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Abstract: We consider a data matrix X := C1/2
N ZR1/2

M from a multi-
variate stationary process with a separable covariance function, where CN

is a N × N positive semi-definite matrix, Z a N × M random matrix of
uncorrelated standardized white noise, and RM a M ×M Toeplitz matrix.
Under the assumption of long range dependence (LRD), we re-examine the
consistency of two toeplitzifized estimators R̂M (unbiased) and R̂b

M (bi-
ased) for RM , which are known to be norm consistent with RM when the
process is short range dependent (SRD). However in the LRD case, some
simulations suggest that the norm consistency does not hold in general for
both estimators. Instead, a weaker ratio consistency is established for the
unbiased estimator R̂M , and a further weaker ratio LSD consistency is
established for the biased estimator R̂b

M . The main result leads to a con-
sistent whitening procedure on the original data matrix X, which is further
applied to two real world questions, one is a signal detection problem, and
the other is PCA on the space covariance CN to achieve a noise reduction
and data compression.
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1. Introduction

Consider a random data matrix of the form

X = C1/2
N ZR1/2

M (1.1)
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where CN = (CN,i,j) and RM = (RM,i,j) are N × N and M × M positive
semi-definite Hermitian matrices, respectively, and Z is a white noise array
of size N × M . The matrix X = (Xi,j) has a so-called separable covariance
function, that is, Cov(Xi,j , Xi′,j′) = CN,i,i′RM,j,j′ . In other words, CN and RM

represent the covariance function between rows and columns of X, respectively.
In this paper, by mimicking a stationary time series structure across the column
vectors, we assume that RM = (ri−j) is a Toeplitz covariance matrix. Such
data matrices appear in many applications, for example, as the noise part of a
signal-plus-noise models in signal processing problems [27, 4, 23], or portfolio
optimization problems [12], or as a stand-alone model in [26]. We note that if
CN is identity, the rows of X can be interpreted as i.i.d copies of a section of
stationary process considered in [17, 16, 24], and if CN is diagonal with i.i.d
random entries independent of Z, the rows of X can be interpreted as some i.i.d
elliptically symmetric random vectors with Toeplitz scatter matrix RM , which
were considered in e.g. [23, 12].

In the large dimensional context where both M and N are large, the esti-
mation of RM or CN from the observable data X is a challenging question.
Consider the following “sample covariance matrices”

SX := 1
M

XX∗, SX := 1
N

X∗X. (1.2)

Then direct calculation shows that E(SX) = (M−1 trRM )CN and E(SX) =
(N−1 trCN )RM . In other words, SX and SX are unbiased (up to scalar factors)
estimators of the matrices CN and RM , respectively. However, the results from
Random matrix theory (RMT) show that neither of them is consistent in the
large dimensional regime, see e.g. [15, 22, 31].

Taking into account the Toeplitz structure of RM , it is possible to construct
better estimators for RM . In [27], the authors considered two estimators

R̂M := (r̂i−j)1≤i,j≤M , R̂b
M := (r̂bi−j)1≤i,j≤M , (1.3)

where

r̂k := 1
M − |k|

∑
Si+k,i1{1≤i,i+k≤M}, r̂bk := 1

M

∑
Si+k,i1{1≤i,i+k≤M}

(1.4)
with Si,j the entries of SX . Let ξN = trCN/N . Note that R̂M is an unbiased
estimator of ξNRM , whereas R̂b

M is biased. It is proved in [27, 4] that, if the
entries of Z are i.i.d standard complex Gaussian and if the sequence (rk)k∈Z

in RM is absolutely summable, both estimators are (spectral) norm consistent,
that is, ∥∥∥R̂M − ξNRM

∥∥∥ a.s−−→ 0,
∥∥∥R̂b

M − ξNRM

∥∥∥ a.s−−→ 0 (1.5)

as M,N → ∞ with N/M → c ∈ (0,∞). Such consistent estimators can be used
to whiten the correlation between the columns of X in order to facilitate the
inference on CN , as done in [27] and other articles.
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The absolute summability of the sequence (rk)k∈Z means that the columns
of X are short range dependent (SRD), and this is crucial to the norm consis-
tency (1.5). As an opposite scenario, the phenomenon of long range dependence
(LRD) has been frequently observed in various fields like engineering and eco-
nomic processes (see [9, 21, 7, 19] and the references therein). In this paper, we
parameterize the LRD by a ∈ (0, 1), and study the consistency properties of
R̂M and R̂b

M in the LRD case. Our main results are

(i) The norm consistency (1.5) for the unbiased estimator R̂M continues to
hold in the LRD case for the lower half a ∈ (0, 1/2) (the pro-SRD side),
but simulation studies suggest that it may not hold for the upper half
a ∈ (1/2, 1), see §4.1.

(ii) The unbiased estimator R̂M is ratio consistent in the sense that∥∥∥R−1/2
M R̂MR−1/2

M − ξNI
∥∥∥ a.s−−→ 0, (1.6)

and consequently, ∥∥∥R−1/2
M R̂1/2

M −
√
ξNI

∥∥∥ a.s−−→ 0; (1.7)

(iii) The biased estimator R̂b
M is not ratio consistent. We will prove that under

the same conditions with ξN = 1, we have almost surely

‖R−1/2
M R̂b

MR−1/2
M − I‖ �→ 0. (1.8)

As a corollary, R̂b
M is not norm consistent, that is, almost surely,

‖R̂b
M − RM‖ �→ 0. (1.9)

(iv) A weaker ratio LSD consistency holds for R̂b
M in the sense that the em-

pirical spectral distribution (ESD) of R−1/2
M R̂b

MR−1/2
M converges to δ1

(assuming ξN → 1).

An immediate application of (ii) is to whiten the correlation R1/2
M in the data

X by multiplication of R̂−1/2
M . Let

Yw := XR̂−1/2
M , and YRid := ξ

−1/2
N C1/2

N Z,

then by (1.7), under some proper conditions, we will have

‖Yw − YRid‖ a.s−−→ 0.

Note that the matrix YRid is not observable but can be approximated by the
whitened data matrix Yw, with which the inference on CN becomes much easier,
knowing that RMT contains many inference methods on CN through the sample
covariance matrix

SRid := 1
M

YRidY∗
Rid,
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see e.g. [30] and [13]. In this paper, we apply this result in a signal plus noise
model to detect signals, reduce noise and compress the data using PCA. Some
other applications based on the ratio consistency of R̂M , such as the prediction
of a multivariate separable time series, may be discussed in future works.

The result (iii) is striking because in the SRD case, R̂b
M is a better estimator

for RM than R̂M with a smaller variance. In the LRD case however, the bias is
no longer negligible. In §4.2 we will illustrate by numeric simulations that this
inconsistency may invalidate some subsequent whitening procedures. However,
R̂b

M has a weaker ratio LSD consistency (iv) which may still be useful.
It is worthy of noticing that the entries r̂k or r̂bk, or some other banded/ta-

pered estimators based on them are often used to estimate rk or the peri-
odogram. Many results have been established in this aspect, see e.g. [5, 28,
14, 29]. For matrix estimators, Ing et al. [11] established the norm consistency
of an estimator for R−1

M under some special LSD conditions. However, to the au-
thors’ best knowledge, the ratio consistency of matrix estimators for the purpose
of whitening in the presence of LRD has not yet been established before.

We now describe some important technical innovations introduced in this
paper as compared to the existing literature for the SRD case. The general
structure of the proof of our main theorem, Theorem 2.2 follows [27]. But unlike
the reference where the white noise matrix Z has i.i.d complex Gaussian entries,
we also allow the rows zi of Z to be uniformly distributed on a centered sphere
in R

M or CM . This setting permits the rows of X to have more general elliptical
distributions. Thus the M columns of Z are uncorrelated but dependent and new
tools are needed in various moment estimation involving these noise variables
such as

Eeτ
∑

m
σm|Z1,m|2

where Z1,m,m = 1, . . . ,M are the elements of the first row.
In the proof of Theorem 2.2, an accurate upper bound for a trace of non com-

mutative product of several Toeplitz matrices (of type tr(DM (θ)RM

DM (θ)∗BM )2, where RM ,BM are Toeplitz, and DM (θ) is diagonal depend-
ing on θ ∈ (0, 2π)) is crucial. In [27], a global bound was obtained using linear
algebraic method thanks to the boundedness of ‖RM‖. In this paper, since
‖RM‖ → ∞, the global bound is not sufficient. We rewrite the same trace as a
two dimensional harmonic integral and then estimate its bound in terms of M
and the underlying spectral density f(θ). This is not trivial since f has a power
singularity at 0.

Notations

Matrices are denoted by bold capital characters, row or column vectors are
denoted by bold characters. For x ∈ R, δx denotes the Dirac measure at x. For
a Hermitian N × N matrix S, its eigenvalues are denoted as λ1(S) ≥ · · · ≥
λN (S), and μS := N−1 ∑N

i=1 δλi(S) denotes the ESD of S. The largest and
smallest eigenvalues of S are also denoted by λmax(S) and λmin(S), respectively.
For a matrix A, Ai,j stands for its ith row and jth column element, ‖A‖ and
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‖A‖F its operator norm and Frobenius norm, respectively, and A∗ its conjugate
transpose. The spectrum of a square matrix A is denoted by Spec(A). For a
function f , ‖f‖1 and ‖f‖∞ stand for its L1 and L∞ norm, respectively. If a, b
are two elements of a Hilbert space, we denote their inner product as 〈a, b〉.
The symbol K denotes a constant which may take different values from one
place to another. If several constants are needed in one expression, we will
denote them by K1,K2, . . . . For two sequences of positive numbers an and bn,
an � (�)bn means that there exists a constant K > 0 such that an ≤ (≥)Kbn
for all n, and an � bn means that there exist constants 0 < K1 < K2 such
that K1bn ≤ an ≤ K2bn for all n. The underlying constants may depend on the
spectral density f defined in the assumption A5 below, but do not depend on
any other variables in this article. The notation an 
 bn (resp. an � bn) means
that an/bn → ∞ (resp. an/bn → 0).

Organization

In §2, we state the main results. In §3, we develop applications to signal detection
and high-dimensional PCA for the data matrix X. In §4, we provide in 4.1
numeric simulations to show the norm inconsistency of R̂M , and to illustrate
of the ratio inconsistency of R̂b

M with its impact to the whitening procedure
in 4.2. We prove our main results Theorem 2.2 and Proposition 2.4 in §5 and
§6, respectively. The other proofs are given in the appendices.

2. Main results

2.1. Model and assumptions

We consider the random data matrix X in (1.1) with the following assumptions.

A1 The rows zi of Z are i.i.d real or complex random vectors, either standard
normal distributed, or distributed as

√
Mu where u follows the uniform

(Haar) measure on the unit sphere in R
M or C

M .
A2 The matrices CN are nonnegative and diagonal, i.e. CN = diag(c1, . . . , cN )

where cn ≥ 0 and cn may also depend on N for n = 1, . . . , N . Moreover
there exist constants C > 0 and κ > 0 such that

1
N

trC2
N ≤ C, ‖CN‖ ≤ κ logM.

A3 The Toeplitz matrices RM = (ri−j)Mi,j=1 have a positive spectral density
f ∈ L1(−π, π) which is bounded in any set of the form [−π, π]\(−δ, δ) with
δ > 0.

A4 The spectral density f is bounded away from 0:

ess inf
θ∈(−π,π)

f(θ) > 0.
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A5 The spectral density f is even and has the following asymptotic behavior
near 0:

f(x) = L(|x|−1)
|x|a

for x ∈ [−π, π]\{0} where a ∈ (0, 1) and L defined in [π−1,∞) is a slowly
varying function at ∞.

