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Abstract: We study a high-dimensional linear regression model in a semi-
supervised setting, where for many observations only the vector of covari-
ates X is given with no responses Y . We do not make any sparsity as-
sumptions on the vector of coefficients, nor do we assume normality of the
covariates. We aim at estimating the signal level, i.e., the amount of vari-
ation in the response that can be explained by the set of covariates. We
propose an estimator, which is unbiased, consistent, and asymptotically
normal. This estimator can be improved by adding zero-estimators arising
from the unlabeled data. Adding zero-estimators does not affect the bias
and potentially can reduce the variance. We further present an algorithm
based on our approach that improves any given signal level estimator. Our
theoretical results are demonstrated in a simulation study.
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1. Introduction

High-dimensional data analysis, where the number of predictors is larger than
the sample size, is a topic of current interest. In such settings, an important goal
is to estimate the signal level τ2 and the noise level σ2, i.e., to quantify how
much variation in the response variable Y can be explained by the covariates
X, versus how much of the variation is left unexplained. Formally, the variance
of Y can be written as Var[E(Y |X)] +E[Var(Y |X)] ≡ τ2 + σ2. For example, in
disease classification using DNA microarray data, where the number of potential
predictors, say the genotypes, is enormous per each individual, one may wish to
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understand how disease risk is associated with genotype versus environmental
factors.

Estimating the signal and noise levels is important even in a low-dimensional
setting. In particular, a statistical model partitions the total variability of the
response variable into two components: the variance of the fitted model and the
variance of the residuals. This partition is at the heart of techniques such as
ANOVA and linear regression, where the signal and the noise levels might also
be commonly referred to as explained versus unexplained variation, or between
treatments versus within treatments variation. Moreover, in model selection
problems, τ2 and σ2 may be required for computing popular statistics, such
as Cp, AIC, BIC and R2. Both τ2 and σ2 are also closely related to other
important statistical problems, such as genetic heritability and signal to noise
ratio [2, 7, 13, 25, 30]. Hence, developing good estimators for these quantities is
a desirable goal.

When the number of covariates p is much smaller than the number of obser-
vations n, and a linear model is assumed, the ordinary least squares (henceforth,
OLS) method provides us straightforward estimators for τ2 and σ2. However,
when p > n, it becomes more challenging to perform inference on τ2 and σ2

without further assumptions. Under the assumption of sparse regression coeffi-
cients, several methods for estimating the signal level have been proposed. [10]
introduced a refitted cross-validation method for estimating σ2. Their method
includes a two-stage procedure where a variable-selection technique is performed
in the first stage, and OLS is used to estimate σ2 in the second stage. [25] intro-
duced the scaled lasso algorithm that jointly estimates the noise level and the
regression coefficients by an iterative lasso procedure. A recent related work by
[28] considers, as we do here, a semi-supervised setting. In their work, Cai and
Guo proposed an estimator of τ2, which integrates both labelled and unlabelled
data and works well when the regression coefficient vector is sparse. For more
related works, see the literature reviews of [28] and [30].

In practice, the sparsity assumption may not hold in some areas of inter-
est such as genetic and chemical pollutants studies [5, 22]. In such cases, the
effects of individual covariates tend to be weak and dense rather than strong
and sparse. Hence, considering only a small number of significant coefficients
can lead to biases and inaccuracies. One famous example is the problem of
missing heritability, i.e., the gap between heritability estimates from genome-
wide-association-studies (GWAS) and the corresponding estimates from twin
studies [7, 33]. For example, by the year 2010, GWAS studies had identified a
relatively small number of covariates that collectively explained around 10% of
the total variations in the trait height, which is a small fraction compared to
80% of the total variations that were explained by twin studies [31]. Identifying
all the GWAS covariates affecting a trait, and measuring how much variation
they capture, is believed to bridge some of the heritability gap [33]. With that
in mind, methods that heavily rely on the sparsity assumption may underesti-
mate τ2 by their nature.

Rather than assuming sparsity, or other structural assumptions on the co-
efficient vector β, a different approach for high-dimensional inference is to as-
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sume some knowledge about the covariates distribution. [9] uses the method-
of-moments to develop several asymptotically-normal estimators of τ2 and σ2,
when the covariates are assumed to be Gaussian.

[17] proposed a procedure, which is based on singular value decomposition and
convex optimization techniques, that provides estimates and confidence intervals
under the assumption of Gaussian covariates. In both methods, the Gaussian
assumption was needed to prove consistency and asymptotic-normality, and it
is not clear how robust these methods are when the Gaussian assumption is
violated.

We aim at relaxing the sparsity and the Gaussian assumptions under the
semi-supervised setting. The term semi-supervised setting is used to describe a
situation where a large amount of unlabeled data (covariate data without the
corresponding responses) is available. For simplicity we generally assume that
the distribution of the covariates X is known. In our simulation study (Section 5)
we consider the situation where distribution of X is not known exactly but rather
estimated from an unlabeled dataset.

We begin by introducing a naive estimator for the signal level τ2. When the
covariates are assumed Gaussian, we show that this estimator is asymptotically
equivalent to an estimator suggested by [9]. We then show how the naive es-
timator can be improved using zero-estimators. Zero-estimators are introduced
in the UMVUE literature [1, 21, 23], and are also used as a variance reduction
technique in the Monte-Carlo simulation literature [3, 12, 19]. When the distri-
bution of the covariates is known, an easy construction of many zero-estimators
is feasible as shown in Section 4.

The contribution of this paper is threefold. First, we develop a notion of
optimal oracle-estimators, which are served as benchmark for other estimators.
Second, we propose two novel estimators that improve initial estimators of τ2

and study their properties. Third, we provide an algorithm that in principle can
improve any given estimator of τ2.

The rest of this work in organized as follows. In Section 2 we describe the
high-dimensional semi-supervised setting and introduce the naive estimator. In
Section 3 we review the zero-estimator approach and suggest a new notion of
optimality with respect to linear families of zero-estimators. An optimal ora-
cle estimator of τ2 is also presented. In Section 4 we apply the zero-estimator
approach to improve the naive estimator. We then study some theoretical prop-
erties of the improved estimators. Simulation results are given in Section 5.
Section 6 demonstrates how the zero-estimator approach can be generalized to
other estimators. A discussion is given in Section 7, while the proofs are provided
in the Appendix.

2. The naive estimator

2.1. Preliminaries

We begin with describing our setting and assumptions. Let (X1, Y1), ..., (Xn, Yn)
be i.i.d. observations drawn from some unknown distribution where Xi ∈ Rp and
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Yi ∈ R. We consider a semi-supervised setting, where we have access to infinite
i.i.d. observations of the covariates. Thus, we essentially assume we know the
covariate distribution. Notice that the assumption of known covariate distribu-
tion has already been presented and discussed in the context of high-dimension
regression without using the term “semi-supervised learning” [4, 17].

We consider the linear model

Yi = βTXi + εi, i = 1, . . . , n, (1)

where E(εi|Xi) = 0 and E(ε2i |Xi) = σ2. As in [8] and [9], we assume that the
intercept term β0 is zero, which can be achieved in practice by centering the Y ’s.
It is noteworthy that the theory presented in this paper can be developed with-
out assuming β0 = 0. However, it leads to cumbersome expressions which do
not add any important insights to our current theoretical results and, therefore,
are not included here. Let (X,Y ) denote a generic observation and let σ2

Y de-
note the variance of Y . Notice that it can be decomposed into signal and noise
components,

σ2
Y = Var(XTβ + ε) = βTCov(X)β + Var(ε) = βTΣβ + σ2, (2)

where Var(ε) = E(ε2) = σ2 and Cov(X) = Σ.
The signal component τ2 ≡ βTΣβ can be thought of as the total variance

explained by a linear function of the covariates, while the noise component σ2

can be thought of as the variance left unexplained. We assume that E(X) ≡ μ
are known and also that Σ is invertible. Therefore, we can apply the linear
transformation X �→ Σ−1/2(X − μ) and assume w.l.o.g. that

E(X) = 0 and Σ = I. (3)

It follows by (2) that σ2
Y = ‖β‖2+σ2, which implies that in order to evaluate σ2,

it is enough to estimate both σ2
Y and ‖β‖2. The former can be easily evaluated

from the sample, and the main challenge is to derive an estimator for ‖β‖2 in
the high-dimensional setting.

2.2. A naive estimator

In order to find an unbiased estimator for ‖β‖2 =
∑p

j=1 β
2
j we first consider the

estimation of β2
j for each j. A straightforward approach is given as follows: Let

Wij ≡ XijYi for i = 1, ..., n, and j = 1, ..., p. Notice that

E (Wij) = E (XijYi) = E
[
Xij

(
βTXi + εi

)]
= βj ,

Now, since {E(Wij)}2 = E(W 2
ij) − Var(Wij), a natural unbiased estimator for

β2
j is

β̂2
j ≡ 1

n

n∑
i=1

W 2
ij −

1
n− 1

n∑
i=1

(Wij −W j)2 = 1
n(n− 1)

n∑
i1 �=i2

Wi1jWi2j , (4)
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where W j = 1
n

∑n
i=1 Wij . Thus, unbiased estimates of τ2 ≡ ‖β‖2 and σ2 are

given by

τ̂2 =
p∑

j=1
β̂2
j =

(
n

2

)−1 ∑
i1<i2

WT
i1Wi2 , σ̂2 = σ̂2

Y − τ̂2, (5)

where Wi = (Wi1, ...,Wip)T and σ̂2
Y = 1

n−1
∑n

i=1(Yi − Ȳ )2. We use the term
naive estimator to describe τ̂2 since its construction is relatively simple and
straightforward. The naive estimator was also discussed by [18]. A similar esti-
mator was proposed by [9]. Specifically, let

τ̂2
Dicker =

∥∥∥XTY
∥∥∥2

− p‖Y‖2

n (n + 1)

where X is the n× p design matrix and Y = (Y1, ..., Yn)T . The following lemma
shows that τ̂2 and τ̂2

Dicker are asymptotically equivalent under some conditions.

Lemma 1. Assume the linear model in (1) and Xi
i.i.d∼ N (0, I), and that

ε1, . . . , εn ∼ N(0, σ2). When τ2 + σ2 is bounded and p/n converges to a
constant, then, √

n
(
τ̂2 − τ̂2

Dicker

) p→ 0.

Note that in this paper we are interested in a high-dimensional regression
setting and therefore we study the limiting behaviour when n and p go together
to ∞. Using Corollary 1 from [9], which computes the asymptotic variance of
τ̂2
Dicker, and the above lemma, we obtain the following corollary.

Corollary 1. Under the assumptions of Lemma 1,

√
n

(
τ̂2 − τ2

ψ

)
D→ N(0, 1) ,

where ψ = 2
{(

1 + p
n

) (
σ2 + τ2)2 − σ4 + 3τ4

}
.

Let A = E
(
WiW

T
i

)
and ‖A‖2

F denoted the Frobenius norm of A. The
variance of the naive estimator τ̂2 under model (1), without assuming normality,
is given by the following proposition.

Proposition 1. Assume model (1) and additionally that βTAβ and ‖A‖2
F are

finite. Then,

Var
(
τ̂2) = 4 (n− 2)

n (n− 1)

[
βTAβ − ‖β‖4

]
+ 2

n (n− 1)

[
‖A‖2

F − ‖β‖4
]
, (6)

Notice that under the assumptions of Lemma 1, which included Gaussian
covariates and noises, the expression in (6) reduces to ψ2/n, approximately.
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Proposition 1 is more general than Corollary 1 and holds without any Gaus-
sian assumptions. Furthermore, the proof of Proposition 1 does not require
homoscedasticity of ε.

The following proposition shows that the naive estimator is consistent under
some minimal assumptions.

Proposition 2. Assume model (1) and additionally that τ2 + σ2 = O(1) and
‖A‖2

F

n2 → 0. Then, τ̂2 is consistent. Moreover, when the columns of X are
independent and both p/n and E(X4

ij) are bounded, then ‖A‖2
F

n2 → 0 holds and
τ̂2 is

√
n-consistent.

3. Oracle estimator

In this section we introduce the zero-estimator approach and study how it can
be used to improve the naive estimator. In Section 3.1 we present the zero-
estimator approach. An illustration of this approach is given in Section 3.2.
Section 3.3 introduces a new notion of optimality with respect to linear families
of zero-estimators. We then find an optimal oracle estimator of τ2 and calculate
its improvement over the naive estimator.

3.1. The zero-estimator approach

Before we describe the zero-estimator approach, we explain our motivation and
discuss why this approach is useful in the semi-supervised setting. The naive
estimator τ̂2 is a symmetric unbiased U-statistic. For non-parametric distribu-
tions, if the vector of order statistic is sufficient and complete, there can exist
at most one symmetric unbiased estimator, and this estimator is the UMVUE
[20, Section 2.4]. However, when moments restriction exist, the order statistic
is no longer complete (i.e., there are non-trivial zero-estimators) and hence the
statement above no longer holds [11, 16]. Thus, by assumption (3), as the first
and the second moments of X are restricted, τ̂2 may not be a UMVUE and can
be improved by using zero-estimators.

The idea of using zero-estimators to reduce variance is not new. Zero-esti-
mators are introduced in the UMVUE literature [1, 21, 23]. When a complete
and sufficient statistic is not available, zero-estimators can be used to reduce
variance or to examine whether a particular estimator is a UMVUE [21, Theorem
1.7, p.85]. In the Monte-Carlo simulations literature, variance reduction using
zero-estimators is referred to as the control variates method [3, 12, 19]. Notice
that zero-estimators in the semi-supervised setting are natural since knowing the
distribution of the covariates enables an easy construction of zero-estimators.

We now describe the approach in general terms. Consider a random variable
V ∼ P , where P belongs to a family of distributions P. Let g(V ) be a zero-
estimator, i.e., EP [g(V )] = 0 for all P ∈ P. Let T (V ) be an unbiased estimator of
a certain quantity of interest θ. Then, the statistic Uc(V ), defined by Uc(V ) =
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T (V ) − cg(V ) for a fixed constant c, is also an unbiased estimator of θ. The
variance of Uc(V ) is

Var[Uc(V )] = Var[T (V )] + c2Var[g(V )] − 2c · Cov[T (V ), g(V )]. (7)

Minimizing Var[Uc(V )] with respect to c yields the minimizer

c∗ = Cov[T (V ), g(V )]
Var[g(V )] . (8)

Notice that Cov[T (V ), g(V )] �= 0 implies Var[Uc∗(V )] < Var(T (V )). In other
words, by combining a correlated unbiased estimator of zero with the initial
unbiased estimator of θ, one can lower the variance. Note that plugging c∗ in
(7) reveals how much variance can be potentially reduced,

Var[Uc∗(V )] =Var[T (V )] − [c∗]2Var[g(V )]

=Var[T (V )] − {Cov[T (V ), g(V )]}2

Var[g(V ]) = (1 − ρ2)Var[T (V )], (9)

where ρ is the correlation coefficient between T (V ) and g(V ). Therefore, it is
best to find an unbiased zero-estimator g(V ) which is highly correlated with
T (V ), the initial unbiased estimator of θ. It is important to notice that c∗ is an
unknown quantity and, therefore, Uc∗ is not a statistic. However, in practice,
one can estimate c∗ by some ĉ∗ and use the approximation Uĉ∗ instead.

3.2. Illustration of the zero-estimator approach

The following example illustrates how the zero-estimator approach can be ap-
plied to improve the naive estimator τ̂2 in the simple linear model setting.

Example 1 (p = 1). Assume model (1) with X ∼ N(0, 1). By (9), we wish to
find a zero-estimator g(X) which is correlated with τ̂2. Consider the estimator
Uc ≡ τ̂2 + cg(X), where g(X) ≡ 1

n

∑n
i=1(X2

i − 1) and c is a fixed constant. The
variance of Uc is minimized by c∗ = −2β2 and one can verify that Var(Uc∗) =
Var(τ̂2) − 8

nβ
4. For more details see Remark 2 in the Appendix.

