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Abstract: Linear discriminant analysis (LDA) is an important classifica-
tion tool in statistics and machine learning. This paper investigates the
varying coefficient LDA model for dynamic data, with Bayes’ discriminant
direction being a function of some exposure variable to address the hetero-
geneity. We propose a new least-square estimation method based on the
B-spline approximation. The data-driven discriminant procedure is more
computationally efficient than the dynamic linear programming rule [21].
We also establish the convergence rates for the corresponding estimation
error bound and the excess misclassification risk. The estimation error in
L2 distance is optimal for the low-dimensional regime and is near optimal
for the high-dimensional regime. Numerical experiments on synthetic data
and real data both corroborate the superiority of our proposed classification
method.
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1. Introduction

Classification is one of the most essential topics in statistics and machine learn-
ing, and widely applied in many scientific and industrial fields. Consider a pair
of random variables (X, Y ), where X ∈ R

p is the covariate and Y ∈ {0, 1} is the
label. If Y = 1, the covariate X follows the p-dimensional multivariate normal
distribution N (μ1,Σ), otherwise X is distributed as N (μ2,Σ). We assume the
prior probabilities of two classes are equal, that is P(Y = 1) = P(Y = 0) = 1/2.
For a new random covariate Xnew, we aim to predict its unknown label Ynew
according to some discriminant rule. If we know the parameters μ1, μ2 and Σ
in advance, let μ = (μ1 +μ2)/2, then the well-known Bayes’ linear discriminant
rule is given by

ψ(Xnew) = I
(
(Xnew − μ)�Σ−1(μ1 − μ2) ≥ 0

)
(1.1)

where Σ−1(μ1−μ2) is called Bayes’ discriminant direction. In real data analysis,
a data-driven Bayes’ classification rule is given by plugging sample means μ̂1,
μ̂2 and pooled sample covariance matrix Σ̂ in (1.1), which is asymptotically
optimal when the dimensionality p is fixed [1].
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Driven by contemporary measurement technologies, high-dimensional data
sets have been broadly collected in classification problems. Classical LDA has
been proved to perform poorly (no better than random guessing) in the high-
dimensional setting, especially when the dimension is much larger than the
sample size [3]. To address high-dimensional issue, the sparsity assumption is
introduced to LDA. Several proposed methods assumed that both Σ−1 and
μ1 − μ2 have sparse structures. For example, [30] used the thresholding pro-
cedure to estimate Σ−1 and μ1 − μ2 separately, then constructed a plug-in
sparse Bayes’ linear discriminant rule. Similar regularized methods can also be
found in [16, 35, 34], etc. In addition, some works only assumed Bayes’ linear
discriminant direction Σ−1(μ1 −μ2) is sparse. [4] proposed the linear program-
ming discriminant (LPD) rule by directly estimating the product Σ−1(μ1−μ2)
through constrained �1 minimization. Recently, [6] proposed an adaptive LPD
procedure that achieved the minimax optimal convergence rate of estimation er-
ror and excess misclassification risk in high-dimensional case. [25] estimated the
sparse discriminant direction via a sparse penalized least squares formulation.
[24] studied high-dimensional sparse semiparametric discriminant analysis and
relaxed the Gaussian assumption. For multiclass problem, [23] proposed a sparse
discriminant procedure by estimating all discriminant directions simultaneously.

Heterogeneous data is widespread in many modern scientific fields, such as
finance, biology, and astronomy [12]. The prevalent statistical approach to ad-
dress the heterogeneity is imposing the dynamic or varying coefficient assump-
tion, where the population means and covariance matrix may vary with some
observable exposure variable. In specific, [9, 10, 32] investigated the dynamic
covariance model in the high-dimensional regime. Under the dynamic setting,
Bayes’ discriminant direction is a function of the exposure variable. Conse-
quently, classical plug-in Bayes’ discriminant rule will deteriorate in analyz-
ing non-static data, and thus leads to unsatisfactory performance. To address
the dynamic data, [21] proposed the dynamic linear programming discriminant
(DLPD) rule by assuming μ1, μ2 and Σ are functions of some q-dimensional
random covariate U . To estimate the sparse Fisher’s linear discriminant direc-
tion function β∗(u) = Σ−1(u)(μ1(u)−μ2(u)) given U = u, they first used the
Nadaraya-Watson method to obtain estimators μ̂1(u), μ̂2(u) and Σ̂(u). Then
they estimated β∗(u) using the linear programming approach [4, 8]:

β̂(u) = arg min
β∈Rp

{
‖β‖1 subject to |Σ̂(u)β − (μ̂1(u) − μ̂2(u)) |∞ ≤ λn

}
,

(1.2)
where λn is a tuning parameter. However, this classification procedure is compu-
tationally expensive for large scale prediction problem. For each new observation
(Xnew,Unew), DLPD method needs to re-estimate μ̂1(Unew), μ̂2(Unew) and
Σ̂(Unew) and re-solve the corresponding large scale linear programming (1.2).
In addition, the support set of discriminant direction β∗(u) decides which vari-
able contributes to classification but (1.2) can not provide a invariant support
set since it is a point-wise estimator. In some real applications, the varying sup-
port set of discriminant direction in DLPD method may lack interpretability.
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The dynamic discriminant analysis shares the same semi-parametric spirit
with the classical varying coefficient model [17], where the unknown param-
eters are assumed to be a smooth function of the exposure variable. In the
past decades, the varying coefficient method has been applied to a variety of
statistical models, such as linear regression model [19, 15], generalized linear
model [7, 14], quantile regression [18, 33] and support vector machine [22], etc.
Motivated by the least square form of Bayes’ discriminant direction, we pro-
pose a new estimation method for the discriminant direction function based on
B-spline approximation, which can be applied in the classification for dynamic
data. In high-dimensional regime, we can estimate the approximation coefficient
by solving a penalized least square problem. The computational drawback of the
DLPD rule [21] is circumvented in our developed varying coefficient discriminant
procedure. For each new observation, we only need to re-compute the B-spline
basis vector. Hence it has a significant computational advantage over the DLPD
rule. In the high-dimensional case, the support set of our proposed estimator is
irrelevant with the value of exposure variable, which is indeed helpful to select
important features contributing to classification.

The remainder of this paper is organized as follows. In section 2, we propose
a new discriminant direction function and its varying coefficient estimators in
both low-dimensional and high-dimensional regimes. In section 3, we establish
the upper bounds for the estimation error and uniform excess misclassification
risk for our proposed varying coefficient LDA procedure. In section 5 and 6, we
verify the performance of our method through simulations on synthetic data
and real data respectively.

Notations We define some notations that will be used throughout the paper.
For two real positive sequences an and bn, we write an � bn if there exists some
positive constant m such that an ≤ mbn. And we write an � bn if an � bn
and bn � an. For a real-valued vector x ∈ R

p, we use ‖x‖1 =
∑p

j=1 |xj |,
‖x‖2 = (

∑p
j=1 |xj |2)1/2 and |x|∞ = max1≤j≤p |xj | to denote the �1, �2 and �∞

norm respectively. For a subset S ⊆ {1, 2, ..., p}, we use xS to denote the sub-
vector (xj : j ∈ S). Specially, for a vector b ∈ R

pq, we write sub-vector b(j) =
(b(j−1)q+1, · · · , bjq)� for j = 1, 2, ..., p. And for a subset S ⊆ {1, 2, ..., p}, we
use b(S) to denote the group sub-vector (b(j) : j ∈ S). For a real-valued matrix
A ∈ R

p×q, �2 (spectral) norm is defined by ‖A‖2 = sup‖x‖2=1,‖y‖2=1 |x�Ay|,
the maximal entry in absolute value is denoted by |A|∞ = maxi,j |Aij |. For two
subsets S ⊆ {1, 2, ..., p} and T ⊆ {1, 2, ..., q}, we write sub-matrix AST = (Aij)
for i ∈ S and j ∈ T . We use A ⊗ B to denote the Kronecker product on two
matrices A and B with proper sizes. Specially, for a matrix A ∈ R

pq×pq and
two subsets S, T ⊆ {1, 2, ..., p}, we write the group sub-matrix as A(ST ) = (Aij)
for i ∈ {(k − 1)q + 1, ..., kq : k ∈ S} and j ∈ {(k − 1)q + 1, ..., kq : k ∈ T}. For a
sequence of real random variables Xn, we write Xn = OP(an) if for any ε > 0,
there exists some constant C > 0 such that P(|Xn| > Can) < ε.
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2. Varying coefficient LDA via B-spline approximation

In this section, we provide a detailed description of the varying coefficient linear
discriminant rule. Given the univariate exposure variable U = u ∈ [0, 1], we
assume X ∼ N (μ1(u),Σ(u)) if Y = 1 and X ∼ N (μ2(u),Σ(u)) if Y = 0, then
Bayes’ discriminant direction is β∗(u) = Σ−1(u)(μ1(u)−μ2(u)). We also denote
the pooled mean as μ(u) = π1μ1(u) + π2μ2(u), where π1 = P(Y = 1) and π2 =
P(Y = 0). To introduce our new discriminant direction function, we define a new
response variable as Z = π2 if Y = 1 and Z = −π1 if Y = 0. In addition, the
exposure variable U is assumed to be independent with the label Y . Motivated
by the least square form of the plug-in Bayes’ discriminant direction Σ̂

−1
(μ̂1 −

μ̂2) in static setting [1, 25], we propose a new discriminant direction function
θ∗(U) = (θ∗1(U), · · · , θ∗p(U))� as the minimizer of the following population least
square problem

min
θj(U)∈L2(P)

E

⎡⎢⎣
⎛⎝Z −

p∑
j=1

θj(U)(Xj − μj(U))

⎞⎠2 ∣∣U
⎤⎥⎦ , (2.1)

where P is the joint distribution of (X, Z, U) and L2(P) denotes the L2 space
under measure P. It is worthwhile noting that the representation (2.1) is similar
to the approximation of coefficient function in the varying coefficient linear
model. Then the discriminant direction function θ∗(U) satisfies

E
[
(X − μ(U))(Z − (X − μ(U))�θ∗(U))|U

]
= 0.

A further computation gives rise to the following closed form,

θ∗(U) = π1π2Σ−1(U)(μ1(U) − μ2(U))[1 − (μ1(U) − μ2(U))�θ∗(U)].

If the population covariance matrix Σ(U) is positive definite and μ1(U) −
μ2(U) 
= 0, we are guaranteed that (μ1(U) − μ2(U))�θ∗(U) ∈ (0, 1). As a
consequence, Bayes’ discriminant direction function satisfies that

β∗(U) = Σ−1(U)(μ1(U) − μ2(U)) = c∗(U)θ∗(U), (2.2)

where c∗(U) = 1/[π1π2−π1π2(μ1(U)−μ2(U))�θ∗(U)]. For the equal-prior case
(π1 = π2), given any new observation (Xnew, Unew), we define the oracle varying
coefficient discriminant rule as

ψ(Xnew, Unew) = I
(
(Xnew − μ(Unew))�θ∗(Unew) ≥ 0

)
. (2.3)

Recall that c∗(u) > 0, the classification result of (2.3) is consistent with using
Bayes’ discriminant direction β∗(Unew).
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2.1. Approximation of discriminant direction function

Let B(·) = (B1(·), ..., BLn(·)) be the scaled B-spline basis of the polynomial
splines space, which satisfies that Bk(·) ≥ 0 and

∑Ln

k=1 Bk(·) =
√
Ln. According

to the B-spline approximation theory [11], under some regular conditions, each
coordinate of discriminant direction θ∗(u) can be approximated by θ∗j (u) ≈
γ�

(j)B(u), where γ(j) ∈ R
Ln is the approximation coefficient. If μ1(u) and μ2(u)

are known, the “best” approximation coefficients in population form are defined
as

(γ̃(1), · · · , γ̃(p)) = arg min
γ(j)∈R

Ln ,

1≤j≤p

E

⎡⎢⎣
⎛⎝Z −

p∑
j=1

(Xj − μj(U))γ�
j B(U)

⎞⎠2
⎤⎥⎦ . (2.4)

Let γ̃ = (γ̃�
(1), · · · , γ̃

�
(p))� and B̃(U) = (X − μ(U)) ⊗B(U), it is easy to show

that
γ̃ =

(
E[B̃(U)B̃(U)�]

)−1
E[B̃(U)Z].

For any u ∈ [0, 1], we may write the approximated discriminant direction as

θ̃(u) =
(
γ̃�

(1)B(u), · · · , γ̃�
(p)B(u)

)�
.

Therefore, the data-driven discriminant procedure boils down to estimate the
approximation coefficient γ̃ and the mean functions μ1(u), μ2(u) based on col-
lected samples. In the following subsections, we consider the equal-prior case,
that is π1 = π2 = 1/2. And we provide the extension of our method to unbal-
anced case in Section 4.1.

2.2. Data-driven discriminant procedure

Let {(Xi, Ui, Yi) : i = 1, 2, ..., 2n} be an i.i.d. sample set. We denote the pseudo
response variable by Zi = I(Yi = 1)− 1

2 for i = 1, 2, ..., 2n and denote the value
of B-spline basis taken at Ui by Bi = (B1(Ui), ..., BLn(Ui))�. Without loss of
generality, we assume the sample size of the two classes is equal. The sample
index sets of two classes are I1 = {i : Yi = 1} and I2 = {i : Yi = 0} with
|I1| = |I2| = n.

2.2.1. Classical low-dimensional regime

To construct the sample form of problem (2.4), we start with estimating the
mean functions μ1(u) and μ2(u). By the B-spline theory, we may estimate the
mean functions by μ̂l(u) = (α̂�

l1B(u), · · · , α̂�
lpB(u))� for l = 1, 2, where

α̂lj =
(∑

i∈Il

BiB
�
i

)−1∑
i∈Il

BiXij , for j = 1, 2, ..., p.
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Let μ̂(u) = (μ̂1(u) + μ̂2(u))/2, the estimators (γ̂(1), · · · , γ̂(p)) can be obtained
by solving the following least-square problem

min
γ(j)∈R

Ln ,

1≤j≤p

1
2n

2n∑
i=1

⎛⎝Zi −
p∑

j=1
(Xij − μ̂j(Ui))B�

i γ(j)

⎞⎠2

. (2.5)

With slightly abusing notations, we denote γ̂ = (γ̂�
(1), · · · , γ̂

�
(p))� and B̃i =

(Xi − μ̂(Ui)) ⊗Bi. In low-dimensional regime, the problem (2.5) has a closed
form solution

γ̂ =
( 2n∑

i=1
B̃iB̃

�
i

)−1 2n∑
i=1

B̃iZi. (2.6)

2.2.2. Sparse high-dimensional regime

In the high-dimensional case, we assume Bayes’ discriminant function β∗(u) is
sparse with the support set S := {j : E[|β∗

j (U)|2] > 0} and |S| = s. Without
loss of generality, let S = {1, ..., s}.

Since θ∗(u) has the same support set with β∗(u), the “best” coefficients for
approximating θ∗j (u) for j ∈ S are defined as

(γ̃(1), · · · , γ̃(s)) = arg min
γ(j)∈R

Ln ,

1≤j≤s

E

⎡⎢⎣
⎛⎝Z −

s∑
j=1

(Xj − μj(U))γ�
(j)B

⎞⎠2
⎤⎥⎦ . (2.7)

Consequently, for any u ∈ [0, 1], we shall approximate the discriminant direction
function θ∗(u) by

θ̃(u) =
(
γ̃�

1 B(u), · · · , γ̃�
s B(u), 0, · · · , 0

)�
.

Let D = E[B̃(U)B̃(U)�] and b = E[B̃(U)Z], the approximation coefficient vec-
tor can be equivalently written as γ̃=(γ̃�

1 , · · · , γ̃
�
s ,0�, · · · ,0�)�=(γ̃�

(S), γ̃
�
(Sc))�

where γ̃(S) = D−1
(SS)b(S) and γ̃(Sc) = 0(p−s)Ln

. It means that the estimator of
approximation coefficient γ̃ should have group sparsity structure. Therefore, we
add the group lasso penalty [38] to the objective function in (2.5), and then
obtain the estimators (γ̂(1), · · · , γ̂(p)) by solving

min
γ(j)∈R

Ln ,

1≤j≤p

1
2n

2n∑
i=1

⎛⎝Zi −
p∑

j=1
(Xij − μ̂j(Ui))B(Ui)�γ(j)

⎞⎠2

+λn

p∑
j=1

‖γ(j)‖2, (2.8)

where λn is a tuning parameter. After some simplifications, the problem (2.8)
is equivalent to the following quadratic programming form

γ̂ = arg min
γ∈RpLn

⎧⎨⎩1
2γ

�Dnγ − b�n γ + λn

p∑
j=1

‖γ(j)‖2

⎫⎬⎭ , (2.9)
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where

Dn = 1
2n

2n∑
i=1

B̃iB̃
�
i , bn = 1

2n

2n∑
i=1

B̃iZi.

The problem (2.9) can be efficiently solved by several well studied optimization
methods, such as group coordinate descent algorithm and iterative shrinkage
thresholding algorithm (ISTA) [2]. We provide a detailed description about ISTA
to solve (2.9) in Appendix E.

2.2.3. Discriminant rule and asymptotic optimality

After obtaining μ̂(u) and γ̂, the estimator of discriminant direction function is
given by

θ̂(u) =
(
γ̂�

(1)B(u), · · · , γ̂�
(p)B(u)

)�
. (2.10)

For any new observation (Xnew, Unew), the data-driven varying coefficient linear
discriminant rule is

ψ̂(Xnew, Unew) = I
(
(Xnew − μ̂(Unew))�θ̂(Unew) ≥ 0

)
. (2.11)

For any u ∈ [0, 1], the optimal misclassification risk of oracle rule (2.3) is
R(u) = Φ(−Δ(u)/2), where Δ(u)=

√
(μ1(u) − μ2(u))�Σ−1(u)(μ1(u) − μ2(u))

and Φ(·) is the cumulative distribution function of a standard normal random
variable. Given the samples and u ∈ [0, 1], the conditional misclassification risk
of data-driven rule (2.11) is

Rn(u) := 1
2Φ

⎛⎝ (μ̂(u) − μ1(u))�θ̂(u)√
θ̂
�

(u)Σ(u)θ̂(u)

⎞⎠+ 1
2Φ̄

⎛⎝ (μ̂(u) − μ2(u))�θ̂(u)√
θ̂
�

(u)Σ(u)θ̂(u)

⎞⎠ ,

where μ̂(u) = (μ̂1(u) + μ̂2(u)) /2 and Φ̄(·) = 1 − Φ(·). Through utilizing the
technique developed in [6], we have the following proposition to provide an upper
bound for the excess misclassification risk.

