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Abstract: A major task in Functional Time Series Analysis is measuring
the dependence within and between processes for which lagged covariance
and cross-covariance operators have proven to be a practical tool in well-
established spaces. This article focuses on estimating these operators of
processes in Cartesian products of abstract Hilbert spaces. We derive pre-
cise asymptotic results for the estimation errors for fixed and increasing
lag and Cartesian powers under very mild conditions, presumably even un-
der the mildest that can be assumed, establish estimators for the principal
components, and conduct a simulation study.
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1. Introduction

Functional Data Analysis (FDA) and Functional Time Series Analysis (FTSA),
the research areas dealing with random functions resp. time series/processes of
random functions, have gained more and more significance. This is because con-
sidering random functions instead of vectors, provided the context allows it,
assures more accurate results. The extension on infinite-dimensional spaces is
enabled by ongoing developments in processing techniques, being unproblem-
atic for separable Banach spaces from a mathematical point of view, see [40].
FDA/FTSA find applications in economics [13, 14, 32, 47, 52], medicine [8, 56]
and other areas [4, 20, 42], and for extensive introductions, see [7, 19, 28, 31, 48].
In FTSA, analyzing the dependence within and between processes is of great
importance. If these are weak stationary, where mostly strictly stationarity and
finite second moments are assumed, this can be done with lag-h-covariance op-
erators resp. lag-h-cross-covariance operators, where the lag h indicates the time
difference of interest. Thereby, for articles that have dealt with stationarity of
functional time series, see [2, 15, 17, 29]. Another important subject of study
is Functional Principal Component Analysis (FPCA), see [24, 33], since FPCs,
the eigenvalues and eigenfunctions of the covariance operator, yield an efficient
representation.
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Related work Estimates for lag-h-covariance operators of stationary pro-
cesses in the separable Hilbert space L2[0, 1] of measurable, square-Lebesgue
integrable real-valued functions with domain [0, 1] are widely studied for fixed
lag h, see, e.g., [7, 28, 31, 36, 44]. [49] developed covariance estimates in the space
of continuous functions C[0, 1], [59] in tensor product Sobolev-Hilbert spaces,
[43] for continuous surfaces, and [1, 12, 25] for general, separable Hilbert spaces.
[1, 25, 44, 49] constrained their assertions to autoregressive (AR) processes,
where [1] investigated random AR(1) operators. Thereby, [1, 7, 28, 31] utilized
classical moment estimators, [36] estimated the integral kernels, [25, 44] used
truncated spectral decompositions with estimated FPCs, and [59] used operator
regularized covariance estimates. Moreover, [51] studied covariance networks for
functional data on multidimensional domains, and [41, 60] dealt with covariance
estimation of sparse (multivariate) functional data. The limit distribution of
the covariance operator’s estimation errors was discussed in [35, 37]. A compre-
hensive study of lag-h-cross-covariance operators of L2[0, 1]-valued processes is
conducted in Rice & Shum (2019, [46]) who established operator estimates and
deduced their limit distribution. Aue & Klepsch (2017, [3]) estimated lagged
covariance and cross-covariance operators of processes in Cartesian products
of L2[0, 1] to deduce asymptotic assertions regarding estimators for operators
of linear, invertible processes in L2[0, 1]. Enabling processes to have values in
Cartesian products was also handy in the study of AR(p) processes with p > 1,
see [7]. Also worth mentioning is that [53] derived bootstraps applicable to co-
variance and cross-covariance operators, that [45] focused on testing equality
of covariance operators, and [30] dealt with change point analysis of covariance
functions. Moreover, [5] discussed copulas to model the dependence structure in
arbitrary dimensions, and [16] discussed a similarity measure for second order
properties of non-stationary functional time series.

FPCA in L2[0, 1] is also extensively discussed in the existing literature. In
[7, 28, 31, 35, 37] one finds asymptotic upper bounds of the estimation errors for
FPCs, estimated seperately and uniformly, in second mean and almost surely
(a.s.), and [61] introduced L1-norm FPCA.

Contributions This article studies, inspired by results in [3, 46] and Kühnert
(2019, [38] and 2020, [39]), lagged covariance and cross-covariance operators
of stationary processes in separable Hilbert spaces, in particular of processes
in Cartesian products of abstract Hilbert spaces. To be precise, we analyze
processes XXX := (Xk)k∈Z and YYY := (Yk)k∈Z defined for some m,n, p, q ∈ N by

Xm+j := (Xm+jp, . . . , X1+jp)T , j ∈ Z, (1.1)
resp. Yn+j := (Yn+jq, . . . , Y1+jq)T , j ∈ Z, (1.2)

whose elements come from stationary processes X := (Xk)k∈Z resp. Y :=
(Yk)k∈Z with values in general separable Hilbert spaces. Important separable
Hilbert spaces are (L2(D))m, with bounded domain D ⊂ Rn and m,n ∈ N

(see Example 2.1), and the space of Hilbert-Schmidt operators mapping be-
tween two separable Hilbert spaces (see Section 3.2). Also, Sobolev spaces
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W k,2(Ω), with Ω ⊂ Rn denoting an open set and k, n ∈ N, consisting of func-
tions f ∈ L2(Ω) whose weak derivates of order k have finite L2 norm. The
use of successive stacking samples of time series, is, generally speaking, canon-
ical when dealing with time series whose modification obtained by ‘stacking’
satisfies managable equations or simplifies the initial representation, see Exam-
ple 2.2. Such an approach was used to estimate the operators of L2[0, 1]-valued
AR in [7], (G)ARCH in [38, 39], and invertible linear processes in [3, 38, 39].
Our specific definitions (1.1), (1.2) are useful in various scenarios. They en-
able reusing entries of Xk resp. Yk to enlargen the sample sizes when choosing
1 ≤ p < m, 1 ≤ q < n, where the largest sample size is obtained for p = q = 1,
and 1 < p < m, 1 < q < n allows observing only a certain season. The definitions
also enable successive stacking (realizations of) X ′

ks resp. Y ′
ks without reusing

values by putting p = m, q = n, and to bridge the time indices where (realiza-
tions of) X ′

ks and/or Y ′
ks are missing by an appropriate choice of p > m, q > n.

Another advantage of our definitions are that our assertions hold also for pro-
cesses not obtained by stacking elements (see Example 2.1). The focus of this
paper is to deduce moment estimators for lagged covariance and cross-covariance
operators CXXX;h resp. CXXX,YYY ;h of the processes XXX = (Xk)k and YYY = (Yk)k, and to
derive the asymptotic behaviour of their estimation errors. We also develop the
‘classical’ FPC estimates in our more general setting, and derive asymptotic re-
sults for the estimation errors for the FPCs estimated separately and uniformly.
Our results are stated for centered processes and for those having an unknown,
finite first moment. The lag and the processes’ Cartesian powers can be fixed or
increase with regard to (w.r.t.) the sample sizes, and the two processes in the
definition of the lagged cross-covariance operators not necessarily have to attain
values in the same space.

Structure The rest of this paper is organized as follows. Section 2 states
motivational examples. Section 3 outlines our notation, restates basic opera-
tor theory, defines our (lagged) (cross-)covariance operators as well as studies
their probabilistic features, and briefly reiterates concepts of weak dependence.
Section 4 deals with the estimation. Further, Section 5 conducts a simulation
study, and Section 6 summarizes the main results and outlines future research.
Moreover, Appendix A contains proofs, and Appendix B side results.

2. Motivational examples

The examples herein illustrate the use of lagged (cross-)covariance operators of
our processes XXX = (Xk)k and YYY = (Yk)k in different scenarios.
Example 2.1 (Fixed lag, fixed Cartesian powers). Investors of solar stocks of
European companies might be interested to measure the impact of the monthly
sunshine duration in central Europe (Fig. 1) interpretable as realizations of the
(four) share values of their portfolio (Fig. 2) one month ahead. Consecutive
observations of the monthly sunshine duration and monthly values of the four
shares can be interpreted as realizations of a process (Xk)k in L2[0, 1]2 resp.
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Fig 1. Graphs of monthly sunshine duration in central europe in March and April 2022,
retrieved from the homepage www.dwd.de of the German Meterological Service.

Fig 2. Three consecutive realizations of a fictitious process describing the share values of four
assets of an portfolio, e.g., measured in EUR.

(Yk)k in (L2[0, 1])4. By using (Xk)k with m = p = 1 and (Yk)k with n = q = 1,
the context in question can be described by our lag-1-cross-covariance operators.
Example 2.2 (Increasing Cartesian powers). For linear L2[0, 1]-valued processes
X = (Xk)k, i.e. Xk =

∑∞
l=0 φl(εk−l) for all k, with φl denoting bounded, lin-

ear operators, [3, 38, 39] derived consistent estimates for all φl. The estimation
procedure was based on Yule-Walker equations consisting of lagged (cross-)co-
variance operators of processes, where (Xk)k with p = 1 was used, with the
Cartesian powers m = mM ∈ N approaching infinity as the sample size M of a
sample X1, . . . , XM of X did.
Example 2.3 (Increasing lag). When launching satellites which communicate
with ground stations or other satellites (see Fig. 3), one could wonder about
the impact of complex data transmission between the objects drifting apart in
time. The dependency of the sent satellite’s/satelittes’ to the received ground
station’s/stations’ or other satellite’s/satelittes’ information can be modelled by
(Xk)k for certain m, p resp. (Yk)k for certain n, q, and can be described by our
lag-h-cross-covariance operators with increasing lag h = hM,N for increasing
sample sizes M,N of samples X1, . . . , XM and Y1, . . . , YN of processes modeling
the individual elements.
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Fig 3. The European Data Relay Satellite System (EDRS) – a system of geostationary com-
munications satellites providing data transmission between satellites, UAVs and ground sta-
tions. Photo from https://www.esa.int/ESA_Multimedia/Images/2016/02/Inter-satellite_
laser_links

3. Definitions and basics

3.1. General notation

For any set B, we write Bc for the complement of B, and 1B(·) for the indi-
cator function. Moreover, �·� and sgn(·) denote the floor resp. sign function,
and for any x ∈ R, x+ := max(0, x) denotes the positive part of x. Further,
we write a ∨ b := max(a, b) and a ∧ b := min(a, b) for any a, b ∈ R. For se-
quences (an)n, (bn)n ⊆ (0,∞), an ∼ bn ⇔ an

bn
→ 1, the common asymptotic

notation is denoted by o(·),O(·), and (for n → ∞) an = ω(bn) ⇔ bn = o(an)
and an = Ω(bn) ⇔ bn = O(an), and Ξ(an, bn) := ω(an) ∩ o(bn). 0V denotes
the identity element of addition of a vector space V , IV : V → V the iden-
tity operator, and operator throughout means linear map. On Hilbert spaces
we assume the norms to be induced by their inner product. For a separable
Hilbert space (H, 〈·, ·〉H), x ⊥ y⇔ 〈x, y〉H = 0 for x, y ∈ H. Scalar multiplica-
tion and vector addition on Hn := {(x1, . . . , xn)T |x1, . . . , xn ∈ H}, with n ∈ N,
are defined componentwise, so (Hn, 〈·, ·〉Hn) with 〈x,y〉Hn :=

∑n
i=1〈xi, yi〉H

for x := (x1, . . . , xn)T, y := (y1, . . . , yn)T ∈ Hn is a separable Hilbert space.
Our random variables are defined on a common probability space (Ω,A,P).
X

d= Y denotes equally distributed random variables X,Y . For processes (Xn)n
and (Yn)n, Xn = OP(Yn) (for n → ∞) means (Xn/Yn)n is asymptotically P-
stochastic bounded. For p ∈ [1,∞), Lp

H = Lp
H(Ω,A,P) is the space of (classes

of) H-valued random variables X with νp,H(X) := (E||X||pH)1/p < ∞, and a
process (Xk)k is an Lp

H-process if (Xk)k ⊆ Lp
H. Moreover, X ∈ L1

H is centered
if E(Xk) = 0H for all k with expectation in Bochner-integral sense, see [31],
p. 40–45, and centering of X ∈ L1

H is denoted by X ′ := X − E(X).

https://www.esa.int/ESA_Multimedia/Images/2016/02/Inter-satellite_laser_links
https://www.esa.int/ESA_Multimedia/Images/2016/02/Inter-satellite_laser_links
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3.2. Basic operator theory

Here, we state useful spaces of (linear) operators between Hilbert spaces, see
[18, 21, 57, 58] for thorough overviews. Throughout, let (Hi, 〈·, ·〉Hi) denote real,
separable Hilbert spaces for i = 1, 2. The space of bounded operators mapping
from H1 to H2 will be denoted by LH1,H2 , with LH1 := LH1,H1 , where an
operator A : H1 → H2 is bounded if ||A||LH1,H2

:= sup||x||H1≤1 ||A(x)||H2 < ∞.
Such operators are continuous, and (LH1,H2 , || · ||LH1,H2

) is a Banach space.
We denote the subspace of finite-rank operators of LH1,H2 by FH1,H2 , with
FH1 := FH1,H1 . A∗ denotes the adjoint of A ∈ LH1,H2 , with A∗ ∈ LH2,H1 .
A crucial subspace of LH1,H2 is the space of compact operators mapping from
H1 to H2, where A ∈ LH1,H2 is compact if A maps the unit ball of H1 to
a compact set in H2. Such operators possess the singular value decomposition
A =