The above example illustrates the potential of using additional information
that exists in the semi-supervised setting to lower the variance of the naive esti-
mator τ̂2. However, it also raises the question: Can we achieve a lower variance
by adding a different zero-estimator? One might attempt to reduce the variance
by adding a zero-estimator that is a linear combination of elements of the form
gk(X) ≡ 1

n

∑n
i=1[Xk

i −E(Xk
i )], for k ∈ N. Surprisingly, as shown in Theorem 2

below, the variance of the oracle-estimator Uc∗ ≡ τ̂2 − 2β2g(X) cannot be fur-
ther reduced by adding such a zero-estimator. Hence, the oracle-estimator Uc∗ is
optimal with respect to the family of zero-estimators constructed from elements
of the form gk(X).
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3.3. Optimal oracle estimator

We now define a new oracle unbiased estimator of τ2 and prove that under some
regularity assumptions this estimator is optimal with respect to a certain family
of zero-estimators. Here, optimality means that the variance cannot be further
reduced by including additional zero-estimators of that given family. We now
specifically define our notion of optimality in a general setting.

Definition 1. Let T be an unbiased estimator of θ and let g1, g2, ... be a se-
quence of zero-estimators, i.e., Eθ(gi) = 0 for i ∈ N and for all θ.

Let G = {
∑m

k=1 ckgk : ck ∈ R,m ∈ N} be a family of zero-estimators. For a
zero-estimator g∗ ∈ G, we say that R∗ ≡ T + g∗ is an optimal oracle estimator
(OOE) of θ with respect to G, if Varθ[R∗] = Varθ[T + g∗] � Varθ[T + g] for all
g ∈ G and for all θ.

We use the term oracle since g∗ ≡
∑m

k=1 c
∗
kgk for some optimal coefficients

c∗1, ..., c
∗
m, which are a function of the unknown parameter θ. The following

theorem suggests a necessary and sufficient condition for obtaining an OOE.

Theorem 1. Let gm = (g1, ..., gm)T be a vector of zero-estimators and assume
the covariance matrix M ≡ Var[gm] is positive definite for every m. Then, R∗ is
an optimal oracle estimator (OOE) with respect to the family of zero-estimators
G iff R∗ is uncorrelated with every zero-estimator g ∈ G, i.e., Covθ[R∗, g] = 0
for all g ∈ G and for all θ.

Theorem 1 is closely related to Theorem 1.7 in Lehmann and Casella [21,
p. 85]. While their gives a necessary and sufficient condition for obtaining a
UMVUE estimator, our theorem provides the same condition for obtaining an
optimal oracle estimator with respect to the family of zero-estimators G.

Returning to our setting, define the following oracle estimator

Toracle = τ̂2 − 2
p∑

j=1

p∑
j′=1

ψjj′ , (10)

where ψjj′ = βjβj′hjj′ and hjj′ = 1
n

∑n
i=1 [XijXij′ − E (XijXij′)], and let the

G be the family of zero-estimators of the form gk1...kp = 1
n

∑n
i=1[X

k1
i1 · ... ·Xkp

ip −
E(Xk1

i1 · . . . · Xkp

ip )], where (k1, ..., kp) ∈ {0, 1, 2, 3, ...}p ≡ N
p
0. The following

theorem shows that Toracle is an OOE with respect to G. We comment that the
proof of Theorem 2 does not require homoscedasticity of ε.

Theorem 2 (General p). Assume model (1) and additionally that X has mo-
ments of all orders. Then, the oracle estimator Toracle defined in (10) is an
OOE of τ2 with respect to G.

We now compute the variance reduction of Toracle with respect to the naive
estimator. The following statement is a corollary of Proposition 1.
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Corollary 2. Assume model (1) and additionally that the columns of X are
independent. Then,

Var (Toracle) = Var
(
τ̂2)− 4

n

⎧⎨⎩
p∑

j=1
β4
j

[
E
(
X4

1j − 1
)]

+ 2
∑
j �=j′

β2
jβ

2
j′

⎫⎬⎭ . (11)

Moreover, in the special case where Xi
i.i.d∼ N (0, I). Then, Rewriting (11)

yields

Var (Toracle) = Var
(
τ̂2)− 4

n

⎧⎨⎩2
p∑

j=1
β4
j + 2

∑
j �=j′

β2
j β

2
j′

⎫⎬⎭ = Var
(
τ̂2)− 8

n
τ4. (12)

Notice that by Cauchy–Schwarz inequality, since E(X2) = 1 then E(X4) ≥ 1,
and therefore Var(Toracle) < Var(τ̂2). The following example provides intuition
about the improvement of Var(Toracle) over Var(τ̂2).

Example 2. Consider a setting where n = p; τ2 = σ2 = 1 and Xi
i.i.d∼ N (0, I).

In this case, one can verify by (1) that Var(τ̂2) = 20
n + O(n−2) and therefore

Var(Toracle) = 12
n +O(n−2). In other words: the optimal oracle estimator Toracle

reduces (asymptotically) the variance of the naive estimator by 40%. Moreover,
when p/n converges to zero, the reduction is 66%. For more details and simu-
lation results for this example, see Remark 3 in the Appendix.

4. Proposed estimators

In this section we show how to use the zero-estimator approach to derive im-
proved estimators over τ̂2. In Section 4.1 we show that estimating all p2 op-
timal coefficients given in (10) may introduce too much variance. Therefore,
Sections 4.2 and 4.3 introduce alternative methods to reduce the number of
zero-estimators used in estimation.

4.1. The cost of estimation

The optimal oracle estimator defined in (10) is based on adding p2 zero-estimators.
Therefore, it is reasonable to suggest and study the following estimator instead
of the oracle one:

T = τ̂2 − 2
p∑

j=1

p∑
j′=1

ψ̂jj′ ,

where

ψ̂jj′ = 1
n (n− 1) (n− 2)

∑
i1 �=i2 �=i3

Wi1jWi2j′ [Xi3jXi3j′ − E (Xi3jXi3j′)],
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is a U-statistics estimator of ψjj ≡ βjβj′hjj′ . Notice that E
(
ψ̂jj′

)
= 0 and that

for i1 �= i2 we have E(Wi1jWi2j′) = βjβj′ . Thus, T is an unbiased estimator of
τ2 and we wish to check it reduces the variance of naive estimator τ̂2. This is
described in the following proposition.

Proposition 3. Assume model (1) and additionally that τ2 + σ2 = O(1);
E(X4

ij) ≤ C for some positive constant C, and p/n = O(1). Then,

Var (T ) = Var (Toracle) + 8p2σ4
Y

n3 + O(n−2)

= Var
(
τ̂2)− 4

n

⎧⎨⎩
p∑

j=1
β4
j

[
E
(
X4

1j − 1
)]

+ 2
∑
j �=j′

β2
j β

2
j′

⎫⎬⎭
+ 8p2σ4

Y

n3 + O(n−2), (13)

where σ2
Y ≡ τ2 + σ2.

Note that the second equation in (13) follows from (11). To build some intu-
ition, consider the case when Xi

i.i.d∼ N (0, I) and p = n. Then, the last equation
can be rewritten as

Var (T ) = Var
(
τ̂2)+ 8

n

(
2τ2σ2 + σ4)+ O(n−2). (14)

Notice that the term 8
n

(
2τ2σ2 + σ4) in (14) reflects the additional variability

that comes with the attempt at estimating all p2 optimal coefficients. Therefore,
the estimator T fails to improve the naive estimator τ̂2 and a similar result holds
for p/n → c for some positive constant c. Thus, alternative ways that improve
the naive estimator are warranted, which are discussed next.

4.2. Improvement with a single zero-estimator

A simple way to improve the naive estimator is by adding only a single zero-
estimator. More specifically, let Uc∗ = τ̂2 − c∗gn where c∗ = Cov[τ̂2,gn]

Var[gn] and gn is
some zero-estimator. By (9) we have

Var[Uc∗ ] = Var(τ̂2) − {Cov[τ̂2, gn]}2

Var[gn] . (15)

Notice that Uc∗ is an oracle estimator and thus c∗ needs to be estimated in
order to eventually construct a non-oracle estimator. Let gn = 1

n

∑n
i=1 gi be the

sample mean of some zero estimators g1, ..., gn. By (8), it can be shown that

c∗ =
2

p∑
j=1

βjθj

Var (gi)
, (16)
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where θj ≡ E(Sij) and Sij = Wijgi. Notice that Var (gi) does not depend
on i. Derivation of (16) can be found in Remark 4 in the Appendix. Here, we
specifically chose gi =

∑
j<j′ XijXij′ as it worked well in the simulations but we

do not argue that this is the best choice. Let Tc∗ = τ̂2 − c∗gn denote the oracle
estimator for the specific choice of gn, and where c∗ is given in (16). Notice that
by (15) we have

Var (Tc∗) = Var
(
τ̂2)−

[
2

p∑
j=1

βjθj

]2

nVar(g) , (17)

where g is just a generic gi for some i. The following example demonstrates the
improvement of Var(Tc∗) over Var(τ̂2).

Example 3 (Example 2 - continued). Consider a setting where n = p; τ2 =
σ2 = 1; Xi

i.i.d∼ N (0, I) and βj = 1√
p for j = 1, ..., p. Notice that this is an ex-

treme non-sparse settings since the signal level τ2 is uniformly distributed across
all p covariates. In this case one can verify that Var(Tc∗) = 12

n +O(n−2), which
is approximately 40% improvement over the naive estimator variance (asymp-
totically). For more details see Remark 5 in the Appendix.

In the view of (16), a straightforward U-statistic estimator for c∗ is

ĉ∗ =

2
n(n−1)

∑
i1 �=i2

p∑
j=1

Wi1jSi2j

Var (g) , (18)

where Var(g) is assumed known as it depends only on the marginal distribution
of X. Thus, we suggest the following estimator

Tĉ∗ = τ̂2 − ĉ∗gn, (19)

and prove that Tc∗ and Tĉ∗ are asymptotically equivalent under some conditions.

Proposition 4. Assume model (1) and additionally that τ2 + σ2 and p/n
are O(1). Also, for every j1, j2, j3, j4 assume that E

(
X2

1j1X
2
1j2X

2
1j3X

2
1j4
)

is
bounded and that the columns of the design matrix X are independent. Then,√
n [Tc∗ − Tĉ∗ ]

p→ 0.

We note that the requirement that the columns of X be independent holds,
for example, when X is Gaussian, and this requirement can be relaxed to some
form of weak dependence.

4.3. Improvement by selecting small number of covariates

Rather than using a single zero-estimator to improve the naive estimator, we now
consider estimating a small number of coefficients of Toracle. Recall that Toracle is
based on adding p2 zero estimators to the naive estimator. This estimation comes
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with high cost in terms of additional variability as shown is (14). Therefore, it
is reasonable to use only a small number of zero estimators. Specifically, let
B ⊂ {1, ..., p} be a fixed set of some indices such that |B| � p and consider the
estimator

TB = τ̂2 − 2
∑

j,j′∈B
ψ̂jj′ . (20)

By the same argument as in Proposition 3 we now have

Var (TB) = Var
(
τ̂2)− 4

n

⎧⎨⎩∑
j∈B

β4
j

[
E
(
X4

ij

)
− 1
]
+ 2

∑
j �=j′∈B

β2
j β

2
j′

⎫⎬⎭+ O
(
n−2) .

(21)
Also notice that when Xi

i.i.d∼ N (0, I), (21) can be rewritten as

Var (TB) = Var
(
τ̂2)− 8

n
τ4
B + O(n−2). (22)

where τ2
B =

∑
j∈B β2

j . Thus, if τ2
B is sufficiently large, one can expect a signif-

icant improvement over the naive estimator by using a small number of zero-
estimators. For example, when τ2

B = 0.5; p = n; τ2 = σ2 = 1, then TB reduces
the Var(τ̂2) by 10%. For more details see Remark 6 in the Appendix.

Notice that we do not assume sparsity of the coefficients. The sparsity as-
sumption essentially ignores covariates that do not belong to the set B. When
βj ’s for j /∈ B contribute much to the signal level τ2 ≡ ‖β‖2, the sparse approach
leads to disregarding a significant portion of the signal, while our estimators do
account for this as all p covariates are used in τ̂2.

The following example illustrates some key aspects of our proposed estima-
tors.

Example 4 (Example 3 - continued). Let n = p; τ2 = σ2 = 1 and Xi
i.i.d∼

N (0, I). Consider the following two extreme scenarios:

1. non-sparse setting: The signal level τ2 is uniformly distributed over all p
covariates, i.e., β2

j = 1
p for all j = 1, ..., p.

2. Sparse setting: the signal level τ2 is “point mass” distributed over the set
B, i.e., τ2

B = τ2.

Two interesting key points:

1. In the first scenario the estimator TB has the same asymptotic variance
as τ̂2, while the estimator Tc∗ reduces the variance by approximately 40%.

2. In the second scenario the variance reduction of TB is approximately 40%,
while Tc∗ has the same asymptotic variance as τ̂2.

Interestingly, in this example, the OOE estimator Toracle asymptotically im-
proves the naive by 40% regardless of the scenario choice, as shown by (12). For
more details see Remark 7 in the Appendix.
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A desirable set of indices B contains relatively small amount of covariates that
capture a significant part of the signal level τ2. There are different methods to
choose the covariates that will be included in B, but these are not a primary
focus of this work. For more information about covariate selection methods see
[24] and [32] and references therein. In Section 5 below we work with a certain
selection algorithm defined there. We call δ a covariate selection algorithm if
for every dataset (Xn×p,Yn×1) it chooses a subset of indices Bδ from {1, ..., p}.
Our proposed estimator for τ2, which is based on selecting small number of
covariates, is given in Algorithm 1.

Algorithm 1: Proposed Estimator based on covariate selection

Input: A dataset (Xn×p,Yn×1) and a selection algorithm γ.
1. Calculate the naive estimator τ̂2 = 1

n(n−1)
∑p

j=1
∑n

i1 �=i2
Wi1jWi2j ,

where Wij = XijYi.
2. Apply algorithm γ to (X,Y) to construct Bγ .
3. Calculate the zero-estimator terms:

ψ̂jj′ ≡
2

n(n− 1)(n− 2)
∑

i1 �=i2 �=i3

Wi1jWi2j′ [Xi3jXi3j′ − E (Xi3jXi3j′)],

for all j, j′ ∈ Bγ .

Result: Return Tγ = τ̂2 −
∑

jj′∈Bγ
ψ̂jj′ .

Some asymptotic properties of Tγ are given by the following proposition.

Proposition 5. Assume there is a set B ≡
{
j : β2

j > b
}

where b is a positive
constant, such that |B| = p0 where p0 is a fixed constant. Also assume that

lim
n→∞

n [P ({Bγ �= B})]1/2 = 0,

and that E
(
T 4
γ

)
and E(T 4

B) are bounded. Then,

√
n(Tγ − TB) p→ 0.

Notice that the condition limn→∞ n [P ({Bγ �= B})]1/2 = 0 is stronger than
the standard definition of consistency, limn→∞ P ({Bγ �= B}) = 0, which is used
in the variable-selection literature; see [6] and references therein. However, the
convergence rate of many practical selection procedures is exponential, which is
much faster than is required for the above condition to hold. For example, the
lasso algorithm asymptotically selects the support of β at an exponential rate
under some assumptions [15, Theorem 11.3].