Proposition 2.1. Suppose that for any u ∈ [0, 1], ‖Σ(u)‖2 is uniformly upper
bounded from infinity and Δ(u) is uniformly lower bounded away from zero. In
addition, if ‖μ̂1(u) − μ1(u)‖2 = o(1), ‖μ̂2(u) − μ2(u)‖2 = o(1) and ‖θ̂(u) −
θ∗(u)‖2 = o(1) for any u ∈ [0, 1], we have

|Rn(u) −R(u)| � ‖θ̂(u) − θ∗(u)‖2
2 + | (μ̂(u) − μ(u))� β∗(u)|2. (2.12)

3. Theoretical results

In this section, we will present the estimation error bounds and the convergence
rates of excess misclassification risk of our proposed varying coefficient LDA pro-
cedure in both low-dimensional regime and high-dimensional regime. Specially,
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for two function vectors ν(·) = (ν1(·), ..., νm(·))� and ξ(·) = (ξ1(·), ..., ξm(·))�
mapping from [0, 1] to R

p, we define the L2 distance between ν(·) and ξ(·) as

‖ν − ξ‖L2 =
(∫ 1

0
‖ν(u) − ξ(u)‖2

2du

) 1
2

.

3.1. Classical low-dimensional regime

Before presenting the convergence rates of our proposed estimator, we intro-
duce the following necessary technical assumptions for the clarity of ensuing
theoretical results.

(C1) There exist two constants 0 < λ0 ≤ λ1 < ∞ such that for any u ∈ [0, 1]

λ0 ≤ λmin (Σ(u)) ≤ λmax (Σ(u)) ≤ λ1,

where λmin (Σ(u)) and λmax (Σ(u)) are respectively the minimum and
maximum eigenvalues of Σ(u).

(C2) The density function h of the exopsure U satisfies that 0 < D1 ≤ h(u) ≤
D2 < ∞ for two positive constants D1 and D2 and any u ∈ [0, 1].

(C3) Each entry of functions μ1(u), μ2(u) and Σ(u)−1(μ1(u)−μ2(u)) belongs
to the following function space

Wd([0, 1]) :=
{
f : [0, 1] → R, sup

x
|f (�)(x)| ≤ D for � = 0, 1, ..., t and

sup
x,x′

|f (t)(x) − f (t)(x′)| ≤ L|x− x′|r
}

where d = r+ t ≥ 1 and f (s) denotes the s-th derivative of function f and
f (0) = f .

(C4) Assume supu∈[0,1] max{‖μ1(u) − μ2(u)‖2, ‖θ∗(u)‖2} = δp ≤ M for some
large constant M . In addition, p = o(n(2d−1)/(2d+1)).

Assumption (C1) is very common in high-dimensional linear discriminant anal-
ysis literature [25, 4, 21]. Assumptions (C2) and (C3) are regular conditions in
B-spline approximation theory, similar assumptions also appear in [37, 13]. For
the simplicity of convergence rates, we assume ‖μ1(u) − μ2(u)‖2 and ‖θ∗(u)‖2
are both uniformly bounded in (C4). The condition on the dimensionality en-
sures that Ln

√
p logn/n = o(1) under the optimal length of B-spline basis

Ln � n1/(2d+1), which guarantees the optimality of our proposed estimator.
Note that L2 error of our proposed estimator can be decomposed into two

parts: the approximation error ‖θ̃ − θ∗‖L2 and the estimation error ‖θ̂ − θ̃‖L2 .
Our first result shows that the approximation error shrinks as the length of
spline basis vector Ln grows, which also attains the optimal convergence rate of
classical B-spine approximation error (see [20, 29]). The proof of Theorem 3.1
is given in Appendix B.2.
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Theorem 3.1. Assume the assumptions (C1)-(C4) hold, then the approxima-
tion error in L2 distance is bounded by

‖θ̃ − θ∗‖L2 � √
pL−d

n . (3.1)

The following theorem provides the upper bound of estimation error for the
discriminant direction function estimator (2.10). Compared with the analysis in
the varying coefficient linear model, the theoretical development in this paper
is more challenging. The reason is two-fold:

• There is no direct relation between the pseudo-response variable Zi and
the covariate Xi. The empirical processes in the proof are established
upon a fine-grained decomposition to Dn − D (see Appendix C.3).

• The estimator for approximation coefficient γ̂ in (2.5) involves the mean
function estimators μ̂1 and μ̂2 computed from the same samples. We uti-
lize chaining technique to establish several concentration inequalities on
the operator norm of matrices and �2 norm of matrix-vector-products (see
Lemma C.4-C.5).

The proof of Theorem 3.2 is deferred to Appendix B.3.

Theorem 3.2. Assume conditions (C1)-(C4) hold. Let an =
√
Ln logn/n +

L−d
n , the estimation error in L2 distance is bounded by

‖θ̂ − θ̃‖L2 = OP

(√
pLn logn

n
+ anpLn

√
logn
n

+ √
pL−d

n

)
. (3.2)

Remark 3.1. Together with the approximation error in Theorem 3.1 and as-
sumption (C4), if we take the length of B-spline vector as Ln � (n/ logn)

1
2d+1 ,

it is easy to see that the L2 error can be bounded by

‖θ̂ − θ∗‖L2 = OP

(
√
p

(
logn
n

) d
2d+1
)
. (3.3)

According to [31], the minimax convergence rate for one-dimensional function
in function space Wd([0, 1]) is n−d/(2d+1). Apparently, our proposed estimation
procedure is optimal up to a logarithmic factor.

From assumptions (C1) and (C4), we know | (μ̂(u)−μ(u))� β∗(u)|2 �‖μ̂(u)−
μ(u)‖2

2. In Proposition A.1, we establish the uniform bound for the mean func-
tion estimator, that is

sup
u∈[0,1]

‖μ̂(u) − μ(u)‖2 = OP

(√
pLn logn

n
+ √

pL−d
n

)
.

In addition, we also have supu∈[0,1] ‖θ̂(u) − θ̃(u)‖2 = OP(Ln

√
p logn/n) since

‖γ̂ − γ̃‖2 shares the same bound with (3.2) (see Appendix B.3) and ‖B(u)‖2 ≤√
Ln. In conjunction with (3.3), we can obatin the L2 bound of the excess

misclassification risk in the following corollary.
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Corollary 3.1. Under the same settings of Theorem 3.2, we assume Δ(u) ≥
c > 0 for some constant c and take Ln � (n/ logn)

1
2d+1 , then it holds

‖Rn −R‖L2 = OP

(
p

(
logn
n

) 2d
2d+1
)
.

3.2. Sparse high-dimensional regime

The following assumption plays a similar role as the condition (C4) in
low-dimensional regime.

(C5) Assume supu∈[0,1] max{‖(μ1(u)−μ2(u)S‖2, ‖θ∗(u)‖2} = δs ≤ M for some
large constant M . In addition, s = o(n(2d−1)/4(d+1)).

The approximation error bound under sparse setting is presented in the fol-
lowing theorem, which can be easily obtained by tracing the proof of Theo-
rem 3.1 since θ∗j (·) = θ̃j(·) = 0 for j ∈ Sc.

Theorem 3.3. Assume the assumptions (C1)-(C3) and (C5) hold, then the
approximation error in high-dimensional case is

‖θ̃ − θ∗‖L2 �
√
sL−d

n .

Below we provide the estimation error bound for the group-sparse estimator
in (2.9), and the proof is deferred to Appendix B.4.

Theorem 3.4. Assume conditions (C1), (C2), (C3) and (C5) hold, let an =√
Ln logn/n + L−d

n , for any ϑ > 0, if we take

λn ≥ C

(√
Ln log p

n
+ anLns

√
log p
n

+
√
sL−d

n

)
(3.4)

for some sufficiently large positive constant C, then

‖θ̂ − θ̃‖L2 �
√
sλn

holds with probability at least 1 − Lnp
−ϑ − Lnp

−ϑsLn .

Remark 3.2. To interpret the orders in (3.4), we introduce the crucial quantity
in the proof of Theorem 3.4: max1≤j≤p ‖(Dn)(jS)γ̃(S) − (bn)(j)‖2, which can be
bounded by

‖(Dn)(jS)γ̃(S) − (bn)(j)‖2 ≤ ‖(Dn − D)(jS)γ̃(S)‖2 + ‖(bn − b)(j)‖2

+ ‖D(jS)γ̃(S) − b(j)‖2.
(3.5)

For any 1 ≤ j ≤ p, the first two terms in (3.5) can be bounded by
√
Ln log p/n+

anLns
√

log p/n through concentration. For j ∈ S, D(jS)γ̃(S)−b(j) = 0 holds due
to the definition of γ̃ in (2.7). For j 
∈ S, despite the fact D(ScS)γ̃(S)−b(Sc) 
= 0,
we can still show that it is bounded by ‖(θ∗(u) − θ̃(u))S‖2 (see Appendix B.4),
which is exactly the last term

√
sL−d

n in (3.4).
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If we set the length of B-spline basis vector as Ln � (ns/ log p)
1

2d+1 , the L2
error of the group-sparse estimator θ̂(·) will be

‖θ̂ − θ∗‖L2 = OP

(
s

d+1
2d+1

(
log p
n

) d
2d+1
)
. (3.6)

Compared with the oracle minimax rate
√
sn− 2d

2d+1 , there is an additional factor
s1/(2d+1) in (3.6) due to the bias D(ScS)γ̃(S) − b(Sc). To obtain the convergence
rate for the excess misclassification risk, it suffices to control the upper bound
of |(μ̂(u) − μ(u))�β∗(u)|2. Recall the fact Σ(u)β∗(u) = μ1(u) − μ2(u), then
simple algebra shows that β∗

S(u) = (ΣSS(u))−1(μ1(u) − μ2(u))S . Combining
with condition (C5), we have |(μ̂(u)−μ(u))�β∗(u)|2 � ‖(μ̂(u)−μ(u)S‖2

2. Then
the following corollary is a direct result of (3.6) and Proposition A.1.

Corollary 3.2. With the same conditions and choice of λn in Theorem 3.4, if
we take Ln � (ns/ log p)

1
2d+1 , the excess misclassification risk of θ̂ satisfies that

‖Rn −R‖L2 = OP

(
s

2d+2
2d+1

(
log p
n

) 2d
2d+1
)
.

4. Extensions

This section will generalize our approach to more general classification problems
in dynamic data.

4.1. Binary classification with unequal prior

For general static binary classification problem, Bayes’ discriminant rule is given
by

ψ(X) = I

(
(X − μ)�Σ−1(μ1 − μ2) + log π1

π2
≥ 0
)

(4.1)

where π1 = P(Y = 1), π2 = P(Y = 0) and μ = π1μ1 + π2μ2. In varying
coefficient regime, according to (2.2), (4.1) can be generalized to the following
form

ψ(X, U) = I

(
(X − μ(U))�c∗(U)θ∗(U) + log π1

π2
≥ 0
)
, (4.2)

where c∗(U) = 1/[π1π2 −π1π2(μ1(U)−μ2(U))�θ∗(U)]. The prior probabilities
can be estimated by π̂1 =

∑N
i=1 I(Yi = 1)/N and π̂2 =

∑N
i=1 I(Yi = 0)/N , where

N is the total sample size. To estimate θ∗(u), we only need to set Zi = π̂2
if Yi = 1 and Zi = −π̂1 if Yi = 0 in (2.8). As a consequence, for any new
observation (Xnew, Unew), we can perform varying coefficient discriminant rule
by plugging in corresponding estimators into (4.2).
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4.2. Multivariate exposure variable

For multivariate U ∈ R
m, we may consider the following single-index extension.

Specially, given U = u, we assume the covariate X ∼ N (μ1(u�ϕ∗),Σ(u�ϕ∗))
if Y = 1 and X ∼ N (μ2(u�ϕ∗),Σ(u�ϕ∗)) if Y = 0. Then Bayes’s discriminant
direction is also a function of u�ϕ∗, that is θ∗j (u) = g∗j (u�ϕ∗) for j = 1, ..., p,
where g∗j (·) is a smooth univariate function. Similar to (2.1), g∗j s are defined as
the solutions of the following least-square problem

min
gj∈L2(P),j=1,...,p

E

⎡⎢⎣
⎛⎝Z −

p∑
j=1

gj(U�ϕ∗)(Xj − μj(U�ϕ∗))

⎞⎠2 ∣∣∣U
⎤⎥⎦ .

If ϕ∗ is known, we can approximate the function g∗j (U�ϕ∗) by γ�
(j)B(U�ϕ∗).

And the optimal approximation coefficients (γ̃(1), ..., γ̃(p)) are defined as

arg min
γ(j)∈RLn ,j=1,...,p

E

⎡⎢⎣
⎛⎝Z −

p∑
j=1

(Xj − μj(U�ϕ∗))γ�
(j)B(U�ϕ∗)

⎞⎠2
⎤⎥⎦ .

As for the initial estimator of ϕ, according to our assumption, we can equiv-
alently write the covariate Xi as the form of the standard single index model

Xi = μ1(U�
i ϕ

∗) +
(
Σ(U�

i ϕ
∗)
)1/2

εi if Yi = 1,

Xi = μ2(U�
i ϕ

∗) +
(
Σ(U�

i ϕ
∗)
)1/2

εi if Yi = 0,

where εi ∼ N (0, Ip). We may utilize the method proposed in [36] to obtain the
estimator of ϕ∗, denoted by ϕ̂. By plugging in ϕ̂, the estimators of univariate
functions g∗j s can be estimated by the B-spline procedure in our paper.

5. Numerical experiments

This section investigates the numerical performance of the proposed varying
coefficient discriminant procedure. In our simulation study, we only consider
the balanced case where the sample sizes of the two classes are equal.

The exposure variable Ui for i = 1, 2, ..., 2n are generated independently from
uniform distribution on [0, 1] in the following experiments. After generating Ui,
we sample the covariate Xi with Yi = 1 from N (μ1(Ui),Σ(Ui)) for i = 1, ..., n
and sample Xi with Yi = 0 from N (μ2(Ui),Σ(Ui)) for i = n + 1, ..., 2n, where
μ1(u) = 0 and μ2(u) = Σ(u)β(u). Several combinations of β(u) and Σ(u)
are considered in our simulation. Each entry of Bayes’ discriminant direction
function take values as:

• Direction 1: β(1)
j (u) = 1 for 1 ≤ j ≤ p (or s);
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• Direction 2: β(2)
j (u) = u for 1 ≤ j ≤ p (or s);

• Direction 3: β(2)
j (u) = sin(4u) for 1 ≤ j ≤ p (or s);

• Direction 4: β(4)
j (u) = eu for 1 ≤ j ≤ p (or s).

In high-dimensional case, we set βj(·) = 0 for s + 1 ≤ j ≤ p. Three covariance
matrices are considered in our simulations:

• Covariance matrix 1, σ(1)
i,j (u) = 0.5|i−j|, for 1 ≤ i, j ≤ p;

• Covariance matrix 2. σ(2)
i,j (u) = u|i−j|, for 1 ≤ i, j ≤ p;

• Covariance matrix 3. σ(3)
i,j (u) = uI(i 
= j) + I(i = j) for 1 ≤ i, j ≤ p.

The combination of Direction 1 and Covariance matrix 1 is a classical static
setting, where each entry of the mean vector and covariance matrix is a constant
value. The other combinations are dynamic settings. We use the cubic spline in
our simulation, and select the number of spline basis functions by 5-fold cross-
validation. We compute the misclassification risk based on an independently
generated test set with size 200.

5.1. Low-dimensional case

For low-dimensional case, the sample size of each class is fixed as n = 100 and the
dimensionality p is varying from {5, 10, 20}. The proposed method in this paper
(abbreviated as VCLDA) is deployed to the generated data. For comparison, we
also conduct the following two classification rules:

1. Oracle: use the population Bayes’ discriminant direction Σ(u)−1(μ1(u)−
μ2(u)) to conduct classification.

2. LDA: use the static estimators of mean vectors and covariance matrix, i.e.,
the sample means and sample covariance matrix, to compute discriminant
direction.

We report the averaged misclassification risks computed from the test set in
Table 1. The oracle classification rule is the most accurate among all procedures.
In a static setting, we can see that LDA achieves nearly oracle performance. As
we expected, the performance of LDA procedure degrades drastically in the
dynamic case. Meanwhile, the misclassification risk of VCLDA is significantly
lower than LDA, and very close to the oracle procedure in all dynamic settings.

5.2. High-dimensional case

In high-dimensional simulation, we fix the sample size of each class as n = 100
and consider the dimensionality p = 100 and p = 200. Moreover, the sparsity
under each dimensionality varies in {5, 10, 20}. For comparison, we also conduct
the oracle rule, the static LPD rule [4] and DLPD rule [21] in the test set. The
misclassification risks and their standard errors under four discriminant direc-
tion functions are summarized in Table 2-5 respectively. Undoubtedly, the oracle
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Table 1

Misclassification risk and its standard error (in parentheses) of each method in
low-dimensional case.

p Σ Orcale VCLDA LDA Orcale VCLDA LDA

β(1) β(2)

5
1 0.048 0.075(0.021) 0.050(0.016) 0.227 0.259(0.039) 0.255(0.032)
2 0.055 0.078(0.021) 0.119(0.028) 0.221 0.249(0.034) 0.272(0.032)
3 0.039 0.058(0.020) 0.093(0.023) 0.202 0.221(0.032) 0.245(0.030)

10
1 0.005 0.028(0.014) 0.006(0.006) 0.155 0.193(0.033) 0.197(0.029)
2 0.014 0.038(0.015) 0.152(0.025) 0.163 0.198(0.029) 0.270(0.035)
3 0.004 0.027(0.012) 0.104(0.023) 0.126 0.155(0.031) 0.212(0.026)

20
1 0.000 0.020(0.012) 0.000(0.001) 0.108 0.157(0.032) 0.166(0.028)
2 0.002 0.041(0.019) 0.215(0.034) 0.125 0.182(0.034) 0.312(0.035)
3 0.000 0.042(0.017) 0.117(0.025) 0.081 0.128(0.024) 0.222(0.029)

β(3) β(4)

5
1 0.194 0.234(0.034) 0.317(0.034) 0.010 0.024(0.012) 0.029(0.013)
2 0.192 0.234(0.033) 0.382(0.047) 0.025 0.040(0.015) 0.156(0.025)
3 0.173 0.209(0.028) 0.351(0.047) 0.018 0.033(0.014) 0.137(0.023)

10
1 0.125 0.186(0.027) 0.281(0.038) 0.001 0.011(0.008) 0.016(0.009)
2 0.117 0.183(0.030) 0.437(0.046) 0.007 0.027(0.014) 0.195(0.029)
3 0.092 0.154(0.031) 0.353(0.051) 0.003 0.022(0.013) 0.157(0.023)

20
1 0.083 0.189(0.031) 0.286(0.039) 0.000 0.014(0.009) 0.011(0.008)
2 0.077 0.200(0.037) 0.476(0.041) 0.001 0.041(0.023) 0.246(0.035)
3 0.054 0.176(0.037) 0.391(0.059) 0.000 0.044(0.022) 0.172(0.029)

classification rule is the most accurate among all procedures. In a static setting,
it can be seen that the DLPD rule almost achieves the same performance as
the LPD rule in static settings (see Table 2). As we expected, the performance
of the classical LDA procedure degrades drastically in the dynamic case, which
performs like random guessing in a highly dynamic setting. Except for the static
setting, we can see that the misclassification risk of our proposed VCLDA rule
is significantly lower than the DLPD rule, especially for the setting with Covari-
ance matrix 2. In addition, the results indicate that the performance of VCLDA
is most close to the oracle procedure.