The assumptions on Z and CN allow the matrix X to cover two types of
models. When the matrix Z has i.i.d standard real (resp. complex) Gaussian
entries and CN is a real symmetric (resp. complex Hermitian) deterministic
matrix, each column of X is distributed as N (0,CN ) and the correlation be-
tween two columns xi,xj is γ(i− j)CN , which is the product of a scalar γ(i− j)
depending only on the difference of their indices i − j and a fixed matrix CN .
Then X represents a N -dimensional stationary Gaussian process with a sepa-
rable correlation structure. Note that in this case, the multivariate process X
is a linear transform by C1/2

N of N i.i.d samples of a univariate stationary pro-
cess. By the orthogonal (resp. unitary) invariance of the columns in X, we can
assume that CN is diagonal without modifying the distribution of SX , R̂M and
R̂b

M defined in (1.2)–(1.4). When the rows zi are distributed as
√
Mu where

u� follows the uniform (Haar) measure on the unit sphere in R
M or C

M , and
CN = diag(ν1, . . . , νN ) with νi some i.i.d nonnegative random variables, inde-
pendent of zi, we can write the rows of X as

xi =
√
νiziR1/2

M .

Then x�
i has an elliptical distribution, and the data matrix X represents a set

of i.i.d samples of elliptical random vectors with Toeplitz scatter matrix RM .
Because CN is independent of Z, we can treat CN as deterministic by standard
conditioning arguments, and our results are still applicable.

Recall that the spectral density of a sequence of Toeplitz matrices RM =
(ri−j) is a function f ∈ L1(−π, π) whose Fourier coefficients are rk:

rk = 1
2π

∫ π

−π

f(x)e−ikx dx.

If f is real, then RM is Hermitian; if f is positive, then RM is positive definite; if
f is positive and even, then RM is real symmetric and positive definite. We will
consider f as a 2π-periodic function so that f(x) is well defined by periodicity
for all real x. Note that the assumption A4 ensures that the smallest eigenvalue
of RM is positive and bounded away from 0, thus RM is invertible for all
M with ‖R−1

M ‖ bounded. If RM is the autocovariance matrix of a stationary
process and satisfies A3, A5, then the process is LRD by [18, Definition 2.1.5
(Condition IV)].

Recall the definition of SX in (1.2), the two estimators R̂M and R̂b
M in

(1.3)–(1.4), and ξN = N−1 trCN .
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2.2. Consistency properties of the unbiased estimator R̂M

In this subsection we study the consistency of the unbiased estimator R̂M . We
first point out that using a norm bound of RM given in Lemma 5.6 below, and
simply adapting the proof of [27, Theorem 2], one can prove the following large
deviation bound.

Proposition 2.1. Assume that A1,A3 and A5 hold with Z having i.i.d complex
Gaussian entries, CN bounded in spectral norm, and 0 < a < 1/2. Also assume
that N/M → c ∈ (0,∞). Then there exists a constant K > 0, such that for any
fixed x > 0, we have

P

(∥∥∥R̂M − ξNRM

∥∥∥ > x
)
≤ exp

(
− KcM1−2ax2

‖CN‖2L2(M) logM (1 + o(1))
)
. (2.1)

where o(1) is with respect to M and depends on x.

Proof. By checking carefully the proof of [27, Theorem 2], we note that we can
adapt it by replacing all the occurrences of the infinite-norm of the spectral
density (‖Υ‖∞ in [27]) with the spectral norm of the matrix ‖RM‖, and also
re-analyzing the contribution of the term ‖RM‖ where this term was previously
bounded in [27]. We also need to consider the contribution of CN , which will
introduce the factor ‖CN‖2 in the denominator of the exponential bound there.
Therefore, we have the following estimate:

P

(∥∥∥R̂M − ξNRM

∥∥∥ > x
)
≤ exp

(
− KNx2

‖CN‖2‖RM‖2 logM (1 + o(1))
)
. (2.2)

Taking into account the bound ‖RM‖ � MaL(M) given in Lemma 5.6 below,
the result follows. The details are omitted.

This proposition implies that in some LRD cases, where RM satisfies A5
with 0 < a < 1/2, the unbiased estimator R̂M is still norm consistent. However,
this result has the following defects. Firstly, the result does not cover the case
1/2 ≤ a < 1 (In fact we conjecture that in this case the norm consistency does
not hold. This will be supported by simulations with an heuristic argument
in §4.1). However in some applications such as whitening, the convergence of
the ratio R1/2

M R̂−1
M R1/2

M to some scaled identity ξI suffices. Secondly, even for
the norm consistent case, we can see that the convergence rate ensured by this
proposition is no better than

√
log(M)L(M)/M1/2−a, which depends on a and

gets worse and worse when a approaches 1/2. Meanwhile, since R−1
M is merely

bounded under A4, the proposition provides the same convergence rate for the
ratio R−1/2

M R̂MR−1/2
M .

These facts motivate us to establish the following large deviation bound for
the ratio.

Theorem 2.2. Under the assumptions A1–A5, for any sequence xM satisfying
M−γ � xM � C/κ for some γ > 0, there exist K > 0, such that for large enough
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M and any N ≥ 1, we have

P

(∥∥∥R−1/2
M R̂MR−1/2

M − ξNI
∥∥∥ > xM

)
≤ 2 exp

(
− Nx2

M

CK log2 M
+ β logM

)
.

(2.3)
where β is any integer larger than 2 + a + γ.

Remark 2.1. The inequality (2.3) literally holds for large enough M and all
N ≥ 1. Meaningful asymptotic results can be obtained by considering M,N →
∞ with different regimes. We leave the freedom of specifying a precise exploding
speed of M,N to specific context of applications. For example, in order to get
the almost sure convergence∥∥∥R−1/2

M R̂MR−1/2
M − ξNI

∥∥∥ a.s−−→ 0, (2.4)

we should assume M → ∞ and N = N(M) 
 log3 M .
As another example, if the target is some precise convergence rate, we will

consider small xM such as xM = A(log
3
2 M)/

√
N with a large enough con-

stant A. Then from (2.3), we have

P

(∥∥∥R−1/2
M R̂MR−1/2

M − ξNI
∥∥∥ > xM

)
≤ 2M−( A2

CK −β). (2.5)

So if we take N = N(M) � M2γ for some γ > 0 (which is required by the
statement of Theorem 2.2) and a large enough A (to make the RHS of (2.5)
summable), almost surely, for large enough M ,

∥∥∥R−1/2
M R̂MR−1/2

M − ξNI
∥∥∥ ≤ A log

3
2 M√
N

. (2.6)

Of course, if we want this bound to vanish, we need N 
 log3 M .
From this theorem, in order to accurately estimate the autocovariance ma-

trix RM , we need that the dimension N is also large enough. This is natural
since in the Gaussian case, N is the number of i.i.d. copies of a univariate sta-
tionary process (the rows of ZR1/2

M ) we used to construct XM via the linear
transform C1/2

N .
As a corollary of Theorem 2.2, when N,M are of the same order, the matrix

R̂1/2
M R−1/2

M is equivalent to
√
ξNI. This fact is useful when we want to rebuild

the uncorrelated data Y = C1/2
N Z by whitening R1/2

M .

Corollary 2.3. Under the same assumptions as in Theorem 2.2, assume more-
over that ξN is lower bounded from 0. Then as M,N → ∞ with N � M , we
have almost surely ∥∥∥R̂1/2

M R−1/2
M −

√
ξNI

∥∥∥ → 0. (2.7)

Using the ratio consistency of R̂M , we develop a consistent whitening pro-
cedure on X, which is further applied to signal detection, noise reduction and
data compression. See §3.
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When CN is random and independent of Z such that A2 is almost surely
satisfied for large enough M,N , the almost sure convergence (2.4) also holds.
For example, if CN = diag(ν1, . . . , νN ) with (νi)i∈N a sequence of i.i.d sub-
exponential (in the sense that P(|ν1| > t) ≤ K1e

−t/K2 with some K1,K2 > 0
for any t > 0) positive random variables satisfying E|ν1|2 = 1, then

1
N

N∑
i=1

ν2
i −−−−→

N→∞
1,

and there exists κ > 0 such that almost surely for large enough N ,

max
1≤i≤N

{νi} ≤ κ logN.

In this case (2.4) holds as M,N → ∞ with N � M .

2.3. Consistency properties of the biased estimator R̂b
M

In the SRD case, the biased estimator R̂b
M has several advantages over R̂M .

Firstly, it is structurally positive semi-definite (see Lemma 3 of [27]). Secondly,
it has smaller deviation from its expectation (the fluctuation rate is lower than
N−α for any α < 1, see [4]), because the inaccuracy of the elements near the
top-right and bottom-left corners is more reduced in R̂b

M than in R̂M .
However in the LRD case, R̂b

M is no longer consistent with RM , even in the
sense of ratio consistency. In fact, R̂b

M is ratio consistent with its expectation

Rb
M := ER̂b

M =
((

1 − |i− j|
M

)
ri−j

)M

i,j=1
,

whose difference from RM is no longer negligible in the LRD case. This is
precisely established below.

Proposition 2.4. Let X be defined in (1.1) with A1–A5 hold. Suppose that
ξN = N−1 trCN = 1. Then as M → ∞ with N = N(M) 
 log3 M , almost
surely, R̂b

M is ratio consistent with Rb
M :

‖(Rb
M )−1/2R̂b

M (Rb
M )−1/2 − I‖ → 0, (2.8)

but not with RM :
‖R−1/2

M R̂b
MR−1/2

M − I‖ �→ 0. (2.9)

Note that the inconsistency (2.9) is a special phenomenon caused by LRD,
because in the SRD case, as long as A4 holds, ‖RM‖ and ‖R−1

M ‖ are both
bounded, then the “ratio consistency” and the “norm consistency” are equiva-
lent.

The proof of Proposition 2.4 also shows that the inconsistency (2.9) caused by
LRD affects not only the biased estimator R̂b

M , but more generally a large class



5044 P. Tian and J. Yao

of tapered estimators of RM . Analogous to R̂b
M , we often taper the estimates

of rk for values of k close to M − 1 in order to reduce the inaccuracy of these
estimates. But in the LRD case, such tapering often modifies the asymptotic
behavior of the largest eigenvalue of the resulting estimator for RM , which in
turn destroys its ratio consistency, see the proof of Proposition 2.4.

Despite this ratio inconsistency of R̂b
M with RM , we find that only a small

part of the eigenvalues of R−1
M R̂b

M deviate from 1. In fact, we will establish the
ratio LSD consistency between the two matrices.

Proposition 2.5. Let X be defined in (1.1) with A1–A5 hold. Suppose that
ξN → 1 as N → ∞. Then as M → ∞ with N = N(M) 
 log3 M , almost surely
the ESD of R−1

M R̂b
M converges weakly to δ1.

Thanks to the ratio LSD consistency of R̂b
M with RM , R̂b

M can still serve as
a good approximation for RM in certain circumstances, see §4.2.

We end this section by recapitulating the consistency properties of estimators
R̂M and R̂b

M with RM , in the cases of SRD and LRD, respectively.

Table 1

Recapitulation of consistency properties

SRD LRD

R̂M

norm consistent norm consistent when 0 < a < 1/2
*norm inconsistent when 1/2 < a < 1

ratio consistent ratio consistent
ratio LSD consistent ratio LSD consistent

R̂b
M

norm consistent norm inconsistent
ratio consistent ratio inconsistent
ratio LSD consistent ratio LSD consistent

* is only supported by numerical studies. See Section 4.1.

3. Applications to matrix data whitening

Suppose that we have observed a data matrix X = C1/2
N ZR1/2

M with M,N
large but of the same order, and we want to detect the spike eigenvalues and
the associated eigenvectors of CN . If RM is identity, the data matrix becomes
Y = C1/2

N Z, and from RMT results, we can find the spike eigenvalues (usually
the extreme ones in applications) of

SY = 1
M

YY∗ = 1
M

C1/2
N ZZ∗C1/2

N ,

and calculate the spike eigenvalues of CN using the formula relating the spike
eigenvalues of CN and SY , see [30, Chapter 11] for more details. However, for
general matrix RM , especially when the underlying stationary process is LRD,
the above method fails because the information relevant to CN is mixed with
the covariance matrix RM . In fact from [25, Corollary 2.1] we know that if
A3,A5 hold and if in addition, the LSD of CN weakly converges, then for any
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fixed m ≥ 1, the m largest eigenvalues of SX = M−1XX∗ are asymptotically
equivalent to

trCN

M
{λ1(RM ), . . . , λm(RM )},

as N,M → ∞ and N/M → c ∈ (0,∞). Thus, even if CN is bounded, the largest
eigenvalues of SX tend to infinity following those of RM , and only the summary
statistic trCN appears in their first order limits. It is thus very difficult, if not
impossible, to estimate the number and locations of the spiked eigenvalues, and
the associated eigenvectors of CN . This breaks down any PCA on the original
data based on CN .