Remark 1 (Practical considerations). Some cautions regarding the estimator
Tγ need to be considered in practice. When n is insufficiently large, then Bγ

might be different than B and Proposition 5 no longer holds. Specifically, let
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S ∩Bγ and B ∩ Sγ be the set of false positive and false negative errors, respec-
tively, where S = {1, ..., p} \B and Sγ = {1, ..., p} \Bγ. While false negatives
merely result in not including some potential zero-estimator terms in our pro-
posed estimator, false positives can lead to a substantial bias. This is true since
the expected value of a post-selected zero-estimator is not necessarily zero any-
more. A common approach to overcome this problem is to randomly split the
data into two parts where the first part is used for covariate selection and the
second part is used for evaluation of the zero-estimator terms.

4.4. Estimating the variance of the proposed estimators

We now suggest estimators for Var(τ̂2), Var(Tγ) and Var(Tĉ∗). Let

V̂ar (τ̂2) = 4
n

[
(n− 2)
(n− 1)

[
σ̂2
Y τ̂

2 + τ̂4]+ 1
2 (n− 1)

(
pσ̂4

Y + 4σ̂2
Y τ̂

2 + 3τ̂4)] ,
where σ̂2

Y = 1
n−1

∑n
i=1
(
Yi − Ȳ

)2, and σ̂4
Y =

(
σ̂2
Y

)2. The following proposition
shows that V̂ar (τ̂2) is consistent under some conditions.

Proposition 6. Assume model (1) and additionally that τ2 + σ2 = O(1),
Xi

i.i.d∼ N (0, I) and p/n = O(1). Then,

n
[
V̂ar (τ̂2) − Var

(
τ̂2)] p→ 0.

Consider now Var(Tγ) and let V̂ar (Tγ) = V̂ar (τ̂2) − 8
n τ̂

4
Bγ

, where τ̂2
Bγ

=∑
j∈Bγ

β̂2
j and τ̂4

Bγ
=
(
τ̂2
Bγ

)2
. The following propositions shows that V̂ar (Tγ)

is consistent.

Proposition 7. Under the assumptions of Propositions 5 and 6,

n
[

̂Var (Tγ) − Var (Tγ)
]

p→ 0.

When normality of the covariates is not assumed, we suggest the following
estimators:

Ṽar (τ̂2) = 4 (n− 2)
n (n− 1)

[
β̂TAβ − ̂‖β‖4

]
+ 2

n (n− 1)

[
̂‖A‖2

F − ̂‖β‖4
]

;

Ṽar (Tγ) = Ṽar (τ̂) − 4
n

⎧⎨⎩
p∑

j∈Bγ

β̂4
j

[
E
(
X4

1j
)
− 1
]
+ 2

∑
j �=j′∈Bγ

β̂2
j β̂

2
j′

⎫⎬⎭ ;

and

˜Var (Tĉ∗) = Ṽar (τ̂2) −

[
2

n(n−1)
∑

i1 �=i2

p∑
j=1

Wi1jSi2j

]2

Var (gi)
,
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where
β̂TAβ = 1

n (n− 1) (n− 2)
∑

i1=i2 �=i3

Wi1

(
Wi2WT

i2

)
Wi3 ,

̂‖A‖2
F = 1

n(n−1)
∑

i1 �=i2

(
WT

i1
Wi2

)2, ̂‖β‖4 = ( 1
n(n−1)

∑
i1 �=i2

WT
i1
Wi2)2 are all

U-statistics estimators, and β̂2
j is given by (4). The proofs of Propositions 6

and 7 are given in the Appendix. We do not provide consistency proof for the
estimators Ṽar(τ̂2), Ṽar(τ̂2

γ ) and ˜Var(Tĉ∗). However, our simulations support the
consistency claim when the assumptions of Proposition 3 hold.

5. Simulations results

In this section, we illustrate the performance of the proposed estimators using
a simulation study. Specifically, the following estimators are compared:

• The naive estimator τ̂2, which is given in (5).
• The optimal oracle estimator Toracle, which is given in (10).
• The estimator Tĉ∗ , which is based on adding a single zero-estimator and

is given in (19).
• The estimator Tγ , which is based on selecting a small number of covariates

and is given by Algorithm 1. Details about the specific selection algorithm
we used can be found in Remark 8 in the Appendix.

The above estimators are compared to two additional estimators that were
suggested previously:

• The PSI procedure (Post Selective Inference), which was calculated using
the estimateSigma function from the selectiveInference R pack-
age [26]. The PSI procedure is based on the LASSO method which assumes
sparsity of the coefficients and therefore ignores small coefficients [27].

• Ridge estimator is well-known technique for estimating the regression co-
efficient vector β. Since the parameter of interest here is τ2 rather than β,
we consider a plug-in ridge estimator which is constructed by taking the
sum of squares of ridge regression estimated coefficients calculated by the
glmnet R package [14].

It is noteworthy that unlike the PSI estimator, the ridge estimator does not
require sparsity. However, since the goal of ridge regression is to estimate the
coefficient vector β rather than τ2, a naive ridge plug-in estimator of τ2 is not
expected to perform well, as shown in the simulations below.

We simulated data from the linear model (1). We fixed β2
j = τ2

B

5 for j =
1, . . . , 5, and β2

j = τ2−τ2
B

p−5 for j = 6, . . . , p, where τ2 and τ2
B vary among dif-

ferent scenarios. The covariates were generated from the centered exponential
distribution, i.e., Xij

iid∼ Exp(1) − 1, i = 1, . . . , n, j = 1, . . . , p. The noise ε was
generated from the standard normal distribution. The number of observations
and covariates is n = p = 300, and the residual variance σ2 equals to 1. For
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Fig 1. Boxplots representing the estimators’ distribution. The x-axis stands for τ2
B. The red

dashed is the true value of τ2.

each scenario, we generated 100 independent datasets and estimated τ2 by using
the different estimators. Boxplots of the estimates are plotted in Figure 1 and
results of the RMSE are given in Table 1. Since the ridge-based estimator of τ2

is highly biased, it is not comparable to the other proposed estimators and we
omit it from the figures below. Code for reproducing the results is available at
https://git.io/Jt6bC.

Table 1 shows the mean, the root mean square error (RMSE), and the relative
improvement with respect to the naive τ̂2 for the different estimators. Standard
errors are given in parenthesis. Important points to notice:

• Both of the proposed estimators Tĉ∗ and Tγ and the oracle estimator
Toracle improve the naive estimator in all scenarios. When τ2 = 2, these
improvements are more substantial than for the case of τ2 = 1.

• The improved estimators are complementary to each other, i.e., for small
values of τ2

B the Single estimator Tĉ∗ performs better than the Selection
estimator Tγ , and the opposite occurs for large values of τ2

B. For example,
when τ2 = 1 and τ2

B = 5%, the Single estimator Tĉ∗ improves the naive es-
timator by 26% and when τ2

B = 95%, the Selection estimator Tγ improves
the naive by 23%. This aligns with the result shown in Example 4.

• The PSI and ridge estimators perform poorly in a non-sparse setting. For
example, when τ2 = 1 and τ2

B = 35% their RMSE are larger than the
RMSE of the naive estimator by 47% and 226%, respectively. Notice that
the RMSE of the ridge estimator is large also under the sparse setting.

https://git.io/Jt6bC
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Table 1

Summary statistics for the proposed estimators; n = p = 300. Mean, root mean square error
(RMSE) and percentage change from the naive estimator (in terms of RMSE) are shown.
Simulation standard errors are shown in parenthesis. The table results were computed over
100 simulated datasets for each setting. An estimate for the standard error of RMSE was
calculated using the delta method. The estimator with the lowest RMSE (excluding the

oracle) is in bold.

τ2
B τ2 Estimator Mean RMSE % Change

5% 1 naive 1.01 (0.051) 0.226 (0.035) 0
5% 1 OOE 1.01 (0.037) 0.165 (0.023) −26.99
5% 1 PSI 0.63 (0.08) 0.514 (0.064) 127.43
5% 1 Selection 1.01 (0.051) 0.225 (0.034) −0.44
5% 1 Single 0.97 (0.037) 0.168 (0.024) −25.66
5% 1 Ridge 0.21 (0.003) 0.789 (0.003) 213.1
35% 1 naive 1.02 (0.054) 0.242 (0.041) 0
35% 1 OOE 1.01 (0.039) 0.173 (0.027) −28.51
35% 1 PSI 0.77 (0.061) 0.356 (0.052) 47.11
35% 1 Selection 1.02 (0.052) 0.231 (0.035) −4.55
35% 1 Single 0.98 (0.044) 0.194 (0.033) −19.83
35% 1 Ridge 0.18 (0.003) 0.825 (0.003) 226.09
65% 1 naive 1.02 (0.057) 0.256 (0.046) 0
65% 1 OOE 1.01 (0.042) 0.185 (0.03) −27.73
65% 1 PSI 0.87 (0.047) 0.246 (0.036) −3.91
65% 1 Selection 1.02 (0.05) 0.224 (0.034) −12.5
65% 1 Single 1 (0.053) 0.235 (0.038) −8.2
65% 1 Ridge 0.13 (0.002) 0.868 (0.002) 213.36
95% 1 naive 1.02 (0.062) 0.278 (0.048) 0
95% 1 OOE 1.01 (0.045) 0.202 (0.033) −27.34
95% 1 PSI 0.98 (0.035) 0.157 (0.023) −43.53
95% 1 Selection 1.02 (0.048) 0.214 (0.034) −23.02
95% 1 Single 1.01 (0.063) 0.278 (0.047) 0
95% 1 Ridge 0.11 (0.001) 0.894 (0.001) 190.26
5% 2 naive 2.01 (0.039) 0.39 (0.027) 0
5% 2 OOE 2.01 (0.025) 0.245 (0.014) −37.18
5% 2 PSI 1.54 (0.052) 0.692 (0.052) 77.44
5% 2 Selection 2.01 (0.039) 0.386 (0.027) −1.03
5% 2 Single 1.94 (0.026) 0.264 (0.02) −32.31
5% 2 Ridge 0.33 (0.004) 1.672 (0.004) 282.61
35% 2 naive 2.02 (0.043) 0.427 (0.035) 0
35% 2 OOE 2.01 (0.025) 0.254 (0.017) −40.52
35% 2 PSI 1.66 (0.044) 0.554 (0.04) 29.74
35% 2 Selection 2.02 (0.04) 0.397 (0.027) −7.03
35% 2 Single 1.96 (0.033) 0.326 (0.023) −23.65
35% 2 Ridge 0.25 (0.004) 1.748 (0.004) 306.51
65% 2 naive 2.03 (0.046) 0.456 (0.04) 0
65% 2 OOE 2 (0.027) 0.272 (0.019) −40.35
65% 2 PSI 1.78 (0.034) 0.403 (0.028) −11.62
65% 2 Selection 2.03 (0.037) 0.372 (0.024) −18.42
65% 2 Single 1.99 (0.041) 0.411 (0.03) −9.87
65% 2 Ridge 0.18 (0.002) 1.819 (0.002) 287.02
95% 2 naive 2.04 (0.049) 0.494 (0.042) 0
95% 2 OOE 2 (0.03) 0.296 (0.022) −40.08
95% 2 PSI 1.96 (0.025) 0.255 (0.018) −48.38
95% 2 Selection 2.03 (0.033) 0.329 (0.024) −33.4
95% 2 Single 2.01 (0.05) 0.494 (0.041) 0
95% 2 Ridge 0.15 (0.002) 1.855 (0.002) 246.08
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Fig 2. Root mean square error (RMSE) for the different estimators. The x-axis stands for
the sparsity level τ2

B.

Table 2

Summary statistics similar to Table 1; n = p = 300; τ2
B = 0.65; τ2 = 1.

N Estimator Mean RMSE % Change
5000 naive 0.96 (0.025) 0.255 (0.021) 0
5000 OOE 0.98 (0.018) 0.179 (0.011) −29.8
5000 Selection 0.99 (0.025) 0.247 (0.018) −3.14
5000 Single 0.94 (0.023) 0.238 (0.021) −6.67
10000 naive 0.98 (0.024) 0.242 (0.017) 0
10000 OOE 0.98 (0.02) 0.2 (0.013) −17.36
10000 Selection 0.98 (0.022) 0.219 (0.013) −9.5
10000 Single 0.95 (0.023) 0.232 (0.016) −4.13
20000 naive 1.03 (0.027) 0.267 (0.015) 0
20000 OOE 1.03 (0.02) 0.201 (0.017) −24.72
20000 Selection 1.01 (0.023) 0.233 (0.016) −12.73
20000 Single 1.01 (0.026) 0.256 (0.015) −4.12

Figure 2 plots the RMSE of each estimator as a function of the sparsity level
τ2
B and the signal level τ2. It is demonstrated that the Single and Selection

estimators estimators improve (i.e., lower or equal RMSE) the naive estimator
in all settings.

In the following we consider the case that the distribution of the covari-
ates is only partially known. It is assumed that a large amount of unlabeled
data is available and the distribution of the covariates is estimated based on
this data. Specifically, we assume that additional sample of N i.i.d observa-
tions Xn+1, ..., Xn+N are given while the responses Yn+1, ..., Yn+N are not.
Rather than treating μ ≡ E(X) and Σ ≡ Cov(X) as known, we estimate
these parameters by their plug-in estimators, μ̂ ≡ 1

N

∑n+N
i=n+1 Xi and Σ̂ ≡

1
N

∑n+N
i=n+1(Xi − 1μ̂)(Xi − 1μ̂)T , where 1 ≡ (1, . . . , 1)T . We then apply the

linear transformation, X �→ Σ̂−1/2(X − μ̂), which corresponds the transforma-
tion shown in Section 2.1, and apply our estimators to the transformed X. We
repeated the simulation study above for different values of N .
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Table 2 is similar to Table 1 but includes different values of N rather than
different values of τ2

B. For simplicity we present only the scenario of τ2 = 1 and
τ2
B = 0.35 but the results for other scenarios are similar. It can be observed

from the table that for large values of N the results are fairly similar to those
in Table 1.

6. Generalization to other estimators

The suggested methodology in this paper is not limited to improving only the
naive estimator, but can also be generalized to other estimators. The key is to
add zero-estimators that are highly correlated with our initial estimator of τ2;
see Equation (9). Unlike the naive estimator, which is represented by a closed-
form expression, other common estimators, such as the EigenPrism estimator
[17], are computed numerically by solving a convex optimization problem. For a
given zero-estimator, this makes the task of estimating the optimal-coefficient c∗
more challenging than before. To overcome this challenge, we approximate the
optimal coefficient c∗ using bootstrap samples. We present a general algorithm
that achieves improvement without claiming optimality. The algorithm is based
on adding a single zero-estimator as in Section 4.2. A different version of the
above algorithm, in which only a subset of covariates are used as for zero-
estimators terms, was also used and is referred below to as the Selection esti-
mator. See details in Remark 9 in the Appendix.

We illustrate the improvement obtained by Algorithm 2 by choosing τ̃2 to
be the EigenPrism procedure [17], but other estimators can be used as well. We

Algorithm 2: Empirical Estimators

Input: A dataset (X,Y), an initial estimator τ̃2.
1. Calculate an initial estimator τ̃2 of τ2.
2. Bootstrap step:

• Resample with replacement n observations from (X,Y).
• Calculate the initial estimator τ̃2 of τ2.
• Calculate the zero-estimator gn = 1

n

∑n

i=1 gi where gi =
∑

j<j′ XijXij′ .

This procedure is repeated B times in order to produce (τ̃2)∗1, ..., (τ̃2)∗B and
g∗1n , ..., g∗Bn .

3. Approximate the coefficient c∗ by

c̃∗ =
̂Cov (τ̃2, gn)

Var (gn)
,

where Ĉov (·) denotes the empirical covariance from the bootstrap samples, and
Var(gn) is known by the semi-supervised setting.

