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Abstract: We build a general framework which establishes a one-to-one
correspondence between species abundance distribution (SAD) and species
accumulation curve (SAC). The appearance rates of the species and the
appearance times of individuals of each species are modeled as Poisson
processes. The number of species can be finite or infinite. Hill numbers are
extended to the framework. We introduce a linear derivative ratio family
of models, LDR1, of which the ratio of the first and the second derivatives
of the expected SAC is a linear function. A D1/D2 plot is proposed to de-
tect this linear pattern in the data. By extrapolation of the curve in the
D1/D2 plot, a species richness estimator that extends Chao1 estimator is
introduced. The SAD of LDR1 is the Engen’s extended negative binomial
distribution, and the SAC encompasses several popular parametric forms
including the power law. Family LDR1 is extended in two ways: LDR2
which allows species with zero detection probability, and RDR1 where the
derivative ratio is a rational function. Real data are analyzed to demon-
strate the proposed methods. We also consider the scenario where we record
only a few leading appearance times of each species. We show how maxi-
mum likelihood inference can be performed when only the empirical SAC
is observed, and elucidate its advantages over the traditional curve-fitting
method.
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Keywords and phrases: Diagnostic plots, hill numbers, power law, rar-
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1. Introduction

Estimating the diversity of classes in a population is a problem encountered
in many fields. We may be interested in the diversity of words a person know
from his/her writings [18], the illegal immigrants from the apprehension records
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[3], the distinct attributes in a database [24, 16], or the distinct responses to
a crowdsourcing query [48]. Among different applications, species abundance is
the one that receives most attention. For this reason, it is chosen as the theme
of this paper with the understanding that the proposed framework and methods
are applicable in other applications as well.

Understanding the species abundance in an ecological community has long
been an important task for ecologists. Such knowledge is paramount in con-
servation planning and biodiversity management [35]. An exhaustive species
inventory is too labor and resource intensive to be practical. Information about
species abundance can thus be acquired mainly through a survey.

Let N = (N0, N1, ...) where Nk is the number of species in a community that
are represented exactly k times in a survey. We do not observe the whole N ,
but Ñ = (N1, N2, ...) which is the zero-truncated N . In other words, we do not
know how many species are not seen in the survey. We call the vector Ñ , the
frequency of frequencies (FoF) [21].

A plethora of species abundance models have been proposed for Ñ . Com-
prehensive review of the field can be found in Bunge and Fitzpatrick [6] and
Matthews and Whittaker [34]. A typical assumption in purely statistical models
is

Ñ | N+ ∼ Multinomial(N+, p), (1.1)

where N+ =
∑∞

k=1 Nk is the total number of recorded species, and p=(p1, p2, . . .)
is a probability vector, such that pk is the probability for a randomly selected
recorded species to be observed k times in the survey for k = 1, 2, . . .. We call
this vector p, the species abundance distribution (SAD). The great significance
of (1.1) relies on three assumptions: (A1) the species names are noninforma-
tive; (A2) the observed data for different recorded species are independent and
identically distributed (iid), and (A3) for each recorded species, its observed
frequency contains all useful information.

Species accumulation curve (SAC) is another popular tool in the analysis
of species abundance data. The survey is viewed as a data-collection process
in which more and more sampling effort is devoted. The individual-based SAC
is the number of recorded species expressed as a function of the amount of
sampling effort.

Despite the different emphases of SAD and SAC, the two approaches have an
overlapped target: Estimating D, the total number of species in the community.
For SAD, it means estimating N0, the number of unseen species as D = N0+N+.
For SAC, D is the total number of seen species when the sampling effort is
unlimited.

As SAD depends largely on the sampling effort, it is necessary to include
sampling effort explicitly in the model in order to make comparison of different
SADs possible. This addition establishes a link between SAD and SAC. Sampling
effort can be of continuous type, such as the area of land or the volume of water
sampled, or the duration of the survey. Discrete type sampling effort can be
the sample size. To emphasize the sampling effort considered, the SAC is called
species-time curve, species-area curve, or species-sample-size curve when the
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sampling effort is time, area, or sample size respectively. Species-area curve has
been studied extensively in the literature. Review of it can be found in Tjørve
[46, 47], Dengler [15] and Williams et al. [50]. In this paper, we use time as the
measure of sampling effort. We consider the vector N to be a function of the
time t, denoted as N(t). Notations Nk, Ñ , N+, p and pk are likewise denoted as
Nk(t), Ñ(t), N+(t), p(t) and pk(t) respectively. The (empirical) SAC is N+(t).
Throughout the paper, we assume without loss of generality that the survey
starts at time 0 and ends at time t0 > 0. Because of the great similarity of the
species-time relationship and species-area relationship [39, 32], time and area are
treated as if they are interchangeable in this paper. When SAC is a species-area
curve, we refer to the Type I species-area curve [43], where the areas sampled
are nested (smaller areas are included in larger areas), resulting in a curve that
is always nondecreasing.

The study of the relation between the (empirical) SAD and the (empirical)
SAC started early since the introduction of rarefaction curve ([1, 42]) which
describes how we interpolate SAC using the observed FoF. Let nk(t0) be the ob-
served Nk(t0) for k = 1, 2, . . ., n+(t0) =

∑∞
k=1 nk(t0), and ñ(t0) = {nk(t0)}k≥1.

The rarefaction curve for species-time relationship is

N̂+(t) =
∞∑
k=1

nk(t0)
(

1 −
(

1 − t

t0

)k
)
, (0 ≤ t ≤ t0). (1.2)

The rationale of (1.2) is that 1− (1− t/t0)k is the probability for a species with
frequency k in time interval [0, t0] to be observed before time t if the appearance
times of it in [0, t0] are iid U [0, t0] distributed. Equivalent formula for species-
area curve appears earlier in Arrhenius [1]. Good and Toulmin [22] proposed
an extrapolation formula for species-sample-size curve which when expressed as
species-time curve is

N̂+(t) = n+(t0) +
∞∑
k=1

(−1)k+1nk(t0)
(

t

t0
− 1
)k

, (t > t0). (1.3)

Equation (1.3) is (1.2) with a change of domain. Define the empirical SAD,
p̂k(t) = nk(t)/n+(t). Equation (1.3) becomes

N̂+(t) = n+(t0)
[
1 −

∞∑
k=1

p̂k(t0)
(

1 − t

t0

)k
]

= n+(t0)
[
1 − ĥt0

(
1 − t

t0

)]
,

(1.4)
where ĥt(s) is an estimator of ht(s), the probability generating function of the
SAD at time t. Equation (1.4) delineates a simple and yet convincing formula
to find SAC from SAD and vice versa. The aim of this paper is to propose and
study a statistical framework under which model in (1.1) and the relation in (1.4)
hold when N̂+(t), n+(t0) and ĥt0(s) are replaced by E(N+(t)), E(N+(t0)) and
ht0(s) respectively. Our framework assumes (A1), (A2) and that the appearance
times of each species follow a Poisson process which is sufficient for (A3) and
the validity of (1.2).
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Finite D is commonplace in SAD approach although no consensus has been
reached. Empirically, log-series distribution, an SAD that assumes infinite D,
is one of the most successful models. Many SACs do not have asymptote. It is
common that the observed number of rare species is large, and shows no sign
to decrease. In Bayesian nonparametric approach in genomic diversity study,
Poisson-Dirichlet process which assumes infinite D is used (see for example Li-
joi et al. [31]). In reality, the existence of transient species (species which are
observed erratically and infrequently [38]), and the error in the species identifi-
cation process (a well-known example is the missequencing in pyrosequencing of
DNA (see for example Dickie [17])) are continual sources of rare species making
the species number larger than expected. In our framework, D is random and
can be finite or infinite with probability one. We use species richness to refer to
E(D) when D is random, and D when D is deterministic.

A special feature of our framework is that species can have zero detec-
tion probability. We call such species, zero-rate species, and all other species,
positive-rate species. Zero-rate species can either be seen only once or unseen
in a survey. If there are finite number of zero-rate species, the probability of
observing any of them is zero. Therefore, if zero-rate species is observed in a
survey, almost surely there are infinite number of them. We interpret observed
individuals of positive-rate species as outcomes of a discrete distribution, where
individuals of the same species can appear any nonnegative number of times
in a survey. On the other hand, individuals of zero-rate species are outcomes
of a continuous distribution, and no two such individuals belong to the same
species. In our framework, the distribution is allowed to be a mixture of the two.
Suppose we want to estimate the population of a town through recording each
person we meet on street. Then tourists from distant countries can be viewed
as “zero-rate species”. In the first example in Section 9, it is suspected that
the sequencing error in pyrosequencing of DNA may be a source for zero-rate
species.

Poisson distribution is a main component in our framework. Though Poisson
distribution is common in existing SAD models, time t scarcely plays a role. In
mixed Poisson model (see for example Fisher et al. [20], Bulmer [5]), the observed
frequencies of the species are independent and each follows a Poisson distribution
with its own rate, say λi for species i. The value D is a fixed unknown finite
value and {λi} are iid sample from a mixing distribution. Another related model
was proposed in Zhou et al. [51]. The paper focuses mainly on finite D. Neither
time nor zero-rate species are included in the model.

The outline of this paper is as follows. We propose in Section 2 a new model
for the sampling process, called the mixed Poisson partition process (MPPP).
We emphasize on the parametric approach where additional assumptions are
made on top of the framework so that the process depends only on a few pa-
rameters. Once the parameters are estimated, we can make inference on different
characteristics of the population, say the SAD at any fixed time, the Hill num-
bers, or the expected future data. We study Ñ(t) in Section 3. In Section 4,
we consider the expected species accumulation curve (ESAC). We prove the
one-to-one correspondence among (i) an MPPP, (ii) an ESAC which is a Bern-
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stein function that passes through the origin, and (iii) the expected number
of recorded species and the SAD at time t0 such that the first derivative of its
probability generating function is absolutely monotone in (−∞, 1). In Section 5,
we introduce LDR1, a parametric family of ESAC. The SAD of LDR1 is the
Engen’s extended negative binomial distribution. This family has an attractive
property that the ratio of the first and the second derivatives of the ESAC is a
linear function of t. We extend LDR1 to LDR2 which allows zero-rate species.
In Section 6, a D1/D2 plot for LDR1 and some diagnostic plots for specified
LDR1 distributions are proposed. Extrapolation of the curve in D1/D2 plot is
considered in Section 7. Estimator of species richness is suggested basing on a
modified first-order extrapolation. In Section 8, LDR1 is generalized so that the
derivative ratio is a rational function instead of a linear function of t. Four real
data are analyzed in Section 9 to demonstrate the applications of the proposed
models and the suggested plots. In Section 10, we propose and study a design
where only a few leading appearance times of each species are recorded. In Sec-
tion 11, we consider the maximum likelihood approach on the empirical SAC.
We give a discussion in Section 12.

2. Mixed Poisson partition process

Poisson process is the backbone of the framework. A Poisson process is a point
process characterized by an intensity measure over the n-dimensional space
Rn (we usually have n = 1 in this paper). The intensity measure which we
denote as ω delineates how many points are present on average in different
parts of Rn. More precisely, the number of points in a set A ⊆ Rn follows
the Poisson(ω(A)) distribution. Furthermore, for any finite collection of disjoint
subsets A1, . . . , Ak ⊆ Rn, S1, . . . , Sk are mutually independent, where Si is the
number of points in Ai. If ω(dx) = f(x)dx, we call f(x) the intensity function.
A simple example is the homogeneous Poisson process where ω(dx) = λdx for
a constant λ. The parameter λ is called the rate of the process.

If ω is finite (i.e.,
∫
ω(dx) < ∞), simulation of a Poisson process can be per-

formed in two steps: (i) simulate the total number of points W ∼Poisson(
∫
ω(dx)),

and (ii) simulate X1, . . . , XW iid from the probability measure ω/
∫
ω(dx). Nev-

ertheless, if ω is infinite, then the number of points is infinite, and it is impossible
to simulate all the points in the process. In this case, we can only simulate a se-
lected finite subset of points of the process using the thinning property of Poisson
processes [29]. For each point x in the Poisson process, let α(x) ∈ [0, 1] be the
probability for the point x to be selected, and 1−α(x) be the probability for it
to be discarded. Then the selected points form a Poisson process with intensity
measure αω, where αω(A) =

∫
A
α(x)ω(dx). We can simulate the selected points

when the measure αω is finite using the aforementioned method. For example,
if we are interested only in the points that lie in a bounded region A ⊂ Rn of a
homogeneous Poisson process with rate λ, then α(x) = 1{x ∈ A} where 1{.} is
the indicator function. The number of selected points follows Poisson(λ

∫
A
dx)

distribution, and the selected points are iid uniformly distributed in A.
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We model the observations in a species abundance survey by a stochastic
process where rates of the species follows a Poisson process.

Definition. (Mixed Poisson partition process) A mixed Poisson partition pro-
cess (MPPP), G, is characterized by a nonzero species intensity measure ν,
which is a measure over R≥0, the set of all nonnegative real numbers, satisfying∫ ∞

0
min{1, λ−1}ν(dλ) < ∞. (2.1)

The definition of an MPPP consists of three steps:

1. (Generation of positive rates of species) Given ν, define ν̃ to be a measure
over R>0 (R>0 is the set of positive real numbers) by ν̃(dλ) = ν(dλ)/λ,
(i.e., dν̃/dν = 1/λ for λ > 0). Let λ1, λ2, . . . (a finite or countably infinite
sequence) be a realization of a Poisson process with intensity measure ν̃.

2. (Generation of individuals of positive-rate species) For each λi in Step 1,
we generate a realization ηi (independently across i) of a Poisson process
with rate λi. The realization ηi represents the arrival times of a species
with rate λi.

3. (Generation of individuals of zero-rate species) We generate a realization
η0 of a Poisson process with rate ν({0}), independent of η1, η2, . . .. This
represents the times of appearance for all the zero-rate species.

Finally, we take G = {η1, η2, . . .} ∪ η0. For any i ≥ 1, all points in ηi are arrival
times of the same species, whereas each point in η0 is from a different zero-rate
species (we use a slight abuse of notation to treat each point in η0 as a point
process with only one point).