In fact, VCLDA fully uses the information that the discrimination direction
varies with different values of U while the active set of the discrimination coef-
ficient will not change in our simulation settings. The former leads to a lower
misclassification risk than the static LPD rule, and the latter leads to better
performance over the DLPD rule.

6. Real data analysis

Diffuse large B-cell lymphoma (DLBCL) is a heterogeneous disease with recog-
nized variability in clinical outcome, genetic features, and cells of origin. It is
of vital importance for precision medicine if we can predict DLBCL in advance.
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Table 2

Misclassification risk and its standard error (in parenthesis) of each method under Direction
1 in high-dimensional case.

s Σ Orcale VCLDA LPD DLPD Orcale VCLDA LPD DLPD

p = 100 p = 200

5
1 0.048 0.076(0.019) 0.053(0.012) 0.053(0.015) 0.048 0.071(0.018) 0.057(0.016) 0.057(0.016)
2 0.055 0.070(0.017) 0.195(0.154) 0.202(0.035) 0.056 0.067(0.017) 0.153(0.106) 0.134(0.040)
3 0.039 0.060(0.017) 0.332(0.192) 0.085(0.018) 0.039 0.060(0.017) 0.150(0.058) 0.100(0.029)

10
1 0.005 0.015(0.009) 0.103(0.193) 0.101(0.187) 0.005 0.025(0.012) 0.007(0.006) 0.007(0.006)
2 0.014 0.041(0.017) 0.152(0.028) 0.168(0.034) 0.014 0.043(0.019) 0.148(0.023) 0.160(0.030)
3 0.004 0.012(0.009) 0.123(0.026) 0.040(0.019) 0.004 0.016(0.011) 0.128(0.021) 0.040(0.015)

20
1 0.000 0.009(0.006) 0.055(0.157) 0.055(0.157) 0.000 0.004(0.005) 0.000(0.001) 0.000(0.001)
2 0.002 0.018(0.010) 0.208(0.067) 0.176(0.030) 0.002 0.014(0.009) 0.198(0.031) 0.164(0.026)
3 0.000 0.009(0.007) 0.123(0.022) 0.026(0.013) 0.000 0.009(0.008) 0.125(0.021) 0.029(0.018)

Table 3

Misclassification risk and its standard error (in parentheses) of each method under
Direction 2 in high-dimensional case.

s Σ Orcale VCLDA LPD DLPD Orcale VCLDA LPD DLPD

p = 100 p = 200

5
1 0.225 0.243(0.031) 0.371(0.109) 0.248(0.031) 0.227 0.244(0.032) 0.281(0.045) 0.300(0.042)
2 0.217 0.252(0.028) 0.274(0.032) 0.338(0.046) 0.220 0.237(0.031) 0.280(0.042) 0.370(0.043)
3 0.199 0.241(0.031) 0.268(0.030) 0.251(0.027) 0.204 0.232(0.031) 0.272(0.054) 0.239(0.032)

10
1 0.158 0.173(0.027) 0.204(0.029) 0.210(0.030) 0.160 0.189(0.028) 0.206(0.031) 0.210(0.031)
2 0.164 0.208(0.031) 0.260(0.050) 0.347(0.033) 0.165 0.185(0.026) 0.258(0.026) 0.345(0.034)
3 0.126 0.156(0.026) 0.212(0.025) 0.166(0.026) 0.127 0.140(0.024) 0.212(0.030) 0.174(0.028)

20
1 0.107 0.126(0.024) 0.182(0.032) 0.146(0.030) 0.108 0.132(0.025) 0.166(0.025) 0.146(0.027)
2 0.126 0.184(0.028) 0.280(0.064) 0.336(0.028) 0.124 0.179(0.028) 0.270(0.027) 0.329(0.029)
3 0.081 0.099(0.021) 0.207(0.056) 0.116(0.020) 0.081 0.093(0.020) 0.202(0.026) 0.124(0.023)

Using the data provided in [26], we establish the model to predict DLBCL ac-
cording to the gene expression. It is mentioned in [26] that tumors had less
frequent genetic abnormalities in younger patients. Thus, our proposed method
VCLDA seems suitable for setting up the prediction model by setting the age
as the exposure variable U .

The original data has 124 patients and 44972 gene expression levels. The
binary response means whether a germinal center B-cell is normal or not, which
is the significant signal of DLBCL. We screen out 150 gene expression levels
to build a model according to the t test on the binary response. We conduct
the following four procedures: LPD (exclude age as a covariate), LPD (include
age as a covariate), DLPD (regard age as U), and VCLDA (regard age as U).
We randomly choose ten patients as the test sample in each trial and regard
the remaining samples as the training set to run the classification procedure.
The average results of misclassification risks on the test sample over 100 trials
are reported in Table 6. It shows that the contribution of U is negligible as
a covariate in the static LPD rule. In contrast, it improves the classification
accuracy tremendously as an exposure variable in the dynamic model.

Additionally, the active sets selected by the DLPD method under different
ages are highly coincident. It means that the genes influencing DLBCL will
not change significantly with age, which is also reasonable in the gene analy-
sis. Two genes are excluded from the active set by the DLPD method during a
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Table 4

Misclassification risk and its standard error (in parenthesis) of each method under Direction
3 in high-dimensional case.

s Σ Orcale VCLDA LPD DLPD Orcale VCLDA LPD DLPD

p = 100 p = 200

5
1 0.193 0.244(0.033) 0.337(0.055) 0.291(0.04) 0.194 0.221(0.030) 0.335(0.053) 0.286(0.031)
2 0.193 0.211(0.029) 0.412(0.068) 0.302(0.032) 0.192 0.214(0.028) 0.395(0.068) 0.298(0.031)
3 0.172 0.203(0.033) 0.334(0.048) 0.298(0.029) 0.172 0.209(0.028) 0.341(0.051) 0.291(0.032)

10
1 0.123 0.147(0.024) 0.280(0.038) 0.232(0.028) 0.125 0.152(0.025) 0.278(0.039) 0.237(0.027)
2 0.119 0.148(0.026) 0.450(0.075) 0.293(0.05) 0.122 0.145(0.028) 0.442(0.075) 0.270(0.032)
3 0.090 0.115(0.025) 0.282(0.046) 0.214(0.03) 0.091 0.126(0.025) 0.274(0.036) 0.226(0.035)

20
1 0.080 0.110(0.022) 0.249(0.036) 0.201(0.027) 0.084 0.109(0.021) 0.260(0.042) 0.201(0.031)
2 0.080 0.114(0.023) 0.487(0.045) 0.234(0.027) 0.079 0.114(0.023) 0.498(0.020) 0.229(0.027)
3 0.050 0.084(0.023) 0.218(0.037) 0.184(0.026) 0.052 0.071(0.019) 0.218(0.031) 0.221(0.033)

Table 5

Misclassification risk and its standard error (in parentheses) of each method under
Direction 4 in high-dimensional case.

s Σ Orcale VCLDA LPD DLPD Orcale VCLDA LPD DLPD

p = 100 p = 200

5
1 0.010 0.018(0.009) 0.032(0.014) 0.015(0.010) 0.010 0.022(0.012) 0.033(0.012) 0.019(0.010)
2 0.025 0.049(0.016) 0.174(0.087) 0.207(0.035) 0.025 0.035(0.013) 0.271(0.163) 0.177(0.029)
3 0.018 0.037(0.014) 0.299(0.166) 0.056(0.021) 0.018 0.031(0.014) 0.175(0.021) 0.060(0.020)

10
1 0.001 0.010(0.007) 0.020(0.011) 0.005(0.009) 0.001 0.006(0.006) 0.020(0.011) 0.003(0.004)
2 0.007 0.025(0.011) 0.408(0.141) 0.195(0.031) 0.006 0.020(0.011) 0.319(0.144) 0.174(0.028)
3 0.003 0.022(0.012) 0.179(0.041) 0.033(0.014) 0.003 0.016(0.010) 0.186(0.060) 0.037(0.014)

20
1 0.000 0.007(0.006) 0.012(0.008) 0.000(0.001) 0.000 0.007(0.007) 0.011(0.008) 0.000(0.003)
2 0.001 0.011(0.009) 0.426(0.116) 0.189(0.029) 0.001 0.015(0.009) 0.479(0.063) 0.179(0.027)
3 0.000 0.008(0.005) 0.170(0.026) 0.027(0.016) 0.000 0.009(0.008) 0.178(0.022) 0.027(0.015)

very short age interval, which may be confusing and misleading to the relative
researchers. Nearly all active genes selected by the DLPD method are also se-
lected by the VCLDA method. Besides, as we find in coefficients estimated by
VCLDA, most of the genes have a weak influence on DLBCL when U is small,
which collaborates with the conclusion in [26] that tumors have less frequent
genetic abnormalities in younger patients.

7. Discussion

This paper investigates the LDA model for dynamic data and proposes a new
varying coefficient discriminant rule. The proposed classification procedure is
more efficient than the dynamic linear programming rule [21]. We also establish
the upper bounds for estimation error and uniform excess misclassification risk.
The synthetic and real data experiments also demonstrate a better classification

Table 6

The average misclassification risk and its standard error of each method in DLBCL dataset.

Method LPD (exclude age) LPD (include age) DLPD (U = age) VCLDA (U = age)

Avg 0.432 0.432 0.192 0.171
SE 0.211 0.211 0.167 0.122
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performance of our varying coefficient LDA method.
The Gaussian graphical model (GGM) is an essential formalism to infer de-

pendence structures of contemporary data sets, whose structure is equivalent
to the support of the precision matrix. Recently, [27] proposed the functional
graphical model and assumed the covariate is a p-dimensional functional data.
The authors proposed an estimator of the precision matrix function based on
kernel smoothing and CLIME [5]. Therefore, studying the high-dimensional,
varying coefficient GGM under a dynamic setting will be of great interest.

Appendix A: Preliminaries

A.1. Background of B-spline approximation

From now on, we will omit the argument in random vector B(U) and B̃(U)
and write B and B̃ respectively whenever the context is clear. We introduce
the following facts about standard B-spline basis B∗(u) = (B∗

1(u), ..., B∗
Ln

(u))�
(see [11, 13]), which will be used in our proof:

1. For any u ∈ [0, 1], both 0 ≤ max1≤k≤Ln B∗
k(u) ≤ 1 and

∑Ln

k=1 B
∗
k(u) = 1

hold.
2. For any ηk ∈ R, k = 1, 2, ..., Ln, we have

L−1
n

Ln∑
k=1

η2
k �

∫ ( Ln∑
k=1

ηkB
∗
k(w)

)2

dw � L−1
n

Ln∑
k=1

η2
k. (A.1)

From the facts displayed above, for any r ≥ 1, we also have

E [|B∗
k(U)|r] � L−1

n ,

and

‖E[B∗]‖2 = sup
‖ν‖2=1

|E[ν�B∗]| ≤ sup
‖ν‖2=1

(
E[ν�B∗]2

)1/2 = O(L−1/2
n ).

Similarly, we can also obtain that

L−1
n � λmin(E[B∗B∗�]) ≤ λmax(E[B∗B∗�]) � L−1

n .

Writing the scaled B-spline basis as B(u) =
√
LnB

∗(u), we have

‖E[B]‖2 = O(1),

and
λmin(E[BB�]) = O(1), λmax(E[BB�]) = O(1).
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A.2. Concentration inequality

The following concentration inequality will be used throughout the proof.

Lemma A.1 (Lemma 1, [4]). Let ξ1, ..., ξn be independent random variables with
mean 0. Suppose that there exists some φ > 0 and sn such that

∑n
i=1 E[ξ2

i e
φ|ξi|]≤

s2
n. Then for 0 < x < s2

n,

P

(
n∑

i=1
ξi ≥ Cφsnx

)
≤ exp(−x2)

where Cφ = φ + φ−1.

Next lemma gives the moment inequalities for normal random variable.

Lemma A.2. Let X ∼ N (0, σ2), then for any 0 ≤ φ ≤ 1√
2σ ,

E[X2eφ|X|] ≤ e

φ2
1√

1 − 2φ2σ2
;

and for any φ ≥ 0 and k ≥ 1

E[Xkeφ|X|] ≤ e
φ2σ2

2
(
E[Xk

−φσ2 ] + E[Xk
φσ2 ]
)

holds for any φ ≥ 0,

where X−φσ2 ∼ N (−φσ2, σ2) and Xφσ2 ∼ N (φσ2, σ2).

Proof of Lemma A.2. Using the basic inequality s2es ≤ e2s for any s ≥ 0, we
have

E[X2eφ|X|] ≤ φ−2
E[e2φ|X|]

≤ φ−2
E

[
e1+φ2X2

]
= e

φ2
1√
2πσ

∫ +∞

−∞
e−

x2
2σ2 +φ2x2

dx

= e

φ2
1√

1 − 2φ2σ2
.

In addition, we also have

E[Xkeφ|X|] = 1√
2πσ

∫ +∞

−∞
xke−

x2
2σ2 +φ|x|dx

= 1√
2πσ

(∫ 0

−∞
xke−

x2
2σ2 −φxdx +

∫ +∞

0
xke−

x2
2σ2 +φxdx

)

≤ e
φ2σ2

2
√

2πσ

(∫ +∞

−∞
xke−

(x+φσ2)2

2σ2 dx +
∫ +∞

−∞
xke−

(x−φσ2)2

2σ2 dx

)
.
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A.3. Estimation error bound for mean functions

The estimation error bounds for mean function vectors in the following propo-
sition contribute to establish the convergence rates of discriminant direction
estimator and the excess misclassification risk.

Proposition A.1. Denote the estimator of the mean functions by μ̂1(u) =
(α̂�

11B(u), · · · , α̂�
1pB(u))� and μ̂2(u) = (α̂�

21B(u), · · · , α̂�
2pB(u))�, then under

condition (C1)-(C4), for any ϑ > 0 we have

sup
u∈[0,1]

|μ̂1(u) − μ1(u)|∞ �
√

Ln logn
n

+ L−d
n ,

and

sup
u∈[0,1]

|μ̂2(u) − μ2(u)|∞ �
√

Ln logn
n

+ L−d
n ,

hold with probability at least 1 − 3pLnn
−ϑ respectively.

Lemma A.3. For any ϑ > 0, there exists some positive constant C such that

P

(∥∥∥∥∥ 1
n

n∑
i=1

BiB
�
i − E[BB�]

∥∥∥∥∥
2

≥ CLn

√
logn
n

)
≤ n−ϑLn .

The proof of Lemma A.3 is deferred to Appendix C.1.

Remark A.1. It is worthwhile noting that Lemma A.3 is more tight than the
results Lemma A.7 in [13], where the authors established the following bound∥∥∥∥∥ 1

n

n∑
i=1

B∗
i (B∗

i )� − E[B∗(B∗)�]

∥∥∥∥∥
2

= OP

(√
Ln logn

n

)
.

By the fact that Bi =
√
LnB

∗
i and B =

√
LnB

∗, using the relation above, we
can only obtain the following worse bound∥∥∥∥∥ 1

n

n∑
i=1

BiB
�
i − E[BB�]

∥∥∥∥∥
2

= OP

(
L3/2
n

√
logn
n

)
.

Proof of Proposition A.1. First we introduce the population form of the approx-
imation coefficient,

α̃1j = arg min
α∈RLn

E
(
Xj −α�B(U)

∣∣Y = 1
)2

, (A.2)

and denote μ̃1(u) = (α̃�
11B, · · · , α̃�

1pB)�. According to the splines’ approxima-
tion property [11, 20], we are guaranteed that

sup
u∈[0,1]

|μ̃1(u) − μ1(u)|∞ � L−d
n .
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In addition, we have

α̂1j − α̃1j =
(

1
n

∑
i∈I1

BiB
�
i

)−1(
1
n

∑
i∈I1

Bi(Xij −B�
i α̃1j)

)

=
(

1
n

∑
i∈I1

BiB
�
i

)−1(
1
n

∑
i∈I1

Bi[Xij −B�
i α̃1j ]

)
. (A.3)

For any positive definite matrix A ∈ R
p×p and ‖ΔA‖2 = o(1),

‖(A + ΔA)−1 − A−1‖2 ≤ ‖A−1‖2‖(I + A−1ΔA)−1 − I‖2

≤ ‖A−1‖2
(
‖A−1ΔA‖2 + o(1)

)
≤ 2‖A−1‖2

2‖ΔA‖2.

(A.4)

Now let A = E[BB�] and ΔA =
∑n

i=1 BiB
�
i /n−E[BB�]. Since Lemma A.3

claims that ‖ΔA‖2 = o(1) almost surely, (A.4) results in∥∥∥∥∥∥
(

1
n

∑
i∈I1

BiB
�
i

)−1

− E[BB�]−1

∥∥∥∥∥∥
2

≤ 2
∥∥∥E[BB�]−1

∥∥∥2
2

∥∥∥∥∥ 1
n

n∑
i=1

BiB
�
i − E[BB�]

∥∥∥∥∥
2

.

In conjunction with Lemma A.3 and λmin(E[BB�]) ≥ M1 we have∥∥∥∥∥∥
(

1
n

∑
i∈I1

BiB
�
i

)−1
∥∥∥∥∥∥

2

≤ 1
M1

+ C

√
Ln logn

n
(A.5)

holds with probability at least 1 − Lnn
−ϑ. Substituting (A.5) into (A.3) yields

‖α̂1j − α̃1j‖2 �
∥∥∥∥∥ 1
n

∑
i∈I1

Bi[Xij − μ1j(Ui) + μ1j(Ui) −B�
i α̃1j ]

∥∥∥∥∥
2

. (A.6)

On the other hand, we note that given Yi = 1 and Ui, Xij ∼ N (μ1j(Ui),Σjj(Ui)).
By choosing any η > 0 and using Lemma A.2, we have

E

[
(B∗

k(Ui))2 (Xij − μ1j(Ui))2 exp (η|B∗
k(Ui)||Xij − μ1j(Ui)|)

]
≤E

{
(B∗

k(Ui))2E
[
(Xij − μ1j(Ui))2 exp (η|Xij − μ1j(Ui)|)

∣∣Ui

]}
≤2E

[
(B∗

k(Ui))2e
η2

Σjj(Ui)
2

(
η2Σ2

jj(Ui) + Σjj(Ui)
)]

�E[(B∗
k(Ui))2] ≤ L−1

n ,
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where the first inequality follows from 0 ≤ B∗
k(Ui) ≤ 1 and Σjj(Ui) is the

conditional variance of Xij given Ui. Applying Lemma A.1 and uniform bound,
we can guarantee

P

(
max

1≤k≤Ln

∣∣∣∣∣ 1n ∑
i∈I1

(Xij − μ1j(Ui))Bk(Ui)

∣∣∣∣∣ �
√

logn
n

)
≤ Lnn

−ϑ.

