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Abstract: A framework for hypothesis testing of functional restrictions
against general alternatives is proposed. The parameter space is a subset of
a reproducing kernel Hilbert space (RKHS). The null hypothesis does not
necessarily define a parametric model. The test allows us to deal with possi-
bly infinite dimensional nuisance parameters. The methodology is based on
a moment equation similar in spirit to the construction of the efficient score
in semiparametric statistics. The feasible version of such moment equa-
tion requires to consistently estimate projections in the space of RKHS.
A tractable asymptotic theory is established for this problem. Simulation
results show that the finite sample performance of the test is consistent with
the asymptotic results and that ignoring the effect of nuisance parameters
highly distorts the size of the tests.
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1. Introduction

Suppose that we are interested in estimating the number of event arrivals Y over
some interval, conditioning on a vector of covariates X known at the start of the
interval. We decide to minimize the negative log-likelihood for Poisson arrivals
with conditional intensity exp {μ (X)} for some function μ. For observation i,
the negative loglikelihood is proportional to

exp {μ (Xi)} − Yiμ (Xi) . (1.1)

We suppose that μ lies in some infinite dimensional space. For example, to avoid
the curse of dimensionality, we could choose

μ (X) :=
K∑

k=1

f (k)
(
X(k)

)
(1.2)

where X(k) denotes the kth covariate (the kth element of the K-dimensional
covariate X), and the univariate functions f (k) are elements in some possibly
infinite dimensional space. However, we restrict f (1) to be a linear function.
Then, we want to test whether linearity with respect to the first variable holds
against the alternative of a general additive model. We could also test against
the alternative of a general continuous multivariate function, not necessarily
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additive. This paper addresses practical problems such as the above. The pa-
per is not restricted to this Poisson problem or additive models on real valued
variables.

From the example above, we need to (i) estimate μ, which in this example
we chose to be additive with f (1) linear under the null; we need to (ii) test this
additive restriction, against a more general non-parametric alternative. Under
the null, the remaining K− 1 functions in (1.2) are not specified. Problem (i) is
standard. Having solved problem (i), the solution to problem (ii) requires to test
a non-parametric hypothesis (an additive model with linear f (1)) with infinite
dimensional nuisance parameters (the remaining unknown K − 1 functions)
against a more general non-parametric alternative. In this paper, we shall call
the restriction under the null semiparametric. This does not necessarily mean
that the parameter of interest is finite dimensional, as often the case in the
semiparametric literature.

Semiparametric inference requires that the infinite dimensional parameter
and the finite dimensional one are orthogonal in the population [2, Equation
(2.12)]). In our Poisson motivating example this is not the case. Even if the
restriction is parametric, we do not need to suppose that the parameter value
is known under the null. This requires us to modify the test statistic in order
to achieve the required orthogonality. Essentially, we project the test statistic
on some space that is orthogonal to the possibly infinite dimensional nuisance
parameter. This is the procedure involved in the construction of the efficient
score in semiparametric statistics. The reader is referred to [30] for a review of
the basic idea. Here, we are concerned with functional restrictions and are able
to obtain critical values by fast simulation.

Under the null hypothesis, we can find a representation for the limiting
asymptotic distribution which is amenable of fast simulation. In consequence
critical values do not need to be generated using resampling procedures. While
the discussion of the asymptotic validity of the procedure is involved, the imple-
mentation of the test is simple. The Matlab code to perform the test and com-
pute its critical values is available from the https://github.com/asancetta/
ARKHS/. A set of simulations confirm that the procedure works well, and illus-
trates the well known fact that nuisance parameters can considerably distort
the size of a test if not accounted for using our proposed procedure.

1.1. Relation to the literature

The test statistic of this paper is in the form of a restricted score test for high
possibly infinite dimensional parameter space under the null and alternative in
order to test restrictions. The approach used here is inspired by the definition of
efficient score in semiparametric estimation. In the case of parametric inference,
the present approach includes the projection method described in [34]. Here,
we consider more general problems for possibly infinite dimensional estimators
beyond nonlinear regression.

The problem of testing the restricted functional form of an unknown function
against more general alternatives is an extensively studied problem (e.g. [5], [34],

https://github.com/asancetta/ARKHS/
https://github.com/asancetta/ARKHS/
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[16], [27], [28], [29], [11], [12]). A common approach is to generate some form
of residuals that are supposed to be orthogonal to test functions that define
the space of alternatives. This is tantamount to the construction of a score test
or some function of it. With different level of generality the above references
consider purely parametric approaches, but some allow for nonparametric al-
ternatives. General specifications under the null are also considered in [11] and
[12]. Some of these approaches exploit the properties of kernel smoothers and
the fact that the parameter to be estimated is a conditional expectation of a
response variable. Moreover, they also tend to rely on the bootstrap to derive
p-values.

General results in the context of high dimensional models can be found in
[4]. There, the reader can also find the main references in that literature. The
asymptotic distribution requires the use of the bootstrap in order to compute
critical values.

Inspired by the early statistical contributions of Neyman, a number of authors
have recently used the term Neyman orthogonality to refer to the independence
between parameters of interest and nuisance parameters. For the estimation
problem in the presence of a functional nuisance parameter, [8] propose a cor-
rection to achieve Neyman orthogonality using sample splitting.

In [13] a generalized Likelihood Ratio test of the null of parametric or nonpa-
rameteric additive restrictions versus general nonparametric ones is developped.
This is based on a Gaussian error model (or parametric error distribution) for
additive regression, and estimation using smoothing kernels. This approach has
been extended to the nonparametric error distribution in [14]. The asymptotic
distribution is Chi-square with degrees of freedom equal to some (computable)
function of the the data. In [7] the framework of sieve estimation is consid-
ered and a likelihood ratio statistic with asymptotic Chi-square distribution is
derived (see also [25]).

The approach considered here is complementary to the above references. It
allows the parameter space to be a RKHS of smooth functions. These include
functions in Hilbert Sobolev spaces. Estimation in RKHS is well understood
and can cater for many circumstances of interest in applied work ([33], [26]). For
example, it is possible to view sieve estimation as estimation in RKHS where the
feature space defined by the kernel increases with the sample size. The testing
procedure is based on a corrected moment condition. Hence, it does not rely on
likelihood estimation. The conditions used are elementary, as they just require
existence of real valued derivatives of the loss function (in the same vein as
[9]) and mild regularity conditions on the covariance kernel. The correction is
estimated by either ridge regression, or just ordinary least square using pseudo-
inverse. The estimation and testing procedure makes use of the full sample with
no need to use either the bootstrap or sample splitting. However, it does require
to simulate from a linear combination of i.i.d. chi-square random variables.

The problem of testing relying on the machinery of RKHS is also discussed in
[18]. There, interest lies in constructing confidence regions on the true parameter
based on a score test statistic. As far as overlap is concerned, we note that
their theoretical results (Theorems 1 and 2) apply to the case when the true
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parameter is known under the null. In practice to make the test operational,
one needs to replace the true value with an estimator. To test restrictions, we
need to account for the estimation of the true unknown parameter under the
null. Then, a correction is usually required. Regarding the distribution of the
test statistic, the results in [18] rely on the use of the bootstrap. On the other
hand, here, we derive the exact limiting distribution of our test statistic. This
can then be simulated without the need to estimate the model multiple times
as with the bootstrap. Given the difference in focus, it is difficult to make a
comparison beyond the aforementioned remarks.

1.2. Outline

The plan for the paper is as follows. Section 2 discusses the testing problem.
Section 2.1 provides a motivating simulation example to show that even in sim-
ple problems, the nuisance parameter can distort the asymptotic distribution
of a test. Section 2.2 reviews some basic facts of RKHS. The remaining of Sec-
tion 2 defines the problem, the test, and describes its implementation. Section 3
contains the asymptotic analysis of the proposed testing procedure. Section 4
concludes with a finite sample analysis via simulations. Section 6 concludes the
paper. The proofs, and additional results are in the Appendix.

2. The inference problem

The explanatory variable X(k) takes values in X , a compact subset of a separable
Banach space (k = 1, 2, ...,K). The most basic example of X is [0, 1]. The vector
covariate X =

(
X(1), ..., X(K)) takes values in the Cartesian product XK , e.g.,

[0, 1]K . The dependent variable takes values in Y , usually a subset of R. Let
Z := (Y,X). This takes values in Z = Y × XK . If no dependent variable Y
can be defined (e.g., unsupervised learning, or certain likelihood estimators),
Z = X. Let P be the law of Z, and use linear functional notation, i.e., for any
f : Z → R, Pf =

∫
Z f (z) dP (z). Let Pn = 1

n

∑n
i=1 δZi , where δZi is the point

mass at Zi, implying that Pnf = 1
n

∑n
i=1 f (Zi) is the sample mean of f (Z). For

p ∈ [1,∞], let |·|p be the Lp norm (w.r.t. the measure P ), e.g., for f : Z → R,
|f |p = (P |f |p)1/p, with the obvious modification to sup norm when p = ∞. We
shall also abbreviate left hand side, right hand side and with respect to with
l.h.s., r.h.s., and w.r.t., respectively.

2.1. Motivation

The problem can be described as follows, though in practice we will need to add
extra regularity conditions. Let HK be a vector space of real valued functions on
XK , equipped with a norm |·|HK . Consider a loss function L : Z × R → R. We
shall be interested in the case where the second argument is μ (x): L (z, μ (x))
with μ ∈ HK . Therefore, to keep notation compact, let �μ (Z) = L (Z, μ (X)).
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For the special case of the square error loss we would have �μ (z) = L (z, μ (x)) =
|y − μ (x)|2 (z = (y, x)). The use of �μ makes it more natural to use linear
functional notation. The unknown function of interest is the minimizer μ0 of
P�μ, and it is assumed to be in HK . Let HK (B) :=

{
μ ∈ HK : |μ|HK ≤ B

}
be

the ball of |·|HK -radius B in HK . Then,

μ0 = arg inf
μ∈HK(B)

P�μ. (2.1)

This minimizer always exists and is unique under regularity conditions on the
loss because HK (B) is closed. The main goal it to test the restriction that
μ ∈ R0 (B) := R0 ∩ HK (B) where R0 is some subspace of HK (for example a
linear restriction).

Let ∂k�μ (z) = ∂kL (z, t) /∂tk
∣∣
t=μ(x) be the kth partial derivative of L (z, t)

with respect to t and then evaluated at μ (x). The validity of this derivative and
other related quantities will be ensured by the regularity conditions that we shall
impose. By the first order conditions, the optimizer in (2.1) satisfies the equality
P∂�μ0h = 0 for any h ∈ HK when μ0 is in the interior of HK (B), which we shall
write as μ0 ∈ int

(
HK (B)

)
. This is how the population version of Z-estimators

in Banach spaces is defined ([31, Chapter 3.3]. When μ0 ∈ int (R0 (B)), (2.1) is
the same as μ0 = arg infμ∈R0 P�μ. Given that the law P is unknown, we rely
on the sample data to test if the restriction holds.

To this end, we find an estimator μ0n = arg infμ∈R0(B) Pn�μ. To test the
restriction we can look at how close

√
nPn∂�μ0nh = 1√

n

n∑
i=1

∂�μ0n (Zi)h (Xi) (2.2)

is to zero for suitable choice of h ∈ HK \ R0. By the aforementioned remarks,
we also have that μ0n satisfies Pn∂�μ0nh = 0 for h ∈ R0 if μ0n ∈ int (R0 (B)).
Hence we may restrict attention to h ∈ HK \R0. The compact notation on the
l.h.s. of (2.2) shall be used throughout the paper.

A test statistic can be constructed from (2.2) as follows:

1
R

R∑
r=1

(√
nPn∂�μ0nh

(r)
)2

(2.3)

where h(r) ∈ HK \ R0, r = 1, 2, ..., R and R is an arbitrary integer, possibly
much larger than n. The covariance matrix of the process in (2.2) is singular,
when R is large and the space of test functions is compact in a suitable topology.
For this reason, it is necessary to use the Cramer-von Mises’ type of statistic
in (2.3) instead of quadratic form based on the inverse of the covariance matrix
of the score statistic. We discuss alternative statistics, including the use of a
pivotal statistic, in the paragraph Additional Remarks in Section 3.2.

If μ0n is orthogonal to the functions h ∈ HK \ R0 ([2, Equation 2.12]), (2.2)
is, to first order, equal in distribution to

√
nPn∂�μ0h. Hence, it is simple to find
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the asymptotic distribution of (2.2) and hence of (2.3). Supposing asymptotic
stochastic equicontinuity and the null that

√
nP∂�μ0h = 0, it can be shown that

([31, Theorem 3.3.1]),
√
nPn∂�μ0nh =

√
nPn∂�μ0h +

√
nP∂2�μ0 (μ0n − μ0)h + op (1) . (2.4)

If the second term on the r.h.s. were zero, the limiting distribution of
√
nPn∂�μ0nh

would be the same of the one of
√
nPn∂�μ0h, which does not depend on the nui-

sance parameter μ0n. For example, the orthogonality condition in [2, Equation
2.12] guarantees that the second term on the r.h.s. is zero ([2, Equation 2.8], as-
suming Fréchet differentiability). Such orthogonality condition has been referred
to as Neyman orthogonality in recent literature that uses machine learning-based
estimators [8].