∑∞
j=1 sj(ej⊗ fj), with x⊗ y := 〈x, ·〉H1y for x ∈ H1, y ∈ H2, where (ej)j∈N

and (fj)j∈N are complete orthonormal systems (CONSs) of H1 resp. H2, and
(sj)j∈N the monotonically decreasing zero sequence of non-negative numbers, the
singular values of A. Their decay rate is interpretable as a regularity measure
of A and can be expressed by the p-Schatten-norm ||A||p :=

(∑∞
j=1 s

p
j

)1/p for
p ∈ [1,∞), where ||A||p ≤ ||A||q for p < q. (S p

H1,H2
, || · ||p) is a Banach space

for p ∈ [1,∞), where S p
H1,H2

:= {A ∈ LH1,H2

∣∣ ||A||p < ∞} is the p-Schatten-
class, with S p

H1,H2
� S q

H1,H2
for p < q. The essential classes are NH1,H2 :=

S 1
H1,H2

with NH1 := NH1,H1 , || · ||NH1,H2
:= || · ||1, and SH1,H2 := S 2

H1,H2
with

SH1 := SH1,H1 , ||·||SH1,H2
:= ||·||2, the spaces of nuclear/trace class resp. Hilbert-

Schmidt operators. For any CONS (ej)j∈N of H1, the trace of A ∈ NH1 is defined
by tr(A) :=

∑∞
j=1〈A(ej), ej〉H1 , and (SH1,H2 , 〈·, ·〉SH1,H2

) is a separable Hilbert
space, with the inner product defined as 〈A,B〉SH1,H2

:=
∑∞

j=1 〈A(ej), B(ej)〉H2

for A,B ∈ SH1,H2 . From this inner product can be derived

〈x⊗ x′, y ⊗ y′〉SH1,H2
= 〈x, y〉H1〈x′, y′〉H2 , x, y ∈ H1, x

′, y′∈ H2. (3.1)

Furthermore, on H1 := L2[0, 1], an integral operator A : H1 → H1 is defined by
the Lebesgue integral (A(x))(t) :=

∫ 1
0 a(s, t)x(s) ds for any x ∈ H1, t ∈ [0, 1] if it

exists, where a : [0, 1]2 → R is a measurable function, the (integral) kernel of A.
Such an operator satisfies A ∈ SH1 if and only if

∫ 1
0
∫ 1
0 a2(s, t) dsdt < ∞.

3.3. Lagged covariance and cross-covariance operators

Here, we formally define (cross-)covariance operators and their lagged versions
on real, separable Hilbert spaces, denoted by (Hi, 〈·, ·〉Hi) for i = 1, 2, and
outline some of their features (see [7] for these operators on Banach spaces).

Definition 3.1. Let X ∈ L2
H1

and Y ∈ L2
H2

. Then, the covariance operator of
X and the cross-covariance operator of X,Y are defined by

CX := E(X ′⊗X ′) resp. CX,Y := E(X ′⊗ Y ′).
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For centered random variables X ∈ L2
H1

and Y ∈ L2
H2

, (cross-)covariance
operators possess the following features, see [7] and also [31], sections 7.2-7.3.
Firstly, CX ∈ NH1 is a self-adjoint, positive semi-definite operator with

||CX ||NH1
= E||X||2H1

, (3.2)

CX =
∞∑
j=1

cj(cj ⊗ cj), (3.3)

where (cj)j∈N is the without loss of generality (w.l.o.g.) monotonically decreas-
ing, non-negative, absolutely-summable eigenvalue sequence, and (cj)j∈N the
related eigenfunction sequence of CX which forms a CONS of H1. Moreover, for
the cross-covariance operator holds CX,Y ∈ NH1,H2 ,C

∗
X,Y = CY,X ∈ NH2,H1,

||CX,Y ||NH1,H2
= ||CY,X ||NH2,H1

≤ E||X||H1 ||Y ||H2 , (3.4)
independence of X,Y ⇒ CX,Y = 0LH1,H2

, (3.5)

and if H1 = H2,CX,Y = 0LH1
implies E〈X,Y 〉H1 = 0. If H1 =H2 =L2[0, 1],CX

and CX,Y are integral operators with kernels kX(s, t) := Cov(X(s), X(t)) resp.
kX,Y (s, t) := Cov(X(s), Y (t)), s, t ∈ [0, 1]. Further, for centered random vari-
ables W,X ∈ L2

H1
and an operator A ∈ LH1 , holds

CW+X = CW + CW,X + CX,W + CX , (3.6)
CA(X) = ACXA

∗, (3.7)

and if W,X ∈ L2
H1

, Y, Z ∈ L2
H2

are centered, and A ∈ LH1 , B ∈ LH2 ,

CW+X,Y +Z = CW,Y + CW,Z + CX,Y + CX,Z , (3.8)
CA(X),B(Y ) = BCX,YA

∗. (3.9)

In order to define the functional counterparts of the auto-covariance and
cross-covariance function, the lag-h-covariance resp. lag-h-cross-covariance op-
erators, given processes not necessarily have to be strictly, but weak stationary.

Definition 3.2. Let (Xk)k∈Z be an H1-valued process.

(a) (Xk)k is (strictly) stationary if (Xk1+h, . . . , Xkn+h) d= (Xk1 , . . . , Xkn)
holds for all k1, . . . , kn, h ∈ Z where n ∈ N.

(b) (Xk)k is weak stationary if it is an L2
H1

-process, if E(Xk) = c holds for
some c ∈ H1 for all k, and if CXk,Xl

= CX0,Xl−k
for all k, l.

(c) (Xk)k is an H1-white noise if it is a centered L2
H1

-process with E||Xk||2 >
0 for all k, if CXk

does not depend on k, and if CXk,Xl
= 0LH1

for k �= l.
(d) (Xk)k is a strong H1-white noise if it is a centered, i.i.d. L2

H1
-process with

E||X0||2 > 0.

Definition 3.3. Let X := (Xk)k∈Z ⊆ L2
H1

and Y := (Yk)k∈Z ⊆ L2
H2

be weak
stationary processes, and let h ∈ Z. Then, the lag-h-covariance operator of X
and the lag-h-cross-covariance operator of X,Y is defined by

CX;h := CX0,Xh
resp. CX,Y;h := CX0,Yh

.
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Fig 4. The integral kernel kε(s, t) in (3.11) for s, t ∈ [0, 1].

We also call the lag-0- covariance operator of X, and write CX := CX;0.

Remarks 3.1. The features of (cross-)covariance apply to lag-h-(cross-)covariance
operators. Thus, C ∗

X;h = CX;−h and C ∗
X,Y;h = CY,X;−h for any h, CX;h = 0LH1

for
h �= 0 if X := (Xk)k consists of independent variables, and if X := (Xk)k,Y :=
(Yk)k are independent, CX,Y;h = 0LH1,H2

. Further, if H1 = H2 = L2[0, 1], the
lag-h-(cross-)covariance are integral operators with auto-covariance resp. cross-
covariance function as integral kernels, which justifies to have the expression
‘(cross-)covariance’ in ‘lag-h-(cross-)covariance operator’.

Now, we illustrate a specific covariance operator. For further examples and
sketches, see Section 5.
Example 3.1. Let H := L2[0, 1], and let ε := (εk)k∈Z be a process with

εk(t) := Zk + Bk(t)√
1 + t

a.s., ∀k ∈ Z, ∀t ∈ [0, 1], (3.10)

where Zk ∼ N (0, 1),Bk = (Bk(t))t∈[0,1] are Wiener processes, and the random
variables . . . , Z−1,B−1, Z0,B0, Z1,B1, . . . are independent. Then, (εk)k∈Z is
an i.i.d., centered L4

H-process with ε0(t) ∼ N (0, 1) for all t ∈ [0, 1], and for the
integral kernel kε;0 = kε of Cε;0 = Cε holds

kε(s, t) = Cov(ε0(s), ε0(t)) =
√

1 + s ∧ t

1 + s ∨ t
, ∀s, t ∈ [0, 1]. (3.11)

3.4. Functional AR processes

In this section, we recall functional AR(1) processes and their properties (see
[7]), which we utilize in our examples and simulation study. Let (H, 〈·, ·〉H) be
a separable Hilbert space. Then, a centered H-valued process X = (Xk)k∈Z is
an autoregressive process of order 1 (AR(1) process) if it satisfies

Xk = α(Xk−1) + εk, ∀k ∈ Z, (3.12)
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with α ∈ LH and where ε := (εk)k∈Z is an i.i.d. H-valued process or an H-white
noise. Here, we impose (εk)k to be a strong H-white noise. If for some d ∈ N

holds ||αd||LH < 1, (3.12) has the unique stationary solution

Xk =
∞∑
i=0

α(εk−i), ∀k ∈ Z,

which converges a.s. as well as in L2
H, where α0 stands for the identity operator

IH. Moreover,
CX;h = αhCX;0, h ≥ 0, (3.13)

where CX;0 can solely be described by Cε;0 and α through

CX;0 =
∞∑
i=1

αiCε;0α
∗i. (3.14)

Remarks 3.2. For extensive works on functional AR(MA) processes, we refer
to [7, 54] and [1, 9, 11, 12, 23, 25, 44] from a technical point of view, and to
[14, 34, 50] for methods combined with applications.

3.5. Weak dependence

In order to derive estimators in the context of time series, usually some form of
weak dependence is required. A frequently used form is Lp-m-approximability
developed by Hörmann & Kokoszka (2010, [27]).

Definition 3.4. Let (H, 〈·, ·〉H) be a separable Hilbert space and let p ≥ 1. Then,
a process (Zk)k∈Z is Lp

H-m-approximable if it is an Lp
H-process with

Zk = f(εk, εk−1, . . .), ∀k ∈ Z, (3.15)

where (εk)k∈Z is an i.i.d. process with values in a measurable space S and where
f : S∞ → H is a measurable function, such that

∑∞
m=1 νp,H(Zm− Zm;m) < ∞,

with νp,H(·) := (E|| · ||pH)1/p and

Zk;m := f(εk, εk−1, . . . , εk−m+1, εk−m;k, εk−m−1;k, . . .), (3.16)

where (εk;n)k are independent copies of (εk)k for each n.

Hence, Lp
H-m-approximability of a process means it is causal w.r.t. another

process, that is (3.15), and approximable by an m-dependent process so that
the approximation errors measured by the Lp

H-norm νp,H(·) are summable.
Also, (3.15) yields stationarity of (Zk)k due to [55], Theorem 3.5.3, and (Zk;m)k
are stationary, m-dependent processes for each m with Zk;m

d= Zk for all k,m.
This type of weak dependence is, due to its definition based on m-dependence,
particularly feasible for transformations when verifying asymptotic upper
bounds. Further, Lemma B.1 shows that L4-m-approximability of (Xk)k and
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(Yk)k transfers to our processes (Xk)k and (Yk)k implying L2-m-approximability
of (Xk ⊗ Yk+h)k. Moreover, it can be shown that Lp-m-approximability for
p = 2, thus for any p ≥ 2, implies that the long run covariance operator defined
as follows exists.

Definition 3.5. Let Z = (Zk)k∈Z be a weak stationary L2
H-process. Then, the

long run covariance operator is defined as
∑

k∈Z CZ;k if it exists.

For the estimation of these operators, see, e.g., [6]. Further, one can show (see
[7], p. 87–88 for centered functional AR(1) processes) that for any stationary
L2
H-process Z = (Zk)k∈Z holds with Z ′

j := Zj−mZ for any j :∣∣∣∣∣∣∑
k∈Z

CZ;k

∣∣∣∣∣∣
NH

=
∑
k∈Z

E〈Z ′
0, Z

′
k〉H. (3.17)

Example 3.2. Let X = (Xk)k be a centered, H-valued AR(1) process as in (3.12)
with ||α||LH < 1. Then, the long run covariance operator

∑
k∈Z CX;k exists, be-

cause (3.13), C ∗
X,h = CX;−h and ||CX;h||NH = ||C ∗

X,h||NH for all h, submultiplicity
of the operator norm, ||CX;0||NH = E||X0||2H =: c < ∞ and further basic conver-
sions yield

∑
k∈Z

||CX;k||NH = ||CX;0||NH + 2
∞∑
k=1

||CX;k||NH

≤ ||CX;0||NH

(
1 + 2

∞∑
k=1

||α||hLH

)

= c
1 + ||α||LH

1 − ||α||LH

< ∞.

4. Main results

This section dedicates to the estimation of lagged covariance and cross-covar-
iance operators of Um- and Vn-valued processes for m,n ∈ N, and additionally
of the FPCs, where (Um, 〈·, ·〉Um) and (Vn, 〈·, ·〉Vn) are real, separable Hilbert
spaces coming from real, separable Hilbert spaces (U , 〈·, ·〉U ) and (V, 〈·, ·〉V).

4.1. General assumptions

For our processes in Section 1 we throughout impose the following.
Assumption 4.1. (a) The entries in (1.1) are elements of a stationary L2

U -
process X := (Xk)k∈Z. X1, . . . , XM is a sample of X with M ≥ m, thus
Xm, . . . ,XM̃ with M̃ = M̃M := �M−m

p � + m is a sample of XXX , and the
sample size is M = MM := M̃M −m + 1.