Result: Return the empirical estimator Temp = τ̃2 − c̃∗gn.
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Table 3

Summary statistics similar to Table 1.
τ2
B τ2 Estimator Mean RMSE % Change

5% 1 Eigenprism 0.98 (0.019) 0.195 (0.012) 0
5% 1 Single 0.98 (0.018) 0.183 (0.012) −6.15
5% 1 Selection 0.98 (0.02) 0.195 (0.013) 0
35% 1 Eigenprism 0.99 (0.02) 0.198 (0.013) 0
35% 1 Single 0.99 (0.019) 0.193 (0.013) −2.53
35% 1 Selection 0.99 (0.02) 0.197 (0.013) −0.51
65% 1 Eigenprism 1 (0.021) 0.206 (0.013) 0
65% 1 Single 1 (0.021) 0.205 (0.013) −0.49
65% 1 Selection 1 (0.02) 0.199 (0.013) −3.4
95% 1 Eigenprism 1.01 (0.022) 0.215 (0.014) 0
95% 1 Single 1.01 (0.022) 0.215 (0.014) 0
95% 1 Selection 1.01 (0.02) 0.201 (0.013) −6.51
5% 2 EigenPrism 2.05 (0.029) 0.292 (0.018) 0
5% 2 Single 2.03 (0.026) 0.262 (0.016) −10.27
5% 2 Selection 2.05 (0.029) 0.292 (0.017) 0
35% 2 EigenPrism 2.02 (0.029) 0.287 (0.02) 0
35% 2 Single 2.01 (0.027) 0.272 (0.02) −5.23
35% 2 Selection 2.01 (0.028) 0.281 (0.02) −2.09
65% 2 EigenPrism 2.01 (0.03) 0.296 (0.023) 0
65% 2 Single 2 (0.029) 0.292 (0.023) −1.35
65% 2 Selection 1.99 (0.028) 0.28 (0.021) −5.41
95% 2 EigenPrism 1.99 (0.031) 0.31 (0.025) 0
95% 2 Single 1.99 (0.031) 0.31 (0.025) 0
95% 2 Selection 1.97 (0.028) 0.279 (0.021) −10

Fig 3. Root mean square error (RMSE) for the proposed estimators. The x-axis stands for
the sparsity level τ2

B.

consider the same setting as in Section 5. The number of bootstrap samples is
M = 100. Results are given in Table 3 and the code for reproducing the results
is available at https://git.io/Jt6bC.

The simulation results appear in Table 3 and in Figure 3. Both empirical
estimators show an improvement over the EigenPrism estimator τ̃2. The results

https://git.io/Jt6bC
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here are fairly similar to the results shown for the naive estimator in Section 5,
with just a smaller degree of improvement. As before, the Single and Selection
estimators are complementary to each other, i.e., for small values of τ2

B the
Single estimator performs better than the Selection estimator and the opposite
occurs for large values of τ2

B. This highlights the fact that the zero-estimator
approach is not limited to improving only the naive estimator but rather has
the potential to improve other estimators as well.

7. Discussion and future work

This paper presents a new approach for improving estimation of the explained
variance τ2 of a high-dimensional regression model in a semi-supervised setting
without assuming sparsity. The key idea is to use a zero-estimator that is cor-
related with the initial unbiased estimator of τ2 in order to lower its variance
without introducing additional bias. The semi-supervised setting, where the
number of observations is much greater than the number of responses, allows
us to construct such zero-estimators. We introduced a new notion of optimality
with respect to zero-estimators and presented an oracle-estimator that achieves
this type of optimality. We proposed two different (non-oracle) estimators that
showed a significant reduction, but not optimal, in the asymptotic variance of
the naive estimator. Our simulations showed that our approach can be general-
ized to other types of initial estimators other than the naive estimator.

Many open questions remain for future research. While our proposed estima-
tors improved the naive estimator, it did not achieve the optimal improvement
of the oracle estimator. Thus, it remains unclear if and how one can achieve op-
timal improvement. Moreover, in this work, strong assumption was made about
the unsupervised data size, i.e., N = ∞. Thus, generalizing the suggested ap-
proach by relaxing this assumption to allow for a more general setting with a
finite N � n is a natural direction for future work. A more ambitious future
goal would be to extend the suggested approach to generalized linear models
(GLM), and specifically to logistic regression. In this case, the concepts of signal
and noise levels are less clear and are more challenging to define.

Appendix

Proof of Lemma 1.
Notice that XTY = (

∑n
i=1 Wi1, ...,

∑n
i=1 Wip)

T where X is the n × p design
matrix and Y = (Y1, ..., Yn)T . Thus, the naive estimator can be also written as

τ̂2 = 1
n (n− 1)

∑
i1 �=i2

p∑
j=1

Wi1jWi2j =

∥∥∥XTY
∥∥∥2

−
p∑

j=1

n∑
i=1

W 2
ij

n (n− 1) .

The Dicker estimate for τ2 ia given by τ̂2
Dicker ≡

∥∥XTY
∥∥2

−p‖Y‖2

n(n+1) . We need
to prove that root-n times the difference between the estimators converges in
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probability to zero, i.e.,
√
n
(
τ̂2
Dicker − τ̂2) p→ 0. We have,

√
n
(
τ̂2
Dicker − τ̂2) =

√
n

⎛⎜⎜⎜⎝
∥∥XTY

∥∥2 − p‖Y‖2

n (n + 1) −

∥∥XTY
∥∥2 − p∑

j=1

n∑
i=1

W 2
ij

n (n− 1)

⎞⎟⎟⎟⎠

=
√
n

⎛⎜⎜⎜⎝
p∑

j=1

n∑
i=1

W 2
ij

n (n− 1) − p‖Y‖2

n (n + 1) −
2
∥∥XTY

∥∥2

n (n− 1) (n + 1)

⎞⎟⎟⎟⎠ .

(23)

It is enough to prove that:

1. n−1.5(
∑p

j=1
∑n

i=1 W
2
ij − p‖Y‖2) p→ 0,

2. n−2.5(‖XTY‖2) p→ 0.

We start with the first term,

n−1.5

⎛⎝ p∑
j=1

n∑
i=1

W 2
ij − p‖Y‖2

⎞⎠ = n−1.5

⎛⎝ p∑
j=1

n∑
i=1

Y 2
i X

2
ij − p

n∑
i=1

Y 2
i

⎞⎠
= n−1.5

⎛⎝ n∑
i=1

Y 2
i

p∑
j=1

X2
ij − p

n∑
i=1

Y 2
i

⎞⎠ = n−0.5
n∑

i=1
Y 2
i

⎡⎣ 1
n

p∑
j=1

(
X2

ij − 1
)⎤⎦

≡ n−0.5
n∑

i=1
ωi (24)

where ωi = Y 2
i

[
1
n

∑
j

{
X2

ij − 1
}]

. Notice that ωi depends on n but this is sup-

pressed in the notation. In order to show that n−0.5∑n
i=1 ωi

p→ 0, it is enough
to show that E

(
n−0.5∑n

i=1 ωi

)
→ 0 and Var

(
n−0.5∑n

i=1 ωi

)
→ 0. Moreover,

since E
(
n−0.5∑n

i=1 ωi

)
=

√
nE (ωi) and Var

(
n−0.5∑n

i=1 ωi

)
= Var (ωi) =

E
(
ω2
i

)
− [E (ωi)]2, it is enough to show that

√
nE (ωi) and E

(
ω2
i

)
converge

to zero.
Consider now

√
nE (ωi). By (24) we have

n∑
i=1

ωi = 1
n

⎡⎣ p∑
j=1

n∑
i=1

W 2
ij − p‖Y‖2

⎤⎦ .
Taking expectation of both sides,

n∑
i=1

E (ωi) = 1
n

⎡⎣ p∑
j=1

n∑
i=1

E
(
W 2

ij

)
− pE

(
‖Y‖2

)⎤⎦ .
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Now, notice that

E(W 2
ij) = E[X2

ij(βTX + ε)2] = ‖β‖2 + σ2 + β2
j [E(X4

ij) − 1] = τ2 + σ2 + 2β2
j .

(25)

Also notice that Y 2
i /
(
σ2
ε + τ2) ∼ χ2

1, and hence E
(
‖Y‖2

)
= n

(
τ2 + σ2).

Therefore,

nE (ωi) = 1
n

⎡⎣ p∑
j=1

n∑
i=1

(
τ2 + σ2 + 2β2

j

)
− pn

(
τ2 + σ2)⎤⎦

= 1
n

[
n∑

i=1

[
p
(
τ2 + σ2)+ 2τ2]− pn

(
τ2 + σ2)] = 2τ2

which implies that
√
nE (ωi) = 2τ2

√
n
→ 0.

Consider now E(ω2
i ). By Cauchy-Schwartz,

E
(
ω2
i

)
= E

⎛⎜⎝Y 4
i

⎡⎣n−1
p∑

j=1

{
X2

ij − 1
}⎤⎦2
⎞⎟⎠

≤
{
E
(
Y 8
i

)}1/2

⎧⎪⎨⎪⎩E

⎛⎜⎝
⎡⎣n−1

p∑
j=1

{
X2

ij − 1
}⎤⎦4
⎞⎟⎠
⎫⎪⎬⎪⎭

1/2

.

Notice that Yi ∼ N
(
0, τ2 + σ2) by construction and therefore E(Y 8

i ) = O(1) as
n and p go to infinity. Let Vj = X2

ij − 1 and notice that E(Vj) = 0. We have

E

⎛⎜⎝
⎡⎣n−1

p∑
j=1

{
X2

ij − 1
}⎤⎦4
⎞⎟⎠ = E

⎛⎜⎝
⎡⎣n−1

p∑
j=1

Vj

⎤⎦4
⎞⎟⎠

= n−4
∑

j1,j2,j3,j4

E (Vj1Vj2Vj3Vj4).

The expectation
∑

j1,j2,j3,j4
E (Vj1Vj2Vj3Vj4) is not 0 when j1 = j2 and j3 = j4

(up to permutations) or when all terms are equal. In the first case we have∑
j �=j′

E
(
V 2
j V

2
j′
)

=
∑
j �=j′

[
E
(
V 2
j

)]2 =p (p− 1)
[
E
{(

X2
ij − 1

)2}]2 ≤ C1p
2,

for a positive constant C1. In the second case we have
p∑

j=1
E
(
V 4
j

)
=pE

[(
X2

ij − 1
)4] ≤ C2p,
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for a positive constant C2. Hence, as p and n have the same order of magnitude,
we have⎧⎪⎨⎪⎩E

⎡⎢⎣
⎛⎝n−1

p∑
j=1

{
X2

ij − 1
}⎞⎠4

⎤⎥⎦
⎫⎪⎬⎪⎭

1/2

=

⎧⎨⎩n−4
∑

j1,j2,j3,j4

E (Vj1Vj2Vj3Vj4)

⎫⎬⎭
1/2

≤
{
n−4 ·O

(
p2)}1/2 ≤ K/n,

which implies E(ω2
i ) ≤ K1/n → 0, where K and K1 are positive constants. This

completes the proof that

n−1.5

⎛⎝ p∑
j=1

n∑
i=1

W 2
ij − p‖Y‖2

⎞⎠ p→ 0.

We now move to prove that n−2.5
(∥∥XTY

∥∥2) p→ 0. By Markov’s inequality,
for ε > 0

P
(
n−2.5∥∥XTY

∥∥2 > ε
)
≤ n−2.5E

(∥∥XTY
∥∥2)

/ε.

Thus, it is enough to show that n−2E
(∥∥XTY

∥∥2) is bounded. Notice that

E
(∥∥XTY

∥∥2) =
∑
i1,i2

p∑
j=1

E (Wi1jWi2j) =
n∑

i=1

p∑
j=1

E
(
W 2

ij

)
+
∑
i1 �=i2

p∑
j=1

E (Wi1jWi2j) =
n∑

i=1

p∑
j=1

(
τ2 + σ2 + 2β2

j

)
+
∑
i1 �=i2

p∑
j=1

β2
j

= n
[
p
(
τ2 + σ2)+ 2τ2]+ n (n− 1) τ2

= n
[
p
(
τ2 + σ2)+ (n + 1) τ2] ,

where we used (25) in the third equality. Therefore,

n−2E
(∥∥XTY

∥∥2) = n−1 [p (τ2 + σ2)+ (n + 1) τ2] .
Since p and n have the same order of magnitude and τ2 + σ2 is bounded by
assumption, then n−2E

(∥∥XTY
∥∥2) is also bounded. This completes the proof

of n−2.5
(∥∥XTY

∥∥2
)

p→ 0 and hence
√
n
(
τ̂2
Dicker − τ̂2) p→ 0.

Proof of Corollary 1.
According to Corollary 1 in [9], we have

√
n
(
τ̂Dicker − τ2)

ψ

D→ N (0, 1) ,
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where ψ = 2
{(

1 + p
n

) (
σ2 + τ2)2 − σ4 + 3τ4

}
, given that p/n converges to a

constant. Therefore we can write
√
n
(
τ̂2 − τ2)
ψ

= 1
ψ

[√
n
(
τ̂2 − τ̂Dicker

)
+

√
n
(
τ̂Dicker − τ2)] ,

and obtain
√
n
(

τ̂2−τ2

ψ

)
D→ N(0, 1) by Slutsky’s theorem.

Proof of Proposition 1.
Let Wi = (Wi1, ...,Wip)T and notice that τ̂2 = 1

n(n−1)
∑n

i1 �=i2

∑p
j=1 Wi1jWi2j

is a U-statistic of order 2 with the kernel h (w1,w2) = wT
1 w2 =

∑p
j=1 w1jw2j ,

where wi ∈ Rp.
By Theorem 12.3 in [29],

Var
(
τ̂2) = 4 (n− 2)

n (n− 1)ζ1 + 2
n (n− 1)ζ2, (26)

where
ζ1 = Cov

[
h (W1,W2) , h

(
W1,W̃2

)]
and

ζ2 = Cov [h (W1,W2) , h (W1,W2)] ;

where W̃2 is an independent copy of W2. Now, let A = E
(
WiWT

i

)
be a p× p

matrix and notice that

ζ1 = Cov
[
h (W1,W2) , h

(
W1,W̃2

)]
=

p∑
j,j′

Cov
(
W1jW2j ,W1j′W̃2j′

)
=

p∑
j,j′

(
βjβj′E [W1jW1j′ ] − β2

j β
2
j′
)

= βTAβ − ‖β‖4

and

ζ2 = Cov [h (W1,W2) , h (W1,W2)]

=
∑
j,j′

Cov (W1jW2j ,W1j′W2j′) =
∑
j,j′

(
(E [W1jW1j′ ])2 − β2

j β
2
j′

)
= ‖A‖2

F − ‖β‖4
,

where ‖A‖2
F is the Frobenius norm of A. Thus, by rewriting (26) the variance

of the naive estimator is given by

Var
(
τ̂2) = 4 (n− 2)

n (n− 1)

[
βTAβ − ‖β‖4

]
+ 2

n (n− 1)

[
‖A‖2

F − ‖β‖4
]
. (27)
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Proof of Proposition 2.
Notice that τ̂2 is consistent if Var[τ̂2] n→∞−−−−→ 0 since τ̂2 is unbiased. Thus,
by (27) it is enough to require that βTAβ

n

n→∞−−−−→ 0 and ‖A‖2
F

n2
n→∞−−−−→ 0. The

latter is assumed and we now show that the former also holds true. Let λ1 ≥
... ≥ λp be the eigenvalues of A and notice that A is symmetric. We have that
n−2λ2

1 ≤ n−2∑p
j=1 λ

2
j = n−2tr(A2) = n−2‖A‖2

F and therefore (iii) implies that
λ1
n

n→∞−−−−→ 0. Now, 1
nβ

TAβ ≡ 1
n‖β‖2[( β

‖β‖ )TA β
‖β‖ ] ≤ 1

n‖β‖2λ1
n→∞−−−−→ 0, where

the last limit follows from the assumption that τ2 = O(1), and from the fact
that λ1

n

n→∞−−−−→ 0. We conclude that Var[τ̂2] n→∞−−−−→ 0.
We now prove the moreover part, that is, independence of the columns of X

implies that ‖A‖2
F

n2
n→∞−−−−→ 0. By definition we have ‖A‖2

F =
∑

j,j′ [E(WijWij′)]2.
Notice that when j = j′ we have,

E
(
W 2

ij

)
= E

(
X2

ijY
2
i

)
= E

(
X2

ij

[
βTXi + εi

]2)
= E

⎛⎝X2
ij

⎡⎣∑
k,k′

βkβk′XikXik′ + 2βTXiεi + ε2
i

⎤⎦⎞⎠
= E

⎛⎝X2
ij

∑
k,k′

βkβk′XikXik′

⎞⎠+ 0 + E
(
X2

ijε
2
i

)

= E

(
X2

ij

p∑
k=1

β2
kX

2
ik

)
+ E

⎛⎝X2
ij

∑
k �=k′

βkβk′XikXik′

⎞⎠
︸ ︷︷ ︸

0

+σ2E
(
X2

ij

)

= β2
jE
(
X4

ij

)
+

p∑
k �=j

β2
k E
(
X2

ikX
2
ij

)︸ ︷︷ ︸
1

+ σ2

= β2
jE
(
X4

ij

)
+ ‖β‖2 − β2

j + σ2 = ‖β‖2 + σ2 + β2
j

[
E
(
X4

ij − 1
)]

.

