the smallest superset of that interval. In the absence of such
prior knowledge, we suggest choosing the largest p so that Dp,m,n excludes the
tail region where empirical distribution functions overlap. We will return to this
issue later in Section 4.4, with a demonstration on our motivating dataset.

Now we are in a position to introduce our test statistics.
Minimum t-statistic: This statistic was first introduced by Kaur et al.

(1994) in context of second order stochastic dominance, and then extended to
the first order by Davidson and Duclos. For distribution functions F1 and F2,
this statistic is given by

Tmin
m,n(F1, F2) = inf

x∈Dp,m,n

(
F2(x) − F1(x)

)
√

F1(x)
(
1 − F1(x)

)
m

+
F2(x)

(
1 − F2(x)

)
n

. (4.3)

Our tests reject the H0 for large values of Tmin
m,n(F̂m, Ĝn), Tmin

m,n(F̃m, G̃n), and
Tmin
m,n(Fm,Gn). The last test-statistic, which is nonparametric, equals the mini-

mum t-statistic of the Kaur et al. in context of first order stochastic dominance.
Two sample empirical process (TSEP) type test statistic: Our sec-

ond test rejects the H0 for large values of T tsep
m,n (F̂m, Ĝn), T tsep

m,n (F̃m, G̃n), or
T tsep
m,n (Fm,Gn), where for distribution functions F1 and F2, T tsep

m,n is defined by

T tsep
m,n (F1, F2) =

√
mn

N
inf

z∈[p,1−p]

F2(H−1(z)) − F1(H−1(z))√
z(1 − z)

. (4.4)

Ledwina and Wyłupek (2013) uses a test statistic similar to T tsep
m,n (Fm,Gn) (the

second test statistic in Section 2.2 of Ledwina and Wyłupek, 2013) for testing the
null of stochastic dominance against non-dominance. The pivotal distribution
of their test statistic is completely different from ours because they based their
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critical values on the configuration F = G, which is very different from what we
will consider. We are not aware of any existing test which uses T tsep

m,n (Fm,Gn)
for testing non-dominance against stochastic dominance.

Wilcoxon rank sum (WRS) type test statistic: Wilcoxon rank sum
(WRS) test is widely used for comparing two vaccines (cf. Miladinovic et al.,
2014) although the WRS test is actually designed for testing location shift. It is a
popular choice for testing the null F = G against the alternative F = G(·−δ) for
δ > 0 (Lee and Wolfe, 1976). The WRS test is the most powerful nonparametric
test for testing the following hypotheses (cf. Example 25.46 of Van der Vaart,
1998):

Ha
0 :

∫
R

G(z)dF (z) ≥ 1/2 vs Ha
1 :

∫
R

G(z)dF (z) < 1/2. (4.5)

Although the WRS test is not designed to test the null of non-dominance, we
include this test to demonstrate its failure to control the type I error at some
null configurations.

The one-sided WRS test rejects H0 for large values of Twrs
m,n(Fm,Gn), where,

for distribution functions F1 and F2,

Twrs
m,n(F1, F2) =

√
12mn

N + 1

(∫
R

F2(x)dF1(x) − 1/2
)
. (4.6)

Twrs
m,n(Fm,Gn) is the Mann-Whitney form of the two-sample WRS statistic.

The corresponding shape-constraint versions are given by Twrs
m,n(F̂m, Ĝn) and

Twrs
m,n(F̃m, G̃n).
We excluded tests based on the smoothed log-concave MLE because rigorous

asymptotic analysis of the corresponding tests is out of the scope of the present
paper. However, our empirical study in Section 4.3 includes minimum t-test and
TSEP test based on the smoothed log-concave MLE. Our simulations indicate
that the asymptotic critical values of the tests based on Tmin

m,n(F̃m, G̃n) and
T tsep
m,n (F̃m, G̃n) are valid for the corresponding smoothed log-concave tests. Our

simulations also indicate that the finite sample performance of the tests based
on the log-concave MLE and the smoothed log-concave MLE are quite similar.
We leave the rigorous analysis of the tests based on the smoothed log-concave
MLE for future study.

Remark 1. Since the nonparametric tests use the empirical distribution func-
tion, shape constrained methods do not gain any advantage in terms of tuning
parameters. Also, we will see that the nonparametric and shape constrained
tests are asymptotically equivalent. For moderate sized samples, however, our
simulations in Section 4.3 show that the shape-constrained tests exhibit better
performance.

Remark 2. Davidson and Duclos proposed an empirical likelihood ratio ap-
proach to test H0 vs H1. We did not appeal to this nonparametric approach in
this paper because this approach does not extend easily to shape-constrained
scenarios. Regardless, we point out that Davidson and Duclos showed that their
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empirical likelihood ratio test is asymptotically equivalent to the minimum t-
test.

In the sequel, we may use the terms “log-concave” or “unimodal” to refer
to the test statistics based on the log-concave or unimodal density estimators.
For example, we may refer to Tmin

m,n(F̂m, Ĝn) and Tmin
m,n(F̃m, G̃n) as the unimodal

minimum t-statistic and the log-concave minimum t-statistic, respectively. Also,
unless otherwise specified, the terms “null” and “alternative” will refer to the
H0 and H1 defined in (4.2), respectively.

4.2. Asymptotic distribution

In this section, we explore the asymptotic distribution of our test statistics. We
show that the minimum t-test and the two sample empirical process (TSEP)
test asymptotically control type I error for each null configuration and they are
asymptotically consistent against each (F,G) ∈ H1. We also show that, with the
exception of the test based on log-concave MLE, the WRS type tests control
the type I error for distributions in Ha

0 and are consistent against (F,G) ∈
Ha

1 . We first prove the asymptotic results on the nonparametric test statistics.
Then, we show that the shape-constrained test statistics are equivalent to their
nonparametric counterparts up to a op(N−1/2) term, which implies that the
same critical values can be used for them.

We exclude the log-concave MLE based WRS statistic from our discussion
because we are unable to infer on its asymptotic limit. The difficulty arises
due to our inability to track the asymptotic behaviour of

√
m||F̃m − Fm||∞.

In the remainder of this section, by “shape-constrained test statistics”, we will
therefore refer to Tmin

m,n(F̂m, Ĝn), T tsep
m,n (F̂m, Ĝn), Twrs

m,n(F̂m, Ĝn), Tmin
m,n(F̃m, G̃n),

and T tsep
m,n (F̃m, G̃n) only. For the sake of clarity, in Table 2, we summarize the

current state of results on the different tests discussed in this paper.
Before going into further details, we state a technical condition that will be

required by all of our Theorems.

Condition N. F and G are continuous. Also, F and G have densities f and
g, respectively, such that supp(f) ∪ supp(g) contains an open neighborhood of
Dp.

The first requirement of Condition N, i.e., the continuity of F and G, is
necessary for the weak convergence of the empirical processes to Brownian
bridges. The second requirement ensures that dist(Dp,m,n, Dp) approaches 0
as m,n → ∞ with probability one. These assumptions are likely to be satisfied
by our immune response data provided p is not too small (see Figure 1i and
Figure 1ii). For the rest of the paper, we restrict our attention to F and G that
satisfy Condition N.
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Table 2

Table summarizing different tests used in this paper and current results on them.

Test Asymptotic results Empirical results

Nonparametric

Minimum t-test previously known
(Kaur et al., 1994) included in this paper

TSEP we derived −−−′′ −−−
WRS previously known

(Dwass, 1956) −−−′′ −−−

Unimodal

Minimum t-test we derived included in this paper
TSEP −−−′′ −−− −−−′′ −−−
WRS −−−′′ −−− −−−′′ −−−

Log-concave

Minimum t-test we derived included in this paper
TSEP −−−′′ −−− −−−′′ −−−
WRS unknown −−−′′ −−−

Smoothed log-concave

Minimum t-test unknown included in this paper
TSEP −−−′′ −−− −−−′′ −−−
WRS −−−′′ −−− not included

4.2.1. Asymptotic critical values of the nonparametric tests

We begin our discussion with the minimum t-statistic and the TSEP statistic.
Our first objective is to identify the null configurations that lead to the highest
asymptotic type I error. Here we remind the readers that (F,G) is a null con-
figuration if there exists x ∈ Dp so that G(x) ≤ F (x). One may guess that the
interesting cases appear on the boundary of H0. However, to formally discuss
the boundary of H0, we need to equip it with a suitable topology. To formalize
our discussion, we consider the space F of all continuous distribution functions
on R, and equip it with the uniform metric d(F, F ′) = supx∈R

|F (x) − F ′(x)|.
Consider the product space F × F with the metric

d2

(
(F,G), (F ′, G′)

)
= max

{
d(F, F ′), d(G,G′)

}
.

By an abuse of notation, we denote by H0 and H1 the set of all combinations
(F,G) ∈ F×F that satisfy the hypotheses H0 and H1, respectively. For i = 0, 1,
we denote the closure of Hi in F×F by cl(Hi). Then the boundary of Hi is given
by cl(Hi) \ int(Hi). The following lemma characterizes bd(H0) and int(H0).

Lemma 1. H0 is a closed subset of F × F with boundary

bd(H0) =
{

(F,G) ∈ F × F : sup
x∈Dp

(
F (x) −G(x)

)
= 0

}
.
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Moreover, bd(H0) = bd(H1). Also, the interior of H0 is given by

int(H0) =
{

(F,G) ∈ F × F : F (z) > G(z) for some z ∈ Dp

}
.

Figure 3(ii) gives an example of an (F,G) pair in the interior of H0. The
following lemma entails that the minimum t-statistic and the TSEP statistic
are asymptotically degenerate on int(H0).

Lemma 2. Suppose (F,G) ∈ int(H0) satisfies Condition N, m/N → λ, and
supp(f) ∪ supp(g) contains an open neighborhood of Dp. Then,

Tmin
m,n (Fm,Gn) →p −∞ and T tsep

m,n (Fm,Gn) →p −∞.

The proof of Lemma 2 for the minimum t-statistic can be found in Whang
(2019) (see also Davidson and Duclos, 2013). However, we include it in Ap-
pendix 2 for the sake of completeness. Lemma 2 indicates that non-trivial type
I errors can originate only at the boundary of H0, which is a subset of H0 be-
cause the latter is a closed set (see Lemma 1). Lemma 1 also implies that bd(H0)
consists of all those F and G that touch each other on Dp. To concretize this
idea, we define the contact set Cp by

Cp = {x ∈ Dp : F (x) = G(x)}.

Note that if (F,G) ∈ bd(H0), then Cp �= ∅, where F = G on Cp, and F < G on
Dp \ Cp. Let us also define

H(Cp) = {t ∈ [p, 1 − p] | H−1(t) ∈ Cp}. (4.7)

Theorem 1 shows that the asymptotic distribution of the test statistics on
bd(H0) crucially depends on this contact set Cp and H(Cp). The proof of The-
orem 1 is given in Appendix A.0.2.

Fig 3: This figure displays plots of two distribution functions F (red) and G
(blue). The range of x in these plots correspond to Dp := Dp(F,G). (i) F = G
on Dp. This is a null configuration. (ii) F and G cross each other on Dp. This
is also a null configuration. (iii) F strictly stochastically dominates G. In fact
G(x) > F (x) for all x ∈ Dp. This is an alternative configuration. (iv) F and G
touch each other at the endpoint of Dp. This is a null configuration.
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Theorem 1. Suppose (F,G) ∈ bd(H0), m/N → λ, and F and G have contin-
uous densities f and g satisfying

inf
x∈Dp

min{f(x), g(x)} > 0,

where Dp = [H−1(p), H−1(1 − p)]. Let U denote a standard Brownian bridge.
Then under the stated conditions, the following assertions hold:

A.

Tmin
m,n (Fm,Gn) →d inf

x∈Cp

U ◦ F (x)√
F (x)(1 − F (x))

, (4.8)

where Cp = {x ∈ Dp : F (x) = G(x)}.
B.

T tsep
m,n (Fm,Gn) →d inf

t∈H(Cp)

√
λ

1 − λ

L0(t)√
t(1 − t)

,

where L0 is the centred Gaussian process given by (A.17) of Appendix A,
and H(Cp) is as in (4.7).

C. In particular, if Cp ⊂ int(Dp), then

T tsep
m,n (Fm,Gn) →d inf

t∈H(Cp)

U(t)√
t(1 − t)

.

The Gaussian process L0, which is defined in (A.17) of Appendix A, depends
on F and G. We postpone further discussion on the form of L0 till Appendix A.
Next we discuss the implication of Theorem 1 on the minimum t-test. Then we
will discuss the case of the TSEP test.

Asymptotic critical value of minimum t-test: Theorem 1 reveals an in-
teresting fact: the length of Cp imposes a stochastic ordering among the limiting
laws of the minimum t-statistic for the boundary configurations. To elaborate,
let us consider (F1, G1) and (F2, G2) ∈ bd(H0), with respective contact sets C1

p

and C2
p . Then, under the conditions of Theorem 1,

Tmin
m,n(Fm,Gn) Fi,Gi−−−→d inf

x∈Ci
p

U ◦ F (x)√
F (x)(1 − F (x))

, for i = 1, 2.

Fig 4: Illustration of F (red) and G (blue) on bd(H0). (i) The contact set Cp is
an interval (ii) The contact set is singleton; so this is an LFC configuration.
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If the contact sets satisfy the ordering C1
p ⊂ C2

p , then

inf
z∈C2

p

U ◦ F (z)√
F (z)(1 − F (z))

� inf
z∈C1

p

U ◦ F (z)√
F (z)(1 − F (z))

,

implying that the limiting law of the minimum t-statistic under (F1, G1) stochas-
tically dominates that under (F2, G2). The extreme cases for C1

p are the singleton
sets {x}, where x ∈ Dp. In this case, the asymptotic distribution of both test
statistics is standard Gaussian. Therefore, we set the critical value of our tests to
be zα, the (1−α)-th quantile of the standard Gaussian distribution. The class of
boundary configurations with a singleton contact set is referred to as “the least
favorable class” (LFC) (Davidson and Duclos, 2013). Figure 4 illustrates the
difference between an LFC and an ordinary non-LFC boundary combination.
Theorem 2 of Davidson and Duclos shows that there is no null configuration un-
der which the law of the minimum t-statistic strictly stochastically dominates
that of the LFC configuration. This result, which holds for any m and n, implies
that, among the null configurations, the LFC configurations lead to the greatest
dominance of F over G. The above finding, in conjunction with our Theorem 1,
imply that our tests, whose critical values are based on the LFC class, is likely
to have asymptotic size α. This being a stronger assertion than the asymptotic
control of type I error can be an interesting topic for further investigation.

Remark 3. The asymptotic behavior of the nonparametric minimum t-statistic
has been previously studied (Davidson and Duclos, 2013, Kaur et al., 1994).
However, previous studies focus only on the asymptotic behaviour of the mini-
mum t-statistic at the LFC configurations and the interior of H0, whereas our
results show that there are other classes of boundary configurations with non-
vanishing type I error. Although existing results are enough for the purpose
of constructing critical values, our new results provide a more complete under-
standing of the scenario.

Asymptotic critical value of the TSEP test: The asymptotic distri-
bution of the TSEP statistic under H0 also exhibits a monotonocity property
similar to the minimum t-test. To elaborate, suppose the pairs (F1, G1) and
(F2, G2) have respective contact sets C1

p and C2
p satisfying C1

p ⊂ C2
p . Then

inf
t∈H(C2

p)

L0(t)√
t(1 − t)

� inf
t∈H(C1

p)

L0(t)√
t(1 − t)

.

Therefore, similar to the case of the minimum t-test, the configurations with
singleton H(Cp) constitute the class of LFC configurations for the TSEP test.
Under Condition N, H is continuous and strictly increasing on Cp. Therefore,
H(Cp) is singletone if and only if Cp is singletone, i.e., Cp is of the form {x},
where x ∈ Dp. To find the critical value, it suffices to study the asymptotics in
such LFC cases. If x ∈ int(Dp), the TSEP test statistic weakly converges to a
standard Gaussian distribution by part C of Theorem 1. Till this point, there
has been no difference between the TSEP and the minimum t-test statistic.
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If, however, x ∈ bd(Dp) (see Figure 15iv), the asymptotic distribution of the
TSEP test statistic can be different. To this end, first we state a lemma, and
then using this lemma, we explain the asymptotics of the TSEP test when
Cp = {x} ⊂ {p, 1 − p}.
Lemma 3. Suppose F and G are as in Theorem 1 and H(Cp) = {t} for some
t ∈ [p, 1 − p]. Then √

λ

1 − λ

L0(t)√
t(1 − t)

∼ N(0, σ2
TSEP ),

where
σ2
TSEP = λ(f ◦H−1(t))2 + (1 − λ)(g ◦H−1(t))2(

λf ◦H−1(t) + (1 − λ)g ◦H−1(t)
)2 . (4.9)

Moreover, the following assertions also hold:

A. σ2
TSEP = 1 if and only if f ◦H−1(t) = g ◦H−1(t). Otherwise,

1 < σ2
TSEP ≤ max{(1 − λ)−1, λ−1}. (4.10)

B. Given any ε ∈ (0, 2(1 − λ)/λ), we can find a constant Cλ > 0, depend-
ing only on λ > 0, so that whenever g(H−1(t))/f(H−1(t)) < Cλ, then
σ2
TSEP > λ−1 − ε.

C. Given any ε ∈ (0, 2λ/(1 − λ)), we can find a constant C ′
λ > 0, depend-

ing only on λ > 0, so that whenever f(H−1(t))/g(H−1(t)) < C ′
λ, then

σ2
TSEP > (1 − λ)−1 − ε.

Lemma 3 has some interesting consequences. First, if Cp = {H−1(p)} or
{H−1(1 − p)}, then using Theorem 1B and Lemma 3 one can show that T tsep

m,n

converges weakly to a centred Gaussian distribution with variance σ2
TSEP . Part

A of Lemma 3 implies that if F and G touch at Cp, i.e. if f = g at the point of
contact, then σ2

TSEP is still one. Hence, the TSEP test statistic is asymptotically
standard Gaussian for this case. However, if F and G cross at the point of contact
instead of touching, i.e. if f �= g at the point of contact, then σ2

TSEP > 1. The
precise value of σ2

TSEP is given by (4.9). Moreover, the value of σ2
TSEP increases

as the value of f and g diverges at the point of contact. On one hand, if f is
much larger than g, then part B of Lemma 3 implies σ2

TSEP is close to λ−1. On
the other hand, if g is much larger than f , then part C of Lemma 3 indicates
that σ2

TSEP is close to (1− λ)−1. These bounds are tight because, by part B of
Lemma 3, σ2

TSEP can not be larger than max{λ−1, (1− λ)−1} under the set up
of Theorem 1.

The above discussion leads to the following conclusion for the TSEP test.
If we want to control the asymptotic type I error of the TSEP test at all null
configurations, then we should use the critical value Cm,nzα where Cm,n =
max{

√
N/m,

√
N/n}. There is a caveat, however. To see this, we begin by

noting that Cm,n ≥
√

2, with equality holding only when m = n. For example,
for our motivating dataset, Cm,n ≈ 1.9. However, if m/N → 0 or n/N → 0,
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then Cm,n → ∞. Thus if m and n are not close to being equal, Cm,n can be
a large quantity. Therefore, using Cm,nzα as critical value yields a conservative
test. Hence, we will call the corresponding TSEP tests the conservative TSEP
tests. Our simulations indicate that conservative TSEP tests have poorer power
compared to the minimum t-test even when m and n are equal, and their power
keeps degrading as Cm,n increases.

If we use instead use the critical value zα, then we control the asymptotic
type I error at the null configurations with Cp ⊂ int(Dp) or those with f = g at
Cp. This only excludes the null cases where F and G may cross at bd(Dp) (see
Figure 3 iv). These type of configurations can be considered pathological cases.
Moreover, our simulations in Section 4.3 (see case b) show that even when F
and G cross at bd(Dp), the TSEP tests with critical value zα control the type I
error. The TSEP tests with critical value zα have decent power and their overall
performance is comparable with the minimum t-tests. In view of the above, we
recommend using the asymptotic critical value zα when using the TSEP test.