Such condition does not always hold, implying that the asymptotic distribu-
tion is more complex as it requires to account for the extra term√
nP∂2�μ0 (μ0n − μ0)h. Not accounting for such term, as if there were no nui-

sance parameter, can seriously distort the distribution of the test. However, the
distribution of the sum of the two terms on the r.h.s. of (2.4) cannot easily
be found in general. In the special case of the nonparametric regression with a
higher order kernel, [12] shows that (2.4) converges to

√
nPn∂�μ0 h̃ where h̃ is

a linear functional of h. Their argument is specific to their setup and does not
extend to the present framework. To address the problem in a simple and gen-
eral way, we remove the effect of the nuisance parameter constructing functions
h ∈ HK \R0 such that the second term on the r.h.s. of (2.4) is zero in a way that
does not affect the power of the test under the alternative that the restriction
does not hold. This is tantamount to finding functions h ∈ HK \ R0 that are
orthogonal to functions in R0 in the sense that that they asymptotically satisfy

P∂2�μ0νh = 0 (2.5)

for any ν ∈ R0 when μ0 ∈ int (R0 (B)). The challenge is that the set of such
orthogonal functions h ∈ HK \ R0 needs to be estimated. It is not clear before
hand that estimation of this set of functions leads to the same asymptotic dis-
tribution as if this set were known. We show that this is the case. We define a
sample based linear operator Πn,ρ : HK → R0 such that

Πn,ρh =arg inf
ν∈R0

Pn∂
2�μ0n (h− ν)2 + ρ |ν|2HK (2.6)

=: arg inf
ν∈R0

1
n

n∑
i=1

∂2�μ0n (Zi) (h (Xi) − ν (Xi))2 + ρ |ν|2HK ,

which depends on ρ = ρn → 0. The suitable rate is given in Theorem 2 and
Corollary 1. Given a set of functions

{
h(r) ∈ HK \ R0 : r = 1, 2, ..., R

}
we use

(2.6) to define
{
ĥ(r) = h(r) − Πn,ρh

(r) : r = 1, 2, ..., R
}

. We show that this is a
set of asymptotically orthogonal functions in the sense of (2.5) for any h = ĥ(r),
r = 1, 2, ..., R when n → ∞.
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Then, we suggest to replace the test statistic (2.3) with

Ŝn = 1
R

R∑
r=1

(√
nPn∂�μ0n ĥ

(r)
)2

. (2.7)

We give the asymptotic distribution of (2.7) and show that this distribution can
be easily simulated.

The null hypothesis μ0 ∈ R0 is equivalent to P∂�μ0h = 0 for h ∈ HK \ R0.
Hence, deviations should only be detected for such test functions h. In (3.1)
in Section 3.2, we define the population version of (2.6), which we denote by
Π0. For any h ∈ HK we have that h = (h− Π0h) + Π0h, where by definition
Π0h ∈ R0. Hence, the only deviations from the null hypotheses that matter
are in the direction of (h− Π0h). This is exactly what the test statistic in (2.7)
attempts to do.

In summary, given functions h(r) ∈ HK , the statistic (2.3) uses h = h(r),
while (2.7) uses h = h(r) − Πn,ρh

(r), r = 1, 2, ..., R. The latter is not affected
by the second term in (2.4) so that we can use the asymptotic distribution of√
nPn∂�μ0h to find the p-values
In Section 4 we provide some finite sample evidence to show that using the

asymptotic distribution of
√
nPn∂�μ0h to find p-values leads to distortions in

size when the test functions h are not adjusted for the presence of nuisance
parameters. This is the case even for simple problems.

2.2. Additional notation and basic facts about reproducing kernel
Hilbert spaces

This paper uses RKHS in order to control the complexity of the estimators in a
general way. Intuitively, we can think of RKHS as Hilbert spaces with additional
smoothness constraints. RKHS provide an explicit representation for functions
in common function spaces, such as Hilbert Sobolev spaces. Estimators that are
minimizers within many function spaces are elements in RKHS and can possibly
have an explicit solution. Rather than focusing on some special function spaces
such as Hilbert Sobolev spaces, this paper considers these more general spaces.
Moreover, estimators such as splines are just RKHS estimators ([33]). Next,
we discuss some basic facts about RKHS. The discussion should clarify the
aforementioned remarks.

A RKHS of bounded functions is uniquely generated by a centered Gaussian
measure with covariance C [20] and C is usually called the (reproducing) kernel
of H. We consider covariance functions with representation

C (s, t) =
∞∑
v=1

λ2
vϕv (s)ϕv (t) , (2.8)

for linearly independent functions ϕv : X → R and coefficients λv such that∑∞
v=1 λ

2
vϕ

2
v (s) < ∞. Here, linear independent means that if there is a sequence
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of real numbers (fv)v≥1 such that
∑∞

v=1 f
2
v /λ

2
v < ∞ and

∑∞
v=1 fvϕv (s) = 0 for

all s ∈ X , then fv = 0 for all v ≥ 1. The coefficients λ2
v would be the eigenvalues

of (2.8) if the functions ϕv were orthonormal, but this is not implied by the above
definition of linear independence. The restriction to (2.8) only means that the
function space is separable. The RKHS H is the completion of the set of functions
representable as f (x) =

∑∞
v=1 fvϕv (x) for real valued coefficient fv such that∑∞

v=1 f
2
v /λ

2
v < ∞. Equivalently, f (x) =

∑∞
j=1 αjC (sj , x), for coefficients sj in

X and real valued coefficients αj satisfying
∑∞

j=1 αiαjC (si, sj) < ∞. In fact,
for C in (2.8),

∞∑
j=1

αjC (sj , x) =
∞∑
v=1

⎛
⎝ ∞∑

j=1
αjλ

2
vϕv (sj)

⎞
⎠ϕv (x) =

∞∑
v=1

fvϕv (x) (2.9)

by obvious definition of the coefficients fv. The change of summation is possible
by the aforementioned restrictions on the coefficients λv and functions ϕv. The
inner product in H is denoted by 〈·, ·〉H and satisfies f (x) = 〈f, C (x, ·)〉H. This
implies the reproducing kernel property C (s, t) = 〈C (s, ·) , C (t, ·)〉H. Therefore,
the square of the RKHS norm is defined in the two following equivalent ways

|f |2H =
∞∑
v=1

f2
v

λ2
v

=
∞∑

i,j=1
αiαjC (si, sj) (2.10)

Throughout, the unit ball of H will be denoted by H (1) := {f ∈ H : |f |H ≤ 1}.
The additive RKHS is generated by the Gaussian measure with covariance

function CHK (s, t) =
∑K

k=1 C
(k) (s(k), t(k)), where C(k) (s(k), t(k)) is a covari-

ance function on X × X (as C in (2.8)) and s(k) is the kth element in s ∈ XK .
The RKHS of additive functions is denoted by HK , which is the set of functions
as in (1.2) such that f (k) ∈ H and

∑K
k=1

∣∣f (k)
∣∣2
H < ∞. For such functions, the

inner product is 〈f, g〉HK =
∑K

k=1
〈
f (k), g(k)〉

H, where – for ease of notation –
the individual RKHS are supposed to be the same. However, in some circum-
stances, it can be necessary to make the distinction between the spaces (see
Example 9 in Section 2.6). The norm |·|HK on HK is the one induced by the
inner product.

Within this scenario, the space HK restricts functions to be additive, where
the additive functions in H can be multivariate functions.

Example 1. Suppose that K = 1 and X = [0, 1]d (d > 1) (only one additive
function, which is multivariate). Let C (s, t) = exp

{
−a

∑
j |sj − tj |2

}
where sj

is the jth element in s ∈ [0, 1]d, and a > 0. This RKHS is of special interest, as
it is dense in the space of continuous bounded functions on [0, 1]d (e.g. [9]). A
(kernel) C with such property is called universal.

The framework also covers the case of functional data because X is a compact
subset of a Banach space (see for example [6]). Most problems of interest where
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the unknown parameter μ is a smooth function are covered by the current
scenario.

Many spaces of interest are equivalent to RKHS with kernel in (2.8) that
satisfy certain conditions.

Example 2. Suppose that H is the Sobolev Hilbert space of index V on [0, 1], i.e.
functions with V ≥ 1 square integrable weak derivatives. This is a RKHS with
C (s, t) =

∑V−1
v=1 (s, t)v / (v!)2 + HV (s, t) where HV is the covariance function

of the (V − 1)-fold integrated Brownian motion. In particular,

HV (·, ·) =
∫ 1

0
GV (·, u)GV (·, u) du with GV (r, u) := max

{
(r − u)V−1

(V − 1)! , 0
}
,

where r, u ∈ [0, 1] ([33, Pages 7–8]). Then, the covariance C admits an expansion
as in (2.8) with λv � v−η where η = V [22, Corollary 2, and Pages 523–524].

Example 2 shows that if we are interested in restrictions in subspaces of
Hilbert Sobolev spaces, we can use the results of this paper seamlessly.

Finally, for some estimation problems, we may use an alternative norm to de-
fine the constraint in the estimation. We define LK (B) :=

{
f ∈ HK : |f |LK ≤ B

}
,

where |f |LK :=
∑K

k=1
∣∣f (k)

∣∣
H. For finite K, LK = HK , however, it is easy to see

that LK (B) ⊂ HK (B) for any finite B (e.g. [23, Lemma 1]. When the elements
in the series expansion in (2.8) are known, there are approximation algorithms
for estimation in LK (B) (e.g. [23], and references therein). We shall estimate
the nuisance parameter constrained to be in LK (B) in one of the simulation
examples.

2.3. The restricted estimator in RKHS

We consider inference on functional restrictions possibly allowing μ not to be
fully specified under the null. Within this framework, tests based on the moment
equation Pn∂�μh for suitable test functions h are natural (recall (2.7)). Let
R0,R1 ⊂ HK be RKHS with covariance kernels CR0 and CR1 such that we can
write CHK = CR0 + CR1 . Under the null hypothesis we suppose that μ0 ∈ R0
(μ0 as in (2.1)). Under the alternative, μ0 /∈ R0. Define

μ0n := arg inf
μ∈R0(B)

Pn�μ. (2.11)

Recall that R0 (B) := R0 ∩ HK (B). This is the estimator under the null hy-
pothesis. For this estimation, we use the kernel CR0 . The penalised estimator is
defined as

μn,τ = arg inf
μ

{
Pn�μ + τ |μ|2HK

}
(2.12)

By duality, there is a sample dependent Lagrange multiplier τB,n such that
μ0n = μn,τ when τ = τB,n. Theorem 1 in [24] says that the solution to the
penalized problem takes the form μn,τ (x) =

∑n
i=1 âiCR0 (Xi, x) for sample
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dependent real valued coefficients âi. Hence, even if the parameter space where
the estimator lies is infinite dimensional, μn0 is not. This fact allows us to use
matrix algebra to implement the testing problem, as shown in Section 2.4.

2.4. Implementation of the test

We show how to construct the statistic in (2.7) using matrix notation. We then
provide a few examples on how to estimate the projection for a number of
problems. All such problems require to find μ0n and ∂2�μ. These can then be
plugged in (2.6). We assume that μ0n has been estimated. This can be done in
a variety of ways ([23] for some examples and references).

2.4.1. Estimation of the restricted estimator

We show how to construct the statistic in (2.7) using matrix notation. As dis-
cussed in Section 2.3, the estimator takes the form μ0n (·) =

∑n
i=1 âiCR0 (Xi, ·)

and it is in R0 (B). By the reproducing kernel property, |μ0n|2H = âTC0â ≤ B2,
where â is an n×1 vector with ith entry equal to ai; C0 be the n×n matrix with
(i, j) entry equal to CR0 (Xi, Xj); the superscript T is used for transposition.
Hence, in (2.12), ρB,n is chosen such that the aforementioned inequality holds.

For the regression problem under the square error loss, the solution vector â
has a closed form: â := (C0 + ρB,nI)−1 y where the n× 1 vector y has ith entry
equal to Yi. In this case, if the constraint {μ ∈ R0 (B)} is binding, the ρB,n in
(2.12) that satisfies the constraint is given by the solution of

n∑
i=1

(
yTQi

)2 κi

κi + τB,n
= B2 (2.13)

where Qi is the ith eigenvector of C0 and here κi is the corresponding eigenvalue.

2.4.2. Computation of the projection

Under the alternative, we consider the space generated by the Gaussian measure
with covariance function CR1 ; recall that CHK = CR0 + CR1 . Denote by C1
the matrix with (i, j) entry CR1 (Xi, Xj). We need to project the functions in
R1 onto R0 and consider the orthogonal part; recall that this ensures that the
sample version of the orthogonality condition (2.5) is satisfied. In practice this is
amounts to finding the residuals in a ridge regression. We regress each column
of C1 on the columns of C0. We denote by C(r)

1 the rth column in C1. Let
S be the diagonal matrix with (i, i) diagonal entry equal to ∂2�μ0n (Zi). We
approximately project C(r)

1 onto the column space spanned by C0 minimizing
the loss function(

C(r)
1 − C0b(r)

)T
S
(
C(r)

1 − C0b(r)
)

+ ρ
(
b(r)

)T
C0b(r).
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Here ρ is chosen to go to zero with the sample size (Theorem 1 and Corollary 1).
In applications, we may just use a subset of R columns from C1 and to avoid
notational trivialities, say the first R. If there are no computational constraints,
we can choose R = n. The solution for all r = 1, 2, ..., R is

b̂(r) =
(
C0 + ρS−1)−1 C(r)

1 , (2.14)

and can be verified substituting it in the first order conditions. Note that (2.14)
depends on the the loss function only through S. We define the rth instruments
by the n×1 vector ĥ(r) = C(r)

1 −C0b̂(r), which is the vector of residuals from the
above penalised (Ridge) regression. In sample, when ρ = 0, this is orthogonal
to the column space of C0.