Notice that E
(
X2

ij

∑
k �=k′ βkβk′XikXik′

)
= 0 follows from the assumptions that

the columns of X are independent and E(Xij) = 0 for each j. Also notice that
in the third row we used the assumption that E(ε2i |Xi) = σ2.

Similarly, when j �= j′,

E (WijWij) = E
(
XijXij′Y

2
i

)
= E

[
XijXij′

(
βTXi + εi

)2]
= E

[
XijXij′

(
βTXi + εi

)2]
= E

⎡⎣XijXij′

⎛⎝∑
k,k′

βkβk′XikXik′ + 2βTXiεi + ε2
i

⎞⎠⎤⎦
= E

⎡⎣XijXij′
∑
k,k′

βkβk′XikXik′

⎤⎦+ 0 + E
(
XijXij′ε

2
i

)
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= 2βjβj′E
(
X2

ijX
2
ij′
)

+ 0 + E (XijXij′)︸ ︷︷ ︸
0

E
(
ε2
i

)
= 2βjβj′E

(
X2

ij

)
E
(
X2

ij′
)

= 2βjβj′ .

This can be written more compactly as

E(WijWij′) =
{

2βjβj′ , j �= j′

σ2
Y + β2

j [E(X4
ij) − 1], j = j′,

(28)

where σ2
Y = ‖β‖2 + σ2. Therefore,

‖A‖2
F = 4

∑
j �=j′

β2
j β

2
j′ +

∑
j

(
σ2
Y + β2

j [E(X4
ij) − 1]

)2

≤ 4‖β‖4 +
∑
j

(
σ4
Y + β4

j [E(X4
ij) − 1]2 + 2σ2

Y β
2
j [E(X4

ij) − 1]
)

= pσ4
Y + O(1). (29)

where the last equality holds since σ2
Y ≡ τ2 +σ2 = O(1), E(X4

ij) = O(1) and by
the Cauchy–Schwarz inequality we have

∑
j β

4
j ≤

∑
j,j′ β

2
jβ

2
j′ = ‖β‖4 = O(1).

Now since p/n = O(1) then ‖A‖2
F

n2 → 0 and we conclude that Var(τ̂2) = O( 1
n ),

i.e., τ̂2 is
√
n-consistent.

Remark 2. Calculations for Example 1:

Cov[τ̂2, g(X)] ≡ Cov
(

2
n (n− 1)

∑
i1<i2

Wi1Wi2 ,
1
n

n∑
i=1

[X2
i − 1]

)

= 2
n2 (n− 1)

∑
i1<i2

n∑
i=1

Cov
(
Xi1Yi1Xi2Yi2 , X

2
i

)
= 2

n2 (n− 1)
∑
i1<i2

n∑
i=1

[E
(
Xi1Yi1Xi2Yi2X

2
i ) − β2]

= 4
n2 (n− 1)

∑
i1<i2

[E
(
X3

i1Yi1

)
β − β2]

= 4β
n2 (n− 1)

∑
i1<i2

[E
(
X3

i1Yi1

)
− β]

= 4β
n2 (n− 1)

n (n− 1)
2 [E

(
X3

i1Yi1

)
− β]

= 2β
n

[E
(
X3Y

)
− β],

(30)
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where in the third equality we used E(X2) = 1 and E(XY ) ≡ β. In the fourth
equality the expectation is zero for all i �= i1, i2. Now, since X ∼ N(0, 1) and
E(ε|X) = 0, then

E
(
X3Y

)
= E

(
X3 (βX + ε)

)
= βE

(
X4) = 3β.

Therefore, Cov[β̂2, g(X)] = 4β2

n . Notice that

Var [g] = var
[

1
n

n∑
i=1

(
X2

i − 1
)]

= 1
n

[
E
(
X4)− E

(
X2)] = 2

n
.

Therefore, by (8) we get c∗ = −2β2. Plugging-in c∗ back in (9) yields

Var(Uc∗) = Var(τ̂2) − 8
n
β4.

Proof of Theorem 1.
1. We now prove the first direction: OOE ⇒ Cov[R∗, g] = 0 for all g ∈ G.

Let R∗ ≡ T + g∗ be an OOE for θ with respect to the family of zero-
estimators G. By definition, Var[R∗] � Var[T + g] for all g ∈ G. For every
g =

∑m
k=1 ckgk, define g̃ ≡ g − g∗ =

∑m
k=1(ck − c∗k)gk =

∑m
k=1 c̃kgk for some

fixed m, and note that g̃ ∈ G. Then,

Var[R∗] � Var[T + g] = Var[T + g∗ + g̃] = Var
[
R∗ +

m∑
k=1

c̃kgk

]

= Var[R∗] + 2
m∑

k=1

c̃k · Cov[R∗, gk] + Var
[ m∑
k=1

c̃kgk

]
.

Therefore, for all (c̃1, ..., c̃m),

0 � 2
m∑

k=1

c̃k · Cov[R∗, gk] + Var
[ m∑
k=1

c̃kgk

]
,

which can be represented compactly as

0 � −2c̃Tb + Var[c̃Tgm] = −2c̃Tb + c̃TM c̃ ≡ f(c̃), (31)

where b ≡ − (Cov[R∗, g1], ...,Cov[R∗, gm])T , gm ≡ (g1, ..., gm)T , M = Cov[gm]
and c̃ ≡ (c̃1, ..., c̃m)T . Notice that f(c̃) is a convex function in c̃ that satisfies
f(c̃) ≥ 0 for all c̃. Differentiate f(c̃) in order to find its minimum

∇f(c̃) = −2b + 2M c̃ = 0.

Assuming M is positive definite and solving for c̃ yields the minimizer

c̃min = M−1b.
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Plug-in c̃min in the (31) yields

f(c̃min) ≡ −2(M−1b)Tb + (M−1b)TM(M−1b) = −bTM−1b ≥ 0. (32)

Since, by assumption, M is positive definite, so is M−1, i.e.,

bTM−1b > 0

for all non-zero b ∈ Rm. Thus, (32) is satisfied only if b ≡ 0, i.e.,

Cov[R∗,gm] = 0

which also implies Cov[R∗,
∑m

k=1 ckgk] = 0 for any c1, ..., cm ∈ R. Therefore,

Cov[R∗, g] = 0,

for all g ∈ G.
2. We now prove the other direction: if R∗ is uncorrelated with all zero-

estimators of a given family G then it is an OOE.
Let R∗ = T +g∗ and R ≡ T +g be unbiased estimators of θ, where g∗, g ∈ G.

Define g̃ ≡ R∗ − R = g∗ − g and notice that g̃ ∈ G. Since by assumption R∗ is
uncorrelated with g̃,

0 = Cov[R∗, g̃] ≡ Cov[R∗, R∗ −R] = Var[R∗] − Cov[R∗, R],

and hence Var[R∗] = Cov[R∗, R]. By the Cauchy–Schwarz inequality,

(Cov[R∗, R])2 ≤ Var[R∗]Var[R],

we conclude that Var[R∗] ≤ Var[R] = Var[T + g] for all g ∈ G.

Proof of Theorem 2.
We start by proving Theorem 2 for the special case of p = 2 and then generalize
for p > 2. By Theorem 1 we need to show that Cov (Toracle, gk1k2) = 0 for all
(k1, k2) ∈ N2

0 where gk1k2 = 1
n

∑n
i=1

[
Xk1

i1 X
k2
i2 − E

(
Xk1

i1 X
k2
i2

)]
. Write,

Cov (Toracle, gk1k2) = Cov

⎛⎝τ̂2 − 2
2∑

j=1

2∑
j′=1

ψjj′ , gk1k2

⎞⎠
= Cov

(
τ̂2, gk1k2

)
− 2

2∑
j=1

2∑
j′=1

Cov (ψjj′ , gk1k2).

Thus, we need to show that

Cov
(
τ̂2, gk1k2

)
= 2

2∑
j=1

2∑
j′=1

Cov (ψjj′ , gk1k2). (33)
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We start with calculating the LHS of (33), namely Cov
(
τ̂2, gk1k2

)
. Recall

that τ̂2 ≡ β̂2
1 +β̂2

2 and therefore Cov[τ̂2, gk1k2 ] = Cov(β̂2
1 , gk1k2)+Cov(β̂2

2 , gk1k2).
Now, for all (k1, k2) ∈ N2

0 we have

Cov[β̂2
1 , gk1k2 ] ≡ Cov

(
2

n(n− 1)
∑
i1<i2

Wi11Wi21,
1
n

n∑
i=1

(Xk1
i1 X

k2
i2 − E[Xk1

i1 X
k2
i2 ])
)

= 2
n2(n− 1)

∑
i1<i2

n∑
i=1

Cov
(
Xi11Yi1Xi21Yi2 , X

k1
i1 X

k2
i2

)
= 2

n2(n− 1)
∑
i1<i2

n∑
i=1

(
E[Xi11Yi1Xi21Yi2X

k1
i1 X

k2
i2 ] − β2

1E[Xk1
i1 X

k2
i2 ]
)

= 4
n2(n− 1)

∑
i1<i2

(
E[Xi11Yi1Xi21Yi2X

k1
i11X

k2
i12] − β2

1E[Xk1
i11X

k2
i12]
)

= 4
n2(n− 1)

∑
i1<i2

(
E[Xk1+1

i11 Yi1X
k2
i12]E[Xi21Yi2 ] − β2

1E[Xk1
i11X

k2
i12]
)

= 4
n2(n− 1)

∑
i1<i2

(
E[Xk1+1

i11 Yi1X
k2
i12]β1 − β2

1E[Xk1
i11X

k2
i12]
)

= 4
n2(n− 1)

n(n− 1)
2

(
E[Xk1+1

11 Y1X
k2
12 ]β1 − β2

1E[Xk1
11X

k2
12 ]
)

= 2
n

(
E[Xk1+1

11 Y1X
k2
12 ]β1 − β2

1E[Xk1
11X

k2
12 ]
)
, (34)

where the calculations can be justified by similar arguments to those presented
in (30). We shall use the following notation:

A ≡ E
[
Xk1+2

11 Xk2
12

]
B ≡ E

[
Xk1+1

11 Xk2+1
12

]
C ≡ E

[
Xk1

11X
k2
12

]
D ≡ E

[
Xk1

11X
k2+2
12

]
.

Notice that A,B,C and D are functions of (k1, k2) but this is suppressed in the
notation. Write,

E[Xk1+1
11 Xk2

12Y1] = E[Xk1+1
11 Xk2

12 (β1X11 + β2X12 + ε1)]
= β1E[Xk1+2

11 Xk2
12 ] + β2E[Xk1+1

11 Xk2+1
12 ] = β1A + β2B.

Thus, rewrite (34) and obtain

Cov[β̂2
1 , gk1k2 ] = 2

n

(
[β1A + β2B]β1 − β2

1C
)
. (35)
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Similarly, by symmetry,

Cov[β̂2
2 , gk1k2 ] = 2

n

(
[β2D + β1B]β2 − β2

2C
)
. (36)

Using (35) and (36) we get

Cov[τ̂2, gk1k2 ] = Cov(β̂2
1 , gk1k2) + Cov(β̂2

2 , gk1k2)

= 2
n

(
[β1A + β2B]β1 − β2

1C + [β2D + β1B]β2 − β2
2C
)

= 2
n

⎡⎢⎣
L1︷ ︸︸ ︷

β2
1A + β2

2D+
L2︷ ︸︸ ︷

2β1β2B−
L3︷ ︸︸ ︷

C
(
β2

1 + β2
2
)⎤⎥⎦

= 2
n

(L1 + L2 − L3) .

(37)

We now move to calculate the RHS of (33), namely
∑2

j=1
∑2

j′=1Cov(ψjj′ , gk1k2).
First, recall that

hjj ≡
1
n

n∑
i=1

[XijXij′ −E (XijXij′)]

and

gk1k2 ≡ 1
n

n∑
i=1

[
Xk1

i1 X
k2
i2 − E

(
Xk1

i1 X
k2
i2

)]
,

where (k1, k2) ∈ N2
0. Hence, h11 ≡ 1

n

∑n
i=1
(
X2

i1 − 1
)

which by definition is
also equal to g20. Similarly, we have h12 = h21 ≡ 1

n

∑n
i=1 (Xi1Xi2) = g11 and

h22 ≡ 1
n

∑n
i=1
(
X2

i2 − 1
)

= g02. Thus,

2∑
j=1

2∑
j′=1

Cov (ψjj′ , gk1k2) =
2∑

j=1

2∑
j′=1

βjβj′Cov (hjj′ , gk1k2)

= β2
1Cov (h11, gk1k2) + 2β1β2Cov (h12, gk1k2) + β2

2Cov (h22, gk1k2)
= β2

1Cov (g20, gk1k2) + 2β1β2Cov (g11, gk1k2) + β2
2Cov (g02, gk1k2) . (38)

Now, observe that for every (k1, k2, d1, d2) ∈ N4
0,

Cov[gk1k2 , gd1d2 ]

= Cov
( 1
n

n∑
i=1

[Xk1
i1 X

k2
i2 −E(Xk1

i1 X
k2
i2 )], 1

n

n∑
i=1

[Xd1
i1 X

d2
i2 −E(Xd1

i1 X
d2
i2 )]
)

= n−2
n∑

i1=1

n∑
i2=1

(E[Xk1
i11X

k2
i12X

d1
i21X

d2
i22] −E[Xk1

i11X
k2
i12]E[Xd1

i21X
d2
i22])

= 1
n

(
E[Xk1+d1

11 Xk2+d2
12 ] −E[Xk1

11X
k2
12 ]E[Xd1

11X
d2
12 ]
)
,

(39)
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where the third equality holds since the terms with i1 �= i2 vanish. It follows
from (39) that

Cov[gk1k2 , g20] = 1
n

(
E[Xk1+2

11 Xk2
12 ] − E[Xk1

11X
k2
12 ]
)

= 1
n (A− C),

Cov[gk1k2 , g11] = 1
nE[Xk1+1

11 Xk2+1
12 ] = B

n ,

Cov[gk1k2 , g02] = 1
n

(
E[Xk1

11X
k2+2
12 ] − E[Xk1

11X
k2
12 ]
)

= 1
n (D − C)

Therefore, rewrite (38) to get

2
2∑

j=1

2∑
j′=1

Cov (ψjj′ , gk1k2) = 2
n

⎡⎢⎣
L1︷ ︸︸ ︷

β2
1A + β2

2D+
L2︷ ︸︸ ︷

2β1β2B−
L3︷ ︸︸ ︷

C
(
β2

1 + β2
2
)⎤⎥⎦

= 2
n

(L1 + L2 − L3) , (40)

which is exactly the same expression as in (37). Hence, equation (33) follows
which completes the proof of Theorem 2 for p = 2.

