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Abstract: We consider the problem of estimating the conditional distri-
bution P(Y ∈ A|X) of a functional data object Y = (Y (t) : t ∈ [0, 1]) in the
space of continuous functions, given covariates X in a general space and
assuming that Y and X are related by a functional linear regression model.
Two estimation methods are proposed, based on either the empirical dis-
tribution of the estimated model residuals, or fitting functional parametric
models to the model residuals. We show that consistent estimation can be
achieved under relatively mild assumptions. We exemplify a general class of
sets A specifying path properties of Y that are of interest in applications.
The proposed methods are studied in several simulation experiments, and
data analyses of electricity price and pollution curves.
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1. Introduction

We suppose we have observed data (Y1, X1), . . . , (Yn, Xn) from a strictly sta-
tionary process (Yk, Xk)k∈Z that are assumed to follow a general functional
regression model with additive noise of the form

Yk = �Xk + εk. (1)
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Here Yk = (Yk(t) : t ∈ [0, 1]) is a curve in the space C[0, 1] of continuous functions
on the unit interval. Assuming the functions are defined over [0, 1] is done simply
for convenience, and [0, 1] could be replaced easily by a general interval. The
covariates Xk take values in a normed space H and are distributed so that Xk is
independent of the model error εk, which is assumed to stem from a zero-mean
i.i.d. sequence. The operator � is assumed to be a bounded linear mapping from
H to C[0, 1] satisfying suitable conditions (see, e.g., Assumption 5 (b)). If the
covariate Xk is a single curve, then (1) describes a linear function-on-function
regression. This setting also includes functional autoregressive models [6] when
Xk = Yk−1. We may also have multiple functional predictors (see e.g. Ivanescu
et al. [32]), in which case Xk is a vector of curves. Generally though, Xk might
be also comprised of a mixture of curves and scalar covariates, etc.

Suppose (Y,X) is a generic pair following (1). The primary goal of this paper
is to introduce and study methods to consistently estimate the conditional dis-
tribution of Y given X, i.e. P(Y ∈ A|X), for sets A ⊂ C[0, 1]. The set A can
be used to describe a property of the response curve. One property of special
interest in this article will be the following.
Example 1 (Level sets). Let α ∈ R and z ∈ [0, 1], and define

Aα,z :=
{
y ∈ C[0, 1] : λ(t : y(t) > α) ≤ z

}
,

where again λ denotes the standard Lebesgue measure on [0, 1]. The set Aα,z

contains curves that stay a limited amount of time z above a threshold α.
The time a curve spends in a certain range can be viewed as a simple scalar

summary of the curve, and often sets of interest A can be expressed in terms of
such scalar summaries. We call a scalar transformation T (Y ) of the response a
curve feature. Evidently, methods to generally estimate P(Y ∈ A|X) may also
be used to estimate the conditional distribution of curve features T (Y ), i.e. to
estimate the probability that Y will lie in sets of the form A = {y : T (y) ≤ z},
conditional on the covariate X.

When considering a curve feature Z = T (Y ) of the response, it is natural
to simply model Z directly. For example, in order to estimate the conditional
distribution of Z, one might compute the scalar responses Zi = T (Yi), and then
fit a scalar-on-function regression using the data (Z1, X1), ..., (Zn, Xn). This
is the approach undertaken most frequently in the literature related to this
problem, which we review below.

An issue that arises here though is that it is difficult to determine a suitable
parametric model for Z in terms of X. We note that even if the curves Y and
X are related by model (1), the relationship between the amount of time the
response spends in a certain range T (Y ) = λ(t : Y (t) ∈ [a, b]) and X is complex
and non-linear. One of the main strengths of the approach we pursue, which is
distinct from competitive methods, is that we model the entire response curve
before extracting features of interest. When the relationship between the re-
sponse curve and the covariates Y and X can be approximated by (1), it is
advantageous to incorporate the full information contained in the functional
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responses and regression model to approximate the potentially complex rela-
tionship between T (Y ) and X.

An important related problem to estimating P(Y ∈ A|X) for a given A is to
determine for a given p ∈ (0, 1) a suitable prediction set Ap = Ap(X), such that
P(Y ∈ Ap|X) ≥ p. Estimating the conditional distribution is then needed to
appropriately calibrate Ap. See Goldsmith, Greven and Crainiceanu [23], Choi
and Reimherr [12], Liebl and Reimherr [35], Hyndman and Shang [29], and
Paparoditis and Shang [40] for a review of methods for constructing prediction
sets for functional responses and parameters.

Most often, prediction sets for functional responses are given in terms of
prediction bands. Prediction bands are related to the quantiles of the curve
features Z1 = maxt∈[0,1] Y (t) and Z2 = mint∈[0,1] Y (t). E.g., for a one-sided
prediction band, one has to determine qp such that P(Z1 ≤ qp|X) = p. This
problem then can be seen as a special case of the more general setting where we
estimate the conditional quantile function of a curve feature Z = T (Y ).

A second goal of this paper is to explore how our proposed estimation scheme
can be used for the construction of prediction sets and conditional quantile func-
tions of curve features.

Aside from our interest in these general problems, this work was primarily
motivated by the statistical challenge of forecasting aspects of response curves
Yk describing daily electricity prices. The specific data that we consider consists
of hourly electricity prices, demand, and wind energy production in Spain over
the period from 2014 to 2019, which includes observations from 2191 days (the
data are available at www.esios.ree.es). We project the hourly data onto a
basis of 18 twice differentiable B-splines to construct daily price, demand, and
wind energy production curves, as illustrated in Figure 1. The price of electricity
naturally fluctuates based on supply and demand, and exhibits daily, weekly, and
yearly seasonality. The rather predictable variation in demand does not influence
the price as much as surges in wind energy production, especially if they occur
on days with weak demand. Letting Yk denote the price curves and Xk the
vector of the demand and wind curves, both adjusted for yearly seasonality and
trends, we then model Yk using an FAR(7) model with exogenous variables

Yk =
7∑

i=1
ΨiYk−i + �Xk + εk, (2)

where Ψ1, ...,Ψ7 denote autoregressive operators; see González, Muñoz San
Roque and Pérez [24]. The details of this are explained in Section 6, but for
now it suffices to acknowledge that this is a regression model of the form (1).
For such electricity price curves, their likelihood of falling within sets as given
in Example 1 is of particular interest, as forecasting whether price or demand
curves will spend prolonged periods of time above certain levels is useful in an-
ticipating volatility in continuous intraday electricity markets, and planning for
peak loads [48].

The literature on functional regression models of the form (1) is vast. The
questions that have been most investigated are (i) how to find a consistent es-

www.esios.ree.es
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Fig 1. Spanish electricity data on price, demand, and wind energy production during two
weeks in November 2014. Price curves are colored blue or red according to whether or not
they lie in the level set {y ∈ C[0, 1] : λ(t : y(t) > 50) ≤ 0.5}. The bar plot on the bottom shows
the estimated conditional probability for Yk to lie in this set, with the decision threshold 1/2,
indicated by a dotted line, whether the event occurred is indicated by black dots.

timator �̂n of �, and (ii) how to forecast consistently, i.e. to guarantee that
�̂nX − �X → 0 suitably in probability. Moreover, the majority of the literature
devoted to linear regression with functional responses concentrates on curves in
L2[0, 1], the separable Hilbert space of square integrable functions on the unit
interval. Ramsay and Silverman [43] for example proposes a double truncation
scheme based on functional principal component analysis to estimate � in this
setting, and Mas [36], Imaizumi and Kato [31] derive a convergence rate for
‖�̂n − �‖S in a “single-truncation” estimation scheme based on an increasing
(in the sample size) number of principal components, where ‖ · ‖S denotes the
Hilbert–Schmidt norm. Similar consistency results for the resulting forecasts in
functional linear regression can be found in Crambes and Mas [14], and un-
der general stationarity conditions and in the FAR setting in Hörmann and
Kidziński [26] and Aue, Norinho and Hörmann [1]. Estimating the operator �
can be viewed as a special case of estimating the conditional mean E[Y |X], and
this general problem has also been extensively considered; see Chiou, Müller and
Wang [11], Ferraty, Van Keilegom and Vieu [18], and Wang, Chiou and Müller
[49].

The problem of estimating the conditional distribution of Y given X has
been comparatively far less studied. Numerous methods have been proposed to
estimate the conditional distribution of a scalar response Y with a functional
covariate X, including Chen and Müller [8], Kato [33], Yao, Sue-Chee and Wang
[51], Wang, Chiou and Müller [49], and Sang and Cao [45], who propose esti-
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mators based on quantile regression, and Ferraty and Vieu [20], who propose
Nadaraya–Watson style kernel-smoothed estimators. Estimating the conditional
distribution of Y when Y takes values in a function space is largely unexplored
to our knowledge, even in the context of model (1). Fernández de Castro, Guillas
and González Manteiga [17] and Paparoditis and Shang [40] develop bootstrap
procedures based on functional principal component analysis to produce predic-
tion sets in the context of forecasting with Hilbertian FAR models, which can
be viewed as a special case of this problem. Franke and Nyarige [21] develop a
related residual-based bootstrap for the purpose of estimating the sampling dis-
tribution of statistics based on Hilbertian FAR series. For functional data taking
values in L2[0, 1], Chen and Müller [9] and Fan and Müller [16] develop methods
for estimating the conditional distribution of Y given X assuming that X and
Y are jointly Gaussian, and that the conditional distribution of the response
has sample paths satisfying differentiability conditions.