2.4.3. The test statistic

Define e0 to be the n×1 vector of generalised residuals in the estimation proce-
dure. This means that the ith entry in e0 is equal to ∂�μ0n (Zi). The test statistic

is Ŝn =
∑R

r=1

(
êT0 ĥ(r)

)2
/R. Under regularity conditions, if μ0 ∈ int (R0 (B)),

the R× 1 vector

g :=
(
êT0 ĥ(1), êT0 ĥ(2), ..., êT0 ĥ(R)

)T
(2.15)

is asymptotically Gaussian for any fixed R, and the (k, l) entry of its covariance
matrix is consistently estimated by n−1∑n

i=1 e2
0,iĥ

(k)
i ĥ(l)

i . The ith subscript de-
notes the ith entry in the vector. When the generalised residuals are independent
of X, the (k, l) entry in the covariance matrix simplifies to

(
n−1êT0 ê0

) [
n−1

(
ĥ(k)

)T
ĥ(l)

]
.

However, this is not assumed here. The distribution of Ŝn can be simulated
from the process

∑R
l=1 ωn,lN

2
l , where the random variables Nl are i.i.d. standard

normal and the real valued coefficients ωn,l are 1/R times the eigenvalues of the
estimated covariance matrix.

Operational remarks

1. If CR1 is not explicitly given, we can set CR1 = CHK in the projection
step.

2. Instead of C1 n× n we can use a subset of the columns of C1, e.g. R < n
columns. Similarly, the rth column of C1 can be replaced by an n×1 vector
with ith entry CR1 (Xi, zr) where zr is an arbitrary element in XK . Each
column is an instrument. Given that C1 is singular for n large enough,
this does not affect the power of the test because the test functions are
highly correlated.
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3. To keep the functions h(r) homogeneous before the projection, we should
set the rth column of C1 to have ith entry equal to CHK (Xi, zr) /√
CHK (zr, zr). Note that h(r) (·) := CHK (·, zr) /

√
CHK (zr, zr) satisfies∣∣h(r)

∣∣
HK = 1 by the reproducing kernel property.

4. When the series expansion (2.8) for the covariance is known, we can use
the elements in the expansion for estimation and testing. For example,
suppose V0 and V1 are mutually exclusive subsets of the natural numbers
such that CRj (s, t) =

∑
v∈Vj

λvϕv (s)ϕv (t) for j ∈ {0, 1}. We can di-

rectly “project” the elements in
{
λ

1/2
v ϕv : v ∈ V1

}
onto the linear span

of
{
λ

1/2
v ϕv : v ∈ V0

}
by ridge regression with penalty ρ. For Vj of finite

but increasing cardinality, the procedure covers sieve estimators with re-
stricted coefficients. Note that h(r) = λ

1/2
r ϕr satisfies

∣∣h(r)
∣∣
HK = 1 for

r ∈ V1.

Choice of parameters Choice of B in (2.11) can be based on cross-validation,
among other methods. In the simulations, for simplicity, we choose B to be
a multiple of the sample variance of the data (see the paragraph Estimation
Details and Hypotheses, in Sections 4.1, for details). We experimented with
the choice of the penalty ρ in the estimation of the sample projection (2.6).
In practice, the projection only requires to compute the residuals from a ridge
regression, as shown in (2.14). We found that results were not sensitive to ρ.
In fact, we found that performing the projection using a pseudo inverse in the
computation of (2.14) led to reasonable results, in a number of situations. For
this reason, we use this approach in one the simulations. This means computing
b̂(r) = (C0SC0)− C0SC(r)

1 , where (C0SC0)− is the pseudo inverse of (C0SC0).
For the regression problem under the square error loss, S can be taken the be
the identity matrix. Then, the Ridge regression coefficient for the projection
simplifies to b̂(r) = (C0)− C(r)

1 .

Additional remarks The procedure can be seen as a J-Test where the in-
struments are given by the test functions ĥ(r). For a small number of test
functions R, a pivotal statistic for our testing procedure can be derived from
Ĵ := g′

[
ˆV ar (g)

]−1
g where ˆV ar (g) is an estimator of the covaraince matrix

of the random vector g in (2.15). Using the results in Section 3.2 (Theorem 1
and Proposition 2) it is simple to show that the test statistic is asymptotically
chi-square with R degrees of freedom. This assumes that ˆV ar (g) converges to
V ar (g). In general, the covariance matrix of the vector in (2.15) would be high
dimensional (many instruments for large R). Hence it would not be invertible.
In finite samples, from a computational point of view, a pseudo inverse could
be used in place of

[
ˆV ar (g)

]−1
. However, the convergence of Ĵ would be to a

chi-square with degrees of freedom less than R, a number that would have to
be estimated. For this reason, we work directly with the unstandardized statis-
tic. This is common in some high dimensional problems, as it is the case in
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functional data analysis.
The test statistic Ŝn has high power when the set of test functions for which

the null can be rejected is large. When this not the case, the vector g in (2.15)
may still have some entries that are approximately mean zero. Hence, the av-
erage Ŝn =

∑R
r=1

(
eT0 ĥ(r)

)2
/R may obfuscate the departures from the null. In

this case, the statistic maxr≤R

∣∣∣eT0 ĥ(r)
∣∣∣might be preferable. While the maximum

of correlated Gaussian random variables can be simulated or approximated, this
can be operationally challenging [17, Theorem 3.4]. The rest of the paper pro-
vides details and justification for the estimation and testing procedure using the
statistics Ŝn. The theoretical justification beyond simple heuristics is technically
involved. Section 4 (Tables 3 and 5) shows that failing to use the projection pro-
cedure discussed in this paper leads to poor inference when we ignore the second
term in (2.4).

2.5. Examples of applications

Next we provide a few examples of application of the test statistic to a variety
of problems.

Example 3 (Regression). For the square error loss, we have that �μ (z) =
|y − μ (x)|2 where y ∈ R and x take values in a compact subset of a Euclidean
space. Then, ∂�μ (z) = −2 (y − μ (x)), ∂2�μ (z) = 2.

Example 4 (Classification). For classification, we can use logistic regression:
Pr (Y = 1|X = x) =

(
1 + eμ(x))−1, y ∈ {0, 1}. The loss function is minus the

loglikelihood per observation derived from this probability, i.e. �μ (z) = yμ (x) +
ln
(
1 + e−μ(x)), after simplifications. Then, defining p (x;μ) :=

(
1 + eμ(x))−1,

∂�μ (z) = (y − p (x;μ)), and ∂2�μ (z) = p (x;μ) (1 − p (x;μ)).

Example 5 (Counting). For arrival counting problems, we can consider the
Poisson distribution Pr (Y =y|X=x) = eyμ(x) exp

{
−eμ(x)} /y!, y ∈ {0, 1, 2, ...}.

We can then define the loss function �μ (z) = −yμ (x) + eμ(x). Then, ∂�μ (z) =
−
(
y − eμ(x)), and ∂2�μ (z) = eμ(x).

Example 6 (Density of failure times). For the time until an event arrival,
consider the survival function Pr (Y > y|X = x) = exp

{
−yeμ(x)}, y ∈ (0,∞).

We define the loss function to be minus the log of the density function: yeμ(x) −
μ (x). We then have ∂�μ (z) = yeμ(x) − 1, and ∂2�μ (z) = yeμ(x).

2.6. Examples of restrictions

The following examples focus on restrictions on μ0 irrespective of the loss func-
tion and problem considered. Section 2.5 provided an illustration of such prob-
lems.
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It is not necessary that R0 ∩ R1 = ∅, but R0 must be a proper subspace of
HK as otherwise there is no restriction to test. In summary, R1 is not necessarily
the complement of R0 in HK . A few examples clarify the framework. We shall
make use of the results reviewed in Section 2.2 when constructing the covariance
functions and in consequence the restrictions.

Example 7. Consider the additive covariance CHK (s, t) =
∑K

k=1 C
(
s(k), t(k))

so that μ (x) =
∑K

k=1 f
(k) (x(k)) as in (1.2), though x(k) could be d-dimensional

as in Example 1. Consider the subspace R0 such that f (1) = 0. This is equiva-
lent to CR0 (s, t) =

∑K
k=2 C

(
s(k), t(k)). In consequence, we can set CR1 (s, t) =

C
(
s(1), t(1)

)
.

Some functional restrictions can also be naturally imposed.

Example 8. Suppose that HK is an additive space of functions, where each uni-
variate function is an element in the Sobolev Hilbert space of index V on [0, 1],
i.e. functions with V square integrable weak derivatives. Then, CHK (s, t) =∑K

k=1 C
(
s(k), t(k)) where C

(
s(k), t(k)) =

∑V−1
v=1 λ2

v

(
s(k)t(k))v + HV

(
s(k), t(k))

and where HV is the covariance function of the V -fold integrated Brownian mo-
tion (see Example 2). Consider the subspace R0 that restricts the univariate
RKHS for the first covariate to be the set of linear functions, i.e. f (1) (x(1)) =
cx(1) for real c. Then, CR0 = λ2

1s
(1)t(1) +

∑K
k=2 C

(
s(k), t(k)). Hence we can

choose CR1 =
∑V−1

v=2 λ2
v

(
s(1)t(1)

)v + HV

(
s(1), t(1)

)
.

In the above examples, R1 is the complement of R0 in HK . However, we
can just consider spaces R0 and R1 to define the model under the null and the
space of instruments under the alternative. Hence, no direct reference to HK is
needed.

Example 9. Suppose CK (s, t) is a universal kernel on [0, 1]K × [0, 1]K (see
Example 1). We suppose that CR0 =

∑K
k=1 C

(
s(k), t(k)), while CR1 = CK (s, t).

If C is continuous and bounded on [0, 1]× [0, 1], then, R0 ⊂ R1. In this case we
are testing an additive model against a general nonlinear one.

Example 9 fits in the framework of the paper with a slight change of notation.
To see this, let XK+1 =

∏K+1
k=1 X (k) and HK+1 =

⊕K+1
k=1 H(k). Here, H(k) is a

RKHS on X (k) = [0, 1] for k ≤ K, and H(K+1) is a RKHS on X (K+1) = [0, 1]K .
Formally, this also requires us to define X =

(
X(1), ..., X(K), X(K+1)) with

X(K+1) =
(
X(1), ..., X(K)).

The examples above can be extended to test more general models.

Example 10. Consider the varying coefficients regression function μ (Xi) =
bX

(1)
i +β

(
X

(2)
i , ..., X

(K)
i

)
X

(1)
i . The function β

(
X

(2)
i , ..., X

(K)
i

)
can be restricted

to be linear or additive under the null μ ∈ R0. In the additive case, CR0 (s, t) =
λ2

0 + s(1)t(1) +
∑K

k=1 C
(
s(k), t(k)) s(1)t(1). In finance, when Y is a continuous

response and E (Y |X) = μ (X), this model can be used to test the conditional
Capital Asset Pricing Model. It includes the semiparametric model discussed in
[10].
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3. Asymptotic analysis

3.1. Regularity conditions

Throughout the paper, � means that the l.h.s. is bounded by an absolute con-
stant times the r.h.s..

Condition 1. The set H is a RKHS on a compact subset of a separable Banach
space X , with continuous uniformly bounded kernel C admitting an expansion
(2.8). Furthermore, in (2.8), λ2

v � v−2η with exponent η > 1 and with linearly
independent continuous uniformly bounded functions ϕv : X → R. If each ad-
ditive component has a different covariance kernel, the condition is meant to
apply to each of them individually.

Condition 2. The sequence (Zi)i∈Z
(Zi = (Yi, Xi)) is independent identically

distributed (i.i.d.).

Recall the loss L (z, t) from Section 2.1. Define cK := maxs∈XK

√
CHK (s, s)

and let B̄ := cKB. Define Δk (z) := max|t|≤B̄

∣∣∂kL (z, t) /∂tk
∣∣ for k = 0, 1, 2, . . . .

Let Px be the law of Z given X = x. We shall consider two competing regularity
conditions on the loss. The first is a conditional form of Bartlett identity which
says that Px∂�

2
μ0

= Px∂
2�μ0 . The other requires a uniform lower bound on

the second derivative of the intensity: infz,t d2L (z, t) /dt2 > 0 for z ∈ Z and
t ∈

[
−B̄, B̄

]
. We refer to this as strict convexity condition.

Condition 3. The loss L (z, t) is non-negative, twice continuously differentiable
for real t in an open set containing

[
−B̄, B̄

]
, and satisfies either the above

Bartlett identity or the strict convexity condition. Moreover, PΔ0 + PΔ2p
1 +

PΔp
1Δ

p
2 +

∣∣Px∂
2�μ0

∣∣
∞ + |PxΔ3|∞ < ∞ for some p > 2.

Condition 4. The estimator in (2.11) is such that |μ0n − μ0|2 = OP (n−α) for
some α > 1/4.

We shall refer to the above as the Regularity Conditions.