Our final result on the minimum t-test and the TSEP test establishes their
asymptotic consistency.

Theorem 2. Suppose (F,G) ∈ H1 satisfy Condition N. Then if m/N → λ,
then

lim
m,n→∞

Tmin
m,n (Fm,Gn) →p ∞ and T tsep

m,n (Fm,Gn) →p ∞.

The asymptotic distribution of the WRS statistic is well-established in the lit-
erature. Suppose F and G are continuous distribution functions. In that case, it
is well known that, when F = G, the WRS statistic is asymptotically distributed
as a standard gaussian random variable, i.e. Twrs

m,n(Fm,Gn) →d N(0, 1) (Dwass,
1956). If (F,G) ∈ Ha

0 satisfies
∫
R
G(z)dF (z) > 1/2, however, Twrs

m,n(Fm,Gn) →p

−∞, whereas for (F,G) ∈ Ha
1 , we have Twrs

m,n(Fm,Gn) →p ∞.

4.2.2. Asymptotic critical values of the shape-constrained tests

We will show that under some additional conditions, the difference between the
nonparametric and the shape-constrained test statistics is op(1), which auto-
matically implies that the shape-constrained tests enjoy the same asymptotic
properties as the nonparametric tests.

For the unimodal case, the additional condition is a curvature condition,
which requires f and g to be nowhere flat within their respective domains.

Condition A. For the density μ, the Lebesgue measure of the set {μ′ = 0, μ >
0} is 0, where μ′ is the derivative of μ.

For densities satisfying Condition A,
√
m(F̂ 0

m−F ) almost surely weakly con-
verges to V ◦ F , where V is a Brownian bridge. In this case, it can be shown
that (Kiefer and Wolfowitz, 1976)

√
m‖F̂ 0

m−Fm‖∞ = op(1). Our Lemma A.5 in
Appendix A.1 states that

√
m‖F̂ 0

m − F̂m‖∞ = op(1), which implies
√
m‖F̂m −

Fm‖∞ = op(1) in this case. However, under the violation of Condition A, the
process

√
m(F̂ 0

m − F ) no longer converges to V ◦ F weakly. The densities that
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violate Condition A form the boundary of the class of unimodal densities. For
these densities,

√
m‖F̂ 0

m−Fm‖∞, and hence,
√
m‖F̂m−Fm‖∞ is non-negligible.

The limiting process of
√
m(F̂ 0

m − F ) in this case is slightly convoluted, and
we refer to Beare et al. (2017), Carolan and Dykstra (1999), Carolan (2002) for
more details on the limiting process. Just to give an example, if f ∼ U [0, 1], then
the limiting process is the least concave majorant of a Brownian bridge (Carolan
and Dykstra, 1999). Condition A is thus required to ensure that neither f nor
g is one of these problematic boundary densities.

Lemma 4. Suppose that f and g are unimodal densities satisfying Condition A.
Further suppose that f and g are bounded away from 0 on an open set containing
Dp, and m,n satisfy m/N → λ. Then,

|Ti(Fm,Gn) − Ti(F̂m, Ĝn)| →a.s. 0, for i = 1, 2, 3.

In case of the log-concave test statistics, however, we require a smoothness
condition as well as a curvature condition. We will quantify smoothness via
a Hölder condition. For a compact set K ⊂ R, a function h is said to be in
the Hölder class Hβ,L(K) with exponent β ∈ [1, 2] and constant L > 0 if,
for all x, y ∈ K, |h(x) − h(y)| ≤ L|x − y| if β = 1 and |h′(x) − h′(y)| ≤
L|x− y|β−1 if β > 1.

We say that a density μ (μ = f or g) satisfies Condition B1 if the following
holds.

Condition B1. There exists β ∈ [1, 2], L > 0, and a compact K ⊂ R such that
the density μ satisfies logμ ∈ Hβ,L(K).

In addition to Condition B1, we also require f and g to satisfy a curvature
condition.

Condition B2. μ is a log-concave density with log-density φ = logμ. Suppose
K ⊂ dom(φ) is compact. Then there exists C > 0 such that all x, y ∈ K
satisfying x < y obeys

φ′(x) − φ′(y) ≥ C(y − x),
where φ′ is the left derivative or the right derivative of φ.

Note that, since φ is concave, its left and right derivatives always exist. If φ′

is differentiable on K, Condition B2 reads as φ′′(x) ≤ −C for x ∈ K. Conditions
of type B1 and B2 also appear in Dümbgen and Rufibach.

Lemma 5. Suppose that f and g are log-concave densities satisfying Condi-
tions B1 and B2. Suppose, further, f and g are bounded away from 0 on an
open set containing Dp, and m/N → λ. Then it follows that |Ti(Fm,Gn) −
Ti(F̃m, G̃n)| = op(1) for i = 1, 2.

Remark 4. All results of Section 4.2 hold if we replace Dp by a compact set
D as long as there is a p > 0 so that D ⊂ Dp and Dp satisfies the conditions of
the theorems stated in Section 4.2.
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Fig 5: Plots of the densities fγ and gγ corresponding to the cases (a), (d), and
(e) for γ = 1.

4.3. Simulations

This section compares the performance of the shape-constrained tests designed
in Section 4.1 with their nonparametric counterparts. We let m = n = 100,
which is reflective of the sample sizes anticipated in many phase 1b or phase
2 vaccine trials — for example, our motivating dataset has m + n = 248. For
all TSEP tests in this section, we use the critical value zα. See Appendix C
for the simulations with TSEP tests that have critical value Cm,nzα. For the
TSEP and the minimum t-test, we also include the tests based on the smoothed
log-concave MLE. We will refer to the corresponding test as the smoothed log-
concave test. Although we do not have any theoretical result for this test, we
use the asymptotic critical value zα.

By the design of our hypotheses, H0 encompasses a broad number of cases
ranging from G � F , F = G to cases where F and G touch or cross each
other. We develop simulation schemes so that we can explore a wide range of
scenarios. Our simulation schemes involves a parameter γ varying over the range
[0, 1]. Here γ quantifies the difference between the data generating distribution
functions Fγ and Gγ . We evaluate the power ν(γ) at a grid of equally spaced
points in [0, 1].

For our simulation study, we consider the following cases:
(a) Fγ ∼ N(γ, 1), and Gγ ∼ N(0, 1).
(b) Fγ ∼ N(3γ, 1), and Gγ ∼ N(0.5, 2).
(c) Fγ ∼ Gamma(2, 0.1+0.4γ) and Gγ ∼ Gamma(1, 0.5), where Gamma(a, b)

is a Gamma random variable with shape parameter a and scale parameter
b.

(d) Fγ ∼ Gamma(2, 1) and Gγ ∼ Pareto(0.5+2γ, 1). Here Pareto(a, b) is the
Pareto distribution function with shape parameter a and scale parameter
b.

(e) Fγ ∼ N(0, 1) and Gγ ∼ N(2γ + 4, 1)/2 + N(2γ − 2, 1)/2.
Case (a) corresponds to the traditional setting of null of equity against a shift

alternative. The last four cases cover H0 combinations that include crossing. In
those cases, Fγ and Gγ cross each other on int(Dp) at γ = 0. As γ increases,
however, Fγ and Gγ eventually touch (cases c, d, and e), or cross (case b) each
other at bd(Dp), generating a LFC configuration. We denote the corresponding
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γ by γ∗. Finally, at γ = 1, Fγ strictly dominates Gγ in the sense of H1. Fig-
ures 18i, 17i, 17ii, and 18ii in Appendix D display the plots of Fγ and Gγ for
several values of γ in cases (b), (c), (d) and (e), respectively. Figure 5 illustrates
the densities in cases (a), (d), and (e) for γ = 1. Cases (d) and (e) are cho-
sen to reflect violations of the shape constraints that we consider. The Pareto
density in (d) violates the log-concavity assumption and the normal mixture in
(e) violates both the unimodality and the log-concavity assumptions. All other
densities satisfy both shape constraints.

We evaluate the properties of the tests under consideration using 10,000
Monte Carlo replicates. We set the p in Dp,m,n to be 0.05, where Dp,m,n was de-
fined to be the set [H−1

N (p),H−1
N (1−p)]. Also, the level of significance is 0.05 for

all our tests. The tests based on the empirical cumulative distribution function
will be referred to as NP (nonparametric) tests. For brevity, we will refer to the
nonparametric, unimodal, log-concave and smoothed log-concave tests by NP,
UM, LC, and smoothed LC tests, respectively.

Figure 7 displays the power curves for the minimum t-test and the TSEP test.
In terms of power, the LC and smootheed LC tests generally outperform the
UM tests, which generally outperform the NP tests. In their simulation study,
Davidson and Duclos (2013) reported the NP minimum t-test to be conservative,
which aligns with our observation. Also, the shape-constrained minimum t-tests
have slightly higher power than the shape-constrained TSEP tests, although the
difference is not always significant. For the NP tests, the rejection rates of the
minimum t-tests and the TSEP tests are almost identical.

Except for in case (d), where Gγ is Pareto, all tests control the type I error
in all null set-ups, including the LFC configuration where γ = γ∗. Since LFC
configurations constitute the boundary of H0, this observation indicates that
our tests have size 0.05 for all cases except case (d). Although Pareto density
violates only the log-concavity assumption, apparently no test has the correct
size, albeit the NP and UM tests performing the best in terms of size. Also, for
case (d), the smoothed LC test has lower type I error than LC test. Surprisingly,
in case (e), where both log-concavity and unimodality are violated, the shape-
constrained tests have overall better performance than the NP tests although
all tests exhibit poor power in this case.

All the WRS type tests, including the LC WRS test (whose asymptotic be-
havior is yet unknown), exhibit a much larger size than 0.05 in all cases except
the null of equity type case (a), which is the ideal scenario for WRS type tests.
Figure 8 illustrates the power curve ν(γ) in cases (b) and (c), where all three
WRS tests exhibit very high type I error at several null configurations. Our
findings are consistent with the observation in Ledwina and Wyłupek (2012)
that the WRS test can be misleading for testing the null of non-dominance.

In summary, under a correctly specified model, the shape-constrained mini-
mum t-test and TSEP test outperform their nonparametric counterparts, with
the log-concave minimum t-test having the best power. When the shape con-
straints are violated, the nonparametric tests are not distinguishably better
than the unimodal tests. On the other hand, The WRS tests do not control
type I error for null configurations with crossing, as expected. Another impor-
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tant takeaway from this section is that with the critical value zα, the smoothed
log-concave tests seem to perform as well as the log-concave tests under log-
concavity.

The current article uses asymptotic critical values for performing the above-
mentioned tests, but bootstrap critical values could also be an option. Bootstrap
for the shape-constrained tests, however, is not straightforward. Generation of
observations from shape-constrained LFC configuration poses some challenges,
which involves solving non-trivial optimization problems. Further discussion in
this direction is out of the scope of the present paper. Therefore, we leave boot-
strap tests for future research.

4.4. Application to HVTN 097 and HVTN 100 data

Our first task is to select a p for choosing Dp,m,n. Figure 1 and some inspec-
tion show that the empirical distribution functions are very close on the sets
(−∞,H−1(0.072)] and [H−1(0.975),∞) in that they either cross or touch each
other on these regions. Therefore, this is the problematic region we wish to
exclude from our Dp,m,n, because clearly there is not enough evidence of any
dominance in this region. Therefore, we set the p in Dp,m,n to be 0.075. We
remark that it is ideal to choose p in a systematic way without looking at the
data. However, constructing a rigorous procedure for choosing p is out of the
scope of the present paper, and we leave it for future research. Table 3, which
tabulates the p-values of the tests, displays that all tests reject the null at the
level of significance 0.05. The highest p-value is observed for the NP TSEP test,
which is approximately 0.042.

Table 3

Table of the p-values of different tests applied on our data. Here the p in Dp,m,n is set to be
0.075. The critical value was zα for all the tests.

Tests Nonparametric Unimodal Log-concave Smoothed log-concave

Minimum t-test 0.015 0.007 0.007 0.001
TSEP 0.042 0.037 0.035 0.030

It is natural to ask if we can estimate the power of our tests at (F097, F100).
Because (F097, F100) is unavailable, we analyze the power in a neighborhood of
(F̃ sm

097, F̃
sm
100) instead, where F̃ sm

097 and F̃ sm
100 correspond to the distributions of the

smoothed log-concave MLE (Chen and Samworth, 2013) estimators of f100 and
f097, respectively.

Let us denote the smoothed log-concave MLE of the pooled sample by f̃0
m,n.

Letting F̃ 0
m,n denote the corresponding distribution function, we consider the

mixture distributions

F̃ sm
097(γ) = (1−γ)F̃ 0

m,n+γF̃ sm
097, and F̃ sm

100(γ) = (1−γ)F̃ 0
m,n+γF̃ sm

100, (4.11)

where γ ∈ [0, 1]. Note that, similar to case (a) in Section 4.3, here also γ quanti-
fies the departure of the configuration (F̃ sm

097(γ), F̃ sm
100(γ)) from the null of equality
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of distributions. Also, the distance between F̃ sm
097(γ) and F̃ sm

100(γ) increases as γ
approaches 1. We denote the densities of F̃ sm

097(γ) and F̃ sm
100(γ) by f̃sm

097(γ) and
f̃sm
100(γ), respectively.

Now observe that when γ ∈ (0, 1), the mixture densities may not be log-
concave or even unimodal. Hence, we compute the log-concave projections (Düm-
bgen et al., 2011) of f̃sm

097(γ) and f̃sm
100(γ), respectively. Log-concave projection of

a density f is the log-concave density closest to f in Kullback-Leibler (KL) dis-
tance. Since the log-concave projection of any arbritrary density is not directly
computable, we adopt a two step approach to approximate the log-concave pro-
jections. In the first step, we simulate 1000 observations from each of f̃sm

097(γ)
and f̃sm

100(γ). In the second step, we calculate the smoothed log-concave MLE
density estimators of Chen and Samworth based on the simulated samples in
the last step. The resulting densities are the approximate smoothed log-concave
projections of f̃sm

097(γ) and f̃sm
100(γ). Finally, we generate two samples of size 68

and 180 from the projected densities using the methods in Dümbgen and Ru-
fibach (2010) and the R package logcondens, and replicate this process 10,000
times.

Figure 9 entails that all the tests exhibit decent power for higher values of
γ. The LC minimum t-test exhibits the highest power, which is unsurprising
since the underlying data is generated from log-concave densities. Also, since
F̃ sm

097(γ) = F̃ sm
100(γ) at γ = 0, the power curves resemble that of case (a) in our

simulation schemes.

5. Measures of discrepancy

This section describes an approach for quantifying the difference between f and
g via estimates of the squared Hellinger distance D2(f, g), which provides com-
plementary insights to the tests of stochastic dominance presented in Section 4.
The Hellinger distance is an example of f -divergence. These divergences are
widely used to measure the similarity or dissimilarity between two probability
measures. Compared to other commonly used f -divergences such as the KL di-
vergence or the χ2 divergence (Nielsen and Nock, 2014), the Hellinger distance
is appealing due to its symmetry in its arguments, which is a desirable property
for a measure of discrepancy. Another crucial advantage of the Hellinger dis-
tance is that its value is finite for every pair of densities (Gibbs and Su, 2002).
In contrast, the KL and χ2 divergences can both be infinite if the densities under
consideration do not share the same support. It is not always reasonable to as-
sume that the underlying densities of responses collected from different vaccine
trials will have the same support. Therefore, the Hellinger distance appeals to
us more than the KL divergence or the χ2 divergence. The Hellinger distance
has also seen successful application in various disciplines ranging from machine
learning (Cieslak and Chawla, 2009, González-Castro et al., 2013, 2010), to ecol-
ogy (Rao, 1995), to fraud detection (Yamanishi et al., 2004). Finally, we choose
to work with the squared Hellinger distance instead of the Hellinger distance
because due to its simpler form, the squared version easily lends itself to efficient
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estimation procedures. Regardless, a 95% confidence interval for the Hellinger
distance can always be constructed using that of its squared version.

We estimate the squared Hellinger distance between f and g using the same
density estimators involved in the construction of tests of stochastic dominance,
that is, the log-concave MLE (Dümbgen and Rufibach, 2009) and its smooth
version (Chen and Samworth, 2013), or Birgé’s estimator. Recalling the defini-
tion of the density estimators f̂m, ĝn, f̃m, g̃n, f̃sm

m , and g̃smn from Section 4.1,
we propose the plug-in estimators D2(f̂m, ĝn), D2(f̃m, g̃n), and D2(f̃sm

m , g̃smn )
for the purpose of estimating D2(f, g). We refer to the resulting estimators as
the “unimodal”, “log-concave”, and the “smoothed log-concave” estimator, re-
spectively.

5.1. Asymptotic properties of the unimodal estimator

We will show that, under some regularity conditions, D2(f̂m, ĝn) is a
√
N -

consistent estimator of D2(f, g) with asymptotic variance

σ2
f,g = 2D2(f, g) −D4(f, g)

4λ(1 − λ) . (5.1)

Letting b,B > 0, we denote by P(b,B) the class of densities that are bounded
below and above by b and B on their support, that is,

P(b,B) =
{
f ∈ P : b ≤ f(x) ≤ B, for x ∈ supp(f)

}
. (5.2)

We will assume that f, g ∈ P(b,B). Simulations suggest that this condition
may not be necessary. However, this condition is required for technical reasons
in our proof. Such technical condition is quite common in the literature, and
has appeared in the analysis of plug-in estimators (Kandasamy et al., 2015) and
functionals of Grenander estimators (Mukherjee et al., 2019).

Theorem 3. Suppose f and g are unimodal densities in P(b,B), where b,
B > 0. Further suppose that f and g satisfy condition A and m/N → λ. Then,

√
N [D2(f̂m, ĝn) −D2(f, g)] →d N(0, σ2

f,g), (5.3)

where σ2
f,g is as defined in (5.1).

Note that, since σ2
f,g can be consistently estimated plugging in the estimator

D2(f̂m, ĝn), a Wald type confidence interval is readily available for D2(f, g).
Also, the asymptotic variance σ2

f,g equals the lower bound of the asymptotic
variance on a regular estimator of the squared Hellinger distance under the
nonparametric model (Kandasamy et al., 2015). See Van der Vaart (1998), Birgé
and Massart (1995) for more detail on the lower bound and related theory.

We now give a high-level explanation of the idea behind Theorem 3. It can
be shown that the squared Hellinger distance is a smooth functional of the
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underlying distribution functions in some suitable sense. Specifically, we will
show that it allows a first order Von Mises expansion (Fernholz, 2012), which
has the same essence as the Taylor series expansion (Kandasamy et al., 2015).
On the other hand, for F̂ 0

m, the unimodal MLE of F based on the true mode, we
show that

√
m(F̂ 0

m − F ) converges weakly to a Brownian process almost surely
under Condition A. It can then be shown via a delta-method type argument,
applied on the squared Hellinger distance functional, that (5.3) holds for the
unimodal MLEs of F and G. The final step in proving Theorem 3 is showing
that the squared Hellinger distance between Birgé’s estimator and the MLE is
small.

5.2. Asymptotic properties of the log-concave estimators

Recall that our log-concave estimators of the squared Hellinger distance are
given by D2(f̃m, g̃n) and D2(f̃sm

m , g̃smn ), where we remind the reader that f̃m, g̃n
are the log-concave MLEs and f̃sm

m , g̃smn are the smoothed log-concave MLEs.
Lemma 6 implies that these estimators are strongly consistent for D2(f, g) pro-
vided the shape constraint holds.

Lemma 6. Suppose that the densities f and g are log-concave and continu-
ous. Then, as m,n → ∞, D2(f̃m, g̃n) →a.s. D2(f, g) and D2(f̃sm

m , g̃smn ) →a.s.