In this paper, we propose natural procedures to estimate P(Y ∈ A|X), in
which we first estimate � with a suitably consistent estimator �̂n, and then
either (i) use the estimated residuals ε̂k,n = Yk− �̂nXk to estimate P(Y ∈ A|X)
with the empirical distribution of �̂nX + ε̂k,n, or (ii) assuming Gaussianity of
the model errors εk, we estimate P(Y ∈ A|X) using simulation by modelling
Y conditioned on X as a Gaussian process with mean �̂nX, and covariance
estimated from the residual sequence ε̂k,n. We establish general conditions on
the estimator �̂n in the setting when the response space is C[0, 1] such that
our proposed algorithms will lead to consistent estimation of P(Y ∈ A|X).
Subsequent to this, we define an estimator �̂n and show that it satisfies these
conditions under regularity assumptions on the operator �, and the process
(Yk, Xk)k∈Z. In particular, the conditions we assume allow for serial dependence
of both the response and covariates.

In principle, the algorithms we propose can be applied to estimate the condi-
tional distribution P(Y ∈ A|X) for any arbitrary set A. However, and perhaps
not surprisingly, consistent estimation can only be expected for continuity sets
of the distribution of the response, i.e. sets A for which P(Y ∈ ∂A) = 0. This
property evidently depends strongly on the space the response curve lies in, as
well as the norm that the space is equipped with. We remark that for many
interesting examples, the metric on the space L2[0, 1] is too weak to allow for
meaningful continuity sets A. An illustrative example is uniform prediction band
sets of the form A = {y : λ(t : a(t) < y(t) < b(t)) = 1}, where a and b are con-
tinuous functions on [0, 1], in which case ∂A = A when A is viewed as a subset
of L2[0, 1]. To handle many interesting examples in functional data analysis in-
volving path properties of the response, such as level sets, the space C[0, 1] is
much more natural. The literature on estimating and consistently forecasting
with � outside of the L2[0, 1]-framework is sparse and limited in specialized set-
tings; see Pumo [41], Ruiz-Medina and Álvarez-Liébana [44], and Bosq [6] in the
context of FAR estimation. Furthermore, the problem of consistently estimating
the conditional distribution P(Y ∈ A|X) in these settings has not been studied,
to our knowledge. We also refer the reader to Dette, Kokot and Aue [15] for a
review of functional data analysis methods in C[0, 1].
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The rest of the paper is organized as follows. In Section 2, we formally in-
troduce the methods described above to estimate P(Y ∈ A|X). In Section 3
we present results on their consistency, including results on uniform consistency
over monotone families of sets A that are relevant in constructing prediction
sets with a specified coverage and quantile function estimates. We also briefly
discuss the problem of establishing convergence rates of our estimators. These
results depend on the properties of the estimator �̂n, and in Section 4 we de-
fine an estimator �̂n based on functional principal component analysis and a
single truncation regularization scheme, and establish that it leads to consis-
tent estimation of P(Y ∈ A|X). Due to the central role that level-sets play in
our real data example, we provide in Section 5 a discussion on the boundaries
with respect to the sup-norm in C[0, 1]. A number of competing methods are
introduced in Section 6, and these are compared with the proposed methods in
several simulations studies and real data illustrations. The proofs of all results
can be found in Supplementary Material [28].

We conclude this introduction by providing some notation that will be used
throughout this article. We consider the response space C[0, 1] equipped with
the supremum norm ‖f‖∞ = supt∈[0,1]

∣∣f(t)
∣∣ and the covariate space H, which

is assumed to be a Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. In
order to lighten the notation, and when it is clear from context, we write ‖ · ‖
also for the norm on C[0, 1]. We use the tensor product notation ⊗ to denote
the operator a⊗ b(·) = a〈·, b〉 if b is viewed as an element of a Hilbert space and
the kernel integral operator with kernel a⊗ b(t, s) = a(t)b(s) if b is viewed as an
element of C[0, 1].

2. Estimation procedures

We assume throughout that the covariates Xk and the model errors εk satisfy
the following independence condition, which we do not explicitly state in the
below results, but take as granted.

Assumption 1. In model (1), (εk)k∈Z is an i.i.d. sequence in C[0, 1] with E εk = 0,
and εk is independent from (Xj)j≤k for all k ∈ Z.

In order to formally describe the methods we use to estimate P(Y ∈ A|X), we
assume for the moment that we may consistently estimate � with an estimator
�̂n based on the sample Sn =

{
(Y1, X1), ..., (Yn, Xn)

}
. Specific conditions on

this estimator, and an estimator that satisfies those conditions, will follow. The
first method we describe directly uses the estimated residuals as a surrogate for
the noise.

Algorithm 1 (empirical distribution, abbreviated empir).

1. Estimate � in (1) with �̂n.
2. Calculate the model residuals ε̂k,n = Yk − �̂nXk.
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3. Define the estimator of P(Y ∈ A|X) as

P̂E
n (Y ∈ A|X) = 1

n

n∑
k=1

1{�̂nX + ε̂k,n ∈ A}.

We show below that this estimator is weakly consistent under mild conditions
(see, e.g., Assumption 2 and Theorem 1, or Proposition 2 under Assumptions 4
and 5 (a)). The algorithm empir can be applied without specific distributional
assumptions on the errors. It is not uncommon, though, that model errors εk
are thought to be Gaussian processes. As the model errors have mean zero
by assumption, in this special case their distribution is determined by their
covariance

Γ = E
[
εk ⊗ εk

]
, k ∈ Z.

The above algorithm may then be adapted as follows:
Algorithm 2 (Gaussian process estimation, abbreviated Gauss).

1. Estimate the model residuals ε̂k,n as in Algorithm 1.
2. Estimate the covariance operator of the noise by

Γ̂ε,n = 1
n

n∑
k=1

(ε̂k,n − ε̄·,n) ⊗ (ε̂k,n − ε̄·,n), (3)

where ε̄·,n = 1
n

∑n
k=1 ε̂k,n.

3. Conditional on the sample Sn, let ε(n) be a Gaussian variable with zero
mean and covariance Γ̂ε,n. Then set

P̂G
n (Y ∈ A|X) = P

(
�̂nX + ε(n) ∈ A

∣∣X,Sn

)
. (4)

The latter probability can be approximated by Monte-Carlo simulation,
see Remark 2.

Remark 1. The scaling 1/n in the definition of Γ̂ε,n does not take into account
the degrees of freedom Tn lost in the estimation of the regression operator �. It
has thus been advocated, for example in [13], to instead divide by n−Tn, where
Tn is related to the dimension of the dimensionality reduction technique used
in estimating �̂n. If ETn = o(n), as is the case for most estimation approaches,
the resulting scaling difference is asymptotically negligible. Some authors also
propose splitting the sample and estimating the regression operator and the
noise covariance operator on separate parts of the sample in order to reduce the
bias of the estimator Γ̂ε,n; see [14].

Remark 2. In order to determine P
(
�̂nX + ε(n) ∈ A

∣∣X,Sn

)
, we proceed as

follows: let (ν̂j,n)1≤j≤n denote the eigenvalues of Γ̂ε,n, with corresponding eigen-
functions (ψ̂j,n)1≤j≤n satisfying Γ̂ε,nψ̂j,n = ν̂j,nψ̂j,n and 〈ψ̂i,n, ψ̂j,n〉 = δi j . Let
{Zi, 1 ≤ i ≤ n} denote a sequence of i.i.d. standard normal random variables,
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independent of the sample Sn, and define

ε(n) =
n∑

j=1
ν̂

1/2
j,n Zjψ̂j,n.

Conditionally on the sample, in particular on Γ̂ε,n, ε(n) is a Gaussian process
with mean zero and covariance operator Γ̂ε,n. Now generate in the same way
i.i.d. copies (ε(n)

k )k≥1 and estimate the right-hand side of (4), for a large M , by

1
M

M∑
k=1

1
{
�̂nX + ε

(n)
k ∈ A

}
.

Remark 3. Algorithm Gauss can be extended to other parametric distribu-
tions of the noise. A notable example for this are infinite-dimensional ellip-
tical distributions, where εk = Ξk ε

′
k with two independent random variables

ε′k ∈ C[0, 1], which is Gaussian, and Ξk ≥ 0 is a scalar random variable from a
known univariate parametric distribution, for instance the Pareto distribution.
The following investigation can easily be adapted to this setting. For details on
elliptical distributions of functional data, we refer to [5].

Remark 4. An advantage, which derives from the simple form of both our
estimators, is that they satisfy the basic properties of a probability measure,
e.g. they are monotone in A. While this may seem like an obvious requirement,
it is not always fulfilled by competing approaches; see Section 6.1.

3. Consistency results

3.1. Estimation algorithms

We now aim to establish consistency results for the proposed algorithms. In order
to disentangle how the estimation of P(Y ∈ A|X) depends on the estimation of
�, and hence allow for different estimators, these results are initially stated in
terms of the following basic consistency properties of �̂n. A specific estimator
satisfying these conditions is provided in Section 4.
Assumption 2. The estimator �̂n is such that

(a) its out-of-sample prediction is consistent, i.e. if X is independent from the
sample and X

d= X1, then

‖�̂nX − �X‖ P→ 0, n → ∞.