3.1.1. Remarks on conditions

Condition 1 A minimal decay condition for the coefficients λv would be λv �
v−η with η > 1/2 as this is essentially required for

∑∞
v=1 λ

2
vϕ

2
v (s) < ∞ for any

s ∈ X . Here, we require that the condition is strengthened to η > 1, at the
very least. To put this into perspective, note that the covariance in Example 1
satisfies Condition 1 with exponentially decaying coefficients λv [21, Chapter
4.3.1]; the covariance in Examples 2 and 8 satisfies λv � v−η with η equal to
the number of derivatives of μ.

Condition 1 restricts the individual covariances in CHK . The same condition
is inherited by the individual covariances that comprise CR0 (i.e. Condition 1
applies to each individual component of CR0). In a similar vein, in Example 9,
the covariance CR1 can be seen as the individual covariance of a multivariate
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variable X(K+1) :=
(
X(1), ..., X(K)) and CR1 will have to satisfy (2.8) where

the functions ϕv are on X (K+1).

Condition 2 We only consider i.i.d. data. We could allow for dependent data
as done by other authors (e.g. [23]). This would require additional technical
conditions and lead to distracting technicalities.

Condition 3 All the loss functions in Section 2.5 and many more satisfy Con-
dition 3, using the fact that |μ|∞ ≤ B̄. Recall that B̄ was defined just before
Condition 3. Note that the loss in Example 6 does not satisfy the uniform lower
bound on the second derivative of the loss, but is does satisfy the Bartlett iden-
tity when μ0 ∈ HK (B). On the other hand, loss functions that are not smooth,
such as the ones used to derive conditional quantiles would not. Such loss func-
tions require to impose smoothness directly on P∂�μh. This extension would
come at the cost of additional conditions and requires a separate treatment
beyond the scope of the paper.

Condition 4 The estimator in (2.11) is a nuisance parameter. Its rate of con-
vergence can be very slow, depending on the problem. The following special
case of Theorem 3 in Sancetta (2021) gives rates of convergence. The proof in
Sancetta (2021) uses the strict convexity condition in Condition 3 for identi-
fication ([23, remarks just after Equation (19)]). This is unnecessary and can
be replaced by the milder conditional convexity condition infx E[inft d2L (Z, t) /
dt2|X = x] > 0 for x ∈ XK and t ∈

[
−B̄, B̄

]
. Written in another way, this is

infx Px infμ ∂2�μ > 0, μ ∈ R0 (B) and x ∈ XK . This is satisfied by the loss in
Example 6.

Proposition 1. Suppose that the Regularity Conditions, the conditional con-
vexity condition and μ0 ∈ int (R0 (B)) hold. Then, |μ0n − μ0|2 = OP (min{
n−α, n−1/4}), where α = γ

2

(
2η−1

2η+(γ−1)

)
and γ :=

(
p−1
p

)
.

The convergence rate in Proposition 1 can become arbitrarily close to the
parametric one when η → ∞. For example, for univariate functions that have
an arbitrarily large number of η square integrable derivatives (see Example 2).
The rate in Proposition 1 is not optimal, but it is sufficient for most practical
purposes. For example, [36, Theorem 1.9] for optimal rates in the case of the
univariate regression problem of smooth functions estimation under the square
error loss.

The nuisance parameter does not need to be an exact minimizer as in (2.11).
An asymptotic minimizer suffices ([31, Theorem 3.2.5]). In some cases the exact
minimizer in an RKHS can be difficult to compute in practice, and approxi-
mations are needed ([21], [3, Chapter 8], [19], [23], and references therein). For
simplicity, we do not pursue this here.
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3.2. Test statistic

Recall that R0 (B) := R0 ∩ HK (B) for any B > 0 and similarly for R1 (B).
Suppose that μ0 in (2.1) lies in the interior of R0 (B). Then, the moment equa-
tion P∂�μ0h = 0 holds for any h ∈ R1. This is because, by definition of (2.1),
∂�μ0 is orthogonal to all elements in HK . By linearity, one can restrict atten-
tion to h ∈ R1 (1) (i.e. R1 (B) with B = 1). For such functions h, the statistic
Pn∂�μ0h is normally distributed [23, Theorem 4]. In practice, μ0 is rarely known
and it is replaced by μ0n in (2.11). The estimator μn0 does not need to satisfy
Pn∂�μ0nh = 0 for any h in HK (1) under the null. Moreover, the nuisance pa-
rameter affects the asymptotic distribution.

For fixed ρ ≥ 0, let Πρ be the penalized population projection operator such
that

Πρh = arg inf
ν∈R0

P∂�2μ0
(h− ν)2 + ρ |ν|2HK (3.1)

for any h ∈ HK . Let the population projection operator be Π0, i.e. (3.1) with
ρ = 0. Given that Π0 is unknown, we replace it with the sample projection
operator in (2.6). To ease notation, write Πn = Πn,ρ for ρ = ρn. Let the symbol

 mean that the l.h.s. is bounded above and below by absolute constants times
the r.h.s.. The following holds.

Theorem 1. Suppose that the Regularity Conditions hold and that μ0 ∈ int
(R0 (B)). Moreover, suppose that in (2.6) ρ 
 n−θ with θ < α and 2α + θ > 1,
where α is as in Condition 4. Then,

Pn∂�μ0n (h− Πnh) → G (h− Π0h) , h ∈ HK (1) ,

weakly, where the r.h.s. is a mean zero Gaussian process with covariance function

Σ (h, h′) := EG (h− Π0h)G (h′ − Π0h
′) = P∂�2μ0

(h− Π0h) (h′ − Π0h
′) (3.2)

for any h, h′ ∈ HK (1).

An estimator for (3.2) is required in order to fully approximate the limiting
process in Theorem 1. A consistent estimator for Σ at h, h′ ∈ HK (1) is given
by Σn such that

Σn (h, h′) = Pn∂
2�μ0n (h− Πnh) (h′ − Πnh

′) . (3.3)

Proposition 2. Suppose that the Regularity Conditions hold and that ρ 
 n−θ

with θ < α. Then,

sup
h,h′∈HK(1)

|Σn (h, h′) − Σ (h, h′)| → 0

in probability.

Theorem 1 says that the score statistic that uses (h− Πnh) in place of h con-
verges to a Gaussian process. Hence, we can construct test statistics using any
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continuous map of the empirical process
{
Pn∂�μ0n (h− Πnh) : h ∈ h ∈ HK (1)

}
.

A computationally feasible statistic is obtained defining a finite set R̃1 ⊆ R1 ∩
HK (1). Let the cardinality of R̃1 be R, for definiteness. For the sake of clarity
in what follows, fix an order in the elements in R̃1. Recall that the test statistic
in (2.7) and Section 2.4.3 is

Ŝn := 1
R

∑
h∈R̃1

[Pn∂�μ0n (h− Πnh)]2 . (3.4)

By Theorem 1 and the continuous mapping theorem, this converges in distribu-
tion to the random variable

S := 1
R

∑
h∈R̃1

[G (h− Π0h)]2 . (3.5)

The distribution of S is standard, but depends on Σ. Let ωk be the kth scaled
eigenvalue of the covariance matrix

{
Σ (h, h′) : h, h′ ∈ R̃1

}
, i.e., ωkψk (h) =

1
R

∑
h′∈R̃1

Σ (h, h′)ψk (h′), where the kth eigenvector
{
ψk (h) : h ∈ R̃1

}
satis-

fies 1
R

∑
h∈R̃1

ψk (h)ψl (h) = 1 if k = l and zero otherwise.

Proposition 3. The random variable in (3.5) can be written as S =
∑

k≥1 ωkN
2
k ,

where the random variables Nk are independent standard normal. The equality
holds in L2.

Remark 1. Given that R is finite, we can just compute the eigenvalues (in the
usual sense) of the matrix with entries Σ (h, h′) /R, h′h′ ∈ R̃1.

Let Ŝ :=
∑

k≥1 ωnkN
2
k where ωnk is the kth scaled eigenvalue of the covariance

matrix
{
Σn (h, h′) : h, h′ ∈ R̃1

}
(see Remark 1). The random variable Ŝ does

not depend on any unknown quantities. Hence, we can simulate from it. Next,
we show that asymptotically Ŝn, Ŝ and S have same distribution. In practice
this means that in large sample, Pr

(
Ŝn > x

)
→ Pr (S > x) and Pr

(
Ŝ > x

)
→

Pr (S > x) under the null hypothesis that μ0 ∈ int (R0 (B)). P-values for the
Type I error of the test statistic Ŝn can be consistently obtained simulating from
Ŝ and computing the empirical probability of observing values greater than Ŝn.

Theorem 2. Under the conditions of Theorem 1, Ŝn and Ŝ converge in distri-
bution to S.

Recall that we denote by Px the law of Z given X = x. Define the function
w : XK → R such that w (x) := Px∂

2�μ0 . The function w might be known
under the null. In this case, ∂2�μ0n in (2.6) can be replaced by w, i.e., define the
empirical projection as the arg inf of

Pnw (h− ν)2 + ρ |ν|2HK = 1
n

n∑
i=1

w (Xi) (h (Xi) − ν (Xi))2 + ρ |ν|2HK (3.6)

w.r.t. ν ∈ R0. For example, for the regression problem, using the square error
loss, w is constant and can be set to one with no loss of generality.
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Corollary 1. Suppose the function w is known. Replace Πnh with the minimizer
of (3.6) in the construction of the test statistic Ŝn and Σn.

Suppose that the conditions of Theorem 1 hold with θ < 1/2 instead of θ < α.
Then, Theorems 1 and 2 continue to hold. Similarly, suppose that the conditions
of Theorem 2 hold with θ < 1/2 instead of θ < α. Then, Theorem 2 continues
to hold.

Corollary 1 improves on Theorem 2 as it imposes less restrictions on the
penalty ρ. Despite the technicalities required to justify the procedure, the im-
plementation shown in Section 2.4 is straightforward. In fact, ∂�μ0n evaluated
at Zi := (Yi, Xi) is the score for the ith observation and it is the ith entry in
ê0, as defined in Section 2.4. On the other hand the vector ĥ(r) has ith entry(
h(r) (Xi) − Πnh

(r) (Xi)
)

and R̃1 =
{
h(1), ...., h(R)}. For example we can set

R̃1 =
{
CR1 (·, zr) : zr ∈ XK , r = 1, 2, ..., R

}
.

We conclude noting that Theorem 1 holds uniformly in h ∈ HK (1). Hence,
R̃1 is only restricted by considerations pertaining to power and computational
constraints. In particular it can be chosen to have more weight on the direction
of certain alternatives if the researcher has prior information.

4. Finite sample evidence via simulation examples

We use some simulation examples to shed further light on the importance of
the projection procedure. First, we consider an example where the nuisance
parameter is potentially high dimensional. In the second example, the nuisance
parameter is infinite dimensional. In both cases, not using the projection to
account for the nuisance parameter leads to the wrong inference. In particular,
we compute the statistics in (2.3) and (2.7) and use the asymptotic distribution
of

√
nPn∂�μ0h to find the p-values. In what follows, we refer to (2.3) as the

statistic that ignores the nuisance parameter.

4.1. Finite dimensional model

We consider a high dimensional problem in the sense that the number of esti-
mated parameters can be of the same order of magnitude as the sample size.
We also consider simplifications exploiting the known structure of the covari-
ance series expansion (2.8). This is to show that the framework is applicable to
common problems such as polynomial regression with constrained coefficients.

Simulation design: True models Consider the regression problem where
Yi = μ0 (Xi) + εi, the number of covariates X(k) is K = 10, and the sample
size is n = 100, and 1000. The covariates are i.i.d. standard Gaussian random
variables that are then truncated to the interval X = [−2, 2]. Before truncation,
the cross-sectional correlation between X(k) and X(l) is �|k−l| with � ∈ {0, 0.75},
k, l = 1, 2, ...,K. The error terms are i.i.d. mean zero, Gaussian with variance
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Table 1

True Models. List of true models and short name for ease of reference are defined.
Name
Lin3 μ0 (X) =

∑3
k=1 bkX

(k) bk = 1/3, k = 1, 2, 3.
LinAll μ0 :=

∑10
k=1 bkX

(k)
i bk = 1/10, k = 1, 2, ..., 10.

Lin1Poly4 μ0 (X) = X(1) +
∑9

v=1 b4,v
(
X(4)/2

)v
b4,v uniformly distributed in
[−20/v, 20/v], v = 1, 2, ..., 9.

Table 2

Models in Restricted and Test Spaces. List of models in R0 and R1 and their short name
for ease of reference are defined.

Names
Lin1 CR0 (s, t) = s(1)t(1)

Lin2 CR0 (s, t) =
∑2

k=1 s
(k)t(k)

Lin3 CR0 (s, t) =
∑3

k=1 s
(k)t(k)

LinAll CR0 (s, t) =
∑10

k=1 s
(k)t(k)

Lin1Poly CR0 (s, t) = s(1)t(1) +
∑10

k=2 C
(
s(k), t(k)

)
CR1 (s, t) = CH10 − CR0 (s, t) for all of the above
CH10 (s, t) =

∑10
k=1 C

(
s(k), t(k)

)
, where C

(
s(k), t(k)

)
=
∑10

v=1 v
−2.2

(
s(k)t(k)

)v

such that the signal to noise ratio σ2
μ/ε is equal to 1 and 0.2. This is equivalent

to an R2 of 0.5 and 0.167, i.e. a moderate and low R2.
The specifications for μ0 together with a short name are defined in Table 1

for ease of reference.
In Lin1Poly4 the first variable enters the model linearly, the fourth variable

enters it in a nonlinear fashion, while the remaining variables do not enter
the model. The choice of random coefficient for Lin1Poly4 is to mitigate the
dependence on a specific nonlinear functional form. The number of simulations
is 1000.