We now generalize the proof for p > 2. Similarly to (33) we want to show
that

Cov
(
τ̂2, gk1...kp

)
= 2

p∑
j=1

p∑
j′=1

Cov
(
ψjj′ , gk1...kp

)
. (41)

We begin by calculating the LHS of (41), i.e., the covariance between τ̂2 and
gk1...kp . By the same type of calculations as in (34), for all (k1, ..., kp) ∈ N

p
0 we

have

Cov
[
β̂2
j , gk1,...,kp

]
=

2
n

{[
βjE

(
X

kj+2
1j

∏
m �=j

Xkm
1m

)
+
∑
j �=j′

βj′E

(
X

kj+1
1j X

k
j′+1

1j′
∏

m �=j,j′
Xkm

1m

)]
βj−β2

jE

(
p∏

m=1

Xkm
1m

)}
Summing the above expressions for j = 1, . . . , p, yields

Cov
[
τ̂2, gk1,....,kp

]
=

p∑
j=1

Cov
[
β̂2
j , gk1,....,kp

]

= 2
n

p∑
j=1

β2
jE

⎛⎝X
kj+2
1j

∏
m �=j

Xkm
1m

⎞⎠
+ 2

n

∑
j �=j′

βjβj′E

⎛⎝X
kj+1
1j X

kj′+1
1j′

∏
m �=j,j′

Xkm
1m

⎞⎠
− 2

n

p∑
j=1

β2
jE

(
p∏

m=1
Xkm

1m

)

≡ 2
n

(
L1 + L2 − L3

)
,

(42)
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where L1, L2 and L3 are just a generalization of the notation given in (37).
Again, notice that L1, L2 and L3 are functions of k1, ..., kp but this is suppressed
in the notation.

We now move to calculate the RHS of (41), namely 2
∑p

j=1∑p
j′=1 Cov

(
ψjj′ , gk1...kp

)
. Since ψjj′ = βjβj′hjj′ we have,

p∑
j=1

p∑
j′=1

Cov
(
ψjj′ , gk1...kp

)
=

p∑
j=1

p∑
j′=1

βjβj′Cov
(
hjj′ , gk1...kp

)
. (43)

Again, notice the relationship between hjj′ and gk1...kp : when j = j′ we have
hjj ≡ 1

n

∑n
i=1
(
X2

ij − 1
)

= g0...2...0, (i.e., the j-th entry is 2 and all others are
0), and for j �= j′ we have hjj′ ≡ 1

n

∑n
i=1 XijXij′ = g0...1...1...0, (i.e., the j-th

and j’-th entries are 1 and all other entries are 0). Hence,

p∑
j=1

p∑
j′=1

Cov
(
ψjj′ , gk1...kp

)
=

p∑
j=1

p∑
j′=1

βjβj′Cov
(
hjj′ , gk1...kp

)
=

p∑
j=1

β2
jCov

(
g0...2...0, gk1...kp

)
+
∑
j �=j′

βjβj′Cov
(
g0...1...1...0, gk1...kp

)
. (44)

Similarly to (39), for all pairs of index vectors (k1, ..., kp) ∈ N
p
0, and (k′1, ..., k′p) ∈

N
p
0 we have,

Cov
(
gk1,...,kp , gk′

1,...,k
′
p

)
= 1

n

⎧⎨⎩E

⎛⎝ p∏
j=1

X
kj+k′

j

1j

⎞⎠− E

⎛⎝ p∏
j=1

X
kj

1j

⎞⎠E

⎛⎝ p∏
j=1

X
k′
j

1j

⎞⎠⎫⎬⎭ .

This implies that

Cov
[
g0...2...0, gk1,...,kp

]
= 1

n

⎡⎣E
⎛⎝X

kj+2
1j

∏
m �=j

Xkm
1m

⎞⎠− E

(
p∏

m=1
Xkm

1m

)⎤⎦
and

Cov
[
g0...1...1...0, gk1,...,kp

]
= 1

n
E

⎛⎝X
kj+1
1j X

kj′+1
1j′

∏
m �=j,j′

Xkm
1m

⎞⎠.

Hence, rewrite (44) to see that

2
p∑

j=1

p∑
j′=1

Cov
(
ψjj′ , gk1...kp

)
= 2

p∑
j=1

β2
j Cov

(
g0...2...0, gk1...kp

)
+ 2

∑
j �=j′

βjβj′Cov
(
g0...1...1...0, gk1...kp

)



5470 I. Livne et al.

= 2
n

p∑
j=1

β2
j

⎡⎣E
⎛⎝X

kj+2
1j

∏
m �=j

Xkm
1m

⎞⎠−E

(
p∏

m=1
Xkm

1m

)⎤⎦+

2
n

∑
j �=j′

βjβj′E

⎛⎝X
kj+1
1j X

kj′+1
1j′

∏
m �=j,j′

Xkm
1m

⎞⎠ = 2
n

(
L1 − L3 + L2

)
, (45)

which is exactly the same expression as in (42). Hence, equation (41) follows
which completes the proof of Theorem 2.

Proof of Corollary 2.
Write,

Var (Toracle) = Var

⎛⎝τ̂2 − 2
∑
j,j′

ψjj′

⎞⎠
= Var

(
τ̂2)− 4

∑
j,j′

βjβj′Cov
(
τ̂2, hjj′

)
+ 4 Var

⎛⎝∑
j,j′

ψjj′

⎞⎠. (46)

Consider
∑

j,j′ βjβj′Cov
(
τ̂2, hjj′

)
. We have∑

j,j′

βjβj′Cov
(
τ̂2, hjj′

)
=

p∑
j=1

β2
jCov

(
τ̂2, hjj

)
+
∑
j �=j′

βjβj′Cov
(
τ̂2, hjj′

)
=

p∑
j=1

β2
jCov

(
τ̂2, g0...2...0

)
+
∑
j �=j′

βjβj′Cov
(
τ̂2, g0...1...1...0

)
=

p∑
j=1

β2
j

[
2β2

j

n

(
E
(
X4

1j
)
− 1
)]

+
∑
j �=j′

βjβj′

[
4
n
βjβj′

]

= 2
n

p∑
j=1

β4
j

[(
E
(
X4

1j
)
− 1
)]

+ 4
n

∑
j �=j′

β2
jβ

2
j′

where the second and third equality are justified by (44) and (42) respectively.
Consider now Var

(∑
j,j′ ψjj′

)
. Let β1234 ≡ βj1βj2βj3βj4 . Write,

Var

(∑
j,j′

ψjj′

)
= Cov

(∑
j,j′

βjβj′hjj′ ,
∑
j,j′

βjβj′hjj′

)

=
∑

j1,j2,j3j4

β1234Cov (hj1j2 , hj3j4)

= 1
n2

∑
j1,j2,j3,j4

β1234
∑
i1,i2

Cov (Xi1j1Xi1j2 , Xi2j3Xi2j4)
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= 1
n2

∑
j1,j2,j3,j4

β1234
∑
i1,i2

[E (Xi1j1Xi1j2Xi2j3Xi2j4) − E (Xi1j1Xi1j2)E (Xi2j3Xi2j4)]

= n−2
∑

j1,j2,j3,j4

β1234

n∑
i=1

[E (Xij1Xij2Xij3Xij4) − E (Xij1Xij2)E (Xij3Xij4)]

= 1
n

∑
j1,j2,j3,j4

β1234 [E (X1j1X1j2X1j3X1j4) − E (X1j1X1j2)E (X1j3X1j4)],

where the fifth equality holds since the summand is 0 for all i1 �= i2. The
summation is not zero in only three cases:

1) j1 = j4 �= j2 = j3
2) j1 = j3 �= j2 = j4
3) j1 = j2 = j3 = j4.
For the first two cases the summation equals 1

n

∑
j �=j′ β

2
jβ

2
j′ . For the third

case the summation equals to 1
n

∑n
j=1 β

4
j

[
E
(
X4

1j − 1
)]

. Overall we have

Var

⎛⎝∑
j,j′

ψjj′

⎞⎠ =

case 1︷ ︸︸ ︷
1
n

∑
j �=j′

β2
jβ

2
j′ +

case 2︷ ︸︸ ︷
1
n

∑
j �=j′

β2
j β

2
j′ +

case 3︷ ︸︸ ︷
1
n

n∑
j=1

β4
j

[
E
(
X4

1j − 1
)]

.

Rewrite (46) to get

Var (Toracle) = Var
(
τ̂2)− 4

∑
j,j′

βjβj′Cov
(
τ̂2, hjj′

)
+ 4 Var

⎛⎝∑
j,j′

ψjj′

⎞⎠
= Var

(
τ̂2)− 4

⎡⎣ 2
n

p∑
j=1

β4
j

[(
E
(
X4

1j
)
− 1
)]

+ 4
n

∑
j �=j′

β2
jβ

2
j′

⎤⎦
+ 4

n

⎧⎨⎩2
∑
j �=j′

β2
jβ

2
j′ +

p∑
j=1

β4
j

[
E
(
X4

1j − 1
)]⎫⎬⎭

= Var
(
τ̂2)− 4

n

⎧⎨⎩
p∑

j=1
β4
j

[
E
(
X4

1j − 1
)]

+ 2
∑
j �=j′

β2
jβ

2
j′

⎫⎬⎭ .

Remark 3. Calculations for Example 2.
Recall that by (6) we have

Var
(
τ̂2) = 4 (n− 2)

n (n− 1)

[
βTAβ − ‖β‖4

]
+ 2

n (n− 1)

[
‖A‖2

F − ‖β‖4
]
.

Now, when we assume standard Gaussian covariates, one can verify that βTAβ−
‖β‖4 = σ2

Y τ
2 + τ4 and ‖A‖2

F −‖β‖4 = pσ4
Y +4σ2

Y τ
2 +3τ4, where σ2

Y = σ2 + τ2.
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Thus, in this case we can write

Var
(
τ̂2) = 4

n

[
(n− 2)
(n− 1)

[
σ2
Y τ

2 + τ4]+ 1
2 (n− 1)

(
pσ4

Y + 4σ2
Y τ

2 + 3τ4)] . (47)

Plug-in τ2 = σ2 = 1 to get

Var(τ̂2) = 20
n

+ O(n−2), (48)

and Var(Toracle) = Var(τ̂2) − 8
nτ

4 = 12
n + O(n−2) by (12). More generally, the

asymptotic improvement of Toracle over the naive estimator is:

lim
n,p→∞

Var
(
τ̂2)− Var (Toracle)

Var (τ̂2)

= lim
n,p→∞

8τ4/n

4
n

[
(n−2)
(n−1) (σ2

Y τ
2 + τ4) + 1

2(n−1) (pσ4
Y + 4σ2

Y τ
2 + 3τ4)

]
= 2τ4

3τ4 + 4pτ4+4σ2
Y
τ2+3τ4

2n

= 2
3 + 2 p

n

,

where we used the fact that σ2
Y = τ2 + σ2 = 2τ2 in the second equality. Now,

notice that when p = n then the reduction is 2
3+2 = 40% and when p/n converges

to zero, the reduction is 66%.
In order to verify the above results, we repeated the simulation study from

Section 5 but with Gaussian covariates, considering only the naive estimator τ̂2

and the OOE estimator Toracle. For the low-dimensional case, we fixed p = 3
and considered β2

j = τ2
B

2 for j = 1, . . . , 2, and β2
3 = τ2 − τ2

B. Table 4 suggests
that the OOE estimator achieves similar reduction in variance as claimed in
theory, namely that for the low-dimensional case, the reduction is about 66%
and when n = p the reduction is about 40%.

Proof of Proposition 3.

Write,

Var (T ) = Var

⎡⎣τ̂2 − 2
p∑

j=1

p∑
j′=1

ψ̂jj′

⎤⎦
= Var

(
τ̂2)− 4Cov

⎛⎝τ̂2,

p∑
j=1

p∑
j′=1

ψ̂jj′

⎞⎠+ 4Var

⎛⎝ p∑
j=1

p∑
j′=1

ψ̂jj′

⎞⎠ . (49)

We start with calculating the middle term. Let

pn(k) ≡ n(n− 1)(n− 2) · · · (n− k).
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Table 4

Summary statistics for the naive and the OOE estimators; n = 300; τ2 = σ2 = 1. Mean,
mean square error (MSE) and percentage change from the naive estimator (in terms of
MSE) are shown. Simulation standard errors are shown in parenthesis. The table results

were computed over 100 simulated datasets for each setting.
p τ2

B Estimator Mean MSE % Change
300 5% Naive 1 (0.015) 0.068 (0.106) 0
300 5% OOE 1.01 (0.012) 0.042 (0.07) −38.24
300 35% Naive 1.01 (0.015) 0.068 (0.095) 0
300 35% OOE 1.02 (0.011) 0.039 (0.059) −42.65
300 65% Naive 1.01 (0.015) 0.069 (0.101) 0
300 65% OOE 1.01 (0.011) 0.038 (0.056) −44.93
300 95% Naive 1.01 (0.015) 0.072 (0.11) 0
300 95% OOE 1.01 (0.012) 0.04 (0.058) −44.44
3 5% Naive 0.99 (0.011) 0.033 (0.05) 0
3 5% OOE 1.01 (0.007) 0.014 (0.022) −57.58
3 35% Naive 1.01 (0.012) 0.043 (0.069) 0
3 35% OOE 1.01 (0.007) 0.016 (0.025) −62.79
3 65% Naive 1.01 (0.013) 0.052 (0.087) 0
3 65% OOE 1.01 (0.008) 0.018 (0.029) −65.38
3 95% Naive 1.01 (0.013) 0.049 (0.083) 0
3 95% OOE 1.01 (0.007) 0.017 (0.029) −65.31

Write,

Cov
(
τ̂2,

p∑
j=1

p∑
j′=1

ψ̂jj

)

= Cov
(

1
pn (1)

∑
i1 �=i2

p∑
j=1

Wi1jWi2j

,
1

pn (2)
∑
j,j′

∑
i1 �=i2 �=i3

Wi1jWi2j′ [Xi3jXi3j′ −E (Xi3jXi3j′)]
)

= Cn

∑
I

∑
J

Cov (Wi1j1Wi2j1 ,Wi3j2Wi4j3 [Xi5j2Xi5j3 − E (Xi5j2Xi5j3)]), (50)

where Cn ≡ 1
pn(1)·pn(2) , I is the set of all quintuples of indices (i1, i2, i3, i4, i5)

such that i1 �= i2 and i3 �= i4 �= i5, and J is the set of all triples of indices
(j1, j2, j3). For the set I, there are

(2
1
)
· 3 = 6 different cases to consider when

one of {i1, i2} is equal to one of {i3, i4, i5}, and an additional
(2
2
)
· 3! = 6 cases

to consider when two of {i1, i2} are equal to two of {i3, i4, i5}. Similarly, for the
set J there are three cases to consider when only two indices of {j1, j2, j3} are
equal to each other, (e.g., j1 = j2 �= j3); one case to consider when no pair of
indices is equal to each other and, one case to consider when all three indices are
equal. Thus, there are total of (6+6)×(3+1+1) = 60 cases to consider. Here we
demonstrate only one such case. Let I1 = {(i1, . . . , i5) : i1 = i5 �= i2 �= i3 �= i4}
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and J1 = {(j1, j2, j3) : j1 = j2 = j3}. Write,

Cn

∑
I1

∑
J1

Cov (Wi1j1Wi2j1 ,Wi3j2Wi4j3 [Xi5j2Xi5j3 −E (Xi5j2Xi5j3)])

= Cn

∑
I1

p∑
j=1

Cov
(
Wi1jWi2j ,Wi3jWi4j

[
X2

i1j − 1
])

= Cn

∑
I1

p∑
j=1

E(Wi2j)E(Wi3j)E(Wi4j)E
(
Wi1j

[
X2

i1j − 1
])

= Cn

∑
I1

p∑
j=1

β3
jE
(
Wij

[
X2

ij − 1
])
. (51)

Now, notice that

E
[
Wij

(
X2

ij − 1
)]

= E
[
XijYi

(
X2

ij − 1
)]

= E
[
X3

ij

(
βTX + εi

)]
− βj

= βjE
(
X4

ij

)
− βj

= βj [E(X4
ij) − 1].