(b) its in-sample prediction is consistent, i.e. let Kn be independent from the
sample and uniformly distributed on {1, . . . , n}, then

‖�̂nXKn − �XKn‖
P→ 0, n → ∞.
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In order to establish the consistency of the algorithm Gauss, we need addi-
tional conditions on the model errors and the estimated covariance operator (3).
Assumption 3.

(a) The estimator �̂n is such that

sup
t,s∈[0,1]

∣∣∣∣∣ 1n
n∑

i=1
(�̂n − �)(Xk) ⊗ (�̂n − �)(Xk)(t, s)

∣∣∣∣∣ P→ 0, n → ∞.

(b) The estimated variance of the model error increments,

V 2
n (t, s) = Var

(
ε(n)(t)− ε(n)(s)

∣∣ Γ̂ε,n

)
= Γ̂ε,n(t, t)− 2Γ̂ε,n(t, s) + Γ̂ε,n(s, s)

satisfies the Hölder condition

V 2
n (t, s) < M2

V |t− s|2α, t, s ∈ [0, 1],

for some 0 < α ≤ 1, where MV is a random variable with EMV < ∞.
Assumption 3 implicitly demands a degree of continuity of �Xk and the

model errors εk. Under the above assumptions, we can now formulate our main
consistency results.

Theorem 1. Suppose that Assumption 2 holds and that P(Y ∈ ∂A) = 0. Then
P̂E
n (Y ∈ A|X) P→ P(Y ∈ A|X) as n → ∞.

Theorem 2. Suppose that Assumptions 2 (a) and 3 hold. Assume that (εk)k≥1
are i.i.d. Gaussian random variables in C[0, 1], and that P(Y ∈ ∂A) = 0. Then
P̂G
n (Y ∈ A|X) P→ P(Y ∈ A|X) as n → ∞.

Theorems 1 and 2 show that consistent estimation of P(Y ∈ A|X) is achieved
by both empir and Gauss under natural consistency conditions on �̂n, and
when A is a continuity set of the response Y . The convergence results above
can be related via a version of the Portmanteau theorem to the notion of “weak
convergence in probability” to the true conditional distribution of the response,
see [50]. This also gives a hint as to why consistency holds only for continuity
sets of the limiting distribution. Note that up to this stage we do not even
require � to be linear.

3.2. Prediction sets

We note that the results of Theorems 1 and 2 can be readily extended to sets
A that, rather than being fixed, are dependent on the predictor X and the esti-
mator �̂n, so long as there is a certain degree of continuity in relating {Y ∈ A}
to �̂nX. This is of interest when constructing prediction sets for the response
Y , as in the following examples.
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Example 2 (Pointwise and uniform prediction sets). Suppose a and b are pos-
itive functions in C[0, 1]. Given a covariate X, define, for s ∈ [0, 1], the point
prediction sets

Â
(n)
a,b (s) =

{
y ∈ C[0, 1] : �̂nX(s) − a(s) ≤ y(s) ≤ �̂nX(s) + b(s)

}
,

and the uniform prediction sets

Û
(n)
a,b =

{
y ∈ C[0, 1] : λ

(
t : �̂nX(t) − a(t) ≤ y(t) ≤ �̂nX(t) + b(t)

)
= 1

}
.

These approximate the true sets Aa,b(s) and Ua,b where the estimator �̂n is
replaced by �.

Corollary 1. For some s ∈ [0, 1], let Â(n)
a,b (s), Û

(n)
a,b , Aa,b(s), and Ua,b be defined

in Example 2. Suppose that P(Y ∈ ∂Aa,b(s)) = 0. If Assumption 2 holds, then

P̂E
n (Y ∈ Â

(n)
a,b (s)|X) P→ P(Y ∈ Aa,b(s)|X), as n → ∞. (5)

If Assumptions 2 (a) and 3 hold, then (5) holds with P̂G
n instead of P̂E

n . Under
P(Y ∈ ∂Ua,b) = 0, the analogue results hold with the sets Û

(n)
a,b and Ua,b.

3.3. Monotone families of sets and conditional quantiles

For a potentially unbounded interval [a, b] ⊂ R, we call a family A = {Aξ : ξ ∈
[a, b]} of measurable sets monotone if the sets Aξ are increasing or decreasing in
ξ. Suppose that Aξ is increasing, the decreasing case can be handled similarly,
and that we are interested in finding

ξp(X) = inf
{
ξ ∈ [a, b] : P(Y ∈ Aξ|X) ≥ p

}
, p ∈ (0, 1).

Note that on a technical level, this definition only makes sense for p that a.s.
satisfy P(Y ∈ Aa|X) < p ≤ P(Y ∈ Ab|X). As an example where this problem
is relevant, consider a scalar transformation of the response Z = T (Y ), and
suppose we wish to estimate the conditional quantile of Z given the covariate X,

qp(Z|X) = inf
{
ξ ∈ [a, b] : P(Z ≤ ξ|X) ≥ p

}
= inf

{
ξ ∈ [a, b] : P

(
Y ∈ T−1([a, ξ])|X)

≥ p
}
.

The sets Aξ := T−1([a, ξ]) evidently define a monotone family. Consistent
scalar-on-function quantile regression can hence be cast as the problem of con-
sistently estimating ξp(X), which can be done using P̂E

n or P̂G
n . To this end, we

consider the estimator

ξ̂E
p (X) := inf

{
ξ ∈ [a, b] : P̂E

n (Y ∈ Aξ|X) ≥ p
}
. (6)

We note that based on the definition of P̂E
n , p → ξ̂E

p (X) is a non-decreasing
function. The same holds for ξ̂G

p (X), which is defined using P̂G
n . While this
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observation is rather trivial, in other approaches to scalar-on-function quantile
regression one often has to take special care in order to guarantee monotonicity
of estimators of qp(Z|X), see e.g. [33].

The goal is now to show that ξ̂E
p (X) P→ ξp(X) and ξ̂G

p (X) P→ ξp(X). In order
to do so, we need the following uniform convergence result for the estimated
conditional probabilities.

Proposition 1. Let {Aξ : ξ ∈ [a, b]} be a monotone family of sets such that
P(Y ∈ Aξ|X) is a.s. continuous in ξ. Suppose the estimator P̂n(Y ∈ Aξ|X) is
non-decreasing, right-continuous, and satisfies P̂n(Y ∈ Aξ|X) P→ P(Y ∈ Aξ|X)
for all ξ ∈ [a, b]. Then

sup
ξ∈[a,b]

∣∣∣P̂n(Y ∈ Aξ|X) − P(Y ∈ Aξ|X)
∣∣∣ P→ 0, n → ∞.

We note that both P̂E
n (Y ∈ Aξ|X) and P̂G

n (Y ∈ Aξ|X) satisfy the conditions
of Proposition 1 under the conditions of Theorems 1 and 2.

Corollary 2. Let p ∈ (0, 1), and assume that the interval [a, b] is such that a.s.
P(Y ∈ Aa|X) < p ≤ P(Y ∈ Ab|X). Define ξ̂p(X) as in (6) for a general estima-
tor P̂n(Y ∈ Aξ|X). Under the assumptions of Proposition 1 with increasing sets
Aξ, we have that P(Y ∈ Aξ̂p(X)|X) P→ p. If the true probability P(Y ∈ Aξ|X) is

strictly increasing in ξ, then ξ̂p(X) P→ ξp(X).

3.4. Rates of convergence

The results above confirm consistency of the proposed algorithms. From a the-
oretical point of view, it appears interesting to obtain corresponding rates of
convergence. However, given the challenge of even establishing estimation rates
for the point estimator of the linear regression operator, it is clear that a com-
prehensive answer to this problem requires its own devoted article and is outside
the scope of this paper. In this section, we give a short glance to this problem
on the basis of Algorithm 1. Below we use the notation

∂(δ)A =
{
x : ∃ z1 ∈ A, z2 ∈ Ac with max

(
‖x− z1‖, ‖x− z2‖

)
≤ δ

}
.

and

h(δ, n) = P
(
‖(�̂n − �)X‖ > δ/2

)
+ 1

n

n∑
k=1

P
(
‖(�̂n − �)Xk‖ > δ/2

)
.

Here X is as in Assumption 2.

Theorem 3. Consider a non-negative sequence (δn) such that h(δn, n) = o(1).
Let (bn) be such that P(Y ∈ ∂(δn)A) = o(bn). Then∣∣P̂E

n

(
Y ∈ A

∣∣X)
− P

(
Y ∈ A

∣∣X)∣∣ = OP

(
bn ∨ n−1/2

)
.
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It remains open if such a rate can be shown to be optimal, i.e. if a correspond-
ing lower bound can also be established. The bound involves two rate conditions
that appear rather intuitive: δn reflects the convergence rate of the regression
operator estimator, and P(Y ∈ ∂(δn)A) = o(bn) is a quantitative version of the
condition P(Y ∈ ∂A) = 0 that also takes into account the convergence rate of
�̂n reflected in δn. Importantly, this convergence rate depends not only on the
distribution of the process Y at hand, and the estimator �̂n, but also on the set
A considered. Thus it does not appear possible to obtain a universal rate over all
A, unless A is restricted to certain classes of sets. In general for any rate δn, one
can construct examples of processes Y and sets A for which P(Y ∈ ∂(δn)A) > bn
for any bn tending to zero. As for the estimation of the regression operator, a
polynomial rate of convergence is established for a bounded linear operator � in
Example 5 in the next section. Assuming a polynomial estimation rate for �̂n,
let us consider two special cases.
Example 3. Suppose A = {y : maxu y(u) ≤ α}. This extremal set corresponds
to a level set with z = 0. If Y is such that its maximum has a bounded prob-
ability density function (e.g. this is the case for the Brownian motion), then
P(Y ∈ ∂(δn)A) = O(δn). Suppose we have a regression operator estimator that
is consistent with a prediction error of oP

(
n−γ

)
, with 0 < γ ≤ 1/2, then P̂E

attains a convergence rate of OP

(
n−γ

)
.