D2(f, g).

Our simulations indicate that both the log-concave and the smoothed log-
concave plug-in estimators are

√
N -consistent with asymptotic variance σ2

f,g

when f and g are continuous log-concave densities. Therefore, in our empirical
study, we include Wald type confidence intervals based on these log-concave
plug-in estimators as well. Our simulations in Section 5.3 indicate that under
the violation of the continuity assumption, the log-concave plug-in estimator
may still remain

√
N -consistent, but the

√
N -consistency of the the smoothed

log-concave plug-in estimator may fail to hold.
It may be possible to analyze the

√
N -consistency of the log-concave estima-

tors working along the lines of Kulikov and Lopuhaä (2006), Groeneboom (1984,
1989), which pertain to the shape restriction of monotonicity. However, we leave
this investigation for future research because a detailed treatment of the

√
N -

consistency of the log-concave estimators is out of scope of the present paper.
We remark in passing that proving the

√
N -consistency of the log-concave plug-

in estimator may be easier for some special cases, e.g., when the logarithm of f
and g are linear or piece-wise affine, by using the results of Kim et al. (2018).
We do not pursue this direction because it is unlikely that, for our data, f and
g belong to such restricted classes.

Remark 5. The case of model misspecification is of natural interest in the
study of shape-constrained estimators. Suppose f and g are not log-concave,
but they are bounded continuous densities with finite first moments. Then it
follows that there exist unique log-concave densities f∗ and g∗, which are almost
sure limits of f̃m and g̃n in both uniform and L1 metric (Theorem 4 Cule and
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Samworth, 2010). Here f∗ and g∗ are also the log-concave projections of f and
g, respectively, in the sense of Dümbgen et al. (2011). Using the same arguments
as in the proof of Lemma 6, it can be shown that the log-concave estimator of
the squared Hellinger distance converges almost surely to D2(f∗, g∗). If f and
g additionally have finite second moments, a similar phenomenon takes place
for the smoothed log-concave MLEs as well. In this case, however, f̃sm

m and g̃smn
converge uniformly (and also in L1) to different limits f∗∗ and g∗∗, which can
be interprated as the respective smoothed versions of the log-concave projec-
tions f∗ and g∗ (cf. Theorem 1, Chen and Samworth, 2013). In this case also,
the smoothed log-concave estimator of the squared Hellinger distance converges
almost surely to D2(f∗∗, g∗∗). In summary, if the log-concavity assumption is
violated, the log-concave plug-in estimators converge to a different limit, whose
distance from D2(f, g) depends on the departure of f and g from log-concavity.

KDE based plug-in estimators: The natural non-parametric comparators
of the shape constrained plug-in estimators are the KDE based plug-in estima-
tors. Though the latter is simple to implement, it can have a bias of order
||f̂m,k − f ||2 + ||ĝn,k − g||2 (cf. Section 2 of Robins et al., 2009), where f̂m,k and
ĝn,k are the KDEs of f and g, respectively. The above bias decreases to zero
at a rate slower than N−1/2 (Stupfler, 2014), thereby leading to a suboptimal
performance. See Section 5 of Kandasamy et al. (2015) for more discussion on
the disadvantages of the KDE based naïve plug-in estimators.

One can improve the naïve plug-in estimator, however, using a one-step
Newton-Raphson procedure (cf. Van der Vaart, 1998, Pfanzagl and Wefelmeyer,
1985), which leads to a bias corrected plug-in estimator. In context of the
Hellinger distance, the bias-corrected estimator (D2)∗(f̂m,k, ĝn,k) takes the form
(Kandasamy et al., 2015)

D2(f̂m,k, ĝn,k) +
∫
R

ψf (x; f̂m,k, ĝn,k)dFm(x) +
∫
R

ψg(y; f̂m,k, ĝn,k)dGn(y)

= 1 − 1
2

(∫
R

√
ĝn,k(x)/f̂m,k(x)dFm(x) +

∫
R

√
f̂m,k(y)/ĝn,k(y)dGn(y)

)
,

where ψf and ψg are the influence functions corresponding to the functional
(f, g) �→ D2(f, g). We will formally introduce the influence functions in Ap-
pendix B. Note that learning the form of the bias-corrected estimator thus
requires the explicit computation of the influence functions ψf and ψg. From a
broader prospective, each time one tries to estimate a functional of the under-
lying distributions using a bias-corrected plug-in estimator, they have to carry
out some extra analytical calculations that depend on the functional of interest.

In contrast, Theorem 3 shows that when the shape constraint is satisfied,
the unimodal estimator of the squared Hellinger distance does not require any
bias correction for

√
N -consistency. Our analysis in Appendix B indicates that

this is not an artifact of the Hellinger distance, but rather the result of Birgé’s
estimator’s proximity to the unimodal MLE, i.e. the Grenander estimator based
on the true mode. In fact, Theorem 4 in Appendix B shows that, if T is a smooth
functional of the distribution functions F , then T (f̂0

m) is
√
m-consistent for T (F )
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Table 4

Table summarizing the current results on different plug-in estimators of the squared
Hellinger distance. The consistency and

√
N-consistency of the shape constrained

estimators are proved under the correct specification of the shape constraints. Empirical
studies are provided on all the estimators listed above.

* Indicates whether we included confidence intervals for the corresponding estimator in the
empirical study of Section 5.3.

Estimator Consistency
√
N-consistency Showed in Confidence

interval∗

Naïve KDE yes no Kandasamy et al. (2015) no
Bias

corrected
KDE

yes yes Kandasamy et al. (2015) yes

Unimodal yes yes current paper yes

Log-concave yes
unknown, but
suggested by
simulations

current paper yes

Smoothed
log-concave yes −−−′′ −−− current paper yes

under mild conditions. Because the total variation distance between f̂m and f̂0
m

is op(m−1/2) (see our Lemma A.5 in Appendix A), it is then natural to expect
that T (f̂m) would be

√
m-consistent if T is sufficiently smooth.

Although we do not have any such theoretical evidence for the log-concave
estimators, our simulations and the simulations of Cule et al. (2010) on plug-
in estimators based on log-concave MLEs (see Figure 18 therein) indicate that
these estimators do not have any Op(N−1/2) bias term either. This allows users
of correctly specified shape-constrained estimators to avoid analytic calculation
of the influence functions entirely.

In our upcoming simulation study, we use both D2(f̂m,k, ĝn,k) and (D2)∗(f̂m,k,
ĝn,k) as comparators, where the KDEs are based on the Gaussian kernel. We
refer to these estimators as the KDE estimator and the bias-corrected KDE
estimator, respectively. As in Section 3, the kernel bandwidth is chosen using
the univariate least square cross-validation (LSCV) selector of Bowman (1984)
and Rudemo (1982). Generally, kernel-based bias corrected estimators satisfy√
N consistency results of the type (5.3) (cf. Theorem 6, Kandasamy et al.,

2015). Therefore, we use the bias-corrected KDE based confidence intervals to
benchmark the performance of our shape constrained estimators. However, we
do not report any confidence interval based on the naïve plug-in estimator be-
cause our simulations indicate that usually its coverage is much less than the
nominal level. For the sake of clarity, in Table 4, we summarize the current state
of results on the above-mentioned estimators of the squared Hellinger distance.

5.3. Simulations

To compare the performance of different estimators of the squared Hellinger
distance, we consider the following combinations of f and g:
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Fig 6: Plots of the densities f and g for the cases (a) (left), (e) (middle), and
(f) (right) in the simulation scheme of Section 5.3

(a) f ∼ Gamma(4, 1) and g ∼ Gamma(3, 1).
(b) f ∼ N(1, 1) and g ∼ N(0, 1), which corresponds to case (a) in Section 4.3

with γ = 1.
(c) f = f̃sm

097 and g = f̃sm
100, where f̃sm

097 and f̃sm
100 are the smoothed log-concave

MLEs of f097 and f100, respectively (see Figure 2).
(d) f ∼ Exp(1) and g ∼ Exp(2) where Exp(t) is the exponential distribution

with rate t.
(e) (f, g) corresponds to case (e) in Section 4.3 with γ = 1.
(f) f ∼ N(0, 1), and g ∼ Gamma(3.61, 1.41).

The plots of the above schemes can be found in Figure 5 and Figure 6. In cases
(a), (b), (c), (d), and (f), both shape constraints are satisfied, where in case (e),
both shape constraints are violated. We will refer to case (a), (b), (c), (d), and
(f), therefore, as the “correctly specified” cases and case (e), as the “misspecified”
case. In case (d), the logarithm of the densities are linear on their respective
supports. This is also the only case where the densities are discontinuous (see
Figure 6; discontinuity at zero). In case (f), g was chosen so as to resemble the
density estimate of f100 (see Figure 2 and Figure 6). This is the only correctly
specified case where the densities are known to come from different families, and
the densities also have very different shapes.

We generate two samples of same size from each simulation setting. We vary
the common sample size n from 50 to 500 in increments of 50. We do not consider
larger values of n because in our motivating phase 1b and phase 2 vaccine trial
applications, the sample sizes are generally no larger than 500. We consider
10,000 Monte Carlo replications for each sample size.

Figures 10 and 11 plot
√
n times the absolute bias, and Figure 12 plots n times

the mean squared error (MSE). Figure 13i and Figure 13ii display, respectively,
the coverage and the average length of the confidence intervals, both of which
are estimated using 10,000 Monte Carlo samples. In the misspecified case (e),
the performance of the shape-constrained estimators deteriorate sharply with n,
which is unsurprising due to the violation of the shape constraints in this case.
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Fig 7: Plot of estimated power ν(γ) vs γ: the labels (a)-(e) correspond to simu-
lation schemes (a)-(e). Here MT and TSEP correspond to the minimum t-test
and the TSEP test, respectively. The standard deviation of the ν(γ) estimate in
each case is less than 0.005. The black horizontal line corresponds to the level of
the test, α = 0.05. For cases (b)-(e), the black vertical line represents the LFC
configuration γ∗, taking value 0.70 (b), 0.55 (c), 0.65 (d), and 0.80 (e).

In case (d), where the densities are exponential, the scaled bias of the smoothed
log-concave plug-in estimator increases with n, which implies

√
N -consistency

does not hold for this estimator in this case. Closer inspection reveals that
although it is not

√
N -consistent, the smoothed log-concave plug-in estimator is

still consistent in case (d). We found out that the smoothed log-concave density
estimator fails to approximate the exponential densities near zero, their point
of discontinuity (see Figure 19 in Appendix D). It is worth mentioning that
although the curvature Condition B2 is violated in case (d), it does not affect
the performance of the log-concave plug-in estimator.

For all other cases, the smoothed log-concave estimator exhibits the best
performance among the shape-constrained estimators. In all cases, the unimodal
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Fig 8: Estimated power curves of WRS type tests for case (b) (left) and case
(c) (right). Here LC.WRS and UM.WRS correspond to the tests based on
Twrs
m,n(F̃m, G̃n) and Twrs

m,n(F̂m, Ĝn), respectively. The standard errors of the es-
timated powers are less than 0.005. The black horizontal line corresponds to the
level of the test, α = 0.05. The black vertical lines represent the LFC configu-
ration γ∗, which are 0.70 (b) and 0.55 (c).

Fig 9: Estimated power curve applied on our datasets: Here MT and TSEP
correspond to the minimum t-test and the TSEP test, respectively. The black
horizontal line corresponds to the level of the test, which is 0.05. The standard
deviation of the estimated power does not exceed 0.005 in any case.

estimator underperforms. Importantly, Figure 13i indicates that the unimodal
estimator would require sample size larger than 500 for the Wald type confidence
interval to be valid, where for the other confidence intervals, this sample size is
sufficient for the asymptotics to kick in.

The KDE-based plug-in estimator experiences an increase in the bias and the
MSE with n, which agrees with our previous discussion on KDE based plug-
in estimators. Its bias corrected version performs comparably to the shape-
constrained estimators in all cases except case (f). In case (f), however, the
bias corrected estimator yields a confidence interval with poor coverage, which
is probably due to the large bias incurred by the original KDE-based plug-in
estimator in this case (see panel (f) of Figure 11). Case (f) is a case where the
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Fig 10: Plots of the absolute values of the bias (scaled by
√
n) for cases (a)–(d).

Here “KDE (BC)” and “smoothed LC” stand for the bias corrected KDE esti-
mator and the smoothed log-concave estimator, respectively. For each estimator,
either the standard error is less than 0.006 or the relative standard error is less
than 2%.

underlying densities differ by both shape and scale. We suspect that the cross-
validated bandwidth for the KDE estimator does not work in this case even
with bias correction. Finally, the average length of the confidence intervals do
not vary noticeably across different methods.

In summary, the log-concave plug-in estimator exhibits reliable performance
when the shape restriction holds. The smoothed log-concave plug-in estimator
may also require the underlying densities to be continuous, but otherwise it
performs comparably with the bias-corrected KDE-based plug-in estimator. The
latter performs well in many settings, but it is not always reliable. The lacking
performance of the KDE based methods in some settings is probably due to the
variable nature of the optimal bandwidth under different settings.

5.4. Application to HVTN 097 and HVTN 100 data

Table 5 tabulates the point estimates of the squared Hellinger distance (between
f100 and f097) and the corresponding 95% intervals. Table 5 also displays the
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Fig 11: Plots of the bias (scaled by n) for cases (e) and (f). Here “KDE (BC)” and
“smoothed LC” stand for the bias corrected KDE estimator and the smoothed
log-concave estimator, respectively. For each estimator, either the standard error
is less than 0.006 or the relative standard error is less than 2%.

95% confidence intervals of the Hellinger distance, which are obtained by taking
square root of the upper and lower bounds of the previous confidence intervals.

Table 5

Table of the point estimates of D2(f097, f100), and 95% confidence intervals of
D2(f097, f100) and D(f097, f100).

Estimator Naïve
KDE

Bias
-corrected

KDE
UM LC Smoothed

LC

Point
estimate of
D2(f097, f100)

0.16 0.19 0.18 0.15 0.21

95% CI for
D2(f097, f100)

not
available (0.110, 0.274) (0.128, 0.300) (0.098, 0.256) (0.079, 0.228)

95% CI for
D(f097, f100) −−′′ −− (0.332, 0.523) (0.358, 0.548) (0.313, 0.506) (0.281, 0.447)

To give the reader some perspective, if f0 is a N(0, 1) distribution and fμ is
a N(μ, 1) distribution, then, when μ is equal to 1.00, 1.25, 1.50, 1.75, and 2.00,
D(f0, fμ) is equal to 0.346, 0.424, 0.500, 0.566, and 0.624, respectively. Also, in
Figure 14, we display some density pairs (f, g) satisfying F � G with Hellinger
distance in the range 0.35 − 0.60, which is similar to our data.
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Fig 12: Plot of MSE: Here “KDE (BC)” and “smoothed LC” stand for the bias
corrected KDE estimator and the smoothed log-concave estimator, respectively.
For each estimator, either the standard error is less than 0.006 or the relative
standard error is less than 2%.

6. Discussion

The first contribution of our work is a novel analysis of the data from the HVTN
097 and HVTN 100 trials. All of our tests reject the null of non-dominance in
favor of the strict stochastic dominance of F097 over F100. To provide further
insight into the discrepancy between the two IgG binding response distributions,
we estimated the squared Hellinger distance between the corresponding densi-
ties, which turns out to be approximately 0.20 (95% CI 0.10-0.30). We remark
that our findings are consistent with those of Bekker et al. (2018), who found
that the average magnitude of IgG binding to V1V2 antigens observed in the
HVTN 100 trial is lower than that in the RV 144 trial. Although the latter used
the same regimen as HVTN 097, it was conducted in a different population
(Thailand). Our findings indicate that the difference in the magnitude of IgG
binding response between HVTN 100 and RV 144 regimen may be attributable
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Fig 13: Here “KDE (BC)” and “smoothed LC” stand for the bias corrected KDE
estimator and the smoothed log-concave estimator, respectively. In all the cases,
the standard error is less than 0.005, and hence, not plotted.

to the HIV clade difference rather than to the difference in populations.
The outcome of our tests become meaningful when viewed against the lack of

efficacy observed in the phase 2b/3 HVTN 702 trial, which evaluated the safety
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Fig 14: Plot of different density pairs and their distribution functions. The
Hellinger distance (D) is given on top of each pair. Left: f ∼ Gamma(25, 1),
g ∼ N(0.5, 1); middle: f ∼ N(1.40, 1), g ∼ N(0, 1); right: f ∼ Gamma(5, 1),
g ∼ Gamma(2, 1).

and efficacy of the HVTN 100 regimen in South Africa. A possible hypothesis
for why no efficacy was observed when the HVTN 100 regimen was evaluated
in this trial, whereas efficacy was observed when the HVTN 097 regimen was
evaluated in the RV144 trial, is that the HVTN 100 regimen leads to a lower
magnitude of IgG binding to the V1V2 region. This possibility is supported by
the observation made by Haynes et al. (2012) regarding the negative correlation
between rate of infection and the magnitude of IgG binding to V1V2 region.
This hypothesis can be tested when the immune profile of the participants in
HVTN 702 trial becomes available.

Another contribution of our work relates to density estimation in the con-
text of vaccine trials. Based on a cross-validated analysis of the HVTN 097 and
HVTN 100 data, we believe that the log-concave density estimators of Dümb-
gen and Rufibach (2009) and Chen and Samworth (2013) may yield improved
density estimation in vaccine studies. In future work, it would be worth further
validating this claim on other vaccine trial datasets.

We also made several methodological contributions. In Section 4, we intro-
duce three novel shape-constrained tests. These tests have the desirable asymp-
totic properties of nonparametric tests, and simulations illustrate that the shape-
constrained tests have better overall performance than the nonparametric tests.
Moreover, even under the violation of the shape-constraints, their performance
is not much worse than the nonparametric tests. We also introduce shape-
constrained plug-in estimators of the squared Hellinger distance and provide
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asymptotic consistency and distributional results. Our simulations suggest that,
when the shape constraint is satisfied, the log-concave plug-in estimators exhibit
overall lower MSE and absolute bias than the KDE based plug-in estimator. In
fact, they perform comparably with the bias-corrected KDE based estimator.
However, unlike the bias-corrected KDE plug-in estimator, the log-concave plug-
in estimators require neither selecting a tuning parameter nor carrying out the
analytic calculations needed to derive the bias-correction term. Therefore, the
log-concave plug-in estimators may be preferred in settings where this shape
constraint is plausible.

Appendix A: Proofs for Section 4

Before proceeding any further, we introduce some new notations. We let l∞

denote the collection of all bounded functions on R, which we equip with the
uniform metric ‖ · ‖∞. For any function μ : R �→ R, we define the norm ‖ · ‖ba by
‖μ‖ba = supx∈[a,b] |μ(x)|. Also, we denote the boundary of a set A by bd(A).

Suppose (Ω, int(H0),P) is the common probability space corresponding to
the Xi’s and Yj ’s. For the rest of this section, we let →p and →a.s. correspond
to this probability space. Since F and G are continuous, using the construction
of Section 1.1 of Shorack (1984) (see also p.93 of Shorack and Wellner, 2009),
we can show that there exist two independent Brownian bridges V1 and V2 on
(Ω, int(H0),P) such that∥∥√m(Fm − F ) − V1 ◦ F

∥∥
∞ →a.s. 0 as m → ∞, (A.1)

and ∥∥√n(Gn −G) − V2 ◦G
∥∥
∞ →a.s. 0 as n → ∞. (A.2)

Let us denote
U = λ1/2V2 − (1 − λ)1/2V1, (A.3)

where λ is so that m/N → λ. Note that U is also distributed as a Brownian
bridge. We will show that the asymptotic distributions of our test statistics
depend on U. Also, for ours F and G,

‖Fm − F‖∞ →a.s. 0, ‖Gn −G‖∞ →a.s. 0, ‖HN −H‖∞ →a.s. 0.