Using Theorem 2.2 and Corollary 2.3, we can whiten and remove the time
correlation R1/2

M from the data matrix X by multiplying it with R̂−1/2
M . Consider

the whitened data matrix
Yw := XR̂−1/2

M

and the whitened sample covariance matrix

Sw := 1
M

YwY∗
w = 1

M
C1/2

N Z(R1/2
M R̂−1

M R1/2
M )Z∗C1/2

N . (3.1)

Consider also the corresponding matrices with RM equaling to identity and CN

normalized by ξN :

YRid := ξ
−1/2
N Y, SRid := 1

M
YRidY∗

Rid = 1
ξN

SY . (3.2)

Our theory ensures that the impact of the covariance matrix RM is properly
removed from X so that the matrix Sw is close to SRid in spectral norm.

Proposition 3.1. Let A1–A5 hold with CN bounded in spectral norm and
ξN = trCN/N ≥ ε > 0. Then as N,M → ∞ with N/M → c ∈ (0,∞), we have

‖Sw − SRid‖ a.s−−→ 0.

The proposition ensures that many statistical methods for the standard co-
variance matrix SRid = ξ−1

N SY are applicable to the whitened matrix Sw. In
the following, we develop two statistical applications of this whitening procedure
with the following deformed “signal plus noise” model.

Let Y = (y1, . . . ,yM ) with

yj = Amj + σnj , (3.3)

where A is a N×p matrix with p ≥ 0 a fixed integer, σ > 0 and mj ∼ CN (0, Ip),
nj ∼ CN (0, IN ) are standard complex Gaussian vectors, independent of each
other and across i. The vectors yj represent antenna data, where Amj represent
the signal and σnj the noise. A little calculation shows that the matrix YRid

can be written in the form
Y = C1/2

N Z, (3.4)
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where CN = Cov(yi) = AA∗ + σ2IN , and Z is a N × M matrix with i.i.d
standard complex Gaussian entries. Note that in this case CN are unitarily
similar to the diagonal matrix

σ2 diag(α1, . . . , αp, 1, . . . , 1), (3.5)

where αi = 1 + λi(AA∗)
σ2 =: 1 + βi are signal strengths, and βi := λi(AA∗)

σ2 are
signal-to-noise ratios.

Now suppose that the data matrix Y is “polluted” during its transmission
which takes the form of a LRD time series, and only the matrix

X = YR1/2
M (3.6)

is observable, where RM is a Toeplitz matrix satisfying A3, A4, A5. For the
ease of numerical simulations, we let the entries of RM be

ri−j = 1
(1 + |i− j|)1−a

. (3.7)

By [18, Proposition 2.2.14], RM satisfies A3 and A5. By [32, Theorem 1.5,
Chapter V], RM also satisfies A4. Indeed, if the diagonal entry r0 is large
enough such that (rn)n≥0 is convex, the spectral density of RM is nonnegative.
The minimal value of such r0 is 2a − 3a−1 < 1 for 0 < a < 1. Thus when we
take r0 = 1, the spectral density f is larger than 1 − 2a + 3a−1 > 0.

In §3.1, we detect the number of spikes in CN , and estimate the signal
strength αi. In §3.2, we proceed a PCA on the data matrix X, or on the whitened
data Yw to reduce the noise, and the obtained matrices are of rank p, realizing
a compression of the original data matrix X.

3.1. Detection of the number of signals and estimation of their
strengths αi

As an immediate application of the asymptotic proximity between Sw and SRid,
we propose two algorithms, 1) to identify the number of spikes p from Sw, and
2) to estimate the spikes α1, . . . , αp. We assume that the spikes α1, . . . , αp are
simple. The following proposition is the theoretical base of our algorithms. It is
a corollary of Proposition 3.1 and [30, Theorem 2.9, Theorem 11.3].

Proposition 3.2. Let the rows of Y be defined in (3.3) and assume that the
conditions of Proposition 3.1 hold. Then the LSD of Sw is the Marčenko-Pastur
distribution

PMP ( dλ) :=
√

[(λ+ − λ)(λ− λ−)]+
2πcλ 1λ∈[λ−,λ+] dλ +

(
1 − c−1) δ0( dλ)1{c>1},

(3.8)
where λ± = (1 ±√

c)2. Furthermore, each αi larger than 1 +
√
c produces a

spiked eigenvalue of Sw, respectively, converging to

λi = αi + cαi/(αi − 1). (3.9)
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The proof will be omitted since it can be easily done by noticing that in this
particular case, SRid = M−1C̃1/2

N Z∗ZC̃1/2
N , where C̃N = CN

ξN
is the normalized

matrix unitarily similar to

diag(α1, . . . , αp, 1, . . . , 1)
ξ′N

with
ξ′N :=

∑p
i=1 αi + N − p

N
−−−−→
N→∞

1.

In order to estimate p, we calculate the eigenvalues of Sw denoted as

λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂N .

Note that for current model setting, the ratio λ̂j/λ̂j+1 is larger than 1 + ε > 1
for j < p, and is close to 1 for j ≥ p. We thus choose three numbers γ1, γ2, γ3
such that the event {

λ̂p+i

λ̂p+i+1
< γi, i = 1, 2, 3

}

occurs with probability no less than some threshold (e.g. 99.9%). We will deter-
mine γi by Monte-Carlo simulation. Then

p̂ := inf{k ≥ 0 : λ̂k+1/λ̂k+2 < γ1, λ̂k+2/λ̂k+3 < γ2, λ̂k+3/λ̂k+4 < γ3}

is our proposed estimate for p.
Remark 3.1. Theoretically, we can use

p̂′ := inf{k ≥ 0 : λ̂k+1/λ̂k+2 < γ1}

as an estimate of p. However even though αi’s are distinct, the corresponding
sample eigenvalues λ̂i can still get so close that the algorithm may terminate
prematurely and p̂′ tends to under-estimate the real p. The triple tests in p̂
reinforce the robustness of the estimator against such situation.

Once we have estimated p, we can further estimate the values of α1, . . . , αp.
According to (3.9), a rough estimation is given by

α̂i :=
(1 − c + λ̂i) +

√
(1 − c + λ̂i)2 − 4λ̂i

2 . (3.10)

However, note that SRid is different from the standard spike model by a factor
of ξ−1

N . The estimation error may be considerable if there are many large spikes.
We can estimate ξN in order to correct the error. Note that the exact asymptotic
location of λ̂p+1 is at ξ−1

N (1 +
√
c)2, so we let

ξ̂N := (1 +
√
c)2

λ̂p̂+1
.
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And then the corrected estimation of αi is

α̂i :=
(1 − c + λ̂iξ̂N ) +

√
(1 − c + λ̂iξ̂N )2 − 4λ̂iξ̂N

2 . (3.11)

We will see in the simulation that the accuracy of this estimator is satisfactory.
We do some numerical simulations to test the efficiency and robustness of

the two estimation procedures. We take M = 500, N = 833 (c = 0.6) and
a = 0.7. Although the number p and the spikes αi are assumed to be fixed in
the description of model, in order to add some challenge to the test, we pick p
randomly following Poisson distribution with parameter 4, and then α1, . . . , αp

are independently and uniformly positioned in the interval [3, 10]. Let σ2 = 1.
With this construction of CN , we know that if p ≥ 1, almost surely the spikes
α1, . . . , αp are simple.

Next we determine the three numbers γ1, γ2, γ3 defined in the description of
the algorithm. Independent samples are drawn 1000 times under the spike-free
model (or “white” model), that is, CN = I, and the ratios λi(Sw)/λi+1(Sw) for
i = 1, 2, 3 are recorded. Let γi be the largest value of these ratios for i = 1, 2, 3,
respectively. By this method, we find

γ1 = 1.04418, γ2 = 1.0353, γ3 = 1.0294 .

Using the above configurations, we make 1000 independent realizations, and
register the frequency (over the total 1000 realizations) of each case in Table 2.
For all the realizations such that p̂ = p �= 0, we calculate the estimates α̂i, i =
1, . . . , p̂ using (3.11) and also their relative errors (RErr). We put the average
RErr in Table 2.

Table 2

Accuracy of p̂ and α̂i

Proportion Proportion Mean RErr of α̂i

p̂ = p 99.8% p �= 0 97.5% 0.0031958
p = 0 2.3%

p̂ > p 0.2% p �= 0 0.2%
p = 0 0

p̂ < p 0

We can see that the estimator p̂ has an accuracy of 99.8%, and the estimators
α̂i are also accurate.

3.2. PCA on time-correlated data matrix

The PCA is a widely used method for noise reduction and data compression.
Given the data matrix X, our aim in this section is to reduce the row dimension
N by removing the noise and preserving as much signal as possible contained
in Y.

We recall the main steps of PCA on the row vectors of Y, if the original data
Y is available.
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1. Calculate the eigenvalues and the associated eigenvectors of the sample
covariance matrix SY = M−1YY∗.

2. Estimate the number of principal components (PC) p using the algorithm
described in §3.1.

3. Let v1, . . . ,vp be the eigenvectors of SY associated to the spikes. Then we
get the PC of each vector yk by projecting it into the subspace generated
by (v1, . . . ,vp), that is,

yk,pc := Pyk =
p∑

i=1
〈yk,vi〉vi.

The PC of the matrix data is then

Ypc := (y1,pc, . . . ,yM,pc) = PY,

where

P :=
p∑

i=1
viv∗

i

is the matrix of the orthogonal projection into the subspace generated by
{v1, . . . ,vp}. In this way we have removed the noise from the data.

4. We can further compress the data by expressing the vectors yk,pc as p-
dimensional vectors in the coordinate system v1, . . . ,vp, that is,

yk,pc|(v1,...,vp) = (v∗
1, . . . ,v∗

p)�yk.

So the compressed data matrix from Y is

Ypc|(v1,...,vp) = (v∗
1, . . . ,v∗

p)�Y.

Note that after compression, the dimension of the matrix becomes p×M .
In this way we have reduced the signal dimension from N to p.

When only X is observed, our main results suggest that we can proceed the
PCA on the whitened matrix Yw to obtain the estimated PC of data. Note that
in fact

Sw = 1
M

YwY∗
w,

so the PCA on Yw can be done using the algorithm described above by replacing
Y with Yw, and SY with Sw, respectively. Let yw,k,pc be the PC from the
whitened data yw,k, and let Yw,pc = (yw,1,pc, . . . ,yw,M,pc). Then Yw,pc and
Ypc are close in the following sense.

Proposition 3.3. Let Y be defined in (3.3) and X = YR1/2
M with the conditions

of Proposition 3.1 hold. Assume also that the distance between αi and 1 are lower
bounded. Then

1
M

‖Yw,pc − Ypc/
√

ξN‖2
F

a.s−−→ 0. (3.12)
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Note that Y contains M columns (so there are M signal vectors). Then (3.12)
means that the PC’s from whitened data and those from the original data are
in average close to each other.

We take N = 1500,M = 2500 (c = 0.6), p = 3, and a matrix A of dimension
1500 × 3. Although the matrix A in the model setting is deterministic, in our
simulation program we have constructed it from three column Gaussian vectors
of distributions N (0, σ2

i I) with σ2
1 = 0.1, σ2

2 = 0.2, σ2
3 = 0.3 respectively, in

order to better approximate to the reality. Finally, the singular values of A are
5.21, 20.89, 42.49. Let Y be a N ×M random matrix whose rows are defined as
in (3.3) with σ2 = 1. Let X = YR1/2

M where RM is defined in (3.7) with a = 0.2.
Then we proceed the PCA on the whitened data Yw as described above, and get
Yw,pc. Since the data matrix Y is also available in such simulation experiments,
we can also calculate Ypc, the PC of Y, and compare the row vectors of the two
matrices.