Note that for Lin1Poly4, we choose the fourth covariate to enter the model
nonlinearly in order to make the problem harder when covariates are correlated
with a Toeplitz correlation. In this case, the test functions are more correlated
with the nuisance parameter than if we had chosen the second covariate to enter
the true model nonlinearly.

Estimation details and hypotheses We let H10 be generated by a poly-
nomial additive kernel. The details are in Table 2 for ease of reference. The
covariance kernel CH10 is such that the true models in Table 1 all lie in a strict
subset of H10.

Recall the definition of LK (B) at the end of Section 2.2. Estimation is carried
out in L10 (B) using a greedy algorithm with number of iterations equal to 500
[23, Section 4.1]. This approach speeds up calculations. It also allow us to assess
whether there is a distortion in the test results when the estimator minimizes
the objective function only approximately.

The parameter B is chosen equal to 10σ̂Y where σ̂Y is the sample standard
deviation of Y , which is a crude approach to keep simulations manageable.
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The eigenvalues from the sample covariance were used to simulate the limiting
process from which the p-values were derived using 104 simulations.

The restricted models are again shown in Table 2. The restrictions are chosen
to be able to show coverage probabilities when the restriction is true, as well as
the power of the test when the restriction is false. In all cases we test against
the full unrestricted model with kernel CH10 (s, t).

Test functions We can exploit the structure of the covariance kernel and
simplify the testing procedure. We can define the functions h(v,k) : XK →
R such that h(v,k) (s) = v−1.1 (s(k))v. Then,

∣∣h(v,k)
∣∣
HK = 1. Moreover, the

functions in R1 are in the linear span of such test functions. For example, when
R0 is Lin1Poly (see Table 2), the functions in R0 are in the linear span of{
h(1,1)} ∪ {h(v,k) : v ≤ 10, k = 2, 3, ..., 10

}
.

To estimate the projection, we use the pseudo-inverse rather than a penalty
ρ > 0 (see Section 2.4). This allow us to see if this simple and crude approach
is viable.

Results Table 3 reports the frequency of rejections for a given nominal size
of the test. Here, results are for n = 1000, a signal to noise level σ2

μ/ε = 1,
and correlation � = 0 under the three different true designs: Lin3, LinAll, and
Lin1Poly4. The column heading “No Π” means that no correction was used in
estimating the test statistic (i.e. test statistic ignoring the presence of nuisance
parameters). The results for the other configurations of sample size, signal to
noise ratio and correlation in the variables were similar. The Lin1Poly model is
only estimated when the true model is Lin1Poly4. Here, we only report a subset
of the tested hypotheses (Lin3 and LinAll, only). The complete set of results is
in Section B in the Appendix. Without using the projection adjustment, the size
of the test can be highly distorted, as expected. The results reported in Table 3
show that the test (properly constructed using the projection adjustment) has
coverage probability relatively close to the nominal one when the null holds, and
that the test has a good level of power. Here, we report the case of uncorrelated
covariates. For correlated covariates the distortion is much more prominent even
in low dimensions (see the full set of results in Section B, in the Appendix).

4.2. Infinite dimensional model

Simulation design: True model Consider a bivariate regression model with
independent standard normal errors. The regression function is

Lin1Poly2: μ0 (x) = b

(
1
2x

(1) + 3
2x

(2) − 4
(
x(2)

)2
+ 3

(
x(2)

)3
)
, (4.1)

where the scalar coefficient b is chosen so that the signal to noise ratio is 1 and
0.2 and x ∈ X 2 where X = [−2, 2]. The covariates Xi and the errors εi together
with the other details are as in Section 4.1. We shall refer to (4.1) as Lin1Poly2.
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Table 3

Finite Dimensional Model. Simulated frequency of rejections for n = 1000, signal to noise
ratio σ2

μ/ε
= 1, and variables correlation � = 0. Results for different true models are

reported. For true model Lin3, no restriction should be rejected. For true model LinAll,
restriction Lin3 should be rejected. For true model Lin1Poly4, restrictions Lin3 and LinAll

should be rejected. The column heading “Size” stands for the nominal size.
Size Lin3 LinAll Lin1Poly

No Π Π No Π Π No Π Π
True model: Lin3

0.10 0.09 0.11 0.07 0.10 - -
0.05 0.05 0.05 0.04 0.06 - -

True model: LinAll
0.10 1.00 1.00 0.49 0.08 - -
0.05 1.00 1.00 0.23 0.05 - -

True model: Lin1Poly4
0.10 1.00 1.00 0.92 0.91 0.03 0.1
0.05 1.00 1.00 0.9 0.88 0.02 0.05

Table 4

Models in Restricted and Test Spaces. List of models in R0 and R1 and their short name
for ease of reference are defined

Names

Lin1NonLin2 CR0 (s, t) = 0.5
(
1 +
∑2

k=1 s
(k)t(k)

)
+ 0.5 exp

{
1
2

(
s(2)−t(2)

0.75

)2
}

CR1 (s, t) = 0.5 exp
{
− 1

2

(
s(1)−t(1)

0.75

)2
}

LinAll CR0 (s, t) =
∑10

k=1 s
(k)t(k)

CR1 (s, t) = 0.5 exp
{
− 1

2

[∑2
k=1

(
s(k)−t(k)

0.75

)2
]}

Table 5

Infinite Dimensional Model. Simulated frequency of rejections for n = 1000, and various
combinations of signal to noise ratio σ2

μ/ε
, and variables correlation �. The true model is

Lin1Poly2. Restriction LinAll should be rejected. The column heading “Size” stands for the
nominal size.

Lin1NonLin2 LinAll
� σ2

μ/ε
Size No Π Π No Π Π

0 1 0.10 0.00 0.09 0.99 1.00
0 1 0.05 0.00 0.04 0.83 1.00
0 0.2 0.10 0.00 0.09 0.00 1.00
0 0.2 0.05 0.00 0.04 0.00 1.00

0.75 1 0.10 0.00 0.09 1.00 1.00
0.75 1 0.05 0.00 0.03 1.00 1.00
0.75 0.2 0.10 0.00 0.09 0.13 1.00
0.75 0.2 0.05 0.00 0.03 0.01 1.00

Estimation details and hypotheses We consider two hypotheses as shown
in Table 4. The hypothesis Lin1NonLin2 postulate a linear model for the first
covariate and a nonlinear for the second. The true model μ0 is in R0, hence
this hypothesis allows us to verify the size of a Type I error. In the case of the
hypothesis LinAll, the true model is not in R0 and this hypothesis allows us to
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verify the power of the test.
The nuisance parameter is computed using exact estimation in H2 (B) solving

the problem as if it were a Ridge regression problem with Ridge penalty τB,n

such that the constraint is satisfied, as shown in (2.13). All the other details are
as in Section 4.1.

Test functions We let the test functions h(r) : X 2 → R be such that h(r) (s) =
CR1 (s,Xr) /

√
CR1 (Xr, Xr), r = 1, 2, ..., n. We project on the functions

{CR0 (·, Xr) : i = 1, 2, ..., n} using Ridge regression as shown in (2.14). The
penalty ρ in the projection is chosen equal to ρn :=

[ 1
n

∑n
r=1 h

(r) (Xr)
]
/n1/2.

To speed up the test, we then randomly sample 100 of such test functions when
n > 100. Note that ρn is still computed using the original set of n functions.
Finally, given that the class of functions we are estimating are infinite differ-
entiable, we expect η to be greater than any finite integer (see Proposition 1
and the discussion following it). In consequence, we can choose ρn 
 n−θ with
θ arbitrarily close to 1/2 (Corollary 1).

Results Table 5 reports the frequency of rejections for n = 1000. The complete
set of results is in Section B in the Appendix. The results show a considerable
improvement relative to the naive test. The additional cost of implementing
the projections is marginal, as we just need to compute residuals from a Ridge
regression.

Given that the test functions are exponential functions, the test statistic
for “No Π” is equivalent to “Model specification test 1” in [5]. There, only an
upper bound for the Type I error probability was derived, under a parametric
null hypothesis [5, Theorem 6]. Projecting away the impact of the nuisance
parameter, we are able to obtain the asymptotic distribution of the test statistic
even when the model under the null is nonparametric (Lin1NonLin2).

4.3. Local power example

We further investigate the power of the test. To this end, it is informative to
gauge an idea of its local power. While a theoretical analysis can be difficult, we
can resort on simulations. We focus on a modification of the infinite dimensional
setup of the previous section.

Simulation design: True model Consider a bivariate regression model with
independent standard normal errors. The regression function is

Lin1Poly2Local: μ0 (x) = bμ(1)
(
x(1)

)
+ cnμ

(2)
(
x(2)

)
, (4.2)

μ(1)
(
x(1)

)
= 1

2x
(1), μ(2)

(
x(2)

)
= 3

2x
(2) − 4

(
x(2)

)2
+ 3

(
x(2)

)3

cn =
(
σ̂2n

)−1/2
c, c ∈ {0.1, 0.5, 1, 2, 5, 10}, where σ̂ is set equal to the sample

standard deviation of μ(2) (X(2)), the scalar coefficient b is chosen so that the
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Table 6

Local Infinite Dimensional Model. Simulated frequency of rejections for n = 1000, and
various combinations of signal to noise ratio σ2

μ/ε
for μ(1), and variables correlation �. The

true model is Lin1Poly2Local. Restriction LinAll is tested and should be rejected. The
column heading “Size” stands for the nominal size. The local power is reported for different

deviations from the lower dimensional model via the constant c defined after (4.2).

� σ2
μ/ε

Size No Π Π No Π Π No Π Π
c

0.1 0.5 1
0 1 0.10 0.00 0.09 0.00 0.11 0.00 0.18
0 1 0.05 0.00 0.04 0.00 0.06 0.00 0.11
0 0.2 0.10 0.00 0.09 0.00 0.09 0.00 0.10
0 0.2 0.05 0.00 0.04 0.00 0.05 0.00 0.06

0.75 1 0.10 0.00 0.09 0.00 0.11 0.00 0.21
0.75 1 0.05 0.00 0.05 0.00 0.06 0.00 0.12
0.75 0.2 0.10 0.00 0.08 0.00 0.09 0.00 0.10
0.75 0.2 0.05 0.00 0.04 0.00 0.05 0.00 0.06

c
2 5 10

0 1 0.10 0.00 0.40 0.00 0.98 0.26 1.00
0 1 0.05 0.00 0.27 0.00 0.95 0.02 1.00
0 0.2 0.10 0.00 0.16 0.00 0.47 0.00 0.95
0 0.2 0.05 0.00 0.09 0.00 0.33 0.00 0.89

0.75 1 0.10 0.00 0.53 0.01 1.00 0.94 1.00
0.75 1 0.05 0.00 0.39 0.00 0.99 0.62 1.00
0.75 0.2 0.10 0.00 0.19 0.00 0.61 0.00 0.99
0.75 0.2 0.05 0.00 0.10 0.00 0.48 0.00 0.98

signal to noise ratio of μ(1) is 1 and 0.2 and x ∈ X 2 where X = [−2, 2]. By this
we mean that P

∣∣bμ(1)
∣∣2 is equal to 1 and 0.2 times the variance of the error

εi, which is set to one. The covariates Xi, the errors εi and other details are
as in Section 4.2. We shall refer to (4.2) as Lin1Poly2Local. As we increase c,
(4.2) deviates from bμ(1) (x(1)). However, the deviation is local because cn =
O
(
n−1/2).

Estimation details and hypotheses The estimation details are the same
as in Section 4.2. To gauge the local power of the test for different values of c,
we test the restricted model LinAll in Table 4.

Test functions The details are as in Section 4.2 for the test functions corre-
sponding to LinAll in Table 4.

The results in Table 6 show that the power increases with c. However, failing
to account for the nuisance parameter greatly reduces the power of the test.

5. Extension to an additional nuisance parameter

The approach of this paper can be extended to include additional nuisance
parameters. For simplicity we discuss the case of one additional real valued nui-
sance parameter that we denote by β. Consider a loss L (z, t, s) : Z×R×R → R.
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Then, �μ,β (z) = L (z, μ (x) , β (x)). The parameters μ and β could depend on
possibly different subsets of x ∈ XK . The goal is to test restrictions on μ while
we have no interest in β. If a plug-in estimator βn for the true parameter β0
can be obtained, we would minimize the profile loss Pn�μ,βn w.r.t. μ and ob-
tain μ0n. Then, we would carry out the test procedure of this paper with no
change.

Estimation of β0 would not affect the distribution of the test statistic, under
standard conditions. We outline such conditions. Let

∂(k,l)�μ,β (z) = ∂k+lL (z, t, s) /
(
∂tk∂sl

)
setting t = μ (x) and s = β (x) after differentiation. Then, we require the
stochastic equicontinuity condition

√
n (Pn − P )

(
∂(1,0)�μ0n,βn − ∂(1,0)�μ0,β0

)
h = op (1) (5.1)

and the orthogonality condition
√
nP∂(1,0)�μ0n,βnh = op (1). This is the same

setup as in andrews94 with the complications induced by testing restrictions
on μ0. Recall that, by definition, P∂(1,0)�μ0,β0h = 0 as μ0 solves the first order
conditions. Then, P∂(1,0)�μ0n,βnh is equal to

P∂(1,0)�μ0n,βnh− P∂(1,0)�μ0,β0h =P∂(2,0)�μ0,β0 (μ0n − μ0)h
+ P∂(1,1)�μ0,β0 (βn − β0)h + op (1) .