(b) The entries in (1.2) are elements of a stationary L2
V -process Y := (Yk)k∈Z.

Y1, . . . , YN with N ≥ n is a sample of Y , thus Yn, . . . ,YÑ with Ñ = ÑN :=
�N−n

q �+n is a sample of YYY , and the sample size is N = NN := ÑN−n+1.



Lagged covariance and cross-covariance operators 4833

Our model also allows the numbers describing the ‘degree of reuse’ p, q of
given variables and the Cartesian powers m,n to depend on the sample sizes.
Assumption 4.2. Let p∗, q∗ ∈ N. The sequences (pk)k∈N, (qk)k∈N ⊆ N of the
variables describing the ‘degree of reuse’ in Assumption 4.1 satisfy

(a) p = pM → p∗ or p = pM = Ξ(1,M) for M → ∞;
(b) q = qN → q∗ or q = qN = Ξ(1, N) for N → ∞.

From the Assumptions 4.1–4.2 (a) and (b) follows

M = MM ∼ p−1M resp. N = NN ∼ q−1N. (4.1)

Assumption 4.3. Let m∗, n∗∈ N. The sequences (mk)k∈N, (nk)k∈N⊆ N of Carte-
sian powers in Assumption 4.1 satisfy

(a) m = mM → m∗ or m = mM = Ξ(1,M ) = Ξ(1, p−1M) for M → ∞;
(b) n = nN → n∗ or n = nN = Ξ(1,N ) = Ξ(1, q−1N) for N → ∞.

The time difference where some random variable has a certain effect on an-
other one, i.e. the lag h ∈ Z, could also change over time or the sample size as
follows.
Assumption 4.4. Let h∗∈ Z. The sequence of lags (hn)n∈N ⊆ Z fulfills

(a) h = hM → h∗ or h = hM = Ξ(1,M ) = Ξ(1, p−1M) for M → ∞;
(b) h = hN → h∗ or h = hN = Ξ(1,N ) = Ξ(1, q−1N) for N → ∞.

In order to specify the asymptotic behaviour of our estimation errors exactly
without demanding too much, we impose the following summability conditions
for our processes X=(Xk)k,Y =(Yk)k in Assumption 4.1.
Assumption 4.5. (a)

∑
k∈Z ||CX;k||NU <∞;

(b)
∑

k∈Z ||CY;k||NV <∞.
Assumption 4.6. (a) (Xk)k⊆L4

U and
∑

i,j,k∈Z|E〈X ′
0⊗X ′

i , X
′
j⊗X ′

k〉SU |<∞;
(b) (Yk)k⊆L4

V and
∑

i,j,k∈Z|E〈Y ′
0⊗Y ′

i , Y
′
j ⊗Y ′

k 〉SV |<∞.
Assumption 4.7. (a) (Xk)k⊆L4

U and
∑

i,j∈Z|E〈(X0⊗Xi)′, (Xj⊗Xi+j)′〉SU|<∞;
(b) (Xk)k⊆L4

U , (Yk)k⊆L4
V and

∑
i,j∈Z|E〈(X0 ⊗Yi)′, (Xj ⊗Yi+j)′〉SU,V | < ∞.

Remarks 4.1. Assuming absolute summability of the series defining the long run
covariance operator in Assumption 4.5 is needed to guarantee convergence of
any rearranged series. However, for p = 1 postulating convergence only suffices.

4.2. Preliminaries

In various occasions, the first moments mXXX := E(X1),mYYY := E(Y1) of our pro-
cesses (1.1)–(1.2) have to be estimated, for which we use the moment estimators

m̂XXX := 1
MM

M̃M∑
i=mM

Xi resp. m̂YYY := 1
NN

ÑN∑
i=nN

Yi. (4.2)
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Lemma 4.1. Let Assumptions 4.1–4.3 hold. Moreover, let m = mM , p = pM .
Then, m̂XXX and m̂YYY in (4.2) are unbiased estimators for mXXX for all M ∈ N resp.
for mYYY for all N ∈ N.

(a) If also Assumption 4.5 holds,

MM

mM
E||m̂XXX −mXXX ||2Um

M→∞−→ η2,X , (4.3)

NN

nN
E||m̂YYY −mYYY ||2Vn

N→∞−→ η2,Y , (4.4)

where the constants η2,Z = η2,(W,Z, (rS)S, r∗), with (W,Z, (rS)S , r∗) ∈ {(U,X,
(pM)M , p∗), (V,Y , (qN)N , q∗)}, are defined by

η2,Z :=
{
||
∑

k∈ZCZ;kr∗||NW , if r=rS → r∗∈ N,

E||Z0||2W , if r=rS =Ξ(1, S).
(4.5)

(b) If also Assumption 4.6 holds,

M 3
M

m1+1P

M

E||m̂XXX −mXXX ||4Um
M→∞−→ η4,X , (4.6)

N 3
N

n
1+1Q

N

E||m̂YYY −mYYY ||4Vn
N→∞−→ η4,Y , (4.7)

with P := {(pk)k|pk → p∗} and Q := {(qk)k|qk → q∗}, where the constants
η4,Z = η4,(W,Z,(oS)S ,o∗,(rS)S ,r∗), with (W,Z, (oS)S , o∗, (rS)S , r∗) ∈ {(U,X,
(mM)M ,m∗, (pM)M , p∗), (V,Y , (nN)N , n∗, (qN)N , q∗)} are with ci ∈ [0, 2

r∗ ] for
all i defined through

η4,Z :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
o∗
∑

|l|<o∗
∑

i,j,k∈Z ξl,o∗ E〈Z ′
0⊗Z ′

l+ir∗ , Z
′
jr∗⊗Z ′

l+kr∗〉SU , if oS → o∗, rS → r∗,∑
i,j,k∈Z ci E〈Z ′

0⊗Z ′
ip∗ , Z ′

jp∗⊗Z ′
kp∗〉SU , if oS → ∞, rS → r∗,∑

|l|<o∗ ξl,o∗ E||Z ′
0||2U ||Z ′

l ||2U , if oS → o∗, rS → ∞,∑
k∈Z E||Z ′

0||2U ||Z ′
k||2U , if oS → ∞, rS → ∞.

(4.8)

4.3. Estimation of lag-h-covariance operators

When estimating lag-h-covariance operators, we distinguish, as for real-valued
processes, between centered processes and those with an unknown, finite first
moment. If X = (Xk)k in Assumption 4.1 (a) is centered, hence also XXX =
(Xk)k, we estimate CXXX;h with |h| < MM by the moment estimator

ĈXXX;h :=

⎧⎨
⎩

1
MM,h

∑M̃M

k=m+|h| Xk ⊗ Xk+h, if h < 0,
1

MM,h

∑M̃M,h

k=m Xk ⊗ Xk+h, if h ≥ 0,
(4.9)
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with MM,h := MM −|h|, M̃M,h := M̃M −|h|. These estimates satisfy ĈXXX;h ∈ FUm

(i.e., they are finite-rank operators) with ĈXXX;h = ĈXXX;−h, and ĈXXX := ĈXXX;0 is self-
adjoint and positive semi-definite. The associated estimation errors fulfill

||ĈXXX;h − CXXX;h||2SUm=
m∑

i,j=1
||ĈX;j−i+hp − CX;j−i+hp||2SU , (4.10)

where ĈX;j−i+hp corresponds to ĈXXX;h in (4.9), with Xk and Xk+h replaced
by Xi+(k−m)p resp. Xj+(k+h−m)p for all i, j, k. Using this identity leads to the
following asymptotic result of the estimation errors.

Theorem 4.1. Let Assumptions 4.1–4.4, 4.7 (a) hold, and let X be centered.
Further, let h = hM ,m = mM , p = pM and MM,h = MM − |h|. Then, ĈXXX;h is an
unbiased estimator for CXXX;h with |h| < MM , and

MM,h

mM
E||ĈXXX;h− CXXX;h||2SUm

M→∞−→ τ2,X , (4.11)

where the constant τ2,X = τ2,(U,X,(hM)M ,h∗,(mM)M ,m∗,(pM)M ,p∗) is defined as

τ2,X :=

⎧⎪⎨
⎪⎩

0, if hp → ∞,∑
i∈Z

∑
|j|<m∗ξj,m∗E〈(X0⊗Xi+c)′, (Xj⊗Xi+j+c)′〉SU , if hp → c ∈ Z,m → m∗,∑

i,j∈Z E〈(X0⊗Xi)′, (Xj⊗Xi+j)′〉SU , if hp → c ∈ Z,m → ∞.

(4.12)

Remarks 4.2. We stated the limit in Theorem 4.1 for hp → ∞ without fur-
ther calibration for the sake of simplicity. Nevertheless, it would also have been
appropriate to calibrate the estimation error with the reciprocal of the iden-
tity (A.13), provided it is not equal zero.

Now, we consider that the first moment mX of X = (Xk)k is unknown,
therefore also mXXX = (mX , . . . ,mX)T ∈ Um. Then, if |h| < MM − 1, we use

Ĉ ′
XXX;h :=

⎧⎨
⎩

1
MM,h−1

∑M̃M

k=m+|h|(Xk−m̂XXX ) ⊗ (Xk+h−m̂′
XXX ), if h < 0,

1
MM,h−1

∑M̃M,h

k=m (Xk−m̂XXX ) ⊗ (Xk+h−m̂′
XXX ), if h ≥ 0,

(4.13)

to estimate CXXX;h where the moment estimators are defined by

m̂XXX :=

⎧⎨
⎩

1
MM,h

∑M̃M

i=m+|h|Xi, if h < 0,
1

MM,h

∑M̃M,h

i=m Xi, if h ≥ 0,

m̂′
XXX :=

⎧⎨
⎩

1
MM,h

∑M̃M

j=m+|h|Xj+h, if h < 0,
1

MM,h

∑M̃M,h

j=m Xj+h, if h ≥ 0.

As for the estimators given a centered process, holds Ĉ ′
XXX;h ∈ FUm with Ĉ ′ ∗

XXX;h =
Ĉ ′

XXX;−h, and Ĉ ′
XXX := Ĉ ′

XXX;0 is self-adjoint and positive semi-definite.
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Theorem 4.2. Let Assumptions 4.1–4.4, 4.6–4.7 (a) hold. Also, h = hM ,m =
mM , p = pM and MM,h = MM − |h|. Then, Ĉ ′

XXX;h is an unbiased estimator for
CXXX;h with |h| < MM − 1 if

∑MM,h

j,k=1,k �=j CXXX;j+h−k = 0LUm , and

lim sup
M→∞

MM,h

mM
E||Ĉ ′

XXX;h− CXXX;h||2SUm ≤ 3τ2,X , (4.14)

with τ2,X = τ2,(U,X,(hM)M ,h∗,(mM)M ,m∗,(pM)M ,p∗) from (4.12).

Remarks 4.3. (a) Theorems 4.1–4.2 extend the existing literature, e.g. [1, 7,
23, 25, 28, 27, 35, 38, 39], in several ways. This is because the assertions are
derived in Cartesian products of general, separable Hilbert spaces under
mild conditions, and the processes can have arbitrary finite, first moments.
Further, the Cartesian power m, the variable p describing the ‘degree of
reuse’ and simultaneously the lag h might grow w.r.t. the sample size M ,
and the upper bounds are specified so accurately that they reflect the
dependence of the asymptotic behaviour of these sequences.

(b) The statements of Theorems 4.1–4.2 can obviously also be formulated for
the process Y = (Yk)k∈Z by assuming that the parts (b) instead of (a) of
Assumptions 4.1–4.4, 4.6, and Assumption 4.7 (a) formulated for Y hold.

(c) That Theorem 4.2 states an inequality with a slightly modified value in-
stead of a precise limit as in Theorem 4.1, is, because we used the Δ- and
the Cauchy-Schwarz inequality.

4.4. Estimation of lag-h-cross-covariance operators

Herein, we transfer the estimation procedure for lag-h-covariance to lag-h-cross-
covariance operators CXXX,YYY;h. If X = (Xk)k and Y = (Yk)k in Assumption 4.1
are centered and subsequently also XXX = (Xk)k and YYY = (Yk)k, we estimate
CXXX,YYY ;h with n− M̃M ≤ h ≤ ÑN −m by

ĈXXX,YYY;h := 1
LM,N,h

L̃M,N,h∑
k=l̃m,n,h

Xk ⊗ Yk+h, (4.15)

with l̃m,n,h := m ∨ (n− h), L̃M,N,h := M̃M ∧ (ÑN − h) and LM,N,h := L̃M,N,h +
1 − l̃m,n,h, where ĈXXX,YYY;h ∈ FUm,Vn and Ĉ ∗

XXX,YYY;h= ĈYYY,XXX;−h. In order to derive the
asymptotic behaviour of the estimation errors for CXXX,YYY;h explicitly, we impose
that one sample size asymptotically depends on the other one. This also allows
to simplify our conversions.
Assumption 4.8. The sample sizes M and N of X1, . . . , XM resp. Y1, . . . , YN in
Assumption 4.1 fulfill N = NM ∼ cMδ for M → ∞ for some c �= 0 and δ > 0.
Assumption 4.9. The sequences in Section 4.1 fulfill l̃m,n,h = o(L̃M,N,h) for
M → ∞, provided that Assumption 4.8 is satisfied.
Assumption 4.10. The sequences (pk)k, (qk)k in Assumption 4.2 satisfy pM ∼ qN
for M → ∞, provided that Assumption 4.8 holds.