It yields that ∥∥∥∥∥ 1
n

∑
i∈I1

Bi(Xij − μ1j(Ui))

∥∥∥∥∥
2

�
√

Ln logn
n

, (A.7)

holds with probability at least 1 − 2Lnn
−ϑ. In addition, we note that∥∥∥∥∥ 1

n

∑
i∈I1

Bi[μ1j(Ui) −B�
i α̃1j ]

∥∥∥∥∥
2

≤
∥∥∥E[B[μ1j(U) −B�α̃1j ]]

∥∥∥
2

+

∥∥∥∥∥ 1
n

∑
i∈I1

Bi[μ1j(Ui) −B�
i α̃1j ] − E[Bi[μ1j(Ui) −B�

i α̃1j ]]

∥∥∥∥∥
2

.

Using Lemma A.1 again, we may show that∥∥∥∥∥ 1
n

∑
i∈I1

Bi[μ1j(Ui) −B�
i α̃1j ] − E[Bi[μ1j(Ui) −B�

i α̃1j ]]

∥∥∥∥∥
2

� L−d
n

√
Ln logn

n
,

holds with probability at least 1 − Lnn
−ϑ. Combining (A.7) and the following

fact

‖E[B[μ1j(U) −B�α̃1j ]]‖2 � L−d
n ‖E[B]‖2 � L−d

n ,

we have with probability at least 1 − 3Lnn
−ϑ∥∥∥∥∥ 1

n

∑
i∈I1

Bi[Xij − μ1j(Ui) + μ1j(Ui) −B�
i α̃1j ]

∥∥∥∥∥
2

�
√

Ln logn
n

. (A.8)

Together with (A.6), we have proved the first assertion.
For each fixed u ∈ [0, 1], we denote η(u) =

(
E[BB�]

)−1
B∗(u). It holds that

|μ̂1(u) − μ̃1(u)|∞ = max
j

|B(u)�(α̂1j − α̃1j)|

= max
j

∣∣∣∣∣B(u)�
(

1
n

∑
i∈I1

BiB
�
i

)−1
1
n

∑
i∈I1

Bi[Xij −B�
i α̃1j ]

∣∣∣∣∣
� Ln max

j

∣∣∣∣∣ 1n ∑
i∈I1

η(u)�B∗
i [Xij −B�

i α̃1j ]

∣∣∣∣∣ ,
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where the last inequality comes from Lemma A.3 and (A.8). It follows from (A.1)
that

E

[(
η(u)�B∗

i

)2] = E

⎡⎣( Ln∑
k=1

ηk(u)B∗(U)
)2⎤⎦ � L−1

n

Ln∑
k=1

η2
k(u) � L−1

n .

Further we have

E

[(
η(u)�B∗

i

)2 (Xij − μ1j(Ui))2eη|η(u)�B∗
i |Xij−μ1j(Ui)||

]
� L−1

n .

Then applying Lemma A.1, we can show that

max
j

∣∣∣∣∣ 1n ∑
i∈I1

η(u)�B∗
i [Xij − μ1j(Ui) + μ1j(Ui) −B�

i α̃1j ]

∣∣∣∣∣ �
√

logn
nLn

holds with probability at least 1 − pn−ϑ. With the same probability, for any
fixed u, it holds that

|μ̂1(u) − μ̃1(u)|∞ �
√

Ln logn
n

. (A.9)

Next we use chaining technique to prove the uniform result. Notice that, we may
divide the interval [0, 1] to nM sub-intervals with end points 0 = u0 ≤ u1 ≤
· · ·unM = 1. Then for any u ∈ [0, 1], there exists some 0 ≤ � ≤ nM such that
|u− u�| ≤ n−M . Thus we have

|μ̂1(u) − μ̃1(u)|∞ ≤ |μ̂1(u�) − μ̃1(u�)|∞
+ {|μ̂1(u) − μ̂1(u�)|∞ + |μ̃1(u) − μ̃1(u�)|∞}
� |μ̂1(u�) − μ̃1(u�)|∞ + n−M ,

where we used both μ̂1 and μ̃ are Lipschitz continuous. It follows that

sup
u∈[0,1]

|μ̂1(u) − μ̃1(u)|∞ � max
0≤�≤nM

|μ̂1(u�) − μ̃1(u�)|∞ + n−M .

By choosing M = 1 and large ϑ, the second assertion follows from (A.9) imme-
diately.

Appendix B: Proofs of main results

B.1. Proof of Proposition 2.1

The proof is adapted from [6], here we provide it for completeness.

Lemma B.1 (Lemma 7, [6]). For two vectors θn and θ̂n, if ‖θn − θ̂n‖2 = o(1)
as n → ∞, and ‖θ‖2 ≥ c for some constant c, then when n → ∞,

‖θn‖2‖θ̂n‖2 − θ�
n θ̂n � ‖θn − θ̂n‖2

2.
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Proof. Let δ(u) = μ1(u) − μ2(u) and Δ̂(u) = c∗(u)(θ̂(u)�Σ(u)θ̂(u))1/2 for
u ∈ [0, 1]. Recall the relation β∗(u) = Σ−1(u)δ(u) = c∗(u)θ∗(u) for c∗(u) ∈
(0, 1). To simplify notations, we will use f to denote f(u) for any function of u.
Following the proof technique in [6], we define a intermediate quantity

R̃(u) = 1
2Φ
(
−c∗δ�θ̂/2

Δ̂

)
+ 1

2Φ̄
(
c∗δ�θ̂/2

Δ̂

)
.

Note that, c∗δ�θ̂ = δ�Σ−1/2Σ1/2(c∗θ̂), then using Lemma B.1∣∣∣∣∣Δ − c∗δ�θ̂

Δ̂

∣∣∣∣∣ =
∣∣∣∣∣∣‖δ�Σ−1/2‖2 −

δ�Σ−1/2Σ1/2(c∗θ̂)∥∥∥Σ1/2(c∗θ̂)
∥∥∥

2

∣∣∣∣∣∣
�

∥∥∥Σ−1/2δ − Σ1/2(c∗θ̂)
∥∥∥2

2
Δ . (B.1)

Using the fact that c∗θ∗ = β∗ = Σ−1δ and ‖Σ‖2 is bounded,∥∥∥Σ−1/2δ − Σ1/2(c∗θ̂)
∥∥∥2

2
≤
∥∥∥Σ−1/2δ − Σ1/2(c∗θ̂)

∥∥∥2
2

=
∥∥∥Σ−1/2δ − Σ1/2(c∗θ̂ − c∗θ∗) − Σ1/2c∗θ∗

∥∥∥2
2

≤ (c∗)2‖Σ1/2‖2
2‖θ̂ − θ∗‖2

2. (B.2)

Then take Taylor expansion to the two terrms of R̃ around −Δ/2 and Δ/2
respectively, we have

R̃−R = 1
2

(
−c∗δ�θ̂/2

Δ̂
+ Δ

2

)
Φ′
(
−Δ

2

)
+ 1

2

(
Δ
2 − c∗δ�θ̂/2

Δ̂

)
Φ′
(

Δ
2

)

+ 1
4

⎛⎝(Φ′′(b1n) + Φ′′(b2n))
(
c∗δ�θ̂/2

Δ̂
− Δ

2

)2
⎞⎠

= 1√
2π

(
Δ − c∗δ�θ̂

Δ̂

)
exp
(
−Δ2

8

)

+ 1
4

⎛⎝(Φ′′(b1n) + Φ′′(b2n))
(
c∗δ�θ̂/2

Δ̂
− Δ

2

)2
⎞⎠ ,

where b1n is some point between −Δ
2 and − c∗δ�θ̂/2

Δ̂
and b2n is some point

between Δ
2 and c∗δ�θ̂/2

Δ̂
. Hence it holds that

Φ′′(b1n) � Φ′′(b2n) � Δ
2 exp

(
−Δ2

8

)
.
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Together with (B.1) and (B.2), we can obtain

|R̃−R| �
∣∣∣∣∣Δ − c∗δ�θ̂

Δ̂

∣∣∣∣∣+
∣∣∣∣∣Δ − c∗δ�θ̂

Δ̂

∣∣∣∣∣
2

�
∥∥∥Σ−1/2δ − Σ1/2(c∗θ̂)

∥∥∥2
2

� ‖θ̂ − θ∗‖2
2. (B.3)

Next we bound |Rn − R̃|, note that∣∣∣∣∣c∗δ�θ̂/2Δ̂
− (μ̂− μ2)

� (c∗θ̂)
Δ̂

∣∣∣∣∣
=

∣∣∣(δ/2 − μ̂ + μ2)�Σ−1δ + (δ/2 − μ̂ + μ2)�(c∗θ̂ − c∗θ∗)
∣∣∣

Δ̂
� 1

Δ

(
| (μ̂− μ)� β∗| + ‖θ̂ − θ‖2‖μ̂− μ‖2

)
� | (μ̂− μ)� β∗|

Δ ,

where the first inequality follows from that Δ is bounded. Take Taylor expansion
on the two terms of Rn(t) around − c∗δ�θ̂/2

Δ̂
and c∗δ�θ̂/2

Δ̂
respectively, we have

Rn(t) − R̃ = 1
2

(
(μ̂− μ1)

� (c∗θ̂)
Δ̂

+ c∗δ�θ̂/2
Δ̂

)
Φ′

(
−c∗δ�θ̂/2

Δ̂

)

− 1
2

(
(μ̂− μ2)

� (c∗θ̂)
Δ̂

− c∗δ�θ̂/2
Δ̂

)
Φ′

(
c∗δ�θ̂/2

Δ̂

)

+ 1
4

⎛⎝Φ′′(b3n)
(

(μ̂− μ1)
� (c∗θ̂)

Δ̂
+ c∗δ�θ̂/2

Δ̂

)2
⎞⎠

+ 1
4

⎛⎝Φ′′(b4n)
(

(μ̂− μ2)
� (c∗θ̂)

Δ̂
− c∗δ�θ̂/2

Δ̂

)2
⎞⎠

= Φ′′(b3n) + Φ′′(b4n)
4

(μ̂− μ)� (c∗θ̂)
Δ̂

, (B.4)

where b3n is some point between
(
μ̂−μ1

)�
(c∗θ̂)

Δ̂
and c∗δ�θ̂/2

Δ̂
and b4n is some

point between
(
μ̂−μ1

)�
(c∗θ̂)

Δ̂
and − c∗δ�θ̂/2

Δ̂
, then

Φ′′(b3n) � Φ′′(b4n) � Δ
2 exp

(
−Δ2

8

)
.



Varying coefficient LDA 5403

In fact, we also used μ−μ1 = −δ/2 and μ−μ2 = δ/2 to obtain (B.4). Then (B.4)
implies

|Rn(t) − R̃| �
∣∣∣(μ̂− μ)� (c∗θ∗)

∣∣∣2 +
∣∣∣(μ̂− μ)� (θ̂ − θ∗)

∣∣∣2
� | (μ̂− μ)� β∗|2. (B.5)

Combining (B.3) and (B.5), for any u ∈ [0, 1], it holds that

|Rn(u) −R(u)| ≤ |Rn(u) − R̃(u)| + |R̃(u) −R(u)|

� ‖θ̂(u) − θ∗(u)‖2
2 +
∣∣∣(μ̂(u) − μ(u))� β∗(u)

∣∣∣2 .
B.2. Proof of Theorem 3.1 and 3.3

Here we only prove Theorem 3.1, and the proof of Theorem 3.1 can be easily
obtained through the similar analysis. The following lemma provides the lower
bound and upper bound for the eigenvalues of E[B̃B̃

�
], and the proof is deferred

to Appendix C.2.

Lemma B.2. Assume the assumptions hold, then there exist two positive con-
stant M1 and M2 such that

M1λ0 ≤ λmin(E[B̃B̃
�

]) ≤ λmax(E[B̃B̃
�

]) ≤ M2(λ1 + δp/4).

Proof of Theorem 3.1. There exists θ̄j(U) = γ̄�
j B(U) for j = 0, 1, ..., p such

that
sup

u∈[0,1]
|θ∗j (u) − θ̄j(u)| ≤ M0L

−d
n . (B.6)

Let γ̄ = (γ̄�
1 , · · · , γ̄�

p )�, then note that

γ̃ − γ̄ =
[
E

(
B̃B̃

�)]−1
E

[
B̃
(
Z − B̃

�
γ̄
)]

, (B.7)

The optimality condition of θ∗j (U) implies that

E

[
(Xj − μj(U))

(
Z −

p∑
l=1

(Xj − μj(U))θ∗j (U)
)∣∣∣∣U

]
= 0,

which means

E

[
(Xj − μj(U))B(U)

(
Z −

p∑
l=1

(Xj − μj(U))θ∗j (U)
)]

= 0.

Recall B̃ = (X − μ) ⊗B, then we can get

E

[
B̃
(
Z − B̃

�
γ̄
)]

=E

⎡⎣B̃
⎛⎝ p∑

j=1
θ∗j (U)(Xj − μj(U))−

p∑
j=1

θ̄j(U)(Xj−μj(U))

⎞⎠⎤⎦
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= E

[
B̃(X − μ)�(θ∗(U) − θ̄(U))

]
.

Let C(U) = E
[
(X − μ(U))(X − μ(U))�|U

]
, then simple calculation yields

that

C(U) = Σ(U) + 1
4(μ1(U) − μ2(U))(μ1(U) − μ2(U))�.

For ν = (ν�
(1), ...,ν

�
(p))�, we denote ν̃(U) = (ν�

(1)B(U), ...,ν�
(p)B(U))�. Then

we have ∥∥∥E[B̃(Z − B̃
�
γ̄)]
∥∥∥

2

= sup
‖ν‖2=1

∣∣∣E[ν�B̃(Z − B̃
�
γ̄)]
∣∣∣

= sup
‖ν‖2=1

∣∣E[ν̃(U)�(X − μ(U))(X − μ(U))�(θ∗(U) − θ̄(U))]
∣∣

= sup
‖ν‖2=1

∣∣E [‖ν̃(U)‖2‖C(U)‖2‖θ∗(U) − θ̄(U)‖2
]∣∣

�√
pL−d

n sup
‖ν‖2=1

E[‖ν̃(U)‖2], (B.8)

where the last inequality follows from (B.6) and ‖C(u)‖2 ≤ ‖Σ(u)‖2 +δp. Using
the inequality (A.1) and ‖ν‖2 = 1, we have

E[‖ν̃‖2] ≤
(
E[‖ν̃‖2

2]
)1/2 = Ln

⎛⎝ p∑
j=1

E[(ν�
(j)B

∗)2]

⎞⎠1/2

�

⎛⎝ p∑
j=1

‖ν(j)‖2
2

⎞⎠1/2

.

Combining (B.7) and (B.8), we are guaranteed that ‖γ̃ − γ̄‖2 � √
pL−d

n . Recall
that θ̃j(u) = γ̃�

j B(u), together with (A.1), we can have

‖θ̃ − θ̄‖2
L2

=
∫ 1

0

∥∥∥θ̃(u) − θ̄(u)
∥∥∥2

2
du = Ln

p∑
j=1

∫ 1

0

((
γ̃(j) − θ̄(j)

)�
B∗(u)

)2

du

�
p∑

j=1
‖γ̃(j) − θ̄(j)‖2

2

= ‖γ̃ − γ̄‖2
2.

It yields that

‖θ∗ − θ̃‖L2 ≤ ‖θ∗ − θ̄‖L2 + ‖θ̃ − θ̄‖L2 � √
pL−d

n .

B.3. Proof of Theorem 3.2

Let Dn = 1
2n
∑2n

i=1 B̃iB̃
�
i and bn = 1

2n
∑2n

i=1 B̃iZi. Correspondingly, we write
D = E[B̃B̃

�
] and b = E[B̃Z]. The following two lemmas give the concentration

bounds for two terms in estimation error ‖γ̂ − γ̃‖2. We defer the proofs in
Section C.
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Lemma B.3. Under the conditions of Theorem 3.2, we have

‖Dn − D‖2 � Ln

√
p logn

n
+ pL3/2

n an

√
logn
n

, (B.9)

holds with probability at least 1 − n−ϑLnp − pLnn
−ϑ.

Lemma B.4. Under the conditions of Theorem 3.2, we have

‖Dnγ̃ − Dγ̃‖2 �
√

pLn logn
n

+ pLnan

√
logn
n

, (B.10)

holds with probability at least 1 − n−ϑLnp − pLnn
−ϑ.

Lemma B.5. Under the conditions of Theorem 3.2, we have

|bn − b|∞ �
√

logn
n

+ L
− 1

2
n an, (B.11)

holds with probability 1 − pLnn
−ϑ.

Proof of Theorem 3.2. From the definition of γ̂ and γ̃, we have

γ̂ − γ̃ = D−1
n bn − γ̃ = D−1

n (bn − Dnγ̃) . (B.12)

Now let us recall the optimal condition of γ̃,

0 = E

[
B̃
(
Z − B̃

�
γ̃
)]

= b− Dγ̃. (B.13)

In addition, notice that

b = E [(X − μ(U)) ⊗BZ]

= 1
2E [(μ1(U) − μ(U)) ⊗B] − 1

2E [(μ2(U) − μ(U)) ⊗B]

= E [(μ1(U) − μ2(U)) ⊗B] .

For ν = (ν�
(1), ...,ν

�
(p))� ∈ R

pLn , we denote ν̃(U) = (ν�
(1)B(U), ...,ν�

(p)B(U))�.
By the definition of ‖ · ‖2 and (A.1), we have

‖b‖2 = sup
ν∈SpLn−1

∣∣ν�b
∣∣

= sup
ν∈SpLn−1

∣∣E [ν� ((μ1(U) − μ2(U)) ⊗B)
]∣∣

= sup
ν∈SpLn−1

∣∣E [ν̃(U)� (μ1(U) − μ2(U))
]∣∣

≤ δp sup
ν∈SpLn−1

E [‖ν̃(U)‖2]

≤ δp sup
ν∈SpLn−1

(
E[‖ν̃(U)‖2

2]
)1/2
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= δp sup
ν∈SpLn−1

⎛⎝ p∑
j=1

E

[
(ν�

(j)B(U))2
]⎞⎠1/2

� δp sup
ν∈SpLn−1

⎛⎝ p∑
j=1

‖ν(j)‖2
2

⎞⎠1/2

= δp, (B.14)

where δp = supu∈[0,1] ‖μ1(u)−μ2(u)‖2. According to Lemma B.3, we know that
‖Dn − D‖2 = oP(1). Using the inequality (A.4), we get∥∥D−1

n − D−1∥∥
2 ≤ 2

∥∥D−1∥∥
2 ‖Dn − D‖2

≤ 2M−1
1 λ−1

0 ‖Dn − D‖2 ,

where the second inequality follows from Lemma B.2. Hence we can guaran-
tee that ‖D−1

n ‖2 = O(1) with high probability. By plugging the bounds in
Lemma B.4 and B.5, together with (B.13), we have

‖γ̂ − γ̃‖2 ≤ ‖D−1
n ‖2‖bn − Dnγ̃‖2

= ‖D−1
n ‖2‖bn − Dnγ̃ − b + Dγ̃‖2

� ‖bn − b‖2 + ‖Dnγ̃ − Dγ̃‖2

�
√

pLn logn
n

+ anpLn

√
logn
n

. (B.15)

Recall θ̂ = (B(u)�γ̂(1), ...,B(u)�γ̂(p))� and θ̃(u) = (B(u)�γ̃(1), ...,

B(u)�γ̃(p))�. Applying (A.1), we have∫ 1

0
‖θ̂(u) − θ̃(u)‖2

2du = Ln

p∑
j=1

∫ 1

0

(
B∗(u)�(γ̂(j) − γ̃(j))

)2
du

�
p∑

j=1
‖γ̂(j) − γ̃(j)‖2

2 = ‖γ̂ − γ̃‖2
2.