The comparison result is illustrated in Figure 1, where in 1(a), we draw the
Euclidean norm of yw,k,pc − yk,pc/

√
ξN , and in 1(b), we draw the real part of

cosine similarity of yw,k,pc and yk,pc, for k = 1, . . . ,M . The cosine similarity of
two vectors u,v ∈ C

N is defined by

cos(u,v) := 〈u,v〉
‖u‖‖v‖ ,

and its real part represents the cosine similarity of u,v regarded as real vectors
in R

2N . From the simulation result we can see that the the PC vectors from
whitened data are close to those from the original data. The norms of differences
are under 0.5 for the majority part of the signal vectors, while the norms of the
PC signal vectors themselves are around 10. The real cosine similarities are close
to 1, which means that the directions of the two vectors under comparison are
almost the same.

We repeat the same experiments with the same parameters except for a =
0.95. The results are shown in Figure 1, plots 1(c) and 1(d). We can see that
although the LRD parameter a is quite close to 1 (the process has a quite long
memory), the PCA has a comparable accuracy to the previous case.
Remark 3.2. Thanks to the separable structure X = YR1/2

M , if we are not
interested in the original data but just want to reduce the underlying noise
for compression, we only need to project the columns of X into the subspace
generated by vw,1, . . . ,vw,p, the eigenvectors of Sw, and get

Xw,pc =
(

p∑
i=1

vw,iv∗
w,i

)
YR1/2

M ,

which is the PC of X.

4. Numerical studies on inconsistency properties

In order to demonstrate the impact of new phenomena caused by LRD in the
whitening procedure, and also to illustrate some of our conjectures, we present
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Fig 1. Comparison of PCA on the original and whitened data matrices.

several numeric simulations in this section.
Throughout this section, we assume that

CN = ζ−1
N diag(α1, . . . , αp, 1, . . . , 1) (4.1)

where p ≥ 0 is a fixed integer, αi > 1, i = 1, . . . , p are some fixed positive
numbers, and the normalization ζN = N−1(α1 + · · ·+ αp +N − p) is such that
trCN = N . When p = 0, CN is identity. We assume also that the entries of Z
are i.i.d standard real or complex Gaussian.

4.1. Norm inconsistency of R̂M when 1/2 < a < 1

We take CN = I, Z having i.i.d real standard Gaussian entries. In order to
check the consistency of the unbiased estimate R̂M with RM in spectral norm,
we take a = 0.9, 0.7, 0.5, 0.3, 0.1 and M = 250, 500, 1000, 2000 with N = 2M .
For each case we sample 500 independent realizations, and list the medians of
‖R̂M − RM‖ in Table 3.

We know that if ‖R̂M −RM‖ → 0 in probability, then the median must also
converge to 0. However from Table 3 we can see that when a > 0.5, the median
of ‖R̂M − RM‖ is large and increasing with M (N = 2M). When a = 0.5,
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Table 3

Medians of ‖R̂M − RM‖.

a M = 250 M = 500 M = 1000 M = 2000
0.9 7.0658 10.9346 12.7499 16.5067
0.7 3.2477 4.0702 4.6998 5.7822
0.5 1.8272 1.9393 1.9315 1.9579
0.3 1.1738 1.0211 1.0285 0.9318
0.1 0.7494 0.6552 0.5792 0.4873

Fig 2. Comparison of ESD between (R̂b
M )−1RM and R̂−1

M RM .

which is the theoretical threshold of spectral norm consistency, the median of
‖R̂M −RM‖ seems oscillating, neither increasing nor decreasing. When a < 0.5,
in which case we know that ‖R̂M − RM‖ → 0 almost surely (see (2.1)), the
medians are relatively small and tend to decrease with M .

4.2. Ratio inconsistency of Rb
M and its impact on the whitening

procedure

We have seen that a striking difference between the LRD and SRD situations
is that the biased estimator Rb

M is not ratio consistent (Proposition 2.4), but
instead, it is ratio LSD consistent (Proposition 2.5). That means, only a small
number of eigenvalues of the ratio R−1

M R̂b
M deviate from 1. But how many

deviating eigenvalues are there, and how does this affect the applications? We
now study these questions via numerical experiments.

We take M = 1000, N = 2000 (c = 2), CN = I, Z has real Gaussian entries,
and a = 0.9 (the same configuration as the first row and second column of
Table 3). We plot the histograms of the spectra of (R̂b

M )−1RM and R̂−1
M RM in

Figure 2. We note that the major part of eigenvalues of (R̂b
M )−1RM are close

to 1, but there are several extreme ones which are far away, the smallest at 0.3,
and the largest at 1.75. In contrary, the spectrum of R̂−1

M RM spreads in the
interval [0.91, 1.12] much concentrated around 1.

Because of the ratio inconsistency of R̂b
M , we may observe some extra “pseudo”

spikes caused by the spikes of R1/2
M (R̂b

M )−1R1/2
M , if we replace R̂M with R̂b

M in
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Fig 3. Inconsistency of Rb
M may cause pseudo spikes under some conditions.

the whitening procedure. Let

Swb := 1
M

X∗(R̂b
M )−1X = 1

M
C1/2

N Z∗(R1/2
M (R̂b

M )−1R1/2
M )ZC1/2

N ,

which parallels the matrix Sw in (3.1) with this replacement. In order to better
illustrate the pseudo spikes, when N > M , we will plot the ESD of its dual
sample covariance matrix

Swb := 1
N

(R̂b
M )−1/2XCNX∗(R̂b

M )−1/2.

We take M = 1000, N = 8000, CN = I, and plot in Figure 3 the histogram of
the ESD’s of Swb and also of the corresponding dual matrix Sw derived from Sw.
We can see that when CN has no spikes, some unexpected spikes are observed
in the ESD of Swb, whereas the corresponding Sw does not have this problem.
Note also that this phenomenon occurs only with very large ratio c = N/M .
When we take N = 3000 or N = 800 instead, the pseudo spikes disappear, see
Figure 3(c) and 3(d).

Here is a heuristic explanation. From the ratio LSD consistency described
in Proposition 2.5, the ratio inconsistency described in Proposition 2.4 and the
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numeric simulations in this section, we can think of (Rb
M )−1/2RM (Rb

M )−1/2

asymptotically as a finite perturbation of identity. Thus the appearance or dis-
appearance of pseudo spikes can be explained by the spikes of separable model

Ssep := 1
M

C1/2
N ZΣZ∗C1/2

N

where Σ can be a positive deterministic Hermitian matrix. Largest eigenvalues
of this matrix obeys a phase transition phenomenon as established in [6].

5. Proof of Theorem 2.2

5.1. Some preliminaries

As the matrices R−1/2
M R̂MR−1/2

M and R̂MR−1
M have the same eigenvalues, we

have
‖R−1/2

M R̂MR−1/2
M − ξNI‖ = max

i
{|λi(R̂MR−1

M − ξNI)|}.

Then the idea of proof is to estimate the range of eigenvalues of the matrix
R̂MR−1

M .
The following lemma connects the spectrum of R̂MR−1

M with the ratio of
spectral densities of the two Toeplitz matrices R̂M and RM . It was first proved
in [10] and extended to integrable spectral densities in [20, Theorem 2.1].

Lemma 5.1. Let R1,M ,R2,M be two M × M Toeplitz matrices generated by
positive spectral densities f1, f2 ∈ L1(0, 2π), respectively. Then for any M ≥ 1,

Spec(R1,MR−1
2,M ) ⊂

[
ess inf
θ∈[0,2π]

f1(θ)
f2(θ)

, ess sup
θ∈[0,2π]

f1(θ)
f2(θ)

]
.

By this lemma, the spectral densities of the two Toeplitz matrices R̂M and
RM are important. We note that R̂M is random and depends on N,M , then
so must be its spectral density, and the coefficients of orders higher than M − 1
can be arbitrary. For each N and M , we define

f̂M (θ) := ξNf(θ) +
M−1∑

n=−M+1
(r̂n − ξNrn)einθ (5.1)

where f is the spectral density of RM . Note that the Fourier coefficients of f̂M
are r̂m for −M + 1 ≤ m ≤ M − 1, thus for this particular N and M , f̂M is the
spectral density of R̂M , and by Lemma 5.1, the eigenvalues of R̂MR−1

M are in
the interval [

ess inf
θ∈[0,2π]

f̂M (θ)
f(θ) , ess sup

θ∈[0,2π]

f̂M (θ)
f(θ)

]
.
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Thus for any x > 0, we have

P

(
‖R−1/2

M R̂MR−1/2
M − ξNI‖ > x

)
≤ P

(
ess sup
θ∈[0,2π]

∣∣∣∣∣ f̂M (θ)
fM (θ) − ξN

∣∣∣∣∣ > x

)
. (5.2)

Let

ΥM (θ) :=
M−1∑

n=−M+1
rne

inθ, Υ̂M (θ) :=
M−1∑

n=−M+1
r̂ne

inθ. (5.3)

Then f̂M (θ)− ξNfM (θ) = Υ̂M (θ)− ξNΥM (θ). Recall that EΥ̂M (θ) = ξNΥM (θ)
for any θ ∈ [0, 2π]. Then the RHS of (5.2) becomes

P

(
ess sup
θ∈[0,2π]

|Υ̂M (θ) − EΥ̂M (θ)|
f(θ) > x

)
. (5.4)

This can be considered as the probability of large relative error of the estimation
Υ̂M (θ) with respect to f(θ). We will use a similar discretization strategy as [27].
Let

0 < θ1 < θ2 < · · · < θm < 2π

be an appropriate mesh of (0, 2π), which will be precised later, then a key step
is to estimate the probability

P

(
|Υ̂M (θj) − EΥ̂M (θj)| > xf(θj)

)
(5.5)

for each θj . This will be done in §5.2.

5.2. Relative error bound of Υ̂M(θ) for individual θ

The goal of this subsection is to prove the following Proposition 5.2.

Proposition 5.2. Let K1 > 0 be an arbitrary positive constant. In both Gaus-
sian case and spherical case, there exists K2 > 0 depending on K1, such that
for any x ∈ (0, CK1/κ), for large enough M , any N ≥ 1, and any θ ∈ (0, 2π),
we have

P

(∣∣∣Υ̂M (θ) − EΥ̂M (θ)
∣∣∣ > xf(θ)

)
≤ 2 exp

(
− Nx2

CK2 log2 M

)
. (5.6)

We will prove Proposition 5.2 separately for complex Gaussian, complex
spherical, and real cases. Before that, we still need some preliminary works.

Denote

DM (θ) := diag(1, e−iθ, . . . , e−i(M−1)θ), BM :=
(

1
M − |i− j|

)M−1

i,j=0
, (5.7)

and
QM (θ) := R1/2

M DM (θ)BMD∗
M (θ)R1/2

M . (5.8)
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Then from Lemma 7 and 8 and (9) of [27], under A2, we have

Υ̂M (θ) = 1
N

trC1/2
N ZQM (θ)Z∗C1/2

N = 1
N

N∑
n=1

cnznQM (θ)z∗n, (5.9)

From A1, z�n can be a real or complex vector. We only give the complete
proof for the complex case, and list the differences between real and complex
cases to ease the adaption for the real case. Thus, let us first assume that
z�n are complex Gaussian or uniformly distributed on the complex sphere. Let
σ1 ≥ σ2 ≥ · · · ≥ σM be the eigenvalues of QM (θ) (Warning: QM (θ) may be
indefinite). By the unitary invariance of z�n , we have

Υ̂M (θ) − EΥ̂M (θ) L= 1
N

N∑
n=1

cn

M∑
m=1

σm(|Zn,m|2 − 1). (5.10)

In light of (5.10), in order to prove (5.6), it is equivalent to prove

P := P

(∣∣∣∣∣ 1
N

N∑
n=1

cn

M∑
m=1

σm(|Zn,m|2 − 1)

∣∣∣∣∣ > xf(θ)
)

≤ 2 exp
(
− Nx2

CK2 log2 M

)
.

(5.11)
For this, we find it crucial to estimate trQ2

M (θ) =
∑M

m=1 σ
2
m. We now state the

following proposition, whose proof is provided in §5.4.

Proposition 5.3. Let QM (θ) be defined as (5.8) with Toeplitz matrix RM whose
spectral density f satisfies A3, A4, A5. Then

trQ2
M (θ)

f2(θ) log2 M
(5.12)

is uniformly bounded in θ ∈ [−π, π]\{0} and M > 1.