Lagged covariance and cross-covariance operators 4837

An equation like (4.10) does not apply to all combinations of p and q, but
under Assumption 4.10 holds for M → ∞ (and thus N → ∞),

E||ĈXXX,YYY;h− CXXX,YYY ;h||2SUm,Vn

∼
m∑
i=1

n∑
j=1

E||ĈX,Y;j−i+(m+h−n)p− CX,Y;j−i+(m+h−n)p||2SU,V , (4.16)

where even equality in (4.16) is given if p and q are coinciding constants.

Theorem 4.3. Let Assumptions 4.1–4.4, and Assumptions 4.7 (b) and 4.8–4.10
hold, and let X,Y be centered. Further, let m = mM , p = pM , n = nN , q = qN ,
and h = hL with L = LM,N := M ∧ N . Then, ĈXXX,YYY;h is an unbiased estimator
for CXXX,YYY;h with n− M̃M ≤ h ≤ ÑN −m, which satisfies

LM,N,h

m ∧ n
E||ĈXXX,YYY ;h− CXXX,YYY;h||2SUm,Vn

M→∞−→ τ̃2,(X,Y ), (4.17)

where τ̃2,(X,Y ) = τ̃2,((U,V),(X,Y ),(hL)L,h∗,(mM)M ,m∗,(pM)M ,p∗,(nN)N ,n∗,(qN)N ,q∗) stands
for a constant defined by

τ̃2,(X,Y ) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, if (m + h− n)p → ∞,∑
i∈Z

∑
|j|<m∗∨n∗ ι̃∗(j)E〈(X0⊗Yi+c)′, (Xj⊗Yi+j+c)′〉SU,V , if (m + h− n)p → c ∈ Z,m → m∗, n → n∗,∑

i,j∈Z ι̃
∗(j)E〈(X0⊗Yi+c)′, (Xj⊗Yi+j+c)′〉SU,V , if (m + h− n)p → c ∈ Z,m → ∞, n → n∗,∑

i,j∈Z ι̃
∗(j)E〈(X0⊗Yi+c)′, (Xj⊗Yi+j+c)′〉SU,V , if (m + h− n)p → c ∈ Z,m → m∗, n → ∞,∑

i,j∈Z E〈(X0⊗Yi)′, (Xj⊗Yi+j)′〉SU,V , if (m + h− n)p → c ∈ Z,m → ∞, n → ∞,

(4.18)

with ι̃∗(j) defined in (A.5) for all j, satisfying |ι̃∗(j)| ≤ 1 for all j.

If mX and/or mY in Assumption 4.1 are unknown, and consequently also
mXXX = (mX , . . . ,mX)T ∈ Um and/or mYYY = (mY , . . . ,mY )T ∈ Vn, CXXX,YYY;h with
n− M̃M ≤ h ≤ ÑN −m is estimated by

Ĉ ′
XXX,YYY ;h := 1

LM,N,h − 1

L̃M,N,h∑
k=l̃m,n,h

(Xk−m̂XXX ) ⊗ (Yk+h−m̂′
YYY ) (4.19)

if L̃M,N,h > l̃m,n,h, with moment estimators

m̂XXX := 1
LM,N,h

L̃M,N,h∑
i=l̃m,n,h

Xi, m̂′
YYY := 1

LM,N,h

L̃M,N,h∑
j=l̃m,n,h

Yj+h. (4.20)

Thereby, Ĉ ′
XXX,YYY ;h ∈ FUm,Vn and Ĉ ′ ∗

XXX,YYY ;h= Ĉ ′
YYY,XXX;−h for all h. To deduce the asymp-

totic behaviour of the lag-h-cross-covariance operators in the case of unknown
first moments, we also require that m ∨ n = o(LM,N,h) for M → ∞, assuming
that Assumption 4.8 holds. Under Assumptions 4.4 and 4.9, this is given if the
following assumption is also fulfilled.
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Assumption 4.11. The sequences (mk)k, (hk)k in Assumptions 4.3–4.4 fulfill
hL = o(nN ) for M → ∞, with L = LM,N := M ∧ N , provided that Assump-
tion 4.8 is satisfied.

Theorem 4.4. Let Assumptions 4.1–4.4, 4.6, and Assumptions 4.7 (b) and
4.8–4.11 hold. Further, let m = mM , n = nN and h = hL with L = LM,N := M ∧
N . Then, ĈXXX,YYY;h is an unbiased estimator for CXXX,YYY;h with n−M̃M ≤ h ≤ ÑN−m
if

∑
1≤i,k≤LM,N,h,i �=k CXXX,YYY;k+h−i = 0LUm,Vn , which satisfies

lim sup
M→∞

LM,N,h

m ∧ n
E||Ĉ ′

XXX,YYY;h− CXXX,YYY;h||2SUm,Vn ≤ 3τ̃2,(X,Y ), (4.21)

with τ̃2,(X,Y ) = τ̃2,((U,V),(X,Y ),(hL)L,h∗,(mM)M ,m∗,(pM)M ,p∗,(nN)N ,n∗,(qN)N ,q∗) in (4.18).

Remarks 4.4. (a) Although estimating (lagged) cross-covariance operators is
widely discussed, see e.g. [3, 7, 25, 46], Theorems 4.3–4.4 are new in many
ways. First, both processes can attain values in arbitrary separable Hilbert
spaces which do not necessarily need to match, nor do the drawn sample
sizes M,N . Further, the upper bounds are, as in Theorems 4.1–4.2 for the
lagged covariance operators, derived for centered and for not necessarily
centered processes, the lag h is allowed to be both fixed and to vary w.r.t.
the sample sizes, as are the Cartesian powers m,n.

(b) The initial and final value of the sums in (4.15) and (4.19) guarantee that
Xk and Yk+h are simultaneously well-defined.

(c) Assumption 4.9 ensures that the number of the summands of our estima-
tors grow when the sample sizes do.

(d) By following the lines in the proof of Theorem 4.4, it becomes clear that
omitting to estimate Xk resp. Yk+h in (4.20) if X is centered and mY

unknown, resp. if mX is unknown and Y centered, has no positive effect
on the convergence rate (4.21) in Theorem 4.4.

4.5. Estimation of FPCs

Herein, we examine the estimation procedure of the FPCs of CXXX = CXXX;0 of
the Um-valued processes XXX = (Xk)k∈Z in Assumption 4.1 (a). Throughout,
(cj)j∈N, (ĉj)j∈N resp. (ĉ′j)j∈N are the eigenfunction and (cj)j∈N, (ĉj)j∈N resp.
(ĉ′j)j∈N the associated w.l.o.g. monotonically decreasing eigenvalue sequences of
CXXX , ĈXXX = ĈXXX;0 in (4.9) resp. Ĉ ′

XXX = Ĉ ′
XXX;0 in (4.13), where we occasionally write

cj = cj,m and cj = cj,m since the Cartesian power m can vary w.r.t. M . We
would like to emphatically point out that hereafter, whenever dealing with the
FPCs ĉj , ĉj and ĉ′j , ĉ

′
j , we implicitly assume centeredness resp. an unknown first

moment mX .
At first, according to [7], Lemma 4.2,

sup
j∈N

|ĉj − cj | ≤ ||ĈXXX − CXXX ||LUm, sup
j∈N

|ĉ′j − cj | ≤ ||Ĉ ′
XXX − CXXX ||LUm . (4.22)
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Corollary 4.1. Let the assumptions of Theorem 4.1 hold. Then,

lim sup
M→∞

MM

mM
E sup

j∈N
(ĉj − cj)2 ≤ τ2,X ,

with τ2,X = τ2,(U,X,(hM)M ,h∗,(mM)M ,m∗,(pM)M ,p∗) in (4.12) for h = 0. If additionally
holds Assumption 4.6 (a) (i.e. all assumptions of Theorem 4.2 are satisified),

lim sup
M→∞

MM

mM
E sup

j∈N
(ĉ′j − cj)2 ≤ 3τ2,X .

Eigenfunctions are unambiguously determined except for their sign, why

c̆j := sgn〈ĉj , cj〉Um ĉj resp. c̆′j := sgn〈ĉ′j , cj〉Um ĉ′j (4.23)

seem to be reasonable estimators for cj , where ‘sgn’ is the sign function. To
state upper bounds of estimation errors when using the estimators in (4.33),
the following technical preliminaries are needed. Due to [7], Lemma 4.3,

||̆cj − cj ||Um ≤ γ̃j ||ĈXXX − CXXX ||LUm, ||̆c′j − cj ||Um ≤ γ̃j ||Ĉ ′
XXX − CXXX ||LUm (4.24)

for any j ∈ N if the eigenspace of cj is one-dimensional, where γ̃1 := 2
√

2γ1, γ̃j :=
2
√

2(γj−1∨ γj) for j > 1, and

γj := (cj − cj+1)−1, j ∈ N. (4.25)

Assumption 4.12. CXXX is injective, and the eigenvalues of CXXX satisfy cj �= cj+1
and κ(j) = cj for all j ∈ N where κ : R → R is a convex function.

Under Assumption 4.12 holds both

c1 > c2 > · · · > 0, (4.26)

and for any sequence (kj)j⊆ N with k=kM =Ω(1),

sup
j≤k

γ̃j = γ̃k. (4.27)

Corollary 4.2. Let (kj)j ⊆ N be a sequence with kM = Ω(1) for M → ∞,
and let m = mM , γ̃1,m = 2

√
2γ1,m and γ̃j,m = 2

√
2(γj−1,m∨ γj,m) for j > 1,

where γj,m = (cj,m − cj+1,m)−1 for j ∈ N. Then, under the assumptions of
Theorem 4.1 and Assumption 4.12 holds for M → ∞ :

lim sup
M→∞

MM

mM
γ̃−2
j,mM

E||̆cj − cj ||2Um ≤ τ2,X , j ∈ N, (4.28)

lim sup
M→∞

MM

mM
γ̃−2
kM ,mM

E sup
j≤kM

||̆cj − cj ||2Um ≤ τ2,X , (4.29)

with τ2,X = τ2,(U,X,(hM)M ,h∗,(mM)M ,m∗,(pM)M ,p∗) in (4.12) for h = 0. If also holds
Assumption 4.6 (a) (thus all assumptions of Theorem 4.2 are satisfied), we have

lim sup
M→∞

MM

mM
γ̃−2
j,mM

E||̆c′j − cj ||2Um ≤ 3τ2,X , j ∈ N, (4.30)

lim sup
M→∞

MM

mM
γ̃−2
kM ,mM

E sup
j≤kM

||̆c′j − cj ||2Um ≤ 3τ2,X . (4.31)
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However, although we were able to derive asymptotic results for the estima-
tion errors between the estimates c̆j and cj as well as between c̆′j in (4.23) and
cj , using these estimators can be problematic. This is because c̆j �⊥ cj a.s. and
c̆′j �⊥ cj a.s., thus sgn〈ĉj , cj〉Um �= 0 a.s. and sgn〈ĉ′j , cj〉Um �= 0 a.s. is not guaran-
teed for fixed j,M , making allocating an a.s. unique estimator for cj impossible.
Having an a.s. unique estimator for the eigenfunction for a fixed sample size was
inevitable in conversions leading to asymptotic upper bounds of the estimation
errors for operators of L2[0, 1]-valued (G)ARCH and linear, invertible processes
in [38, 39], and to have such an estimator also benefits the simulation, since
then a case decision is obsolete.

Fig 5. Example estimation of an eigenfunction (resp. eigenvector) cj in R2. ĉj , ĉj and ĉj
denote vectors on which the estimate for cj in three different circumstances is based. Based on
ĉj and ĉj , appropriate estimators for cj are unambiguously determinable where only the sign of
ĉj had to be reversed. Further, ĉj is orthogonal to cj , consequently from ĉj no unambiguously
determined estimator for cj can be derived why both −ĉj and ĉj could be used to estimate cj .