In the sequel, we will also use the following fact on the convergence of
the quantiles of HN and Dp,m,n, often without mentioning. As a corollary to
Fact 3.1A, it follows that dist(Dp,m,n, Dp) →a.s. 0 under Condition N.

Fact 3.1. Suppose Condition N holds and U is the open set such that Dp ⊂
U ⊂ supp(f) ∪ supp(g). Further suppose p′ < p such that Dp′ ⊂ U . Then

A. For any t ∈ [p′, 1 − p′], H−1
N (t) →a.s. H

−1(t).
B. Dp,m,n ⊂ Dp′ for all sufficiently large m and n with probability one.
C. For any q > p, Dq ⊂ Dp,m,n for all sufficiently large m and n with proba-

bility one.
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Proof of Fact 3.1. Since h = λf + (1 − λ)g > 0 on U , it follows that H−1 is
continuous on U (cf. Proposition A.7, pp. 98 of Bobkov and Ledoux, 2016). Also,
under Condition N, ‖HN −H‖∞ →a.s. 0. Since Dp′ ⊂ U , H−1(t) ∈ U for any
t ∈ [p′, 1 − p′]. Hence, H−1

N (t) →a.s. H
−1(t) by Lemma A5, pp. 96 of Bobkov

and Ledoux (2016). Hence part (A) of Fact 3.1 is proved.
Part (A) of Fact 3.1 implies H−1

N (p) →a.s. H−1(p) and H−1
N (1 − p) →a.s.

H−1(1 − p). To prove part B and C of Fact 3.1, therefore, it suffices to show
that H−1(p′) < H−1(p), H−1(1 − p′) > H−1(1 − p), H−1(p) < H−1(q), and
H−1(1 − q) < H−1(1 − p). Since q < p < p′ and Dq ⊂ Dp ⊂ Dp′ ⊂ U , it is
enough to show that H−1 is continuous and strictly increasing on U . The latter
holds if H s continuous and strictly increasing on U . The proof now follows since
we already showed that H has a positive density on U .

A.0.1. Proof of Lemma 1

To prove Lemma 1, we will use an alternative definition of H0 and H1. Note
that continuous distribution functions (F,G) ∈ H0 if and only if supx∈Dp

[F (x)−
G(x)] ≥ 0. Because Dp is compact, such a pair is in H1 if and only if
supx∈Dp

[F (x) −G(x)] < 0. We will prove the current lemma in some steps.
Step 1: closure of H0 Suppose (Fn, Gn) ∈ H0 converges to (F,G) ∈ F ×F

with respect to the metric d2. Then

sup
x∈Dp

(F (x) −G(x)) ≥ − sup
x∈Dp

(Fn(x) − F (x))

+ sup
x∈Dp

(Fn(x) −Gn(x)) − sup
x∈Dp

(G(x) −Gn(x)),

which is bounded below by −‖Fn − F‖∞ − ‖Gn −G‖∞. Taking n → ∞ yields
supx∈Dp

(F (x) −G(x)) ≥ 0. Therefore,

cl(H0) ⊂
{

(F,G) ∈ F × F : sup
x∈Dp

(F (x) −G(x)) ≥ 0
}

= H0.

Hence, cl(H0) = H0, i.e. H0 is closed in F × F .
Step 2: interior and boundary of H0
If (F,G) ∈ H0, either supx∈Dp

(F (x)−G(x)) > 0 or supx∈Dp
(F (x)−G(x)) =

0. Let us denote

A = {(F,G) ∈ F × F : sup
x∈Dp

(F (x) −G(x)) = 0}.

By Lemma A.1, A ⊂ bd(H0) because this set is not a part of the interior. Hence,

int(H0) ⊂ {(F,G) ∈ F × F : sup
x∈Dp

(F (x) −G(x)) > 0}.

Therefore, to prove

int(H0) = {(F,G) ∈ F × F : sup
x∈Dp

(F (x) −G(x)) > 0}, (A.4)
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it suffices to prove

{(F,G) ∈ F × F : sup
x∈Dp

(F (x) −G(x)) > 0} ⊂ int(H0). (A.5)

Suppose (F,G) ∈ H0 satisfies supx∈Dp
(F (x) − G(x)) > ε for some ε > 0.

Consider any (F̃ , G̃) such that d2((F̃ , G̃), (F,G)) < ε/3, which means ‖F̃ −
F‖∞ < ε/3 and ‖G̃−G‖∞ < ε/3. Since F −G is continuous and Dp is compact,
the supremum of F −G over Dp is attained at some z ∈ Dp. We have

F̃ (z) − G̃(z) ≥ F (z) −G(z) − ‖F̃ − F‖∞ − ‖G̃−G‖∞,

which is greater than ε/3. Thus supx∈Dp
(F̃ (x) − G̃(x)) > 0 which implies

(F,G) ∈ int(H0). Therefore, we have established (A.4). Because cl(H0) =
H0, (A.4) also implies bd(H0) = A.

Step 3: boundary of H1
Our first step is to show

cl(H1) ⊂
{

(F,G) ∈ F × F : sup
x∈Dp

(F (x) −G(x)) ≤ 0
}
. (A.6)

To this end, consider (Fn, Gn) ∈ H1 converging to (F,G) ∈ F × F in d2. Then

sup
x∈Dp

(F (x) −G(x)) ≤ sup
x∈Dp

(F (x) − Fn(x))

+ sup
x∈Dp

(Fn(x) −Gn(x)) + sup
x∈Dp

(Gn(x) −G(x)),

which is bounded above by ‖Fn − F‖∞ + ‖Gn − G‖∞. Letting n → ∞, we
obtain supx∈Dp

(F (x) − G(x)) ≤ 0 implying (F,G) ∈ H1. Hence, (A.6) holds,
which implies cl(H1) ⊂ A ∪H1. Using Lemma A.1 we obtain

cl(H1) ⊂ A ∪H1 ⊂ bd(H1) ∪H1 = cl(H1).

Hence, the inclusion in (A.6) is actually an equality and A∪H1 = bd(H1)∪H1.
The proof will be complete if we can show that int(H1) = H1, because then
bd(H1) = A follows. To that end, consider (F,G) ∈ H1. Suppose supx∈Dp

(F (x)−
G(x)) < −ε. Let (F̃ , G̃) ∈ F × F be such that d2((F̃ , G̃), (F,G)) < ε/3. Then

sup
x∈Dp

(F̃ (x) − G̃(x)) ≤ sup
x∈Dp

(F (x) −G(x)) + ‖F̃ − F‖∞ + ‖G̃−G‖∞,

which is less than −ε/3. Therefore, (F̃ , G̃) ∈ H1, which completes the proof.

Lemma A.1. Under the set-up of Lemma 1,

A :=
{

(F,G) ∈ F × F : sup
x∈Dp

(F (x) −G(x)) = 0
}

⊂ bd(H1).



Shape-constrained inference in vaccine trials 5891

Proof. Consider (F,G) ∈ A. Because A∩H1 = ∅, it suffices to show that (F,G)
is a limit point of H1. We will show that given δ > 0, there exists (F̃ , G̃) ∈ H1
so that d2((F,G), (F̃ , G̃)) < δ.

Since F − G is continuous, its supremum over Dp is attained. Thus, there
exists Cp ⊂ Dp so that F = G on Cp. Because p ≤ λF + (1 − λ)G ≤ 1 − p
on Dp, infz∈Cp F (z) ≥ p and supz∈Cp

F (z) ≤ 1 − p. Suppose a′ = inf Cp and
β′ = supCp. Since F is continuous, there exists closed interval Lp = [a, β] ⊃ Cp

such that Lp ⊂ Dp and p/2 < F < 1− p/2 on [a, β]. We choose a and β so that
additionally the followings hold:

1. If a′ > H−1(p) then a < a′. Thus a = a′ only if a′ = H−1(p), in which
case, the only choice for a is a′ because [a′, β′] ⊂ [a, β] ⊂ Dp.

2. If β′ < H−1(1 − p) then β′ < β. When β′ = H−1(1 − p), the only choice
for β is β′ because [a′, β′] ⊂ [a, β] ⊂ Dp.

Letting ε′ = min(δ/2, p/4), t1 = F−1(1 − ε′) and t2 = t1 + 1, we define

F̃ (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
max(0, F (x) − ε′) x < a

F (x) − ε′ x ∈ [a, t1]
(x− t1)F (t2)−F̃ (t1)

t2−t1
+ F̃ (t1) x ∈ (t1, t2]

F (x) x > t2

(A.7)

That F̃ is a distribution function is clear from the definition. We claim that (a)
F̃ is continuous, (b) ‖F̃ −F‖∞ < δ, and finally (c) (F̃ , G) ∈ H1. Taking G̃ = G,
the proof of the current lemma follows. Hence, it remains to prove Claim (a),
(b), and (c).

First, we prove Claim (a). Because F is continuous, max(0, F (x) − ε′) is
continuous in x on (−∞, a). BSince F (a) > p/2 > ε′, continuity of F also
implies F̃ (a−) = F (a) − ε′ = F (a+). Therefore, F̃ is continuous on (−∞, a].
Therefore (A.7) implies F̃ is continuous on (−∞, a]. The continuity of F (x)− ε′

on (a, t1] follows because F is continuous. F̃ is linear on (t1, t2], and equals F
on (t2,∞) Moreover, the left and right limits of F̃ agree at t1 and t2. Therefore
F̃ is continuous.

To prove Claim (b), it suffices to show that |F̃ (x) − F (x)| ≤ ε′ for any
x ∈ (−∞, a) ∪ (t1, t2]. Note that if x < a and F (x) ≤ ε′, then F̃ (x) = 0. Thus,
F̃ (x)−F (x) ≤ ε′ in this case. If x < a but F (x) > ε′, F̃ (x)−F (x) = ε′. Therefore,
|F̃ (x) − F (x)| ≤ ε′ for x ∈ (−∞, a). On the other hand, since t1 = F−1(1 − ε′),
F (x) is greater than 1 − ε′ on (t1, t2]. Also for x ∈ [t1, t2],

F̃ (x) ≥ F̃ (t1) = F (t1) − ε′ = F (F−1(1 − ε′)) − ε′ = 1 − 2ε′.

Thus on [t1, t2], |F̃ (x)−F (x)| is bounded by 2ε′, which is not greater than δ by
our choice of ε′. Hence, we have shown that ‖F̃ − F‖∞ < δ.

To prove Claim (c), first note that F̃ ≤ F on R. Let us partition Dp =
[H−1(p), a)∪[a, β]∪(β,H−1(1−p)]. If a = H−1(p), then we define [H−1(p), a) to
be the empty set. Similarly, (β,H−1(1−p)] is non-empty only if β < H−1(1−p).
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Note that β ≤ t1, implying [a, β] ⊂ [a, t1]. Therefore, by (A.7),

sup
x∈[a,β]

(F̃ (x) −G(x)) = sup
x∈[a,β]

(F (x) −G(x)) − ε′ ≤ sup
x∈Dp

(F (x) −G(x)) − ε′,

which equals −ε′. Now let us consider the set [H−1(p), a). Of course if a =
H−1(p), there is nothing to prove. So suppose a > H−1(p). Because Cp ∩
[H−1(p), a) = ∅, there is no x ∈ [H−1(p), a) such that F (x)−G(x) = 0. There-
fore, if supx∈[H−1(p),a)(F (x)−G(x)) = 0, the set [H−1(p), a] must contain a limit
point of Cp. However, cl(Cp) ⊂ [a′, β′] where a < a′ because a > H−1(p). There-
fore, [H−1(p), a] can not contain any limit point of Cp either. Thus we must have
supx∈[H−1(p),a)(F (x) −G(x)) < 0. Therefore, supx∈[H−1(p),a)(F̃ (x) −G(x)) < 0
as well because F̃ ≤ F . On the other hand, using H−1(1 − p) < t1, we have

sup
x∈(β,H−1(1−p)]

(F̃ (x) −G(x))

= sup
x∈(β,H−1(1−p)]

(F (x) −G(x)) − ε ≤ sup
x∈Dp

(F (x) −G(x)) − ε′,

which equals −ε′. Combining the above pieces, we obtain supx∈Dp
(F̃ (x) −

G(x)) < 0, which completes the proof of (F̃ , G) ∈ H1.

Proof of Lemma 2

Since F,G ∈ int(H0), there exists x′
0 ∈ Dp and δ > 0 such that G(x′

0) −
F (x′

0) < −3δ. Because F and G are continuous, we can find x0 ∈ int(Dp) such
that G(x0) − F (x0) < −2δ. Hence, (A.41) indicates that with probability one,
Gn(x0) − Fm(x0) < −δ for all sufficiently large m and n, which leads to

Gn(x0) − Fm(x0)√
Fm(x0)(1 − Fm(x0))

m
+ Gn(x0)(1 −Gn(x0))

n

≤ −δ√
1/m + 1/n

,

which approaches −∞ as m,n → ∞. Here we used the fact that

Fm(x0)(1 − Fm(x0))
m

+ Gn(x0)(1 −Gn(x0))
n

≤ 1
m

+ 1
n
.

Because x0 ∈ int(Dp), Fact 3.1 implies x0 ∈ Dp,m,n almost surely. Therefore,
the proof follows for the minimum t-statistic.

Now we will prove the result for for T tsep
m,n . Let us denote q = H(x0) where

H was denoted to be λF + (1 − λ)G. Since either f > 0 or g > 0 on Dp under
Condition N, it follows that h > 0 on Dp. Thus H−1(q) = x0 (see Lemma A.3.7,
pp.94, Bobkov and Ledoux, 2016). Hence,

G(H−1(q)) − F (H−1(q)) < −2δ.
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Dp,m,n

Fig 15: An illustration of Dp,m,n, Cp,m,n, and Cp,m,n(σε) as in the Proof of
Theorem 1 for (F,G) ∈ B.

Since H−1(q) ∈ int(Dp), it follows that q ∈ [p, 1 − p]. Fact 3.1 also implies that
H−1

N (q) →a.s. H
−1(q). Combined with the fact that F and G are continuous, we

obtain that
lim sup

m,n
{G(H−1

N (q)) − F (H−1
N (q))} < −δ

with probability one. Since ‖Fm−F‖∞ and ‖Gn−G‖∞ converges to zero almost
surely, the above implies

lim sup
m,n

{Gn(H−1
N (q)) − Fm(H−1

N (q))} < −δ/2

almost surely. Note that

lim sup
m,n

T tsep
m,n ≤ lim sup

m,n

√
mn

N

G(H−1
N (q)) − F (H−1

N (q))
q(1 − q) ≤ − lim

m,n

√
mn

N

δ

2q(1 − q) ,

which equals −∞ because m/N → λ. Hence, the proof follows.

A.0.2. Proof of Theorem 1

Before proving Theorem 1, we introduce some notations and two lemmas. Recall
that we defined the underlying probability space to be (Ω, int(H0), P ). There
exists A ⊂ Ω with P (A) = 1 such that as m,n → ∞, the following assertions
hold on A:

(a) ‖Fm − F‖∞ → 0, ‖Gn −G‖∞ → 0, (A.8)

(b)
∥∥√m(Fm − F ) − V1 ◦ F

∥∥
∞ → 0,

∥∥∥√n(Ĝn −G) − V2 ◦G
∥∥∥
∞

→ 0,
(A.9)
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where V1 and V2 are the Brownian bridges defined in (A.1) and (A.2), respec-
tively.
(c) The trajectories of the Brownian bridges V1 and V2 are continuous on R.

Define

ωm,n(x) = Gn(x) − Fm(x)√
Fm(x)

(
1 − Fm(x)

)
m

+
Gn(x)

(
1 −Gn(x)

)
n

(A.10)

and

ω0(x) =
√
λV2(G) −

√
1 − λV1(F )√

(1 − λ)F (x)
(
1 − F (x)

)
+ λG(x)

(
1 −G(x)

) . (A.11)

Let us denote Cp,m,n = Dp,m,n ∩ {x : F (x) = G(x)}. Proceeding as in the proof
of Fact 3.1, we can show that

Dist(Dp,m,n, Dp) → 0 and Dist(Cp,m,n, Cp) → 0 as m,n → ∞ (A.12)

on A, where Cp is the contact set Dp ∩ {x ∈ R : F (x) = G(x)} discussed in
Section 4. Now we state the first lemma, which we require for proving part (A).

Lemma A.2. Suppose D ⊂ R such that F and G are bounded away from 0 and
1 on D. Then, under the conditions of Theorem 1, the following holds on A:

lim
m,n→∞

∥∥∥∥ωm,n − ω0 −
√

mn

N
ϑ−1/2
m,n (G− F )

∥∥∥∥
D

= 0,

where

ϑm,n(x) =
nFm(x)

(
1 − Fm(x)

)
N

+
mGn(x)

(
1 −Gn(x)

)
N

. (A.13)

Moreover, on A,
lim

m,n→∞
‖ϑ−1/2

m,n − ϑ
−1/2
0 ‖D = 0, (A.14)

where
ϑ0(x) = (1 − λ)F (x)(1 − F (x)) + λG(x)(1 −G(x)).

Proof. Note that

ωm,n(x) − ω0(x) −
√

mn

N
ϑm,n(x)−1/2

(
G(x) − F (x)

)
=

√
mn

N

Gn(x) −G(x) − (Fm(x) − F (x))
ϑm,n(x)1/2

−
√
λV2(G(x)) −

√
1 − λV1(F (x))

ϑm,n(x)1/2

+
(√

λV2(G(x)) −
√

1 − λV1(F (x))
)(

1
ϑm,n(x)1/2

− 1
ϑ0(x)1/2

)
.
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Because F and G are bounded away from 0 and 1 on D, there exist c > 0 and
c′ < 1 such that F (x), G(x) ∈ (c, c′) for x ∈ D. We see that (A.8) and m/N → λ
imply on A, the following hold:

lim sup
m,n→∞

‖ϑm,n‖D, ‖ϑ0‖D < c′(1 − c), (A.15)

lim sup
m,n→∞

‖ϑ−1/2
m,n ‖D, ‖ϑ−1/2

0 ‖D < c−1/2(1 − c′)−1/2. (A.16)

Since on the probability one set A, ϑm,n converges to ϑ0 uniformly, and both
functions are bounded below on D, the following also holds:

lim
m,n→∞

‖ϑ−1/2
m,n − ϑ

−1/2
0 ‖D = 0.

Therefore,

lim sup
m,n→∞

∥∥∥∥ϑ−1/2
m,n

{√
mn

N

(
Gn −G− (Fm − F )

)
−

√
λV2(G) +

√
1 − λV1(F )

}∥∥∥∥
D

≤ lim sup
m,n→∞

‖ϑ−1/2
m,n ‖D

× lim sup
m,n→∞

∥∥∥∥√mn

N

(
Gn −G− (Fm − F )

)
−
√
λV2(G) +

√
1 − λV1(F )

∥∥∥∥
D

,

which, since lim supm,n→∞ ‖ϑ−1/2
m,n ‖D is bounded, converges to 0 on A since

m/N → λ and (A.9) holds. Also on A, the Brownian bridges V1 and V2 have
continuous trajectories, which indicates

√
λV2(G)−

√
1 − λV1(F ) is a continuous

function, and hence bounded on D. Therefore, on A,

lim sup
m,n→∞

∥∥∥∥(√λV2(G(x)) −
√

1 − λV1(F (x))
)(

1
ϑm,n(x)1/2

− 1
ϑ0(x)1/2

)∥∥∥∥
D

≤
∥∥∥√λV2(G) −

√
1 − λV1(F )

∥∥∥
D

lim sup
m,n→∞

‖ϑ−1/2
m,n − ϑ

−1/2
0 ‖D

equals zero, which completes the proof.