Measures ν and ν̃ may be finite or infinite. Let Λ =
∫
ν(dλ). As the expected

number of individuals seen in time interval [0, t] is equal to tΛ (see (3.4) in
Section 3), we can interpret Λ as the expected total rate. When ν is finite (i.e.,
Λ < ∞), conditional on the event that there is an individual observed exactly at
time t, the distribution of the rate of the species of that individual is ν/Λ (see
Proposition A in Appendix A for a proof). Therefore, we can regard ν as the
intensity measure of λ of the observed individuals. If ν̃ is finite, the expected
number of positive-rate species in the community is finite. From Step 3 in the
definition, if ν({0}) > 0, there are infinite number of zero-rate species and they
arrive at a constant rate. With probability one, D is finite if and only if ν({0}) =
0 and ν̃(R>0) < ∞. In such case, D follows a Poisson(ν̃(R>0)) distribution.
Measure ν̃ specifies the distribution of the rates of positive-rate species. More
precisely, ν̃([λ0, λ1]) with λ0 > 0 is the average number of species with rate in
[λ0, λ1]. Measure ν specifies the distribution of the rates of the species of the
individuals including those of the zero-rate species. More precisely, ν([λ0, λ1])
is the average number of individuals (per unit time) belonging to species whose
rates lie in [λ0, λ1]. Condition (2.1) is essential because it is equivalent to the
finiteness of the ESAC (i.e., E(N+(t)) < ∞ for any finite nonnegative t). A
proof of it is given in Appendix B. Figure 1 illustrates the generation of the
MPPP.
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Fig 1. An illustration of the MPPP. In step 1, we generate the rates λi of the positive-
rate species according to a Poisson process with intensity measure ν̃. If ν̃(R>0) < ∞, then
this is equivalent to first generating npos, the number of positive-rate species according to
Poisson(ν̃(R>0)), and then generating a random sample λ1, , . . . , λnpos of size npos from the
probability measure ν̃/ν̃(R>0). In step 2, we generate the individuals of species i according to
a Poisson process with rate λi for i = 1, . . . , npos. In step 3, we generate the individuals of
zero-rate species (species 6 to 9 in the figure) according to a Poisson process with rate ν({0}).

When ν̃ is infinite, we cannot simulate all λi’s in Step 1 in practice. We can
use the following method to simulate a realization of the process in interval
[0, t0]. The probability for a species with rate λ to be recorded in [0, t0] is
1 − exp(−λt0). Applying the thinning property, the intensity of the recorded
positive-rate species is (1 − exp(−λt0))ν̃ which is always finite. To include also
the recorded zero-rate species, the intensity is (1 − exp(−λt0))λ−1ν (we take
(1−exp(−λt0))λ−1 = t0 when λ = 0). After generating λ1, λ2, . . . according to a
Poisson process with this intensity measure, we simulate for each i, a realization
ηi (independently across i) of a Poisson process with rate λi, conditional on
the event that ηi has at least one point in [0, t0] (if λi = 0, then ηi contains
one uniformly distributed point in [0, t0]). An alternative equivalent definition
that unifies the generation of individuals of zero-rate species and positive-rate
species is given in Appendix C.

A special feature of the framework is that D is random and can be infinite
with probability one. This change necessitates modification of biodiversity mea-
sures, among which Hill numbers are popular. When D is deterministic, Hill

number of order q [25] for q ≥ 0 and q 
= 1 is qD =
(∑

i(psp(i))q
)1/(1−q)

where
psp(i) is the relative abundance of species i in an assemblage (the number of
individuals of species i divided by the total population). When q = 1, 1D is de-
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fined as limq→1
qD = exp(−

∑
i psp(i) log(psp(i))). Hill numbers are interpreted

as the effective number of species. The order q determines the sensitivity of
the measure to species relative abundances. When q = 0, all species regardless
its abundance are treated equally. Larger q imposes more weight to abundant
species. Hill numbers encompass three important diversity measures as its spe-
cial cases. They are the species richness (q = 0), the exponential of Shannon
entropy (q = 1), and the inverse of Simpson index (q = 2). A notable property of
Hill numbers is that they obey the replication principle: The diversity of an as-
semblage formed by pooling m equally abundant and equally large assemblages
with no species in common is m times the diversity of a single assemblage.

Under our framework, each species corresponds to a Poisson process, and the
relative abundance of a species is its rate divided by the expected total rate, Λ.
Reasonable modifications to the definition of Hill numbers are to replace psp(i)
with λ/Λ, where λ is the rate of a species, and to replace summation over species
with integration with respect to the measure λ−1ν so that the integral of λ/Λ
is one. It works well when Λ is finite, but fails when Λ is infinite. To fix the
problem, we need a meaningful surrogate rate which fulfills two requirements:
(i) the expected total rate is finite, and (ii) it approaches the true rate λ as a
limit. The first appearance time of a species with rate λ follows the exponential
distribution with density function λ exp(−λt), which can be regarded as the
instantaneous rate of its first appearance at time t. This rate approaches λ when
t decreases to zero. The expected total instantaneous rate of first appearances
over all species at time t is Λt =

∫
exp(−λt)ν(dλ) (= E(N1(t))/t from (3.1))

which is always finite for positive t. Replacing psp(i) with λ exp(−λt)/Λt and
taking t → 0, we define, the Hill numbers, qDν for our framework as

qDν =

⎧⎪⎪⎨⎪⎪⎩
limt→0

(
Λ−q
t

∫
λq−1 exp(−λqt)ν(dλ)

)1/(1−q)

(q ≥ 0, q 
= 1)

limt→0 Λt exp
(
− 1

Λt

∫
(log λ− λt) exp(−λt)ν(dλ)

)
(q = 1).

When ν({0}) > 0 and 0 ≤ q ≤ 1, qDν = ∞. When Λ is finite,

qDν =

⎧⎪⎪⎨⎪⎪⎩
(

Λ−q
∫
λq−1ν(dλ)

)1/(1−q)

(q ≥ 0, q 
= 1)

Λ exp
(
− 1

Λ
∫

log(λ)ν(dλ)
)

(q = 1).

Diversity qDν is non-increasing with respect to q. Unlike the classical Hill num-
bers, qDν can be less than one. For instance, from (3.3), 0Dν = E(D) which
can be any positive value. It can be proved that for any positive constant γ,
qDν = γ(qDν/γ), an analogue of the replication principle for Hill numbers.

3. Frequency of frequencies

A sufficient statistic for a realization G of an MPPP in time interval [0, t0] is
Ñ(t0). Consider a time interval [0, t]. For each λ in Step 2 of the definition, it
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contributes one to one of the counts Nk(t), where k follows a Poisson distribu-
tion, Poisson(λt). By the splitting property of Poisson processes [29], their total
contribution to Nk(t) follows Poisson(

∫
(λt)k(k!)−1e−λtν̃(dλ)) distribution inde-

pendent across k. The zero-rate species only increase N1(t) by a Poisson(ν({0})t)
random variate. Therefore, for k ≥ 1,

Nk(t) ∼ Poisson
(∫ (λt)k exp(−λt)

k! ν̃(dλ) + 1{k = 1}ν({0})t
)

= Poisson
(∫

λk−1tk exp(−λt)
k! ν(dλ)

)
,

(we use the convention that 00 = 1). Equations (3.2) and (3.3) follows from
(3.1) for k ≥ 1. The correctness of (3.1) when k = 0 follows from (3.2), (3.3)
and the fact E(N0(t)) = E(D) −E(N+(t)).

E(Nk(t)) =
∫

λk−1tk exp(−λt)
k! ν(dλ), (k ≥ 0) (3.1)

E(N+(t)) =
∞∑
k=1

E(Nk(t)) =
∫ 1 − exp(−λt)

λ
ν(dλ), (3.2)

E(D) = lim
t→∞

E(N+(t)) =
∫

λ−1ν(dλ). (3.3)

Again for (3.2), we set (1 − exp(−λt))/λ = t when λ = 0. When ν({0}) > 0,
E(D) is infinite. Since all elements in {Nk(t)}k≥1 are independent and follow
Poisson distribution, variable N+(t) is Poisson distributed, and so do D and
N0(t) when their expected values are finite.

Write S(t) =
∑∞

k=1 kNk(t) which is the number of individuals observed before
time t.

E(S(t)) =
∫ ∞∑

k=1

λk−1tk exp(−λt)
(k − 1)! ν(dλ) = t

∫
ν(dλ) = tΛ. (3.4)

From (3.1), for k ≥ 0,

(k + 1)E(Nk+1(t0))
t0

=
∫

λ
(λt0)k exp(−λt)

k!λ ν(dλ).

By the thinning property of Poisson processes,

(λt0)k exp(−λt)
k!λ ν(dλ)

is the intensity measure of the rate for the species represented k times in [0, t0].
We can interpret (k+1)E(Nk+1(t0))/t0 as the expected total rate for all species
represented k times in [0, t0]. As pointed out in Section 2 and from (3.4), Λ =
E(S(t0))/t0 is the expected total rate for all species. Conditional on the event
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that we will observe an individual at a given future time t1 > t0, the probability
that this individual belongs to a species represented k times in [0, t0] is equal to

(k + 1)E(Nk+1(t0))/t0
E(S(t0))/t0

= (k + 1)E(Nk+1(t0))
E(S(t0))

(formal proof is given in Appendix D) which corresponds to the renowned Good-
Turing frequency estimator in Good [21]. It is worth pointing out that the above
equation holds for individual observed at a given future time rather than the
next observed individual.

From the well-known relation between independent Poisson random variables
and multinomial distribution, model (1.1) is valid under the framework with

pk(t) = E(Nk(t))
E(N+(t)) =

∫
(k!)−1λk−1tk exp(−λt)ν(dλ)∫
λ−1(1 − exp(−λt))ν(dλ)

, (k = 1, 2, . . .). (3.5)

Formal proof is given in Appendix E. If E(D) is finite, limt→∞ pk(t) = 0 for any
fixed k. The joint probability mass function of Ñ(t0) is

P (Ñ(t0) = ñ(t0) | ν) = exp (−E(N+(t0)))
∞∏
k=1

(E(Nk(t0)))nk(t0)

nk(t0)!
.

In terms of the expected FoF, the log-likelihood function is

log(L({E(Nk(t0))}k≥1 | ñ(t0))) = −E(N+(t0)) +
∞∑
k=1

nk(t0) log(E(Nk(t0))).

(3.6)
In terms of p(t0) and E(N+(t0)), it is

log(L(p(t0), E(N+(t0)) | ñ(t0)))

= −E(N+(t0)) + n+(t0) log(E(N+(t0))) +
∞∑
k=1

nk(t0) log(pk(t0)).

If the unknown vector p(t0) and the quantity E(N+(t0)) are unrelated, the
above log-likelihood function implies that the maximum likelihood estimator
(MLE) of p(t0) is the conditional maximum likelihood estimator (conditional
on the observed n+(t0)) for the multinomial distribution in (1.1). The MLE of
E(N+(t0)) is n+(t0).

4. Expected species accumulation curve

Denote the expected (empirical) SAC (ESAC) as ψ(t) = E(N+(t)). Condition
(2.1) guarantees that ψ(t) is finite for any finite t. For a real-valued function g(t),
let g(m)(t) stand for the m-order derivative of function g(t). Clearly ψ(0) = 0.
From (3.2),

ψ(k)(t) =
∫

(−λ)k−1 exp(−λt)ν(dλ), (k = 1, 2, . . .). (4.1)
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Note that ψ(1)(0) =
∫
ν(dλ) = Λ. From (3.1) and (4.1),

ψ(k)(t) = (−1)k+1 k!
tk
E(Nk(t)), (k = 1, 2, . . .). (4.2)

Analogous expression for (4.2) appears in Béguinot [2] as an approximate for-
mula under the multinomial model for fixed total number of observed individuals
for the species-sample-size curve with the derivative operator replaced by the
difference operator.

Before studying the link between ESAC and SAD, two mathematical terms
are needed. A function g(t) is a Bernstein function if it is a nonnegative real-
valued function on [0,∞) such that (−1)k+1g(k)(t) ≥ 0 for all positive integer k
[44]. An infinitely differentiable function f(s) on an interval A is called absolutely
monotone in A if f (k)(s) ≥ 0 for k = 0, 1, . . . and s ∈ A. The relation between
absolutely monotone function and probability generating function is well known
(see for example Strook [45]).

Proposition 1. a. A function ψ(t) is the ESAC of an MPPP if and only if
ψ(t) is a Bernstein function that passes through the origin.

b. A function ht(s) is the probability generating function of p(t) for a fixed
positive t of an MPPP if and only if ht(0) = 0, ht(1) = 1, and ht(s) is
absolutely monotone in (−∞, 1).

c. An MPPP is uniquely determined by its ψ(t), or (ht0(s), ψ(t0)) for the prob-
ability generating function ht0(s) of p(t0) for a fixed positive t0.

d. For any MPPP, and t > 0, we have

ht(s) = 1 − ψ((1 − s)t)
ψ(t) , (s ∈ (−∞, 1]). (4.3)

Proof of Proposition 1 is given in Appendix F. Equation (4.3) is the popula-
tion version of (1.4).

It worths pointing out that Boneh et al. [4] proved that (−1)k+1ψ(k)(t) ≥ 0
for a different setting (D independent Poisson processes with different rates)
and called it “infinite order alternating copositivity”.

From (3.6), the log-likelihood function can be re-expressed as a function of
ψ(t).

log(L(ψ | ñ(t0))) = −ψ(t0) +
∞∑
k=1

nk(t0) log(| ψ(k)(t0) |). (4.4)

It can be shown that the Taylor expansion of ψ(t) at t0 converges to ψ(t)
when 0 ≤ t < 2t0:

ψ(t) = E(N+(t0)) +
∞∑
k=1

(−1)k+1E(Nk(t0))
(

t

t0
− 1
)k

, (0 ≤ t < 2t0). (4.5)

It signifies that Good-Toulmin estimator in (1.3) performs satisfactorily in short-
term extrapolation when t0 < t < 2t0. We deduce from (4.5) the following
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unbiased estimator for different order of derivative of ψ(t)

ψ̂(j)(t) = (−1)j+1

tj0

∞∑
k=j

k!nk(t0)
(k − j)!