5.2.1. Proof of Proposition 5.2, complex Gaussian case

Let
σ′
i = σi√∑M

m=1 σ
2
m

, i = 1, . . . ,M.

Then

P = P

⎛
⎝
∣∣∣∣∣

N∑
n=1

cn

M∑
m=1

σ′
m(|Zn,m|2 − 1)

∣∣∣∣∣ > Nxf(θ)√∑M
m=1 σ

2
m

⎞
⎠ .

By Proposition 5.3, there exists a constant K > 0 such that

Nxf(θ)√∑
m σ2

m

≥ Nx√
K logM
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for any θ and M > 1. Then

P ≤ P

(∣∣∣∣∣
∑
n

cn
∑
m

σ′
m(|Zn,m|2 − 1)

∣∣∣∣∣ > Nx√
K logM

)
. (5.13)

Then we only need to estimate the RHS of (5.13) with
∑

m(σ′
m)2 = 1. Let

Pi := P

(
(−1)i−1

∑
n

cn
∑
m

σ′
m(|Zn,m|2 − 1) > Nx√

K logM

)
, i = 1, 2.

Then P ≤ P1 +P2, and the estimation of P1 and P2 is similar, we only need to
estimate P1.

Using Chernoff bound, for any τ > 0, we have

P1 ≤ exp
(
− Nxτ√

K logM
+ logEe

∑
n
τcn

∑
m

σ′
m(|Zn,m|2−1)

)
. (5.14)

Note that the rows zn of Z are i.i.d across n, we then have

P1 ≤ exp
(
− Nxτ√

K logM
+
∑
n

ΦM (τcn)
)
, (5.15)

where ΦM is the cumulant generating function of
∑

m σ′
m(|Zn,m|2 − 1):

ΦM (z) := logEez
∑

m
σ′
m(|Zn,m|2−1).

Lemma 5.4. When Zn,m are i.i.d. standard complex Gaussian variables, there
exists A > 0 and ε > 0 such that when |z| < ε, we have

|ΦM (z)| ≤ A|z|2

for any M > 1.

Proof. Let φ be the cumulant generating function of |Zn,m|2 − 1:

φ(z) := logEez(|Zn,m|2−1).

Then as Zn,m are i.i.d. standard complex Gaussian, we have

ΦM (z) =
∑
m

φ(zσ′
m),

and
φ(z) = −z − log(1 − z).

By the Taylor’s expansion log(1 − z) = z − z2/2 + z3/3 − · · · , choosing an
arbitrary ε ∈ (0, 1), there exists A > 0 such that for any |z| ≤ ε, we have

|φ(z)| = |z|2|1/2 − z/3 + · · · | ≤ A|z|2.

Thus
|ΦM (z)| ≤

∑
m

|φ(zσ′
m)| ≤

∑
m

A|z|2(σ′
m)2 = A|z|2.
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From (5.15) and Lemma 5.4, for any τ > 0 such that |τcn| ≤ ε, we have

P1 ≤ exp
(
− τNx√

K logM
+ Aτ2

∑
n

c2n

)
. (5.16)

Noting that
∑

n c
2
n ≤ CN by A2, we then have

P1 ≤ exp
(
− τNx√

K logM
+ CANτ2

)
. (5.17)

If we can take
τ = x

2CA
√
K logM

,

we will minimize the RHS of (5.17) and get

P1 ≤ exp
(
− Nx2

4KCA log2 M

)
. (5.18)

In order to validate (5.18), we have to keep |τcn| ≤ ε for all n. Note that
|cn| ≤ κ logM by A2, we only need to keep τ ≤ ε/(κ logM). That is, we only
need to keep

x ≤ 2εCA
√
K/κ.

Taking K1 = 2εA
√
K and K2 = 4KA, we conclude that, for any x ∈

(0, CK1/κ),

P1 ≤ exp
(
− Nx2

CK2 log2 M

)
. (5.19)

Note that K or A can be adjusted to a larger constant, which means that K1
can be arbitrarily large, and K2 should be adjusted correspondingly. This is
exactly the statement of Proposition 5.2. We have thus proved the proposition
for complex Gaussian case.

5.2.2. Proof of Proposition 5.2, complex spherical case

When zn follows the uniform distribution on the sphere {z ∈ C
M : ‖z‖ =

√
M}.

Then ‖zn‖2 = M . We have

Υ̂M (θ) − EΥ̂M = znQM (θ)z∗n − ‖zn‖2

M
trQM (θ)

= zn
(
QM (θ) − trQM (θ)

M
I
)

z∗n

L=
M∑

m=1

(
σm − trQM (θ)

M

)
|Zn,m|2.

Write
σ′
m = σm − trQM (θ)/M√∑

m(σm − trQM (θ)/M)2
,
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then
∑

m σ′
m = 0,

∑
m σ′2

m = 1, and P defined in (5.11) becomes

P = P

(∣∣∣∣∣
N∑

n=1
cn

M∑
m=1

σ′
m|Zn,m|2

∣∣∣∣∣ > Nxf(θ)√∑
m(σm − trQM (θ)/M)2

)
.

Using Proposition 5.3 again, there exists some constant K > 0 such that
M∑

m=1

(
σm − trQM (θ)

M

)2

≤ trQ2
M (θ) ≤ Kf2(θ) log2 M.

Then

P ≤ P

(∣∣∣∣∣
N∑

n=1
cn

M∑
m=1

σ′
m|Zn,m|2

∣∣∣∣∣ > Nx√
K logM

)
.

Similar to the proof in the Gaussian case, we define

Pi = P

(
(−1)i−1

N∑
n=1

cn

M∑
m=1

σ′
m|Zn,m|2 >

Nx√
K logM

)
, i = 1, 2

and we just need to estimate P1. Using Chernoff bound, for any τ > 0, we have

P1 ≤ exp
(
− Nxτ√

K logM
+
∑
n

ΦM (τcn)
)
, (5.20)

where
ΦM (z) := logEez

∑
m

σ′
m|Zn,m|2 = M

2(M + 1)z
2 + · · · .

Lemma 5.5. When z�n are i.i.d uniformly distributed on the complex sphere
{z ∈ C

M : ‖z‖ =
√
M}, there exists A > 0 and ε > 0 such that when |z| < ε,

we have
|ΦM (z)| ≤ A|z|2

for any M > 1.

Proof. On the one hand, by the Taylor’s expansion of eΦM (z), and the fact that
E
∑

m σ′
m|Zn,m|2 =

∑
m σ′

m = 0, we have

E exp
(
z
∑
m

σ′
m|Zn,m|2

)
= 1 +

∞∑
k=2

zk

k! E
(∑

m

σ′
m|Zn,m|2

)k

, (5.21)

On the other hand, let g = (g1, . . . , gM )� ∈ C
M be a standard complex Gaussian

vector. Then since g is spherically symmetric, we have g L= ‖g‖zn/
√
M where

‖g‖ and zn are independent (see e.g. [8]). Then

E exp
(
z
∑
m

σ′
m|gm|2

)
= E exp

(
z
‖g‖2

M

∑
m

σ′
m|Zn,m|2

)

=
∞∑
k=0

zkE‖g‖2k

k!Mk
E

(∑
m

σ′
m|Zn,m|2

)k

.

(5.22)
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Since we know that for Gaussian variables gm,

E exp
(
z
∑
m

σ′
m|gm|2

)
=

M∏
m=1

1
1 − zσ′

m

= exp
(

M∑
m=1

log(1 − zσ′
m)

)
,

comparing to (5.22) we get

∞∑
k=0

zkE‖g‖2k

k!Mk
E

(∑
m

σ′
m|Zn,m|2

)k

= exp
(

M∑
m=1

log(1 − zσ′
m)

)
. (5.23)

Note that
∑

m σ′
m = 0,

∑
m(σ′

m)2 = 1 and |σ′
m| ≤ 1. From the proof of

Lemma 5.4, for an arbitrary ε ∈ (0, 1), there exists Aε such that | log(1−zσ′
m)+

zσ′
m| ≤ Aε|z|2(σ′

m)2 for any |z| ≤ ε. Thus for these z we have∣∣∣∣∣exp
(

M∑
m=1

log(1 − zσ′
m)

)∣∣∣∣∣ ≤ exp(Aε|z|2). (5.24)

Applying Cauchy’s integration formula to (5.23) and using (5.24), for each k ≥ 0,
we have∣∣∣∣∣E‖g‖

2k

k!Mk
E(

∑
m

σ′
m|Zn,m|2)k

∣∣∣∣∣ = 1
2π

∣∣∣∣∣
∫
|z|=ε

1
zk+1

M∏
m=1

1
1 − zσ′

m

dz

∣∣∣∣∣ ≤ eAεε
2

εk
.

Note that
E‖g‖2k

Mk
= M(M + 1) · · · (M + k − 1)

Mk
≥ 1,

we get ∣∣∣∣∣ 1
k!E(

∑
m

σ′
m|Zn,m|2)k

∣∣∣∣∣ ≤ eAεε
2

εk
.

Then for any |z| ≤ ε/2, we have∣∣∣∣∣
∞∑
k=2

zk−2

k! E(
∑
m

σ′
m|Zn,m|2)k

∣∣∣∣∣ ≤ 2ε−2eAεε
2
.

Taking this into (5.21), we get∣∣∣Eez∑m
σ′
m|Zn,m|2 − 1

∣∣∣ ≤ 2ε−2eAεε
2 |z|2

for any |z| ≤ ε/2. Using the inequality | log(1 + z)| ≤ K|z| for |z| ≤ ε < 1, we
conclude that there exists ε > 0, A > 0 such that when |z| < ε, we have

|ΦM (z)| = | logEez
∑

m
σ′
m|Zn,m|2 | ≤ A|z|2.

The remaining proof for spherical case is identical to the proof for Gaussian
case from (5.16) onward.
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5.2.3. Real case

In the real case, the proof is similar, so we omit the detail. To complete the proof,
we only need to replace the corresponding items with the following mentioned
properties in the proof of complex case.

The first, when CN , Z, RM are all real, one has

Υ̂M (θ) = �(Υ̂(θ)) = 1
N

N∑
n=1

zn�(QM (θ))z∗n.

The second, note also that

tr(�QM (θ))2 ≤ trQ2
M (θ)

and
logEez|G|2 = −1

2 log(1 − 2z)

for standard real Gaussian variable G with |z| < 1/2.
The third, if g ∈ R

M is a standard real Gaussian vector, we have

Mk

E‖g‖2k = Mk

M(M + 2) · · · (M + 2k − 2) ≤ 1.

5.3. Relative error bound for all θ by discretization

Let β be a positive integer to be determined afterwards. For k = 0, . . . ,Mβ , let

θk := 2πk
Mβ

.

For θ ∈ (0, 2π), let θj be such that θj−1 < θ ≤ θj if θ ∈ (0, π], and θj ≤ θ < θj+1
if θ ∈ (π, 2π). We write

|Υ̂M (θ) − ΥM (θ)|
f(θ) ≤ |Υ̂M (θ) − Υ̂M (θj)|

f(θ) + |Υ̂M (θj) − ΥM (θj)|
f(θ)

+ |ΥM (θ) − ΥM (θj)|
f(θ) =: χ1(θ) + χ2(θ) + χ3(θ).

We first estimate the probability of large deviation of χ2, which we will see
is the main part of (2.3). Different from the SRD case, we have to treat the
singularity of the spectral density f at 0. We note that

χ2(θ) = χ2(θj)
f(θj)
f(θ) .

We now prove that f(θj)
f(θ) is bounded for θ ∈ [0, 2π] and θj . Because f is supposed

to be even and 2π-periodic, we only need to consider θ ∈ (0, π). Note that by
Lemma 5.7(c) below, as θj → 0+,

f(θj)
f(θ) ≤ f(θj)

inf0<t≤θj f(t) ∼ 1.
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Let δ > 0 be such that
f(θj)
f(θ) ≤ f(θj)

inf0<t≤θj f(t) ≤ 2

for 0 < θ ≤ θj ≤ δ. Then for any θ ∈ (0, π), we have

f(θj)
f(θ) ≤ max

(
2,

supt∈[δ,π] f(t)
inft∈[δ,π] f(t)

)
,

and by A3, A4, the RHS of the above inequality is bounded. Denote this bound
as F . Using Proposition 5.2, for any x ∈ (0, CFK1/κ), as M,N are large enough,
we have

P

(
sup

θ∈(θj−1,θj ]
χ2(θ) > x

)
≤ P

(
χ2(θj) >

x

F

)
≤ 2 exp

(
− Nx2

CF 2K2 log2 M

)
.