(52)

Rewrite (51) to get

Cn

∑
I1

p∑
j=1

β3
jE
[
Wij

(
X2

ij − 1
)]

= Cn

∑
I1

p∑
j=1

β3
j

(
βj [E(X4

ij) − 1]
)

= pn(3)
pn(1) · pn(2)

p∑
j=1

β4
j [E(X4

ij) − 1]

= (n− 3)
n(n− 1)

p∑
j=1

β4
j [E(X4

ij) − 1]

= 1
n

p∑
j=1

β4
j [E(X4

ij) − 1] + O(n−2),

where we used (52) to justify the first equality. By the same type of calculation,
one can compute the covariance in (50) over all 60 and obtain that

Cov
(
τ̂2,

p∑
j=1

p∑
j′=1

ψ̂jj′
)

= 2
n

⎧⎨⎩
p∑

j=1
β4
j

[
E
(
X4

1j − 1
)]

+ 2
∑
j �=j′

β2
jβ

2
j′

⎫⎬⎭+ O
(
n−2) .

(53)
We now move to calculate the last term of (49). Recall that

ψ̂jj′ = 1
n (n− 1) (n− 2)

∑
i1 �=i2 �=i3

Wi1jWi2j′ [Xi3jXi3j′ − E (Xi3jXi3j′)].
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Therefore,

Var
( p∑

j=1

p∑
j′=1

ψ̂jj′

)
=
∑
J

Cov
(
ψ̂j1j2 , ψ̂j3j4

)
(54)

= p−2
n (2)

∑
J

Cov
( ∑

i1 �=i2 �=i3

Wi1j1Wi2j2Xi3j1Xi3j2 ,
∑

i1 �=i2 �=i3

Wi1j3Wi2j4Xi3j3Xi3j4

)
= p−2

n (2)
∑
J

∑
I

Cov (Wi1j1Wi2j2Xi3j1Xi3j2 ,Wi4j3Wi5j4Xi6j3Xi6j4) ,

where J is now defined to be the set of all quadruples (j1, j2, j3, j4), and I is
now defined to be the set of all sextuples (i1, ..., i6) such that i1 �= i2 �= i3 and
i4 �= i5 �= i6. For the set I, there are three different cases to consider: (1) when
one of {i1, i2, i3} is equal to one of {i4, i5, i6}; (2) when two of {i1, i2, i3} are equal
to two of {i4, i5, i6}; and (3) when {i1, i2, i3} are equal to {i4, i5, i6}. There are(3
1
)
·3 = 9 options for the first case,

(3
2
)
·3! = 18 for the second case, and

(3
3
)
·3! = 6

options for the third case. For the set J , there are five different cases to consider:
(1) when there is only one pair of equal indices (e.g., j1 = j2 �= j3 �= j4); (2) when
there are two pairs of equal indices (e.g., j1 = j2 �= j3 = j4); (3) when only three
indices are equal (e.g., j1 = j2 = j3 �= j4); (4) when all four indices are equal
and; (5) all four indices are different from each other. Note that there are

(4
2
)

= 6
combinations for the first case,

(4
2
)

= 6 for the second case,
(4
3
)

= 4 combinations
for the third case, and a single combination for each of the last two cases. Thus,
there are total of (9+18+6)× (6+6+4+1+1) = 594. Again we demonstrate
only one such calculation. Let I2 = {(i1, ..., i6) : i1 = i4, i2 = i5, i3 = i6} and
J2 = {(j1, j2, j3, j4) : j1 = j3 �= j2 = j4}. In the view of (54),

p−2
n (2)

∑
J2

∑
I2

Cov (Wi1j1Wi2j2Xi3j1Xi3j2 ,Wi4j3Wi5j4Xi6j3Xi6j4) =

= p−2
n (2)

∑
J2

∑
I2

Cov (Wi1j1Wi2j2Xi3j1Xi3j2 ,Wi1j1Wi2j2Xi3j1Xi3j2)

= p−2
n (2)

∑
J2

∑
I2

E
(
W 2

i1j1

)
E
(
W 2

i2j2

)
E
(
X2

i3j1

)
E
(
X2

i3j2

)
= p−2

n (2)
∑
J2

∑
I2

(
σ2
Y + β2

j1

{
E
(
X4

ij1

)
− 1
}) (

σ2
Y + β2

j2

{
E
(
X4

ij2

)
− 1
})

≤ p−2
n (2)

∑
J2

∑
I2

(
σ2
Y + β2

j1 (C − 1)
) (

σ2
Y + β2

j2 (C − 1)
)

= p−1
n (2)

∑
j1 �=j2

[
σ4
Y + σ2

Y (C − 1)
(
β2
j1 + β2

j2

)
+ (C − 1)2β2

j1β
2
j2

]

= p−1
n (2)

⎡⎣p (p− 1)σ4
Y + σ2

Y (C − 1)
∑
j1 �=j2

(
β2
j1 + β2

j2

)
+ (C − 1)2

∑
j1 �=j2

β2
j1β

2
j2

⎤⎦
≤ p−1

n (2)
[
p (p− 1)σ4

Y + σ2
Y (C − 1)

(
2pτ2)+ (C − 1)2τ4

]
,
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where the fourth equality we use E
(
W 2

ij

)
= σ2

Y +β2
j [E(X2

ij)−1], which is given
by (28), and in the fifth equality we used the assumption that E(X4

ij) ≤ C for
some positive C. Since we assume p/n = O(1), the above expression can be
further simplified to p2σ4

Y

n3 + O
(
n−2).

By the same type of calculation, one can compute the covariance in (54) over
all 594 cases and obtain that

Var
( p∑
j=1

p∑
j′=1

ψ̂jj′
)

= 1
n

⎧⎨⎩
p∑

j=1
β4
j

[
E
(
X4

1j − 1
)]

+ 2
∑
j �=j′

β2
jβ

2
j′

⎫⎬⎭
+ 2p2σ4

Y

n3 + O
(
n−2) . (55)

Lastly, plug-in (53) and (55) into (49) to get

Var (T ) = Var
(
τ̂2)− 4Cov

⎛⎝τ̂2,

p∑
j=1

p∑
j′=1

ψ̂jj′

⎞⎠+ 4Var

⎛⎝ p∑
j=1

p∑
j′=1

ψ̂jj′

⎞⎠
= Var

(
τ̂2)− 4

⎛⎝ 2
n

⎧⎨⎩
p∑

j=1
β4
j

[
E
(
X4

1j − 1
)]

+ 2
∑
j �=j′

β2
j β

2
j′

⎫⎬⎭
⎞⎠

+ 4

⎛⎝ 1
n

⎧⎨⎩
p∑

j=1
β4
j

[
E
(
X4

1j − 1
)]

+ 2
∑
j �=j′

β2
j β

2
j′

⎫⎬⎭+ 2p2σ4
Y

n3

⎞⎠+ O
(
n−2)

= Var
(
τ̂2)− 4

n

⎧⎨⎩
p∑

j=1
β4
j

[
E
(
X4

1j − 1
)]

+ 2
∑
j �=j′

β2
jβ

2
j′

⎫⎬⎭
+ 8p2σ4

Y

n3 + O(n−2)

= Var (Toracle) + 4p2σ4
Y

n3 + O
(
n−2) ,

where the last equality holds by (12).

Remark 4. Calculations for equation (16):
Write,

Cov
(
τ̂2, gn

)
= Cov

⎛⎝ 1
n (n− 1)

∑
i1 �=i2

p∑
j=1

Wi1jWi2j ,
1
n

n∑
i=1

gi

⎞⎠
= 1

n2 (n− 1)
∑
i1 �=i2

p∑
j=1

n∑
i=1

E (Wi1jWi2jgi)

= 2
n2 (n− 1)

∑
i1 �=i2

p∑
j=1

E (Wi1jgi1)E (Wi2j)
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= 2
n2 (n− 1)

∑
i1 �=i2

p∑
j=1

E (Wi1jgi1)βj

= 2
n

p∑
j=1

E (Sij)βj ,

where Sij ≡ Wijgi. Also notice that Var (gn) = Var
( 1
n

∑n
i=1 gi

)
= Var(gi)

n . Thus,
by (8) we get

c∗ =
Cov

(
τ̂2, gn

)
Var (gn) =

2
p∑

j=1
E (Sij)βj

Var (gi)
.

Remark 5. Calculations for Example 3:
In order to calculate Var(Tc∗) we need to calculate the numerator and de-

nominator of (17). Consider first θj ≡ E(Sij). Write,

θj ≡ E (Sij) = E (XijYigi) = E
(
Xij

(
βTXi + εi

)
gi
)

= E

(
Xij

(
p∑

m=1
βmXim + εi

)∑
k<k′

XikXik′

)

=
p∑

m=1

∑
k<k′

βmE (XijXimXikXik′),

where in the last equality we used the assumption that E(ε|X) = 0. Since the
columns of X are independent, the summation is not zero (up to permutations)
when j = k and m = k′. In this case we have

θj =
p∑

m=1

∑
k<k′

βmE (XijXimXikXik′) =
p∑

m �=j

βmE
(
X2

ijX
2
im

)
=

p∑
m �=j

βmE
(
X2

ij

)
E
(
X2

im

)
=

p∑
m �=j

βm.

Notice that in the fourth equality we used the assumption that E(X2
ij) = 1 for

all j = 1, ..., p. Thus,

p∑
j=1

βjE (Sij) =
p∑

j=1
βj

p∑
m �=j

βm =
p∑

j=1
βj

(
p∑

m=1
βm − βj

)

=

⎛⎝ p∑
j=1

βj

⎞⎠2

−
p∑

j=1
β2
j =

⎛⎝ p∑
j=1

βj

⎞⎠2

− τ2. (56)
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Plug-in τ2 = 1 and βj = 1√
p to get the numerator of (17):

⎡⎣2
p∑

j=1
βjE (Sij)

⎤⎦2

= 4

⎡⎢⎣
⎛⎝ p∑

j=1
βj

⎞⎠2

− τ2

⎤⎥⎦
2

= 4
[(

p
1
√
p

)2

− 1
]2

= 4(p− 1)2.

Consider now the denominator of (17). Write,

Var (gi) = E
(
g2
i

)
= E

⎡⎢⎣
⎛⎝∑

j<j′

XijXij′

⎞⎠2
⎤⎥⎦ =

∑
j1<j2

∑
j3<j4

E (Xij1Xij2Xij3Xij4).

Since we assume that the columns of X are independent, the summation is not
zero when j1 = j3 and j2 = j4. Thus,

Var (gi) =
∑
j1<j2

E
(
X2

ij1X
2
ij2

)
=
∑
j1<j2

E
(
X2

ij1

)
E
(
X2

ij2

)
= p (p− 1) /2. (57)

Notice that we used the assumption that since we assume that Σ = I in the last
equality. Now, recall by (48) that Var

(
τ̂2) = 20

n + O
( 1
n2

)
. Therefore, we have

Var (Tc∗) = Var
(
τ̂2)−

[
2

p∑
j=1

βjE (Sij)
]2

nVar (gi)

= 20
n

+ O

(
1
n2

)
− 4(p− 1)2

n · [p (p− 1) /2] = 12
n

+ O

(
1
n2

)
, (58)

where we used the assumption that n = p in the last equality.

Proof of Proposition 4.

We need to prove that
√
n [Tc∗ − Tĉ∗ ]

p→ 0. Write,
√
n [Tc∗ − Tĉ∗ ] =

√
n
[
τ̂2 − c∗gn −

(
τ̂2 − ĉ∗gn

)]
=

√
ngn(ĉ∗ − c∗).

By Markov and Cauchy-Schwarz inequalities, it is enough to show that

P
{∣∣√ngn (ĉ∗ − c∗)

∣∣ > ε
}
≤ E {|√ngn (ĉ∗ − c∗)|}

ε

≤

√
nE (g2

n)E
[
(ĉ∗ − c∗)2

]
ε

=
√

Var(g)Var(ĉ∗)
ε

→ 0. (59)

Notice that by (18) we have

Var (g) Var (ĉ∗) = Var (U)
Var (g) , (60)
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where U ≡ 2
n(n−1)

∑
i1 �=i2

∑p
j=1 Wi1jWi2jgi2 . The variance of g is

Var(g) = E(g2) = E

[(∑
j<j′

XijXij′

)2]
=
∑
j1<j2

∑
j3<j4

E (Xij1Xij2Xij3Xij4)

=
∑
j1<j2

E
(
X2

ij1X
2
ij2

)
=
∑
j1<j2

E
(
X2

ij1

)
E
(
X2

ij2

)
= p (p− 1) /2, (61)

where the equation above holds since we assume that Σ = I and that the
columns of X are independent. Hence, by (59)–(61) it enough to prove Var(U)

p2 →
0.

The variance of U is

Var(U) = Var

⎡⎣ 2
n (n− 1)

∑
i1 �=i2

p∑
j=1

Wi1jWi2jgi2

⎤⎦
= 4

n2(n− 1)2
p∑

j,j′

∑
i1 �=i2,i3 �=i4

Cov [Wi1jWi2jgi2 ,Wi3j′.Wi4j′gi4 ] (62)

The covariance in (62) is different from zero in the two following cases:

1. When {i1, i2} equals to {i3, i4}.
2. When one of {i1, i2} equals to {i3, i4} while the other is different.

The first condition includes two different sub-cases and each of those consists
n(n−1) quadruples (i1, i2, i3, i4) that satisfy the condition. Similarly, the second
condition above includes four different sub-cases and each of those consists n(n−
1)(n− 2) quadruples that satisfy the condition.