The above display holds if
∣∣Px∂

(1,2)�μ,β
∣∣
∞ < ∞ uniformly in μ and β and

|βn − β0|2 = op
(
n−1/4). This is deduced by standard arguments ([2, Equations

4.12-4.13]; see also [23, Equation 25]). The methodology of the paper is not af-
fected by estimation of β0 if P∂(1,1)�μ0,β0 (βn − β0)h = 0, in the above display.
This orthogonality condition holds rather frequently. It should be contrasted
with P∂(2,0)�μ0,β0 (μ0n − μ0)h = 0, which, as we know does not hold in gen-
eral.We give an illustrative example in the next section.

5.1. Example: Classification with inverse probability weighting

We consider the nonlinear binary classification problem using logistic regression
(see Section 2.5). However, we allow for missing data. Suppose that Ri is an
indicator with value equal to one if the data is observed and zero otherwise.
We suppose that Pr (Ri = 1|Xi) = β0 (Xi). We assume a random sample from
Z = (Y,X) where Y =

(
Y (1), Y (2)) ∈ {0, 1}2 with binary response Y (1), and

Y
(2)
i = Ri. To account for missing data, we can use inverse probability weighting

of the data. Hence, we use the loss

Pn�μ,β = 1
n

n∑
i=1

(
Y

(2)
i /β (Xi)

) [
Y

(1)
i μ (Xi) + ln

(
1 + e−μ(Xi)

)]
.
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The functions μ and β may depend on different subsets of X. The quantity in
the square brackets can be replaced by other losses for other type of problems.
The framework is the one of [35]. Assume that under the null the generalised
error εi := Y

(1)
i −

(
1 + eμ0(Xi)

)−1 is mean zero conditioning on Xi and Y
(2)
i .

Then, using the fact that ∂(1,0)�μ0,β0 (Zi) =
(
Y

(2)
i /β (Xi)

)
εi (see Section 2.5),

we have that

P∂(1,1)�μ0,β0 (β − β0)h = E
Y

(2)
i εi

β2 (Xi)
(β (Xi) − β0 (Xi))h (Xi) = 0

for any β bounded away from zero and h ∈ HK . For this problem the nuisance
parameter β satisfies the orthogonality condition in [2], as expected because the
expectation of εi conditional on Xi is zero. Hence, the testing procedure of this
paper is not unaffected.

We conclude noting that additional conditions need to be imposed in order
to show the distributional results of the paper. These details can be derived
mechanically accounting for the additional parameter βn in the proofs.

6. Conclusion

This paper considers the problem of testing subspace restrictions for possibly
additive models in reproducing kernel Hilbert spaces. As well known, the pres-
ence of a high dimensional nuisance parameter invalidates standard asymptotic
inference. We show how to remove the dependence on the nuisance parameter
and recover standard asymptotic arguments. This is achieved constructing test
functions that are essentially orthogonal to the nuisance parameter. In practice
this only requires to run a ridge regression and compute its residuals. Hence,
the test is simple to implement. Simulation results show that failing to carry out
this approach in the presence of nuisance parameters can invalidate inference
even for relatively simple problems.

Appendix A: Proofs

Recall that �μ (Z) = L (Z, μ (X)) and ∂k�μ (Z) = ∂kL (Z, t) /∂tk
∣∣
t=μ(X), k ≥ 1.

Condition 3 implies Fréchet differentiability of P�μ and P∂�μ (w.r.t. μ ∈ HK)
at μ in the direction of h ∈ HK . It can be shown that these two derivatives
are P∂�μh and P∂2�μhh, respectively. For this purpose, we view P�μ as a map
from the space of uniformly bounded functions on XK to R. The details can
be derived following the steps in [26, proof of Lemma 2.21] or [15, proof of
Lemma A.4]. The application of those proofs to the current scenario, essentially
requires that the loss function L (Z, t) is differentiable w.r.t. real t, and that
μ is uniformly bounded, together with integrability of the quantities Δ0, and
Δ1, as implied by Condition 3. It will also be necessary to take the Fréchet
derivative of Pn�μ and Pn∂�μh conditioning on the sample data. By Condition 3
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this will also hold because Δ0, and Δ1 are finite. Following the aforementioned
remarks, when the loss function is three times differentiable, we also have that
for any h ∈ HK , the Fréchet derivative of P∂2�μh in the direction of h′ ∈ HK

is P∂3�μhh
′. These facts will be used throughout the proofs with no further

mention. Moreover, throughout, for notational simplicity, we tacitly suppose
that supx∈XK

√
CHK (x, x) = 1 so that h ∈ HK (B) implies that |h|∞ ≤ B

for any B > 0. This follows from the reproducing kernel property (e.g. [23,
Lemma 1]).

A.1. Entropy numbers

Denote by N
(
ε,F , |·|p

)
the ε-covering number of a set F , relative to the Lp

norm. This is the minimum number of open balls of Lp radius ε needed to
cover F . The entropy is the logarithm of the covering number. Denote by
N[]

(
ε,F , |·|p

)
the ε-bracketing number, relative to the Lp norm, of the set F .

This is the minimum number of Lp ε-brackets needed to cover F . Given two
functions fL ≤ fU such that |fL − fU |p ≤ ε, an Lp ε-bracket [fL, fU ] is the set
of all functions f ∈ F such that fL ≤ f ≤ fU . The covering and bracketing
number relative to the uniform norm coincide. We have the following ε-entropy
estimates.

Lemma 1. Under Condition 1,
1. lnN[]

(
ε,HK (B) , |·|∞

)
� K (B/ε)2/(2η−1);

2. lnN[]

(
ε,F , |·|p

)
�K (B/ε)2/(2η−1) for F :=

{
∂�μh :μ∈HK (B) , h∈HK (1)

}
and any p∈ [1,∞] satisfying Condition 3;

3. lnN[]

(
ε,F , |·|p

)
� K (B/ε)2/(2η−1) for F := {∂�2μhh′ : μ ∈ HK (B) ,

h, h′ ∈ HK (1)} and any p ∈ [1,∞] satisfying Condition 3.

Proof. Points 1. and 2. are, respectively, Lemma 3 and 4 in [23]. Hence, we
only prove Point 3, which is proved similarly. By Condition 3 and the triangle
inequality, for h, h′, g, g′ ∈ HK (1), we have that∣∣∂�2μhh′−∂�2μ′gg′

∣∣≤∣∣∂�2μ−∂�2μ′
∣∣ sup
h∈HK(1)

|h|2+ sup
μ∈HK(B)

∣∣∂�2μ∣∣ (|hh′−gh′|+|gh′−gg′|).

By Condition 3, we have the following bounds
∣∣∂�2μ (z)

∣∣ ≤ Δ2
1 (z) and∣∣∂�2μ (z) − ∂�2μ′ (z)

∣∣ ≤ 2Δ1 (z) Δ2 (z) |μ (x) − μ′ (x)|. Moreover, |h|∞ ≤ 1 for
h ∈ HK (1). By these remarks, the previous display is bounded by

2Δ1Δ2 (z) |μ− μ′|∞ + Δ2
1 (z) (|h− g|∞ + |h′ − g′|∞) .

Theorem 2.7.11 in [31] says that the Lp ε-bracketing number of class of functions
satisfying the above Lipschitz kind of condition is bounded by the L∞ ε′-covering

number of HK (B) ×HK (1) with ε′ = 4ε
(
P
∣∣∣Δ2p

1 + Δp
1Δ

p
2

∣∣∣)−1/p
.
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A.2. Preliminary lemmas

Lemma 2. Under the Regularity Conditions, suph∈HK(δ) Pn∂�μ0nh = OP (n−1/2

Bδ) for μn0 as in (2.11).

Proof. The first order condition for the penalised sample estimator μn,τ reads

Pn∂�μn,τh = −2τ 〈μn,τ , h〉HK ≤ 2τ |μn,τ |HK |h|HK (A.1)

for any h ∈ HK (δ), δ < ∞. In consequence, suph∈HK(δ) Pn∂�μn,τh ≤
2τ |μn,τ |HK δ. From, [23, Theorem 2], there is a τB,n = OP

(
n−1/2) such that

μn,τ = μ0n when τ = τB,n. Hence, suph∈HK(δ) Pn∂�μ0nh = O
(
n−1/2Bδ

)
.

Lemma 3. Under the Regularity Conditions, |μ0n − μ0|∞ → 0 in probability.

Proof. The Regularity Conditions assume convergence in L2. To turn the L2
convergence into uniform, note that HK (B) is compact under the uniform norm
by Lemma 1 (Point 1.). Moreover, functions in HK (B) are continuous and
defined on a compact domain XK . In consequence, any convergent sequence in
HK (B) converges uniformly.

For any positive finite measure Q on Z, write νQ,ρ = arg infν∈R0 Q (h− ν)2+
ρ |ν|HK .

Lemma 4. Suppose that Q and P are positive finite measures on Z. Then,

|νQ,ρ − νP,ρ|HK ≤ 2
ρ

∞∑
v=1

λv |(Q− P ) (h− νP,ρ)ϕv|

Moreover, if νQ,ρ is bounded for any ρ → 0, then |νQ,ρ − νQ|HK → 0 and
similarly for νP,ρ.

Proof. By [26, Corollary 5.10] applied to the square error loss,

|νQ,ρ − νP,ρ|HK ≤ 2
ρ
|Q (h− νP,ρ)Φ − P (h− νP,ρ) Φ|HK , (A.2)

where Φ (x) = CHK (·, x) is the canonical feature map. By (2.8), the canonical
feature map can be written as Φ (x) =

∑∞
v=1 λ

2
vϕv (·)ϕv (x). This implies that,

(Q− P ) (h− νP,ρ) Φ (x) =
∞∑
v=1

[
λ2
v (Q− P ) (h− νP,ρ)ϕv

]
ϕv (x) .

By (2.10), and the above,

|(Q− P ) (h− νP,ρ)Φ|2HK =
∞∑
v=1

[
λ2
v (Q− P ) (h− νP,ρ)ϕv

]2
λ2
v

=
∞∑
v=1

λ2
v [(Q− P ) (h− νP,ρ)ϕv]2 .
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Bounding the r.h.s. of (A.2) by the square root of the above display, and using
the triangle inequality for each term in the sum, we deduce the first statement
in the lemma. The last statement in the lemma is continuity w.r.t. ρ and corre-
sponds to [26, Theorem 5.17].

A.3. Convergence of projection operators

We use the operators Πρ, Πn,ρ, Π̃n,ρ such that for any h ∈ HK :

Πρh := arg inf
ν∈R0

P∂2�μ0 (h− ν)2 + ρ |ν|2HK as in (3.1)

Πn,ρh := arg inf
ν∈R0

P 2
n∂�μ0n (h− ν)2 + ρ |ν|2HK as in (2.6)

Π̃n,ρh := arg inf
ν∈R0

P∂�2μ0n
(h− ν)2 + ρ |ν|2HK . (A.3)

To ease notation, we may write Πn = Πn,ρ when ρ = ρn. Moreover, recall that
we also write Π0 for Πρ with ρ = 0.

The proof uses some preliminary results. In what follows, we may assume
that K = 1. This is to avoid notational complexities that could obscure the
main steps in the derivations. Because of additivity, this is not restrictive as
long as K is bounded.

Lemma 5. Suppose that h ∈ HK (1). Then, |Π0h|HK ≤ 1.

Proof. By construction, the linear projection Π0h satisfies Π0h ∈ R0 and Π0
(h− Π0h) = 0. Hence, the space HK is the direct sum of the set R0 and its
complement in HK , say Rc

0. These sets are orthogonal. Note that we do not
necessarily have Rc

0 = R1 unless the basis that spans R1 is already linearly
independent of R0. By Lemma 9.1 in [32], |h|HK = |Π0h|R0

+ |h− Π0h|Rc
0
. The

norms are the ones induced by the inner products in the respective spaces. But,
|Π0h|Rc

0
= 0. Hence, we have that |Π0h|R0

= |Π0h|HK ≤ |h|HK = 1.

Lemma 6. Under the Regularity Conditions, if ρnα → ∞, then,

sup
h∈HK(1)

∣∣(Πρ − Π̃n,ρ

)
h
∣∣
HK → 0

in probability.