Then

P

(
sup

θ∈(0,2π)
χ2(θ) > x

)
≤ 2Mβ exp

(
− Nx2

CF 2K2 log2 M

)
. (5.25)

We then estimate χ1. From the proof of Lemma 10 in [27], and note that f(θ)
is bounded away from 0, also note Lemma 5.6 for the bound of ‖RM‖, and A2
for the bound of ‖CN‖, we have

sup
θ∈[0,2π]

χ1(θ) ≤ sup
θ∈[0,2π]

1
Nf(θ)‖CN‖‖QM (θ) − QM (θj)‖|θ − θj |

∑
m,n

|Zn,m|2

� sup
θ∈[0,2π]

1
N

‖CN‖‖RM‖M
√

logM |θ − θj |
∑
m,n

|Zn,m|2

� κ

N
M1+a−βL(M)(logM)3/2

∑
m,n

|Zn,m|2

≤ κM2+a−βL(M)(logM)3/2
∑

m,n |Zn,m|2

MN
.

Then for xM satisfying xM � M−γ with some γ > 0, we have

P

(
sup

θ∈[0,2π]
χ1(θ) > xM

)
≤ P

(∑
m,n |Zn,m|2

MN
>

Mβ−2−a−γ

κL(M)(log(M))3/2

)
. (5.26)

We take β > 2+a+γ and let ε = β−2−a−γ
2 , then as M is large enough, we have

Mβ−2−a−γ

κL(M)(log(M))3/2

 Mε > 1. (5.27)

If zn are standard complex normal, by [27, Lemma 2], we have for any y > 1,

P

(∑
m,n |Zn,m|2

MN
> y

)
≤ exp(−MN(y − 1 − log y)). (5.28)
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For y large enough, we have y − 1 − log y > y/2. Thus if M is large enough,
from (5.26), (5.27) and (5.28),

P

(
sup

θ∈[0,2π]
χ1(θ) > xM

)
≤ exp(−NM1+ε/2). (5.29)

The real Gaussian case is similar.
If zn are spherical of radius

√
M , then

∑
m,n

|Zn,m|2

MN = 1 and the RHS of (5.26)
is eventually zero. Therefore, for both spherical and Gaussian cases, when M is
large enough, (5.29) holds.

We now estimate the bound of χ3. From the proof of Lemma 12 in [27], and
note that |ξN | ≤

√
trC2

N/N ≤
√
C we have

sup
θ∈[0,2π]

χ3(θ) � M2|θ − θj |‖RM‖
√

C logM

� M2+a−βL(M)
√

C logM.

For any xM satisfying xM � M−γ , let β > 2+a+γ, then as M is large enough,
we have

sup
θ∈[0,2π]

χ3(θ) < xM .

and thus

P

(
sup

θ∈[0,2π]
χ3(θ) > xM

)
= 0. (5.30)

The final result follows from combining the above estimations (5.25), (5.29),
(5.30), and letting the dominant item (5.25) absorb the others by appropriately
changing the corresponding constants.

5.4. Proof of Proposition 5.3

In order to estimate trQ2
M (θ), we first estimate the norm of the Toeplitz matrix

RM . The following lemma is a direct corollary of Theorem 2.3 in [25], so the
proof is omitted.

Lemma 5.6. If (RM ) is a sequence of Toeplitz matrices satisfying A3 and A5,
then

‖RM‖ � MaL(M).

We also need the following properties of functions regularly varying at 0.

Lemma 5.7. If f satisfies A5, then

(a) sup{f(t) : x ≤ t ≤ π} ∼ f(x) as x → 0+.
(b) inf{f(t) : 0 < t ≤ x} ∼ f(x) as x → 0+.
(c)

∫ x

0 f(t) dt ∼ x1−aL(x−1)
1−a = xf(x)

1−a as x → 0+.
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Proof. By changing the variable u = x−1, (a) and (b) follow from Theorem 1.5.3
of [2], and (c) from Proposition 1.5.10 of [2].

The bound of trQ2
M (θ) will be estimated in different ways according to the

location of θ. From Lemma 5.6 above, and (11) in [27], we get a global estimation

trQ2
M (θ) = O(M2aL2(M) logM) (5.31)

for any θ ∈ [−π, π]. This bound may be sharp for θ very close to the singular
point 0, but not for θ farther away from 0.

In order to establish a sharper bound of trQ2
M (θ) for a regular point θ, we

define, for a certain δ > 0, a local ∞-norm ‖f‖(θ,δ) as

‖f‖(θ,δ) := ess sup
t∈(θ−δ,θ+δ)

{|f(t)|}. (5.32)

Proposition 5.8. Let QM (θ) be defined in (5.8) with RM having positive spec-
tral density f ∈ L1(−π, π). Then there exists an absolute constant K > 0 such
that for any θ ∈ R and δ ∈ (0, π/2),

trQ2
M (θ)

2 logM ≤ ‖f‖2
(θ,δ) +

K‖f‖1(‖f‖1 + ‖f‖(θ,δ))
δ2 logM . (5.33)

Before proving this proposition, it is convenient to express trQ2
M (θ) in terms

of f . Using the integral expression of entries ri−j , we write

trQ2
M (θ) =

∑
i,j,k,l

ri−j
e−i(j−k)θ

M − |j − k|rk−l
e−i(l−i)θ

M − |l − i|

= 1
4π2

∑
i,j,k,l

∫ π

−π

f(x)e−i(i−j)x dx e−i(j−k)θ

M − |j − k|

∫ π

−π

f(y)e−i(k−l)y dy e−i(l−i)θ

M − |l − i|

= 1
4π2

∫ π

−π

∫ π

−π

f(x + θ)f(y + θ)
∑
i,j,k,l

ei(jx−ky)−i(ix−ly)

(M − |j − k|)(M − |l − i|) dxdy

= 1
4π2

∫ π

−π

∫ π

−π

f(x + θ)f(y + θ)

∣∣∣∣∣∣
∑
i,j

ei(jx−iy)

M − |i− j|

∣∣∣∣∣∣
2

dxdy .

(5.34)
We denote

g(x, y) :=
∑
i,j

ei(jx−iy)

M − |i− j| .

For later use, it is necessary to study several bounds of this integral kernel
g(x, y).

Lemma 5.9. The kernel g(x, y) =
∑

0≤i,j≤M−1
ei(jx−iy)

M−|i−j| satisfies

(1) 1
4π2

∫ π

−π

∫ π

−π
|g(x, y)|2 dxdy = 1 + 2

∑M−1
k=1

1
k ∼ 2 logM .
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(2) 1
2π

∫ π

−π
|g(x, y)|2 dx � min( log2 M

| sin(y/2)| ,
1

sin2(y/2) ).
(3) For any δ ∈ (0, π) and x, y ∈ [−π, π]\(−δ, δ), we have

|g(x, y)| � 1
| sin δ| .

Proof. For (1), we replace f with 1 and RM with I correspondingly in eq. (5.34),
and we get

1
4π2

∫ π

−π

∫ π

−π

|g(x, y)|2 dxdy = trB2
M = 1 + 2

M−1∑
k=1

1
k
.

For (2), note that

1
2π

∫ π

−π

|g(x, y)|2 dx =
∑
j

∣∣∣∣∣
∑
i

e−iiy

M − |i− j|

∣∣∣∣∣
2

.

Multiplying |1 − e−iy| = 2| sin(y/2)| or |1 − e−iy|2 = 4 sin2(y/2) on both sides,
and note that∣∣∣∣∣

M−1∑
i=0

e−iiy(1 − e−iy)
M − |i− j|

∣∣∣∣∣
=

∣∣∣∣∣ 1
M − j

− e−iMy

M − |M − 1 − j| +
M−1∑
i=1

(|i− j| − |i− j − 1|)e−iiy

(M − |i− j|)(M − |i− j − 1|)

∣∣∣∣∣
≤ 1

M − j
+ 1

M − |M − 1 − j| +
M−1∑
i=1

1
(M − |i− j|)(M − |i− j − 1|)

� 1
M − j

+ 1
M − |M − 1 − j| ,

we get

| sin(y/2)|
∫ π

−π

|g(x, y)|2 dx� log(M)
M−1∑
j=0

(
1

M−j
+ 1
M−|M−1−j|

)
� log2 M,

and

sin2(y/2)
∫ π

−π

|g(x, y)|2 dx �
M−1∑
j=0

(
1

M − j
+ 1

M − |M − 1 − j|

)2
≤ K,

and (2) follows.
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For (3), we rewrite g(x, y) as

g(x, y)= 1
M

M−1∑
j=0

eij(x−y)+
M−1∑
m=1

∑M−m−1
i=0 ei(ix+mx−iy) +

∑M−m−1
j=0 ei(jx−my−jy)

M −m

= 1
M

1 − eiM(x−y)

1 − ei(x−y) + eiMx

1 − ei(x−y)

M−1∑
m=1

e−i(M−m)x − e−i(M−m)y

M −m

+ e−iMy

1 − ei(x−y)

M−1∑
m=1

ei(M−m)y − ei(M−m)x

M −m

= 1
M

1 − eiM(x−y)

1 − ei(x−y) + eiMx

1 − ei(x−y)

M−1∑
k=1

e−ikx − e−iky

k

+ e−iMy

1 − ei(x−y)

M−1∑
k=1

eiky − eikx

k

=:g1(x, y) + g2(x, y) + g3(x, y).
(5.35)

We note that for any x, y ∈ R,

|g1(x, y)| = 1
M

∣∣∣∣ sin(M(x− y)/2)
sin((x− y)/2)

∣∣∣∣ ≤ 1.

Let z1 = e−ix, z2 = e−iy, then we have

|g2(x, y)| =

∣∣∣∣∣ 1
z1 − z2

∫
[z1,z2]

M−2∑
k=0

zk dz

∣∣∣∣∣ ≤ sup
z∈[z1,z2]

∣∣∣∣1 − zM−1

1 − z

∣∣∣∣ ≤ 1
| sin δ| ,

where [z1, z2] denotes the segment between z1 and z2. The same bound also
controls g3, so (3) holds.

Now we are ready to prove Proposition 5.8.

Proof of Proposition 5.8. For δ ∈ (0, π/2), let Eδ := [−π, π]\(−δ, δ). Then we
have

trQ2
M (θ) = 1

4π2

∫ π

−π

∫ π

−π

f(x + θ)f(y + θ)|g(x, y)|2 dxdy

= 1
4π2

(∫ δ

−δ

∫ δ

−δ

+
∫
Eδ

∫
Eδ

+
∫ δ

−δ

∫
Eδ

+
∫
Eδ

∫ δ

−δ

)
f(x + θ)f(y + θ)|g(x, y)|2 dxdy

=:P1 + P2 + P3 + P4.
(5.36)

For P1, using Lemma 5.9 (1), we have

|P1| ≤ ‖f‖θ,δ
1

4π2

∫ δ

−δ

∫ δ

−δ

|g(x, y)|2 dxdy ≤ 2‖f‖θ,δ logM.
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For P2, using Lemma 5.9 (3), we have

|P2| � 1
sin2 δ

∫
Eδ

∫
Eδ

f(x + θ)f(y + θ) dxdy � ‖f‖2
1

δ2 .

For P3 and similarly for P4, using Lemma 5.9 (2), we have

|P3| ≤ ‖f‖(θ,δ)
1

4π2

∫
Eδ

f(y + θ)
∫ δ

−δ

|g(x, y)|2 dxdy �
‖f‖(θ,δ)‖f‖1

δ2 ,

and |P4| is controlled by the same bound.
Summing up the bounds for P1, P2, P3, P4 and dividing 8π2 logM , the result

follows.

As a consequence of Proposition 5.8, if f is bounded in a neighborhood of a
point or a set, then trQ2

M (θ)/ logM is (uniformly) bounded at this point or in
this set.