(
1 − t

t0

)k−j

, (j ≥ 1, 0 < t < 2t0). (4.6)

We use (4.6) only for 0 ≤ t ≤ t0
1 because outside this interval, ψ̂(j)(t) may not

have the correct sign (−1)j+1.
Estimator in (4.6) is useful. For example, a concave downward curve when

we plot 1/ψ̂(1)(t) for t ∈ (0, t0] 2 is an indication that E(D) = ∞ because if
we believe that there is a linear function b + ct with positive b and c such that
b + ct ≥ 1/ψ(1)(t) for all t ≥ 0, then

E(D) =
∫ ∞

0
ψ(1)(x)dx ≥

∫ ∞

0
(b + cx)−1dx = ∞.

From (4.2), a parallel result of Equation (4.6) is the following relation among
expected FoFs

E(Nj(t)) =
∞∑
k=j

E(Nk(t0))
(
k

j

)(
t

t0

)j (
1 − t

t0

)k−j

, (j ≥ 1, 0 ≤ t < 2t0),

(4.7)
which can be proved using the law of iterated expectations when 0 ≤ t ≤ t0.
Furthermore, for 0 ≤ t ≤ t0

E(Nj(t) | Ñ(t0) = ñ(t0)) =
∞∑
k=j

nk(t0)
(
k

j

)(
t

t0

)j (
1 − t

t0

)k−j

, (j ≥ 1),

(4.8)

5. Linear first derivative ratio family

MPPP is nonparametric in nature. It is defined by an intensity measure, an
ESAC or an SAD. When parametric approach is preferred, we restrict our in-
terest to a family of distributions in MPPP, say by putting constraints on the
SAD. A way to portray an SAD is to delineate its probability ratio, pj(t)/pj+1(t)
for j = 1, 2, . . .. It is equivalent to examine −ψ(j)(t)/ψ(j+1)(t) = tpj(t)/[(j +
1)pj+1(t)], which we call the jth derivative ratio. From (4.1) and the Cauchy-
Schwarz inequality, for j = 1, 2, . . . and t ≥ 0, ψ(j)(t)ψ(j+2)(t) ≥ (ψ(j+1)(t))2. It
deduces that jth derivative ratio is always a nonnegative nondecreasing function
of t. Among all derivative ratios, the first derivative ratio is most important be-
cause −ψ(1)(t)/ψ(2)(t) = −[d log(ψ(1)(t))/dt]−1 which relates to the logarithmic
derivative of ψ(1)(t) = E(N1(t))/t, the expected total rate for unseen species at
time t. The following proposition gives a sufficient condition for it.

1We include t = 0 here for completeness. Remember that ψ(1)(0) = Λ can be infinite.
2It corresponds to the diagnostic check for the log-series distribution in Table 1 in Section 5.



5500 C. T. Li and K.-H. Li

Table 1

Models in LDR1 (in the expressions, “a” is a positive scale parameter)

c = 0 SAD (Zero-truncated Poisson distribution)1:
(⇒ b > 0) pk(t) = (t/b)k exp(−t/b)/[k!(1 − exp(−t/b))]

ESAC (Negative exponential law):
ψ(t) = ab exp(1/b)(1 − exp(−t/b))
Diagnostic check: log(ψ(1)(t)) = 1/b + log(a) − t/b

c �= 0, 1 SAD2: pk(t) = (c−1)ck−1tkΓ(1/c+k−1)(b+ct)1−1/c−k

k!Γ(1/c)[(b+ct)1−1/c−b1−1/c]

b > 0 ESAC: ψ(t) = a(b+c)
c−1

((
b+ct
b+c

)1−1/c −
(

b
b+c

)1−1/c
)

c = 1/2 SAD (Geometric distribution)3: pk(t) = (2b/t)[t/(2b + t)]k
(⇒ b > 0) ESAC (Hyperbola law)4: ψ(t) = a(2b + 1)2t/(2b(t + 2b))

Diagnostic check: (ψ(1)(t))−1/2 = (t + 2b)/[a1/2(2b + 1)]
c = 1 SAD (Log-series distribution): pk(t) = [t/(t + b)]k/(k log(1 + t/b))
(⇒ b > 0) ESAC (Kobayashi’s logarithm law)5: ψ(t) = a(b + 1) log(1 + t/b)

Diagnostic check: 1/ψ(1)(t) = (b + t)/[a(b + 1)]
b = 0 SAD 6: When 1 < c < ∞, pk(t) = (c− 1)Γ(1/c + k − 1)/[k!cΓ(1/c)]
(⇒ c > 1 When c = ∞, p1(t) = 1, pk(t) = 0 for k > 1.
or c = ∞ ) ESAC (Power law): When 1 < c < ∞, ψ(t) = act1−1/c/(c− 1)

When c = ∞, ψ(t) = at

Diagnostic check: log(ψ(1)(t)) = log(a) − log(t)/c
1 It is the simplest MPPP with all species having the same rate 1/b.
2 When 0 < c < 1 (⇒ b > 0), it is the zero-truncated negative binomial distribution.
3 It is a special case of the zero-truncated negative binomial distribution.
4 Also known as Michaelis-Menten equation and Monod model.
5 Kobayashi [30] (see also Fisher et al. [20] and May [36])
6 This distribution appears in Zhou et al. [51].

Proposition 2. A sufficient condition for a function ξ(t) on [0,∞) to be the
first derivative ratio for an MPPP is that (i) ξ(t) is a Bernstein function, and
(ii) ξ(0) > 0 or ξ(1)(0) > 1.

We prove Proposition 2 in Appendix G. Hereafter we use ξ(t) = −ψ(1)(t)/
ψ(2)(t) to denote the first derivative ratio.

The simplest nontrivial Bernstein function is the positive linear function on
[0,∞). It suggests the following fundamental family of distributions in MPPP.

Definition. (Linear First Derivative Ratio Family) An MPPP is said to belong
to the linear first derivative ratio family (denoted as LDR1) if its first derivative
ratio ξ(t) takes a linear form ξ(t) = b + ct for b ≥ 0 and c ≥ 0 such that c > 1
if b = 0.

Family LDR1 encompasses some common SADs and ESACs. We list the
characteristics of all models in LDR1 in Table 1. When b = 0, c must be larger
than 1 (see condition (ii) in Proposition 2), otherwise from the second row of
Table 1, limb↓0 ψ(t) = ∞ for finite t. In Table 1, equality of transformed ψ(1)(t)
for some models is presented. Such equalities can be used to produce diagnostic
check for specified SAD in LDR1 when ψ(1)(t) is replaced by its estimator in
(4.6).

LDR1 has three parameters a, b and c. Parameters b and c determine the SAD,
and a = ψ(1)(1) is a scale parameter. As pointed out at the end of Section 3,
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the MLE of b and c is equivalent to the conditional MLE (conditional on the
observed n+(t0)) of the multinomial model in (1.1). The MLE of a is chosen to
make Ê(N+(t0)) equal to n+(t0).

From Table 1, we can find E(Nk(t)) and ψ(k)(t) using the relations E(Nk(t)) =
pk(t)ψ(t), and

ψ(k)(t) = (−1)k+1 k!
tk
pk(t)ψ(t).

It can be shown that for LDR1, ν({0}) = 0, and

ν̃(dλ) =
{

a((b+c)/c)1/cλ1/c−2

Γ(1/c) exp(−bλ/c)dλ (c > 0),
ab exp(1/b)δ1/b(dλ) (c = 0),

(5.1)

where δ1/b(A) = 1{1/b ∈ A} is the Dirac measure. The intensity measure ν̃
takes the form as a gamma distribution with extended shape parameter 1/c− 1
for nonnegative c. Therefore, p(t) is the Engen’s extended negative binomial
distribution [19] with support {1, 2, . . .}. The parameter c determines the shape
of the gamma distribution.

The Hill number of order q for LDR1 is

qDν =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ab exp(1/b) (c = 0)
a((b+c)/b)1/c(b/c)(Γ(1

c +q−1)/Γ(1
c ))

1/(1−q) (c > 0, q > 1 − 1
c , q 
= 1)

a((b + c)/b)1/c(b/c) exp(−Ψ(1
c )) (c > 0, q = 1)

∞ (c > 0, q ≤ 1 − 1
c ),

where Ψ(x) is the digamma function. E(D) can be found either as 0Dν or
limt→∞ ψ(t). Species richness, E(D) = 0Dν = ∞ if and only if c ≥ 1. In this
case, E(Nk(t)) is increasing in t for any fixed k. When E(D) < ∞, E(Nk(t)) is
unimodal with respect to t.

An ESAC is called following a power law, if ψ(t) ∝ tτ for 0 < τ ≤ 1. From
Table 1, the SAD at time t for a power law has the form

P (X = k) = (1 − β)(β)k−1

k! , (k = 1, 2, . . .)

where 0 ≤ β < 1 (β is 1/c in Table 1), and (a)i = a(a+1) . . . (a+ i−1) for i ≥ 1
and (a)0 = 1 is the rising factorial (this distribution appears in Zhou et al. [51]).
This SAD distribution does not depend on t. We call this discrete distribution,
the power species abundance distribution (PSAD). If X follows a PSAD with
parameter β, then X − 1 follows the generalized hypergeometric distribution,
2F1(β, 1; 2; 1) distribution [28, 27].

Proposition 3. Under the MPPP, power law is the only ESAC which has SAD
independent on t. Furthermore, if an SAD under MPPP has a proper limiting
distribution when t approaches infinity, then the limiting distribution must be
a PSAD.
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The proof of Proposition 3 is given in Appendix H.
Three distributions in LDR1 are exceptional. They stand for three boundary

situations. The first one is the zero-truncated Poisson distribution (c = 0). It
models the extreme case when all species have equal abundance. In the approach
that assumes finite D, it is a common reference distribution, say in interpreting
qDν and deriving nonparametric estimator of D.

The second one is the log-series distribution (c = 1). It is where E(D) jumps
from finite value to infinite value in LDR1. Therefore, if we are interested only
in finite D models, it is a boundary case. Because of this property, it is used
in this paper as a reference distribution in graphical check for the finiteness of
E(D) (refer to the end of Section 4, and the checking of slope 1 in the D1/D2
plot introduced later).

The last one is the power law (b = 0). It is the only possible limiting dis-
tribution of SAD in MPPP as t approaches ∞. All SADs in LDR1 with c > 1
converge to it when t increases without bound. It is also the only distribution
in LDR1 that has E(S(t)) = ∞ for any t > 0.

We extend the linear first derivative ratio family to linear jth derivative ratio
family, which we denote as LDRj . A ψ(t) belongs to LDRj if −ψ(j)(t)/ψ(j+1)(t)
is a linear function of t. We prove in Appendix I that LDR2 = LDR3 = . . ., and
LDR2 is simply a mixture of zero-rate species and LDR1 (i.e., the ν̃ of LDR2
satisfies (5.1), but ν({0}) can be positive).

6. Diagnostic plots

An advantage of LDR1 is that it has a simple diagnostic plot: Draw ξ̂(t) =
−ψ̂(1)(t)/ψ̂(2)(t) as a function of t ∈ [0, t0] for ψ̂(1)(t) and ψ̂(2)(t) defined in (4.6).
If the curve in the plot is almost linear, LDR1 is an appropriate model. Approx-
imate intercept and slope of the curve can be used as initial estimate of b and c
in finding the MLE. We call the plot, D1/D2 plot, and the curve for ξ̂(t) in the
plot, the D1/D2 curve.

Similarly, to investigate how well LDR2 fits a data, we can plot the function
−ψ̂(2)(t)/ψ̂(3)(t) for t ∈ [0, t0] where ψ̂(2)(t) and ψ̂(3)(t) are defined in (4.6). We
call the plot, D2/D3 plot, and the curve in it, the D2/D3 curve.

As N1(t0), N2(t0), . . . are independent and Poisson distributed, by the delta
method, we can approximate V ar(ξ̂(t)) by

V̂ ar(ξ̂(t)) = V̂ ar(ψ̂(1)(t))
ψ̂(2)2(t)

+ ψ̂(1)2(t)V̂ ar(ψ̂(2)(t))
ψ̂(2)4(t)

−2ψ̂(1)(t)Ĉov(ψ̂(1)(t), ψ̂(2)(t))
ψ̂(2)3(t)

,

where

V̂ ar(ψ̂(1)(t)) = 1
t20

∞∑
k=1

k2Nk(t0)(1 − t/t0)2k−2, (6.1)

V̂ ar(ψ̂(2)(t)) = 1
t40

∞∑
k=2

k2(k − 1)2Nk(t0)(1 − t/t0)2k−4,
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and

Ĉov(ψ̂(1)(t), ψ̂(2)(t)) = − 1
t30

∞∑
k=2

k2(k − 1)Nk(t0)(1 − t/t0)2k−3.

We use ξ̂(t)±1.96
√
V̂ ar(ξ̂(t)) as an approximate 95% pointwise confidence band

for ξ̂(t) in the D1/D2 plot. Similar confidence band can be constructed in D2/D3
plot (see Appendix J).

The diagnostic checks in Table 1 suggest graphs to examine the fitness of
zero-truncated Poisson distribution, geometric distribution, log-series distribu-
tion, and power law to the FoF. Graphical check for the leading three distribu-
tions exist in the statistical literature. See for example Hoaglin and Tukey [26].
Our plots are new additions from a totally new point of view. The plot focuses
on ψ̂(1)(t), the estimated expected total rate of unseen species at time t. The
graphical check detects discrepancy between the estimated function and its ex-
pected pattern for t ∈ [0, t0] when a specified distribution is assumed. Since the
plotted y-value in the diagnostic plot has the form g(ψ̂(1)(t)), an approximate
pointwise confidence band for the curve can be obtained using the approxima-
tion V ar(g(ψ̂(1)(t))) ≈ [g(1)(ψ̂(1)(t))]2V̂ ar(ψ̂(1)(t)) for V̂ ar(ψ̂(1)(t)) defined in
(6.1).

Currently a standard diagnostic plot for power law is the log-log plot which
plots log(ψ̂(t)) against log(t) for 0 ≤ t ≤ t0. As d log(ψ(t))/d log(t) = p1(t), log-
log plot detects whether p1(t) is a constant function. As suggested by the diag-
nostic check of power law in Table 1, we can plot log(ψ̂(1)(t)) against log(t) for
0 ≤ t ≤ t0. We call it log(D)-log plot. Log(D)-log plot checks whether p2(t)/p1(t)
is a constant function because d log(ψ(1)(t))/d log(t) = −2p2(t)/p1(t). Log(D)-
log plot is more sensitive to discrepancies with the power law because p1(t)
changes very slowly with respect to t for many SADs. It is well-known in species-
area relationship studies that the curve in log-log plot is approximately linear
for various dissimilar SADs [39, 40, 36, 33].