We bypass this problem by adding suitable perturbations to c̆j and c̆′j . Hereto,
let (ui)i∈N be a CONS of Um, and let (ζi)i∈N be a sequence of non-degenerated
random variables which are independent of the observations of X, centered,
absolutely continuous, and integrable with uniformly bounded absolute first
moments, so there exists some μ ∈ (0,∞) with

sup
i∈N

E|ζi| ≤ μ. (4.32)

These properties are satisfied, for instance, for a sequence of i.i.d., standard
Gaussian random variables. Given these properties, the estimators

c̆
†
j := ĉj + mM

MM
γ̃2
j,mM

∞∑
i=1

ζiui

2i and c̆
′†
j := ĉ′j + mM

MM
γ̃2
j,mM

∞∑
i=1

ζiui

2i , (4.33)

are well-defined for all j according to the monotone convergence theorem. There-
by, the factors mM

MM
γ̃2
j,mM

, which are the reciprocals of the factors in (4.28)
and (4.30) in Corollary 4.2, were established to derive asymptotic results. For
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any j, c̆†j and c̆
′†
j are due to their definition unbiased estimators for cj as well

as absolutely continuous, because the convolution of a random variable with
an absolutely continuous random variable is also absolutely continuous. Hence,
c̆
†
j �⊥ cj a.s. and c̆

′†
j �⊥ cj a.s., and thus sgn〈c̆†j , cj〉Um �= 0 a.s. and sgn〈c̆′†j , cj〉Um �= 0

a.s. Utilizing these features leads canonically to the estimators

c̆
‡
j :=

[
1R\{0}(sgn〈c̆†j , cj〉Um) sgn〈c̆†j , cj〉Um + 1{0}(sgn〈c̆†j , cj〉Um)

]
ĉj , (4.34)

c̆
′‡
j :=

[
1R\{0}(sgn〈c̆′†j, cj〉Um) sgn〈c̆′†j, cj〉Um + 1{0}(sgn〈c̆′†j, cj〉Um)

]
ĉ′j , (4.35)

where 1A(·) is the indicator function of a set A, which also satisfy for all j,M ,

c̆
‡
j = sgn〈c̆†j , cj〉Um ĉj a.s. resp. c̆

′‡
j = sgn〈c̆′†j, cj〉Um ĉ′j a.s. (4.36)

Theorem 4.5. Here, we use the notation and variables in Corollary 4.2. Also,
let (kj)j ⊆ N be a sequence with kM = Ω(1) for M → ∞. Then, under the
assumptions of Theorem 4.1 and Assumption 4.12, with μ from (4.32), holds

lim sup
M→∞

MM

mM
γ̃−2
j,mM

E||̆c‡j − cj ||2Um ≤ 10 τ2,X + 8μ, j ∈ N, (4.37)

lim sup
M→∞

MM

mM
γ̃−2
kM ,mM

E sup
j≤kM

||̆c‡j − cj ||2Um ≤ 10 τ2,X + 8μ, (4.38)

and if also Assumption 4.6 (a) holds,

lim sup
M→∞

MM

mM
γ̃−2
j,mM

E||̆c′‡j − cj ||2Um ≤ 30 τ2,X + 8μ, j ∈ N, (4.39)

lim sup
M→∞

MM

mM
γ̃−2
kM ,mM

E sup
j≤kM

||̆c′‡j − cj ||2Um ≤ 30 τ2,X + 8μ. (4.40)

Remarks 4.5. (a) Corollary 4.2 and in particular Theorem 4.5 can be seen as
generalizations of results in [7, 27, 35, 37] where the estimation of eigen-
functions of centered L2[0, 1]-valued processes without considering Carte-
sian products was discussed. This is due to the fact that our results state
explicit upper bounds for the estimation errors in sense of second mean
for the eigenfunctions of the covariance operators of not necessarily cen-
tered processes in Cartesian products of general, separable Hilbert spaces,
where both the ‘degree of reuse’ and the Cartesian power might depend on
the sample size. Furthermore, Theorem 4.5 guarantees that the estimators
stated there are a.s. unique for all eigenfunctions and any sample size.

(b) If m = mM is bounded, so are the sequences of reciprocal spectral gaps
(γj,m)M for all j, and (γk,m)M is guaranteed to be bounded if k = kM and
m = mM are. In these cases, even more general if for M → ∞ holds γj,m =
ω(

√
mM

MM
) for all j, resp. γk,m = ω(

√
mM

MM
), the estimation errors stated in

Corollary 4.2 and Theorem 4.5 are null sequences, thus the estimators in
these results for the eigenfunctions are consistent.
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(c) In Theorem 4.5 it is obviously advantageous to choose a sequence (ζi)i∈N of
non-degenerated, centered, absolutely continuous, and integrable random
variables so that for μ ∈ (0,∞) as small as possible holds supi∈N E|ζi| ≤ μ.
This can, for instance, be achieved by considering (ζi)i∈N to be a sequence
of i.i.d. N (0, σ2)-distributed random variables with σ > 0, consequently
supi∈N E|ζi| = E|ζ1| = σ

√
2
π , putting μ = σ

√
2
π , and choosing σ as small

as possible depending on other framework conditions.
(d) The upper bounds in Theorem 4.5 can be further slightly improved by

applying stricter inequalities if possible, and also by choosing the series
in (4.33) to have a smaller limit than our for convenience chosen series∑∞

i=1
1
2i having the limit 1.

5. A simulation study

Herein, we simulate realizations and estimators of our lagged covariance and
cross-covariance operators. To avoid unnecessary complexity, and to ensure
vividness of the derived results, we discuss centered processes whose underlying
processes attain values in H := L2[0, 1]. In our calculations with the program
language R, any x ∈ H is with exceptions to which we will draw attention eval-
uated at t = 0, 1

250 , . . . ,
249
250 , and the inner product 〈x, y〉H =

∫ 1
0 x(t)y(t) dt, with

x, y ∈ H, is approximated by the Riemann sum 1
250

∑250
t=1 x( t−1

250 )y( t−1
250 ).

5.1. Setup

For some m,n ∈ N, let XXX := (Xk)k∈Z and YYY := (Yk)k∈Z be processes with

Xk := (Xk, . . . , Xk−m+1)T resp. Yk := (Yk, . . . , Yk−n+1)T, k ∈ Z, (5.1)

so, p = q = 1. X := (Xk)k∈Z and Y := (Yk)k∈Z are processes which satisfy a.s.

Xk = α(Xk−1) + εk, ∀k ∈ Z, (5.2)
Yk = β(Xk) + εk, ∀k ∈ Z, (5.3)

with εk as in Example 3.1, and α, β : H → H are integral operators with kernels

a(s, t) := kε(s, t) resp. b(s, t) := 1
2kε(s, t), s, t ∈ [0, 1], (5.4)

where kε;0 = kε is the integral kernel of Cε;0 = Cε in (3.11). Also,

||α||2SH =
∫ 1

0

∫ 1

0
a2(s, t) dsdt = 3

2 − ln(2). (5.5)

Hence, ||α||LH ≤ ||α||SH < 1, implying (5.2) has a unique stationary solution,
with convergence both in L4

H and a.s., thus (Xk)k and (Yk)k are stationary,
centered, L4

H-m-approximable AR(1) processes (see [39], Lemma 2.1). Further,
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Fig 6. Realizations of the innovations ε0, . . . , ε5 in (3.10).

C ∗
X;h = CX;−h for h ∈ Z, (3.13), since α = Cε is selfadjoint and commutes with

Cε and due to (3.14) also with CX, and ||α||SH < 1 lead to the Neumann series

CX;h= α|h|+1
∞∑
j=0

α2j = α|h|+1(IH − α2)−1
, ∀h ∈ Z. (5.6)

Moreover, (5.2), (5.3), elementary conversions and (5.6) yield

CXXX,YYY;h= βCX;h, ∀h ∈ Z. (5.7)

5.2. Simulation of realizations of our processes

Here, we simulate realizations of (Xk)k, (Yk)k in (5.1). For this purpose, we
firstly simulate innovations in (3.10), see Fig. 6, which then can be plugged into
the equations (5.2) and (5.3) of the underlying AR(1) process (Xk)k of (Xk)k
and the derived underlying process (Yk)k of (Yk)k. But before we do so, an
initial value of X0 has to be simulated which can be approximated sufficiently
well as follows.

Lemma 5.1. Let A ∈ LH with ||A||LH < 1. Further, let (εk)k∈Z be an i.i.d.,
centered Lν

H-process for ν > 0, let Zk = A(Zk−1) + εk for all k ∈ Z, and let
Z̃k = A(Z̃k−1) + εk for all k ∈ N where Z̃0 is some deterministic value. Then,
E||Z0 − Z̃0||νH < ∞, and with ρ := ||A||−ν

LH
> 1 holds

ρNE||ZN − Z̃N ||νH ≤ E||Z0 − Z̃0||νH, ∀N ∈ N.

Remarks 5.1. Such a statement holds also for functional AR(MA) processes
with arbitrary order(s) in any separable Hilbert space, see [39], Corollary 4.1 for
functional (G)ARCH which directly transfers to functional AR(MA) processes.

5.3. Simulation of our operators

In this section, we illustrate certain lag-h-covariance and lag-h-cross-covariance
operators CXXX;h resp. CXXX,YYY ;h of the centered processes XXX = (Xk)k and YYY =
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Fig 7. Six consecutive realizations of (Xk)k (bordeaux) and (Yk)k (gold) in the first two
rows. X0 was approximated by Z̃100 in Lemma 5.1 with A = α, εk for k = 1, . . . , 100 as
in (3.10), and Z̃0 := 0H, and X1, . . . , X5 and Y0, . . . , Y5 were obtained by applying (5.2)
resp. (5.3) with the innovations in Fig. 6. Then, X0, . . . , X5 and Y0, . . . , Y5 were plugged
into the equations in (5.1) with m = 3 and n = 2, leading to three consecutive realizations of
(Xk)k = ((Xk, Xk−1, Xk−2)T )k (third row) and of (Yk)k = ((Yk, Yk−1)T )k (fourth row). The
first resp. the second components of both the realizations of (Xk)k and (Yk)k are highlighted
in black resp. green, and the third component of (Xk)k in blue.

(Yk)k in Section 5.1 with Cartesian powers m = 3 resp. n = 2, and simulate their
estimates for fixed and increasing h,m, n. For any h ∈ Z,CX;h and CXXX,YYY;h cannot
be calculated precisely due to the infinite series (5.6) consisting of operators,
but can for sufficiently large K ∈ N be well approximated by

C̃X;h;K := α|h|+1
K∑
j=0

α2j resp. C̃XXX,YYY;h;K := βα|h|+1
K∑
j=0

α2j . (5.8)

This is due to the fact that submultiplicity of || · ||SH , ||α||SH < 1 and the
formulas of the geometric sum and series lead with c := (1 − ||α||2SH

)−1 and
β = 1

2α after (5.4) for any h,K to

||C̃X;h;K− CX;h||SH < c||α||2K+3
SH

and ||C̃XXX,YYY;h;K− CXXX,YYY;h||SH <
c

2 ||α||
2K+4
SH

.

Also, due to the fact that the lag-h-covariance operators CXXX;h = E〈X0,x〉HmXh

and the lag-h-cross-covariance operators CXXX,YYY;h = E〈X0,x〉HmYh fulfill under
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Fig 8. The integral kernels k
(1)
XXX;0, k

(2)
XXX;0, k

(3)
XXX;0 (first row) and k

(1)
XXX,YYY;−1, k

(2)
XXX,YYY;−1 (second row)

of the operators in the three resp. two components of CXXX;0 in (5.11) resp. CXXX,YYY;−1 in
(5.12). These kernels result by the associated sum of the integral kernels kX;0, kX;1, kX;2 and
kXXX,YYY;0, kXXX,YYY;1, kXXX,YYY;2 of the operators CX;0,CX;1,CX;2 resp. CXXX,YYY;0,CXXX,YYY;1,CXXX,YYY;2 which were
approximated by their respective operators in (5.8) with K = 100.

Assumptions 4.1 for any h ∈ Z and u := (u1, . . . , um)T ∈ Um,

CXXX;h(u)=
( m∑

i=1
CX;h+i−1(ui), . . . ,

m∑
i=1

CX;h+i−m(ui)
)T

∈ Um, (5.9)

CXXX,YYY ;h(u)=
( m∑

i=1
CXXX,YYY;h+i−1(ui), . . . ,

m∑
i=1

CXXX,YYY;h+i−n(ui)
)T

∈ Vn, (5.10)

the components of CXXX;h and CXXX,YYY ;h cannot be expressed independently of any
argument x := (x1, . . . , xm)T ∈ Hm, except when all the argument’s components
match. With (A1(x), . . . , Am(x)) := (A1, . . . , Am)(x) for operators A1, . . . , Am

with domain Hm, and postulating CX;h = CX;−h and CXXX,YYY;h = CXXX,YYY;−h for any h,
we obtain for, e.g., CXXX;0 and CXXX,YYY ;−1 with m = 3, n = 2 for any x = (x, x, x) ∈
H3 according to (5.9), (5.10),

CXXX;0(x)=
((

CX;0+CX;1+CX;2, CX;0 +2CX;1, CX;0+CX;1+CX;2
)
(x)

)T
, (5.11)

CXXX,YYY;−1(x)=
((

CXXX,YYY;0 +2CXXX,YYY;1, CXXX,YYY;0+CXXX,YYY;1+CXXX,YYY;2
)
(x)

)T
. (5.12)

To illustrate estimators for the operators in the components of CXXX;0(x)
in (5.11) and CXXX,YYY ;−1(x) in (5.12), and to estimate CXXX;h and CXXX,YYY;h for fixed
and varying h,m, n, with h ≥ 0 w.l.o.g., we generate X1, . . . , XM and Y1, . . . , YN
of the processes XXX resp. YYY in Section 5.1 with M = N . This leads to the
values Xm, . . . ,XM̃ of XXX and Yn, . . . ,YÑ of YYY with M̃ = M̃M = M and
Ñ = ÑN = M , thus with M = MM = M −m+1 resp. N = NN = M −n+1.
Due to centeredness of X and Y , the operators CX;h in (5.11) and CXXX,YYY;h in (5.12)
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Fig 9. The estimators k̂
(1)
XXX;0, k̂

(2)
XXX;0, k̂

(3)
XXX;0 (first row) and k̂

(1)
XXX,YYY;−1, k̂

(2)
XXX,YYY;−1 (second row) for the

integral kernels k
(1)
XXX;0, k

(2)
XXX;0, k

(3)
XXX;0 resp. k

(1)
XXX,YYY;−1, k

(2)
XXX,YYY;−1 of the operators in the three resp.