Example 4. If we consider a level set Aα,z =
{
y : λ

(
u : y(u) > α

)
≤ z

}
with

z ∈ (0, 1], we need to inspect the set

∂(δ)Aα,z =
{
y : λ

(
u : y(u) > α + δ

)
≤ z < λ

(
u : y(u) > α− δ

)}
. (7)

It can be shown that for the Brownian motion, it holds that for any ε > 0, we
have P

(
W ∈ ∂(δ)Aα,z

)
= o

(
δ1−ε

)
, implying that in this setting we may choose

bn = δ1−ε
n in Theorem 3. The proof for this can be found in Supplementary

Material; see Lemma 4. Suppose, as in the previous example, that we have an
estimator �̂n that attains a prediction error of OP

(
n−γ

)
, with 0 < γ ≤ 1/2,

then P̂E again attains a convergence rate of OP

(
n−γ+ε

)
for any ε > 0.

4. Estimation of the regression operator

In this section we aim to define an estimator �̂n that satisfies the consistency
conditions detailed in Assumptions 2 and 3 when � in model (1) is linear. In
order to do so, we make the following assumptions on model (1).
Assumption 4. (a) H is a separable Hilbert space.

(b) The process (Xk)k∈Z has mean zero, and is L4-m-approximable in H.
(c) The operator � : H → C[0, 1] is a bounded linear operator.
(d) The sequence (εk)k∈Z is a mean zero, i.i.d. sequence in C[0, 1], and satisfies

E ‖εk‖4 < ∞.
Assumption 4 (b) implies that Xk is a (strongly) stationary and ergodic se-

quence with E ‖Xk‖4 < ∞, and allows the Xk to be weakly serially dependent
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in a certain sense, see [27]. Hörmann and Kokoszka [27] show that many com-
monly studied stationary time series in function space, like FAR processes or
functional analogs of GARCH processes, are L4-m-approximable under suitable
moment conditions.

The estimator that we consider is a truncated (functional) principal com-
ponents–based estimator. Let the empirical covariance operator of Xk, and the
empirical cross-covariance operator between Yk and Xk, be denoted as

ĈXX = 1
n

n∑
k=1

Xk ⊗Xk, and ĈY X = 1
n

n∑
k=1

Yk ⊗Xk.

In order to lighten the notation, the empirical covariance operator of some
sequence Zk will be denoted by ĈZ = ĈZZ , and analogously for the population
version of this. We note that ĈX defines a non-increasing sequence of eigenvalues
λ̂i ≥ 0, and eigenfunctions v̂i, satisfying ĈX(v̂i) = λ̂iv̂i, and 〈v̂i, v̂j〉 = δi j .We
then define

�̂n(x) :=
Tn∑
i=1

1
λ̂i

ĈY X v̂i ⊗ v̂i(x), (8)

The estimator (8) only truncates the covariance operator of X in order to
obtain a feasible approximation to Ĉ−1

X , yielding a so-called “single-truncated”
estimator. The asymptotic properties of these estimated operators have, e.g.,
been studied in [36] and [26]. In order to select the truncation parameter Tn

in such a way that leads to asymptotic consistency of �̂n, we use the following
criterion:

Tn = max
{
j ≥ 1: λ̂j ≥ m−1

n

}
, with mn → ∞. (9)

Here mn is a tuning parameter, tending to infinity at a rate specified in the
results below. We refer to [26] for details on the consistency properties of this
choice of Tn.

We note that another standard way to select Tn is to use the percentage of
variance explained (PVE) approach, which entails taking

Tn = min
{
d :

∑d
j=1 λ̂j∑n
j=1 λ̂j

≥ v

}
, (10)

where v is a user specified percentage treated as a tuning parameter. While the
criterion in (9) is more transparent in terms of describing the asymptotic consis-
tency of �̂n, since it gives a direct description of the decay rate of the sequence
of eigenvalues λ̂j , in applications the PVE criterion is prevailing, due to its ease
of interpretation. By choosing the associated tuning parameters appropriately,
the two criteria may be made comparable.

Now we present results which imply Assumptions 2 and 3, and hence the
consistency of the estimators in the Algorithms empir and Gauss.

We add the following assumption in addition to Assumption 4, supposing a
degree of smoothness to �X and εk:
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Assumption 5. For some 0 < α ≤ 1,
(a) The model errors εk a.s. satisfy the Hölder condition∣∣εk(t) − εk(s)

∣∣ < Mk |t− s|α (11)

where Mk is a random variable independent from Xk, with EM2
k < ∞.

(b) For a finite constant M� and all x ∈ H, the regression operator � satisfies∣∣�x(t) − �x(s)
∣∣ ≤ M� ‖x‖ |t− s|α.

Assumption 5 (a) is fulfilled by a wide range of stochastic processes, most
notably the Brownian motion and the fractional Brownian motion. Since � is
linear, Assumption 5 (b) is a natural formulation of the Hölder condition for the
conditional mean of the response. In particular, this implies that � is a compact
operator.

Remark 5. Suppose H = L2[0, 1], so that model (1) describes function-on-
function regression. A frequently employed class of operators � in this setting
are kernel integral operators, defined by a continuous kernel ρ ∈ C[0, 1]2 as
�x(t) =

∫
ρ(t, u)x(u)du. If there exists an a ∈ H such that almost everywhere∣∣ρ(t, u) − ρ(s, u)

∣∣ < a(u) |t− s|α,

then Assumption 5 (b) is easily verified since
∣∣�x(t)− �x(s)

∣∣ ≤ ‖a‖ ‖x‖ |t− s|α.

Proposition 2. Suppose that Assumptions 4 and 5 (a) hold, and we define
�̂n as in (8) with mn = o

(
nα/2). Then Assumption 2 holds. If we additionally

assume Assumption 5 (b), then Assumption 3 also holds.

We conclude this section with some technical discussion. We begin by noting
that the sequence mn, which controls how many principal components of Xk are
used in forming �̂n, can be of asymptotically higher order if α is larger, meaning
that the paths of the noise process are less rough. In the case where the Hölder
exponent in Assumption 5 is α = 1, the responses Yk are Lipschitz continuous,
which implies that they are weakly differentiable. The order nα/2 is sufficient but
not sharp. In fact, for α < 1/2, a different proof shows that mn = o

(
n1/(2+α−1))

also leads to consistency. In the case of the Brownian motion, the order condition
demands that mn = O

(
n1/4−ε

)
for some ε > 0. This is still of higher order than

that suggested by [26] for consistent estimation of the regression operator in
Hilbert spaces.

Our second technical remark concerns the choice of H. Assumption 4 (a)
requires H to be a Hilbert space. Typically, this is not a restriction, but some
care needs to be taken in the case of an FAR model. While it is natural to
assume that the covariate and response space coincide for an FAR (i.e. requiring
H = C[0, 1], too), this is not necessarily the case. For example, when we consider
a kernel integral operator � with a continuous kernel, then we may still use
H = L2[0, 1] because of the natural embedding of C[0, 1] in L2[0, 1].

The following example is only of illustrative nature and complements the
discussion and examples presented in Section 3.4.
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Example 5. If X is confined to a finite-dimensional space H, then the estimation
simplifies greatly and we readily obtain a rate of OP

(
n−α/2) for the prediction

error. For the general, infinite-dimensional case, deriving explicit rates for �̂n as
we defined it in Section 4 is inconvenient. For the sake of illustration, suppose
we instead choose the truncation parameter Tn =: dn → ∞ deterministically.
An adaptation of the proof to Proposition 2 then yields the following rate of
convergence for the squared point prediction error:∥∥(�̂n − �)X

∥∥2+
∥∥(�̂n − �)XK

∥∥2 = OP

(
λd+1 + n−1d (λd − λd+1)−2+ n−αλ−2

d

)
.

Here K = Kn is as in Assumption 2. These prediction errors converge to zero
for a suitable choice of dn. Suppose, e.g., that the eigenvalues λi ∼ i−2 and
we choose the asymptotically optimal truncation parameter dn depending on α.
Then the prediction error is OP

(
n−α∧2/3

6
)
. An illustrative case is the Brownian

motion, which satisfies the Hölder condition for all α < 1/2. In such a case,
δn = n−1/12+ε for some ε > 0 is a possible choice in Theorem 3. Together with
Examples 3 and 4, it follows that when considering level sets with Y distributed
as a Brownian motion, convergence rates of OP

(
n−1/12+ε

)
for any ε > 0 are

attainable.

5. The boundary condition

A crucial condition in Theorems 1 and 2 is that P(Y ∈ ∂A) = 0. Below we
exemplify this condition in the case of level sets (Example 1).

Proposition 3. Let α ∈ R and z ∈ [0, 1). Consider the level set Aα,z defined
as in Example 1. The following conditions are sufficient for P(Y ∈ ∂Aα,z) = 0.