Then we have finished the proof of Theorem 3.2 by plugging (B.15).

B.4. Proof of Theorem 3.4

The following lemma provides the �2 error bound for general quadratic group
lasso problem. We defer the proof of Lemma B.6 to Appendix C.6.

Lemma B.6. For general quadratic group lasso problem

γ̂ = arg min
γ∈RpLn

1
2γ

�Aγ − b�γ + λ

p∑
j=1

‖γj‖2,

if the following two conditions hold
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1. A satisfies the restrictive eigenvalue condition with parameter ζ: for any
ξ ∈ R

pLn such that ‖ξ‖1 ≤ 4
√
sLn‖ξ‖2, it holds that

ξ�Aξ ≥ ζ‖ξ‖2.

2. for any γ̌ ∈ R
pLn such that γ̌(j) = 0 for j ∈ Sc and

max
1≤j≤p

‖(Aγ̌ − b)(j)‖2 ≤ λ

2 . (B.16)

then we have

‖γ̂ − γ̌‖2 ≤ 12
√
sλ

ζ
and ‖γ̂ − γ̌‖1 ≤ 48s

√
Lnλ

ζ
.

Lemma B.7. Under conditions (C1)-(C5), let ν ∈ R
pLn be a fixed vector with

ν(Sc) = 0, then for any ϑ > 0 we have

max
1≤j≤p

‖(Dnγ̃ − Dγ̃)(j)‖2 � ‖ν‖2

(√
Ln log p

n
+ anLns

√
log p
n

)
,

holds with probability at least 1 − Lnp
−ϑ − Lnsp

−ϑ − sp−ϑLn .

Proof of Theorem 3.4. According to Lemma B.6, it suffices to show the restric-
tive eigenvalue condition of Dn and the inequality (B.16). For any ξ ∈ R

pLn

such that ‖ξ‖1 ≤ 4
√
sLn‖ξ‖2, we have

ξ�Dnξ = ξ�E[B̃B̃
�

]ξ + ξ�(Dn − D)ξ
≥ M1λ0‖ξ‖2

2 − ‖ξ‖1|(Dn − D)ξ|∞
≥ M1λ0‖ξ‖2

2 − ‖ξ‖2
1 |Dn − D|∞

≥ (M1λ0 − 4sLn |Dn − D|∞) ‖ξ‖2
2.

By tracing the proof of Lemma B.7, we can guarantee sLn|Dn − D|∞ = oP(1).
It implies that there exists some positive constant ζ such that,

ξ�Dnξ ≥ ζ‖ξ‖2
2.

Hence we have verified the restrictive eigenvalue condition. Recall the approxi-
mation coefficient γ̃(S) = D−1

(SS)b(S) and γ̃(Sc) = 0, then we have

(Dnγ̃ − bn)(S) = (Dn)(SS)D−1
(SS)b(S) − (bn)(S), (B.17)

and
(Dnγ̃ − bn)(Sc) = (Dn)(ScS)D−1

(SS)bS − (bn)(Sc). (B.18)

In addition, similar to (B.14), we can verify ‖b(S)‖2 � δs. Together with Lemma
B.2, we have

‖γ̃(S)‖2 ≤ ‖D−1
(SS)‖2‖b(S)‖2 � δs.
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Then from (B.17), Lemma B.7 and B.5, for any j ∈ S

‖(Dnγ̃ − bn)(j)‖2 ≤ max
j∈S

∥∥∥[(Dn)(j,S) − D(j,S)
]
γ̃(S)

∥∥∥
2

+
√
Ln

∣∣b(S) − (bn)(S)
∣∣
∞

�
√

Ln log p
n

+ anLns

√
log p
n

+
√

Ln log p
n

+ an

�
√

Ln log p
n

+ anLns

√
log p
n

+ an,

holds with probability at least 1 − Lnp
−ϑ − Lnsp

−ϑ − sp−ϑLn . Next we will
derive the bound for j ∈ Sc. From (B.18), we claim that for any j ∈ Sc

‖(Dnγ̃ − bn)(j)‖2 ≤
∥∥∥(D(ScS)γ̃(S))(j) − b(j)

∥∥∥
2

+
∥∥∥[(Dn)(j,S) − D(j,S)

]
γ̃(S)

∥∥∥
2

+
√

Ln

∣∣b(Sc) − (bn)(Sc)
∣∣
∞ .

Using the optimality of θ∗(U), we have

E

⎧⎨⎩B̃(Sc)

⎡⎣Z −
∑
j∈S

(Xj − μj(U))θ∗j (U)

⎤⎦⎫⎬⎭ = 0.

Together with θ̃j(U) = B(U)�γ̃(j), b(Sc) = E[B̃(Sc)Z] and B̃(j) = (Xj −
μj(U))B(U), we also have

D(ScS)γ̃(S) = E

{
B̃(Sc)B̃

�
(S)γ̃(S)

}
= E

⎧⎨⎩B̃(Sc)
∑
j∈S

(Xj − μj(U))B(U)�γ̃(j)

⎫⎬⎭
= E

⎧⎨⎩B̃(Sc)

⎡⎣∑
j∈S

(Xj − μj(U))θ̃j(U) − Z

⎤⎦⎫⎬⎭+ b(Sc)

= E

⎧⎨⎩B̃(Sc)

⎡⎣∑
j∈S

(Xj − μj(U))(θ̃j(U) − θ∗j (U))

⎤⎦⎫⎬⎭+ b(Sc).

Let cj,S(U) = E[(Xj − μj(U))(X − μ(U))S |U ], then for j ∈ Sc, it holds that

(D(ScS)γ̃(S))(j) − b(j) = E

[
B̃(j)(X − μ(U))�S (θ∗(U) − θ̃(U))S

]
.

For any ν ∈ S
Ln−1,∣∣∣E [ν�B̃(j)(X − μ(U))�S (θ∗(U) − θ̃(U))S

]∣∣∣
=
∣∣∣E [ν�B(Xj − μj(U))(X − μ(U))�S (θ∗(U) − θ̃(U))S

]∣∣∣
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=
∣∣∣E [ν�Bcj,S(U)�(θ∗(U) − θ̃(U))S

]∣∣∣
≤ sup

u∈[0,1]

{
‖cj,S(u)‖2‖(θ∗(u) − θ̃(u))S‖2

}
E
[
|ν�B|

]
� δs

√
sL−d

n

(
E

[(
ν�B

)2])1/2

�
√
sL−d

n ,

where we used Theorem 3.3 and

sup
u∈[0,1]

‖cj,S(U)‖2 = sup
u∈[0,1]

‖(μ1j(u) − μj(u))(μ1(u) − μ(u))S‖2

� sup
u∈[0,1]

‖(μ1(u) − μ2(u))S‖2 ≤ δs.

Hence we have for any j ∈ Sc,∥∥∥(D(ScS)γ̃(S))(j) − b(j)

∥∥∥
2
≤ sup

ν∈SLn−1

∣∣∣ν�
(
(D(ScS)γ̃(S))(j) − b(j)

)∣∣∣ � δs
√
sL−d

n .

Then applying Lemma B.7 and B.5, we claim that

max
j∈Sc

‖(Dnγ̃ − bn)(j)‖2 �
√

Ln log p
n

+ anLns

√
log p
n

+ an +
√
sL−d

n

holds with probability at least 1 − 10Lnp
−ϑ.

Appendix C: Deferred proofs of Section A and B

C.1. Proof of Lemma A.3

Proof. Let SLn−1 be the unit sphere in R
Ln , we denote the 1

8 -covering of SLn−1

by {ν1, ...,νK} with K ≤ 17Ln . Let Q =
∑n

i=1 BiB
�
i /n − E[BB�], then we

have
‖Q‖2 = sup

ν∈SLn−1
|ν�Qν|.

Based on the definition of covering set, for any ν ∈ S
Ln−1, there exists some

1 ≤ k ≤ K such that ‖ν − νk‖2 ≤ 1/8. It follows that

|ν�Qν| ≤ |ν�
k Qνk| + 2|ν�

k Q(νk − ν)| + |(νk − ν)�Q(νk − ν)|

≤ |ν�
k Qνk| +

1
4‖Q‖2 + 1

64‖Q‖2

≤ |ν�
k Qνk| +

1
2‖Q‖2.

Thus we have

‖Q‖2 ≤ 2 max
1≤k≤K

|ν�
k Qνk| = 2 max

1≤k≤K

∣∣∣∣∣ 1n
n∑

i=1
(ν�

k Bi)2 − E[(ν�
k B)2]

∣∣∣∣∣ . (C.1)
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Since ‖B∗
i ‖2

2 =
∑Ln

k=1(B∗
k(Ui))2 ≤

∑Ln

k=1 B
∗
k(Ui) = 1, together with (A.1), we

have

E
[
(ν�

k B
∗
i )4 exp{η(ν�

k B
∗
i )2}

]
≤ eηE

[
(ν�

k B
∗
i )2
]

� L−1
n ‖νk‖2

2 = L−1
n ,

together with Lemma A.1 we claim that

P

(
max

1≤k≤K

∣∣∣∣∣ 1n
n∑

i=1
(ν�

k Bi)2−E[(ν�
k B)2]

∣∣∣∣∣≥CLn

√
Ln logn
nLn

)
≤Kn−ϑL3

n ≤n−ϑLn .

Then the conclusion follows immediately.

C.2. Proof of Lemma B.2

Proof of Lemma B.2. Let C(u) = E[(X−μ(u))(X−μ(u))�], and then it holds

C(u)= 1
2
(
E
[
(X−μ(u))(X−μ(u))�|Y = 1

]
+E
[
(X−μ(u))(X−μ(u))�|Y =0

])
= Σ(u) + 1

4(μ1(u) − μ2(u))(μ1(u) − μ2(u))�.

From conditions (C1) and (C4) we have

λ0 ≤ λmin(C(u)) ≤ λmax(C(u)) ≤ λ1 + 1
4δp, (C.2)

holds for any u ∈ [0, 1]. In addition, we notice that

E[B̃B̃
�

] = E

[(
(X − μ(U))(X − μ(U))�

)
⊗
(
BB�

)]
= E

[
C(U) ⊗

(
BB�

)]
.

Then for any η = (η�
(1), · · · ,η�

(p))� ∈ R
Lnp with ‖η‖2 = 1, we have

η�
E[B̃B̃

�
]η = E

⎛⎝ p∑
j=1

(Xj − μj(U))B�ηj

⎞⎠2

= E

[(
B�η(1), · · · ,B�η(p)

)
C(U)

(
B�η(1), · · · ,B�η(p)

)�]

≥ inf
u∈[0,1]

λmin (C(u))E

⎡⎣ p∑
j=1

η�
(j)BB�η(j)

⎤⎦
≥ λ0λmin(E[BB�]).

Similarly, we have

η�
E[B̃B̃

�
]η ≤

(
λ1 + δp

4

)
λmax(E[BB�]).

Then the result follows from λmin(E[BB�]) = O(1) and λmax(E[BB�]) = O(1)
(see Section A.1).
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C.3. Proof of Lemma B.3

To prove Lemma B.3, we impose the following five lemmas on the concentration
inequalities of random matrices. The proofs can be found in Appendix D.1 - D.4.

Lemma C.1. Let Zi = Z(Ui) = (Xi−μk(Ui)) ⊗ Bi, then under condition
(C1)-(C4), we have for any ϑ > 0 and k = 1, 2∥∥∥∥∥ 1

n

∑
i∈Ik

{
ZiZ

�
i − E

[
ZiZ

�
i |Yi = k

]}∥∥∥∥∥
2

� Ln

√
p logn

n
,

and ∥∥∥∥∥ 1
n

∑
i∈Ik

{
ZiZ

�
i − E

[
ZiZ

�
i |Yi = k

]}
γ̃

∥∥∥∥∥
2

�
√

pLn logn
n

,

hold with probability at least 1 − n−ϑpLn .

Lemma C.2. Under conditions (C1)-(C4), for k = 1, 2 and any ϑ > 0, we
have ∥∥∥∥∥ 1

n

∑
i∈Ik

[
(Xi − μk(Ui))(μ1(Ui) − μ2(Ui))�

]
⊗
(
BiB

�
i

)∥∥∥∥∥
2

� Ln

√
p log n

n
,∥∥∥∥∥ 1

n

∑
i∈Ik

{[
(Xi − μk(Ui))(μ1(Ui) − μ2(Ui))�

]
⊗
(
BiB

�
i

)}
γ̃

∥∥∥∥∥
2

�
√

pLn logn
n

,

hold with probability at least 1 − n−ϑLnp.

Lemma C.3. Under conditions (C1)-(C4), let Ai=[(μ1(Ui)−μ2(Ui))(μ1(Ui)−
μ2(Ui))�] ⊗ (BiB

�
i ), then for any ϑ > 0,∥∥∥∥∥ 1

n

n∑
i=1

Ai − E[Ai]

∥∥∥∥∥
2

� Ln

√
p logn

n
,∥∥∥∥∥ 1

n

n∑
i=1

(Ai − E[Ai]) γ̃

∥∥∥∥∥
2

�
√

pLn logn
n

hold with probability at least 1 − n−ϑLnp.

Lemma C.4. Under conditions (C1)-(C4), then for k = 1, 2 and any ϑ > 0,∥∥∥∥∥ 1
n

∑
i∈Ik

[(Xi − μk(Ui))(μ̂(Ui) − μ(Ui))�] ⊗ (BiB
�
i )

∥∥∥∥∥
2

� pL3/2
n

√
logn
n

(√
Ln logn

n
+ L−d

n

)
,
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n

∑
i∈Ik

{
[(Xi − μk(Ui))(μ̂(Ui) − μ(Ui))�] ⊗ (BiB

�
i )
}
γ̃

∥∥∥∥∥
2

� pLn

√
logn
n

(√
Ln logn

n
+ L−d

n

)
,

hold with probability at least 1 − n−ϑpLn − pLnn
−ϑ.

Lemma C.5. Under conditions (C1)-(C4), let G(Ui) = [(μ1(Ui) − μ2(Ui))
(μ̂(Ui) − μ(Ui))�] ⊗ (BiB

�
i ), we have for any ϑ > 0∥∥∥∥∥ 1

n

∑
i∈I1

G(Ui) −
1
n

∑
i∈I2

G(Ui)

∥∥∥∥∥
2

� pL3/2
n

√
logn
n

(√
Ln logn

n
+ L−d

n

)
,∥∥∥∥∥ 1

n

∑
i∈I1

G(Ui)γ̃ − 1
n

∑
i∈I2

G(Ui)γ̃

∥∥∥∥∥
2

� pLn

√
logn
n

(√
Ln logn

n
+ L−d

n

)
,

hold with probability at least 1 − n−ϑpLn − pLnn
−ϑ.

Proof of Lemma B.3. Note that we can rewrite E[B̃B̃
�

] and
∑2n

i=1 B̃iB̃
�
i /2n

as

E

[
B̃B̃

�]
= 1

2E
{[

(X − μ1(U)) (X − μ1(U))�
]
⊗ (BB�)

∣∣Y = 1
}

︸ ︷︷ ︸
I∗1

+ 1
2E
{[

(X − μ2(U)) (X − μ2(U))�
]
⊗ (BB�)

∣∣Y = 0
}

︸ ︷︷ ︸
I∗2

+ 1
4E
{[

(μ1(U) − μ2(U))(μ1(U) − μ2(U))�
]
⊗ (BB�)

}
︸ ︷︷ ︸

I∗3

and

1
2n

2n∑
i=1

B̃iB̃
�
i = 1

2n
∑
i∈I1

{[
(Xi − μ̂(Ui))(Xi − μ̂(Ui))�

]
⊗ (BiB

�
i )
}

︸ ︷︷ ︸
I1

+ 1
2n
∑
i∈I2

{[
(Xi − μ̂(Ui))(Xi − μ̂(Ui))�

]
⊗ (BiB

�
i )
}

︸ ︷︷ ︸
I2

.

To upper bound ‖
∑2n

i=1 B̃iB̃
�
i /2n − E[B̃B̃

�
]‖2, we begin with the following
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decompositions for I1 and I2,

I1 = 1
2n
∑
i∈I1

[
(Xi − μ(Ui))(Xi − μ(Ui))�

]
⊗ (BiB

�
i )︸ ︷︷ ︸

I11

+ 1
2n
∑
i∈I1

{[
(Xi − μ(Ui))(μ(Ui) − μ̂(Ui))�

]
⊗ (BiB

�
i )
}

︸ ︷︷ ︸
I12

+ 1
2n
∑
i∈I1

{[
(μ(Ui) − μ̂(Ui))(Xi − μ(Ui))�

]
⊗ (BiB

�
i )
}

︸ ︷︷ ︸
I13

+ 1
2n
∑
i∈I1

[
(μ(Ui) − μ̂(Ui))(μ(Ui) − μ̂(Ui))�

]
⊗ (BiB

�
i )︸ ︷︷ ︸

I14

and
I2 = 1

2n
∑
i∈I2

[
(Xi − μ(Ui))(Xi − μ(Ui))�

]
⊗ (BiB

�
i )︸ ︷︷ ︸

I21

+ 1
2n
∑
i∈I2

{[
(Xi − μ(Ui))(μ(Ui) − μ̂(Ui))�

]
⊗ (BiB

�
i )
}

︸ ︷︷ ︸
I22

+ 1
2n
∑
i∈I2

{[
(μ(Ui) − μ̂(Ui))(Xi − μ(Ui))�

]
⊗ (BiB

�
i )
}

︸ ︷︷ ︸
I23

+ 1
2n
∑
i∈I2

[
(μ(Ui) − μ̂(Ui))(μ(Ui) − μ̂(Ui))�

]
⊗ (BiB

�
i )︸ ︷︷ ︸

I24

Step 1.1. upper bounding ‖I1
1 − I∗1 + I2

1 − I∗2 − I∗3‖2 First, we decompose I1
1

as

I1
1 = 1

2n
∑
i∈I1

[
(Xi − μ1(Ui))(Xi − μ1(Ui))�

]
⊗ (BiB

�
i )︸ ︷︷ ︸

I111

+ 1
4n
∑
i∈I1

[
(Xi − μ1(Ui))(μ1(Ui) − μ2(Ui))�

]
⊗ (BiB

�
i )︸ ︷︷ ︸

I112
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+ 1
4n
∑
i∈I1

[
(μ1(Ui) − μ2(Ui))(Xi − μ1(Ui))�

]
⊗ (BiB

�
i )︸ ︷︷ ︸

I113

+ 1
8n
∑
i∈I1

[
(μ1(Ui) − μ2(Ui))(μ1(Ui) − μ2(Ui))�

]
⊗ (BiB

�
i )︸ ︷︷ ︸

I114

By Lemma C.1, we have

P

(∥∥I1
11 − I∗1

∥∥
2 ≥ CLn

√
p logn

n

)
≤ n−ϑLnp.