We now calculate the covariance for all these six sub-cases.
(1) The covariance when i1 = i3, i2 = i4 is

δ1 ≡ Cov
[
WjW̃j g̃,Wj′W̃j′ g̃

]
= E (WjWj′)E

[
W̃jW̃j′ g̃

2]−E (Wj)E
[
W̃j g̃

]
E
(
W̃j′
)
E
[
W̃j′ g̃

]
= E (WjWj′)E

[
W̃jW̃j′ g̃

2]− βjβj′θjθj′ , (63)

where W̃ and g̃ are independent copies of W and g respectively.
(2) The covariance when and i1 = i4, i2 = i3 is

δ2 ≡ Cov
[
WjW̃j g̃, W̃j′Wj′g

]
= E [WjWj′g]E

[
W̃jW̃j′ g̃

]
−E (W )E

[
W̃j g̃

]
E
(
W̃j′
)
E [Wj′g]

= {E [WjWj′g]}2 − βjβj′θjθj′ . (64)

(3) The covariance when i1 = i3, i2 �= i4 is

δ3 ≡ Cov
[
WjW̃j g̃,Wj′

˜̃W j′ ˜̃g
]

= E (WjWj′) θjθj′ − βjβj′θjθj′ , (65)
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where ˜̃W and ˜̃g are another independent copies of W and g respectively.
(4) The covariance when i1 = i4, i2 �= i3 is

δ4 ≡ Cov
[
WjW̃j g̃,

˜̃W j′Wj′g
]

= θjβj′E [WjWj′g] − βjβj′θjθj′ . (66)

(5) The covariance when i2 = i3, i1 �= i4 is similar to δ4, i.e.,

δ5 ≡ Cov
[
WjW̃j g̃, W̃j′

˜̃W j′ ˜̃g
]

= βjθj′E
[
W̃jW̃j′ g̃

]
− βjβj′θjθj′ . (67)

(6) The covariance when i2 = i4, i1 �= i3 is

δ6 ≡ Cov
[
WjW̃j g̃,

˜̃W j′W̃j′ g̃
]

= βjβj′E
[
W̃jW̃j′ g̃

2]− βjβj′θjθj′ (68)

Thus, plugging-in (63)–(68) into (62) gives

Var (U) = 4
∑
j,j′

{
1

n (n− 1) (δ1 + δ2) + (n− 2)
n (n− 1) (δ3 + δ4 + δ5 + δ6)

}
. (69)

Recall that we wish to show that Var(U)
p2 → 0. Since we assume that n/p = O(1),

it is enough to show that∑
j,j′

(δ1+δ2)
n4 → 0 and

∑
j,j′

(δ3+δ4+δ5+δ6)
n3 → 0. Careful calculations, which

are not presented here, show that under the linear model when the covariates
are independent∑

j,j′

δ1 ≤ C2τ2σ2p2 p− 1
2 ,

∑
j,j′

δ2 ≤ C2τ3p3 and,

∑
j,j′

δ3 ≤ p2τ2,
∑
j,j′

δ4 ≤ Cτ4p2,
∑
j,j′

δ5 ≤ Cτ2(τ2 + σ2)p(p− 1)
2 ,

where C is a bound on E(X2
j1
X2

j2
X2

j3
X2

j4
). It follows that Var(U)

p2 → 0 because
n/p = O(1), which completes the proof of the proposition.

Remark 6. We now calculate the asymptotic improvement of TB over the naive
estimator. For simplicity, consider the case when τ2 = σ2 = 1. Recall the vari-
ance of τ̂2 and TB given in (6) and (21), respectively. Write,

lim
n,p→∞

Var
(
τ̂2)− Var (TB)
Var (τ̂2)

= lim
n,p→∞

8τ4
B/n

4
n

[
(n−2)
(n−1) (σ2

Y τ
2 + τ4) + 1

2(n−1) (pσ4
Y + 4σ2

Y τ
2 + 3τ4)

]
= 2τ4

B

3τ4 + 4pτ4+4σ2
Y
τ2+3τ4

2n

= 0.5
3 + 2 p

n

,

where we used (6) in the first equality, and the fact that σ2
Y = 2τ2 = 2 in the

second equality. Now, notice that when p = n and τ2
B = 0.5 then the reduction

is 0.5
3+2 = 10% and when p/n converges to zero, the reduction is 16%.
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Remark 7. Calculations for Example 4:
Consider the first scenario where β2

j = 1
p . Recall that we assume that the

set B is a fixed set of indices such that |B| � p. Therefore, we have τ2
B =∑

j∈B β2
j = O

(
1
p

)
. Now, by (22) we have Var(TB) = Var(τ̂2) − 8

nτ
2
B + O(n−2)

and by Remark 5 we have Var(τ̂2) = 20
n + O(n−2). Using the assumption that

n = p we can conclude that Var (TB) = 20
n +O

( 1
n2

)
. Hence, in this scenario, TB

and the naive estimator have the same asymptotic variance. In contrast, recall
that in Example 3 we showed that the asymptotic variance of Tc∗ is 40% lower
than the variance of the naive estimator.

Consider now the second scenario where τ̂2
B = τ2 = 1. By (22) we have

Var (TB) = Var
(
τ̂2)− 8

n
τ4
B + O(n−2) = 12

n
+ O(n−2).

Hence, in this scenario the asymptotic variance of TB is 40% smaller than the
variance of the naive estimator. Consider now Var(Tc∗). By Cauchy–Schwarz
inequality

(∑
j∈B βj

)2
≤
∑

j∈B β2
j · |B| = τ2

B |B| = O(1), where the last equality
holds since we assume that B ⊂ {1, ..., p} be a fixed set of some indices such
that |B| � p. Now, By (56) we have

p∑
j=1

βjθj =

⎛⎝ p∑
j=1

βj

⎞⎠2

− τ2 =

⎛⎜⎜⎜⎝
p∑

j∈B
βj +

0︷ ︸︸ ︷
p∑

j /∈B

βj

⎞⎟⎟⎟⎠
2

− τ2
B ≤ |B| − 1 = O (1) .

Now, recall that Var
(
τ̂2) = 20

n + O
( 1
n2

)
and Var(gi) = p(p − 1)/2 by (48)

and (57) respectively. Therefore, we have

Var (Tc∗) = Var
(
τ̂2)−

[
2

p∑
j=1

βjθj

]2

nVar (gi)
= 20

n
+ O

(
1
n2

)
−O

(
1

np2

)
= 20

n
+ O

(
1
n2

)
,

Hence, in this scenario, Tc∗ and the naive estimator have the same asymptotic
variance.

Lastly, recall that in Example 2 we already showed that, asymptotically, the
variance of Toracle (i.e., the optimal oracle estimator) is 40% lower than the
naive variance (without any assumptions about the structure of the coefficient
vector β).

Proof of Proposition 5.
In order to prove that

√
n (Tγ − TB) p→ 0, it is enough to show that

E
{√

n (Tγ − TB)
}
→ 0, (70)
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Var
{√

n (Tγ − TB)
}
→ 0. (71)

We start with the first equation. Let A denote the event that the selection
algorithm γ perfectly identifies the set of large coefficients, i.e., A = {Bγ = B}.
Let pA ≡ P (A) denote the probability that A occurs, and let 1A denote the
indicator of A. Notice that E(TB) = τ2 and Tγ1A = TB1A. Thus,

E
{√

n (Tγ − TB)
}

=
√
n
[
E (Tγ) − τ2]

=
√
n
(
E [Tγ(1 − 1A)] + E [Tγ1A] − τ2)

=
√
nE [Tγ(1 − 1A)] +

√
n
[
E (TB1A) − τ2] , (72)

where the last equality holds since Tγ1A = TB1A. For the convenience of nota-
tion, let C be an upper bound of the maximum over all first four moments of Tγ

and TB, and consider the first term of (72). By the Cauchy–Schwarz inequality,

√
nE [Tγ (1 − 1A))] ≤

√
n
{
E
[
T 2
γ

]}1/2
{
E
[
(1 − 1A)2

]}1/2

≤
√
nC1/2{1 − pA}1/2 →

n→∞
0, (73)

where the last inequality holds since limn→∞ n (1 − pA)1/2 = 0 by assumption.
We now consider the second term of (72). Write,

√
n
[
E (TB1A) − τ2] =

√
nE (TB1A − TB) = −

√
nE [TB (1 − 1A)] ,

and notice that by the same type of argument as in (73) we have
√
nE [TB (1 − 1A)] →

n→∞
0.

This completes the proof of (70).
We now move to show that Var {√n (Tγ − TB)} → 0. Write,

Var {√n (Tγ − TB)} = nVar (Tγ − TB)
= n [Var (Tγ) + Var (TB) − 2Cov (Tγ , TB)]
= n

{
E
(
T 2
γ

)
− [E (Tγ)]2 + E

(
T 2
B
)
− τ4 − 2

[
E (TγTB) −E (Tγ) τ2]}

= n{E
(
T 2
γ

)
− E (TγTB) + E

(
T 2
B
)
−E (TγTB)

+E (Tγ)
[
τ2 −E (Tγ)

]
− τ2 [τ2 −E (Tγ)

]
}

= n

⎧⎪⎨⎪⎩E
(
T 2
γ

)
−E (TγTB)︸ ︷︷ ︸
θ1

+E
(
T 2
B
)
−E (TγTB)︸ ︷︷ ︸
θ2

−
[
τ2 −E (Tγ)

]2︸ ︷︷ ︸
θ3

⎫⎪⎬⎪⎭
Thus, it is enough to show that nθ1 → 0, nθ2 → 0 and nθ3 → 0.

We start with showing that nθ1 → 0. Notice that T 2
B1A = TBTγ1A = T 2

γ 1A.
Thus,

nθ1 = n
{
E
(
T 2
γ

)
−E (TγTB)

}
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= n
{
E
(
T 2
γ

)
−E [TγTB (1 − 1A)] −E (TγTB1A)

}
= n

{
E
(
T 2
γ

)
−E [TγTB (1 − 1A)] −E

(
T 2
γ 1A

)}
= n

{
E
[
T 2
γ (1 − 1A)

]
−E [TγTB (1 − 1A)]

}
.

Now, notice that n(E
[
T 2
γ (1 − 1A)

]
) → 0 by similar arguments as in (73), with

a slight modification of using the existence of the fourth moments of Tγ and TB,
rather than the second moments. Also, by Cauchy–Schwarz inequality we have,

nE [TγTB (1 − 1A)] ≤ n
{
E
(
T 2
γT

2
B
)}1/2

{
E
[
(1 − 1A)2

]}1/2

≤ n
{
E
(
T 4
γ

)
E
(
T 4
B
)}1/4{1 − pA}1/2

≤ nC1/2{1 − pA}1/2 → 0,

where C is an upper bound of the maximum over all first four moments of Tγ

and TB. Therefore, nθ1 → 0.
Consider now nθ2. Write,

nθ2 = n
{
E
(
T 2
B
)
− E (TγTB)

}
= n

{
E
(
T 2
B
)
− E [TγTB (1 − 1A)] −E (TγTB1A)

}
= n

{
E
(
T 2
B
)
− E [TγTB (1 − 1A)] −E

(
T 2
B1A

)}
= n

{
E
[
T 2
B (1 − 1A)

]
−E [TγTB (1 − 1A)]

}
→ 0,

and notice that the last equation follows by similar arguments.
Consider now nθ3. Write,

nθ3 = n
[
τ2 −E (Tγ)

]
= n [E (TB) − E (Tγ)]
= n [E [TB (1 − 1A) + TB1A] − E (Tγ)]
= n {E [TB (1 − 1A)] + E (TB1A − Tγ)}
= n {E [TB (1 − 1A)] + E (Tγ1A − Tγ)}
= n {E [TB (1 − 1A)] − E [Tγ (1 − 1A)]} → 0,

where the last equation follows by similar arguments as in (73). This completes
the proof of (71) and we conclude that

√
n (Tγ − TB) p→ 0.

Proof of Proposition 6.
We wish to prove that

n
[
V̂ar (τ̂2) − Var

(
τ̂2)] p→ 0. (74)

Recall by (6) that

Var
(
τ̂2) = 4 (n− 2)

n (n− 1)

[
βTAβ − ‖β‖4

]
+ 2

n (n− 1)

[
‖A‖2

F − ‖β‖4
]
.
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Now, when we assume standard Gaussian covariates, one can verify that βTAβ−
‖β‖4 = σ2

Y τ
2 + τ4 and ‖A‖2

F −‖β‖4 = pσ4
Y +4σ2

Y τ
2 +3τ4, where σ2

Y = σ2 + τ2.
Thus, in this case we can write

Var
(
τ̂2) = 4

n

[
(n− 2)
(n− 1)

[
σ2
Y τ

2 + τ4]+ 1
2 (n− 1)

(
pσ4

Y + 4σ2
Y τ

2 + 3τ4)] . (75)

In order to prove that (74) holds, it is enough to prove the consistency of τ̂2

and σ̂2
Y . Consistency of the sample variance σ̂2

Y is a standard result, and since
τ̂2 is an unbiased estimator, it is enough to show that its variance converges
to zero as n → ∞. Since we assume τ̂2 + σ2 = O(1) and p/n = O(1), we have
by (47) that Var(τ̂2) →

n→∞
0, and (74) follows.

Proof of Proposition 7.
We now move to prove that

n
[
V̂ar (Tγ) − Var (Tγ)

]
p→ 0, (76)

Recall that by Proposition 5 we have limn→∞ n [Var (TB) − Var (Tγ)]=0. Hence,
it is enough to show that

n
[
V̂ar (Tγ) − Var (TB)

]
p→ 0.

Since we assume Xi
i.i.d∼ N (0, I) then by (21) we have

Var (TB) = Var
(
τ̂2)− 8

n
τ4
B + O(n−2).

Recall that by definition we have V̂ar (Tγ) = V̂ar (τ̂2) − 8
n τ̂

4
Bγ

. Also recall that
V̂ar(τ̂2) is consistent by Proposition 6. Thus, it is enough to prove that τ̂2

Bγ
−

τ2
B

p→ 0. Now, since we assumed that n [P ({Bγ �= B})]1/2 −−−−→
n→∞

0 then clearly

P (Bγ = B) −−−−→
n→∞

1. Thus, it is enough to show that τ̂2
B − τ2

B
p→ 0. Recall that

E(β̂2
j ) = β2

j for j = 1, ..., p and notice that Var(β̂2
j ) →

n→∞
0 by similar arguments

that were used to derive (6). Hence, we have β̂2
j − β2

j
p→ 0. Since we assumed

that B is finite, we have

τ̂2
B − τ2

B =
∑
j∈B

(
β̂2
j − β2

j

)
p→ 0,

and (76) follows.
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Remark 8. We use the the following simple selection algorithm γ:

Algorithm 3: Covariate selection γ

Input: A dataset (Xn×p,Yn×1).
1. Calculate β̂2

1 , ..., β̂
2
p where β̂2

j is given in (4) for j = 1, ..., p.

2. Calculate the differences λj = β̂2
(j) − β̂2

(j−1) for j = 2, . . . , p where
β̂2
(1) < β̂2

(2) < ... < β̂2
(p) denotes the order statistics.

3. Select the covariates Bγ =
{
j : β̂2

(j) > β̂2
(j∗)

}
, where j∗ = arg maxj λj .

Result: Return Bγ .

The algorithm above finds the largest gap between the ordered estimated
squared coefficients and then uses this gap as a threshold to select a set of coeffi-
cients Bγ ⊂{1, ...,p}. The algorithm works well in scenarios where a relatively
large gap truly separates between larger coefficients and the smaller coefficients
of the vector β.

Remark 9. The following algorithm is used to construct the Selection estimator
that improves an initial estimator of τ2, as presented in Table 3.

Algorithm 4: Empirical Estimator

Input: A dataset (Xn×p, Yn×1), an estimation procedure τ̃2, and a
covariate-selection procedure δ.

1. Apply the procedure δ to the dataset (Xn×p, Yn×1) to obtain Bδ.
2. Apply the procedure τ̃2 to the dataset (Xn×p, Yn×1).
3. Calculate the zero-estimator Zh = 1

n

∑n

i=1 h (Xi), where
h (Xi) =

∑
j<j′∈Bδ

XijXij′ .

4. Bootstrap step:

• Sample n observations at random from (Xn×p, Yn×1), with replacement, to
obtain a bootstrap dataset.

• Repeat steps 2 and 3 based on the bootstrap dataset.

The bootstrap step is repeated M times in order to produce (τ̃2)∗1, ..., (τ̃2)∗M and
Z∗1
h , ..., Z∗M

h .

5. Approximate the coefficient c̃∗h =
̂

Cov
(
τ̃2,Zh

)
Var(Zh) where Ĉov (·) denotes the empirical

covariance from the bootstrap samples.
Output: Return the empirical estimator Th̃ ≡ τ̃2 − c̃∗hZh.
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