In Figure 2, we consider four LDR1 distributions for which the diagnostic
graphs are designed. The parameter (b, c) are (1.5, 0) (zero-truncated Poisson
distribution), (1, 0.5) (geometric distribution), (0.5, 1) (log-series distribution)
and (0, 1.5) (power law). Parameter a is chosen so that ψ(5) = 200. We draw
the ESAC in panel (a) and the SAD at t = 5 in panel (b). We can discriminate
the power law (the black curve in the panel (a)) from other distributions as its
ψ(1)(0) = ∞ (ψ(1)(0) = Λ is the expected total rate). Other than this, we learn
little about the parameters b and c from visual inspection of the plots in panels
(a) and (b). We need special plots to discriminate different parameter values. In
D1/D2 plot in panel (c), the four distributions correspond to four straight lines
with different slope c. The graphical checks in panels (d)-(g) are designed for
each special distribution so that when FoF follows that distribution, the curve in
the plot is a straight line, which is drawn as a heavy line in Figure 2. Therefore,
how straight the curve is can be used to assess how well the distribution fits the
data.
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Fig 2. Plots for four LDR1 models with ξ(t) = (1.5−c)+ct for c = 1.5, 1, 0.5, 1. When c = 1.5
(b = 0), it is a power law and the curve is shown in black color. When c = 1, it is a log-series
distribution, and the curve is shown in red. When c = 0.5, it is a geometric distribution, and
the curve is shown in green. When c = 0, it is a zero truncated Poisson distribution, and the
curve is shown in blue. In panel (a), we draw the ESAC. In panel (b), we draw SAD at time
t = 5. In panel (c), we draw D1/D2 plot. In panels (d)-(g), we draw the graphical checks for
zero truncated Poisson distribution, geometric distribution, log-series distribution and power
law respectively. The straight line in the plots are drawn with larger weight.
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7. Species richness via extrapolation

Assuming the whole curve ξ(t) to be linear may be too ambitious. If species
richness is our main concern, our aim is to estimate E(N0(t0)). It is convenient
to concentrate only on the rare species. We classify species into two groups: rare
species and abundant species. Assume that (B1) all species represented 0, 1, 2,
and 3 times in time interval [0, t0] are rare, and (B2) rare species follows LDR1
distribution. 3 Observations n1(t0), n2(t0) and n3(t0) are data from this model
truncated at both ends. We do not know how many rare species are represented
four times or more in [0, t0] because the observed nj(t0) for j ≥ 4 may include
abundant species.

It can be shown that for LDR1,

E(Nj(t0))E(Nj+2(t0))
E2(Nj+1(t0))

= (j + 1)(jc + 1)
(j + 2)((j − 1)c + 1) , (7.1)

when j = 1, 2, . . . and is independent on t0. When j = 1, we have

E(N1(t0))E(N3(t0))
E2(N2(t0))

= 2(c + 1)
3 .

The information about the rare species from N1(t0), N2(t0) and N3(t0) is barely
enough to make c estimable. When N2(t0) > 0, a plug-in estimator of c is

ĉ∗ = 3N1(t0)N3(t0)
2N2

2 (t0)
− 1.

Estimator ĉ∗ needs modification to take into account two inequality constraints:
c ≥ 0 and b ≥ 0. Under LDR1, the constraint b ≥ 0 is equivalent to c, the slope
of ξ(t) satisfying E(N1(t0))/(2E(N2(t0))) = ξ(t0)/t0 ≥ c. Therefore, our final
estimator of c when N2(t0) > 0 is

ĉF = max(min(ĉ∗, N1(t0)/(2N2(t0))), 0).

If 0 ≤ c < 1, E(N0(t0)) (= E(D)−ψ(t0)) is finite, and (7.1) remains true when
j = 0. We have

E(N0(t0)) =
{

E2(N1(t0))/[2(1 − c)E(N2(t0))] (0 ≤ c < 1)
∞ (c ≥ 1). (7.2)

Using estimator ĉF and (7.2), we have the following estimator of E(N0(t0)).

Ê(N0(t0)) =

⎧⎪⎪⎨⎪⎪⎩
N2

1 (t0)/[2(1 − ĉF )N2(t0)] (N2(t0) > 0, 0 ≤ ĉF < 1)
∞ (N2(t0) > 0, ĉF ≥ 1) or

(N1(t0) > 0, N2(t0) = 0)
0 (N1(t0) = N2(t0) = 0).

(7.3)
3The categorization of species into rare species and abundant species in (B1) and (B2) is

vague and data-dependent. A clear-cut threshold at 3 for the abundant species is artificial. It
leads to an intuitive but debatable conclusion: All abundant species are represented at least
four times in [0, t0]. Results deduced from (B1) and (B2) can only be approximations.
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From (B1), all unseen species are rare. Estimator Ê(N0(t0)) depends only on
rare species data N1(t0), N2(t0), and N3(t0). When ĉF = 0, Ê(N0(t0)) reduces
to Chao1 estimator [7] of E(N0(t0)), which is N2

1 (t0)/[2N2(t0)]. If N2(t0) > 0
and ĉF ≥ 1, a reasonable estimate of E(N0(t0)) is infinity. When N2(t0) = 0, our
estimate of E(N0(t0)) is ∞ when N1(t0) > 0, and is 0 when N1(t0) = 0. From
(B1), all abundant species are observed before time t0. Their contribution to D
is included in N+(t0). Our estimator of E(D) is Ê∗(D) = N+(t0) + Ê(N0(t0)).

Chao1 estimator [7] is a lower bound estimator of D, and works well when
the rare species have equal abundance, which corresponds to the LDR1 model
with c = 0. Our estimator Ê∗(D) is an extension of Chao1 estimator in the
sense that we assume the rare species follow LDR1 model, and estimate the
parameter c using the FoF of rare species. It reduces to Chao1 estimator when
ĉF = 0.

A better way to understand the estimator Ê∗(D) is to relate it to an extrapo-
lation of ξ̂(t) because we can assess its suitability in the D1/D2 plot. Abundant
species usually appear early. Species that show up late are likely rare. The rear
part of ξ̂(t) depends mainly on rare species. Extrapolation is a technique to
extend our knowledge about rare species to the unseen species. (B1) and (B2)
imply that ξ(t) is approximately linear when t ≥ t0.4 Consider two simple lin-
ear extrapolation methods in D1/D2 plot. The zeroth-order extrapolation uses
ξ̂(t) = ξ̂(t0) = t0N1(t0)/[2N2(t0)] for t > t0. Another extrapolation uses

ξ̂(t) = ξ̂(t0) + ĉF (t− t0), (t > t0). (7.4)

As ĉ∗ = ξ̂(1)(t0), (7.4) is the first-order extrapolation of ξ̂(t) when ĉF = ĉ∗. We
call (7.4) a modified first-order extrapolation. It is always true that

ψ(t) = ψ(t0) + ψ(1)(t0)
∫ t

t0

exp
(
−
∫ y

t0

1
ξ(x)dx

)
dy, (t ≥ t0). (7.5)

If we estimate ψ(t0) by its MLE N+(t0) and ψ(1)(t0) = E(N1(t0))/t0 by its
plug-in estimator N1(t0)/t0, then we can estimate ψ(t) for all t > t0 using (7.5)
once an extrapolation rule for ξ(t) is chosen. Species richness is just the limiting
value of this ψ(t). If zeroth-order extrapolation is used, the estimator of E(D) is
Chao1 estimator. If modified first-order extrapolation rule is used, the estimator
of E(D) is Ê∗(D). As ξ(t) is nondecreasing, zeroth-order extrapolation is a
lower bound of all reasonable extrapolations. It explains why Chao1 estimator
estimates a lower bound of E(D).

All ξ(t)’s that fulfill the sufficient condition in Proposition 2 are asymptot-
ically linear because its derivative is nonnegative and non-increasing and thus
must have a finite limit. Furthermore, for concave ξ(t), the modified first-order
extrapolation is probably the first-order extrapolation. Therefore, under the

4We do not require ξ(t) to be exactly linear when t ≥ t0 because given the rear part of
ξ(t), we can find E(Ni(t)) for i ≥ 1 and t ≥ t0 and then perform interpolation using Equation
(4.7) to find ξ(t) for all t ≥ 0. If ξ(t) is linear after t0, it can be shown that ξ(t) is linear in
[0,∞).
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sufficient condition in Proposition 2, modified first-order extrapolation is an ad-
equate extrapolation curve when t0 is large, and Ê∗(D) should give a plausible
estimate.

Equation (7.5) is useful. If ξ(t) ≥ β + t for a β > 0 when t ≥ t∗ ≥ 0, then

ψ(t) ≥ ψ(t∗) + ψ(1)(t∗)
∫ t

t∗
exp
(
−
∫ y

t∗

1
β + x

dx

)
dy

= ψ(t∗) + ψ(1)(t∗)(β + t∗) log
(

β + t

β + t∗

)
→ ∞ when t → ∞.

Similarly, if ξ(t) < β + γt for a β > 0 and 0 ≤ γ < 1 when t ≥ t∗ ≥ 0, then

ψ(t) < ψ(t∗) + ψ(1)(t∗)
∫ t

t∗
exp
(
−
∫ y

t∗

1
β + γx

dx

)
dy

= ψ(t∗) + ψ(1)(t∗) (β + γt∗)1/γ

1 − γ

(
(β + γt∗)1−1/γ − (β + γt)1−1/γ

)
where the last expression has finite limit when t increases to infinity. These two
facts can be used to detect the finiteness of E(D) in D1/D2 plot. If we can judge
from the ξ̂(t) in the D1/D2 plot that there are positive values β and t∗ such
that ξ̂(t) ≥ β + t whenever t ≥ t∗, then E(D) is likely infinite. On the other
hand, if ξ̂(t) ≤ β + γt for a 0 ≤ γ < 1, it is reasonable to believe that E(D) is
finite. To assist judging whether the rear part of ξ̂(t) has slope larger than or
smaller than 1, it is helpful to add grid lines with slope 1 in the D1/D2 plot as
demonstrated in Figure 3.

We can assess the adequacy of Chao1 estimator through investigating how
well N1(t0), N2(t0) and N3(t0) fit a truncated Poisson distribution by testing

H0 : 3E(N1(t0))E(N3(t0)) − 2E2(N2(t0)) ≤ 0

against
H1 : 3E(N1(t0))E(N3(t0)) − 2E2(N2(t0)) > 0.

If the null hypothesis is not rejected, Chao1 estimator gives reasonable esti-
mate of E(D), otherwise it only estimates a lower bound of E(D). An unbi-
ased estimator of 3E(N1(t0))E(N3(t0)) − 2E2(N2(t0)) is T = 3N1(t0)N3(t0) −
2N2(t0)(N2(t0)−1) which is our test statistic. An unbiased estimator of V ar(T )
is

V̂ ar(T ) = 9N1(t0)N3(t0)(N1(t0)+N3(t0)−1)+8N2(t0)(3−5N2(t0)+2N2
2 (t0)).

The approximate p-value of the test is P (N(0, 1) ≥ T/

√
V̂ ar(T ) ), where

N(0, 1) stands for standard normal distribution. We reject H0 at significance
level α when the p-value is less than α.
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Fig 3. D1/D2 and D2/D3 plots for the data. Panels (a), (c), (d) and (e) are D1/D2 plots for
the four examples, and Panel (b) is the D2/D3 plot for the first example. The light black solid
curves are the D1/D2 or D2/D3 curve. The light black dashed curves are the 95% pointwise
confidence bands. The heavy black dashed lines are the lines fitted by the MLE under LDR1.
The heavy green solid curves in panels (a), (c), (d) and (e) are the fitted curves under RDR1.
The blue dotted lines in the D1/D2 plots are grid lines with slope 1. They are added to assist
checking the slope of the curve. D1/D2 curve with slope larger than 1 is a signal for infinite
E(D), while slope less than 1 is for finite E(D). The zeroth-order and the modified first-
order extrapolation lines are drawn in D1/D2 plot in orange and purple respectively. They
correspond to the extrapolation used by Chao1 estimator (orange line) and Ê∗(D) (purple
line) respectively.

8. Rational first derivative ratio family

When the curve in the D1/D2 plot is not linear, but concave, it is natural to
model ξ(t) as a rational function. Quotient of two linear functions is too restric-
tive because it is in general asymptotically flat. It not only implies that E(D)
is usually finite, but also that the rare species are homogeneously abundant.
Therefore, we consider a ratio of a quadratic polynomial and a linear function.
This form of ξ(t) is asymptotically linear with flexible slope. After simple ma-
nipulation, we obtain the following expression for ξ(t).

Definition: (Rational First Derivative Ratio Family) A first derivative
ratio, ξ(t) belongs to the rational first derivative ratio family (denoted as RDR1)
if

ξ(t) = 1
c1/(t + b1) + c2/(t + b2)

, (8.1)

where b2 and c1 are positive parameters, and b1 and c2 are nonnegative param-
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eters. For uniqueness we assume b1 < b2. If b1 = 0, we require c1 < 1. This
additional restriction is to ensure that ψ(t) is finite for all finite t.

Function ξ(t) in (8.1) fulfills the sufficient condition in Proposition 2. When
c2 = 0, RDR1 model becomes LDR1 model. RDR1 has five parameters, a =
ψ(1)(t0), b1, b2, c1, and c2.

To calculate the log-likelihood function using (4.4), we need to compute ψ(t0)
and ψ(k)(t0) for all k such that nk(t0) > 0. The following equality which can be
proved by mathematical induction for k ≥ 1 is helpful,

k(k − 1 + c1 + c2)ψ(k)(t) + [c1t + b2c1 + c2t + b1c2 + k(2t + b1 + b2)]ψ(k+1)(t)
+ (t + b1)(t + b2)ψ(k+2)(t) = 0.

To use it, choose a value for t0. Given a = ψ(1)(t0) which is a scale parameter,
and the values of the parameters b1, b2, c1 and c2, we can find ψ(2)(t0) =
−ψ(1)(t0)/ξ(t0). Then apply the above recurrence relation for t = t0 to compute
all necessary ψ(k)(t0) in (4.4). The ESAC is

ψ(t) = a(t0 + b1)c1(t0 + b2)c2
∫ t

0
(x + b1)−c1(x + b2)−c2dx.