Proof. Let P̃ and P̃n be finite positive measures on Z such that dP̃ /dP = ∂2�μ0

and dP̃n/dP = ∂2�μ0n . By Lemma 4,

∣∣(Πρ − Π̃n,ρ

)
h
∣∣
HK ≤ 2

ρ

∞∑
v=1

λv

∣∣(P̃n − P̃
)
(h− Πρh)ϕv

∣∣ . (A.4)

Taking derivatives, we bound each term in the absolute value by

∣∣P (∂2�μ0n − ∂2�μ0

)
(h− Πρh)ϕv

∣∣ ≤
∣∣∣∣∣P sup

μ∈HK(B)

∣∣∂3�μ
∣∣ (μ0n − μ0) (h−Πρh)ϕv

∣∣∣∣∣.
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By Lemma 5 and the definition of penalized estimation, |Πρh|HK ≤ |Π0h|HK ≤ 1
uniformly in ρ ≥ 0. Hence, |h− Πρh|∞ ≤ 2. Moreover, supv≥1 |ϕv|∞ < ∞.
Therefore, the r.h.s. of the above display is bounded, independently of ρ, by a
constant multiple of√

P sup
μ∈HK(B)

|∂3�μ|2
√

P |μ0n − μ0|2 =
√
PΔ2

3 |μ0n − μ0|2

The term PΔ2
3 is finite by Condition 3. By assumption, we have that |μ0n−μ0|2 =

Op (n−α). Using the above display to bound (A.4), deduce that the lemma
holds true if ρ−1n−α = op (1), as stated in the lemma. Taking supremum
w.r.t. h ∈ HK (1) in the above steps, deduce that the result holds uniformly
in h ∈ HK (1).

Lemma 7. Under the Regularity Conditions, we have that suph∈HK(1)∣∣(Πn,ρ − Π̃n,ρ

)
h
∣∣
HK → 0 in probability for any ρ such that ρn1/2 → ∞ in

probability.

Proof. Following the same steps as in the proof of Lemma 6, deduce that

∣∣(Πn,ρ − Π̃n,ρ

)
h
∣∣
HK ≤ 2

ρ

∞∑
v=1

λv

∣∣(Pn − P ) ∂2�μ0n

(
h− Π̃n,ρh

)
ϕv

∣∣ . (A.5)

Each term in the absolute value on the r.h.s. is bounded in L1 by

E sup
h∈HK(1),μ∈HK(B),ν∈HK(1)

∣∣(Pn − P ) ∂2�μ (h− ν)ϕv

∣∣
≤2E sup

h∈HK(1),μ∈HK(B)

∣∣(Pn − P ) ∂2�μhϕv

∣∣ .
Define the class of functions F :=

{
∂2�μhϕk : μ ∈ HK (B) , h ∈ HK (1)

}
. Given

that ϕv is uniformly bounded, by Lemma 1 it can be deduced that F is Donsker
([31, Theorem 2.5.6]). Hence the expectation in the above display is O

(
n−1/2).

By permanence of the Donsker property for any fixed convex combination of
Donsker classes ([31, Theorem 2.10.1], the expectation of (A.5) is O

(
n−1/2ρ−1).

In what follows, recall that we defined Px to be the law of Z conditioning on
X = x.

Lemma 8. Suppose that the Regularity Conditions hold. Then, for ρ such that
ρnα → ∞ in probability, and for n → 0, we have that

sup
h∈HK(1)

|(Πρ − Πn,ρ)h|HK = op (1) ,

and

sup
h∈HK(1)

∣∣√nPn∂�μn0 (Πρ − Πn,ρ)h
∣∣ = op (1) . (A.6)
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Finally, if w (x) = Px∂
2�μ0 is a known function, and Πn,ρ constructed as in

(3.6), the above displays hold for ρ such that ρn1/2 → ∞ in probability.

Proof. By the triangle inequality

sup
h∈HK(1)

|(Πρ − Πn,ρ)h|HK ≤ sup
h∈HK(1)

∣∣(Πρ − Π̃n,ρ

)
h
∣∣
HK

+ sup
h∈HK(1)

∣∣(Π̃n,ρ − Πn,ρ

)
h
∣∣
HK . (A.7)

The first statement in the lemma follows by showing that the r.h.s. of the above
is op (1). This is the case by application of Lemmas 6 and 7.

By the established convergence in |·|HK , for any h ∈ HK (1),
|(Πρ − Πn,ρ)h|HK ≤ δ with probability going to one for any δ > 0. Therefore,
to prove (A.6), we can restrict attention to a bound for

lim
δ→0

sup
|h|HK≤δ

√
nPn∂�μ0nh.

By Lemma 2, we know that the above display is zero.
Finally, to show the last statement in the lemma, note that it is Lemma 6

that puts an additional constraint on ρ. However, saying that the function w
is known, effectively amounts to saying that we can replace μ0n with μ0 in the
definition of Π̃n,ρ in (A.3). This means that Π̃n,ρ = Πρ so that the second term
in (A.7) is exactly zero and we do not need to use Lemma 6. Therefore, ρ is
only constrained according to Lemma 7.

We also need to bound the distance between Πρ and Π0, but this cannot be
achieved in probability under the operator norm.

Lemma 9. Under the Regularity Conditions, we have that

sup
h∈HK(1)

P∂2�μ0 (Πρh− Π0h)2 ≤ ρ.

Proof. As in the proof of Lemma 6, let P̃ such that dP̃ /dP = ∂2�μ0 . At first we
show that

P̃ (Πρh− Π0h)2 ≤ P̃ (h− Πρh)2 − P̃ (h− Π0h)2 . (A.8)

To see this, expand the r.h.s. of (A.8), add and subtract 2P̃ (Π0h)2, and verify
that the r.h.s. of (A.8) is equal to

−2P̃ hΠρh + 2P̃ (h− Π0h) Π0h + P̃
[
(Πρh)2 + (Π0h)2

]
.

However, (h− Π0h) is orthogonal, w.r.t. P̃ , to elements in R0, in the sense of
(A.3) with ρ = 0. Since Π0h ∈ R0, the middle term in the above display is zero.
Then, add and subtract 2P̃ΠρhΠ0h and rearrange to deduce that the above
display is equal to

2P̃ (Π0h− h) Πρh + P̃ (Πρh− Π0h)2 .
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Given that (Π0h− h) is orthogonal to elements in R0 and Πρh ∈ R0, the first
term on the above display is also zero. This shows that (A.8) holds true. The
r.h.s. of (A.8) is bounded as follows,

P̃ (h− Πρh)2 − P̃ (h− Π0h)2 ≤
[
P̃ (h− Πρh)2 + ρ |Πρh|2HK

]
− P̃ (h− Π0h)2

≤
[
P̃ (h− Π0h)2 + ρ |Π0h|2HK

]
− P̃ (h− Π0h)2

= ρ |Π0h|2HK

because |Πρh|HK is positive and Πρh is the minimizer of the penalized popula-
tion loss function (see (A.3)). Using Lemma 5, the r.h.s. of the above display is
bounded by ρ. Hence the r.h.s. of (A.8) is bounded by ρ uniformly in h ∈ HK (1),
and the lemma is proved.

The penalised population projection operator is continuous.

Lemma 10. Under the Regularity Conditions, we have that

P∂2�μ0

√
n (μ0n − μ0) (Π0h− Πρh) = op (1) (A.9)

for any ρ such that n(1−2α)ρ → 0 in probability.

Proof. By Holder inequality, the absolute value of the l.h.s. of (A.9) is bounded
above by

√
n
[
P∂2�μ0 (μ0n − μ0)2

]1/2 [
P∂2�μ0 (Π0h− Πρh)2

]1/2
. (A.10)

Recall that Px is the law of Z conditional on X = x. Hence we can write
P = PPx. By the Regularity Conditions,

∣∣Px∂
2�μ0

∣∣
∞ < ∞, so that

√
n
[
P∂2�μ0 (μ0n − μ0)2

]1/2
�

√
n
[
P (μ0n − μ0)2

]1/2
= Op

(
n(1−2α)/2

)
using the assumption on convergence of μ0n. Hence, by Lemma 9, deduce that
(A.10) is bounded above by a quantity Op

(
n(1−2α)/2ρ1/2) = op (1) for the given

choice of ρ.

We can relate the expectation of the squared score to the expectation of the
second derivative of the loss. This will needed for an application of the projection
correction.

Lemma 11. Under Condition 3, P∂�2μ0
|h′ − h| �

√
P∂2�μ0 (h′ − h)2.

Proof. At first, suppose that the Bartlett identity holds. Using P = PPx and the
the aforementioned identity, P∂�2μ0

|h′ − h| = P∂2�μ0 |h′ − h|. Then, by Holder

inequality applied to P
√

∂2�μ0

√
∂2�μ0 |h′ − h|2 we deduce the result because

P∂2�μ0 is bounded.
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Now suppose that the uniform lower bound infz,t d2L (z, t) /dt2 > 0 holds.
Then, multiplying and dividing by

√
∂2�μ0 and using Holder inequality,

P∂�2μ0
|h′ − h| ≤

√
P
(
∂�4μ0

/∂2�μ0

)√
P∂2�μ0 (h′ − h)2.

The uniform lower bound and the moment condition on ∂�4μ0
ensure that the

quantity in the first square root is finite.

Finally, we show convergence in distribution when there is no nuisance param-
eter. This is needed, as we shall show that the projection correction is asymp-
totically equivalent to this.

Lemma 12. Suppose that the Regularity Conditions hold and that
μ0 ∈ int

(
HK (B)

)
. If ρ → 0,

√
nPn∂�μ0 (h− Πρh) → G (h− Π0h) , h ∈ HK (1) ,

weakly, where the r.h.s. is a mean zero Gaussian process with covariance function

Σ (h, h′) := EG (h− Π0h)G (h′ − Π0h
′) = P∂�2μ0

(h− Π0h) (h′ − Π0h
′)

for any h, h′ ∈ HK (1).

Proof. Any mean zero Gaussian process (G (h)) – not necessarily the one in the
lemma – is continuous w.r.t. the pseudo norm d (h, h′) =

√
E |G (h) −G (h′)|2 [1,

Lemma 1.3.1]. Hence, d (h, h′) → 0 implies that G (h)−G (h′) → 0 in probability.
By Lemma 5, deduce that (h− Πρh) ∈ HK (2). Hence, consider the mean zero
Gaussian process (G (h)) with covariance function EG (h)G (h′) = P∂�2μ0

hh′

with h ∈ HK (2). By direct calculation, and this remark on h and h′,

d2 (h, h′) = P∂�2μ0
h (h− h′) + P∂�2μ0

h′ (h′ − h) � P∂�2μ0
|h′ − h| . (A.11)

By Lemma 11 the r.h.s. is bounded above by a constant multiple of√
P∂2�μ0 (h− h′)2. Hence, to check continuity of the Gaussian process at arbi-

trary h → h′, we only need to consider P∂2�μ0 (h− h′)2 → 0. We shall use this
remark momentarily.

Now, note that by Theorem 4 in [23], which also holds for any h ∈ HK (2),√
nPn∂�μ0h converges weakly to a Gaussian process G (h), h ∈ HK (2). Hence,√
nPn∂�μ0 (h− Πρh) converges weakly to G (h− Π0h) if for any h ∈ HK (1)

sup
h∈HK(1)

lim
ρ→0

|G (h− Πρh) −G (h− Π0h)| = 0

in probability. By the initial remarks about continuity, it is sufficient to check
that suph∈HK(1) P∂2�μ0 (Π0h− Πρh)2 → 0 in probability as ρ → 0. This is the
case by Lemma 9.
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A.4. Convergence of sample eigenvalues

We need to estimate the eigenvalues ωk in order to compute critical values. The
following will also prove Proposition 2.

Lemma 13. Under the conditions of Lemma 8 the following hold in probability:
1. suph,h′∈HK(1) |Σn (h, h′) − Σ (h, h′)| → 0, where Σ and Σn are as in (3.2)

and (3.3), respectively;
2. supk>0 |ωnk − ωk| → 0, where ωnk and ωk are the kth eigenvalues of the

covariance functions with entries Σn (h, h′) and Σ (h, h′), h, h′ ∈ R̃1 for R̃1 a
countable subset of R1, not necessarily finite;

3. The population eigenvalues ωk are summable and for any c ≥ 1+
∑∞

k=1 ωk,
we have that Pr (

∑∞
k=1 ωn,k > c) = o (1).

Proof. To show Point 1, use the triangle inequality to deduce that

|Σn (h, h′) − Σ (h, h′)| ≤
∣∣(Pn − P )

(
∂�2μ0n

)
(h− Πnh) (h′ − Πnh

′)
∣∣

+
∣∣P (∂�2μ0n

− ∂�2μ0

)
(h− Πnh) (h′ − Πnh

′)
∣∣

+
∣∣P∂�2μ0

(Π0h− Πnh) (h′ − Πnh
′)
∣∣

+
∣∣P∂�2μ0

(h− Π0h) (Π0h
′ − Πnh

′)
∣∣ . (A.12)

It is sufficient to bound each term individually uniformly in h, h′ ∈ HK (1).
To bound the first term in (A.12), note that, with probability going to one,

|h− Πnh|HK ≤ 2+ε for any ε > 0 uniformly in h ∈ HK (1), by Lemmas 5 and 8,
as n → ∞. By this remark, to bound the first term in probability, it is enough
to bound

∣∣(Pn − P ) ∂�2μhh′∣∣uniformly in μ ∈ HK (B) and h, h′ ∈ HK (2 + ε).
By Lemma 1 (Point 3.) the class of functions is Donsker ([31, Theorem 2.5.6].
We can deduce that this term is Op

(
n−1/2).