The second lemma, which is required for proving part (B), relies on the objects
s1 : t̃ �→ d

dtF ◦H−1(t)
∣∣
t=t̃

, s2 : t̃ �→ d
dtG ◦H−1(t)

∣∣
t=t̃

, and

L0(t) = (1− λ)
(
λ−1/2s2(t)V1(F ◦H−1(t))− (1− λ)−1/2s1(t)V2(G ◦H−1(t))

)
.

(A.17)
Note that

s1(t) = f ◦H−1(t)
λf ◦H−1(t) + (1 − λ)g ◦H−1(t)

and s2(t) = g ◦H−1(t)
λf ◦H−1(t) + (1 − λ)g ◦H−1(t) . (A.18)
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Because V1 and V2 are independent Brownian bridges, it is immediate that L0
is a Gaussian process.

We now state a lemma that concerns the two sample empirical process√
N(Fm ◦ H−1(t) − F ◦H−1(t)).

Lemma A.3. Under the setting of Theorem 1,

sup
t∈[p′,1−p′]

∣∣∣∣∣∣
√
N
(
Fm ◦ H−1(t) − F ◦H−1(t)

)
[t(1 − t)]1/2

− L0(t)
[t(1 − t)]1/2

∣∣∣∣∣∣ →p 0 (A.19)

for any p′ ∈ (0, 1/2). Moreover, L0 has continuous trajectories almost surely.

Proof of Lemma A.3. Theorem 4.1 and Corollary 4.1 of Pyke and Shorack (1968)
indicate (A.19), where here we emphasize that (A.17) represents the corrected
formula for L0, given by (30) of Ledwina and Wyłupek (2012), rather than the
original formula for this quantity given in (3.8) of Pyke and Shorack (1968).

Now observe that, because h > 0 on Dp under Condition N, H is strictly
increasing, which implies that H−1 is a continuous function. Since f , g and H−1

are continuous, (A.18) implies that s1 and s2 are both continuous. Therefore,
from (A.17) and the fact that V1 and V2 have continuous trajectories almost
surely, it is not hard to see that L0 is continuous almost surely.

Our next lemma characterizes the Gaussian process L0 on the set Cp when
Cp ⊂ int(Dp).

Lemma A.4. Suppose F and G are as in Theorem 1 and Cp ⊂ int(Dp). Then
the Gaussian process {√

λ

1 − λ
L0(t) : t ∈ H(Cp)

}
is distributed as {U(t) : t ∈ H(Cp)} where U is a Brownian bridge.

Proof of Lemma A.4. If Cp = ∅ then the statement is vacuously true. So we will
assume that Cp �= ∅. We first claim that if Cp ⊂ int(Dp), then s1(t) = s2(t) = 1
for all t ∈ H(Cp). If the claim is true, then from (A.17) it follows that

L0(t) = (1 − λ)
(
λ−1/2V1(F ◦H−1(t)) − (1 − λ)−1/2V2(G ◦H−1(t))

)
for t ∈ H(Cp). Also for t ∈ H(Cp),

F (H−1(t)) = G(H−1(t)) = λF (H−1(t)) + (1 − λ)G(H−1(t)) = H(H−1(t)).

Under the set up of Theorem 1, H has positive and continuous density on a
open neighborhood of Dp. Therefore, H is strictly increasing on this open set,
which implies H−1 is also continuous on this open set. Hence, H(H−1(t)) = t
for all t ∈ H(Cp), leading to

V1(F ◦H−1(t)) = V1(t) and V2(G ◦H−1(t)) = V2(t),
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which implies

L0(t) = (1 − λ)
(
λ−1/2V1(t) − (1 − λ)−1/2V2(t)

)
for all t ∈ H(Cp).

Since V1 and V2 are independent Brownian bridge processes, it follows that the
Gaussian process {L′(t) : t ∈ [0, 1]} defined by

L′(t) = (1 − λ)
(
λ−1/2V1(t) − (1 − λ)−1/2V2(t)

)
has variance

var(L′(t)) = (1 − λ)2
(
λ−1 + (1 − λ)−1

)
(t− t2) = 1 − λ

λ
(t− t2).

In particular, it can be seen that
√

λ/(1 − λ)L′ is a Brownian bridge. Hence the
proof follows if we can prove the claim that s1(t) = s2(t) = 1 for all t ∈ H(Cp).

Since (F,G) ∈ bd(H0), Lemma 1 implies that F − G attains maxima at Cp

whenever Cp �= ∅. Because F−G is continuously differentiable and Cp ⊂ int(Dp),
f−g = 0 on Cp. Therefore, f(H−1(t)) = g(H−1(t)) for all t ∈ H(Cp). The claim
now follows from (A.18).

A.0.3. Proof of Lemma 3

Proof of Lemma 3. Since t ∈ H(Cp), H−1(t) ∈ Cp, implying

F (H−1(t)) = G(H−1(t)) = H(H−1(t)).

Arguing as in the proof of Lemma A.4, we can show that H(H−1(t)) = t under
the set up of Theorem 1. Thus (A.17) implies

L0(t) = (1 − λ)
(
λ−1/2s2(t)V1(t) − (1 − λ)−1/2s1(t)V2(t)

)
.

Because V1 and V2 are independent Brownian bridges, L0 is distributed as a
centered normal variable with variance

var(L0(t)) = (1 − λ)2
(
λ−1s2(t)2var(V1(t)) + (1 − λ)−1s1(t)2var(V2(t))

)
= (1 − λ)2t(1 − t)

(
λ−1s2(t)2 + (1 − λ)−1s1(t)2

)
(A.20)

because
var(V1(t)) = var(V2(t)) = t(1 − t).

Thus it follows that

σ2
TSEP = λ

1 − λ

var(L0(t))
t(1 − t) = λs1(t)2 + (1 − λ)s2(t)2
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= λ(f ◦H−1(t))2 + (1 − λ)(g ◦H−1(t))2(
λf ◦H−1(t) + (1 − λ)g ◦H−1(t)

)2

where the last step follows from (A.18). This completes the proof of (4.9).
Next, we will establish the lower bound on σ2

TSEP . Since x �→ x2 is convex,
by Jensen’s inequality,

(1 − λ)s2(t)2 + λ1s1(t)2 ≥
(
(1 − λ)s1(t) + λs1(t)

)2
= 1 (A.21)

since λs1 + (1 − λ)s2 = 1 by (A.18). Therefore, (A.20) implies

var(L0(t)) ≥
1 − λ

λ
t(1 − t)

which implies
1 ≤ λ

1 − λ

var(L0(t))
t(1 − t) = σ2

TSEP . (A.22)

Since x �→ x2 is strictly convex, the inequality in (A.21) is an equality if and
only if s1(t) = s2(t). Because f and g are positive on Dp, (A.18) implies that
the latter occurs if and only if f(H−1(t)) = g(H−1(t)).

Now we will establish the upper bound on σ2
TSEP . Because λs1+(1−λ)s2 = 1,

we also have s2 = (1 − λs1)/(1 − λ). Therefore, using (A.20), we derive that
var(L0(t)) equals

(1 − λ)2t(1 − t)
(
λ−1

(
1 − λs1(t)
(1 − λ)

)2

+ s1(t)2

1 − λ

)
= t(1 − t)

(
λ−1 − 2s1(t) + λs1(t)2 + (1 − λ)s1(t)2

)
= t(1 − t)

(
λ−1 − 2s1(t) + s1(t)2

)
= t(1 − t)

(
λ−1 − 1 + (1 − s1(t))2

)
. (A.23)

Note that (A.18) implies s1(t) ∈ [0, λ−1]. On any interval, the convex function
λ−1 − 2x + x2 attains maxima at either endpoints of the interval. Therefore,

var(L0(t))
t(1 − t) ≤ max{λ−1, λ−1 − 1 + (1 − λ−1)2}

= max
{
λ−1, λ−1(λ−1 − 1)

}
.

Therefore,

σ2
TSEP = λ

1 − λ

var(L0(t))
t(1 − t) ≤ max{(1 − λ)−1, λ−1}, (A.24)

which, combined with (A.22), completes the proof of part (A) of the current
lemma.
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Now if s1(t) = λ−1, then σ2
TSEP = λ−1. Using (A.18), we can write

s1(t) = 1
λ + (1 − λ)g ◦H−1(t)/f ◦H−1(t) .

Thus s1(t) = λ−1 if and only if g ◦ H−1(t)/f ◦ H−1(t) = 0. However, under
our set up, f and g are positive on Dp, implying g ◦H−1(t)/f ◦H−1(t) > 0 for
any t ∈ [p, 1 − p]. Regardless, since the function x �→ 1/(λ + (1 − λ)x) is right
continuous at 0, given any ε > 0, there exists Cλ > 0, depending only on λ > 0,
so that if g ◦H−1(t)/f ◦H−1(t) < Cλ, then s1(t) > λ−1 − ε/2. Suppose ε is so
small such that ε/2 < λ−1 − 1. Then from (A.23) it also follows that

σ2
TSEP ≥ λ

1 − λ

(
λ−1 − 1 + (λ−1 − ε/2 − 1)2

)
≥ λ

1 − λ

(
λ−1 − 1 + (λ−1 − 1)2 − ε(λ−1 − 1)

)
= λ−1 − ε,

which completes the proof of part B of the current lemma.
Similarly, we can show that if s1(t) = 0, then σ2

TSEP = (1−λ)−1. Using (A.18)
again, we can write

s1(t) = f ◦H−1(t)/g ◦H−1(t)
λf ◦H−1(t)/g ◦H−1(t) + 1 − λ

.

Therefore s1(t) = 0 if and only if f ◦H−1(t)/g ◦H−1(t) = 0, which is impossible
since f, g > 0 on Dp under our set up. However, since the map x �→ x/(λx+1−λ)
is right continuous at 0, given any ε > 0, we can find C ′

λ > 0, depending only
on λ > 0, so that if f ◦H−1(t)/g ◦H−1(t) < C ′

λ, then s1(t) < (1 − λ)ε/(2λ). If
ε < 2λ/(1 − λ), then from (A.23), it also follows that

σ2
TSEP ≥ λ

1 − λ

(
λ−1 − 1 + (1 − (1 − λ)ε/(2λ))2

)
≥ λ

1 − λ

(
λ−1 − (1 − λ)ε/λ

)
= (1 − λ)−1 − ε,

which completes the proof of part C of the current lemma.

A.0.4. Proof of part (A)

First we will consider the case when Cp �= Dp. The main steps of the proof are
as follows:

(a) We fix ε > 0, and choose some set Cp,m,n(σε) satisfying Cp,m,n(σε) ⊂
Dp,m,n. Here Cp,m,n(σε) depends on σε, which is a random positive number
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that will be chosen appropriately. Next we partition Dp,m,n as follows (see
Figure 15):

Dp,m,n = [Dp,m,n \ Cp,m,n(σε)]︸ ︷︷ ︸
Bp,m,n(σε)

∪ [Cp,m,n(σε) \ Cp,m,n]︸ ︷︷ ︸
Ep,m,n(σε)

∪Cp,m,n.

Therefore, we can rewrite Tmin
m,n(Fm,Gn) as

min
{

inf
x∈Bp,m,n(σε)

ωm,n(x), inf
x∈Ep,m,n(σε)

ωm,n(x), inf
x∈Cp,m,n

ωm,n(x)
}
.

(A.25)
(b) We show that on A,

lim inf
m,n→∞

inf
x∈Bp,m,n(σε)

ωm,n(x) = ∞.

(c) We show that the following holds on A:

lim inf
m,n→∞

inf
x∈Ep,m,n(σε)

ωm,n(x) > lim sup
m,n→∞

inf
x∈Cp,m,n

ωm,n(x) − ε.

(d) Finally we show that on A,

lim
m,n→∞

inf
x∈Cp,m,n

ωm,n(x) = inf
x∈Cp

ω0(x),

from which, we show that, (4.8) follows.

We will restrict our attention only to the set A for this part of the proof.
However, because P (A) = 1, this serves our purpose.

Proof of step (a)

For σ > 0 and p ∈ [0, 1], let us define

Cp(σ) = {x ∈ Dp : Dist(x,Cp) < σ}. (A.26)

Because H is continuous, there exists p′ ∈ (0, p) such that H−1(p′) < H−1(p),
which implies Dp′ ⊃ Dp. For any σ > 0, we define

Cp,m,n(σ) = Cp′(σ) ∩Dp,m,n. (A.27)

The first task is to properly choose a σε so that certain properties hold on
Cp′(σε).

Since A ⊂ Ω was chosen so that on this set V1 and V2 have continuous tra-
jectories, ω0 also has continuous trajectory, which is also uniformly continuous
on Dp′ because the latter is a compact set. Hence, for each such trajectory,

σ1
ε = sup

{
σ > 0 : |x−y| < σ implies |ω0(x)−ω0(y)| < ε/2 for all x, y ∈ Dp′

}
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is well defined and positive. Note that σ1
ε is a random quantity, which can take

the value 0 on the set Ac but σ1
ε > 0 on A.

On the other hand, since Cp �= Dp and p′ < p, we have Cp′ �= Dp′ . Therefore
there exists x ∈ Dp′ so that G(x) − F (x) > 0. Suppose δp = (G(x) − F (x))/4.
Because G−F is continuous and Dp′ is compact, Dp′ \Cp′ contains at least one
interval where G − F > 2δp. Using the continuity of G − F , we can choose σ2
so small such that Dp′ \Cp′(σ2) contains at least an interval where G−F > δp,
i.e. Dp′ \ Cp′(σ2) �= ∅. We will take

σε = min(σ1
ε , σ2).

Since σ1
ε is random, σε is also random. Moreover, σε > 0 on A.

Note that, Bp,m,n(σε) and Ep,m,n(σε) can be empty for small m and n. In
that case, we define the infimum of ωm,n over those set to be ∞. Also since

inf
x∈Dp′

min{f(x), g(x)} > 0,

H−1 is continuous on p′.

A.0.5. Proof of step (b)

For any σ > 0, let us denote Bp′(σ) = Dp′ \ Cp′(σ). We claim that Bp′(σε), is
non-empty which follows because our choice of σε in step (a) implies Bp′(σε) ⊃
Bp′(σ2) where Bp′(σ2) �= ∅ by definition of σ2. By the continuity of G − F it
follows that there exists a random quantity δσε > 0 so that G − F > δσε on
Bp′(σε). Recall the definition of ϑm,n from (A.13). Since f and g are bounded
away from 0 on Dp′ , Lemma A.2 implies that on A,

inf
x∈Bp′ (σε)

ωm,n(x) ≥ inf
x∈Bp′ (σε)

ω0(x) +
√

mn

N

δp
supx∈Bp′ (σε) ϑm,n(x)1/2

+ o(1).

where the o(1) term approaches zero as m,n → ∞. However, by (A.16), ϑ−1/2
m,n

is bounded above by constant depending only on p′, F , and G on Dp′ . Noting
that the continuous function ω0 is bounded on Dp′ , and using m/N → λ, we
deduce that

lim inf
m,n→∞

inf
x∈Bp′ (σε)

ωm,n(x) = ∞

on A. Note that (A.27) implies

Bp,m,n(σε) = Dp,m,n ∩ (Cp′(σε) ∩Dp,m,n)c = Dp,m,n \ Cp′(σε).

On the set A, we thus have Dp,m,n ⊂ Dp′ eventually as m,n → ∞, which implies

Bp,m,n(σε) = Dp,m,n \ Cp′(σε) ⊂ Dp′ \ Cp′(σε) = Bp′(σε)

eventually as m,n → ∞, leading to

lim inf
m,n→∞

inf
x∈Bp,m,n(σε)

ωm,n(x) = ∞. (A.28)
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Proof of step (c)

We denote the boundary of the set Cp by bd(Cp). We can show that Cp is
a closed set, which implies bd(Cp) ⊂ Cp. Therefore, for all y ∈ bd(Cp), we
have G(y) = F (y). Therefore, by Lemma A.2, for any x ∈ Ep,m,n(σε), and
y ∈ bd(Cp)∩Dp,m,n, the following holds on A for all sufficiently large m and n:∣∣∣∣ωm,n(x) − ωm,n(y) −

√
mn

N
ϑm,n(x)−1/2

(
G(x) − F (x)

)∣∣∣∣
≤ ε/2 + sup

x∈Ep,m,n(σε),
y∈∈bd(Cp)∩Dp,m,n

|ω0(x) − ω0(y)|

(a)
≤ ε/2 + sup

|x−y|<σε, x,y∈Dp′

|ω0(x) − ω0(y)|,

which, by our choice of σε, is not larger than ε/2. Here (a) follows because
Ep,m,n(σε) ⊂ Cp,m,n(σε) ⊂ Cp′(σε) for sufficiently large m and n. The above
leads to

inf
x∈Ep,m,n(σε)

ωm,n(x) ≥
√

mn

N
inf

x∈Ep,m,n(σε)

G(x) − F (x)
ϑm,n(x)1/2

+ inf
y∈Dp,m,n∩bd(Cp)

ωm,n(y) − ε.

Since (F,G) ∈ bd(H0), we have G− F ≥ 0, which yields

lim inf
m,n→∞

inf
x∈Ep,m,n(σε)

ωm,n(x) ≥ lim sup
m,n→∞

inf
y∈Dp,m,n∩Cp

ωm,n(y) − ε.

Noting Cp,m,n = Dp,m,n ∩ Cp, we conclude this step.

Proof of step (d)

This step follows from Lemma A.2. To see this, note that, Lemma A.2 implies
that ‖ωm,n − ω0‖Cp′ → 0 on A as m,n → ∞. Because F = G on Cp′ , it also
follows that

ω0(x) =
√
λV2(F (x)) −

√
1 − λV1(F (x))√

F (x)
(
1 − F (x)

) = U ◦ F (x)√
F (x)

(
1 − F (x)

)
where U =

√
λV2 −

√
1 − λV1 is a Brownian bridge. Since on A, Dp,m,n ⊂

Dp ⊂ Dp′ for sufficiently large m and n, it entails that Cp,m,n ⊂ Cp ⊂ Cp′ for
sufficiently large m and n as well. Therefore,∥∥∥∥∥ωm,n − U ◦ F√

F (1 − F )

∥∥∥∥∥
Cp,m,n

→ 0
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as well. Since Dist(Cp,m,n, Cp) → 0 on A by (A.12), the above readily yields
that on A,

lim
m,n→∞

inf
x∈Cp,m,n

ωm,n(x) = inf
x∈Cp

U ◦ F (x)(
F (x)

(
1 − F (x)

))1/2 . (A.29)

Combining steps (a)–(d) with (A.25) yields on A,

lim sup
m,n→∞

inf
x∈Cp,m,n

ωm,n(x) − ε ≤ lim inf
m,n→∞

Tmin
m,n(Fm,Gn)

≤ lim sup
m,n→∞

Tmin
m,n(Fm,Gn) ≤ lim inf

m,n→∞
inf

x∈Cp,m,n

ωm,n(x).

Letting ε → 0, we have

lim
m,n→∞

Tmin
m,n(Fm,Gn) = lim

m,n→∞
inf

x∈Cp,m,n

ωm,n(x) = inf
x∈Cp

U ◦ F (x)√
F (x)

(
1 − F (x)

)
on A, where the last step follows from (A.29). The above concludes the proof
of (4.8) when Cp �= Dp.

Now suppose Cp = Dp. In this case, we will only use Step C and D. Let
us restrict our attention to only A. We define σε = σ1

E
. Letting Cp′(σε) be

as in (A.26), we have Dp ⊂ int(Cp′(σε)), and also, Dp,m,n ⊂ int(Cp′(σε)) for
sufficiently large m and n. Let us also denote Cp,m,n as in (A.27) and Ep,m,n =
Cp,m,n(σε)\Cp,m,n as in step C. Then for large m and n, the partition Dp,m,n =
Ep,m,n(σε) ∪ Cp,m,n is valid. Therefore, the proof follows from combining Step
C and D.