By Lemma C.2, we have

P

(∥∥I1
12
∥∥

2 � Ln

√
p logn

n

)
≥ 1 − n−ϑLnp,

and

P

(∥∥I1
13
∥∥

2 � CLn

√
p log n

n

)
≥ 1 − n−ϑLnp.

By Lemma C.3, we have

P

(
‖I1

14 −
1
2I∗3‖2 � Ln

√
p log n

n

)
≥ 1 − pLnn

−ϑ.

Combining the results displayed above, it follows that

P

(
‖I1

1 − I∗1 −
1
2I∗3‖2 � Ln

√
p logn

n

)
≥ 1 − 3n−ϑLnp − pLnn

−ϑ. (C.3)

Similarly, we also have

P

(
‖I2

1 − I∗2 −
1
2I∗3‖2 � Ln

√
p logn

n

)
≥ 1 − 3n−ϑLnp − pLnn

−ϑ. (C.4)

Step 1.2. upper bounding ‖I1
2 + I2

2‖2, ‖I1
3 + I2

3‖2 and ‖I1
4‖2 + ‖I2

4‖2 Note
that

‖I1
2 + I2

2‖2 ≤
∥∥∥∥∥ 1

2n
∑
i∈I1

[
(Xi − μ1(Ui))(μ̂(Ui) − μ(Ui))�

]
⊗ (BiB

�
i )

∥∥∥∥∥
2

+

∥∥∥∥∥ 1
2n
∑
i∈I2

[
(Xi − μ2(Ui))(μ̂(Ui) − μ(Ui))�

]
⊗ (BiB

�
i )

∥∥∥∥∥
2

+

∥∥∥∥∥ 1
4n
∑
i∈I1

G(Ui) −
1
4n
∑
i∈I2

G(Ui)

∥∥∥∥∥
2

,
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where G(Ui) = [(μ1(Ui) − μ2(Ui))(μ̂(Ui) − μ(Ui))�] ⊗ (BiB
�
i ). By invoking

Lemma C.5 and C.3, we have

P

(
‖I1

2 + I2
2‖2 � pL3/2

n an

√
logn
n

)
≥ 1 − n−ϑLnp, (C.5)

where an =
√

Ln logn/n + L−d
n . Similarly, we can obtain

P

(
‖I1

3 + I2
3‖2 � pL3/2

n an

√
logn
n

)
≥ 1 − n−ϑLnp. (C.6)

In addition, by Proposition A.1 we have

‖I1
4‖2 + ‖I2

4‖2 ≤ 2 max
1≤i≤n

‖μ̂(Ui) − μ(Ui)‖2
2‖Bi‖2

2

≤ 2pLna
2
n

(C.7)

Combining (C.3)-(C.7), we have∥∥∥∥∥ 1
2n

2n∑
i=1

B̃iB̃
�
i − E[B̃B̃

�
]

∥∥∥∥∥
2

� Ln

√
p logn

n
+ pL3/2

n an

√
logn
n

(C.8)

holds with probability at least 1 − n−ϑLnp − pLnn
−ϑ.

C.4. Proof of Lemma B.4

Proof. By replacing the bounds for the operator norm of matrices with those
for �2-norm of matrix-vector-products in Section C.3, we can finish the proof
Due to the fact that B̃

�
i γ̃(j) = θ̃j(Ui) is bounded, we can drop a

√
Ln factor

for matrix-vector-product bounds in Lemma C.1- C.3.

C.5. Proof of Lemma B.5

Proof. Note that for any j = 1, 2, ..., p and k = 1, 2, ..., Ln, we find that

1
2n

2n∑
i=1

Bk(Ui)(Xij − μ̂j(Ui))Zi

= 1
4n
∑
i∈I1

Bk(Ui)(Xij − μ̂j(Ui)) −
1
4n
∑
i∈I2

Bk(Ui)(Xij − μ̂j(Ui))

=1
4

1
2n

2n∑
i=1

Bk(Ui)μ̂1j(Ui)︸ ︷︷ ︸
I1

−1
4

1
2n

2n∑
i=1

Bk(Ui)μ̂2j(Ui)︸ ︷︷ ︸
I2

,
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where we used μ̂1j = B�
i α̂1j , μ̂2j = B�

i α̂2j and the optimal condition for α̂1j
and α̂2j such that∑

i∈I1

Bi(Xij −B�
i α̂1j) = 0,

∑
i∈I2

Bi(Xij −B�
i α̂2j) = 0.

Moreover, note that

E[Bk(U)(Xj − μj(U))Z]

=1
4E[Bk(U)(Xj − μj(U))|Y = 1] − 1

4E[Bk(U)(Xj − μj(U))|Y = 0]

=1
4 E[Bk(U)μ1j(U)]︸ ︷︷ ︸

I∗
1

−1
4 E[Bk(U)μ2j(U)]︸ ︷︷ ︸

I∗
2

The remaining detail is to upper bound |I1 − I∗1 |. According to Proposition A.1
and Bk =

√
LnB

∗
k , we have

|I1 − I∗1 | ≤
√

Ln

∣∣∣∣∣ 1
2n

2n∑
i=1

B∗
k(Ui)[μ̂1j(Ui) − μ1j(Ui)]

∣∣∣∣∣
+
√
Ln

∣∣∣∣∣ 1
2n

2n∑
i=1

B∗
k(Ui)μ1j(Ui) − E[B∗

k(U)μ1j(U)]

∣∣∣∣∣
≤ an

√
Ln

∣∣∣∣∣ 1
2n

2n∑
i=1

|B∗
k(Ui)| − E[|B∗

k(Ui)|]
∣∣∣∣∣+ an

√
LnE[|B∗

k(U)|]

+
√
Ln

∣∣∣∣∣ 1
2n

2n∑
i=1

B∗
k(Ui)μ1j(Ui) − E[B∗

k(U)μ1j(U)]

∣∣∣∣∣ .
Using Lemma A.1, we can verify

P

(∣∣∣∣∣ 1
2n

2n∑
i=1

B∗
k(Ui)μ1j(Ui) − E[B∗

k(U)μ1j(U)]

∣∣∣∣∣ �
√

logn
Lnn

)
≥ 1 − n−ϑ

and

P

(∣∣∣∣∣ 1
2n

2n∑
i=1

|B∗
k(Ui)| − E[|B∗

k(Ui)|]
∣∣∣∣∣ �
√

logn
Lnn

)
≥ 1 − n−ϑ.

In addition, recall the fact that E|B∗
k(U)| ≤ M2L

−1
n , which yields that

P

(
|I1 − I∗1 | �

√
logn
n

+ L−1/2
n an

)
≥ 1 − n−ϑ.

Thus we are guaranteed that

P

(∣∣∣∣∣ 1
2n

2n∑
i=1

B̃iZi − E[B̃Z]

∣∣∣∣∣ �
√

logn
n

+ L−1/2
n an

)
≥ 1 − 4pLnn

−ϑ. (C.9)
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C.6. Proof of Lemma B.6

Proof. By the optimality of γ̂, we have

1
2 (γ̂ − γ̌)� A (γ̂ − γ̌) + λn

p∑
j=1

‖γ̂(j)‖2 ≤ (Aγ̌ − b)� (γ̌ − γ̂) + λn

p∑
j=1

‖γ̌(j)‖2.

(C.10)
Using the condition (B.16) and dropping the first non-negative term in the left
hand side of (C.10), we are guaranteed that

λn

p∑
j=1

‖γ̂(j)‖2 ≤
p∑

j=1
‖(Aγ̌ − b)(j)‖2‖(γ̌ − γ̂)(j)‖2 + λn

p∑
j=1

‖γ̌(j)‖2

≤ λn

2

p∑
j=1

‖(γ̌ − γ̂)(j)‖2 + λn

p∑
j=1

‖γ̌(j)‖2

= λn

2
∑
j∈S

‖(γ̌ − γ̂)(j)‖2 + λn

2
∑
j∈Sc

‖(γ̌ − γ̂)(j)‖2 + λn

∑
j∈S

‖γ̌(j)‖2.

It follows from the assumption γ̌(j) = 0 for j ∈ Sc that

1
2
∑
j∈Sc

‖(γ̌ − γ̂)(j)‖2 ≤ 1
2
∑
j∈S

‖(γ̌ − γ̂)(j)‖2 +
∑
j∈S

‖γ̌(j)‖2 −
∑
j∈S

‖γ̂(j)‖2

≤ 1
2
∑
j∈S

‖(γ̌ − γ̂)(j)‖2 +
∑
j∈S

‖(γ̌ − γ̂)(j)‖2

≤ 3
2
∑
j∈S

‖(γ̌ − γ̂)(j)‖2, (C.11)

where we used the fact ‖γ̌(j)‖2 − ‖γ̂(j)‖2 ≤ ‖(γ̌ − γ̂)(j)‖2. From (C.10), we can
also obtain that

1
2 (γ̂ − γ̌)� A (γ̂ − γ̌) ≤ λn

2

p∑
j=1

‖(γ̌ − γ̂)(j)‖2 + λn

p∑
j=1

‖γ̌(j)‖2 − λn

p∑
j=1

‖γ̂(j)‖2

≤ 3λn

2

p∑
j=1

‖(γ̌ − γ̂)(j)‖2. (C.12)

By the restrictive eigenvalue condition of A, we know

1
2 (γ̂ − γ̌)� A (γ̂ − γ̌) ≥ ζ

2‖γ̌ − γ̂‖2
2.

Together with (C.12) and (C.11), we further have

ζ‖γ̌ − γ̂‖2
2 ≤ 3λn

p∑
j=1

‖(γ̌ − γ̂)(j)‖2
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= 3λn

⎛⎝∑
j∈S

‖(γ̌ − γ̂)(j)‖2 +
∑
j∈Sc

‖(γ̌ − γ̂)(j)‖2

⎞⎠
≤ 12λn

∑
j∈S

‖(γ̌ − γ̂)(j)‖2

≤ 12λn

√
s‖(γ̌ − γ̂)(S)‖2

≤ 12λn

√
s‖γ̌ − γ̂‖2,

which yields the first conclusion in Lemma B.6. In fact, we also used the following
relation ⎛⎝∑

j∈S

‖(γ̌ − γ̂)(j)‖2

⎞⎠2

≤ s
∑
j∈S

‖(γ̌ − γ̂)(j)‖2
2 = s‖(γ̌ − γ̂)(S)‖2

2.

And the second conclusion holds since

‖γ̌ − γ̂‖1 =
∑
j∈S

‖(γ̌ − γ̂)(j)‖1 +
∑
j∈Sc

‖(γ̌ − γ̂)(j)‖1

≤
√
Ln

∑
j∈S

‖(γ̌ − γ̂)(j)‖2 +
√

Ln

∑
j∈Sc

‖(γ̌ − γ̂)(j)‖2

≤ 4
√
Ln

∑
j∈S

‖(γ̌ − γ̂)(j)‖2

≤ 4
√
sLn‖γ̌ − γ̂‖2.

C.7. Proof of Lemma B.7

Proof of Lemma B.7. Recall that γ̃(Sc) = 0, thus

max
1≤j≤p

‖(Dnγ̃ − Dγ̃)(j)‖2 = max
1≤j≤p

‖(Dn − D)(j,S)γ̃(S)‖2.

Then it suffices to show that

max
1≤j≤p

‖(Dn − D)(j,S)γ̃(S)‖2 �
√

log p
n

+ Ln log p
n

+ L−2d
n , (C.13)

with high probability. We use the same decomposition for Dn − D in the Sec-
tion C.3 and only prove the counterpart to {i : Yi = 1}. Correspondingly, the
expectation E[·] means conditional expectation E[·|Yi = 1]. We split the proof
into the following two main steps.

Step 1. upper bounding max1≤j≤p ‖(I1
1−I∗1 +I2

1−I∗2−I∗3)(j,S)γ̃(S)‖2 Recall∥∥∥∥(I1
1 − I∗1 −

1
2I∗3)(j,S)γ̃(S)

∥∥∥∥
2
≤
∥∥∥(I1

11 − I∗1)(j,S)γ̃(S)

∥∥∥
2
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+
∥∥∥(I1

12)(j,S)γ̃(S)

∥∥∥
2

+
∥∥∥(I1

13)(j,S)γ̃(S)

∥∥∥
2

+
∥∥∥∥(I1

14 −
1
2I∗3)(j,S)γ̃(S)

∥∥∥∥
2
.

Notice that

∥∥∥(I1
11)(j,S)γ̃(S)

∥∥∥
2

=
√

Ln

∥∥∥∥∥ 1
n

n∑
i=1

(Xij − μ1j(Ui))θ̃S(Ui)� (X − μ1(Ui))S B∗
i

∥∥∥∥∥
2

.

Given Yi = 1 and Ui, θ̃S(Ui)� (X − μ1(Ui))S is a normal random variable
with mean-zero. Due to our assumption supu∈[0,1] ‖θ∗(u)‖2 ≤ δs, together with
Theorem 3.3, we have

E1

[(
θ̃S(Ui)� (X − μ1(Ui))S

)2 ∣∣Ui

]
= θ̃S(Ui)�ΣSS(Ui)θ̃S(Ui)

≤ λ1‖θ̃S(Ui)‖2
2

≤ 2λ1

(
‖θ̃S(Ui)‖2

2 + ‖θ̃S(Ui) − θ∗
S(Ui)‖2

2

)
� 2λ1

(
δs + sL−d

n

)
= O(1).

Let Ti,jk = B∗
k(Ui)θ̃S(Ui)� (X − μ1(Ui))S (Xij − μ1j(Ui)) for 1 ≤ j ≤ p and

1 ≤ k ≤ Ln, then we have

∥∥∥(I1
11 − I∗1)(j,S)γ̃(S)

∥∥∥
2
≤ Ln max

1≤k≤Ln

∣∣∣∣∣ 1n ∑
i∈I1

Ti,jk − E1[Ti,jk]

∣∣∣∣∣ . (C.14)

In addition,

E1
{
(Ti,jk − E[Ti,jk])2 exp [η |Ti,jk − E1[Ti,jk]|]

}
≤E1

{
T 2
i,jk exp [η |Ti,jk − E1[Ti,jk]|]

}
+ [E1[Ti,jk]]2E1 {exp [η |Ti,jk − E1[Ti,jk]|]}

≤ exp(η|E1[Ti,jk]|)
(
E1
{
T 2
i,jk exp [η|Ti,jk|]

}
+ [E1[Ti,jk]]2E1 {exp [η |Ti,jk|]}

)
.

Recall that E1[(Xij − μ1j(Ui))(X − μ1(Ui))|Ui] = Σj,S(Ui), we have

E1[Ti,jk] ≤E1

[
B∗

k(Ui)θ̃S(Ui)� (X − μ1(Ui))S (Xij − μ1j(Ui))
]

≤E

[
B∗

k(Ui)
∣∣∣θ̃S(Ui)�Σj,S(Ui)

∣∣∣]
≤λ1 sup

u∈[0,1]
‖θ̃S(u)‖2E [B∗

k(Ui)]

�L−1
n .
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Denote Hi = θ̃S(Ui)� (X − μ1(Ui))S . Applying the second assertion of Lemma
A.2, for any η > for sufficiently large C > 0, we have

E1
{
T 2
i,jk exp [η|Ti,jk|]

}
≤ E1

{
(B∗

k(Ui))2(Xij − μ1j(Ui))2H2
i exp [η|(Xij − μ1j(Ui))Hi|]

}
≤ E1

[
(B∗

k(Ui))2
(
E

[
(Xij − μ1j(Ui))4e2η|Xij−μ1j(Ui)|

∣∣Ui

]
E

[
H4

i e
2η|Hi|

∣∣Ui

])1/2
]

� E
[
(B∗

k(Ui))2
]

� L−1
n .

In fact, we also used the fact E[H2(Ui)|Ui] and E[(Xij − μ1j(Ui))2] are both
bounded. Moreover, for η = 1/(2Cλ1) for sufficiently large C > 0, it holds

E1

[
eη|Ti,jk|

]
≤ E1

[
eη|(Xij−μ1j(Ui))Hi|

]
≤ E1

[
eη(|Xij−μ1j(Ui)|2+H2

i |)
]

≤ E1

[(
E

[
e2η|Xij−μ1j(Ui)|2

∣∣Ui

]
E1

[
e2η|Hi|2

∣∣Ui

])1/2
]

= O(1).

Combing the results above, we conclude that

E1
{
(Ti,jk − E[Ti,jk])2 exp [η |Ti,jk − E[Ti,jk]|]

}
� L−1

n .

According to Lemma A.1, we are guaranteed that

P

(
max
j,k

∣∣∣∣∣ 1n ∑
i∈I1

Ti,jk − E1[Ti,jk]

∣∣∣∣∣ �
√

log p
nLn

)
≥ 1 − Lnp

−ϑ.

In conjunction with (C.14), it follows that

P

(
max

1≤j≤p

∥∥∥(I1
11 − I∗1)(j,S)γ̃(S)

∥∥∥
2

�
√

Ln log p
n

)
≥ 1 − Lnp

−ϑ. (C.15)

For I1
12 and I1

13, we have

∥∥∥(I1
12)(j,S)γ̃(S)

∥∥∥
2
≤ Ln max

1≤k≤Ln

∣∣∣∣∣ 1n
n∑

i=1
Ei,jk

∣∣∣∣∣ , (C.16)

and ∥∥∥(I1
13)(j,S)γ̃(S)

∥∥∥
2
≤ Ln max

1≤k≤Ln

∣∣∣∣∣ 1n
n∑

i=1
Fi,jk

∣∣∣∣∣ , (C.17)

where

Ei,jk = B∗
k(Ui)(Xij − μ1j(Ui))θ̃S(Ui)� (μ1(Ui) − μ2(Ui))S ,
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and
Fi,jk = B∗

k(Ui)(Xij − μ1j(Ui))θ̃S(Ui)� (X − μ1(Ui))S .

Due to the fact that
∑s

l=1(ν̃
�
(l)B

∗
i )2 ≤ 1, we can verify that

max
{
E1

(
E2

i,jke
η|Ei,jk|

)2
,E1

(
F 2
i,jke

η|Fi,jk|
)2
}

� L−1
n .

Combining with Lemma A.1, (C.16) and (C.17), we are guaranteed that

P

(
max

1≤j≤p

{∥∥∥(I1
12)(j,S)γ̃(S)

∥∥∥
2

+
∥∥∥(I1

13)(j,S)γ̃(S)

∥∥∥
2

}
≤
√

Ln log p
n

)
≥ 1 − Lnp

−ϑ.