two components of CXXX;0 in (5.11) resp. CXXX,YYY;−1 in (5.12). These estimators result by the
associated sum of the estimators k̂X;0, k̂X;1, k̂X;2 in (5.13) and k̂XXX,YYY;0, k̂XXX,YYY;1, k̂XXX,YYY;2 in (5.14)
with M = 1000 for the operators CX;0,CX;1,CX;2 resp. CXXX,YYY;0,CXXX,YYY;1,CXXX,YYY;2.

with h = 0, 1, 2 are estimated by the classical estimators ĈX;h resp. by ĈXXX,YYY;h
with integral kernels

k̂X;h(s, t) := 1
M − h

M−h∑
k=1

Xk(s)Xk+h(t), ∀s, t ∈ [0, 1], (5.13)

resp. k̂XXX,YYY;h(s, t) := 1
M − h

M−h∑
k=1

Xk(s)Yk+h(t), ∀s, t ∈ [0, 1]. (5.14)

At last, in Table 1, we list estimation errors for the operators CXXX;h and CXXX,YYY;h
of the processes XXX = (Xk)k and YYY = (Yk)k in (5.1) for several sample sizes
M = N and various h,m, n which may depend on M , with h ≥ 0 w.l.o.g. Due
to centeredness of XXX and YYY , we use the estimators ĈXXX;h in (4.9) and ĈXXX,YYY;h
in (4.15), which satisfy our processes’ definition, and h ≥ 0,

ĈXXX;h= 1
M − h−m + 1

M−h∑
k=m

Xk ⊗ Xk+h, (5.15)

resp. ĈXXX,YYY;h= 1
M − h−m ∨ (n− h) + 1

M−h∑
k=m∨(n−h)

Xk ⊗ Yk+h, (5.16)

and to calculate the estimation errors, we utilize the identity (4.10) and that
for p = q = 1 holds after (4.16),

||ĈXXX,YYY ;h − CXXX,YYY;h||2SHm,Hn =
m∑
i=1

n∑
j=1

||ĈXXX,YYY;j−i+m+h−n − CXXX,YYY;j−i+m+h−n||2SH ,

(5.17)
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Table 1

Simulation of E||ĈXXX;h − CXXX;h||2SHm
and E||ĈXXX,YYY;h − CXXX,YYY;h||2SHm,Hn

, with the estimation
errors defined in (4.10) resp. (5.17) for various sample sizes M = N, lags h and Cartesian
powers m,n. Here, any x ∈ H is evaluated at t = 0, 1

100 , . . . ,
99
100 , and the inner product

〈x, y〉H is approximated by 1
100

∑100
t=1 x( t−1

100 )y( t−1
100 ) for any x, y ∈ H. The listed values in

the table correspond to the arithmetic mean of calculated estimation errors with R = 10
replications of generated random variables, where CX;h+i−j and CXXX,YYY;h+i−j were

approximated by C̃XXX;h+i−j;100 resp. C̃XXX,YYY;h+i−j;100 in (5.8).

≈ E||ĈXXX;h − CXXX;h||2SHm ≈ E||ĈXXX,YYY;h − CXXX,YYY;h||2SHm,Hn

m=mM , n=nM m=3 m=�M1/4� m=3, n=2 m=n=�M1/4�

M
h=hM 0 1 �M1/4� 0 1 �M1/4� 0 1 �M1/4� 0 1 �M1/4�

100 .1451 .1231 .1101 .1463 .0874 .0653 .1238 .0298 .0247 .0754 .0307 .0046
200 .0729 .0336 .0535 .0559 .0703 .0449 .0366 .0465 .0117 .0540 .0397 .0506
300 .0546 .0726 .0294 .2343 .1763 .1413 .0223 .0324 .0098 .0638 .0834 .0271
400 .0895 .0515 .0427 .2564 .1962 .1084 .0089 .0238 .0390 .1526 .2537 .0252
500 .0704 .0565 .0255 .2697 .2379 .1074 .0388 .0293 .0065 .1367 .0663 .0236
750 .0674 .0609 .0175 .5185 .5750 .2834 .0345 .0304 .0011 .2634 .2491 .1402
1000 .0456 .0345 .0271 .5867 .5148 .3280 .0255 .0246 .0121 .3581 .3172 .0755

where ĈXXX,YYY;h+i−j corresponds to ĈXXX,YYY;h in (4.15), with Xk and Yk+h replaced
by Xi+(k−m)p resp. Yj+(k+h−n)q for all i, j, k.

Remarks 5.2. The simulated values in Table 1 display our theoretical results in
Theorems 4.1 and 4.3 reasonably well. These theorems state that the squared es-
timation errors for our lagged covariance and cross-covariance operators, where
the errors are calibrated with certain increasing sequences depending on the
lag, Cartesian powers and sample sizes, converge to a specific constant for the
samples size M,N tending to infinity. Thereby, the prerequisites of these the-
orems are satisfied due to p = q = 1,M = N , the choice of our lags h = hM
and Cartesian powers m = mM , n = nN in Table 1, and the definition of our
centered AR(1) processes. That the pattern of the numbers listed in the table
reflects the assertions of both theorems in a suggestive way, is because the es-
timation errors seem to approach zero for any h and fixed m,n for increasing
sample size M , where the errors decay for increasing lag h slightly faster. It is
also reasonable that the estimation errors are bigger when the Cartesian powers
are. Further, that the values are not monotonic for increasing sample sizes can
be explained by high fluctuation of individual simulations, see Fig. 10. More-
over, the estimation errors for the lagged cross-covariance operators are, except
for a few irregularities, roughly one quarter of the lagged cross-covariance op-
erators, which can be explained by the identity (5.7) and the definition of the
kernel of β defined in (5.4). The downside of our simulation, however, is that,
according to our results, the estimation errors should for increasing Cartesian
powers decrease rather than increase or stagnate. This may be due to the fact
that the relatively coarse decomposition of the unit interval with only n = 100
interpolation points implies too large approximation errors, or that the sam-
ple size of up to M = 1000 is still too small to notice convergence to zero.
However, although we chose n,M and the number of repetitons R just enough
to make a passable statement, it was, due to the complexity of our operators
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Fig 10. Boxplots and individual datapoints of the R = 10 simulated estimation errors in
each scenario for the lag-h-covariance operators CXXX;h (upper chart) and the lag-h-cross-
covariance operators CXXX,YYY;h (lower chart) in Table 1. Thereby, these simulated estimation
errors were plotted using the sample size M = 500 in all the scenarios X1: m = 3, h = 0;
X2: m = 3, h = 1; X3: m = 3, h = �M1/4�; X4: m = �M1/4�, h = 0; X5: m = �M1/4�, h = 1;
X6: m = h = �M1/4� for CXXX;h resp. in all the scenarios XY1: m = 3, n = 2, h = 0; XY2:
m = 3, n = 2, h = 1; XY3: m = 3, n = 2, h = �M1/4�; XY4: m = n = �M1/4�, h = 0; XY5:
m = n = �M1/4�, h = 1; XY6: m = n = h = �M1/4� for CXXX,YYY;h.

and the performance of the program language R, not possible for us to fur-
ther increase them to improve the statement. Just to give an example, merely
simulating these twelve values in Table 1 for M = 500 already took several
hours.

6. Conclusions

Summary This article proposes estimators for lagged covariance and cross-
covariance operators and the principal components of processes in Cartesian
products of separable Hilbert spaces. The focus lies on the estimation proce-
dure and the asymptotic behaviour of the estimation errors. All estimators are
stated for centered processes and for those with an unknown finite, first mo-
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ment. The asymptotic results allow the processes’ Cartesian powers and the lag
to be fixed or to increase w.r.t. the sample size(s), and the principal compo-
nents are estimated separately and uniformly. Our findings are useful whenever
one is concerned about the dependence within or between processes with val-
ues in (Cartesian products of) separable Hilbert spaces, or whenever one has to
analyze estimators relying on empirical (lagged) covariance or cross-covariance
operators, see [3, 38, 39]. These findings can also be applied to covariance and
cross-covariance operators of random variables in separable Hilbert spaces, and,
since Rn endowed with the canonical inner product is a separable Hilbert space
for any n ∈ N, also to conventional (lagged) covariance and cross-covariance
matrices.

Outlook In the future, one could tackle to derive the asymptotic distribution
of our estimation errors and Bernstein inequalities (see [7, 46]), and analyze
asymptotic lower rates. Furthermore, it would be interesting to extend our re-
sults on separable Banach spaces, see, e.g., [49] who estimated AR operators in
Banach spaces.

Appendix A: Proofs

In multiple conversions, we use the following identities regarding the cardinality
of certain index sets. To define these, let Z|·|<c := {j ∈ Z

∣∣ |j| < c}, c ∈ R. For
any n ∈ N and k ∈ Z|·|<n holds

#
{
i, j ∈ {1, . . . , n}

∣∣ j − i = k
}

= n− |k|. (A.1)

To reiterate, x+ := max(0, x) for x ∈ R, and a ∨ b := max(a, b) and a ∧ b :=
min(a, b) for a, b ∈ R. For any m,n ∈ N and k ∈ Z|·|<m∨n holds

#
{
i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}

∣∣ j − i = k
}

= ιm,n(k), (A.2)

where the functions ιm,n : Z|·|<m∨n → {1, . . . ,m ∧ n} are for n ≥ m defined by

ιm,n(k)
n≥m:=

⎧⎪⎨
⎪⎩

(m− |k|)+, if k < 0,
m, if 0 ≤ k ≤ n−m,

(m− |k − (n−m)|)+, if k > n−m,

(A.3)

and for n < m through

ιm,n(k) n<m:=

⎧⎪⎨
⎪⎩

(n− |(n−m) − k|)+, if k < n−m,

n, if n−m ≤ k ≤ 0,
(n− |k|)+, if k > 0.

(A.4)

Lemma A.1. Let Assumptions 4.1, 4.3 and 4.8 hold. Further, with N = NM ,
let m̄ := limM→∞ mM , n̄ := limM→∞ nN ∈ [0,∞], let ξk,l := 1 − |k|

l for k ∈ Z

and l ∈ N, and let ι̃m,n(k) := ιm,n(k)/m∧n with ιm,n(k) defined in (A.3)–(A.4)
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for any k,m, n. Then, for any k ∈ Z|·|<m̄∨n̄, where Z|·|<m̄∨n̄ = Z if m̄ = ∞ or
n̄ = ∞, holds for limM→∞ ι̃m,n(k) := ι̃∗(k) :

ι̃∗(k) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1(−m∗,0)(k)·ξk,m∗ + 1[0,n∗−m∗](k) + 1(n∗−m∗,n∗)(k)·ξk−(n∗−m∗),m∗ , if m → m∗, n → n∗, n∗ ≥ m∗,

1(−m∗,n∗−m∗)(k)·ξ(n∗−m∗)−k,n∗ + 1[n∗−m∗,0](k) + 1(0,n∗)(k)·ξk,n∗ , if m → m∗, n → n∗, n∗ < m∗,

1(−∞,0](k) + 1(0,n∗)(k)·ξk,n∗ , if m → ∞, n → n∗,

1(−m∗,0)(k)·ξk,m∗ + 1[0,∞)(k), if m → m∗, n → ∞,

1, if m → ∞, n → ∞.

(A.5)

Proof. The assertion follows directly from the definition of the functions ιm,n

and ι̃m,n for any m,n ∈ N and basic conversions.

Further, for any x ∈ Z|·|<a+b−1 with a, b ∈ Z holds

#
{
i ∈ Z|·|<a, j ∈ Z|·|<b

∣∣ i + j = x
}

= ψa,b(x), (A.6)

where the function ψa,b : Z|·|<a+b−1 → {1, . . . , 2a ∧ b + 1} is defined as

ψa,b(x) :=

⎧⎪⎨
⎪⎩
a + b + 1 + x, if x < a ∧ b− a ∨ b,

2a ∧ b + 1, if a ∧ b− a ∨ b ≤ x ≤ a ∨ b− a ∧ b,

a + b + 1 − x, if x > a ∨ b− a ∧ b.

(A.7)

We also make use of the following inequality.

Lemma A.2. Let (H, 〈·, ·〉H) be a separable Hilbert space. Also, let (Sk)k∈Z be
a stationary L4

H-process, and for some l ∈ N,Sk := (Sf(k,1), . . . , Sf(k,l))T for all
k and some function f : Z× {1, . . . , l} → Z. Then,

ν4,Hl(Sk) ≤
√
l ν4,H(Sj), ∀j, k. (A.8)

Proof. From the definition of Sk and ν4,Hl(·), stationarity of the process (Sk)k ⊆
L4
H and the Cauchy-Schwarz inequality follows

ν4
4,Hl(Sk) = E

[( l∑
m=1

||Sf(k,m)||2H
)2 ]

≤
l∑

m,n=1
E||Sj ||4H = l2ν4

4,H(Sj).

Proof of Lemma 4.1. At first, m̂XXX and m̂YYY in (4.2) are unbiased estimators for
mXXX for all M ∈ N resp. for mYYY for all N ∈ N due to their definition. Hereinafter,
we write m = mM and M = MM for M ∈ N. Further, w.l.o.g., we illustrate
the proof of (a) and (b) for XXX = (Xk)k only.