To summarize what we have obtained, if f satisfies A3, A4 and A5, then

trQ2
M (θ)

f2(θ) logM (5.37)

is bounded uniformly in M ≥ 1 and

1. in θ ∈ [− A
M , A

M ] for any A > 0, using the global bound (5.31) and
Lemma 5.7(b).

2. in θ ∈ [−π,−δ] ∪ [δ, π] for any δ ∈ (0, π/2), using Proposition 5.8.

Therefore, using a classic argument, we can find two sequences of positive
numbers 1/M � τM < δM � 1 such that (5.12) is uniformly bounded in
[−π,−δM ] ∪ [−τM , τM ] ∪ [δM , π]. In order to complete the proof of Propo-
sition 5.3, it remains to prove the uniform boundedness of (5.12) for |θ| ∈
(τM , δM ).

For any such θ, suppose that θ > 0 without loss of generality, and denote
Eθ := [−π, π]\(− θ

2 ,
θ
2 ). We write

trQ2
M (θ) = 1

4π2

∫ π

−π

∫ π

−π

f(x)f(y)|g(x− θ, y − θ)|2 dxdy

=: P1 + P2 + P3 + P4,

(5.38)

where the Pi’s are the four sub-integrals defined via the following partition of
the double integral∫ π

−π

∫ π

−π

=
∫
Eθ

∫
Eθ

+
∫ θ

2

− θ
2

∫ θ
2

− θ
2

+
∫ θ

2

− θ
2

∫
Eθ

+
∫
Eθ

∫ θ
2

− θ
2

.

For P1, by Lemma 5.7 (a) and the definition of regularly varying functions, with
some ε > 0, whenever θ is small enough,

sup
x∈Eθ

f(x) ≤ (1 + ε)f(θ/2) ≤ 2a(1 + ε)2f(θ). (5.39)
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Thus by Lemma 5.9(1),

|P1| � f2(θ)
4π2

∫
Eθ

∫
Eθ

|g(x− θ, y − θ)|2 dxdy � f2(θ) logM.

For P2, by Lemma 5.9(3) and Lemma 5.7(c), we have

|P2| � sup
x,y∈[− 3θ

2 ,− θ
2 ]
|g(x, y)|2

(∫ θ
2

− θ
2

f(x) dx
)2

� f2(θ).

For P3, and similarly for P4, using (5.39) again, and using Lemma 5.9(2) and
Lemma 5.7(c), we have

|P3| � f(θ)
∫ θ

2

− θ
2

f(y)
∫ π

−π

|g(x, y)|2 dxdy � f2(θ) log2 M.

The same bound also controls P4.
The proof of Proposition 5.3 is complete by summing up the bounds for

P1, P2, P3, P4.

6. Proof of Proposition 2.4

Define
rbk :=

(
1 − |k|

M

)
rk,

and

Υ̂b
M (θ) :=

M−1∑
k=−M+1

r̂bke
ikθ, Υb

M (θ) :=
M−1∑

k=−M+1

rbke
ikθ.

Note that Υb
M is the Cesàro mean of ΥM (θ) :=

∑M−1
k=−M+1 rke

ikθ, therefore

Υb
M (θ) = 1

2π

∫ π

−π

f(x)FM (θ − x) dx, (6.1)

where FM (x) = sin2(Mx/2)
M sin2(x/2) is the Fejér kernel. Thus for any θ ∈ R, we have

ess inf
t

f(t) ≤ Υb
M (θ) ≤ ess sup

t
f(t). (6.2)

By A4, Υb
M is positive and uniformly lower bounded from 0.

Following the same idea as §5.1, we only need to estimate

P

(
sup

θ∈[0,2π]

∣∣∣∣∣ Υ̂
b
M (θ)

Υb
M (θ)

− 1

∣∣∣∣∣ > x

)
(6.3)

for any x > 0.
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We use the same discretization strategy as §5. For any fixed θ ∈ [0, 2π], define

dM (θ) = 1√
M

(1, e−iθ, . . . , e−i(M−1)θ)�, Qb
M (θ) := R1/2

M dM (θ)d∗M (θ)R1/2
M

then by Lemma 3 of [27], we have

Υ̂b
M (θ) = 1

N
d∗M (θ)R1/2

M Z∗CNZR1/2
M dM (θ) = 1

N

N∑
n=1

cnznQb
M (θ)z∗n,

and by the unitary invariance of zn, note also that Qb
M (θ) is of rank one with

a positive eigenvalue d∗M (θ)RMdM (θ) = Υb
M (θ), we then have

Υ̂b
M (θ)

Υb
M (θ)

L= 1
N

N∑
n=1

cn|Zn,1|2.

Then

P

(∣∣∣∣∣ Υ̂
b
M (θ)

Υb
M (θ)

− 1

∣∣∣∣∣ > x

)
= P

(∣∣∣∣∣ 1
N

N∑
n=1

cn(|Zn,1|2 − 1)

∣∣∣∣∣ > x

)
.

Using the same method as §5.2, we get the concentration inequality

P

(∣∣∣∣∣ 1
N

N∑
n=1

cn(|Zn,1|2 − 1)

∣∣∣∣∣ > x

)
≤ 2 exp

(
− KNx2

κ2 log2 M

)

for some constant K > 0, for any x > 0 and M,N large enough.
For the discretization step, we use the same method as §5.3, and the proof

of Lemma 4, Lemma 6 in [27], along with the norm bound ‖RM‖ � MaL(M).
Note also that Υb

M (θ) are positive and uniformly lower bounded from 0. We
finally get

P

(
ess sup

θ

∣∣∣∣∣ Υ̂
b
M (θ)

Υb
M (θ)

− 1

∣∣∣∣∣ > x

)
≤ 2Mβ exp

(
− KNx2

κ2 log2 M

)

for some β > 0, K > 0 and any x > 0, large enough M,N . This implies that

‖(Rb
M )−1/2R̂b

M (Rb
M )−1/2 − I‖ → 0

as M,N → ∞ with N 
 log3 M .
Next we prove the inconsistency (2.9). We first prove that for two sequences

of invertible matrices R1,M ,R2,M , a necessary condition for the convergence

‖R−1/2
1,M R2,MR−1/2

1,M − I‖ −−−−→
M→∞

0, (6.4)

is
lim

M→∞

λmax(R2,M )
λmax(R1,M ) = 1. (6.5)
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Take an arbitrary ε > 0. Let u be un eigenvector of R1,M associated with
λmax(R1,M ), then from (6.4), for large enough M ,

1− ε < u∗(R1,M )−1/2R2,M (R1,M )−1/2u = u∗R2,Mu

λmax(R1,M ) ≤ λmax(R2,M )
λmax(R1,M ) . (6.6)

Note that (R−1/2
1,M R2,MR−1/2

1,M )−1 has the same eigenvalues as R−1/2
2,M R1,MR−1/2

2,M .
Recall that for a sequence of Hermitian matrices AM , the convergence ‖AM −
I‖ → 0 is equivalent to the convergence of its eigenvalues, i.e. λmax(AM ) → 1,
λmin(AM ) → 1. Therefore (6.4) also implies that

‖(R2,M )−1/2(R1,M )(R2,M )−1/2 − I‖ −−−−→
M→∞

0 .

Using the same arguments as (6.6), we get, for large enough M ,

1 − ε ≤ λmax(R1,M )
λmax(R2,M ) . (6.7)

Combining (6.6) and (6.7), we have

lim
M→∞

λmax(R2,M )
λmax(R1,M ) = 1, (6.8)

and (6.5) follows. However, we will prove that almost surely (6.5) cannot be
satisfied by R̂b

M and RM . Indeed, from (2.8) we conclude that almost surely

λmax(R̂b
M )

λmax(Rb
M )

→ 1.

Thus we only need to prove that

λmax(Rb
M )

λmax(RM ) �→ 1. (6.9)

Let K and Kb be two integral operators acting on L2(0, 1) defined by

K(ϕ)(x) =
∫ 1

0

1
|x− y|1−a

ϕ(y) dy, Kb(ϕ)(x) =
∫ 1

0

1 − |x− y|
|x− y|1−a

ϕ(y) dy.

Lemma 6.1. Under the same assumptions as Proposition 2.4, as M → ∞,

λmax(RM )
KMaL(M) → λ1(K), λmax(Rb

M )
KMaL(M) → λ1(Kb)

with some absolute constant K > 0.

Proof. We first assume that the slowly varying function L in A5 equals to 1.
Then from [18, Proposition 2.2.16],

rk ∼ K

(1 + |k|)1−a
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as k → ∞ with some absolute constant K > 0. Using Widom-Shampine’s
Lemma ([16, Lemma 5.1]) and the same method as the proof of [16, Theo-
rem 2.3], one can prove that

λmax(RM )
KMa

→ λ1(K), λmax(Rb
M )

KMa
→ λ1(Kb). (6.10)

If the slowly varying function L in A5 is not constant, let

f̃(θ) = 1
|θ|a , θ ∈ [−π, π]

and Υ̃b
M , R̃b

M be defined with f̃ in the same way as Υb
M , Rb

M with f . Note
that the Féjer kernel FM has the same upper bound as the Dirichlet kernel
DM (θ) = sin((M +1/2)θ)/ sin(θ/2) used in the proof of [25, Theorem 2.3], that
is, for θ ∈ [−3π/2, 3π/2],

|FM (θ)| =
∣∣∣∣D0(θ) + · · · + DM−1(θ)

M

∣∣∣∣ � min{M, |θ|−1}.

Then using the same technique there, one can prove that

sup
θ

∥∥∥∥ Υb
M (θ)

MaL(M) − Υ̃b
M (θ)
Ma

∥∥∥∥ → 0

as M → ∞, which implies that∥∥∥∥ Rb
M

MaL(M) − R̃b
M

Ma

∥∥∥∥ → 0.

Also note that by Theorem 2.3 of [25],∥∥∥∥ RM

MaL(M) − R̃M

Ma

∥∥∥∥ → 0,

together with (6.10), we have

λmax(RM )
KMaL(M) → λ1(K), λmax(Rb

M )
KMaL(M) → λ1(Kb).

From this lemma, we have

λmax(Rb
M )

λmax(RM ) → λ1(Kb)
λ1(K) . (6.11)

We then prove that λ1(K) > λ1(Kb). Indeed because the two integral kernels
are positive, from the mini-max formula for the largest eigenvalue, their eigen-
functions associated with the largest eigenvalue are positive in [0, 1]. Let ϕb be
the eigenfunction of Kb associated with λ1(Kb), then

λ1(Kb) = 〈ϕb,Kbϕb〉 = 〈ϕb,Kϕb〉 −
∫ 1

0

∫ 1

0
|x− y|aϕb(x)ϕb(y) dxdy < λ1(K),
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from which we conclude that

lim
M→∞

λmax(Rb
M )

λmax(RM ) = λ1(Kb)
λ1(K) < 1 . (6.12)

This is the end of the proof of proposition since (6.9) is proved.

Appendix A: Additional proofs

The proof of Corollary 2.3 is in §A.1; the proof of Proposition 2.5 is in §A.2;
and the proof of Proposition 3.3 is in §A.3.

A.1. Proof of Corollary 2.3

We write∥∥∥R̂1/2
M R−1/2

M −
√
ξNI

∥∥∥ ≤ ‖R1/4
M ‖

∥∥∥R−1/4
M R̂1/2

M R−1/4
M −

√
ξNI

∥∥∥ ‖R−1/4
M ‖,

(A.1)
where ‖R−1/4

M ‖ is bounded, and from Lemma 5.6, ‖R1/4
M ‖ = O(M1/4+ε) with

any ε ∈ (0, 1/8).
The spectral norm

∥∥∥R−1/4
M R̂1/2

M R−1/4
M −

√
ξNI

∥∥∥ equals to

max
{∣∣∣λmax(R−1/4

M R̂1/2
M R−1/4

M ) −
√

ξN

∣∣∣ , ∣∣∣λmin(R−1/4
M R̂1/2

M R−1/4
M ) −

√
ξN

∣∣∣} .