(A) If z ∈ (0, 1):

(i) P
(
λ(Y = α) > 0

)
= 0 and (ii) P

(
λ(Y > α) = z

)
= 0

(B) If z = 0:
(iii) P

(
sup

t∈[0,1]
Y (t) = α

)
= 0.

The conditions of Proposition 3 are satisfied by many well-known processes,
including the Brownian motion. They are also generally satisfied by contin-
uously differentiable Gaussian processes under standard non-degeneracy con-
ditions. Such processes might be used to model functional data generated by
applying standard smoothing operations, for instance using cubic splines or
trigonometric polynomials, to raw discrete data. We note that comparable dif-
ferentiability conditions are assumed in [16]. The following proposition describes
these conditions.

Proposition 4. Suppose that Y is a continuously differentiable Gaussian pro-
cess with covariance kernel CY . If CY (t, t) > 0 for all t ∈ [0, 1], then (i) holds.
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For � ∈ N, and 0 ≤ t1 < · · · < t	 ≤ 1, let

rY (t, s) = CY (t, s)
[CY (t, t)CY (s, s)]1/2

, and Rt1,...,t� = {rY (ti, tj)}1≤i,j≤	 ∈ R
	×	.

If, in addition, for all � ∈ N and 0 ≤ t1 < · · · < t	 ≤ 1, there exist constants
c1, c2 > 0 such that det(Rt1,...,t�) ≥ c1 min1≤i �=j≤	 |ti − tj |c2 , then (ii) holds. If
Y is twice continuously differentiable, and

(Y (t1), . . . , Y (t	), Y ′(t1), . . . , Y ′(t	), Y ′′(t1), . . . , Y ′′(t	))

has a non-degenerate distribution, then (iii) holds.

6. Simulation experiments and data illustrations

In this section we present the results of simulation experiments and real data
analyses that aimed to evaluate and compare the performance of our algorithms,
and illustrate their application. We begin by defining some alternate methods
that may be used to estimate P(Y ∈ A|X), and we describe two recent proce-
dures proposed for construction of prediction sets in functional data forecasting
and functional quantile regression, respectively.

6.1. Competing methods

A simple method to estimate P(Y ∈ A|X) is to employ functional binomial
regression. This entails positing the model P(Y ∈ A|X = x) = g

(
β0 + 〈x, β〉

)
for some β0 ∈ R and β ∈ L2[0, 1], and a link function g that can be chosen
from a variety of possibilities, but is most often the logistic link function, or
the cumulative distribution function of the standard normal distribution (the
“probit link”). For more details of such models, we refer to [38] and [37]. One
notable drawback of of this approach is that changing the set A necessitates
refitting the model, which can be computationally cumbersome. A theoretical
deficiency is that the resulting estimators of P(Y ∈ A|X) need not be monotone
with respect to increasing sets A. An approach to adjust such estimators to
restore monotonicity is to use rearrangement or isotonization, as discussed in
[10].

Since the exact relationship between the function X and the event {Y ∈ A}
is unknown and difficult to describe in parametric terms, even under model (1),
another promising approach is to use nonparametric techniques such as kernel
estimators. Generalizing the method found in Section 5.4 of [20], the conditional
distribution P(Y ∈ A|X = x) = E[1{Y ∈ A}|X = x] can be estimated by the
functional extension of the Nadaraya–Watson estimator

P̂NW(Y ∈ A|X = x) =
∑n

i=1 K
(
h−1d(x,Xi)

)
1{Yi ∈ A}∑n

i=1 K
(
h−1d(x,Xi)

) , (12)
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where K is a kernel function on the nonnegative real numbers, d is a distance
measure on H, and h > 0 is a smoothing parameter corresponding to the band-
width of the kernel. While the choice of K is typically unproblematic, the choice
of d is more intricate and is often taken to depend on the data. The bandwidth h
represents the trade-off between bias (oversmoothing) and error (undersmooth-
ing), and is normally taken to decrease with the sample size n. Ferraty and Vieu
[20] establish consistency conditions for the estimator (12) in the case when the
sequence {(Xk, Yk) : k ≥ 1} is α-mixing and Y is a scalar. When we apply this
method below, we take K to be the standard Gaussian kernel, d to be the norm
on H, and select h using cross-validation. We note that similarly to functional
logistic regression–based estimators, a drawback of these estimators is that if
one changes the set A, then the bandwidth h in general should be recalibrated,
and the resulting estimators need not be monotone in A if the bandwidth h is
not held fixed for all sets A.

Similar options may be derived from the local linear functional estimator,
which improves upon the Nadaraya–Watson estimator by including a linear
term of the form 〈x − Xi, β〉 into the computation of the weights; see [3] and
[19]. The k-nearest neighbors (kNN) functional estimator is a variation on the
Nadaraya–Watson estimator with adaptive bandwidth, i.e. h is the smallest
number such that

∣∣{Xi : d(x,Xi) ≤ h}
∣∣ = k. The kNN estimator has been

shown to be consistent for non-parametric regression in [34]. Since we found the
performance of the kNN estimator to be comparable, we only report results of
the simpler Nadaraya–Watson estimator (12).

In order to evaluate the proposed algorithms for the construction of prediction
sets, we compare to the method of Paparoditis and Shang [40] in the setting of
forecasting FAR(1) processes Yk − μ = �(Yk−1 − μ) + εk. We construct uniform
prediction bands (see Example 2) for Yn+1 of the form{
y ∈ C[0, 1] : Ŷn+1(t)+Lσ̂n+1(t) ≤ y(t) ≤ Ŷn+1(t)+Uσ̂n+1(t), for all t ∈ [0, 1]

}
,

where Ŷn+1 = μ̂+ �̂n(Yn − μ̂) is the point prediction, σ̂2
n+1(t) = V̂ar

(
ε̂K,n(t)

)
=

Γ̂ε,n(t, t) is the estimated pointwise variance of the response, with K uniformly
distributed on {1, . . . , n}, and for a specified coverage level 1 − α,

M = sup
t∈[0,1]

∣∣ε̂K,n(t)
∣∣

σ̂n+1(t)
, U = Q1−α(M), and L = −U.

Here Q1−α(·) denotes the (1− α)-quantile of a random variable. In comparison
to the proposed methods empir and Gauss, Paparoditis and Shang [40] do not
simply use the empirical distribution of the (centered) residuals ε̂K,n. Instead,
they employ a more involved bootstrapping procedure. They start with a given
forecasting model that delivers point predictions and then use a sieve boot-
strap procedure that mimics the dependence structure of the functional time
series Yk to estimate the model misspecification error of the forecasting model.
Subsequently, they arrive at the bootstrapped prediction error distribution of
the forecasting model point predictions, which they then use to construct the
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prediction bands. The theoretical consistency results of Paparoditis and Shang
[40] are derived under the L2 metric, and therefore do not immediately imply
the asymptotic consistency of the coverage probability for uniform prediction
band-sets, since such a set is nowhere dense in L2[0, 1]. The same is true for
pointwise prediction bands.

In the setting of scalar-on-function quantile regression, we compare to the
method of Sang and Cao [45], which entails for a scalar response T (Y ) modelling

T (Y ) = g
(
β0 + 〈x, β〉

)
+ ε,

where g is an assumed to be unknown link function. The link function g as well
as the parameter function β are assumed to be linear combinations of splines,
and estimated in order to estimate the level p quantile of T (Y ) by minimizing
the check function loss

ρp(y) =
(
p− 1{y ≤ 0}

)
y, (13)

subject also to a roughness penalty on the functions g and β.

6.2. Comparison to functional GLM and Nadaraya–Watson
estimation

In this simulation experiment, we generated synthetic data under model (1) in
such a way that it resembled a real functional time series derived from daily
square-root transformed PM10 concentration curves constructed by smoothing
half-hourly measurements of PM10. This is done using the function Data2fd in
the fda package with default settings; see [42]. PM10 concentration denotes the
concentration in air of respirable coarse particles having a diameter less than
10 μm, and the data that we consider was collected in Graz, Austria over the
period from October 1st, 2010 to March 31st, 2011. An illustration of these data
is given in Figure 2, and they are available in the ftsa package in R; see [30].

We use these data as a means to devise a realistic data generating process.
To this end, we first fit an FAR(1) model to the square-root transformed PM10
curves. The estimator of the FAR operator � obtained in this way differs from
operators typically used in simulation settings in that it is highly asymmetrical,
as illustrated in the right-hand panel of Figure 2.

With the estimated sample mean and the fitted FAR operator, we then gen-
erate synthetic FAR(1) time series samples by drawing noise εk from a Gaussian
distribution, with the covariance operator estimated from the residuals of the
FAR(1) model fit to the original data. This can be done as in the algorithm
Gauss. The first 30 observations are dropped as a burn-in phase. A snapshot of
the raw data in comparison to the synthetic data can be seen in Figure 2. In this
manner we may generate time series of arbitrary sample sizes that are similar
to the original PM10 data. We generated 1000 independent samples for each
sample size n ∈ {50, 100, 250, 1000}. Then, for 50 different values of predictors
Y ∗

0 simulated independently from the stationary distribution of the data gener-
ating process, we estimated the conditional probability of Y ∗

1 lying in the level
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Fig 2. Top left: the raw PM10 measurements (blue) with the fitted curves (black). Bottom
left: simulated synthetic PM10 data (black) with α =

√
50 (red) that we considered in the level

set case. Right: the kernel operator �(t, s) used in the data generating process.

set P
(
λ(Y ∗

1 >
√

50) ≤ 0.5
∣∣Y ∗

0
)

for each such sample. For each of the 50 predic-
tors, we also approximated the true probability using Monte-Carlo simulation
(nMC = 10000) from the data generating process.