Proof of part (B) of Theorem 1

We now prove part (B). For the ease of reference, we let

νm,n(t) =

√
mn

N

(
Gn ◦ H−1(t) − Fm ◦ H−1(t)

)
[t(1 − t)]1/2

.

Note that T tsep
m,n (Fm,Gn) = inft∈[p,1−p] νm,n(t).

We start by studying the numerator of the above display. Noting that NH =
mFm + nGn, we derive that√

mn

N

(
Gn ◦ H−1(t) − Fm ◦ H−1(t)

)
= −

√
mN

n

(
Fm ◦ H−1(t) − t

)
+
√

mN

n

(
H ◦H−1(t) − t

)
.
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Combining the fact that supt∈[0,1]

∣∣∣∣H ◦ H−1(t) − t

∣∣∣∣ ≤ 1/N (p. 762 of Pyke and

Shorack, 1968) with the fact that m/N → λ, we obtain that

sup
t∈[0,1]

∣∣∣∣√mn

N

(
Gn ◦ H−1(t) − Fm ◦ H−1(t)

)
+

√
mN

n

(
Fm ◦ H−1(t) − t

)∣∣∣∣ → 0

(A.30)
with probability one. The above readily shows that

sup
t∈[p,1−p]

∣∣∣∣∣νm,n(t) +
√

mN

n

Fm ◦ H−1(t) − t

[t(1 − t)]1/2

∣∣∣∣∣ →a.s. 0.

Combining the above with (A.19), we see that

sup
t∈[p,1−p]

∣∣∣∣νm,n(t) +
√

λ

1 − λ

L0(t)
[t(1 − t)]1/2

+
√

mN

n

(F ◦H−1(t) − t)
[t(1 − t)]1/2

∣∣∣∣ →p 0.

Upon noting that

F ◦H−1(t)− t = F ◦H−1(t)−H ◦H−1(t) = (1−λ)
(
F ◦H−1(t)−G◦H−1(t)

)
,

the preceding limit reduces to

sup
t∈[p,1−p]

∣∣∣∣νm,n(t) +
√

λ

1 − λ

L0(t)
[t(1 − t)]1/2

− (1 − λ)
√

mN

n
ν(t)

∣∣∣∣ →p 0, (A.31)

where
ν(t) = [G ◦H−1(t) − F ◦H−1(t)]/[t(1 − t)]1/2. (A.32)

If we take any subsequence of the random sequence on the left side of the
above, we can find a further subsequence that approaches zero almost surely.
Suppose that we can show, along the latter subsequence, that T tsep

m,n (Fm,Gn) −
inft∈H(Cp) U(t)/[t(1− t)]1/2 converges almost surely to zero. In light of the fact
that the limit does not depend on the choice of sequence or subsequence, Theo-
rem 5.7 of Shorack (2000) would then imply that the whole sequence converges
weakly to the same limit, namely zero. Since weak convergence to a constant is
equivalent to convergence in probability to that constant, this would complete
the proof. Therefore, in what follows, we use m′, n′ to denote members of a
subsequence along which (A.31) holds almost surely and set out to prove that,
as m′, n′ → ∞,

T2,m′,n′(Fm′ ,Gn′) +
√

λ

1 − λ
inf

t∈H(Cp)

L0(t)√
t(1 − t)

→a.s. 0. (A.33)

Hence we assume that there exists A′ ⊂ Ω such that P (A′) = 1 and, as m′, n′ →
∞,

sup
t∈[p,1−p]

∣∣∣∣νm′,n′(t) +
√

λ

1 − λ

L0(t)
[t(1 − t)]1/2

− (1 − λ)
√

m′N ′

n′ ν(t)
∣∣∣∣ → 0 (A.34)
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on A′, where N ′ = m′ +n′. We choose A′ so that L0 has continuous trajectories
on A′, which Lemma A.3 shows is possible.

The rest of the proof is similar to the proof of part (A) because the asymp-
totics of the infimum of νm′,n′ over [p, 1 − p] are largely governed by its nu-
merator. Indeed, replacing the denominator of (A.10) from part (A) by the
denominator of [t(1 − t)]1/2 for part (B) changes little since this new denom-
inator is also bounded away from 0 on [p, 1 − p]. Nonetheless, there are some
differences, which we detail below.

Fix ε > 0. We replace σε from the proof of part (A) by σ′
ε, where we define

σ′
ε as follows. If t, t′ ∈ [p, 1 − p] satisfy |t− t′| < σ′

ε, then, on A′,√
λ

1 − λ

∣∣∣∣ L0(t)
[t(1 − t)]1/2

− L0(t′)
(t′(1 − t′))1/2

∣∣∣∣ < ε/2. (A.35)

Note that since [p, 1 − p] is a compact set, and the function L0 has continuous
trajectories on A′, the random quantity σ′

ε > 0 on A′.
Recalling h = λf + (1 − λ)g, we let

bp = sup
z∈[H−1(p),H−1(1−p)]

h(z), (A.36)

which is clearly positive. Because f and g are continuous, h is also continuous,
and therefore bp < ∞. Taking σ̃ε = σ′

ε/bp, and similar to (A.26), defining

Cp(z) = {x ∈ Dp′ : Dist(x,Cp′) < z}, for all z > 0,

we observe that [p, 1−p] can be written as the union of the following three sets:

B̃p(σ̃ε) = {t ∈ [p, 1 − p] : H−1(t) ∈ Dp \ Cp(σ̃ε)},
Ẽp(σ̃ε) = {t ∈ [p, 1 − p] : H−1(t) ∈ Cp(σ̃ε) \ Cp},
H(Cp) = {t ∈ [p, 1 − p] : H−1(t) ∈ Cp}.

Note that, the Dp′ used in the proof of part (a) of the current theorem is
replaced by Dp in the above partitioning. Part (B) differs from part (A) in that
T tsep
m,n (Fm,Gn) is the infimum of a random quantity, namely νm,n, over a fixed set

[t, 1−t], whereas Tmin
m,n(Fm,Gn) calculates the infimum of ωm,n over a random set

Dp,m,n. To deal with this randomness, the asymptotics in part (A) were analyzed
on a set Dp′ ⊃ Dp constructed so as to ensure Dp′ ⊃ Dp,m,n for sufficiently large
m and n almost surely. Since part (B) does not have this additional difficulty, it
suffices to study the behavior of νm,n on Dp, circumventing the need to consider
Dp′ .

We now show that

|t− t′| ≤ σ′
ε for all t ∈ Ẽp(σ̃ε) and t′ ∈ bd(H(Cp)). (A.37)

To prove this, we first fix t ∈ Ẽp(σ̃ε) and t′ ∈ bd(H(Cp)). Because H−1 is
continuous, it holds that H−1(t′) ∈ bd(Cp). Thus, |H−1(t) − H−1(t′)| ≤ σ̃ε.
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Note that the continuity of H also implies that H(H−1(t0)) = t0 for all t0 ∈
[p, 1− p]. By the mean value theorem applied to the function H, there exists an
a between H−1(t) and H−1(t′) such that t−t′ = h(a)[H−1(t)−H−1(t′)]. Hence,
|t− t′| ≤ bp|H−1(t)−H−1(t′)| where bp is as defined in (A.36). Combining this
display with the fact that |H−1(t) −H−1(t′)| ≤ σ̃ε and plugging in σ̃ε = σ′

ε/bp
shows that (A.37) indeed holds.

Recall the definition of ν(t) from (A.32). Because ν(t) ≥ 0, one can show that
the infimum of ν over the random set B̃p(σ̃ε) is bounded below by some random
number δσ̃ε > 0. Therefore, using (A.34) and imitating the proof of (A.28), we
can show that

lim inf
m′,n′→∞

inf
t∈B̃p(σ̃ε)

νm′,n′(t) → ∞ on A′. (A.38)

Next let us consider t ∈ Ẽp(σ̃ε) and t′ ∈ bd(H(Cp)). Note that (A.31)
and (A.37) imply that the following holds on A′:∣∣∣∣νm′,n′(t) − νm′,n′(t′) − (1 − λ)

√
m′N ′

n′ ν(t)
∣∣∣∣

≤ o(1) −
√

λ

1 − λ
sup

t,t′∈St

∣∣∣∣ L0(t)
[t(1 − t)]1/2

− L0(t′)
(t′(1 − t′))1/2

∣∣∣∣,
where St = {t, t′ ∈ [p, 1 − p] : |t− t′| < σ′

ε}. Equation A.35 yields that√
λ

1 − λ
sup

t,t′∈St

∣∣∣∣ L0(t)
[t(1 − t)]1/2

− L0(t′)
(t′(1 − t′))1/2

∣∣∣∣ < ε/2

on A′, which indicates that, on this set, for all sufficiently large m′ and n′,∣∣∣∣νm′,n′(t) − νm′,n′(t′) − (1 − λ)
√

m′N ′

n′ ν(t)
∣∣∣∣ < ε.

Because the above holds for any t ∈ Ẽp(σ̃ε) and t′ ∈ bd(H(Cp)), we obtain that

inf
t∈Ẽp(σ̃ε)

νm′,n′(t) ≥ inf
t′∈H(Cp)

νm′,n′(t′) +
√

m′N ′

n′ inf
t∈Ẽp(σ̃ε)

ν(t) − ε.

The fact that ν is non-negative on [p, 1−p] yields that inft∈Ẽp(σ̃ε) ν(t) ≥ 0. Thus,
the above shows that inft∈Ẽp(σ̃ε) νm′,n′(t) ≥ inft∈H(Cp) νm′,n′(t) − ε. Therefore,
using (A.38), we derive that on A′, for sufficiently large m′ and n′,∣∣∣∣ inf

t∈[p,1−p]
νm′,n′(t) − inf

t∈H(Cp)
νm′,n′(t)

∣∣∣∣ ≤ ε.

As ε > 0 was arbitrary, the above shows that on A′, inft∈[p,1−p] νm′,n′(t) −
inft∈H(Cp) νm′,n′(t) converges to zero as m′, n′ → ∞. Finally, (A.17) and (A.34)
yield that on A′,

lim sup
m′,n′→∞

sup
t∈H(Cp)

∣∣∣∣νm′,n′(t) −
√

λ

1 − λ

L0(t)√
t(1 − t)

∣∣∣∣ = 0.
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Recall that A′ was chosen to satisfy P (A′) = 1. Thus, the above conver-
gence holds with probability one, from which, (A.33) follows. As was discussed
above (A.33), the fact that this equation holds completes the proof of part (B).
Part (C) follows from Lemma A.4.

The proof of Theorem 2 for the minimum t-statistic can be found in Whang
(2019) (see also Davidson and Duclos, 2013). However, we still include it here
for the sake of completeness.

Proof of Theorem 2

If (F,G) ∈ H1, we have G(x) > F (x) for all x ∈ Dp. Since Dp is compact, the
continuous function G − F attains its minima at some x0 ∈ Dp. Therefore, it
follows that

inf
x∈Dp

(G(x) − F (x)) > 3δ

for some δ > 0. We will show that this implies that

lim inf
m,n→∞

inf
x∈Dp,m,n

(
Gn(x) − Fm(x)

)
> δ (A.39)

with probability one. As a result, Tmin
m,n →p ∞ follows because (A.39) indicates

that with probability one, for all x ∈ Dp,m,n,

Gn(x) − Fm(x)√
Fm(x)(1 − Fm(x))

m
+ Gn(x)(1 −Gn(x))

n

≥ δ√
Fm(x)(1 − Fm(x))

m
+ Gn(x)(1 −Gn(x))

n

for all large m and n. However, the right hand side of the last display is bounded
below by

√
mn/Nδ. Since m/N → λ, it follows that Tmin

m,n →p ∞. Hence, it
suffices to prove (A.39). To this end, note that, since max(f, g) > 0 on an
open neighborhood of Dp, H = λF + (1 − λ)G has positive density on this
neighborhood. Therefore, H is a continuous and strictly increasing function on
this neighborhood. Therefore H−1 is continuous and strictly increasing in this
neighborhood as well. Hence, we can choose p′ < p such that H−1(p′) < H−1(p),
and

inf
x∈Dp′

(G(x) − F (x)) > 2δ.

For all sufficiently large m and n, Dp,m,n ⊂ Dp′ almost surely by Fact 3.1.
Therefore, with probability one,

inf
x∈Dp,m,n

(
G(x) − F (x)

)
≥ 2δ (A.40)
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as m,n → ∞. On the other hand, note that

sup
x∈Dp,m,n

∣∣∣∣(Gn(x) − Fm(x)
)
−

(
G(x) − F (x)

)∣∣∣∣
≤ sup

x∈R

∣∣∣∣Gn(x) −G(x)
∣∣∣∣ + sup

x∈R

∣∣∣∣Fm(x) − F (x)
∣∣∣∣, (A.41)

which converges to 0 almost surely. Therefore, (A.39) follows, which completes
the proof for Tmin

m,n.
For T tsep

m,n , note that (A.39) implies

T tsep
m,n (Fm,Gn) ≥

√
mn

N
inf

x∈Dp,m,n

Gn(x) − Fm(x)√
t(1 − t)

>

√
mn

N
δ inf
t∈[p,1−p]

(t(1−t))−1/2,

which diverges to +∞, thus completing the proof.

A.1. Proofs for the shape-constrained test statistics

Before going into the proof for the shape-constrained test statistics, we state
and prove a useful lemma.

Lemma A.5. Suppose that f is a unimodal density satisfying Condition A.
Let f̂m be the unimodal density estimator of Birgé, based on the independent
observations X1, . . . , Xm with density f . Here we take η = o(m−1), where η is
the tuning parameter in Section 3. Denote by F̂m the distribution function of
f̂m. Further suppose that f̂0

m is the Grenander estimator of f based on the true
mode M . Then the following assertions hold:

(A)
√
m

∫
R
|f̂m(x) − f̂0

m(x)|dx →a.s. 0.
(B)

√
m‖F̂m − Fm‖∞ →a.s. 0.

(C)
∥∥∥√m(F̂m − F ) − V1 ◦ F

∥∥∥
∞

→a.s. 0, where V1 is as defined in (A.1).

Proof. Suppose that M is the true mode of the density f . In this case F can be
written as (Rao, 1969)

F = αF+ + (1 − α)F−,

where α = PF (X ≤ M), and F+ and F− are the conditional distributions on
(−∞,M ] and [M,∞), respectively, i.e.

F+(x) = F (x)1[x ≤ M ]
F (M) and F−(x) =

(
F (x) − F (M)

)
1[x > M ]

1 − F (M) .

Let us denote the distribution function of f̂0
m by F̂ 0

m. From Rao (1969) it
follows that F̂ 0

m can be expressed as

F̂ 0
m = α̂mF̂ 0,+

m + (1 − α̂m)F̂ 0,−
m (A.42)



Shape-constrained inference in vaccine trials 5909

where α̂m is the sample proportion on (−∞.M ], and F̂ 0,+
m and F̂ 0,−

m are the
monotonoe Grenander estimates of F+ and F−, respectively. Denote by F+

m

and F−
m, respectively, the empirical distribution functions corresponding to the

observations in (−∞,M ] and [M,∞). Since F is continuous, the probability
that Xi = M for some i ∈ {1, . . . ,m} is 0. Hence, there is no ambiguity in the
above definition of F̂ 0

m. Also, the empirical distribution of the Xi’ writes as

Fm = α̂mF+
m + (1 − α̂m)F−

m.

It is well known that under Condition A, the Grenander estimator F̂ 0,+
m

satisfies ‖√m(F̂ 0,+
m −F+)−V1 ◦F+‖∞ →a.s. 0 and

√
m‖F̂ 0,+

m − F+
m‖∞ →a.s. 0

(see Theorem 2.1 of Beare et al. (2017), the original result dates back to Kiefer
and Wolfowitz (1976)). Similar results hold for F̂ 0,−

m and F−
m.

Since α̂m →a.s. α with probability one, we conclude that
√
m‖F̂ 0

m−Fm‖∞≤ α̂m

√
m‖F̂ 0,−

m −F−
m‖∞+(1−α̂m)

√
m‖F̂ 0,+

m −F+
m‖∞ →a.s. 0.

(A.43)

To prove part (A) of the current lemma, now we invoke Theorem 1 of Birgé,
which states that

√
m

2

∫
R

|f̂m(x) − f̂0
m(x)|dx ≤

√
mη +

√
m‖F̂ 0

m − Fm‖∞,

where η is as defined in Section 3, which implies that, in our case, η = O(1/m).
This, combined with (A.43), proves that the right hand side of the above display
approaches 0 almost surely. Thus part (A) of the current lemma is proved.

Now note that since
√
m‖F̂m−Fm‖∞ ≤ √

m‖F̂m−F̂ 0
m‖∞+

√
m‖F̂ 0

m−Fm‖∞,
and

‖F̂m − F̂ 0
m‖∞ ≤

∫
R

|f̂m(x) − f̂0
m(x)|dx,

part (B) of the current lemma follows by part (A) and (A.43).
Finally, part (C) of the current lemma follows by noting that∥∥∥√m(F̂m−F ) − V1 ◦ F

∥∥∥
∞

≤
∥∥∥√m(F̂m − Fm)

∥∥∥
∞

+
∥∥√m(Fm − F ) − V1 ◦ F

∥∥
∞,

which converges to 0 as m → ∞ by part (B) of the current lemma and (A.1).

A.1.1. Proof of Lemma 4

Let us define

ϑ̂m,n(x) = n

N
F̂m(x)

(
1 − F̂m(x)

)
+ m

N
Ĝn(x)

(
1 − Ĝn(x)

)
.

Recalling the definition of ϑm,n from (A.13), we obtain that

Tmin
m,n(F̂m, Ĝn) − Tmin

m,n(Fm,Gn)
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≤
(
mn

N

)1/2{
inf

x∈Dp,m,n

F̂m(x) − Ĝn(x)
ϑ̂m,n(x)1/2

− inf
x∈Dp,m,n

Fm(x) −Gn(x)
ϑm,n(x)1/2

}

≤
(
mn

N

)1/2

sup
x∈Dp,m,n

∣∣∣∣ F̂m(x) − Fm(x) −
(
Ĝn(x) −Gn(x)

)
ϑm,n(x)1/2

+ (F̂m(x) − Ĝn(x))
(
ϑ̂m,n(x)−1/2 − ϑm,n(x)−1/2

)∣∣∣∣
≤
(
mn

N

)1/2{
sup

x∈Dp,m,n

|F̂m(x)−Fm(x)|+ sup
x∈Dp,m,n

|Ĝn(x)−Gn(x)|
}
‖ϑ−1/2

m,n ‖Dp,m,n

+
(
mn

N

)1/2

sup
x∈Dp,m,n

∣∣∣∣ϑm,n(x)1/2 − ϑ̂m,n(x)1/2

ϑm,n(x)1/2ϑ̂m,n(x)1/2

∣∣∣∣. (A.44)

Since f, g are bounded away from 0 on an open interval that includes Dp, we
can find p′ < p so that f and g are bounded away from 0 on Dp′ . Lemma A.2
then indicates that ‖ϑ−1/2

m,n ‖Dp′ is bounded away from 0 with probability one.
Since Dist(Dp,m,n, Dp) →a.s. 0 by (A.12), Dp,m,n ⊂ Dp′ almost surely for all
sufficiently large m and n. As a result, ‖ϑ−1/2

m,n ‖Dp,m,n is also bounded with
probability one.

Therefore, using m/N → λ and Part (B) of Lemma A.5, we conclude that(
mn

N

)1/2

sup
x∈Dp,m,n

{
|F̂m(x)−Fm(x)|+ |Ĝn(x)−Gn(x)|

}
‖ϑ−1/2

m,n ‖Dp,m,n →a.s. 0.