The positive definite Hermitian matrix R−1/4
M R̂1/2

M R−1/4
M has the same eigen-

values as R̂1/2
M R−1/2

M , so the latter matrix has M positive eigenvalues. On the
other hand, all the eigenvalues of R̂1/2

M R−1/2
M are between its smallest and largest

singular values, that is,√
λmin(R−1/2

M R̂MR−1/2
M ) ≤ λmin(R̂1/2

M R−1/2
M )

≤ λmax(R̂1/2
M R−1/2

M ) ≤
√
λmax(R−1/2

M R̂MR−1/2
M ).

From Theorem 2.2, if ξN is bounded away from 0, as N,M → ∞ with N/M →
c ∈ (0,∞), we have almost surely∣∣∣∣

√
λmax(R−1/2

M R̂MR−1/2
M ) −

√
ξN

∣∣∣∣ = O(M−1/2+ε).

The same result also holds for
√

λmin(R−1/2
M R̂MR−1/2

M ). Therefore, we have
almost surely ∥∥∥R−1/4

M R̂1/2
M R−1/4

M −
√

ξNI
∥∥∥ = O(M−1/2+ε).

Taking the above estimations into (A.1), the result follows.



Ratio-consistent estimation for LRD Toeplitz covariance 5073

A.2. Proof of Proposition 2.5

We first recall the LSD of Toeplitz matrices. If a sequence of Toeplitz matrices
(RM = (ri−j)Mi,j=1)M≥1 have a real spectral density f ∈ L1(−π, π), then by
a generalized version of Szegő’s Theorem [3, Theorem 2], for any continuous
function ϕ defined on R such that ϕ(x)/(1 + |x|) is bounded, we have

lim
M→∞

1
M

M∑
k=1

ϕ(λk(RM )) = 1
2π

∫ π

−π

ϕ(f(θ)) dθ. (A.2)

In particular, the LSD μR of RM will be defined by the identity∫
ϕdμR = 1

2π

∫ π

−π

ϕ(f(θ)) dθ, ∀ϕ ∈ Cb(R), (A.3)

where Cb(R) denotes the set of bounded continuous functions on R.
In order to prove Proposition 2.5, we are led to a general result relating the

ratio ESD of two Toeplitz matrices with their spectral densities, which may be
of independent interest.

Lemma A.1. Let (RM = (ri−j)Mi,j=1)M≥1 be a sequence of Toeplitz matrices
with real spectral density f ∈ L1(−π, π). Let (fM )M≥1 be a sequence of real
functions in L1(−π, π). Let R(M)

M = (r(M)
i−j )Mi,j=1 with

r
(M)
k = 1

2π

∫ π

−π

fM (θ)eikθ dθ

the Fourier coefficients of fM . Let μR denote the LSD of RM defined in (A.3).

1. If ‖fM − f‖1 → 0, then
μR(M)

M
D−→ μR.

2. In addition to (1), if moreover f is positive and bounded away from 0, and
fM/f > a for some a ∈ R, then

μR(M)
M

R−1
M

D−→ δ1.

First note that by normalization, we can assume ξN = 1 for all N ∈ N

without loss of generality. Then from the proof of Proposition 2.4, almost surely,
as M,N → ∞ with N 
 log3 M ,

sup
θ

∣∣∣∣∣ Υ̂
b
M (θ)

Υb
M (θ)

− 1

∣∣∣∣∣ → 0.

Then almost surely
∫ 2π

0
|Υ̂b

M (θ) − Υb
M (θ)|dθ ≤ sup

θ

∣∣∣∣∣ Υ̂
b
M (θ)

Υb
M (θ)

− 1

∣∣∣∣∣
∫ 2π

0
|Υb

M (θ)|dθ → 0,
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where
∫ 2π
0 |Υb

M (θ)|dθ is bounded because Υb
M (θ) is the Cesàro mean of the

Fourier series of f , and it is well known that Υb
M converges to f in L1(0, 2π).

Then we deduce that almost surely∫ 2π

0
|Υ̂b

M (θ) − f(θ)|dθ → 0.

Also note that Υ̂b
M/f ≥ 0, then Υ̂b

M and f satisfy the conditions of Lemma A.1.
Therefore the result of Proposition 2.5 is a corollary of Lemma A.1.

It remains to prove Lemma A.1. If fM converges in L1(0, 2π) to f , we denote

(fM − f)+ = max{fM − f, 0}, (fM − f)− = max{f − fM , 0},

and

A+ =
(

1
2π

∫ 2π

0
(fM − f)+(θ)ei(i−j)θ dθ

)M

i,j=1
,

A− =
(

1
2π

∫ 2π

0
(fM − f)−(θ)ei(i−j)θ dθ

)M

i,j=1
.

Then A+,A− are two positive semi-definite Toeplitz matrices satisfying

1
M

trA± = 1
2π

∫ 2π

0
(fM − f)± dθ → 0.

It is easy to prove that there exists a sequence of positive numbers (εM )M≥1
converging to 0, such that

#{k : λk(A±) > εM}
M

≤ εM

where “#S” denotes the cardinal of the set S. From (A.2) we already have
μRM

D−→ μR. We next prove successively that

μ(RM+A+) D−→ μR and μ(RM+A+−A−) D−→ μR,

which is the first result of the lemma.
Let A+ = U diag(λ1, . . . , λM )U∗ be a diagonalization of A+ with λ1, . . . , λM

its eigenvalues. Let A(1)
+ = U diag(λ11λ1>εM , . . . , λM1λM>εM )U∗, and A(2)

+ =
U diag(λ11λ1≤εM , . . . , λM1λM≤εM )U∗. Then the rank of A(1)

+ is at most MεM ,
and ‖A(2)

+ ‖ ≤ εM . Using Theorem A.43 and A.45 in [1] successively, we can
prove that

μRM+A+ D−→ μR.

Repeating the same procedure, we have also

μRM+A+−A− D−→ μR.

Thus the first part of the lemma is proved.
Next we prove the second part. We will first prove the following lemma.
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Lemma A.2. Suppose that the probability measures μn(n = 1, 2, . . . ) and μ are
supported on [a,+∞). If for any x < a,

lim
n→∞

∫
log |x− t|dμn(t) =

∫
log |x− t|dμ(t) < ∞, (A.4)

then μn converges weakly to μ.

Proof. From every subsequence of (μn) we can extract a subsequence converging
vaguely to a positive measure ν with total mass less than or equal to 1. Take
an arbitrary x0 < a. Then for any z ∈ C\(x0,+∞), because the function t �→
(z − t)−1 is continuous on the support of μn and ν, and tends to 0 as t → ∞,
we have the convergence of Stieltjes transform

sn(z) :=
∫ 1

z − t
dμn(t) −−−−→

n→∞

∫ 1
z − t

dν(t) =: s(z).

By dominated convergence theorem, we have∫ z

x0

sn(w) dw −−−−→
n→∞

∫ z

x0

s(w) dw,

where the integral is taken along the segment from x0 to z. Changing the order
of integrals, we get∫

(log(z − t) − log(x0 − t)) dμn(t) −−−−→
n→∞

∫ z

x0

s(w) dw,

where log z = log |z| + i arg z with arg z ∈ [0, 2π). When z = x ∈ (−∞, x0], the
above convergence and the condition (A.4) imply that∫ x

x0

s(w) dw =
∫

log(x− t) dμ(t) −
∫

log(x0 − t) dμ(t).

Extending this equality by analyticity, we have, for z ∈ C\(x0,+∞),∫ z

x0

s(w) dw =
∫

log(z − t) dμ(t) −
∫

log(x0 − t) dμ(t).

Differentiating both sides, we get

s(z) =
∫ 1

z − t
dμ(t).

This implies that μ = ν. Then because the vague limit μ is a probability measure,
we actually have the weak convergence μn

D−→ μ and Lemma A.2 is proved.

We continue the proof of Lemma A.1. By Lemma A.2, we only need to prove

lim
M→∞

1
M

log
∣∣∣det(R(M)

M − xRM )
∣∣∣ = 1

2π

∫ 2π

0
log |f(θ) − xf(θ)|dθ. (A.5)
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for x ∈ (−∞, a). From the condition fM/f > a, f > 0, we get fM − xf > 0 for
x < a, thus the Toeplitz matrix R(M)

M −xRM is positive definite. For any A > 1
and t > 0, let

�A(t) := min(log(t), A), hA(t) := max(log(t), A) −A.

Then it is easily seen that �A(t)+hA(t) = log(t), and �A(t) → log(t), hA(t) → 0
for every t > 0 when A → ∞. Note that fM − xf → (1 − x)f in L1, then from
the first part of the lemma, we have

1
M

M∑
k=1

�A(λk(R(M)
M − xRM )) −−−−→

M→∞

1
2π

∫ 2π

0
�((1 − x)f(θ)) dθ. (A.6)

Note that if A is large, hA(t) <
√
t, thus

1
M

M∑
k=1

hA(λk(R(M)
M − xRM )) ≤ 1

M

M∑
k=1

(λk(R(M)
M − xRM )) 1

2 1
λk(R(M)

M
−xRM )>A

≤ 1
M

√
A

tr(R(M)
M − xRM )

= 1
2π

√
A

∫ 2π

0
(fM − xf)(θ) dθ

(A.7)
Summing (A.6) and (A.7), and let A → +∞, we get

lim
M→∞

1
M

log
∣∣∣det(R(M)

M − xRM )
∣∣∣ = 1

2π

∫ 2π

0
log |f(θ) − xf(θ)|dθ. (A.8)

On the other hand, by [3, Theorem 2] and the hypothesis that f is positive
and bounded away from 0, we have

lim
M→∞

1
M

log |det(RM )| = 1
2π

∫ 2π

0
log |f(θ)|dθ. (A.9)

Take the difference of (A.8) and (A.9), we get

1
M

log
∣∣∣det(R−1

M R(M)
M − xI)

∣∣∣ −−−−→
M→∞

log |1 − x|

for x < a. From Lemma A.2, we have μR−1
M

R(M)
M

D−→ δ1. The proof of Lemma A.1
is complete.

A.3. Proof of Proposition 3.3

By Proposition 3.1, we have

‖Sw − ξ−1
N SY ‖ a.s−−→ 0.
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Let v1, . . . ,vp and vw,1, . . . ,vw,p be the eigenvectors associated with the p
largest eigenvalues of SY and Sw, respectively. Let P and Pw be the orthogonal
projections into the subspace generated by {v1, . . . ,vp} and {vw,1, . . . ,vw,p},
respectively. Using the integral formula for eigenprojections, we have

Pw − P = 1
2πi

∫
Γ
[(z − Sw)−1 − (z − ξ−1

N SY )−1] dz,

where Γ is a contour on the complex plane surrounding the p largest eigenvalues
of Sw and ξ−1

N SY , and keeping the other eigenvalues outside. Because there is a
gap between bulk and spike eigenvalues, the distance between the contour and
the spectrum of both matrices can be lower bounded. Therefore the resolvents
(z−Sw)−1 and (z− ξ−1

N SY )−1 are both uniformly bounded in M,N and z ∈ Γ.
Using the formula A−1 −B−1 = A−1(B −A)B−1, we deduce that

‖Pw − P‖ ≤ 1
2π

∫
Γ
‖(z − Sw)−1‖‖Sw − ξ−1

N SY ‖‖(z − ξ−1
N SY )−1‖|dz| a.s−−→ 0.

On the other hand, by [30, Theorem 11.3], we know that the matrix M−1/2Y
is almost surely bounded in spectral norm. Together with Corollary 2.3, we have

1√
M

‖Yw − Y/
√
ξN‖ ≤

∥∥∥∥ 1√
M

Y
∥∥∥∥ ‖R1/2

M R̂−1/2
M − ξ

−1/2
N ‖ a.s−−→ 0.

Therefore,

1√
M

‖Yw,pc−Ypc/
√
ξN‖≤ 1√

M
‖Pw−P‖‖Yw‖+

1√
M

‖P‖‖Yw−Y/
√

ξN‖ a.s−−→ 0.

Then we automatically have

1√
M

‖Yw,pc − Ypc/
√
ξN‖F a.s−−→ 0,

because rank(Yw,pc − Ypc/
√
ξN ) ≤ rank(Yw,pc) + rank(Ypc) = 2p.
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