We compared the estimators from algorithms empir and Gauss, as well as
from a logistic functional GLM, and Nadaraya–Watson estimation. The number
Tn of principal components used to estimate � was chosen using criterion (9),
so that

Tn = max
{
j ≥ 1: λ̂j ≥ m−1

n λ̂1
}
, with mn = 5n0.45,

where the exponent is in line with α = 1 corresponding to the smooth nature
of the responses. We introduce λ̂1 into the definition of Tn so that the criterion
does not depend on the scale of the eigenvalues, yielding a more practicable way
of choosing Tn. For n = 1000, this approximately covers 98% of the variance
of the simulated curves in the sense of the PVE criterion (10). Naturally, less
variance is covered in smaller sample sizes. For the logistic GLM, we used the
approach suggested by [38] and took the truncated Karhunen–Loève expansion
as the predictor. In order to keep the methods comparable, we used the same
number Tn of principal components for our algorithms and for the functional
GLM. We calibrated the bandwidth h for the Nadaraya–Watson estimator using
leave-one-out cross-validation on each generated sample. The results in terms of
the root mean squared error (RMSE) over the 1000 simulations are displayed in
Figure 3. Because it is difficult to visualize this for the 50 different predictors,
we present boxplots summarizing the RMSE of each method over all predictors
Y ∗

0 . More details on the results for a variety of specific values of Y ∗
0 can also be

found in Table 4 in Supplementary Material.
We observed that algorithms empir and Gauss exhibited similar predictive

performance in both examples and over all sample sizes. These methods clearly
outperformed functional logistic regression and Nadaraya–Watson estimation
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Fig 3. RMSE of P̂ for 50 random predictors Y ∗
0 and 1000 independent simulations of samples

of size n ∈ {50, 100, 250, 1000} based on the estimators empir, Gauss, functional logistic
regression, and Nadaraya–Watson estimators of the probability P(λ(Y ∗

1 >
√

50) ≤ 0.5|Y ∗
0 ).

Table 1

RMSE for α̂p, 5 different predictors and 1000 replications. We estimate α̂p such that
P(λ(Y ∗

1 > αp) ≤ 0.5|Y ∗
0 ) = p, where p = 1 − n−1.

n = 50 n = 100 n = 250 n = 1000
p = 0.98 p = 0.99 p = 0.996 p = 0.999

Y ∗
0 empir Gauss empir Gauss empir Gauss empir Gauss

1 0.770 0.704 0.559 0.491 0.457 0.356 0.487 0.434
2 0.530 0.437 0.396 0.292 0.333 0.170 0.341 0.189
3 0.517 0.419 0.432 0.287 0.348 0.199 0.308 0.137
4 0.595 0.501 0.464 0.371 0.404 0.262 0.347 0.187
5 0.589 0.480 0.470 0.355 0.378 0.247 0.336 0.144

in estimating the conditional probability of level sets. The proposed methods
achieved a similar mean squared error in this case to functional logistic regression
with about a quarter of the sample size. The performance of the Nadaraya–
Watson estimator was poor compared to the other methods considered in both
cases and varied strongly depending on the predictor Y ∗

0 .
Although the estimator Gauss performs similarly to empir in the above

example, it can be expected that empir runs into problems when P(Y ∈ A|X)
is close to 0 or 1, since empir only uses the n estimated model residuals for
estimation, whereas in producing the estimator Gauss, one can generate a suf-
ficiently large Monte-Carlo sample to give a non-degenerate estimate of these
probabilities, which can be expected to be accurate if the Gaussian assumption
is plausible. To highlight this, we present the results of a short simulation study
in which for a probability pn = 1 − 1/n, we aimed to estimate αp using empir
and Gauss such that P(λ(Y ∗

1 > αpn) ≤ 0.5|Y ∗
0 ) = pn. This problem is hence

related to the Value-at-Risk estimation. We compared the RMSE of α̂pn from
the two algorithms for 50 different realizations of the predictor Y ∗

0 that were
simulated from the same data generating process. We note that the value of αp
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varies between 7.26 and 11.77, depending on Y ∗
0 and pn. In Table 1, we present

the results from a subset of five predictors Y ∗
0 that were representative of the

variability observed in the simulated series. The results show that Gauss out-
performs empir in all cases, and the relative advantage increases with sample
size, as expected. If we look at the results for all 50 predictors, RMSE of α̂p

decreases by about 15% for n = 50, 22% for n = 100, 35% for n = 250 and 42%
for n = 1000. This gives some indication of the difference in performance that
can be expected between the two methods in forecasting extreme quantiles or
events whenever the Gaussian assumption is plausible.

Following the suggestions of one reviewer, we also compared our results to
a naive bootstrap approach. Here we use the estimator �̂n obtained from the
original sample to generate bootstrap samples S

(b)
n = {Xi, Y

(b)
i }1≤i≤n, where

Y
(b)
i = �̂nXi + δ

(b)
i with δ

(b)
i bootstrapped from the residuals {ε̂k}1≤k≤n. We

apply Algorithm 1 to each bootstrap sample S(b)
n , obtaining P̂

E(b)
n . These estima-

tors are then aggregated to calculate P̂B
n (Y ∈ A|X) := 1

B

∑
b P̂

E(b)
n (Y ∈ A|X).

When we do the simulation exercise related to Figure 3, we obtain results which
are almost identical to empir. In the VaR scenario described in Table 1, the
bootstrap is less accurate than Gauss, but it seems to be slightly favourable
compared to empir at the price of much higher computational costs. A the-
oretical investigation of such a bootstrap approach is out of the scope of this
paper.

6.3. Construction of prediction sets

To assess the performance of our method in the construction of prediction sets,
we compare to Paparoditis and Shang [40]. We use the same data generating
process as in the previous section and generate synthetic PM10 data. We fit an
FAR(1) model to each simulated sample where we chose the truncation param-
eter Tn using the PVE criterion (10) with v = 0.85. This is the same value as
used in [40]. Following the method proposed in [40] and as described above, we
constructed uniform prediction sets to forecast each series 1-step ahead, with
nominal coverage probabilities of 80% and 95%. The training set was initially set
to be the first 80% of each sample, and then after each 1-step ahead prediction,
the training set was increased by one observation, and subsequent 1-step ahead
predictions were produced until the last 20% of the sample was exhausted. This
process was then repeated independently for 1000 simulated samples, and for
each sample size n ∈ {100, 200, 400, 800}. In line with our Remark 1, we used
the normalization factor n − 1 − Tn for Γ̂ε,n (one extra degree of freedom is
subtracted since we also include an intercept term).

The results of this simulation are summarized in Table 2 in terms of empirical
coverage probabilities, as well as the mean interval scores as computed in [40].
The mean interval scores take into account the area of the prediction band,
which should be small, as well as the excess of functions that do not stay within
the bounds of the band, with smaller scores suggesting better prediction bands.
We refer to [22] for details.
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Table 2

Empirical coverage probabilities and mean interval score S̄1−α of uniform prediction bands
for the data generating process in Section 6.2 calculated via empir, Gauss, as well as using

the method of Paparoditis and Shang [40].

Nominal
coverage

empir Gauss P., S. (2021)

n coverage score coverage score coverage score

80%

100 0.7267 6.0832 0.7534 6.2094 0.8325 6.0685
200 0.7649 6.1513 0.7784 6.2168 0.8522 6.1236
400 0.7872 6.1772 0.7936 6.2116 0.8625 6.1477
800 0.7892 6.1896 0.7928 6.2074 0.8623 6.1551

95%

100 0.9004 7.4971 0.9270 7.7644 0.9471 7.5692
200 0.9290 7.6262 0.9396 7.7698 0.9574 7.6527
400 0.9403 7.6817 0.9454 7.7607 0.9604 7.7009
800 0.9444 7.7069 0.9475 7.7529 0.9603 7.7151

In general, all methods produced quite similar score values, but we see that
empir and Paparoditis and Shang [40] performed slightly better than Gauss.
In turn, the coverage rates of Gauss were overall closest to the nominal level.
The method of Paparoditis and Shang [40] performed best for the smallest con-
sidered sample size. However, if we implement the method as suggested in [40], it
exhibited notable bias for larger sample sizes, which is particularly pronounced
when the nominal coverage is 80%. This bias did not seem to decrease when
the sample size was increased. Overall, the method empir appeared to be the
most reliable in this simulation when n is not too small. The methods empir
and Gauss also enjoy vastly improved run-times compared to Paparoditis and
Shang [40]. For example, when n = 100, using version 4.1.2 of R on a com-
puter with Intel Core i5-7500 processor, calculating a single uniform prediction
band took 8 ms with empir. With Gauss and using a Monte-Carlo sample
of M = 10 000 to compute the Gaussian quantiles, it took about 240 ms. The
method of Paparoditis and Shang [40] took roughly 240 seconds. This significant
difference in runtime may be explained by the fact that the algorithm of Pa-
paroditis and Shang [40] draws B = 1000 bootstrap samples of the entire time
series to construct the prediction band while we avoid the bootstrap completely.

6.4. Functional quantile regression

In this application, we compare to the data analysis of [45]. As in our previous
example, this involves the functional time series of daily square-root transformed
PM10 concentration curves constructed by smoothing half-hourly measurements
of PM10.