(A.45)
Now, observe that we can write

ϑm,n(x)1/2 − ϑ̂m,n(x)1/2

ϑm,n(x)1/2ϑ̂m,n(x)1/2
= ϑm,n(x) − ϑ̂m,n(x)

ϑm,n(x)1/2ϑ̂m,n(x)1/2
(
ϑ

1/2
m,n(x) + ϑ̂

1/2
m,n(x)

) .
Since Fm, F̂m,Gn, and Ĝn take values between 0 and 1, it follows that

|ϑm,n(x) − ϑ̂m,n(x)| ≤ 2n
N

|F̂m(x) − Fm(x)| + 2m
N

|Ĝn(x) −Gn(x)|.

Therefore, another application of Part (B) of Lemma A.5 combined with the
fact that m/N → λ entails that(

mn

N

)1/2

sup
x∈Dp,m,n

|ϑ̂m,n(x) − ϑm,n(x)| →a.s. 0.

Since ‖ϑ−1/2
m,n ‖Dp,m,n is bounded on Dp,m,n almost surely, the above implies that

‖ϑ̂−1/2
m,n ‖Dp,m,n is also bounded on Dp,m.n almost surely. Hence,(

mn

N

)1/2
sup

x∈Dp,m,n

ϑm,n(x) − ϑ̂m,n(x)
ϑm,n(x)1/2ϑ̂m,n(x)1/2

(
ϑ

1/2
m,n(x) + ϑ̂

1/2
m,n(x)

) →a.s. 0,
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which combined with (A.44) and (A.45), implies that

Tmin
m,n(F̂m, Ĝn) − Tmin

m,n(Fm,Gn) →a.s. 0.

Similarly one can show that Tmin
m,n(Fm,Gn) − Tmin

m,n(F̂m, Ĝn) →a.s. 0, leading to

|Tmin
m,n(Fm,Gn) − Tmin

m,n(F̂m, Ĝn)| →a.s. 0.

Using part (B) of Lemma A.5 and m/N → λ in the second step, we also
deduce that

|T tsep
m,n (F̂m, Ĝn) − T tsep

m,n (Fm,Gn)|

≤
(
mn

N

)1/2 supx∈R
|F̂m(x) − Fm(x)| + supx∈R

|Ĝn(x) −Gn(x)|
inf

z∈[p,1−p]

√
z(1 − z)

,

which converges to zero almost surely.
It remains to prove that |Twrs

m,n(F̂m, Ĝn)−Twrs
m,n(Fm,Gn)| converges to 0 almost

surely. To this end, we first note that ξ(F,G) =
∫
R
FdG is Hadamard differen-

tiable with respect to the norm ‖ · ‖∞ at every pair of distribution functions
(F,G) (see Section 5, pages 362–371 Lehmann, 1975), where the derivative at
(F,G) is given by

ξ̇(F,G;μX , μY ) =
∫
R

μXdG−
∫
R

μY dF,

where μX : R �→ R and μY : R �→ R are bounded continuous functions. Observe
that we can write(

mn

N + 1

)1/2(
ξ(F̂m, Ĝn) − ξ(F,G)

)

=
(

mn

N(N + 1)

)1/2 ξ

(
F + N−1/2Δ̂m,F , G + N−1/2Δ̂n,G

)
− ξ(F,G)

N−1/2 ,

where
Δ̂m,F =

√
N(F̂m − F ); Δ̂n,G =

√
N(Ĝn −G).

Note that part (C) of Lemma A.5 and the fact that m/N → λ imply that as
m,n → ∞,∥∥∥Δ̂m,F − λ−1/2V1 ◦ F

∥∥∥
∞

→a.s. 0; [
∥∥∥Δ̂n,G − (1 − λ)−1/2V2 ◦G

∥∥∥
∞

→a.s. 0,

and
√

mn/{N(1 + N)} →
√
λ(1 − λ). Therefore, the Hadamard differentiabil-

ity of ξ implies that

∣∣∣∣( mn

N(N + 1)

)1/2 ξ

(
F + N−1/2Δ̂m,F , G + N−1/2Δ̂n,G

)
− ξ(F,G)

N−1/2 −Y

∣∣∣∣ →a.s. 0,
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where Y is the random variable ξ̇(μX , μY ;F,G) with μX =
√

1 − λV1 ◦ F , and
μY =

√
λV2 ◦G. Thus, we have established∣∣∣∣( mn

N + 1

)1/2(
ξ(F̂m, Ĝn) − ξ(F,G)

)
− Y

∣∣∣∣ →a.s. 0.

Similarly using (A.1), (A.2), and m/N → λ, one can show that∣∣∣∣( mn

N + 1

)1/2(
ξ(Fm,Gn) − ξ(F,G)

)
− Y

∣∣∣∣ →a.s. 0.

Then the proof for Twrs
m,n(F̂m, Ĝn) follows noting

12−1/2|Twrs
m,n(F̂m, Ĝn) − Twrs

m,n(Fm,Gn)|

≤
∣∣∣∣( mn

N + 1

)1/2(
ξ(F̂m, Ĝn) − ξ(F,G)

)
− Y

∣∣∣∣
+

∣∣∣∣( mn

N + 1

)1/2(
ξ(Fm,Gn) − ξ(F,G)

)
− Y

∣∣∣∣,
which converges to 0 almost surely.

A.1.2. Proof of Lemma 5

We can find p′ < p such that f and g are positive on Dp′ . Theorem 4.4 of
Dümbgen and Rufibach, Condition B1, and Condition B2 imply that

sup
z∈Dp′

|F̃m(z) − Fm(z)| = op(m−1/2),

and
sup

z∈Dp′
|G̃n(z) −Gn(z)| = op(n−1/2).

Recall the set Dp,m,n defined in (4.1). We note that, for sufficiently large N ,
Dp,m,n ⊂ Dp′ with probability one, indicating

sup
u∈Dp,m,n

|F̃m(u)− Fm(u)|+ sup
x∈Dp,m,n

|G̃n(x)−Gn(x)| = op(m−1/2) + op(n−1/2),

(A.46)
which is op(N−1/2) since m/N → λ. This result is similar to Lemma A.5(B) for
unimodal densities, which is critical to proving the asymptotic equivalence be-
tween Tmin

m,n(F̂m, Ĝn) and Tmin
m,n(Fm,Gn), and between T tsep

m,n (F̂m, Ĝn) and
T tsep
m,n (Fm,Gn) in Lemma 4. As a consequence, the rest of the proof will be

nearly identical to the proof of Lemma 4. Hence, we only highlight the main
steps of the proof.

Let us define

ϑ̃m,n(x) = n

N
F̃m(x)

(
1 − F̃m(x)

)
+ m

N
G̃n(x)

(
1 − G̃n(x)

)
.
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Recalling the definition of ϑm,n from (A.13), and proceeding like the proof of
Lemma 4, we can prove a log-concave analogue of (A.44), that is

Tmin
m,n(F̃m, G̃n) − Tmin

m,n(Fm,Gn)

≤
(
mn

N

)1/2{
inf

x∈Dp,m,n

F̃m(x) − G̃n(x)
ϑ̃m,n(x)1/2

− inf
x∈Dp,m,n

F̃m(x) − G̃n(x)
ϑm,n(x)1/2

}
≤
(
mn

N

)1/2{
sup

x∈Dp,m,n

|F̃m(x)−Fm(x)|+ sup
x∈Dp,m,n

|G̃n(x)−Gn(x)|
}
‖ϑ−1/2

m,n ‖Dp,m,n

+
(
mn

N

)1/2

sup
x∈Dp,m,n

∣∣∣∣ϑm,n(x)1/2 − ϑ̃m,n(x)1/2

ϑm,n(x)1/2ϑ̃m,n(x)1/2

∣∣∣∣.
Since f, g are bounded away from 0 on an open interval that includes Dp, using
Lemma A.2, we can show that ‖ϑ−1/2

m,n ‖Dp,m,n is bounded with probability one.
Since m/N → λ, by (A.46) it follows that

(
mn

N

)1/2
sup

x∈Dp,m,n

{
|F̃m(x)−Fm(x)|+|G̃n(x)−Gn(x)|

}
‖ϑ−1/2

m,n ‖Dp,m,n = op(1).

Note that

ϑm,n(x)1/2 − ϑ̃m,n(x)1/2

ϑm,n(x)1/2ϑ̃m,n(x)1/2
= ϑm,n(x) − ϑ̃m,n(x)

ϑm,n(x)1/2ϑ̃m,n(x)1/2
(
ϑ

1/2
m,n(x) + ϑ̃

1/2
m,n(x)

) .
Analogous to the proof of lemma 4, using (A.46), we can show that

(
mn

N

)1/2

sup
x∈Dp,m,n

|ϑ̃m,n(x) − ϑm,n(x)| = op(1).

Since ‖ϑ−1/2
m,n ‖Dp,m,n is bounded almost surely, the above implies that

‖ϑ̃−1/2
m,n ‖Dp,m,n is also bounded almost surely. Therefore another application

of (A.46) yields that

Tmin
m,n(F̃m, G̃n) − Tmin

m,n(Fm,Gn) = op(1).

Similarly one can show that Tmin
m,n(Fm,Gn) − Tmin

m,n(F̃m, G̃n) is op(1), which im-
plies |Tmin

m,n(F̃m, G̃n) − Tmin
m,n(Fm,Gn)| converges to 0 in probability. The proof

of
|T tsep

m,n (F̃m, G̃n) − T tsep
m,n (Fm,Gn)| →p 0

is analogous to the proof of |T tsep
m,n (F̂m, Ĝn)−T tsep

m,n (Fm,Gn)| = op(1) in Lemma 4.



5914 N. Laha et al.

Appendix B: Proofs for Section 5

Although the aim of the current section is to derive the asymptotic distribution
of D2(f̂m, ĝn), we will prove a more general result on plug-in estimators of
integrated functionals, which may be of independent interest. Theorem 3 then
follows as a special case.

We keep using the notations and terminologies developed in Appendix A.
Recall that we defined the set of all densities on R by P. Let P1 ⊂ P. Suppose
that T : P2

1 �→ R is a functional of the form

T (f, g) =
∫
R

v
(
f(x), g(x)

)
dx, (B.1)

where v : R2 �→ R is a known function. In our case, T (f, g) equals H(f, g)2,
leading to

v
(
f(x), g(x)

)
= 2−1

(√
f(x) −

√
g(x)

)2
.

Now we provide a brief background on a needed concept, namely on influence
functions. Define the set of all densities on R by P. Consider a functional T :
P2 �→ R. Suppose that f and g belong to P, and denote the corresponding
distribution functions by F and G, respectively. Suppose the functions x �→
ψf (x; f, g) and x �→ ψg(x; f, g) satisfy the following display for all f1 and g1 in
P:

∂

∂t
T (F + t(F1 − F ), G)

∣∣∣∣
t=0

=
∫
R

ψf (x; f, g)f1(x)dx, (B.2)

∂

∂t
T (F,G + t(G1 −G))

∣∣∣∣
t=0

=
∫
R

ψg(x; f, g)g1(x)dx, (B.3)

where above F1 and G1 represent the cumulative distribution functions cor-
responding to f1 and g1. Then ψf and ψg represent the influence functions
of T (respectively F - and G-almost surely unique) under the nonparametric
model (Van der Vaart, 1998, p. 292). When T (f, g) equals the Hellinger dis-
tance D2(f, g), it follows that

ψf (x; f, g) = 2−1
(

1 −
√

g(x)
f(x) −D2(f, g)

)
1supp(f)(x), (B.4)

ψg(x; f, g) = 2−1
(

1 −
√

f(x)
g(x) −D2(f, g)

)
1supp(g)(x). (B.5)

We have already mentioned in Section 5 that the Von Mises Expansion (VME)
plays a critical role in the proofs of this section. We define the first order VME
of T in the same lines as Kandasamy et al. (2015). Suppose that T is Gateaûx
differentiable, and the corresponding influence functions ψf and ψg (see (B.2)
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in Section 5) exist. Then we say that T : P2
1 �→ R has a first order VME if it

satisfies the following for all f1, f2, g1, g2 ∈ P1:

T (f2, g2) = T (f1, g1) +
∫
R

ψf (x; f1, g1)f2(x)dx +
∫
R

ψg(x; f1, g1)g2(x)dx

+ O(‖f1 − f2‖2
2) + O(‖g1 − g2‖2

2). (B.6)

The first order VME implies that T can be written as a linear term plus second
order bias term, i.e. T is sufficiently smooth. Kandasamy et al. (2015) gives
examples of many T which has first order VME.

Let fm and gn be estimators of f and g based on samples of size m and n,
respectively. We denote the corresponding distribution functions by Fm and Gn.
We aim to show that under some regularity conditions, the plug-in estimator
T (fm, gn) is

√
N -consistent for estimating T (f, g).

The first condition we require is related to the weak convergence of the pro-
cesses

√
m(Fm − F ) and

√
n(Gn −G) to Brownian processes.

Condition C1. The distribution functions Fm and Gn corresponding to den-
sity estimators fm and gn satisfy

√
m(Fm−F ) →d V1(F ) and

√
n(Gn−G) →d

V2(G), where V1 and V2 are Brownian bridges.

The second condition involves the order of the L2 error in estimating f and
g. In particular, we require ‖fm − f‖2

2 and ‖gn − g‖2
2 to be of order op(m−1/2)

and op(n−1/2), respectively.

Condition C2. The density estimators fm and gn of f and g satisfy

Op(‖fm − f‖2
2) = op(m−1/2) and Op(‖gn − g‖2

2) = op(n−1/2). (B.7)

If the model is correctly specified, and f is bounded, many density estimators
fm are also bounded with high probability, leading to

Op(‖fm − f‖2
2) = D2(fm, f)Op(1).

Note that if fm also satisfies D2(fm, f) = op(m−1/2), Condition C2 follows.
Our next condition requires the influence functions ψf (·; f, g) and ψg(·; f, g)

to be of bounded total variation on R. We say a function μ : R �→ R is of
bounded total variation on R, if there exists a generalized derivative (in the
sense of distribution) μ′ of μ (cf. Section 3.2 of Ambrosio et al., 2000) so that∫
R
|μ′(x)|dx < ∞. If μ is of bounded total variation on R, then μ is also of

bounded variation on R.

Condition I. The maps x �→ ψf (x; f, g) and x �→ ψg(x; f, g) are of bounded
total variation.

We are now ready to state the main theorem of this section, which gives
the asymptotic distribution of T (fm, gn) under the above-stated conditions.
Later we will show that when T (f, g) = D2(f, g), the conditions are satisfied.
Thus Theorem 3 will follow as a corollary to Theorem 4. Related literature (cf.
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Kandasamy et al., 2015) implies that the asymptotic variance of T (fm, gn) as
given by Theorem 4 agrees with the asymptotic lower bound for this case under
the nonparametric model.

Theorem 4. Suppose P1 ⊂ P. Let T : P2
1 �→ R be a functional of the form (B.1)

satisfying the first order VME in (B.6). Consider f, g ∈ P1. We assume that the
influence functions ψf and ψg defined in (B.2) satisfy Condition I. Let fm and
gn be estimators of f and g based on two samples of size m and n, respectively,
where m and n satisfy m/N → λ. Let us denote N = m + n. Further suppose
fm, gn ∈ P1 satisfy Conditions C1 and C2. Then we have

√
N

(
T (fm, gn) − T (f, g)

)
→d N(0, σ2

f,g),

where

σ2
f,g = λ−1

∫
R

ψf (x; f, g)2f(x)dx + (1 − λ)−1
∫
R

ψg(x; f, g)2g(x)dx.

Proof. Since T satisfies the first order VME, (B.6) indicates that

T (fm, gn) − T (f, g)

=
∫
R

ψf (x; f, g)fm(x)dx +
∫
R

ψg(x; f, g)gn(x)dx

+ Op(‖fm − f‖2
2) + Op(‖gn − g‖2

2)

=
∫
R

ψf (x; f, g)fm(x)dx +
∫
R

ψg(x; f, g)gn(x)dx + op(N−1/2),

where the last step follows from Condition C2. Denote by F , Fm, G, and Gn

the distribution functions corresponding to f , fm, g, and gn, respectively. Since
ψf (x; f, g) is an influence function with respect to f , it satisfies∫

R

ψf (x; f, g)f(x)dx = 0.

Hence we can write∫
R

ψf (x; f, g)fm(x)dx =
∫
R

ψf (x; f, g)d(Fm(x) − F (x)).

Now note that ψf (·; f, g) is of bounded total variation on R by Condition I.
Therefore, integration by parts yields that∫

R

ψf (x; f, g)d(Fm(x) − F (x))

= ψf (x; f, g)(Fm(x) − F (x))
∣∣∣∣∞
−∞

−
∫
R

(Fm(x) − F (x))dψf (x; f, g).
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The Riemann-Stieltjes integral in the second term on the right hand side of
the last display exists because ψf is of bounded total variation and Fm − F is
continuous. Since ψf (·; f, g) is of bounded total variation, it is also bounded,
leading to

lim
x→±∞

ψf (x; f, g)(Fm(x) − F (x)) = 0.

Therefore, we deduce that∫
R

ψf (x; f, g)fm(x)dx = −
∫
R

(Fm(x) − F (x))dψf (x; f, g).

Similarly we can show that∫
R

ψg(x; f, g)gn(x)dx = −
∫
R

(Gn(x) −G(x))dψg(x; f, g).

Since Fm and Gn satisfy Condition C1, it follows that(√
m(Fm − F ),

√
n(Gn −G)

)
→d

(
V1(F ),V2(G)

)
,

where V1 and V2 are independent standard Brownian bridges. Here the under-
lying metric space corresponding to the weak convergence is (l∞, ‖·‖∞)×(l∞, ‖·
‖∞), where l∞ was defined to be the set of all bounded functions on R. Since
m/N → λ, Slutsky’s Theorem yields(√

N(Fm − F ),
√
N(Gn −G)

)
→d

(
λ−1/2V1(F ), (1 − λ)−1/2V2(G)

)
.

Since Condition I holds, it follows that, for μ1, μ2 ∈ l∞, the map

(μ1, μ2) �→
∫
R

μ1(x) dψf (x; f, g) +
∫
R

μ2(x) dψg(x; f, g)

is continuous with respect to the uniform metric ‖ · ‖∞. Therefore, invoking the
continuous mapping theorem we obtain that∫

R

√
N(Fm(x) − F (x))dψf (x; f, g) +

∫
R

√
N(Gn(x) −G(x))dψg(x; f, g)

→d λ−1/2
∫
R

V1(F (x))dψf (x; f, g) + (1 − λ)−1/2
∫
R

V2(G(x))dψg(x; f, g).

Now for any continuous distribution function F , any Brownian bridge V, and
any function μ with finite total variation, the random variable

Y =
∫
R

V(F (x))dμ(x) ∼ N(0, σ2
μ),

where

σ2
μ =

∫
R

μ(x)2f(x) −
(∫

R

μ(x)f(x)dx
)2

.
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The above follows from the proof of Theorem 2.3 of Mukherjee et al. (2019).
Therefore,

λ−1/2
∫
R

V1(F )dψf (x; f, g) + (1 − λ)−1/2
∫
R

V2(G)dψg(x; f, g),

which is distributed as a Gaussian random variable with variance σ2
f,g, thus

completing the proof.

Now we focus on the special case at hand, i.e. T (f, g) = D2(f, g). Towards
this end, our first task is to show the existence of the first order VME. We take
P1 to be P(b,B), where f P(b,B) is as defined in (5.2).

Lemma B.1. Let 0 < b < B < ∞. Define the map T : P(b,B)2 �→ R by

T (f, g) = D2(f, g).

Then the first order VME in (B.6) holds for T for any b,B > 0.

Proof. Follows from Lemma 10 of Kandasamy et al. (2015).

Recall that we defined f̂0
m to be the Grenander estimator of f based on the

true mode of f . Denote by ĝ0
n the the Grenander estimator of g based on the true

mode of g. Our next step is to obtain the asymptotic distribution of D2(f̂0
m, ĝ0

n).