(C.18)
For

I1
14 − I∗3/2 = 1

8n
∑
i∈I1

[
(μ1(Ui) − μ2(Ui))(μ1(Ui) − μ2(Ui))�

]
⊗ (BiB

�
i )

− 1
8E
{[

(μ1(U) − μ2(U))(μ1(U) − μ2(U))�
]
⊗ (BB�)

}
,

it is easy to obtain that

P

(
max

1≤j≤p

∥∥∥∥(I1
14 −

1
2I∗3)(j,S)γ̃(S)

∥∥∥∥
2

�
√

Ln log p
n

)
≥ 1 − Lnp

−ϑ. (C.19)

Combining (C.16), (C.18) and (C.19), we have

P

(
max

1≤j≤p

∥∥∥∥(I1
1 − I∗1 −

1
2I∗3)(j,S)γ̃(S)

∥∥∥∥
2

�
√

Ln log p
n

)
≥ 1 − Lnp

−ϑ. (C.20)

Similarly, we also have

P

(
max

1≤j≤p

∥∥∥∥(I2
1 − I∗2 −

1
2I∗3)(j,S)γ̃(S)

∥∥∥∥
2

�
√

Ln log p
n

)
≥ 1 − Lnp

−ϑ. (C.21)

Step 2. upper bounding max1≤j≤p ‖(I1
2 + I2

2 + I1
3 + I2

3 + I1
4 + I2

4)(j,S)γ̃(S)‖2
Recall that

I1
2 + I2

2 = 1
2n
∑
i∈I1

{[
(Xi − μ(Ui))(μ(Ui) − μ̂(Ui))�

]
⊗ (BiB

�
i )
}

+ 1
2n
∑
i∈I2

{[
(Xi − μ(Ui))(μ(Ui) − μ̂(Ui))�

]
⊗ (BiB

�
i )
}
,
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then we have

‖(I1
2 + I2

2)(j,S)γ̃(S)‖2

≤ Ln max
1≤k≤Ln

∣∣∣∣∣ 1
2n
∑
i∈I1

(Xij − μ1j(Ui))B∗
k(Ui)θ̃(Ui)�S (μ̂(Ui) − μ(Ui))S

∣∣∣∣∣
+ Ln max

1≤k≤Ln

∣∣∣∣∣ 1
2n
∑
i∈I2

(Xij − μ2j(Ui))B∗
k(Ui)θ̃(Ui)�S (μ̂(Ui) − μ(Ui))S

∣∣∣∣∣
+ Ln max

1≤k≤Ln

∣∣∣∣∣ 1
4n
∑
i∈I1

Gi,jk(Ui) −
1
4n
∑
i∈I2

Gi,jk(Ui)

∣∣∣∣∣ ,
where Gi,jk(Ui) = (μ1j(Ui) − μ2j(Ui))B∗

k(Ui)θ̃(Ui)�S (μ̂(Ui) − μ(Ui))S . Notice
that

θ̃(Ui)�S (μ̂(Ui) − μ(Ui))S =
s∑

l=1
(α̂l − α̃l)�Biθ̃l(Ui)

+
s∑

l=1

(α̃�
l Bi − μl(Ui))θ̃l(Ui)

= θ̃(Ui)�S
(
M̂.S − M̃.S

)�
Bi + θ̃(Ui)�S

(
M̃�

.SBi

)
,

where M̂.S = (α̂1, ..., α̂s) and M̃.S = (α̃1, ..., α̃s). Then we have∣∣∣∣∣ 1
2n
∑
i∈I1

(Xij − μ1j(Ui))B∗
k(Ui)

s∑
l=1

[μ̂l(Ui) − μl(Ui)]θ̃l(Ui)

∣∣∣∣∣
≤
∣∣∣∣∣ 1
2n
∑
i∈I1

(Xij − μ1j(Ui))B∗
k(Ui)θ̃(Ui)�S

(
M̂.S − M̃.S

)�
Bi

∣∣∣∣∣
+

∣∣∣∣∣ 1
2n
∑
i∈I1

(Xij − μ1j(Ui))B∗
k(Ui)θ̃(Ui)�S

(
M̃�

.SBi

)∣∣∣∣∣ .
From Proposition A.1, we know that ‖M̂.S − M̃.S‖F � √

san. By utilizing the
same chaining technique in Section D.3 to M̂.S − M̃.S , we can show that

P

(
max

1≤j≤p

∥∥∥(I1
2 + I2

2)(j,S)γ̃(S)

∥∥∥
2

� anLns

√
log p
n

)
≥ 1 − p−ϑsLn . (C.22)

Recall that

I1
3 + I2

3 = 1
2n
∑
i∈I1

{[
(μ(Ui) − μ̂(Ui))(Xi − μ(Ui))�

]
⊗ (BiB

�
i )
}

+ 1
2n
∑
i∈I2

{[
(μ(Ui) − μ̂(Ui))(Xi − μ(Ui))�

]
⊗ (BiB

�
i )
}
.
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Similarly, we can verify

P

(
max

1≤j≤p

∥∥∥(I1
3 + I2

3)(j,S)γ̃(S)

∥∥∥
2

� anLn

√
log p
n

)
≥ 1 − p−ϑLn . (C.23)

For

I1
4 + I2

4 = 1
2n
∑
i∈I1

[
(μ(Ui) − μ̂(Ui))(μ(Ui) − μ̂(Ui))�

]
⊗ (BiB

�
i )

+ 1
2n
∑
i∈I2

[
(μ(Ui) − μ̂(Ui))(μ(Ui) − μ̂(Ui))�

]
⊗ (BiB

�
i ),

it follows from Proposition A.1 that∥∥∥(I1
4 + I2

4)(j,S)γ̃(S)

∥∥∥
2

≤ Ln max
1≤k≤Ln,1≤i≤2n

∣∣∣B∗
k(Ui)[μ̂j(Ui) − μj(Ui)]θ̃(Ui)�S (μ̂(Ui) − μ(Ui))S

∣∣∣
≤ Lnan max

1≤i≤2n

∣∣∣θ̃(Ui)�S (μ̂(Ui) − μ(Ui))S
∣∣∣

� Lnan max
1≤i≤2n

‖(μ̂(Ui) − μ(Ui))S‖2 ‖θ̃(Ui)S‖2

≤
√
sLna

2
n,

(C.24)
holds with probability at least 1 − sLnp

−ϑ. Combining (C.20)-(C.24), we have

max
1≤j≤p

‖(Dn − D)(j,S)γ̃(S)‖2 �
√

Ln log p
n

+ anLns

√
log p
n

,

holds with probability at least 1 − sLnp
−ϑ − Lnp

−ϑsLn − Lnp
−ϑ.

Appendix D: Proofs of auxiliary lemmas in Section C

D.1. Proof of Lemma C.1

Proof of Lemma C.1. We only prove the bound for I1, and the case in I2 is
similar. Here we use E1[·] to denote the conditional expectation E[·|Y = 1].

Let S
pLn−1 be the unit sphere in R

pLn , we denote the 1/8-covering set of
S
pLn−1 by {ν1, ...,νN} with N ≤ 17(pLn). It follows that for any ν ∈ S

pLn−1,
there exist some νl such that ‖ν − νl‖2 ≤ 1/8. Let Qi = ZiZ

�
i − E1[ZiZ

�
i ],

then we have ∥∥∥∥∥ 1
n

∑
i∈I1

Qi

∥∥∥∥∥
2

≤ 2 max
1≤l≤N

∣∣∣∣∣ 1n ∑
i∈I1

ν�
l Qiνl

∣∣∣∣∣ .
Note that

L−1
n ν�

l Qiνl =
(
ν�
l [(Xi − μ1(Ui)) ⊗B∗

i )]
)2 − E1

(
ν�
l [(Xi − μ1(Ui)) ⊗B∗

i )]
)2

= [ν̃�
li (Xi − μ1(Ui))]2 − E1[ν̃�

li (Xi − μ1(Ui))]2
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where ν̃l(Ui) = ((νl)�(1)B
∗
i , ..., (νl)�(p)B

∗
i )� for νl = ((νl)�(1), ..., (νl)�(p))�. Let

Rli = ν̃l(Ui)�(Xi − μ1(Ui)), then Rli ∼ N (0, ν̃l(Ui)�Σ(Ui)ν̃l(Ui)) given Ui

and Yi = 1. Let σ2
li = ν̃l(Ui)�Σ(Ui)ν̃l(Ui), then we have σ2

li ≤ λ2

E1[σ2
li] ≤ E1

[
‖ν̃l(Ui)‖2

2‖Σ(Ui)‖2
]
≤ λ1E

[
‖ν̃l(Ui)‖2

2
]

≤ λ1

p∑
j=1

E1

[(
ν�

(j)B
∗
i

)2
]

� L−1
n

p∑
j=1

‖ν(j)‖2
2 = L−1

n .

For η = 1/(8λ2M2), simple calculation gives E1[eηR
2
li ] = O(1). Using Hölder’s

inequality, we also have

E1

[(
R2

li − E1[R2
li]
)2 exp

(
η|R2

li − E1[R2
li]|
)]

≤2 exp
(
ηE1[R2

li]
) (

E1

[
R4

lie
ηR2

li

]
+
(
E1
[
R2

li

])2
E1

[
eηR

2
li

])
�E1

[
σ4
liE1

[
R4

li

σ4
li

eηR
2
li |Ui

]]
+
(
E1
[
σ2
li

])2
≤E1

[
σ2
li

(
E1
[
(Rli/σli)8|Ui

]
E1

[
e2ηR2

li |Ui

])1/2
]

+ L−2
n

�E1
[
σ2
li

]
+ L−2

n � L−1
n .

Invoking Lemma A.1, we can obtain that

P

(
max

1≤j≤N

∣∣∣∣∣ 1n
n∑

i=1
ν�
l Qiνl

∣∣∣∣∣ � Ln

√
p logn

n

)
≥ 1 − n−ϑpLn .

Next we prove the conclusion for matrix-vector-product. It suffices to show
that for any fixed ν ∈ R

pLn−1,

P

(∣∣∣∣∣ 1n ∑
i∈I1

ν�
(
ZiZ

�
i − E1

[
ZiZ

�
i

])
γ̃

∣∣∣∣∣ �
√

Lnp logn
n

)
≤ n−ϑpLn . (D.1)

Let ν̃(Ui) = (ν�
(1)B

∗
i , ...,ν

�
(p)B

∗
i )�, then notice that

ν�ZiZ
�
i γ̃ = ν� ((Xi − μ1(Ui)) ⊗Bi) γ̃� ((Xi − μ1(Ui)) ⊗Bi)

=
√
Ln (Xi − μ1(Ui))� ν̃(Ui) (Xi − μ1(Ui))� θ̃(Ui).

Denote Ri = (Xi − μ1(Ui))� ν̃(Ui) and Si = (Xi − μ1(Ui))� θ̃(Ui), then

Ri|Ui ∼ N
(
0, ν̃(Ui)�Σ(Ui)ν̃(Ui)

)
, Si|Ui ∼ N

(
0, θ̃(Ui)�Σ(Ui)θ̃(Ui)

)
.

Also, we know that E1[R2
i |Ui] ≤ λ1 and E1[S2

i |Ui] � λ1 since ‖ν̃(u)‖2 ≤ 1 and

sup
u∈[0,1]

‖θ̃(u)‖2 � ‖θ∗(u)‖2 + √
pL−d

n = O(1),
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which is true due to the assumptions supu∈[0,1] ‖θ∗(u)‖2 = O(1) and √
pL−d

n =
o(1). Using Hölder’s inequality, we have

E1

[
(RiSi − E1[RiSi])2eη|RiSi−E1[RiSi]|

]
≤2 exp (η|E1[RiSi]|)

(
E1

[
R2

iS
2
i e

η|RiSi|
]

+ (E1 [RiSi])2 E1

[
eη|RiSi|

])
�E1

[
R2

iS
2
i e

η|RiSi|
]

+ E1[R2
i ]E1[S2

i ]E1

[
eη|RiSi|

]
. (D.2)

Denote σ2
i = ν̃(Ui)�Σ(Ui)ν̃(Ui). Then applying Lemma A.2 and moment for-

mula of normal distribution, it holds that

E1

[
R4

i e
2η|Ri|

∣∣Ui

]
≤ 32e2η2σ2

i
(
(ησ2

i )4 + 6(ησ2
i )2σ2

i + 3σ4
i

)
� σ4

i =
(
ν̃(Ui)�Σ(Ui)ν̃(Ui)

)2
,

where the second inequality holds since σi is bounded. Similarly, we can also
verify that

E1

[
S4
i e

2η|Si|
∣∣Ui

]
�
(
θ̃(Ui)�Σ(Ui)θ̃(Ui)

)2
.

It follows from θ̃(Ui)�Σ(Ui)θ̃(Ui) is bounded that

E1

[
R2

iS
2
i e

η|RiSi|
]

= E1

[
E1

[
R2

iS
2
i e

η|RiSi|
∣∣Ui

]]
≤ E1

[(
E1

[
R4

i e
2η|Ri|

∣∣Ui

]
E1

[
S4
i e

2η|Si|
∣∣Ui

])1/2
]

� E1

[(
ν̃(Ui)�Σ(Ui)ν̃(Ui)

) (
θ̃(Ui)�Σ(Ui)θ̃(Ui)

)]
� E1

[
ν̃(Ui)�Σ(Ui)ν̃(Ui)

]
� E1

[
‖ν̃(Ui)‖2

2
]

� L−1
n . (D.3)

Then we take η = 1/(Cλ1) for sufficiently large C > 0, it holds that

E1

[
eη|RiSi|

]
≤
(
E1

[
eη(R2

i+S2
i )
])

≤
(
E1

[
e2ηR2

i

]
E1

[
e2ηS2

i

])1/2
= O(1). (D.4)

Substituting (D.3) and (D.4) into (D.2), we have

E1

[
(RiSi − E1[RiSi])2eη|RiSi−E1[RiSi]|

]
� L−1

n .

Applying Lemma A.1 again, we can prove (D.1) immediately.

D.2. Proof of Lemma C.2 and C.3

Proof. The proofs of Lemma C.2 and C.3 are similar, here we only prove Lemma
C.2.
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For the first assertion for operator norm of matrix, it suffices to show for any
fixed ν ∈ S

pLn−1 and ξ ∈ S
pLn−1 such that∣∣∣∣∣ 1n ∑

i∈I1

ν�
{

[(Xi − μ1(Ui))(μ1(Ui) − μ2(Ui))�] ⊗ (BiB
�
i )
}
ξ

∣∣∣∣∣ � Ln

√
p logn

n
,

holds with probability at least 1 − n−ϑpLn . For ν = (ν�
(1), ...,ν

�
(p)) and ξ =

(ξ�(1), ..., ξ
�
(p)), we write

ν̃(Ui) = (ν�
(1)B

∗
i , ...,ν

�
(p)B

∗
i )�, ξ̃(Ui) = (ξ�(1)B∗

i , ..., ξ
�
(p)B

∗
i )�.

Then we have

ν�
{

[(Xi − μ1(Ui))(μ1(Ui) − μ2(Ui))�] ⊗ (BiB
�
i )
}
ξ

= Ln(ξ̃(Ui)�(μ1(Ui) − μ2(Ui)))[ν̃(Ui)�(Xi − μ1(Ui))].

Let

Ti = (ξ̃(Ui)�(μ1(Ui) − μ2(Ui)))[ν̃(Ui)�(Xi − μ1(Ui))],

and σ2
i = ν̃(Ui)�Σ(Ui)ν̃(Ui), then for η > 0 it holds that

E1[T 2
i e

η|Ti|] � E1

[(
ν̃(Ui)�(Xi − μ1(Ui))

)2
eη|ν̃(Ui)�(Xi−μ1(Ui))|

]
≤ 2E

[
e

η2σ2
i

2
(
σ2
i + φ2σ4

i

)]
� E

[
‖ν̃(Ui)‖2

2
]

� L−1
n ,

where the first inequality follows from |ξ̃(u)�(μ1(u) − μ2(u))| is uniformly
bounded. By Lemma A.1, we are guaranteed that

P

(∣∣∣∣∣ 1n ∑
i∈I1

Ti

∣∣∣∣∣ �
√

p logn
n

)
≥ 1 − n−ϑpLn .

For the assertion for matrix-vector-product, it suffices to show∣∣∣∣∣ 1n ∑
i∈I1

ν�
{

[(Xi − μ1(Ui))(μ1(Ui) − μ2(Ui))�] ⊗ (BiB
�
i )
}
γ̃

∣∣∣∣∣ �
√

pLn logn
n

holds with probability at least 1 − n−ϑpLn . Notice that

ν�
{

[(Xi − μ1(Ui))(μ1(Ui) − μ2(Ui))�] ⊗ (BiB
�
i )
}
γ̃

=
√

Ln

(
ν̃(Ui)�(Xi − μ1(Ui))

) (
θ̃(Ui)�(μ1(Ui) − μ2(Ui))

)
,
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and ∣∣∣θ̃(Ui)�(μ1(Ui) − μ2(Ui))
∣∣∣ ≤ δp sup

u∈[0,1]
‖θ̃(u)‖2 = O(1).

Denote Ri =
(
ν̃(Ui)�(Xi − μ1(Ui))

) (
θ̃(Ui)�(μ1(Ui) − μ2(Ui))

)
. Then we can

get

E1

[
R2

i e
η|Ri|

]
� E1

[(
ν̃(Ui)�(Xi − μ1(Ui))

)2
eη|ν̃(Ui)�(Xi−μ1(Ui))|

]
� L−1

n .

Applying Lemma A.1, we can prove the desired result.

D.3. Proof of Lemma C.4

Proof. Let M̃ = (M̃1, ..., M̃p) ∈ R
Ln×p where the j-th column Mj = 1

2 (α̃1j +
α̃2j) and

α̃1j =
(
E[BB�]

)−1
E[BXj |Y = 1], α̃1j =

(
E[BB�]

)−1
E[BXj |Y = 0].

Similarly, we denote M̂ = (M̂1, ..., M̂p) ∈ R
Ln×p, where the j-th column M̂j =

1
2 (α̂1j + α̂2j) and

α̂1j =
(

1
n

∑
i∈I1

BiB
�
i

)−1
1
n

∑
i∈I1

BiXij , α̂2j =
(

1
n

∑
i∈I2

BiB
�
i

)−1
1
n

∑
i∈I2

BiXij .

Recalling the approximation error bound in the proof of Proposition A.1:

sup
u∈[0,1]

|α̃�
1jB(u) − μ1j(u)| � L−d

n , sup
u∈[0,1]

|α̃�
2jB(u) − μ2j(u)| � L−d

n .

It means that ‖M̃�Bi − μ(Ui)‖2 � √
pL−d

n . In addition, we define the good
event:

A :=
{
‖M̂j − M̃j‖2 � an : for 1 ≤ j ≤ p

}
,

where an =
√

Ln logn
n +L−d

n . By Proposition A.1, we know that P(Ac) ≤ Lnn
−ϑ.