(a) The definition of m̂XXX in (4.2) and stationarity of XXX = (Xk)k ⊆ L2
U implying

mXXX = (mX , . . . ,mX)T ∈ Um, m̂(p,k)
XXX

:= 1
M

∑M
i=1 Xk+(i−m)p for k = 0, 1, . . . ,m

for any M ∈ N, and also with X ′
j := Xj −mX and ξi,n := 1− |i|

n , where i, j ∈ Z

and n ∈ N, yield

M

m
E||m̂XXX −mXXX ||2Um = M

m

m∑
k=1

E||m̂(p,k)
XXX −mXXX ||2U = M E||m̂(p,0)

XXX −mXXX ||2U
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= 1
M

M∑
i,j=1

E〈X ′
ip, X

′
jp〉U =

∑
|k|<M

ξk,M E〈X ′
0, X

′
kp〉U

=
∑
k∈Z

E〈X ′
0, X

′
kp〉U (A.9)

−
∑

|k|<M

k

M
E〈X ′

0, X
′
kp〉U −

∑
|k|≥M

E〈X ′
0, X

′
kp〉U .

(A.10)

(A.9) equals ||
∑

k∈Z CX;kp||NU which is finite due to
∑

k∈Z ||CX;k||NU < ∞ (As-
sumption 4.5 (a)), and thus (A.10) converges towards zero for M → ∞. Further,
if p = pM → ∞ for M → ∞, we obtain due to

∑
k∈Z ||CX;k||NU < ∞ and (3.2),

lim
M→∞

∣∣∣∣∣∣∑
k∈Z

CX;kp

∣∣∣∣∣∣
NU

=
∣∣∣∣∣∣∑

k∈Z

lim
M→∞

CX;kp

∣∣∣∣∣∣
NU

= ||CX;0||NU = E||X0||2U .

(b) Using the notation in (a), stationarity of the L4
U -process XXX = (Xk)k after

Assumption 4.6 (a) and (3.1) lead for any M ∈ N to

M 3

m1+1P
E||m̂XXX −mXXX ||4Um

= M 3

m1P

∑
|r|<m

ξr,m E||m̂(p,0)
XXX −mXXX ||2U ||m̂

(p,r)
XXX −mXXX ||2U

= 1
m1PM

∑
|r|<m

ξr,m

M∑
i,j,k,l=1

E〈X ′
(i−m)p, X

′
(j−m)p〉U 〈X ′

r+(k−m)p, X
′
r+(l−m)p〉U

= 1
m1P

∑
|r|<m

ξr,m
∑

|i|,|j|,|k|<M

ξi,M E〈X ′
0⊗X ′

r+ip, X
′
jp⊗X ′

r+kp〉SU . (A.11)

This term is finite after Assumption 4.6 (a), and its limit depends on the limits
of m = mM and p = pM for M → ∞. If pM → ∞, we have for any r,

lim
M→∞

E〈X ′
0⊗X ′

r+ip, X
′
jp⊗X ′

r+kp〉SU =
{
E||X ′

0||2U ||X ′
r||2U , if i = j = k = 0,

0, otherwise.

Thus, (A.11) goes for M → ∞ to
∑

|k|<m∗ξk,m∗ E||X ′
0||2U ||X ′

k||2U if mM → m∗

and pM → ∞, to
∑

k∈Z E||X ′
0||2U ||X ′

k||2U if mM → ∞ and pM → ∞, and to
1
m∗

∑
|r|<m∗

∑
i,j,k∈Z

ξr,m∗E〈X ′
0⊗X ′

r+ip∗ , X ′
jp∗⊗X ′

r+kp∗〉SU

if mM → m∗ and pM → p∗. At last, if mM → ∞ and pM → p∗, for sufficiently
large M ∈ N implying M > m

p , (A.11) becomes for M → ∞ :

1
m

∑
|r|<m,
r�p

∑
|i|,|j|,|k|<M

ξr,mξi,M E〈X ′
0⊗X ′

r+ip, X
′
jp⊗X ′

r+kp〉SU
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+ 1
m

∑
|r|<m,
r|p

∑
|i|,|j|,|k|<M

ξr,mξi,M E〈X ′
0⊗X ′

r+ip, X
′
jp⊗X ′

r+kp〉SU

= o(1) + 1
m

∑
|s|<m

p

∑
|i|,|j|,|k|<M

ξsp,mξi,M E〈X ′
0⊗X ′

(s+i)p, X
′
jp⊗X ′

(s+k)p〉SU

=o(1)+ 1
m

∑
|j|<M

∑
|t|,|u|<M+m

p −1

∑
|i|,|k|<M ,|s|<m

p ,

s+i=t,s+k=u

ξsp,mξi,ME〈X ′
0⊗X ′

tp, X
′
jp⊗X ′

up〉SU

= o(1) +
∑

|j|<M

∑
|t|,|u|<M+m

p −1

ψ̃m
p ,M (t)E〈X ′

0⊗X ′
tp, X

′
jp⊗X ′

up〉SU , (A.12)

where ψ̃m
p ,M : Z|·|<m

p +M−1 → [0,∞) stand for functions which satisfy 0 ≤
ψ̃m

p ,M (t) ≤ ψm
p ,M (t)/m for all t, with ψm

p ,M defined in (A.7). Thus, due to
lim supM→∞ ψm

p ,M (t)/m ≤ 2
p∗ and Assumption 4.6 (a), (A.12) converges for

M → ∞ as asserted to∑
i,j,k∈Z

ci E〈X ′
0⊗X ′

ip∗ , X ′
jp∗⊗X ′

kp∗〉SU

for certain ci ∈ [0, 2
p∗ ]. Hence, (4.6) is shown.

Proof of Theorem 4.1. ĈXXX;h is an unbiased estimator for CXXX;h with |h| < MM

due to its definition. Since ||ĈXXX;h − CXXX;h||SUm= ||ĈXXX;−h − CXXX;−h||SUm for all h,
let h ≥ 0 w.l.o.g. Herein, h = hM ,m = mM ,M = MM ,MM,h = M − |h|, (Xk ⊗
Xl)′ := Xk ⊗ Xl − CXXX;l−k for k, l ∈ Z and ξi,n := 1 − |i|

n for i ∈ Z, n ∈ N.
Stationarity of XXX after Assumption 4.1 (a), (4.10), conversions as in the proof
of Lemma 4.1 and the Assumptions 4.2–4.4 (a) lead for h with 0 ≤ h < M to

MM,h

m
E||ĈXXX;h− CXXX;h||2SUm

= MM,h

m

m∑
i,j=1

E||ĈX;j−i+hp − CX;j−i+hp||2SU

= MM,h

∑
|l|<m

ξl,m E||ĈX;l+hp − CX;l+hp||2SU

= 1
MM,h

∑
|l|<m

MM,h∑
i,j=1

ξl,m E〈(Xi⊗Xi+l+hp)′, (Xj⊗Xj+l+hp)′〉SU

=
∑

|k|<MM,h

∑
|l|<m

ξk,MM,h
ξl,m E〈(X0⊗Xl+hp)′, (Xk⊗Xk+l+hp)′〉SU (A.13)

M→∞−→

⎧⎪⎨
⎪⎩

0, if hp → ∞,∑
i∈Z

∑
|j|<m∗ξj,m∗E〈(X0⊗Xi+c)′, (Xj⊗Xi+j+c)′〉SU , if hp → c ∈ Z,m → m∗,∑

i,j∈Z E〈(X0⊗Xi)′, (Xj⊗Xi+j)′〉SU , if hp → c ∈ Z,m → ∞,
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where the expressions in the two latter cases are well-defined after Assump-
tion 4.7 (a). Hence, due to the definition of τ2,X in (4.12), the assertion is
proven.

Proof of Theorem 4.2. Let h = hM ,m = mM ,M = MM , M̃ = M̃M ,MM,h =
M − |h|, M̃M,h = M̃ − |h|. From stationarity of XXX = (Xk)k and bilinearity of
⊗ : Um × Um → Um follows for h with 0 ≤ h < MM − 1:

E(Ĉ ′
XXX;h) = 1

MM,h−1

MM,h∑
k=1

E
((

Xk−
1

MM,h

MM,h∑
i=1

Xi

)
⊗
(
Xk+h−

1
MM,h

MM,h∑
j=1

Xj+h

))

= 1
MM,h(MM,h−1)

(
M 2

M,hCXXX;h −
MM,h∑
i,k=1

CXXX;k+h−i

)

= CXXX;h − 1
MM,h(MM,h−1)

∑
1≤i,k≤MM,h

i �=k

CXXX;k+h−i. (A.14)

Hence, Ĉ ′
XXX;h is an unbiased estimator for CXXX;h for h with 0 ≤ h < MM −1 if the

sum in (A.14) equals 0LUm , which can also be shown for h with 1−MM < h < 0.
Now, we verify (4.14). Since ||Ĉ ′

XXX;h − CXXX;h||SUm = ||Ĉ ′
XXX;−h − CXXX;−h||SUm for all

h, let h ≥ 0 w.l.o.g. For h < MM − 1 holds

Ĉ ′
XXX;h = MM,h

MM,h−1(mXXX − m̂XXX ) ⊗ (mXXX − m̂′
XXX ) + 1

MM,h−1

M̃M,h∑
j=m

Uk ⊗ Uk+h

= MM,h

MM,h−1

[
(mXXX − m̂XXX ) ⊗ (mXXX − m̂′

XXX ) + ĈUUU;h

]
(A.15)

with ĈUUU;h as in (4.9) based on a sample Um, . . . ,UM̃M,h
of UUU := (Uk)k∈Z where

Uk := Xk−mXXX . (A.15), CXXX;h = CUUU;h, Δ-inequality, (a+b+c)2 ≤ 3(a2+b2+c2)
for a, b, c ∈ R and ||u⊗ u′||SUm = ||u||Um ||u′||Um for u, u′ ∈ Um yield

E||Ĉ ′
XXX;h− CXXX;h||2SUm

= E

∣∣∣∣∣∣ 1
MM,h−1

[
MM,h(mXXX − m̂XXX ) ⊗ (mXXX − m̂′

XXX ) + ĈUUU;h − CUUU;h

]
+ CXXX;h

∣∣∣∣∣∣2
SUm

≤ 3
(MM,h−1)2

[
M 2

M,h E||m̂XXX −mXXX ||2Um ||m̂′
XXX −mXXX ||2Um

+ M 2
M,h E||ĈUUU;h − CUUU;h||2SUm + ||CXXX;h||2SUm

]
≤ 3

(MM,h−1)2
[
M 2

M,h E||m̂XXX −mXXX ||4Um

+ M 2
M,h E||ĈUUU;h − CUUU;h||2SUm + m2E||X ′

1||4U
]
,

where ||CXXX;h||2SUm ≤ m2 E||X ′
1||4U with X ′

1 := X1 −mXXX follows from || · ||SUm≤
|| · ||NUm , (3.4) and Cauchy-Schwarz inequality. From the inequalities above
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follows together with Lemma 4.1 (b), Theorem 4.1 and mM/MM,h → 0 for
M → ∞ indeed

lim sup
M→∞

MM,h

mM
E||Ĉ ′

XXX;h− CXXX;h||2SUm ≤ 3 [0 · η4,X + τ2,X + 0] = 3τ2,X .

Proof of Theorem 4.3. ĈXXX,YYY ;h is an unbiased estimator for CXXX,YYY ;h for h with
n−M̃M ≤ h ≤ ÑN −m by definition. Hereinafter, let h ≥ 0 w.l.o.g. Further, we
write m = mM , n = nN , h = hL, p = pL, q = qL where L = LM,N := M∧N , (Xk⊗
Yl)′ := Xk ⊗ Yl −CXXX,YYY;l−k for k, l ∈ Z and ξi,n := 1− |i|

n for i ∈ Z, n ∈ N. Then,
stationarity of XXX and YYY after Assumption 4.1, (4.16) due to Assumption 4.10,
Assumptions 4.2–4.4, (A.2) with the functions ιm,n defined in (A.3)–(A.4) for
any m,n ∈ N, and ι̃m,n := ιm,n/m∧n, lead similarly to the proof of Theorem 4.1
to
LM,N,h

m ∧ n
E||ĈXXX,YYY ;h− CXXX,YYY;h||2SUm,Vn

∼ LM,N,h

m ∧ n

m∑
i=1

n∑
j=1

E||ĈX,Y;j−i+(m+h−n)p− CX,Y;j−i+(m+h−n)p||2SU,V

= LM,N,h

∑
|l|<m∨n

ι̃m,n(l)E||ĈX,Y;l+(m+h−n)p− CX,Y;l+(m+h−n)p||2SU,V

=
∑

|k|<LM,N,h

∑
|l|<m∨n

ξk,LM,N,h
ι̃m,n(l)E〈(X0⊗Yl+(m+h−n)p)′, (Xk⊗Yk+l+(m+h−n)p)′〉SU,V

M→∞−→

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, if (m + h− n)p → ∞,∑
i∈Z

∑
|j|<m∗∨n∗ ι̃∗(j)E〈(X0⊗Yi+c)′, (Xj⊗Yi+j+c)′〉SU,V , if (m + h− n)p → c ∈ Z,m → m∗, n → n∗,∑

i,j∈Z ι̃
∗(j)E〈(X0⊗Yi+c)′, (Xj⊗Yi+j+c)′〉SU,V , if (m + h− n)p → c ∈ Z,m → ∞, n → n∗,∑

i,j∈Z ι̃
∗(j)E〈(X0⊗Yi+c)′, (Xj⊗Yi+j+c)′〉SU,V , if (m + h− n)p → c ∈ Z,m → m∗, n → ∞,∑

i,j∈Z E〈(X0⊗Yi)′, (Xj⊗Yi+j)′〉SU,V , if (m + h− n)p → c ∈ Z,m → ∞, n → ∞.