Thus E(D) < ∞ if and only if c1 + c2 > 1. It can be proved that ν({0}) = 0.
We give the expression for qDν in Appendix L.

9. Examples

Four real FoF data are presented in Table 2. Nonparametric analysis of the data
can be found in Böhning and Schön [3], Lijoi et al. [31], Wang [49], Chee and
Wang [12], Norris and Pollock [37], and Chiu and Chao [13]. In this section,
we fit the data using the parametric models in Sections 5 and 8, demonstrate
the use of various diagnostic plots, and compare different diversity estimates.
Without loss of generality, we set t0 = 1. The significance level of the tests is
fixed to 5%.

The first data is the swine feces data which appeared and was analyzed in
Chiu and Chao [13]. It is for the pooled contig spectra from seven non-medicated
swine feces. The large n1(t0) relative to other frequencies is viewed as a signal for
sequencing errors. Chiu and Chao [13] proposed a nonparametric estimate of the
singleton count basing on the other counts, and the difference of this estimate
and the observed singleton count is interpreted as outcome of missequencing. An
implicit assumption of this approach is that sequencing errors inflate only the
singleton count, and all other frequency counts are unaffected. It is equivalent
to claim that there are sequencing errors which create solely zero-rate species.

To investigate whether zero-rate species really exist, we draw the D1/D2
and D2/D3 plots with 95% pointwise confidence bands in panels (a) and (b)
respectively in Figure 3. The approximate linear curve in both plots indicates
that both LDR1 and LDR2 are reasonable models. The heavy dashed lines in
panels (a) and (b) are the lines fitted by MLE under LDR1. The fitted line is
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Table 2

Four real FoF data and the MLE for the selected model using AIC

(i) Swine feces data
(â = 8025.0, b̂1 = 0.429, b̂2 = 3.178, ĉ1 = 0.115, ĉ2 = 0.294 under RDR1)

k 1 2 3 4 5 6 7 8 9 10 11
nk(t0) 8025 605 129 41 16 8 4 2 1 1 1
(ii) Accident data
(â = 1318.1, b̂1 = 0.617, b̂2 = 198.9, ĉ1 = 0.211, ĉ2 = 45.362 under RDR1)

k 1 2 3 4 5 6 7
nk(t0) 1317 239 42 14 4 4 1
(iii) Tomato flowers data
(â = 1433.7, b̂1 = 0.050, b̂2 = 1.451, ĉ1 = 0.074, ĉ2 = 0.693 under RDR1)

k 1 2 3 4 5 6 7 8 9 10 11 12 13
nk(t0) 1434 253 71 33 11 6 2 3 1 2 2 1 1

k 14 16 23 27
nk(t0) 1 2 1 1
(iv) Bird abundance data (â = 14.696, b̂ = 0.044, ĉ = 0.772 under LDR1)

k 1 2 3 4 5 6 7 8 9 10 12 13 14
nk(t0) 11 12 10 6 2 5 1 3 2 4 1 1 1

k 15 16 18 25 29 30 32 39 44 53 54
nk(t0) 2 1 2 1 1 1 1 1 1 1 1

close to the curve in D1/D2 plot, but is not so in the D2/D3 plot. As the dashed
line lies inside the confidence bands in panel (b), the disagreement between the
singleton count and other counts is not strong enough to reject that they come
from the fitted LDR1. The Pearson’s chi-square test statistic after grouping all
cells with expected frequency less than 5 is 4.325 with 4 degrees of freedom.
The estimated E(N1(t0)) under this LDR1 is 8027.6 which is marginally larger
than n1(t0). As Ê(N1(t0)) > n1(t0), the MLE of ν({0}) under LDR2 should be
zero. There is no significant evidence for the existence of zero-rate species. The
heavy green curve in panel (a) is the fitted curve under RDR1. The heavy green
curve is very close to the D1/D2 curve. RDR1 performs better than LDR1 in
terms of Akaike information criterion (AIC) (the AIC for LDR1 is −136060.6,
and that for RDR1 is −136061). 5

In panel (a) blue grid lines with slope 1 are drawn. From Section 7, the slope
of the rear part of ξ̂(t) larger (or smaller) than 1 is an indication that E(D) is
infinite (or finite). Apparently the slope of ξ̂(t) has slope always larger than 1.
We are confident that E(D) is infinite. The modified first-order extrapolation
line for Ê∗(D) (the purple line) and the zeroth-order extrapolation line for
Chao1 estimator (the orange line) are drawn. As ĉF > 1, Ê∗(D) = ∞. The
orange extrapolation line does not look good. Chao1 estimator does not perform
satisfactorily.

The second data come from 9461 accident insurance policies issued by an
insurance company. It was used in Böhning and Schön [3], Wang [49], and Chee
and Wang [12]. The species corresponds to the policies, and the frequency count

5The standard likelihood ratio test is not valid as the tested parameter value is on the
boundary of the parameter space.
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to the number of claims during a particular year. The ξ̂(t) in the D1/D2 plot
for the accident data in panel (c) is concave but not far from linear. The heavy
dashed line is the fitted line under LDR1. The p-value for the Pearson chi-square
test for LDR1 is 0.0979. The MLE of c is 1.1146 which is larger than 1. Therefore,
the MLE of E(D) is infinite. Compared with the blue grid lines with slope 1, the
average slope of the D1/D2 curve is close to one showing uncertainty about the
finiteness of E(D). The heavy green curve in panel (c) is the fitted curve under
RDR1. It is preferred to LDR1 because it has smaller AIC (the AIC for LDR1
and RDR1 are −18691.95 and −18692.15 respectively). The MLE of E(D) under
RDR1 is 6354. It is less than the true value D = 9461, and is comparable to the
nonparametric estimates presented in Chee and Wang [12] which ranges from
4016 to 7374. The purple line is the modified first-order extrapolation used by
Ê∗(D). As the slope of the purple line is less than one, Ê∗(D) is finite. For this
data, ĉF = 0.4525 and Ê∗(D) = 8249.2 which is closer to the true value. The
orange extrapolation line for Chao1 estimator is also drawn. The difference of
the two extrapolation lines is not small.

The third data come from a CDNA library of the expressed sequence tags of
tomato flowers. It was studied in Böhning and Schön [3] and Lijoi et al. [31].
The D1/D2 plot in panel (d) shows that LDR1 model does not fit the data
well (the p-value of the Pearson chi-square test is 0.0059). The curve looks like
a Bernstein function. An RDR1 model is fitted and the fitted curve is shown
in the plot by a heavy green curve. The model fits the data well (Pearson chi-
square statistic after grouping all cells with expected frequency less than 5 is
1.470 with 2 degrees of freedom). As ĉ1 + ĉ2 = 0.767 < 1, the estimated E(D)
is infinite. This estimate of E(D) agrees with the finding when we compare the
slope of the rear part of the curve with one under the assistance of the blue grid
lines. The modified first-order and zeroth-order extrapolation lines are drawn in
purple and orange respectively. The difference of the slopes of the lines is not
small.

The fourth data is the bird abundance data for the Wisconsin route of the
North American Breeding Bird Survey for 1995. Totally 645 birds from 72
species are recorded. The data was studied in Norris and Pollock [37] where
a mixture of five Poisson models was fitted, and the estimated D is 76. Com-
paring with the blue grid lines, the slope of the D1/D2 curve is less than one.
Species richness should be finite. The ξ̂(t) in the D1/D2 plot does not look like
a straight line. However, the LDR1 model is not rejected as the p-value of the
Pearson’s chi-square test is 0.116. The estimated E(D) is 124.50. We also fit a
RDR1 model to the data. The fitted line for this model is shown in the figure as
a heavy green curve. The MLE of E(D) under RDR1 is 80.7. LDR1 is preferred
to RDR1 as its AIC is −25.63 which is less than that for RDR1 which is −24.53.
RDR1 does not fit the rear part of ξ̂(t) well because of an abrupt change of slope
around t = 0.5. After t = 0.6, ξ̂(t) looks quite linear. It suggests that Ê∗(D)
may be a good estimate. For this data, Ê∗(D) = 77.90, which is close to the
Chao1 estimate 77.04.

We investigate the performance of various special graphical checks in Fig-
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Fig 4. Diagnostic plots for data. Each column corresponds to one diagnostic plot. The first
four columns are plots suggested in Table 1. They check c = 0 (zero-truncated Poisson distri-
bution), c = 0.5 (geometric distribution), c = 1 (log-series distribution) and b = 0 (log(D)-log
plot for power law). The last column is the log-log plot used to check the power law. The
two red dashed curves are the 95% approximate pointwise confidence band. There are five
rows. The first four rows are for the real data: swine feces data, accident data, tomato flow-
ers data and bird abundance data respectively. The last row is for data simulated from the
LDR1 distribution to be checked. Their parameter vector (a, b, c) are (200,1,0) (zero-truncated
Poisson distribution), (200,1,0.5) (geometric distribution), (200,1,1) (log-series distribution),
(200,0,3) (power law), and (200,0,3) (power law) respectively. When the curve is close to a
straight line, it means that the checked distribution fits the data.
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ure 4. If the curve in the plot is close to a straight line, we assume that the
corresponding distribution fits the data. The red dashed curves are the 95%
approximate pointwise confidence band. The five columns correspond to five
graphical checks: namely the plot for zero-truncated Poisson distribution (check
c = 0), for geometric distribution (check c = 0.5), for log-series distribution
(check c = 1), for power law (check b = 0; it is the log(D)-log plot), and the
log-log plot for power law. The first four rows of plots are for the four real FoF
data. The last row is for data simulated from the specified distribution which
the diagnostic plot is designed to check. The curves in the last row are close to
a straight line as expected. The log-log plot in the last column does not perform
satisfactorily. The first three graphs shows almost perfect line. Comparatively,
the log(D)-log plot correctly declare discrepancy of power law to the four real
data. The graphical check for log-series distribution correctly detects that acci-
dent data follow closely to a log-series distribution (the MLE of c under LDR1
is 1.1146). The curves for swine feces data and the tomato flowers data are con-
cave. It implies that E(D) is infinite as pointed out at the end of Section 4. The
plot for geometric distribution and zero-truncated Poisson plot look reasonable
except for the accident data.

Consider estimation of Hill numbers. In Table 3, we compare the model-based
estimator developed in the paper, and Chao-Jost estimator proposed in Chao
and Jost [10]. For our model-based estimator, 95% confidence intervals are con-
structed using parametric bootstrap method. Details are given in Appendix K.
The difference between our estimators and Chao-Jost estimator is mild when
q = 2. In other situations, the difference can be large. Sometimes the two con-
fidence intervals do not overlap. The width of the 95% confidence interval for
our parametric estimator is larger than that of the corresponding interval for
Chao-Jost estimator. The interval estimate for Chao-Jost estimator is obtained
basing on the assumption that D is finite and all unseen species have equal
abundance. For the accident data, the true D is contained in the model-based
95% confidence interval, but not in that for the Chao-Jost estimator.

Consider estimation of species richness. In Table 4, we compare Ê∗(D), Chao1
estimator, iChao1 estimator in Chiu et al. [14], and the abundance-based cov-
erage estimator (ACE) in Chao and Lee [9] and Chao et al. [11]. We construct
the 95% confidence intervals for E(D) basing on Ê∗(D) using parametric boot-
strap method. Details are given in Appendix K. Estimator Ê∗(D) usually gives
larger estimate. For the bird abundance data, all estimators give similar point
estimate. For the accident data, Ê∗(D) gives the best estimate of the true D.
For the remaining two data, the differences are huge. Our estimate is infinite,
while other estimates are finite as assumed.

The difference between Ê∗(D) and the other three methods can well be ex-
plained by the test on whether the observed N1(t0), N2(t0) and N3(t0) fit a
truncated Poisson distribution. The p-value of the test at the end of Section 7
for the bird abundance data is 0.374. For this data, all estimates are close to
each others. The p-value for accident data is 0.040. The difference is significant,
but not huge. The p-value of the other two data are smaller than 6×10−6 imply-
ing that the deviation is huge. The 95% confidence interval for swine feces data
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Table 3

Chao-Jost Estimates and Our Parametric Estimates of Hill Numbers for Selected
Models (Values enclosed between square parentheses are 95% confidence interval)

Data Model/Method 0Dν
1Dν

2Dν

Swine RDR1 ∞ 194649 27698
feces [105408,∞] [62348, 407027] [23940, 31195]
data Chao-Jost 1 62051 53835 27801

[59197, 64905] [51634, 56035] [26076, 29526]
Accident RDR1 6354 5203 3557
data [4741, 16013] [4458, 6684] [2996, 4210]
(True D Chao-Jost 5248 4788 3606
= 9461) [4713, 5783] [4449, 5126] [3322, 3890]
Tomato RDR1 ∞ 5941 1311
flowers [7849,∞] [4054, 7741] [699, 2120]
data Chao-Jost 5887 4079 1450

[5405, 6370] [3809, 4349] [1254, 1646]
Bird LDR1 124.51 43.84 28.43
abundance [63.63, 417.98] [32.82, 57.58] [19.55, 39.91]
data Chao-Jost 77.03 41.94 27.57

[61.68, 92.39] [39.35, 44.54] [24.72, 30.41]
1 Hill numbers estimates are the estimator derived in Chao and Jost [10]. Point and

interval estimates are computed using R package SpadeR [8].

Table 4

Point and 95% Interval Estimates of Species Richness

Data Estimator Estimate 95%Lower 95%Upper
Swine Ê∗(D) ∞ ∞ ∞
feces Chao1 1 62051.3 57409.9 67136.2
data iChao1 2 67615.0 62889.6 72753.5

ACE 3 68827.7 62928.4 75370.3
Accident Ê∗(D) 8249.2 5087.4 ∞
data Chao1 5247.8 4682.7 5917.3
(True D iChao1 5966.7 5396.9 6622.6
= 9461) ACE 5683.8 5031.1 6461.5
Tomato Ê∗(D) ∞ 18108.3 ∞
flowers Chao1 5887.4 5274.4 6609.2
data iChao1 6512.3 5951.4 7149.5

ACE 6645.5 7779.2 11859.5
Bird Ê∗(D) 77.9 72.5 297.0
abundance Chao1 77.0 73.3 92.1
data iChao1 77.5 74.6 83.3

ACE 78.7 74.3 91.7
1 Chao1 estimate and the confidence interval are computed using

R package SpadeR [8].
2 iChao1 estimator is an improved Chao1 estimator proposed in

Chiu et al. [14]. The point and the interval estimates are com-
puted using R package SpadeR [8].