Next we prove Lemma C.3 under the good event A.
We first prove the bound for the operator norm of the matrix. Let Ai =

[(μ̂(Ui)−μ(Ui))(Xi−μ1(Ui))�]⊗(BiB
�
i ). According to the proof of Lemma C.1,

it suffices to show that for any fixed ν, ξ ∈ S
pLn−1 such that∣∣∣∣∣ 1n ∑

i∈I1

ν�Aiξ

∣∣∣∣∣ � anL
3/2
n p

√
logn
n
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holds with probability at least 1 − n−ϑpLn . Notice that∣∣∣∣∣ 1n ∑
i∈I1

ν�Aiξ

∣∣∣∣∣ = Ln

∣∣∣∣∣ 1n ∑
i∈I1

[ν̃�
i (μ̂(Ui) − μ(Ui))][ξ̃

�
i (Xi − μ1(Ui))]

∣∣∣∣∣
≤ Ln

∣∣∣∣∣ 1n ∑
i∈I1

[ξ̃(Ui)�(Xi − μ1(Ui))][ν̃(Ui)�(M̃�Bi − μ(Ui))]

∣∣∣∣∣
+ Ln

∣∣∣∣∣ 1n ∑
i∈I1

[ξ̃(Ui)�(Xi − μ1(Ui))][ν̃(Ui)�(M̂ − M̃)�Bi]

∣∣∣∣∣ ,
(D.5)

where ν̃(Ui) = (ν�
(1)B

∗
i , ...,ν

�
(p)B

∗
i )� and ξ̃(Ui) = (ξ�(1)B∗

i , ..., ξ
�
(p)B

∗
i )� for ν =

(ν�
(1), ...,ν

�
(p))� and ξ = (ξ�(1), ..., ξ

�
(p))�. Also, we know that

ξ̃(Ui)�(Xi − μ1(Ui))|Ui ∼ N
(
0, ξ̃(Ui)�Σ(Ui)ξ̃(Ui)

)
.

Denote Ti = [ξ̃(Ui)�(Xi−μ1(Ui))][ν̃(Ui)�(M̃�Bi−μ(Ui))]. Apply the second
assertion in Lemma A.2 with any constant η > 0, we get

E1

[
T 2
i e

η|Ti|
]
≤ E1

[
T 2
i e

η|̃ξ(Ui)�(Xi−μ1(Ui))|
]

� pL−2d
n E1

[(
ξ̃(Ui)�(Xi − μ1(Ui))

)2
eη|̃ξ(Ui)�(Xi−μ1(Ui))|

]
≤2pL−2d

n E

[
e

η2ξ̃(Ui)
�

Σ(Ui )̃ξ(Ui)
2

(
ξ̃(Ui)�Σ(Ui)ξ̃(Ui)+η2

(
ξ̃(Ui)�Σ(Ui)ξ̃(Ui)

)2
)]

� pL−2d
n E

[
ξ̃(Ui)�Σ(Ui)ξ̃(Ui)

]
� pL−2d

n L−1
n ,

where we also used the fact

ξ̃(Ui)�Σ(Ui)ξ̃(Ui) ≤ λ1‖ξ̃(Ui)‖2
2 ≤ λ1‖B∗

i ‖2
2

p∑
j=1

‖ν(j)‖2
2 ≤ λ1.

Applying Lemma A.1, we can verify that∣∣∣∣∣ 1n ∑
i∈I1

[ξ̃(Ui)�(Xi − μ1(Ui))][ν̃(Ui)�(M̃�Bi − μ(Ui))]

∣∣∣∣∣ � pL−d
n

√
Ln logn

n
,

(D.6)
holds with probability at least 1−n−ϑpLn . Next we proceed to bound the second
term in (D.5). We define a matrix set as

Ξ =
{
M ∈ R

Ln×p : ‖Mj‖2 ≤ an for j = 1, 2, ..., p
}
,

where an = O(
√

Ln logn/n + L−d
n ) and Mj is the j-th column of M. For each

1 ≤ j ≤ p, we may find a set {ζ� ∈ R
Ln , 1 ≤ � ≤ nMLn : ‖ζ�‖2 ≤ an} such that
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there exists some 1 ≤ � ≤ nMLn satisfying that ‖Mj − ζ�‖2 ≤ n−M
√
Lnan

1. It
means that we can find a subset Ξ′ = {M� : 1 ≤ � ≤ nMpLn} ⊆ Ξ. And for any
M ∈ Ξ, there exists some 1 ≤ � ≤ nMpLn such that ‖M�

j−Mj‖2 ≤ an
√
Lnn

−M .
It follows that for any M ∈ Ξ∣∣∣∣∣ 1n ∑

i∈I1

[ξ̃(Ui)�(Xi − μ1(Ui))][ν̃(Ui)�M�Bi]

∣∣∣∣∣
≤
∣∣∣∣∣ 1n ∑

i∈I1

[ξ̃(Ui)�(Xi − μ1(Ui))][ν̃(Ui)�(M�)�Bi]

∣∣∣∣∣
+

∣∣∣∣∣ 1n ∑
i∈I1

[ξ̃(Ui)�(Xi − μ1(Ui))][ν̃(Ui)�(M� − M)�Bi]

∣∣∣∣∣
≤
∣∣∣∣∣ 1n ∑

i∈I1

[ξ̃(Ui)�(Xi − μ1(Ui))][ν̃(Ui)�(M�)�Bi]

∣∣∣∣∣
+ an

√
pLnn

−M max
i∈I1

∣∣∣ξ̃(Ui)�(Xi − μ1(Ui))
∣∣∣ ,

where the last inequality is true since

∣∣ν̃(Ui)�(M�)�Bi

∣∣ ≤ ‖ν̃(Ui)‖2

⎛⎝ p∑
j=1

((M�
j − Mj)�Bi)2

⎞⎠1/2

≤ √
pLnann

−M .

Let V�,i = [ξ̃(Ui)�(Xi − μ1(Ui))][ν̃(Ui)�(M�)�B∗
i ]. Then we have∣∣∣∣∣ 1n ∑

i∈I1

[ξ̃(Ui)�(Xi − μ1(Ui))][ν̃(Ui)�(M̂ − M̃)�Bi]

∣∣∣∣∣
≤ sup

M∈Ξ

∣∣∣∣∣ 1n ∑
i∈I1

[ξ̃(Ui)�(Xi − μ1(Ui))][ν̃(Ui)�M�Bi]

∣∣∣∣∣
≤ max

1≤�≤nMpLn

∣∣∣∣∣ 1n ∑
i∈I1

V�,i

∣∣∣∣∣+ an
√
pLnn

−M
√

logn,

(D.7)

where the last inequality follows from the bound for the maximal of n inde-
pendent Gaussian random variables and the variance of ξ̃(Ui)�(Xi−μ1(Ui)) is
bounded almost surely. Notice that

ξ̃(Ui)�(Xi − μ1(Ui))|Ui ∼ N
(
0, ξ̃(Ui)�Σ(Ui)ξ̃(Ui)

)
,

where E[ξ̃(Ui)�Σ(Ui)ξ̃(Ui)] � L−1
n and ξ̃(Ui)�Σ(Ui)ξ̃(Ui) is almost surely

bounded. Using the second assertion of Lemma A.2 with any η > 0, together
1For each coordinate of Mj , we can divide the interval [−an, an] into nM small intervals

with equal length 2an/NM .
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with ‖M�ν̃(Ui)‖2 ≤ ‖M�‖F ‖ν̃(Ui)‖2 ≤ √
pan, we can verify that

E

[
V 2
i e

η|Vi|
]

� pa2
nL

−1
n ,

Applying Lemma A.1, it is easy to show

max
1≤�≤nMpLn

∣∣∣∣∣ 1n ∑
i∈I1

[ξ̃(Ui)�(Xi − μ1(Ui))][ν̃(Ui)�(M�)�Bi]

∣∣∣∣∣ � pan

√
Ln logn

n

(D.8)
with probability at least 1− n−ϑLnp. By choosing sufficiently large M and sub-
stituting (D.6)-(D.8) into (D.5), we can finish the proof.

For the case in the matrix-vector-product, we notice that

ν�Aiγ̃ =
√
Ln[θ̃(Ui)�(Xi − μ1(Ui))][ν̃(Ui)�(M̃�Bi − μ(Ui))]

+
√

Ln[θ̃(Ui)�(Xi − μ1(Ui))][ν̃(Ui)�(M̂ − M̃)�Bi].

By utilizing the same chaining technique and applying Lemma A.1, we can prove∣∣∣∣∣ 1n ∑
i∈I1

ν�Aiγ̃

∣∣∣∣∣ � anLnp

√
logn
n

,

holds with probability at least 1 − n−ϑpLn . Then we can finish the proof.

D.4. Proof of Lemma C.5

Proof. We prove Lemma C.5 under the good event A defined in Section D.4.
We prove the bound for the operator norm of the matrix, and �2 norm bound
for the matrix-vector-product is similar. It suffices to show that for any fixed
ν, ξ ∈ S

pLn−1 such that∣∣∣∣∣ 1n ∑
i∈I1

ν�G(Ui)ξ − 1
n

∑
i∈I2

ν�G(Ui)ξ

∣∣∣∣∣ ≤ CL3/2
n p

√
logn
n

(√
Ln logn

n
+ L−d

n

)
,

holds with probability at least 1 − n−ϑpLn . To simplify notations, we denote
δ(Ui) = μ1(Ui)−μ2(Ui) and write μ̂(u) = M̂�B(u), where the j-th column of
M̂ equals to (α̂1j + α̂2j)/2. Recall the definition of G(Ui), we have

G(Ui) =
(
δ(Ui) (μ̂(Ui) − μ(Ui))�

)
⊗
(
BiB

�
i

)
=
(
δ(Ui)

(
M̂�B(Ui) − M̃�B(Ui)

)�)
⊗
(
BiB

�
i

)
︸ ︷︷ ︸

G1(Ui)

+
(
δ(Ui)

(
M̃�B(Ui) − μ(Ui)

)�)
⊗
(
BiB

�
i

)
︸ ︷︷ ︸

G2(Ui)

.
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It yields that ∣∣∣∣∣ 1n ∑
i∈I1

ν�G(Ui)ξ − 1
n

∑
i∈I2

ν�G(Ui)ξ

∣∣∣∣∣
≤
∣∣∣∣∣ 1n ∑

i∈I1

ν�G1(Ui)ξ − 1
n

∑
i∈I2

ν�G1(Ui)ξ

∣∣∣∣∣︸ ︷︷ ︸
Π1

+

∣∣∣∣∣ 1n ∑
i∈I1

ν�G2(Ui)ξ − 1
n

∑
i∈I2

ν�G1(Ui)ξ

∣∣∣∣∣︸ ︷︷ ︸
Π2

.

(D.9)

Denote ν̃(Ui) = (ν�
(1)B

∗
i , ...,ν

�
(p)B

∗
i )� and ξ̃(Ui) = (ξ�(1)B∗

i , ..., ξ
�
(p)B

∗
i )�. Then

we have

ν�G1(Ui)ξ =
(
ν̃(Ui)�δ(Ui)

)(
ξ̃(Ui)�

(
M̂ − M̃

)�
Bi

)
=: Ti

(
M̂ − M̃

)
.

Here we use the same notation Ξ in Section D.3. From Proposition A.1, we
know that

Π1 =

∣∣∣∣∣ 1n ∑
i∈I1

Ti

(
M̂ − M̃

)
− 1

n

∑
i∈I2

Ti

(
M̂ − M̃

)∣∣∣∣∣
≤ sup

M∈Ξ

∣∣∣∣∣ 1n ∑
i∈I1

Ti (M) − 1
n

∑
i∈I2

Ti (M)

∣∣∣∣∣
= sup

M∈Ξ

∣∣∣∣∣ 1n ∑
i∈I1

(Ti (M) − E [Ti (M)]) − 1
n

∑
i∈I2

(Ti (M) − E [Ti (M)])

∣∣∣∣∣
≤ sup

M∈Ξ

∣∣∣∣∣ 1n ∑
i∈I1

Ti(M) − E [Ti(M)]

∣∣∣∣∣︸ ︷︷ ︸
Π11

+ sup
M∈Ξ

∣∣∣∣∣ 1n ∑
i∈I2

Ti(M) − E [Ti(M)]

∣∣∣∣∣︸ ︷︷ ︸ .
(D.10)

In fact, the second equality holds since the randomness of Ti(M) is from Ui

and Ui is independent of Yi. Using the facts ‖Bi‖2 ≤
√
Ln, ‖δ(Ui)‖2 ≤ δp,

‖ξ̃(Ui)‖2 ≤ 1 and ‖ν̃(Ui)‖2 ≤ 1, and following the chaining arguments in Sec-
tion D.3, we have

Π11 ≤ max
1≤��nMpLn

∣∣∣∣∣ 1n ∑
i∈I1

Ti

(
M�
)
− E

[
Ti

(
M�
)]∣∣∣∣∣+ an

√
pLnn

−M , (D.11)

where an = O(
√

Ln logn/n + L−d
n ). In addition, notice that(

E
[
Ti

(
M�
)])2 ≤ E[(ν̃(Ui)�δ(Ui))2]E[(ξ̃(Ui)�(M�)�B∗

i )2]
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≤ E
[
‖ν̃(Ui)‖2

2‖δ(Ui)‖2
2
]
E

[
‖M�ξ̃(Ui)‖2

2‖B∗
i ‖2

2

]
≤ pδ2

pa
2
nE
[
‖ν̃(Ui)‖2

2
]

≤ pδ2
pa

2
nE

⎡⎣ p∑
j=1

‖νj‖2
2‖B∗

i ‖2
2

⎤⎦
� pδ2

pa
2
nL

−1
n ,

and

E
[
T 2
i

(
M�
)]

= E

[(
ν̃(Ui)�δ(Ui)

)2 (
ξ̃(Ui)�(M�)�B∗

i

)2
]

≤ pa2
nE

[(
ν̃(Ui)�δ(Ui)

)2]
� pδ2

pa
2
nL

−1
n .

In fact, we used ‖M�ξ̃(Ui)‖2
2 = ‖M�‖2

F ‖ξ̃(Ui)‖2
2 ≤ pan and ‖Bi‖2

2 ≤ Ln in the
relations above. Thus we have

E

[(
Ti

(
M�
)
− E

[
Ti

(
M�
)])2

e
η|Ti

(
M�
)
−E[Ti

(
M�
)
]|
]

≤2eη|E[Ti

(
M�
)
]|
{
E

[
T 2
i

(
M�
)
e
η|Ti

(
M�
)
|
]

+
(
E
[
Ti

(
M�
)])2

E[eη|E
[
Ti

(
M�
)]

|]
}

�E
[
T 2
i

(
M�
)]

+
(
E
[
Ti

(
M�
)])2

≤2E
[(
ν̃(Ui)�δ(Ui)

)2 (
ξ̃(Ui)�

(
M�
)�

Bi

)2
]

�pLna
2
nE

[(
ν̃(Ui)�δ(Ui)

)2] ≤ pLnδ
2
pa

2
nE
[
‖ν̃(Ui)‖2

2
]

≤pLnδ
2
pa

2
n

p∑
j=1

E

[(
ν�

(j)B
∗
i

)2
]

� pδ2
pa

2
n

p∑
j=1

‖νj‖2
2 = pδ2

pa
2
n.

where the second inequality holds since Ti

(
M�
)

is bounded. In accordance with
Lemma A.1, we obtain that

P

(
Π11 � panL

3/2
n

√
logn
n

+ 2an
√
pLnn

−M

)
≥ 1 − n−ϑpLn . (D.12)

Similar bound also holds for Π12, in conjunction with (D.10)-(D.12) and proper
choice for M , we are guaranteed that

P

(
Π1 � panL

3/2
n

√
logn
n

)
≥ 1 − n−ϑpLn . (D.13)
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Now let Wi =
(
ν̃(Ui)�δ(Ui)

) (
ξ̃(Ui)�[M̃�Bi − μ(Ui)]

)
, then it follows from

the dependence between Ui and Yi that

Π2 ≤
∣∣∣∣∣ 1n ∑

i∈I1

Wi − E[Wi]

∣∣∣∣∣+
∣∣∣∣∣ 1n ∑

i∈I2

Wi − E[Wi]

∣∣∣∣∣ .
Since Wi is bounded and supu |M̃�

j B(u) − μj(u)| � L−d
n ≤ an, we have

E

[
(Wi − E[Wi])2 eη|Wi−E[Wi]|

]
� E[W 2

i ] + (E[Wi])2

� δ2
pE[‖M̃�Bi − μ(Ui)‖2

2‖ξ̃(Ui)‖2
2]

≤ δ2
pE[sup

u
‖M̃�B(u) − μ(u)‖2

2‖ξ̃(Ui)‖2
2]

� δ2
ppa

2
nL

−1
n .

Applying Lemma A.1, we get

P

(
Π2 � pan

√
logn
n

)
≥ 1 − n−ϑpLn . (D.14)

Plugging (D.14) and (D.13) into (D.9), we finish the proof Lemma C.3.

Appendix E: Iterative shrinkage thresholding algorithm

Next we take ISTA as an example to illustrate the optimization procedure to
solve (2.9). Denote g(γ) = 1

2γ
�Dnγ − b�n γ. Given a point γ ∈ R

pLn , ISTA
approach updates the solution through solving the following subproblem

γ+ = Qη(γ)

= arg min
z∈RpLn

⎧⎨⎩g(γ) + (z − γ)�∇g(γ) + 1
2η ‖z − γ‖2

2 + λn

p∑
j=1

‖z(j)‖2

⎫⎬⎭
= arg min

z∈RpLn

⎧⎨⎩ 1
2η

p∑
j=1

‖z(j) − (γ − η∇g(γ))(j)‖2
2 + λn‖z(j)‖2

⎫⎬⎭ ,

where η is the step size. The solution of the subproblem is given by the soft-
thresholding operator, that is

(γ+)(j) =
(γ − η∇g(γ))(j)

‖(γ − η∇g(γ))(j)‖2
max

{
0, ‖(γ − η∇g(γ))(j)‖2 − ηλn

}
.

The step size η is determined by a backtracking line-search [2] such that

g(γ+) ≤ g(γ) + (γ+ − γ)�∇g(γ) + 1
2η ‖γ+ − γ‖2

2.

Another simple choice for η is 1/‖Dn‖2, whereas it usually leads a very small
step sizes and slow convergence [28]. For the ease of reference, we provide the
detailed procedure in Algorithm 1.
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Algorithm 1 ISTA with backtracking line-search
Input: Initial point γ0 ∈ RpLn , number of iterations T , shrinking rate ρ ∈ (0, 1), initial
step size η0 ∈ (0, 1).
for t = 0, 1, ..., T − 1 do

Compute the gradient: ∇g(γt) = Dnγt − bn.
Find the smallest nonnegative integer it such that with η = ρitηt−1

g(Qη(γt)) ≤ g(γt) + (Qη(γt) − γt)�∇g(γt) +
1
2η

‖Qη(γt) − γt‖2
2.

Set ηt = ρitηt−1 and update γt+1 = Qηt (γt).
end for
Output: The final solution γ�.
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