These series exist after Assumption 4.7 (b) and since |ι̃∗(j)| < 1 for all j, where
the precise values ι̃∗(j) := limM→∞ ι̃m,n(j) are stated in (A.5) for any j.

Proof of Theorem 4.4. Herein, h = hL with L = LM,N = M ∧N,m = mM ,M =
MM , M̃ = M̃M , n = nN ,N = NN , Ñ = ÑN . For h with n− M̃ ≤ h ≤ Ñ −m
holds

E(Ĉ ′
XXX,YYY ;h) = ĈXXX,YYY ;h − 1

LM,N,h(LM,N,h−1)
∑

1≤i,k≤LM,N,h

i �=k

CXXX,YYY;k+h−i

similar as in the proof of Theorem 4.2. Thus, Ĉ ′
XXX,YYY ;h is an unbiased estimator

for CXXX,YYY ;h for these h if the sum above is 0LUm,Vn . Moreover, as in Theorem 4.2,

Ĉ ′
XXX,YYY;h = LM,N,h

LM,N,h−1

[
(mXXX − m̂XXX ) ⊗ (mYYY − m̂′

YYY ) + ĈUUU,VVV;h

]
,

with ĈUUU,VVV;h defined in (4.15) based on samples Um, . . . ,UM̃ of UUU := (Uk)k∈Z

and Vn, . . . ,VÑ of VVV := (Vk)k∈Z with Uk := Xk −mXXX resp. Vk := Yk −mYYY .
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Arguments in the proofs of Theorems 4.2–4.3 imply with (3.4), CUUU,VVV;h = CXXX,YYY;h,
with X ′

1 := X1 −mXXX as well as Y ′
1 := Y1 −mYYY , and mn = (m ∧ n)(m ∨ n) :

LM,N,h

m ∧ n
E||Ĉ ′

XXX,YYY;h− CXXX,YYY ;h||2SUm,Vn

≤ 3 L 2
M,N,h

(LM,N,h−1)2

[
LM,N,h

m ∧ n
E||m̂XXX −mXXX ||2Um ||m̂′

YYY −mYYY ||2Vn

+LM,N,h

m ∧ n
E||ĈUUU,VVV;h− CUUU,VVV;h||2SUm,Vn+

1
LM,N,h(m ∧ n) ||CXXX,YYY;h||2SUm,Vn

]

≤ 3 L 2
M,N,h

(LM,N,h−1)2

[
LM,N,h

m ∧ n

√
E||m̂XXX −mXXX ||4UmE||m̂′

YYY −mYYY ||4Vn

+LM,N,h

m ∧ n
E||ĈUUU,VVV;h− CUUU,VVV;h||2SUm,Vn+

m ∨ n

LM,N,h

√
E||X ′

1||4UE||Y ′
1 ||4V

]
,

∼ 3
[√

L 2
M,N,h

M 3N 3
(m ∨ n)m1P n1Q

m ∧ n

M 3

m1+1P
E||m̂XXX −mXXX ||4Um

N 3

n1+1Q
E||m̂′

YYY −mYYY ||4Vn

+LM,N,h

m ∧ n
E||ĈUUU,VVV;h− CUUU,VVV;h||2SUm,Vn+

m ∨ n

LM,N,h

√
E||X ′

1||4UE||Y ′
1 ||4V

]
. (A.16)

Moreover, after Assumptions 4.4, 4.8, 4.9, 4.11 holds LM,N,h ∼ L̃M,N,h ∼ M∧N
for M → ∞, and m∨n = o(LM,N,h),m∨n = o(M ∧N ) ⇒ m∨n = o(M ∨N )
for M → ∞. Thus, since mn/m ∧ n = m ∨ n and MN = (M ∧N )(M ∨N ),
we have

L 2
M,N,h

M 3N 3
(m ∨ n)mn

m ∧ n
∼ (m ∨ n)2

(M ∧ N )(M ∨ N )3
M→∞−→ 0, (A.17)

and obviously also
m ∨ n

LM,N,h

M→∞−→ 0. (A.18)

Consequently, due to (A.17) and m1P n1Q = O(mn) for M → ∞, (A.18),
Lemma 4.1 (b), Theorem 4.3 and (A.16), holds

lim sup
M→∞

LM,N,h

m ∧ n
E||Ĉ ′

XXX,YYY ;h− CXXX,YYY ;h||2SUm,Vn ≤ 3
[
0 · √η4,Xη4,Y + τ̃2,(X,Y ) + 0

]
= 3τ̃2,(X,Y ).

Hence, the assertion is verified.

Proof of Corollary 4.1. The statements follow from (4.22), || · ||LUm≤ || · ||SUm

and Theorems 4.1–4.2 with h = 0.

Proof of Corollary 4.2. The assertions are a consequence of (4.24) as well as
Theorems 4.1–4.2 with h = 0, where (4.29) and (4.31) also include (4.27).
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Proof of Theorem 4.5. At first, we prove the results for the estimators c̆
‡
j . The

triangle inequality leads to

E||̆c‡j − cj ||2Um ≤ 2
(
E||̆c‡j − c̆j ||2Um + E||̆cj − cj ||2Um

)
. (A.19)

Further, the definition of c̆‡j in (4.34), c̆j in (4.23), with Z†
j = Z†

j (M) := 〈c̆†j , cj〉Um

and Zj = Zj(M) := 〈ĉj , cj〉Um , (4.36), sgn2(x) = 1R\{0}(x) for any x ∈ R, the
definition of the expected value and basic conversions imply

E||̆c‡j − c̆j ||2Um = E(sgn(Z†
j ) − sgn(Zj))2

= 1 + P(Zj �= 0) − 2E sgn(Z†
j )sgn(Zj)

= 1 + P(Zj �= 0) + 2
(
P(Z†

jZj < 0) − P(Z†
jZj > 0)

)
≤ 2 + 2

(
1 − 2P(Z†

jZj > 0)
)

= 4
(
1 − P(Z†

jZj > 0)
)
. (A.20)

Moreover, the definition of c̆†j in (4.33) yields

Z†
jZj = 1 − ||̆cj− cj ||2Um + 1

4 ||̆cj− cj ||4Um + mM

MM
γ̃2
j,mM

Zj

∞∑
i=1

ζi〈ui, cj〉Um

2i , (A.21)

where for the last term holds due to independence, E|Zj | ≤ 1, (4.32), Cauchy-
Schwarz inequality and the monotone convergence theorem:

E

∣∣∣Zj

∞∑
i=1

ζi〈ui, cj〉Um

2i
∣∣∣ = E|Zj |

∞∑
i=1

|〈ui, cj〉Um|E|ζi|
2i (A.22)

≤ μ
∞∑
i=1

1
2i = μ. (A.23)

Furthermore, (A.21), Markov’s inequality and (A.23) lead to

1 − P(Z†
jZj > 0) ≤ 1 − P

(
1 − ||̆cj− cj ||2Um + mM

MM
γ̃2
j,mM

Zj

∞∑
i=1

ζi〈ui, cj〉Um

2i > 0
)

= 1 − P

(
||̆cj− cj ||2Um− mM

MM
γ̃2
j,mM

Zj

∞∑
i=1

ζi〈ui, cj〉Um

2i < 1
)

≤ P

(
||̆cj− cj ||2Um + mM

MM
γ̃2
j,mM

∣∣∣Zj

∞∑
i=1

ζi〈ui, cj〉Um

2i
∣∣∣ ≥ 1

)

≤ E||̆cj− cj ||2Um + mM

MM
γ̃2
j,mM

E

∣∣∣Zj

∞∑
i=1

ζi〈ui, cj〉Um

2i
∣∣∣

≤ E||̆cj− cj ||2Um + mM

MM
γ̃2
j,mM

μ. (A.24)
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Finally, plugging (A.24) into (A.20), and afterwards (A.20) into (A.19), leads
together with (4.28) from Corollary 4.2 to

lim sup
M→∞

MM

mM
γ̃−2
j,mM

E||̆c‡j − c̆j ||2Um ≤ 10 lim sup
M→∞

MM

mM
γ̃−2
j,mM

E||̆cj− cj ||2Um + 8μ

≤ 10 τ2,X + 8μ.

Thus, (4.37) is verified. The same conversions imply with (4.27) and (4.29):

lim sup
M→∞

MM

mM
γ̃−2
kM ,mM

E sup
j≤kM

||̆c‡j − cj ||2Um

≤ 10 lim sup
M→∞

MM

mM
γ̃−2
kM ,mM

E sup
j≤kM

||̆c‡j − cj ||2Um + 8μ lim sup
M→∞

γ̃−2
kM ,mM

sup
j≤kM

γ̃2
j,mM

≤ 10 τ2,X + 8μ,

hence (4.38) also holds. At last, (4.39) and (4.38) can be shown analogously.

Proof of Lemma 5.1. ZN − Z̃N = AN(Z0 − Z̃0) for all N ∈ N. Further, E||Z0 −
Z̃0||νH < ∞ since (Zk)k, (Z̃k)k are Lν

H-processes because (εk)k is one. Thus, due
to submultiplicity of the operator norm, one obtains with ρ := ||A||−ν

LH
,

ρNE||ZN − Z̃N ||νH ≤ E||Z0 − Z̃0||νH, ∀N ∈ N.

Appendix B: Side results

Lemma B.1. Let Assumption 4.1 hold, and let (Xk)k∈Z and (Yk)k∈Z be L4
U -m-

resp. L4
V-m-approximable. Furthermore, let Xm+j;l := (Xm+jp;l, . . . , X1+jp;l)T

and Yn+j;l := (Yn+jq;l, . . . , Y1+jq;l)T for any j, l,m, n, p, q.

(a) The processes (Xk)k∈Z and (Yk)k∈Z satisfy

1√
m

∞∑
k=1

ν4,Um(Xk − Xk;k) ≤
∞∑
k=1

ν4,U (Xk −Xk;k) < ∞, (B.1)

1√
n

∞∑
k=1

ν4,Vn(Yk − Yk;k) ≤
∞∑
k=1

ν4,V(Yk − Yk;k) < ∞. (B.2)

Furthermore, (Xk)k is L4
Um-m-approximable for fixed m ∈ N if p = 1, and

(Yk)k is L4
Vn-m-approximable for fixed n ∈ N if q = 1.

(b) The process (Wk,h)k∈Z, where Wk,h := Xk ⊗Yk+h with h ∈ Z, fulfills with
Wk,h;l := Xk;l ⊗ Yk+h;l:

1√
mn

∞∑
k=1

ν2,SUm,Vn(Wk,h − Wk,h;k)

≤
∞∑
k=1

ν4,V(Y1)ν4,U (Xk −Xk;k) + ν4,U (X1)ν4,V(Yk − Yk;k), (B.3)

and (Wk,h)k is L2
Um,Vn-m-approximable for fixed m,n if h ≤ 0and p = q = 1.
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Proof. (a) The definition of Xk,Xk;k,Yk,Yk;k for all k implies ν4,Um(Xk −
Xk;k)≤

√
mν4,U (Xk−Xk;k) and ν4,Vn(Yk−Yk;k)≤

√
n ν4,V(Yk−Yk;k), thus (B.1),

(B.2). Hence, since (Xk)k and (Yk)k are causal w.r.t. (εk)k for fixed m ∈ N if
p = 1 resp. for fixed n ∈ N if q = 1, (Xk)k and (Yk)k are then also L4

Um-m-
resp. L4

Vn-m-approximable.

(b) Bilinearity of ⊗ : Um × Vn → Vn, Minkowski inequality, ||u ⊗ v||SUm,Vn =
||u||Um ||v||Vn for u ∈ Um,v ∈ Vn, Cauchy-Schwarz inequality and (A.2) yield

1√
mn

∞∑
k=1

ν2,SUm,Vn(Wk,h − Wk,h;k)

≤ 1√
mn

∞∑
k=1

ν2,SUm,Vn((Xk − Xk;k)⊗Yk+h)+ ν2,SUm,Vn(Xk⊗(Yk+h − Yk+h;k))

≤ 1√
mn

∞∑
k=1

ν4,Um(Xk − Xk;k)ν4,Vn(Y1) + ν4,Um(X1)ν4,Vn(Yk − Yk;k)

≤
∞∑
k=1

ν4,V(Y1)ν4,U (Xk −Xk;k) + ν4,U (X1)ν4,V(Yk − Yk;k).

This term is finite due to L4-m-approximability of (Xk)k and (Yk)k. Moreover,
since (Xk)k, (Yk+h)k and thus (Wk,h)k are causal w.r.t. (εk)k for h ≤ 0 for fixed
m,n ∈ N if p = q = 1, (Wk,h)k is indeed L2

SUm,Vn
-m-approximable.
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