3 Abundance-based coverage estimate (ACE) [9] and the confi-
dence interval are computed using R package SpadeR [8].

is [∞,∞], a much stronger signal when compared to the confidence interval in
Table 3. For Ê∗(D), only the 95% confidence interval for bird abundance data
has finite width. It has the lower endpoint close to the lower endpoint of other
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confidence intervals, but it has much larger upper endpoint.
Estimator Ê∗(D) gives wider confidence interval than that for Chao1 estima-

tor because it uses a modified first-order extrapolation that requires the estima-
tion of slope, whereas zeroth-order extrapolation does not have this requirement.
Nevertheless, first-order extrapolation looks more rational when compared to
zeroth-order extrapolation which can only estimate a lower bound.

10. ρ-appearance design

Usually we collect all available information within the survey period. Under our
framework, all useful information is in FoF. If labor saving is our concern, we
may neglect some minor information, say halt recording a species as soon as its
observed frequency reaches a fixed positive integer ρ in the study period [0, t0].
In this case, the observation period for each species varies. The period is short for
abundant species, and long for rare species. We call this design, the ρ-appearance
design. This design places more emphasis on rare species than abundant species
which is in line with the common understanding that information about the
rare species is critical when our interest is in D. In bird survey, species can be
identified by distant sightings or short bursts of song. Stop recording abundant
species early helps the researcher concentrating more on the rare species. When
ρ = ∞, we obtain ñ(t0). When ρ = 1, we record only the first appearance-time
of each seen species. It is exactly the information available in the empirical SAC.

We call the appearance time of the ρth individual of a species in a survey, the
ρ-appearance time of that species. Our observations are {n1(t0), . . . , nρ−1(t0),
r1, r2, . . . , rm} where r1, . . . , rm are the observed ρ-appearance times. The log-
likelihood function given a realization {nj(t0)}j=1,...,ρ−1, {ri}i=1,...,m is proved
in Appendix M to be

log(L(ψ|{nj(t0)}, {ri})) = −ψ(t0)+
ρ−1∑
j=1

nj(t0) log(|ψ(j)(t0)|)+
m∑
i=1

log(|ψ(ρ)(ri)|).

(10.1)
A numerical advantage of (10.1) is that it does not require a general expression
of ψ(k)(t) for all k ≥ 1. A small simulation experiment in Appendix N shows that
the loss in information of ρ-appearance design when compared to the standard
design is marked when ρ = 1, and minor when ρ = 4.

By the displacement theorem of Poisson process [29], the ρ-appearance times
form a Poisson process with intensity function

fρ(r) =
∫ (λr)ρ−1e−λr

(ρ− 1)! ν(dλ) = rρ−1

(ρ− 1)! (−1)ρ−1ψ(ρ)(r). (10.2)

From (4.2), another expression for fρ(r) is fρ(r) = ρE(Nρ(r))/r. Equation (10.2)
gives another interpretation of ψ(k)(t). For example, ψ(1)(r) is the intensity
function of the 1-appearance times (thus ψ(1)(r)/ψ(t0) is the density function
of the 1-appearance times of all seen species in [0, t0]), and r|ψ(2)(r)| is the
intensity function of the 2-appearance times.
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11. Inference on empirical species accumulation curve

Suppose we only observe the empirical SAC, n+(t) for t ∈ [0, t0], or equivalently,
the 1-appearance times of all seen species in [0, t0], say r1, . . . , rn+(t0) (i.e., the
case ρ = 1 in Section 10). From (10.1), the log-likelihood function is log(L(ψ |
{ri})) =

∑n+(t0)
i=1 log(ψ(1)(ri)) − ψ(t0). If ψ(t) has a free scale parameter, MLE

of ψ(t0) is n+(t0). The MLE of ψ(t) for power law has a simple closed form
n+(t0)(t/t0)z, where z = min{n+(t0)/

∑
i log(t0/ri), 1}.

Given a parametric form of ψ(t), a traditional approach is to fit it to the
empirical SAC by linear or non-linear least-squares method. Two differences
between the MLE approach and the curve-fitting method are noteworthy. First,
the MLE of ψ(t0) is equal to n+(t0) whenever ψ(t) has a free scale parameter,
and it is not the case in the curve-fitting approach. Second, the MLE method fits
the density function to the 1-appearance times, while the curve-fitting method
fits a function to the empirical SAC. The curve-fitting methods do not take
the interdependence among the points in the empirical SAC into consideration.
Since such interdependence is present in species-time curves and Type I species-
area curves [43], the curve-fitting approach is theoretically flawed. Although
improvements can be made in curve-fitting approach through transformation
and/or adding weights, maximum likelihood approach is preferred for its proven
effectiveness under the assumption that the model is correct.

In certain situations, only the values of the empirical SAC at a finite set of
times are available. For example, only the cumulative number of species observed
after day 1, day 2, and so on are recorded. Suppose the observed N+(�i) is n+(�i)
for i = 1, . . . ,m with 0 = �0 < �1 < . . . < �m = t0. The log-likelihood function
is

log(L(ψ | {n+(�i)}i=1,...,m))

=
m∑
i=1

(n+(�i) − n+(�i−1)) log(ψ(�i) − ψ(�i−1)) − n+(t0) log(ψ(t0)).

In the simulation study in Appendix O, MLE has smaller root mean squared
relative error in extrapolation when compared to the curve-fitting method.

The distribution function of the 1-appearance times in time interval [0, t0] is
ψ(t)/ψ(t0). This fact holds in general for any nondecreasing ψ(t) with ψ(0) =
0, including sigmoid function such as the cumulative Weibull function. If we
assume that the 1-appearance times are independent, we can perform maximum
likelihood inference conditional on n+(t0) when a parametric form of ψ(t) is
given. Full maximum likelihood calculation is possible when further assumption
on the distribution of N+(t0) is made. As the empirical SAC is proportional to
the empirical distribution function of the 1-appearance times, statistical tools
for empirical distribution function can be used. For example, we can apply the
Dvoretzky-Kiefer-Wolfowitz inequality to construct confidence bands for the
distribution function ψ(t)/ψ(t0).
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12. Discussion

A general framework, MPPP, is proposed for species abundance data. This
framework has the following novel features: (1) it delineates the relation between
two analytic tools – SAD and SAC, and an MPPP can be characterized by either
one of them; (2) it characterizes the class of possible ESACs to be the class of
Bernstein functions, giving solid theoretical support to the empirical observation
that SACs are nondecreasing concave functions; (3) it allows the existence of
zero-rate species; (4) it contains the LDR1 model, a parametric model where the
first derivative ratio of the ESAC is linear, which admits several graphical checks,
and two generalizations, namely LDR2 which includes zero-rate species, and
RDR1 model where the first derivative ratio is a rational function; (5) it admits
a new species richness estimator Ê∗(D); (6) it admits a natural generalization
of Hill numbers as measures of species diversity, which are well-defined even
when the number of species is random and infinite; and (7) it allows inference
to be performed when only the first ρ appearance times of a species is recorded,
which we refer as ρ-appearance design.

Compared to the conventional curve-fitting approach to SAC, our framework
has a more solid theoretical underpinning, as an MPPP is uniquely characterized
by an ESAC that is a Bernstein function. In the study of species-area curve,
power law is popular. Nevertheless, under our model, power law is an extreme
case. Its E(D) and E(S(t)) for any positive t are infinite, and its PSAD has a
heavy right tail. Even though curve fitting can give reasonable estimates, the
MPPP framework provides a parametric generative model in which maximum
likelihood estimates can be obtained. Matthews and Whittaker [34] suggests
using maximum likelihood methods instead of least-squares approaches in SAD
fitting. We would like to extend their advice to ESAC fitting.

One possible future direction is to apply MPPP in a nonparametric setting,
which lessens the need for model selection. Another future direction is to un-
derstand the tradeoff that arises in the ρ-appearance design. A small ρ can
reduce the sampling effort, at the expense of less accurate estimates of parame-
ters. Investigating this tradeoff in a theoretic and empirical setting can provide
guidance to the design.

Appendix A: Conditional distribution of the rate of an individual at
a fixed time

Informally, if we condition on the event that there is one individual at exact
time t, then the rate of its species follows the distribution ν/Λ if Λ < ∞. The
formal statement below involves a limit argument.

Proposition A. Fix t ≥ 0, and assume Λ < ∞. Conditional on the event that
there is at least one individual in the time interval [t, t + ε] for ε > 0, then the
probability that there is exactly one individual in [t, t + ε] tends to 1, and the
rate of its species converges in distribution to the distribution ν/Λ as ε → 0.
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Proof. Let A be the event that there is at least one individual in the time interval
[t, t + ε], and B be the event that there is exactly one individual in the time
interval [t, t+ ε] for ε > 0. The probability that a species with rate λ is observed
during [t, t+ε] is 1−exp(−λε). By the thinning property, the rates of the positive-
rate species observed during [t, t + ε] form a Poisson process with intensity
measure (1 − exp(−λε))ν̃(dλ). Considering also the zero-rate species, the rates
of the species observed during [t, t + ε] form a Poisson process with intensity
measure (1 − exp(−λε))λ−1ν(dλ) (where (1 − exp(−λε))λ−1 = ε when λ = 0).
Event A is that this Poisson process has at least one point. As 1− exp(−x) ≤ x
when x ≥ 0,

P (A) = 1 − exp
(
−
∫ ∞

0
(1 − exp(−λε))λ−1ν(dλ)

)
≤

∫ ∞

0
(1 − exp(−λε))λ−1ν(dλ) ≤ εΛ.

Similarly, the rates of the species observed exactly one time during [t, t+ε] form
a Poisson process with intensity measure

[exp(−λε)λε]λ−1ν(dλ) = ε exp(−λε)ν(dλ).

Event B is that this Poisson process has exactly one point. Thus

P (B) = exp
(
−ε

∫ ∞

0
exp(−λε)ν(dλ)

)∫ ∞

0
ε exp(−λε)ν(dλ),

which is equal to εΛ(1 + o(1)) when ε → 0 because Λ is finite. Therefore,

lim
ε→0

P (B | A) = lim
ε→0

P (B)
P (A) ≥ lim

ε→0

εΛ(1 + o(1))
εΛ = 1.

As probability cannot be larger than 1, it implies that P (B | A) → 1 as ε → 0.
Given that exactly one individual appears in [t, t + ε], let X be the rate of

the species that the individual belongs and F be its distribution function. For
any positive λ0, let Cλ0 be the event that X is less than or equal to λ0. Then

F (λ0) = P (Cλ0)
P (B) =

exp
(
−ε
∫ λ0
0 exp(−λε)ν(dλ)

) ∫ λ0
0 ε exp(−λε)ν(dλ)

exp
(
−ε
∫∞
0 exp(−λε)ν(dλ)

) ∫∞
0 ε exp(−λε)ν(dλ)

.

It follows that

lim
ε→0

F (λ0) =
∫ λ0
0 ν(dλ)

Λ .

Therefore, X converges in distribution to the distribution ν/Λ as ε → 0.

For the case Λ = ∞, as ε → 0, the rate of the species observed in [t, t + ε]
diverges to infinity.
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Proposition B. Fix t ≥ 0, and assume Λ = ∞. Conditional on the event that
there is at least one individual observed in the time interval [t, t + ε] for ε > 0,
then the minimum rate among observed species converges in probability to ∞ as
ε → 0.

Proof. Let A be the event that there is at least one individual in the time interval
[t, t + ε]. As in the case Λ < ∞ in Proposition A, for any fixed λ0 ≥ 0, we have

P (at least one individuals in [t, t + ε] with rate ≤ λ0)

= 1 − exp
(
−
∫ λ0

0
(1 − exp(−λε))λ−1ν(dλ)

)

≤
∫ λ0

0
(1 − exp(−λε))λ−1ν(dλ)

≤ ε

∫ λ0

0
ν(dλ) = O(ε)

as ε → 0 since
∫ λ0
0 ν(dλ) < ∞ due to

∫∞
0 min{1, λ−1}ν(dλ) < ∞ by the defini-

tion of MPPP. On the other hand, as 1 − exp(−x) ≥ xmax{1 − x/2, 0} when
x ≥ 0,

P (A) = P (N+(ε) > 0) = 1 − exp(−ψ(ε)) ≥ ψ(ε)max {1 − ψ(ε)/2, 0} .

Since limε→0 ψ(ε)/ε = ψ(1)(0) = Λ = ∞, for any λ0 > 0,

lim
ε→0

P (at least one individuals in [t, t + ε] with rate ≤ λ0 | A)

≤ lim
ε→0

O(ε)/ε
(ψ(ε)/ε)max {1 − ψ(ε)/2, 0} = 0.

Appendix B: Proof of the equivalence between Condition (2.1) and
the finiteness of ESAC

Suppose Condition (2.1) holds. Then∫ 1 − e−λt

λ
ν(dλ) ≤

∫
min

{
t,

1
λ

}
ν(dλ) ≤ max{t, 1}

∫
min

{
1, 1

λ

}
ν(dλ) < ∞

for t ≥ 0. On the other hand, if E(N+(1)) < ∞, then∫
min{1, λ−1}ν(dλ) ≤ 1

1 − exp(−1)

∫ 1 − exp(−λ)
λ

ν(dλ) = E(N+(1))
1 − exp(−1) < ∞.
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Appendix C: Equivalent definition of the MPPP

In the definition of the MPPP in the paper, the individuals of the zero-rate
species and the individuals of the positive-rate species are generated separately.
Here we present an alternative definition where all individuals are generated in
a unified manner.
Definition. (Equivalent definition of MPPP) An MPPP G is characterized by
a nonzero species intensity measure ν, which is a measure over R≥0 satisfying∫∞
0 min{1, λ−1}ν(dλ) < ∞. Define ν̊ to be a measure over R2

≥0 by

ν̊(A) =
∫ ∫ ∞

0
1{(λ, t) ∈ A}e−λtdt · ν(dλ)

for any measurable set A ⊆ R2
≥0. Generate (λ1, t1), (λ2, t2), . . . (a finite or count-

ably infinite sequence) according to a Poisson process with intensity measure ν̊.
For each simulated (λi, ti), we generate a realization ηi (independently across i)
of a Poisson process with rate λi, conditioned on the event that the first point is
at time ti. (That is, it contains the point ti together with a Poisson process start-
ing at time ti. If λi = 0, then ηi contains only one point ti.) Each ηi stores the
appearance times of one species with rate λi. Finally, we take G = {η1, η2, . . .}.