The goal of the analysis is to compare forecasts of the quantiles of the max-
imum values Mt = maxu∈[0,1] Yt(u) (this being a prime example of a curve
feature), where Yt(u) is the transformed PM10 curve on day t at intraday time
u. As the covariate the curve Yt−1 is used. Now we model the relationship
between (Yt, Yt−1) by a FAR(1) process and apply the method empir to es-
timate the conditional quantile of Mt. We select the truncation parameter Tn
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Fig 4. Performance of empir compared to the functional single-index quantile regression
model proposed by Sang and Cao [45]. The prediction error is compared using 5-fold cross-
validation on 50 random splits of the PM10 data set.

in order to explain 98% of the variance in the variables Yt since for this fixed
sample size, tuning Tn by an asymptotic criterion is not meaningful. At a quan-
tile level τ , we compared these methods by 5-fold cross-validation, using the
check function loss (13), and evaluate the error in the held out sample by the
sum of ρτ

(
Yi − Q̂τ (Y |X = Xi)

)
. We did this for seven different quantile levels

p ∈ {0.05, 0.15, 0.25, 0.50, 0.75, 0.85, 0.95}. The experiment was repeated on 50
random splits of the data set. The results are displayed in Figure 4. In 87.4% of
the cases, empir outperformed the functional single-index quantile regression
model of [45] in terms of the loss considered. This advantage was smaller for
central quantiles and became more apparent for the more extreme quantiles.

6.5. Spanish electricity price data

We now return to the Spanish electricity price data that we gave as an introduc-
tory example. Recall that these data are comprised of hourly electricity prices,
demand, and wind energy production in Spain over the period from 2014 to
2019, which have been transformed into functional data objects by projection
on 18 twice differentiable B-splines. These data are illustrated in Figure 1. We
take as the goal of this analysis to compare estimates for the conditional proba-
bility that the price curves will lie in specified level sets, given the covariates of
demand, and wind energy production. Since real data evidently do not exactly
follow the model assumptions, the performance of the respective approaches can
be used to compare their robustness to violations of the model assumptions.

In order to compare the various methods for doing this, we split the data into
a training and testing set by randomly taking four months from each year, and
assigning them to the test set, which created a 2:1 split between the training
and testing set. Since we used 6 years of this data, the training set thus con-
sists of 1453 days, and the test set consists of 731 days. Let Zt denote one of
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functional variables electricity price, demand or wind energy production. Then
these variables were deseasonalized as follows: Z̃t = Zt − Z

(Y )
t − Z

(W )
t , where

Z
(Y )
t is the yearly seasonality obtained by taking the mean for each day of the

year and smoothing the result using a rolling mean with a window size of 21
days. Z(W )

t is the weekly seasonality that is estimated as the mean for each day
of the week. For the wind curves, no weekly seasonality was removed. In order
to employ the methods empir and Gauss, we fit the FARX(7) model described
in (2) using the estimator introduced in Section 4 with the data in the training
set. The truncation parameter Tn was again chosen in order to explain 98% of
the variance of the covariates.

In order to compare the estimated conditional probabilities to the realized
outcomes on the test set, we used the cross-entropy measure. This is a popular
loss function in classification problems; see Murphy [39, Section 2.8]. Given
the realizations yi = 1{Yi ∈ A}, i ∈ {1, ..., N}, and corresponding estimated
conditional probabilities p̂i = P̂ (Yi ∈ A|Xi) in the testing set of size N , empirical
cross-entropy on the test set is defined as

− 1
N

N∑
k=1

[yk log
(
p̂k
)

+ (1 − yk) log
(
1 − p̂k

)
].

This is closely related to the deviance in logistic regression models. Accordingly,
small values of the empirical cross-entropy indicate a good predictive power.

We considered level sets of the form Aα,z (as in Example 1) for various values
of α and z. These values were chosen so that they reflect the range of the response
Y . We calculated the cross-entropy on the test set of estimates of P(Y ∈ A|X)
using the method empir, as well as for functional logistic regression, which was
estimated using the same covariates (and PVE criterion) as those considered
in generating the estimator in empir, as well as functional Nadaraya–Watson
estimation with a Gaussian kernel with the predictors demand, wind and lagged
price, and the bandwidth parameters were selected using leave-one-out cross-
validation on the training set. We do not present the results for the method
Gauss, as the results are again very similar to the method empir. This is
in spite of the fact that the model residuals do not appear to be normally
distributed, according to a Jarque–Bera type normality test for functional data;
see, e.g., [25]. The estimated cross entropies on the test set for part of the sets
A considered are presented in Table 3. The smallest value in each cell is marked
in bold font. The full table can be found in Supplementary Material.

The method empir achieved lower values of cross-entropy on the test set
compared to the competing methods for most combinations of α and z. empir
had higher estimated cross-entropy in one case compared to functional logistic
regression, and two cases compared to functional Nadaraya–Watson estimation.
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Table 3

The cross-entropy of the estimated conditional probability P(λ(Y > α) ≤ z) for different
values α and z, evaluated on the test set. The comparison value GLM is a logit regression
model with the same predictors. N–W is the Nadaraya–Watson estimator. The smallest

value in each cell is marked in bold font, and any apparent ties are merely a result of the
rounding to two digits.

α 30 35 40 45 50 55 60 65 70

empir 0.03 0.06 0.10 0.13 0.16 0.24 0.23 0.19 0.16
z = 0 GLM 0.11 0.17 0.23 0.36 0.30 0.24 0.22 0.21 0.24

N–W 0.05 0.10 0.20 0.21 0.22 0.31 0.29 0.27 0.26

empir 0.05 0.10 0.12 0.13 0.20 0.17 0.15 0.13 0.09
z = 1

3 GLM 0.25 0.15 0.26 0.23 0.23 0.17 0.23 0.20 0.39
N–W 0.10 0.16 0.23 0.23 0.26 0.22 0.24 0.22 0.14

empir 0.09 0.11 0.14 0.19 0.22 0.18 0.12 0.08 0.03
z = 2

3 GLM 0.12 0.18 0.27 0.26 0.25 0.24 0.20 0.40 0.12
N–W 0.16 0.20 0.23 0.26 0.28 0.25 0.19 0.13 0.02

vices. The authors wish to thank Mario Lang for his kind support, and Han Lin
Shang for providing an implementation of the method described in Paparoditis
and Shang [40].
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Conditional distribution in functional regression problems
(doi: 10.1214/22-EJS2067SUPP; .pdf). Supplementary Material contains proofs
of all the mathematical statements, along with additional simulation results
from Section 6.

References

[1] Aue, A., Norinho, D. D. and Hörmann, S. (2015). On the prediction
of stationary functional time series. Journal of the American Statistical
Association 110 378–392. MR3338510

[2] Azais, J.-M. and Wschebor, M. (2009). Level sets and extrema of ran-
dom processes and fields. Wiley, Hoboken, NJ. MR2478201

[3] Berlinet, A., Elamine, A. and Mas, A. (2011). Local linear regression
for functional data. Annals of the Institute of Statistical Mathematics 63
1047–1075. MR2822967

[4] Billingsley, P. (1999). Convergence of probability measures. Wiley.
MR1700749

[5] Boente, G., Barrera, M. S. and Tyler, D. E. (2014). A characteri-
zation of elliptical distributions and some optimality properties of princi-
pal components for functional data. Journal of Multivariate Analysis 131
254–264. MR3252648

[6] Bosq, D. (2000). Linear Processes in Function Spaces. Springer.
MR1783138

https://doi.org/10.1214/22-EJS2067SUPP
https://www.ams.org/mathscinet-getitem?mr=3338510
https://www.ams.org/mathscinet-getitem?mr=2478201
https://www.ams.org/mathscinet-getitem?mr=2822967
https://www.ams.org/mathscinet-getitem?mr=1700749
https://www.ams.org/mathscinet-getitem?mr=3252648
https://www.ams.org/mathscinet-getitem?mr=1783138


5776 S. Hörmann et al.

[7] Bulinskaya, E. V. (1961). On the Mean Number of Crossings of a Level
by a Stationary Gaussian Process. Theory of Probability & Its Applications
6 435–438.

[8] Chen, K. and Müller, H.-G. (2012). Conditional quantile analysis when
covariates are functions, with application to growth data. Journal of the
Royal Statistical Society: Series B (Statistical Methodology) 74 67–89.
MR2885840

[9] Chen, K. and Müller, H.-G. (2014). Modeling Conditional Distributions
for Functional Responses, With Application to Traffic Monitoring via GPS-
Enabled Mobile Phones. Technometrics 56 347–358. MR3238072

[10] Chernozhukov, V., Fernández-Val, I. and Galichon, A. (2010).
Quantile and probability curves without crossing. Econometrica 78
1093–1125. MR2667913

[11] Chiou, J.-M., Müller, H.-G. and Wang, J.-L. (2004). Functional re-
sponse models. Statistica Sinica 675–693. MR2087968

[12] Choi, H. and Reimherr, M. (2016). A geometric approach to con-
fidence regions and bands for functional parameters. arXiv:1607.07771.
MR3744720

[13] Crambes, C., Hilgert, N. and Manrique, T. (2016). Estimation of the
noise covariance operator in functional linear regression with functional
outputs. Statistics and Probability Letters 113 7–15. MR3480388

[14] Crambes, C. and Mas, A. (2013). Asymptotics of prediction in func-
tional linear regression with functional outputs. Bernoulli 19 2627–2651.
MR3160566

[15] Dette, H., Kokot, K. and Aue, A. (2020). Functional data analysis
in the Banach space of continuous functions. The Annals of Statistics 48
1168–1192. MR4102692

[16] Fan, J. and Müller, H.-G. (2021). Conditional Distribution Regression
For Functional Responses. Scandinavian Journal of Statistics 49 502–524.
MR4428494

[17] Fernández de Castro, B., Guillas, S. and González Manteiga, W.