Corollary 1. Let f and g be continuous unimodal densities in P(b,B) for
some b,B > 0. Suppose f and g satisfy condition A. We let f̂0

m and ĝ0
n be the

Grenander estimators of f and g based on the true modes, constructed from
samples of size m and n, respectively. Suppose m and n satisfy m/N → λ.
Then √

N(D2(f̂0
m, ĝ0

n) −D2(f, g)) →d N(0, σ2
f,g),

where σ2
f,g is as in (5.1).

Proof. First we will show that the conditions of Theorem 4 are satisfied. Then
we will show that the σf,g of Theorem 4 takes the form of (5.1) when T (f, g) =
D2(f, g). Suppose M is the mode of f . Since f(M) < B, and f̂0

m satisfies (A.42),
the behavior of f̂0

m at M is similar to that of the Grenander estimator of a
monotone density at its maxima. Therefore, using Corollary 1.2(i) of Balabdaoui
et al. (2009) (see also Woodroofe and Sun, 1993), we obtain that f̂0

m(M) →d

f(M)/U, where U ∼ Uniform(0, 1), which implies supx∈R
f̂0
m(x) is Op(1). On

the other hand, with probability one, f̂0
m converges to f uniformly over any

interval of the from [M + c,∞) or (−∞,M − c] where c > 0 (cf. Balabdaoui
et al., 2009). Therefore it can be shown that

P
(

lim inf
n

inf
x∈supp(f̂0

m)
f̂0
m(x) > b/2

)
= 1. (B.8)

Similar results hold for ĝ0
n as well. Thus given any ε > 0, we can find Bε > B

so that
lim inf
m→∞

P
(
f̂0
m, ĝ0

n ∈ P(b/2, Bε)
)
> 1 − ε.



Shape-constrained inference in vaccine trials 5919

Since P(b,B) ⊂ P(b/2, Bε), f, g ∈ P(b/2, Bε) as well. Thus it suffices to show
that the conditions of Theorem 4 are satisfied when f̂0

m, ĝ0
n ∈ P1 ≡ P(b/2, Bε).

Notice that Lemma B.1 implies that the first order VME holds for the func-
tional D2 : P1 �→ R when P1 = P(b/2, Bε). Condition I also follows in a straight-
forward way once we note that, when f, g ∈ P(b/2, Bε), (B.4) and (B.5) indicate
that ψf (·; f, g) and ψg(·; f, g) are differentiable functions with integrable deriva-
tives. Condition C1 follows from (A.1), (A.2), and (A.43).

It remains to verify only Condition C2, which we will do only for f̂m, because
the calculations for ĝn will be identical. Observe that

‖f̂0
m − f‖2

2 �
∥∥∥∥∥
(√

f̂0
m +

√
f

)2
∥∥∥∥∥
∞

D2(f̂0
m, f) �

(
‖f̂0

m‖∞ + ‖f‖∞
)
D2(f̂0

m, f).

Using Theorem 7.12 of van de Geer (2000) one can show that D2(f̂0
m, f) =

Op(n−2/3), and we have already established that ‖f̂0
m‖∞ = Op(1). Thus Condi-

tion C2 also follows. Now the proof will follow if we can show that

1
λ

∫ ∞

−∞
ψf (x; f, g)2f(x)dx+ 1

1−λ

∫ ∞

−∞
ψg(y; f, g)2g(x)dx= 2D2(f, g)−D4(f, g)

4λ(1 − λ) ,

(B.9)

where ψf and ψg are as in (B.2). To that end, note that

D2(f, g) = 1
2

∫ ∞

−∞
(
√

f(x) −
√
g(x))2dx = 1 −

∫ ∞

−∞

√
f(x)g(x)dx︸ ︷︷ ︸
ρ(f,g)

.

We calculate

4
∫ ∞

−∞
ψf (x; f, g)2f(x)dx =

∫ ∞

−∞

(
1 −

√
g(x)√
f(x)

−D2(f, g)
)2

f(x)dx

=
∫ ∞

−∞

(√
f(x) −

√
g(x) −

√
f(x)D2(f, g)

)2
dx,

which equals∫ ∞

−∞

(√
f(x)−

√
g(x)

)2
dx+D4(f, g)−2D2(f, g)

∫ ∞

−∞

(√
f(x)−

√
g(x)

)√
f(x)dx

= 2D2(f, g) + D4(f, g) − 2D2(f, g)(1 − ρ(f, g))
= 2D2(f, g) + D4(f, g) − 2D4(f, g)

because 1 − ρ(f, g) = D2(f, g). Therefore,∫ ∞

−∞
ψf (x; f, g)2f(x)dx = 2D2(f, g) −D4(f, g)

4 .

By symmetry, (B.9) follows, thus completing the proof.
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Our next lemma establishes that D2(f̂m, ĝn) and D2(f̂0
m, ĝ0

n) differ by an
op(N−1/2) term. Observe that Corollary 1 combined with Lemma B.2 implies
Theorem 3, and thus establishes the asymptotic distribution of D2(f̂m, ĝn) as
well.

Lemma B.2. Under the set up of Corollary 1,∣∣∣∣D2(f̂m, ĝn) −D2(f̂0
m, ĝ0

n)
∣∣∣∣ = op(N−1/2).

Proof. Adding and subtracting terms shows that

D2(f̂m, ĝn) −D2(f̂0
m, ĝ0

n)

= [D2(f, ĝn) −D2(f, ĝ0
n)] + [D2(f̂m, g) −D2(f̂0

m, g)]

+
[
D2(f̂m, ĝn) −D2(f̂m, g) −D2(f, ĝn) + D2(f, g)

]
− [D2(f̂0

m, ĝ0
n) −D2(f̂0

m, g) −D2(f, ĝ0
n) + D2(f, g)].

Now observe that

D2(f̂0
m, ĝ0

n) −D2(f̂0
m, g) −D2(f, ĝn) + D2(f, g) =

∫
R

[
√
f̂0
m −

√
f ][

√
ĝ0
n −√

g]

≤ 2H(f̂0
m, f)H(ĝ0

n, g), (B.10)

and

D2(f̂m, ĝn) −D2(f̂m, g) −D2(f, ĝn) + D2(f, g) =
∫
R

[
√
f̂m −

√
f ][

√
ĝn −√

g]

≤ 2H(f̂m, f)H(ĝn, g). (B.11)

Since squared Hellinger distance is smaller than the L1 distance, using Lemma A.5
and the fact that m/N → λ, we obtain

D2(f̂0
m, f) ≤ ‖f̂0

m − f‖1 = op(m−1/2) = op(N−1/2).

A similar result holds for D2(ĝ0
n, g) as well. Thus it follows that the right hand

side of (B.10) is op(N−1/2). Lemma B.3 in Section B.1 implies H(f̂0
m, f̂m) and

H(f̂0
m, f̂m) are op(N−1/4). Therefore, using triangle inequality, we can show that

H(f̂m, f) and H(ĝn, g) are op(N−1/4) as well, which establishes that the right
hand side of (B.11) is also op(N−1/2).

Therefore, we have shown that

D2(f̂m, ĝn) −D2(f̂0
m, ĝ0

n)

= [D2(f, ĝn) −D2(f, ĝ0
n)] + [D2(f̂m, g) −D2(f̂0

m, g)] + op(N−1/2).

Hence, the proof will be complete if we can show that

D2(f, ĝn) −D2(f, ĝ0
n) = op(N−1/2),
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D2(f̂m, g) −D2(f̂0
m, g) = op(N−1/2).

We will only prove the first line of the above display because the argument for
the second line is similar.

First, we denote Xn = supp(ĝ0
n) ∪ supp(ĝn) and Yn = Xn \ supp(ĝ0

n) =
supp(ĝn)\supp(ĝ0

n). Also denote b′ = b/2 and B′ = B+b/2. Since
√
ĝn+

√
ĝ0
n >

0 on Xn, it follows that

|D2(f, ĝ0
n) −D2(f, ĝn)| =

∣∣∣∣∫
Xn

√
f(x)(

√
ĝn(x) −

√
ĝ0
n(x))dx

∣∣∣∣
=

∣∣∣∣ ∫
Xn

√
f(x)

(
√

ĝ0
n(x) +

√
ĝn(x))

(ĝ0
n(x) − ĝn(x))dx

∣∣∣∣
≤ sup

x∈supp(̂g0
n)

√
f(x)√
ĝ0
n(x)

‖ĝ0
n−ĝn‖1+ sup

x∈Yn

√
f(x)√
ĝn(x)

‖ĝ0
n−ĝn‖1

where we used the fact that Xn = supp(ĝ0
n) ∪ Yn. Since (a) f ∈ P(b,B), (b)

ĝ0
n(x) > b/2 for x ∈ supp(ĝ0

n) with probability one by (B.8), and (c) ‖ĝ0
n − ĝn‖1

is op(N−1/2) by Lemma A.5(A), we have

|D2(f, ĝ0
n) −D2(f, ĝn)| = op(N−1/2)Op

(
sup
x∈Yn

1√
ĝn(x)

)
.

Hence, it only remains to show that supx∈Yn
ĝn(x)−1/2 = Op(1).

Let us denote the mode of ĝn by M̂n. First we show that it suffices to only
consider the case when M̂n /∈ [Y(1), Y(n)]. To that end, we will mainly use the
following property of Gn that follows from (2.7) of Birgé (1997):

Ĝn(x)≤Gn(x) for x ∈ (−∞, M̂n] and Gn(x)≤Ĝn(x) for x ∈ (M̂n,∞).
(B.12)

Suppose M̂n ∈ [Y(1), Y(n)]. Then by (B.12), any x < Y(1) and y > Y(n) satisfy
Ĝn(x) = 0 and Ĝn(y) = 1, respectively. Therefore, the support of ĝn is contained
in [Y(1), Y(n)]. However, [Y(1), Y(n)] ⊂ supp(ĝ0

n), which implies Yn = ∅ in this
case. Therefore, we only consider the case when M̂n /∈ [Y(1), Y(n)].

First consider the case when M̂n > Y(n). By (B.12), any y ≥ M̂n satisfies
Ĝn(y) ≥ Gn(y) = 1, and any x < Y(1) satisfies Ĝn(x) ≤ Gn(x) = 0. Therefore,
we have supp(ĝn) ⊂ [Y(1), M̂n]. Hence, Ĝn(Y(n)) =

∫ Y(n)
Y(1)

ĝn(x)dx. Since ĝn is
non-decreasing on [Y(1), Y(n)], we have

Ĝn(Y(n)) ≤ (Y(n) − Y(1))ĝn(Y(n)).

Note that Because g(y) > b, this density has a bounded support, implying
(Y(n) − Y(1)) < Diam(Y ) for some Diam(Y ) > 0. On the other hand,

|Ĝn(Y(n)) − 1| ≤ ‖Ĝn −Gn‖∞ = op(N−1/2)
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by Lemma A.5(B). Therefore,

ĝn(Y(n)) ≥
1 − op(n−1/2)

Diam(Y ) .

Because supp(ĝn) ⊂ [Y(1), M̂n] and supp(ĝ0
n) ⊃ [Y(1), Y(n)], we have Yn ⊂

[Y(n), M̂n], indicating

sup
x∈Yn

ĝn(x)−1/2 ≤ ĝn(Y(n))−1/2 ≤
√

Diam(Y )
1 + op(n−1/2)

= Op(1).

Now suppose M̂n < Y(1). Then using (B.12), we deduce that Ĝn(Y(n)) ≥
Gn(Y(n)) = 1 and Ĝn(x) ≤ Gn(x) = 0 for any x < Y(1). Therefore, supp(ĝn) ⊂
[M̂n, Y(n)] and Yn ⊂ [M̂n, Y(1)]. Because ĝn is non-increasing on Yn in this case,
ĝn(x) > ĝn(Y(1)) for any x ∈ Yn. Therefore, if we can show that ĝn(Y(1)) is
bounded away from 0, the rest of the proof will follow similar to the case of
M̂n > Y(n).

Because ĝn is non-increasing on its support,

ĝn(Y(1))(Y(n) − Y(1)) ≥ Ĝn(Y(n)) − Ĝn(Y(1))
(a)= 1 − op(n−1/2),

where (a) follows from Lemma A.5(B). Since Y(n) − Y(1) = Diam(Y ) < ∞, we
have ĝn(Y(1))−1 = Op(1), which completes the proof.

Proof of Theorem 3

Theorem 5 follows from Corollary 1 and Lemma B.2.

Proof of Lemma 6

Theorem 4 of Cule and Samworth implies that f̃m uniformly converges to f
almost surely provided (i) f has finite first moment, (ii) the support of f has
nonempty interior, and (iii)

∫
max{log f(x), 0}f(x)dx < ∞. For log-concave f ,

(i) follows from Lemma 1 of Cule and Samworth, (ii) follows from the continuity
of f , and (iii) follows because f is bounded (cf. Lemma 5, Cule and Samworth,
2010). The similar result holds for g̃n as well. Because uniform convergence
implies pointwise convergence, the above implies f̃mg̃n pointwise converges to
fg almost surely. Therefore, an application of Scheffé’s Theorem (cf. Theorem
16.12, Billingsley, 2013) yields that as m,n → ∞,∫

R

(
f̃m(x)g̃n(x)

)1/2

dx →a.s.

∫
R

(
f(x)g(x)

)1/2

dx,

which indicates

D2(f̃m, g̃n) =1 −
∫
R

(
f̃m(x)g̃n(x)

)1/2

dx →a.s. = D2(f, g).
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For the smoothed log-concave MLE, the uniform convergence of f̃m to f
follows from Theorem 1 of Chen and Samworth provided f has finite second
moment, which follows trivially because all moments of a log-concave density
are finite (Lemma 1, Cule and Samworth, 2010). The rest of the proof then
follows from Scheffé’s Theorem as in the case of the log-concave MLE.

B.1. Additional lemma

Lemma B.3. Under the set up of Lemma B.2,

D2(f̂m, f̂0
m) = op(m−1/2) and D2(ĝn, ĝ0

n) = op(n−1/2).

Proof. We will prove the result only for D2(f̂m, f̂0
m) because the proof of the

other case will be identical.
Let us denote the mode of f and f̂m by M and M̂m, respectively. First we

consider the case when M̂m > M . The proof of Lemma 1 of Birgé entails that,
in this case, there exist a, β, c ∈ R such that

1. a ≤ M , β ≥ M̂m, and c ∈ [M, M̂m].
2. f̂0

m(x) = f̂m(x) for x < a and x > β. Therefore, F̂ 0
m(x) = F̂m(x) for x ≤ a

and x ≥ β.
3. f̂0

m(x) ≥ f̂m(x) for x ∈ (a, c), and f̂0
m(x) ≤ f̂m(x) for x ∈ (c, β).

Using the above relations, and denoting the distribution functions of f̂m and f̂0
m

by F̂m and F̂ 0
m, respectively, we deduce that∫

R

(√
f̂m(x) −

√
f̂0
m(x)

)2

dx

=
∫ β

a

(√
f̂m(x) −

√
f̂0
m(x)

)2

dx

=
∫ β

a

f̂m(x)dx +
∫ β

a

f̂0
m(x)dx− 2

∫ β

a

√
f̂m(x)f̂0

m(x)dx

≤ F̂m(β) − F̂m(a) + F̂ 0
m(β) − F̂ 0

m(a) − 2
∫ c

a

f̂m(x)dx− 2
∫ β

c

f̂0
m(x)dx

= F̂m(β) − F̂m(a) + F̂ 0
m(β) − F̂ 0

m(a) − 2
(
F̂m(c) − F̂m(a) + F̂ 0

m(β) − F̂ 0
m(c)

)
which is 2{F̂ 0

m(c) − F̂m(c)} because F̂ 0
m(x) = F̂m(x) for x = a, β. Hence, we

observe that
D2(f̂m, f̂0

m) ≤ 2‖F̂ 0
m − F̂m‖∞,

which is less than η = 1/N by the construction of Birgé’s estimator (see Sec-
tion 3). Hence the proof of Lemma B.2 follows for this case.

Now suppose that M̂m < M . Then from the proof of Lemma 1 in Birgé, one
can prove the existence of a, β, c ∈ R such that

1. a ≤ M̂m, β ≥ M , and c ∈ [M̂m,M ].



5924 N. Laha et al.

Fig 16: Plot of estimated power ν(γ) vs γ when m = n = 100 for simulation
schemes (a)-(e); here we use the critical value Cm,nzα for thee TSEP tests.
Here MT and TSEP correspond to the minimum t-test and the TSEP test,
respectively. The standard deviation of the ν(γ) estimate in each case is less than
0.005. The black horizontal line corresponds to the level of the test, α = 0.05.
For cases (b)-(e), the black vertical line represents the LFC configuration γ∗,
taking value 0.70 (b), 0.55 (c), 0.65 (d), and 0.80 (e).

2. f̂0
m(x) = f̂m(x) for x < a and x > β. Therefore, F̂ 0

m(x) = F̂m(x) for x ≤ a
and x ≥ β.

3. f̂m(x) ≥ f̂0
m(x) for x ∈ (a, c), and f̂m(x) ≤ f̂0

m(x) for x ∈ (c, β).

Then in the same way as in the case of M̂m > M , we can show that D2(f̂m, f̂0
m) ≤

‖F̂ 0
m − F̂m‖∞, which completes the proof of the current lemma.

Appendix C: Additional simulations

In this section, we perform simulations on the exact same settings as in Sec-
tion 4.3, but we use the critical value Cm,nzα for the TSEP tests. We remind
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the readers that Cm,n was set to be max{
√
N/m,

√
N/n}. Since in this case

m = n, we have N = 2n, which implies Cm,n =
√

2. The power curves are given
by Figure 16, which implies that the resulting TSEP tests, which we will refer to
as the conservative TSEP tests, have inferior power compared to the minimum
t-tests. Moreover, a comparison between Figure 7 and Figure 16 indicates that
the power of the conservative TSEP tests is much less compared to that of the
ordinary TSEP tests, which use the critical value zα. However, Figure 16 implies
that in case (d), where one distribution is the heavy-tailed Pareto distribution,
the conservative TSEP tests succeed to control the type I error at the LFC
configuration. All other tests, including the nonparametric minimum t-test and
the nonparametric ordinary TSEP test with critical value zα, have type I error
slightly higher than 0.05 at the LFC configuration in case (d); see Figure 7. The
nonparametric tests control the type I error at all other cases, however. Also, all
TSEP tests control type I error in case (b), where the distributions cross each
other at the boundary. To summarize, the conservative TSEP tests might have a
slight advantage over the ordinary counterparts in terms of type I error in some
boundary cases, but this advantage comes at the cost of a drastic power-loss.
In view of the above, we do not recommend the conservative TSEP tests for
implementation.

Appendix D: Additional tables and figures

Table 6

Summary of the trial HVTN 097 and trial HVTN 100. By positive respondents, we refer to
vaccinees who developed immune response for at least one of the seven clade C V1V2

antigens under consideration.

Trials HVTN 097 HVTN 100

Phase 1b 1/2
Site 3 towns in South Africa 6 towns in South Africa
Study design placebo controlled, randomized, placebo controlled, randomized,

double-blind double-blind
Enrollment 100 252
Vaccinee : Placebo ratio 4:1 4:1
Per protocol vaccinees 73 185
Positive respondents 68 180
Age-range 18-40 18-40
Enrollment period June-December 2013 February-May 2015
Clade of HIV-1 insert

strains used in vaccines B and E C

Products used ALVAC and AIDSVAX ALVAC and gp120
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Fig 17: Plots of the distribution functions Fγ and Gγ for several values of
γ in cases (b) and (c). The distribution functions are shown on the region
Dp(Fγ , Gγ).
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Fig 18: Plots of the distribution functions Fγ and Gγ for several values of
γ in cases (d) and (e). The distribution functions are shown on the region
Dp(Fγ , Gγ).
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Fig 19: Plot of the log-concave density estimators based on a sample of size 1000
from standard exponential distribution. Observe that the smoothed log-concave
MLE does not approximate the true density well near the origin, which is also
the point of discontinuity.
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