This definition models the species that will eventually be observed in a study.
The first appearance time for each of such species (i.e., the first point of each
ηi) is explicitly included in the definition of ν̊.

Appendix D: Proof of the probability that an individual observed in
a given future time belongs to a species represented k
times in [0, t0]

Let λ∗ be the rate of the species observed in a given future time. Suppose Λ < ∞.
From Proposition A in Appendix A, the probability measure of λ∗ is ν/Λ. Thus

P (individual observed in a given future time belongs to a species
represented k times in [0, t0])
= E[P (individual observed in a given future time belongs to a species
represented k times in [0, t0] | λ∗)]

= E

[
(λ∗t0)k exp(−λ∗t0)

k!

]
= 1

Λ

∫ (λ∗t0)k exp(−λ∗t0)
k! ν(dλ∗)

= (k + 1)E(Nk+1(t0))
E(S(t0))

.

The last expression holds also when Λ = ∞ (i.e., the above probability is zero)
because from Proposition B in Appendix A, the rate of the future individual
approaches infinity and thus that species should have been seen infinite number
of times in [0, t0].
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Appendix E: Proof of Equation (3.5)

pk(t) = Pr(a species is represented k times in time interval [0, t] |
it is observed in time interval [0, t])

= E(Pr(a species is observed k times in time interval [0, t] |
the rate of the recorded species is λ) | the species is observed in
time interval [0, t])

= E

(
(λt)k exp(−λt)/k!

1 − exp(−λt)

∣∣∣∣ it is observed in time interval [0, t]
)
.

From the thinning property of Poisson processes, the probability measure for λ
given that the species is observed in time interval [0, t] is

λ−1(1 − exp(−λt))ν∫
λ∗−1(1 − exp(−λ∗t))ν(dλ∗)

.

Therefore,

pk(t) =
∫ (λt)k exp(−λt)/k!

1 − exp(−λt)
λ−1(1 − exp(−λt))∫

λ∗−1(1 − exp(−λ∗t))ν(dλ∗)
ν(dλ)

=
∫
λk−1tk exp(−λt)/k!ν(dλ)∫

λ∗−1(1 − exp(−λ∗t))ν(dλ∗)

= E(Nk(t))
E(N+(t)) .

Appendix F: Proof of Proposition 1

For any MPPP, from (4.1), ψ(t) is a Bernstein function. Clearly ψ(0) = 0. It
proves the necessity part of (a). The sufficiency part of (a) follows from the fact
that every Bernstein function g(t) with g(0) = 0 has a unique Lévy-Khintchine
representation

g(t) = κt +
∫ ∞

0
(1 − exp(−λt))μ(dλ),

where κ ≥ 0, and μ is a measure over [0,∞) such that
∫∞
0 min{1, λ}μ(dλ) < ∞.

Define an MPPP with ν({0})=κ and ν̃ = μ. The condition
∫∞
0 min{1, λ}μ(dλ) <

∞ becomes Condition (2.1). From (3.2), the ESAC of this MPPP is equal to g(t).
It proves the sufficiency part of (a). It also proves that ψ(t) uniquely determines
an MPPP in (c) because Lévy-Khintchine representation is unique.

To prove (d), we only need to show that ht(s) in (4.3) is the probability
generating function of p(t). Clearly ht(0) = 0. From (4.2), for k ≥ 1, h(k)

t (0)/k! =
(−1)k+1tkψ(k)(t)/(k!ψ(t)) = E(Nk(t))/ψ(t) = pk(t). It completes the proof of
(d).
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Given ht0(s) and ψ(t0) for a fixed t0 > 0, from (4.3), ψ(t) = ψ(t0)(1−ht0(1−
t/t0)). The ESAC is uniquely determined and so is the MPPP. It completes the
proof for the remaining part of (c).

To prove the necessity of (b), let g(s) be the probability generating function
of p(t0). From (4.3),

g(s) = 1 − ψ((1 − s)t0)
ψ(t0)

.

Thus g(0) = 0 and g(1) = 1. Furthermore,

ψ(t) = ψ(t0)(1 − g(1 − t/t0)).

It follows that when k ≥ 1, ψ(k)(t) = (−1)k+1ψ(t0)g(k)(1 − t/t0)/tk0 . Because
ψ(k)(t) has sign (−1)k+1, g(k)(s) ≥ 0 for s ∈ (−∞, 1). It completes the proof of
the necessity part. For the sufficiency part, suppose g(0) = 0, g(1) = 1, g(s) is
absolutely monotone in (−∞, 1). Let t0 and ψ(t0) be two given positive values.
Define χ(t) = ψ(t0)(1 − g(1 − t/t0)). It can be shown that χ(t) is a Bernstein
function such that χ(0) = 0. From (a), there is an MPPP with ESAC equal
to χ(t). We have χ(t0) = ψ(t0). From (4.3), g(s) = ht0(s) is the probability
generating function of p(t0) of this MPPP. It completes the proof of (b).

Appendix G: Proof of Proposition 2

Let ξ(t) satisfy conditions (i) and (ii) in Proposition 2. Therefore, there exist
ε > 0 and δ > 0 such that for all 0 < t < δ, we have ξ(t) > (1 + ε)t. Let
g(t) = δ

∫ t

0 exp(
∫ δ

y
(1/ξ(x))dx)dy. We show that g(t) is a ψ(t) in the Proposition.

When 0 < t ≤ δ,

g(t) ≤ δ

∫ δ

0
exp
(∫ δ

y

1
(1 + ε)xdx

)
dy = δ

∫ δ

0

(
δ

y

)1/(1+ε)

dy = δ2 1 + ε

ε
< ∞.

When t > δ,

g(t) = δ

∫ δ

0
exp
(∫ δ

y

(1/ξ(x))dx
)
dy + δ

∫ t

δ

exp
(
−
∫ y

δ

(1/ξ(x))dx
)
dy

≤ δ2(1 + ε)/ε + δ

∫ t

δ

1dy < ∞.

Therefore, g(t) is finite for any t > 0. As g(1)(t) = δ exp(
∫ δ

t
(1/ξ(x))dx), and

g(2)(t) = −δ exp(
∫ δ

t
(1/ξ(x))dx)(1/ξ(t)), we have −g(1)(t)/g(2)(t) = ξ(t). Since

g(0) = 0, from Proposition 1(a), it is sufficient if we can prove that

(−1)k−1g(k)(t) ≥ 0, (k ≥ 1). (G.1)

Clearly (G.1) holds when k = 1. Suppose (G.1) holds when k ≤ d for a d ≥ 1.
As g(2)(t)ξ(t) = −g(1)(t), after taking derivative (d− 1) times on both sides, we
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have
d−1∑
i=0

(
d− 1
i

)
g(d+1−i)(t)ξ(i)(t) = −g(d)(t).

For i ≥ 1, sign(g(d+1−i)(t)ξ(i)(t)) = sign((−1)d−i(−1)i+1) = (−1)d+1. Further-
more, sign(−g(d)(t)) = (−1)d. Thus sign(g(d+1)(t)ξ(t)) = (−1)d. It implies that
sign(g(d+1)(t)) = (−1)d completing the proof of (G.1) by induction.

Appendix H: Proof of Proposition 3

If an SAD is time invariant, then its probability generating function, ht(s) does
not depend on t. From (4.3), there is a positive function g such that ψ(ty) =
ψ(t)g(y) for y ∈ [0,∞). Take logarithm on both sides, take derivative with
respect to t, and then set t = 1. We have

d log(ψ(y))
dy

= ψ(1)(1)
ψ(1)y .

The solution of the above differential equation is ψ(y) = ψ(1)yψ(1)(1)/ψ(1). As
ψ(t) is a Bernstein function, 0 < ψ(1)(1)/ψ(1) ≤ 1. Hence power law is the only
law with p(t) independent on t.

Consider the second part of Proposition 3. Suppose an SAD in MPPP con-
verges to a proper distribution with probability generating function f(s). Then
the ht(s) of this SAD converges to f(s) for any s ∈ [0, 1]. Let x and y be
any two values in [0, 1]. From (4.3), 1 − f(1 − xy) = limt→∞ ψ(xyt)/ψ(t) =
limt→∞ ψ(xyt)/ψ(xt) limt→∞ ψ(xt)/ψ(t) = (1 − f(1 − y))(1 − f(1 − x)). Write
π(x) = (1 − f(1 − x)). Then π(xy) = π(x)π(y). Similar to the proof above, we
have π(x) = xα when x ∈ [0, 1]. It implies that f(s) = 1−π(1−s) = 1−(1−s)α.
As f(1) = 1, α > 0. Since P (1) = f (1)(0) = α, we have 0 < α ≤ 1. It completes
the proof as the probability generating function of power law is 1− (1−s)1−1/c.

Appendix I: Proof of LDR1 � LDR2 = LDR3 = . . .

For any positive integer j, condition −ψ(j)(t) = (b + ct)ψ(j+1)(t) implies

−ψ(j+1)(t) = cψ(j+1)(t) + (b + ct)ψ(j+2)(t).

Therefore, LDRj ⊆ LDRj+1 for j ≥ 1. Let φ(t) = αt + ψ(t) where α > 0
and ψ(t) ∈ LDR1. Then −φ(2)(t)/φ(3)(t) = −ψ(2)(t)/ψ(3)(t) which is a linear
function of t because ψ(t) ∈ LDR1 ⊆ LDR2. Clearly φ(t) ∈ LDR2 but not in
LDR1. Therefore, LDR1 
= LDR2. It can be shown that every element in LDR2
has the form αt + ψ(t) for a ψ(t) ∈ LDR1. It means that LDR2 is a mixture of
zero-rate species and LDR1.

Consider ψ(t) ∈ LDRj for j ≥ 3. Let −ψ(j)(t)/ψ(j+1)(t) = b + ct (i.e.,
d log(ψ(j)(t))/dt = −1/(b+ ct)). As jth derivative ratio is always a nonnegative
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nondecreasing function of t, both b and c are nonnegative. For simplicity, we
only consider the case when c > 0 and c 
= 1 (cases when c = 0 and c = 1 can
be studied through letting c → 0 and c → 1 respectively). Then

ψ(j)(t) = ψ(j)(1)[(b + ct)/(b + c)]−1/c, (I.1)

ψ(j−1)(t) =
[
ψ(j−1)(1) − ψ(j)(1)

(
b + c

c− 1

)]
+ ψ(j)(1)

(
b + c

c− 1

)(
b + ct

b + c

)1−1/c

,

(I.2)
and

ψ(j−2)(t) = ψ(j−2)(1) +
[
ψ(j−1)(1) − ψ(j)(1)

(
b + c

c− 1

)]
(t− 1)

+(b + c)2ψ(j)(1)
(c− 1)(2c− 1)

[(
b + ct

b + c

)2−1/c
− 1
]
. (I.3)

If c > 1 and ψ(j)(1) 
= 0, from (I.2), sign(ψ(j−1)(t)) = sign(ψ(j)(1)) 
= 0
when t is large. It is impossible because they should have different sign. If
c > 1 and ψ(j)(1) = 0, from (I.1), ψ(j)(t) is a zero function. It is impos-
sible as −ψ(j)(t)/ψ(j+1)(t) is undefined. If 0 < c < 1, from (I.2) and (I.3),
sign(ψ(j−1)(t)) = sign(ψ(j−1)(1) + ψ(j)(1)[(b + c)/(1 − c)]) = sign(ψ(j−2)(t))
when t is large. It is possible only when sign(ψ(j−1)(t)) = 0. It implies that
ψ(i−1)(1)+ψ(i)(1)[(b+c)/(1−c)] = 0. From (I.1) and (I.2), −ψ(j−1)(t)/ψ(j)(t) =
(b + ct)/(1 − c). Thus ψ(t) ∈ LDRj−1. It follows that LDRj = LDRj−1 for all
j ≥ 3.

Appendix J: Pointwise confidence band for D2/D3 plot

Similar to the confidence band for D1/D2 plot, an approximate 95% pointwise
confidence band for D2/D3 plot is −ψ̂(2)(t)/ψ̂(3)(t)±1.96

√
V̂ ar(−ψ̂(2)(t)/ψ̂(3)(t)),

where

V̂ ar

(
− ψ̂(2)(t)
ψ̂(3)(t)

)

= 1
ψ̂(3)2(t)

V̂ ar(ψ̂(2)(t)) + ψ̂(2)2(t)
ψ̂(3)4(t)

V̂ ar(ψ̂(3)(t)) − 2ψ̂(2)(t)
ψ̂(3)3(t)

Ĉov(ψ̂(2)(t), ψ̂(3)(t)),

with

V̂ ar(ψ̂(2)(t)) = 1
t40

∞∑
k=2

k2(k − 1)2Nk(t0)
(

1 − t

t0

)2k−4

,

V̂ ar(ψ̂(3)(t)) = 1
t60

∞∑
k=3

k2(k − 1)2(k − 2)2Nk(t0)
(

1 − t

t0

)2k−6

,
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and

Ĉov(ψ̂(2)(t), ψ̂(3)(t)) = − 1
t50

∞∑
k=3

k2(k − 1)2(k − 2)Nk(t0)
(

1 − t

t0

)2k−5

.

Appendix K: Parametric bootstrap confidence interval for Hill
numbers

We have θ̂, an estimator of θ which is E(N0(t0)) or a Hill number of order q.
We want to construct a 100(1 − α)% confidence interval for θ. Let B be the
total number of bootstrap samples such that α(B + 1)/2 is an integer. In this
paper, we use α = 0.05 and B = 2999. As θ̂ can be infinite, we avoid using
methods that require arithmetic on θ̂, such as the basic method. The procedure
to construct a parametric bootstrap confidence interval is as follows:

For i = 1 to B do {
Generate a bootstrap sample from a parametric model.
Compute θ̂, which we denote as θ̂i basing on the bootstrap sample. }
Sort θ̂1, θ̂2, . . . , θ̂B in ascending order. Denote the sorted θ̂1, θ̂2, . . . , θ̂B as

θ̂(1) ≤ θ̂(2) ≤ . . . ≤ θ̂(B). Set θ̂(0) = 0 and θ̂(B+1) = ∞. A 100(1−α)% confidence
interval for θ is

[ θ̂(j) , θ̂((B+1)(1−α)+j) ].

where j is an integer such that 0 ≤ j ≤ (B + 1)α and the above 100(1 − α)%
confidence interval is smallest.