(2005). Functional Samples and Bootstrap for Predicting Sulfur Dioxide
Levels. Technometrics 47 212–222. MR2188081

[18] Ferraty, F., Van Keilegom, I. and Vieu, P. (2012). Regression when
both response and predictor are functions. Journal of Multivariate Analysis
109 10–28. MR2922850

[19] Ferraty, F. and Nagy, S. (2022). Scalar-on-function local linear regres-
sion and beyond. Biometrika 109 439–455. MR4430967

[20] Ferraty, F. and Vieu, P. (2006). Nonparametric functional data analy-
sis: theory and practice. Springer Science & Business Media. MR2229687

[21] Franke, J. and Nyarige, E. G. (2019). A residual-based bootstrap for
functional autoregressions. arXiv:1905.07635.

[22] Gneiting, T. and Raftery, A. E. (2007). Strictly Proper Scoring Rules,
Prediction, and Estimation. Journal of the American Statistical Association
102 359–378. MR2345548

[23] Goldsmith, J., Greven, S. and Crainiceanu, C. (2013). Corrected con-

https://www.ams.org/mathscinet-getitem?mr=2885840
https://www.ams.org/mathscinet-getitem?mr=3238072
https://www.ams.org/mathscinet-getitem?mr=2667913
https://www.ams.org/mathscinet-getitem?mr=2087968
https://arxiv.org/abs/1607.07771
https://www.ams.org/mathscinet-getitem?mr=3744720
https://www.ams.org/mathscinet-getitem?mr=3480388
https://www.ams.org/mathscinet-getitem?mr=3160566
https://www.ams.org/mathscinet-getitem?mr=4102692
https://www.ams.org/mathscinet-getitem?mr=4428494
https://www.ams.org/mathscinet-getitem?mr=2188081
https://www.ams.org/mathscinet-getitem?mr=2922850
https://www.ams.org/mathscinet-getitem?mr=4430967
https://www.ams.org/mathscinet-getitem?mr=2229687
https://arxiv.org/abs/1905.07635
https://www.ams.org/mathscinet-getitem?mr=2345548


Conditional distribution in functional regression problems 5777

fidence bands for functional data using principal components. Biometrics
69 41–51. MR3058050

[24] González, J. P., Muñoz San Roque, A. M. S. and Pérez, E. A.

(2018). Forecasting Functional Time Series with a New Hilbertian ARMAX
Model: Application to Electricity Price Forecasting. IEEE Transactions on
Power Systems 33 545–556. MR3714402

[25] Górecki, T., Hörmann, S., Horváth, L. and Kokoszka, P. (2018).
Testing normality of functional time series. Journal of Time Series Analysis
39 471–487. MR3819053

[26] Hörmann, S. and Kidziński, Ł. (2015). A note on estimation in Hilber-
tian linear models. Scandinavian journal of statistics 42 43–62. MR3318024

[27] Hörmann, S. and Kokoszka, P. (2010). Weakly dependent functional
data. The Annals of Statistics 38 1845–1884. MR2662361

[28] Hörmann, S., Kuenzer, T. and Rice, G. (2022). Supplement to “Es-
timating the conditional distribution in functional regression problems”.
MR2662361

[29] Hyndman, R. J. and Shang, H. L. (2009). Forecasting functional time
series. Journal of the Korean Statistical Society 38 199–211. MR2750314

[30] Hyndman, R. J. and Shang, H. L. (2020). ftsa: Functional Time Series
Analysis R package version 6.0.

[31] Imaizumi, M. and Kato, K. (2018). PCA-based estimation for functional
linear regression with functional responses. Journal of Multivariate Analysis
163 15–36. MR3732338

[32] Ivanescu, A., Staicu, A. M., Scheipl, F. and Greven, S. (2015).
Penalized function-on-function regression. Computational Statistics 30
539–568. MR3357075

[33] Kato, K. (2012). Estimation in functional linear quantile regression. The
Annals of Statistics 40 3108–3136. MR3097971

[34] Kudraszow, N. L. and Vieu, P. (2013). Uniform consistency of kNN
regressors for functional variables. Statistics & Probability Letters 83
1863–1870. MR3069890

[35] Liebl, D. and Reimherr, M. (2019). Fast and fair simultaneous confi-
dence bands for functional parameters. arXiv:1910.00131. MR4365792

[36] Mas, A. (2007). Weak convergence in the functional autoregressive model.
Journal of Multivariate Analysis 98 1231–1261. MR2326249

[37] Mousavi, S. N. and Sørensen, H. (2017). Multinomial functional regres-
sion with wavelets and LASSO penalization. Econometrics and Statistics 1
150–166. MR3669994

[38] Müller, H. G. and Stadtmüller, U. (2005). Generalized functional
linear models. The Annals of Statistics 33 774–805.

[39] Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective.
Adaptive Computation and Machine Learning series. MIT Press.

[40] Paparoditis, E. and Shang, H. L. (2021). Bootstrap Prediction Bands
for Functional Time Series. Journal of the American Statistical Association.
MR3010895

[41] Pumo, B. (1999). Prediction of Continuous Time Processes by C[0,1]-

https://www.ams.org/mathscinet-getitem?mr=3058050
https://www.ams.org/mathscinet-getitem?mr=3714402
https://www.ams.org/mathscinet-getitem?mr=3819053
https://www.ams.org/mathscinet-getitem?mr=3318024
https://www.ams.org/mathscinet-getitem?mr=2662361
https://www.ams.org/mathscinet-getitem?mr=2662361
https://www.ams.org/mathscinet-getitem?mr=2750314
https://www.ams.org/mathscinet-getitem?mr=3732338
https://www.ams.org/mathscinet-getitem?mr=3357075
https://www.ams.org/mathscinet-getitem?mr=3097971
https://www.ams.org/mathscinet-getitem?mr=3069890
https://arxiv.org/abs/1910.00131
https://www.ams.org/mathscinet-getitem?mr=4365792
https://www.ams.org/mathscinet-getitem?mr=2326249
https://www.ams.org/mathscinet-getitem?mr=3669994
https://www.ams.org/mathscinet-getitem?mr=3010895


5778 S. Hörmann et al.

Valued Autoregressive Process. Statistical Inference for Stochastic Pro-
cesses 1 297–309. MR2797138

[42] Ramsay, J. O., Graves, S. and Hooker, G. (2020). fda: Functional
Data Analysis R package version 5.1.9.

[43] Ramsay, J. O. and Silverman, B. W. (2005). Functional Data Analysis,
2nd ed. ed. Springer. MR2168993

[44] Ruiz-Medina, M. D. and Álvarez-Liébana, J. (2019). Strongly consis-
tent autoregressive predictors in abstract Banach spaces. Journal of Mul-
tivariate Analysis 170 186–201. MR3913035

[45] Sang, P. and Cao, J. (2020). Functional single-index quantile regression
models. Statistics and Computing 1–11. MR4108676

[46] Takács, L. (1995). On the Local Time of the Brownian Motion. The An-
nals of Applied Probability 5. MR1359827

[47] Talagrand, M. (2014). Upper and lower bounds for stochastic processes:
modern methods and classical problems 60. Springer Science & Business
Media. MR3184689

[48] Vilar, J. M., Cao, R. and Aneiros, G. (2012). Forecasting next-day
electricity demand and price using nonparametric functional methods.
International Journal of Electrical Power & Energy Systems 39 48–55.
MR2903632

[49] Wang, J.-L., Chiou, J.-M. and Müller, H.-G. (2016). Functional Data
Analysis. Annual Review of Statistics and Its Application 3 257–295.

[50] Xiong, S. and Li, G. (2008). Some results on the convergence of
conditional distributions. Statistics & Probability Letters 78 3249–3253.
MR2479485

[51] Yao, F., Sue-Chee, S. and Wang, F. (2017). Regularized partially func-
tional quantile regression. Journal of Multivariate Analysis 156 39–56.
MR3624684

https://www.ams.org/mathscinet-getitem?mr=2797138
https://www.ams.org/mathscinet-getitem?mr=2168993
https://www.ams.org/mathscinet-getitem?mr=3913035
https://www.ams.org/mathscinet-getitem?mr=4108676
https://www.ams.org/mathscinet-getitem?mr=1359827
https://www.ams.org/mathscinet-getitem?mr=3184689
https://www.ams.org/mathscinet-getitem?mr=2903632
https://www.ams.org/mathscinet-getitem?mr=2479485
https://www.ams.org/mathscinet-getitem?mr=3624684

	Introduction
	Estimation procedures
	Consistency results
	Estimation algorithms
	Prediction sets
	Monotone families of sets and conditional quantiles
	Rates of convergence

	Estimation of the regression operator
	The boundary condition
	Simulation experiments and data illustrations
	Competing methods
	Comparison to functional GLM and Nadaraya–Watson estimation
	Construction of prediction sets
	Functional quantile regression
	Spanish electricity price data

	Acknowledgments
	Supplementary Material
	References