Infinity is a special value of θ̂ which can have positive probability mass. We
use the smallest 100(1 − α)% confidence interval, and attempt to construct
confidence interval with finite upper endpoint if possible.

When θ̂ is an estimator of a Hill number under parametric model LDR1
or RDR1, the bootstrap sample is a simulated FoF under the selected model
with the parameter equal to the MLE. This simulation consists of two steps:
(i) simulate N+(t0) from Poisson(Ê(N+(t0))) distribution, and (ii) generate a
random sample of size N+(t0) from the fitted SAD and they form the FoF.

When θ̂ = Ê(N0(t0)) in (7.3), the bootstrap sample is {N∗
i (t0)}i=1,2,3. We

simulate N∗
i (t0) from Poisson(Ni(t0)) distribution for i = 1, 2, 3 independently

across i. After a confidence interval for E(N0(t0)) is constructed, add N+(t0)
to it to find a confidence interval for E(D). If at least one of N1(t0), N2(t0)
or N3(t0) is zero, modification is recommended to avoid having any N∗

i (t0)
(i = 1, 2, 3) to be fixed to 0. When there is j ≥ 3 such that Nj(t0) > 0, we
move the ending time t0 a little bit backward to t, say t = t0 − t0/S(t0) where
S(t0) is the total number of individuals observed in time interval [0, t0], and find
{N̂i(t)}i=1,2,3 using (4.8) as shown below:

N̂i(t) =
∞∑
k=i

Nk(t0)
(
k

i

)(
t

t0

)i(
1 − t

t0

)k−i

.
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Clearly N̂i(t) > 0 for i = 1, 2, 3. We use {N̂i(t)}i=1,2,3 in place of {Ni(t0)}i=1,2,3
in bootstrapping. We estimate N+(t) (= ψ(t)) using the relation in (4.5). Add
this estimate to the confidence interval for N0(t) to construct a confidence in-
terval for E(D).

Appendix L: Expressions of qDν for RDR1

If c1 or c2 is zero, RDR1 reduces to LDR1. Assume that c1 and c2 are positive.

dν̃

dλ
= a(t0 + b1)c1(t0 + b2)c2 exp(−b1λ)λc1+c2−2

Γ(c1)Γ(c2)∫ 1

0
yc2−1(1 − y)c1−1 exp(−(b2 − b1)λy)dy.

Assume further that b1 > 0, which implies that Λ is finite. When q ≥ 0 and
q 
= 1,

qDν = a

(
t0 + b1

b1

)c1 ( t0 + b2
b2

)c2 (b1b2Γ(c1 + c2 + q − 1)
Γ(c1)Γ(c2)∫ 1

0
ϑ(y)c2−1(1 − ϑ(y))c1−1((b2 − b1)y + b1)−q−1dy

)1/(1−q)

,

where ϑ(y) = b2y/(b2y + b1(1 − y)). When q = 1,

1Dν = a

(
t0 + b1

b1

)c1 ( t0 + b2
b2

)c2

exp
(
− b1b2
B(c1, c2)∫ 1

0
ϑ(y)c2−1(1 − ϑ(y))c1−1 Ψ(c1 + c2) − log((b2 − b1)y + b1)

((b2 − b1)y + b1)2
dy

)
,

where B(x, y) is the Beta function and Ψ(x) is the digamma function.

Appendix M: Proof of the log-likelihood function for ρ-appearance
design

Let Yi be the length of the observation period for species i, and Ji be the
observed frequency of species i in its observation period. For species i, we observe
(Yi, Ji). Either Yi = t0 or Ji = ρ. For a species with rate λ, the probability
function of J is

P (J = j | λ) =
{

(λt0)j exp(−λt0)/j! (j < ρ)∑∞
k=ρ(λt0)k exp(−λt0)/k! (j = ρ).

(M.1)

Since the time of the ρth individual follows Erlang(ρ, λ) distribution,

P (Y ∈ [y, y + dy), J = ρ | λ) = λρyρ−1 exp(−λy)
(ρ− 1)! dy. (M.2)
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By (M.1) and (M.2), the joint probability density function of the observations
{(Yi, Ji)}i≤n+(t0), say {(yi, ji)}i≤n+(t0) given ν is proportional to

e−ψ(t0)

⎛⎝ ∏
i: ji<ρ

∫
λji−1tji0 e−λt0

ji!
ν(dλ)

⎞⎠⎛⎝ ∏
i: ji=ρ

∫
λρ−1yρ−1

i e−λyi

(ρ− 1)! ν(dλ)

⎞⎠ .

Therefore, the log-likelihood function is

log(L(ψ | {yi, ji}i)) = −ψ(t0)+
ρ−1∑
j=1

nj(t0) log(| ψ(j)(t0) |)+
∑
yi<t0

log(| ψ(ρ)(yi) |).

Appendix N: Simulation experiment on the loss of information of
the ρ-appearance design

Let us reconsider the bird abundance data for the Wisconsin route of the North
American Breeding Bird Survey for 1995 in Section 9. We choose ν(dλ) =
γλf(λ | μ, σ)dλ where f(λ | μ, σ) is the density function of Lognormal(μ, σ2)
distribution. The parameter γ is the expected total number of species. From
Section 3, the MLE of (μ, σ) is identical to the conditional maximum likelihood
estimate of the corresponding Poisson-lognormal model [5]. The fitted lognormal
mixing distribution is Lognormal(μ̂, σ̂2) distribution with μ̂ = 1.23 and σ̂ = 1.30.
Let ωi(μ, σ) = P (Y = i) where Y is a Poisson-lognormal random variable with
parameters μ and σ. We use the function “dpoilog” in R-package “poilog” [23] to
compute this probability. The estimated γ is γ̂ = n+(t0)/(1−ω0(μ̂, σ̂2)) = 85.2.

Without loss of generality, set t0 = 1. We use this data to investigate the in-
formation loss of the ρ-appearance design. The ρ-appearance data are simulated
from the data using the following procedure:

Simulation procedure: Suppose species i has observed frequency mi in time
[0, 1]. If mi < ρ, our data for this species is mi, the frequency of it in time
[0, 1]. If mi ≥ ρ, we simulate the ρ-appearance time of the species, ri from
Beta(ρ,mi +1−ρ) distribution, which is the distribution of the ρ order statistic
of mi samples from the U(0, 1) distribution.

It can be shown that E(Nk(t)) = γωk(μ+ log(t), σ). The log-likelihood func-
tion is

log(L(γ, μ, σ | {nj(1)}j=1,...,ρ−1, {ri}))

= −γ(1 − ω0(μ, σ)) +
ρ−1∑
k=1

nk(1) log(γωk(μ, σ)) +
∑
ri

log(γωρ(μ + log(ri), σ)).

As the MLE of E(N+(1)) = γ(1 − ω0(μ, σ)) is n+(1), MLE of μ and σ, say μ̂
and σ̂ respectively can be found through maximizing the following function.

−n+(1) log(1 − ω0(μ, σ)) +
ρ−1∑
k=1

nk(1) log(ωk(μ, σ)) +
∑
ri

log(ωρ(μ + log(ri), σ)).



5528 C. T. Li and K.-H. Li

Table 5

Mean and standard deviation of MLE for North American breeding bird survey data (1995)

ρ 1 2 3 4 5 6 ∞
mean of μ̂ 1.10 1.28 1.23 1.21 1.21 1.22 1.23

sd of μ̂ 0.56 0.09 0.07 0.04 0.04 0.03 0*
mean of σ̂ 1.39 1.24 1.29 1.29 1.31 1.30 1.30

sd of σ̂ 0.48 0.15 0.13 0.08 0.09 0.07 0*
mean of γ̂ 90.4 83.8 85.0 85.5 85.7 85.3 85.2

sd of γ̂ 18.7 2.52 2.32 1.38 1.56 1.29 0*
* When ρ = ∞, we always observe the full data, and the sample
standard deviation (sd) of the estimator across simulation is zero.

Table 6

Simulation results for Power law in extrapolation to t for fixed ψ(1) given ten equally spaced
observations of SAC in time interval [0, 1]

(t, ψ(1)) c = 1.25 c = 1.5 c = 2 c = 3 c = 4 c = 5
(2,200) RMSRE(Curve-fitting) 0.075 0.078 0.083 0.091 0.096 0.100

RMSRE(MLE) 0.073 0.074 0.077 0.080 0.082 0.083
(2,1000) RMSRE(Curve-fitting) 0.034 0.035 0.037 0.040 0.042 0.044

RMSRE(MLE) 0.033 0.034 0.035 0.036 0.037 0.037
(4,200) RMSRE(Curve-fitting) 0.081 0.089 0.103 0.120 0.132 0.140

RMSRE(MLE) 0.078 0.084 0.093 0.103 0.109 0.112
(4,1000) RMSRE(Curve-fitting) 0.036 0.040 0.045 0.052 0.057 0.060

RMSRE(MLE) 0.035 0.038 0.042 0.046 0.049 0.050

Table 7

Simulation results for log-series distribution in extrapolation to t for fixed ψ(1) given ten
equally spaced observations of SAC in time interval [0, 1]

(t, ψ(1)) b = .01 b = .02 b = .03 b = .05 b = .1 b = .2
(2,200) RMSRE(Curve-fitting) 0.072 0.073 0.073 0.077 0.090 0.122

RMSRE(MLE) 0.072 0.072 0.072 0.072 0.073 0.076
(2,1000) RMSRE(Curve-fitting) 0.033 0.034 0.036 0.043 0.065 0.106

RMSRE(MLE) 0.032 0.032 0.032 0.033 0.033 0.034
(4,200) RMSRE(Curve-fitting) 0.074 0.075 0.077 0.084 0.110 0.166

RMSRE(MLE) 0.073 0.074 0.074 0.076 0.079 0.086
(4,1000) RMSRE(Curve-fitting) 0.034 0.037 0.042 0.055 0.091 0.155

RMSRE(MLE) 0.033 0.033 0.034 0.034 0.035 0.038

The MLE of γ is γ̂ = n+(1)/(1 − ω0(μ̂, σ̂)). We consider ρ = 1, 2, ..., 6. For
each ρ-value, we simulate 100 independent sets of ρ-appearance data. For each
simulated data, μ, σ and γ are estimated. The sample mean and sample standard
deviation of the estimates are presented in Table 5. Graphical display is given
in Figure 5.

The mean of the estimate is close to that basing on ñ(1). The standard
deviation of the estimator decreases as ρ increases. From the simulation results,
the standard deviation of the estimators when ρ = 1 is considerably worse than
those when ρ = 2. Value ρ = 4 performs well for this data. The total number of
species with frequency less than 4 is 33, around 46% of the seen species.
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Fig 5. Box-and-whisker plots for estimators across different values of ρ in the simulation.
The horizontal dashed line in each plot shows the estimate when the full Wisconsin route of
the North American breeding bird survey data for 1995 is used. The variability of the estimate
delineates the additional noise due to the ρ-appearance design.

Table 8

Simulation results for geometric distribution in extrapolation to t for fixed ψ(1) given ten
equally spaced observations of SAC in time interval [0, 1]

(t, ψ(1)) b = .05 b = .1 b = .2 b = .4 b = .6 b = .8
(2,200) RMSRE(Curve-fitting) 0.322 0.458 0.586 0.687 0.731 0.756

RMSRE(MLE) 0.085 0.106 0.136 0.165 0.174 0.174
(2,1000) RMSRE(Curve-fitting) 0.316 0.454 0.583 0.684 0.728 0.753

RMSRE(MLE) 0.054 0.079 0.111 0.134 0.136 0.132
(4,200) RMSRE(Curve-fitting) 0.320 0.462 0.601 0.716 0.768 0.798

RMSRE(MLE) 0.102 0.145 0.218 0.311 0.366 0.397
(4,1000) RMSRE(Curve-fitting) 0.315 0.458 0.598 0.713 0.766 0.796

RMSRE(MLE) 0.075 0.122 0.188 0.254 0.279 0.287

Appendix O: Simulation comparison of MLE method and
curve-fitting method in extrapolation when finite
number of points in the empirical SAC are available

Without loss of generality, we set t0 = 1. Our data is {n+(0.1), n+(0.2), . . . ,
n+(1)}. We consider three distributions: power law, log-series distribution and
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geometric distribution. The curve-fitting methods for the distributions are de-
scribed below:

(a) Power law: ψ(t) = τt1−1/c. For curve fitting, we regress log(n+(t)) on log(t).
(b) Log-series distribution: ψ(t) = τ log(1+t/b)/ log(1+1/b). For curve fitting,

we regress n+(t) on log(t). It is the standard approximation method which
assumes that 1 + t/b ≈ t/b.

(c) Geometric distribution (hyperbola law): ψ(t) = τ(1 + 2b)t/(t + 2b). There
are various curve-fitting methods for hyperbola law (see for example Raai-
jmakers [41]). In this simulation, we regresses 1/n+(t) on 1/t.

The parameter τ = ψ(1) is the expected number of recorded species at time
t0 = 1. In the experiment, τ can take value 200 and 1000. The distribution pa-
rameter can take 6 values. For power law, the value of c can be 1.25, 1.5, 2, 3, 4
and 5. For log-series distribution, the value of b can be 0.01, 0.02, 0.03, 0.05, 0.1,
and 0.2. For geometric distribution, the value of b can be 0.05, 0.1, 0.2, 0.4, 0.6
and 0.8. For each combination of parameters, we simulate 5000 data. The MLE
and the curve-fitting estimate of ψ(2) and ψ(4) are found for each simulated
data. We evaluate the performance of an estimator by the root mean squared rel-
ative error (RMSRE) (for estimator θ̂ for θ, RMSRE =

√∑n
i=1((θ̂i − θ)/θ)2/n).

The results of the simulation are presented in Tables 6, 7 and 8. The RMSRE
for MLE is smaller than that for the curve-fitting method in this simulation
study.
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