To bound the second term in (A.12), note that P∂�2μ is Fréchet differen-
tiable w.r.t. μ. To see this, one can use the same arguments as in [26, proof of
Lemma 2.21] as long as P supμ∈HK(B)

∣∣∂�μ∂2�μ
∣∣ < ∞, which is the case by the

assumptions in the lemma. Hence,∣∣P (∂�2μ0n
− ∂�2μ0

)
(h− Πnh) (h′ − Πnh

′)
∣∣

≤ 2
∣∣P∂�μ0∂

2�μ0 (μ0n − μ0) (h− Πnh) (h′ − Πnh
′)
∣∣+ op (1)

using the fact that |μ0n − μ0|∞ = op (1) by Lemma 3. By an application of
Lemma 8, again, a bound in probability for the above is given by a bound for

2 sup
h,h′∈HK(2+ε)

∣∣P∂�μ0∂
2�μ0 (μ0n − μ0)hh′∣∣ .

By Lemma 3 and P
∣∣∂�μ0∂

2�μ0

∣∣ ≤ PΔ1Δ2 < ∞, we deduce that the above is
op (1).

The third term in (A.12) is bounded by

P
∣∣∂�2μ0

(Π0h− Πnh) (h′ − Πnh
′)
∣∣ ≤ 2P∂�2μ0

|Π0h− Πnh| (A.13)
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using the fact that (h′ − Πnh
′) ∈ H (2). By the triangle inequality

P∂�2μ0
|Π0h− Πnh| ≤ P∂�2μ0

|Π0h− Πρh| + P∂�2μ0
|Πρh− Πnh| .

By Lemma 11, the r.h.s. is less than a constant multiple of
√
P∂2�μ0 (Π0h−Πρh)2.

By Lemma 9, this goes to zero as ρ → 0. By Holder inequality and then
Lemma 8, the second term on the r.h.s. of the above display is op (1) when
ρ = ρn satisfy the condition of that lemma. These remarks imply that (A.13) is
op (1). The last term in (A.12) is bounded similarly. The uniform convergence
of the covariance is proved because all the terms in (A.12) converge to zero
uniformly in h, h′ ∈ HK (1).

Now, we show Point 2. Recall that we have defined eigenvalues and eigenvec-
tors relative to the standard inner product divided by the number of elements
R. This is itself an inner product. In particular, note that in this case the eigen-
vectors and eigenvalues are R1/2 and R−1 times the usual matrix eigenvectors
and eigenvalues, respectively. Then, Point 2. follows from the inequality

sup
k>0

|ωnk − ωk| ≤
1
R

∑
h∈R̃1

|Σn (h, h) − Σ (h, h)| ,

which uses [6, Lemma 4.2] together with the fact that the operator norm of a
covariance function is bounded by the nuclear norm [6]. Clearly, the r.h.s. is
bounded by suph∈HK(1) |Σn (h, h) − Σ (h, h)| which converges to zero in proba-
bility.

Finally we show Point 3. By definition of the eigenvalues and eigenvectors,
Σ (h, h) =

∑∞
k=1 ωkψk (h)ψk (h) so that

1
R

∑
h∈R̃1

Σ (h, h) =
∞∑
k=1

ωk ≤ sup
h∈HK(1)

Σ (h, h) < ∞

implying that the eigenvalues are summable. The sum of the sample eigenvalues
is equal to

1
R

∑
h∈R̃1

Σn (h, h) ≤ 1
R

∑
h∈R̃1

Σ (h, h) + 1
R

∑
h∈R̃1

|Σn (h, h) − Σ (h, h)|

≤ sup
h∈HK(1)

Σ (h, h) + sup
h∈HK(1)

|Σn (h, h) − Σ (h, h)| .

As shown above, the first term on the r.h.s. is finite and the second term con-
verges to zero in probability. Hence, the sample eigenvalues are summable in
probability. In particular, from these remarks we deduce that for any c < ∞
such that c ≥ 1 +

∑∞
k=1 ωk, we have that Pr (

∑∞
k=1 ωn,k > c) = o (1).

A.5. Proof of Theorem 1

To keep the notation more compact, we introduce additional concepts to be
used in the rest of the proofs. This will also make reference to existing results
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easier. Let l∞
(
HK

)
be the space of uniformly bounded functions on HK . Let

Ψ (μ) be the operator in l∞
(
HK

)
such that Ψ (μ)h = P∂�μh, h ∈ HK . When

μ0 ∈ int
(
HK (B)

)
, it holds that Ψ (μ0)h = 0, for any h ∈ HK (1). The empir-

ical counterpart of Ψ (μ) is the operator Ψn (μ) such that Ψn (μ)h = Pn∂�μh.
Finally, write Ψ̇μ0 (μ− μ0) for the Fréchet derivative of Ψ (μ) at μ0 tangen-
tially to (μ− μ0), where μ, μ0 ∈ HK (B). Then, Ψ̇μ0 is an operator from HK to
l∞
(
HK

)
. This same notation is used in [31, Chapter 3.3].

Given that |PxΔ3|∞ < ∞ and |μ0n − μ0|2 = oP
(
n1/4), Equation (26) in [23]

holds, and we have that
√
nΨn (μ0n) =

√
nΨn (μ0) + Ψ̇μ0

√
n (μ0n − μ0) + op (1) . (A.14)

Trivially, any h ∈ HK (1) can be written as h = Πρh+(h− Πρh). By Lemma 5,
(h− Πρh) ∈ HK (2). Then,

√
nΨn (μ0) (h− Πρh) for h ∈ HK (1) is mean zero

and converges weakly to a Gaussian process with a.s. continuous sample paths
by the Donsker Theorem ([31, Theorem 2.5.6]) because by Lemma 1 the entropy
integral is finite (see also [23, Lemma 5]. Therefore, (A.14) also applies to Ψn (μ)
as an element in the space of uniformly bounded functions on HK (2). Now, for
ρ = ρn,

√
nΨn (μ0n) (h− Πn,ρh) =

√
nΨn (μ0n) (h− Πρh)

+
√
nΨn (μ0n) (Πρ − Πn,ρ)h (A.15)

adding and subtracting
√
nΨn (μ0n) Πρh. By definition, the operator Ψn (μ0n)

is such that
√
nΨn (μ0n) (Πρ − Πn,ρ)h =

√
nPn∂�μ0n (Πρ − Πn,ρ)h.

Hence, using the second part of Lemma 8, the r.h.s. of (A.15) is equal to
√
nΨn (μ0n) (h− Πρh) + op (1) .

By (A.14), this is in turn equal to
√
nΨn (μ0) (h− Πρh) +

√
nΨ̇μ0 (μ0n − μ0) (h− Πρh) + op (1) .

Using linearity, rewrite

Ψ̇μ0

√
n (μ0n − μ0) (h− Πρh) =Ψ̇μ0

√
n (μ0n − μ0) (h− Π0h)

+ Ψ̇μ0

√
n (μ0n − μ0) (Π0h− Πρh) .

The first term on the r.h.s. is P∂2�μ0

√
n (μ0n − μ0) (h− Π0h). This is zero be-

cause (μ0n − μ0) is in the linear span of elements in R0, and (h− Π0) is or-
thogonal to any element in R0 (w.r.t. P̃ by (3.1) with ρ = 0). Using Holder
inequality, Lemma A.10 shows that the absolute value of the second term on
the r.h.s. of the display is op (1).

We deduce that the asymptotic distribution of
√
nΨn (μ0n) (h− Πnh) is given

by the one of
√
nΨn (μ0) (h− Πρh) for ρ → 0 at a suitable rate. By Lemma 12

and the definition of Ψn (μ0), the latter converges weakly to a centered Gaussian
process as in the statement of Theorem 1.
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A.6. Proof of Proposition 2

This follows from Point 1. in Lemma 13.

A.7. Proof of Proposition 3

Note that
{
G (h− Π0h) : h ∈ R̃1

}
is an R-dimensional Gaussian vector. Hence,

by the spectral decomposition, the distribution of its squared Euclidean norm
is given by the weighted sum of independent squared standard normal ran-
dom variables scaled by the eigenvalues of the covariance matrix. Given that
we are scaling by the number of elements R in the vector, the eigenvectors
{ψk (h) : h ∈ R1} are R1/2 times the standard matrix eigenvectors, while the
eigenvalues {ωk : k ≥ 1} are R−1 times the standard matrix eigenvalues. Hence
the result follows as (3.5) is the squared Euclidean norm divided by R.

A.8. Proof of Theorem 2

The test statistic Ŝn is the square of
√
nΨn (μ0n) (h− Πn,ρh) averaged over a

finite number of functions h. By Theorem 1 and the continuous mapping theorem
its distribution is given by S in (3.5). The latter admits a series representation
as given in Proposition 3. The distribution of the approximation to S when the
sample eigenvalues are used is Ŝ :=

∑
k≥1 ωnkN

2
k . By the triangle inequality,

∣∣∣Ŝ − S
∣∣∣ ≤ ∞∑

k=1

|ωnk − ωk|N2
k . (A.16)

The sum can be split into two parts, one for k ≤ L plus one for k > L where
here L is a positive integer. Hence, deduce that the above is bounded by

L sup
k≤L

|ωnk − ωk|N2
k +

∑
k>L

(ωnk + ωk)N2
k

Using Lemma 13, the first term is op (1) for any fixed integer L. By Lemma 13,
again, there is a positive summable sequence (ak)k≥1 such that, as n → ∞,
the event

{
supk≥1 ωnka

−1
k = ∞

}
is contained in the event {

∑∞
k=1 ωn,k > c} for

some finite constant c. However, by Lemma 13, the latter event has probability
going to zero for finite c as given in that lemma. Hence, the second term in the
display is bounded with probability going to one by(

sup
k>0

ωnka
−1
k

)∑
k>L

akN
2
k +

∑
k>L

ωkN
2
k ,

where supk>0 ωnka
−1
k = Op (1). Given that

E

[∑
k>L

akN
2
k +

∑
k>L

ωkN
2
k

]
≤
∑
k>L

(ak + ωk) → 0
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as L → ∞, deduce that letting L → ∞ slowly enough, (A.16) is op (1). Hence,
we have shown that both Ŝn and Ŝ converge in distribution to S. In fact, Ŝ
converges in probability.

A.9. Proof of Corollary 1

This is a consequence of the last statement in Lemma 8.

Appendix B: Additional numerical details

Tables 7–16 report more simulation results. The column heading “No Π” means
that no correction was used in estimating the test statistic and the covariance
function. This means that instead of using (h− Πnh) we just use h, which is
the naive estimator in the presence of a nuisance parameter. The column head-
ing “Size” stands for the nominal size and the simulated frequency of rejection
should be close to this when the null is true. For the short names used in the
tables, refer to Tables 1, 2, and 4. The model Lin1Poly2 used in the infinite di-
mensional model is defined in (4.1). The model LinPoly2Local is defined in (4.2).

Table 7

Finite Dimensional Model. Simulated frequency of rejections for n = 100, and various
combinations of signal to noise ratio σ2

μ/ε
, and variables correlation �. The true model is

Lin3. Restrictions Lin1 and Lin2 should be rejected. The column heading “Size” stands for
the nominal size.

Lin1 Lin2 Lin3 LinAll
� σ2

μ/ε
Size No Π Π No Π Π No Π Π No Π Π

0 1 0.10 1.00 1.00 0.99 0.99 0.08 0.12 0.05 0.13
0 1 0.05 1.00 1.00 0.96 0.98 0.03 0.06 0.02 0.07
0 0.2 0.10 0.71 0.78 0.44 0.50 0.08 0.12 0.05 0.13
0 0.2 0.05 0.54 0.66 0.25 0.36 0.04 0.06 0.02 0.07

0.75 1 0.10 0.91 0.95 0.21 0.31 0.05 0.10 0.07 0.14
0.75 1 0.05 0.80 0.90 0.12 0.20 0.02 0.05 0.03 0.07
0.75 0.2 0.10 0.28 0.39 0.08 0.14 0.05 0.10 0.07 0.14
0.75 0.2 0.05 0.16 0.25 0.03 0.06 0.02 0.05 0.03 0.07

Table 8

Finite Dimensional Model. Simulated frequency of rejections for n = 1000, and various
combinations of signal to noise ratio σ2

μ/ε
, and variables correlation �. The true model is

Lin3. Restrictions Lin1 and Lin2 should be rejected. The column heading “Size” stands for
the nominal size.

Lin1 Lin2 Lin3 LinAll
� σ2

μ/ε
Size No Π Π No Π Π No Π Π No Π Π

0 1 0.10 1.00 1.00 1.00 1.00 0.09 0.11 0.07 0.10
0 1 0.05 1.00 1.00 1.00 1.00 0.05 0.05 0.04 0.06
0 0.2 0.10 1.00 1.00 1.00 1.00 0.10 0.11 0.07 0.11
0 0.2 0.05 1.00 1.00 1.00 1.00 0.05 0.05 0.04 0.06

0.75 1 0.10 1.00 1.00 1.00 1.00 0.06 0.09 0.06 0.10
0.75 1 0.05 1.00 1.00 1.00 1.00 0.03 0.05 0.03 0.04
0.75 0.2 0.10 1.00 1.00 0.48 0.60 0.06 0.09 0.06 0.10
0.75 0.2 0.05 1.00 1.00 0.32 0.45 0.03 0.05 0.03 0.04
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Table 9

Finite Dimensional Model. Simulated frequency of rejections for n = 100, and various
combinations of signal to noise ratio σ2

μ/ε
, and variables correlation �. The true model is

LinAll. Restrictions Lin1, Lin2, and Lin3 should be rejected. The column heading “Size”
stands for the nominal size.

Lin1 Lin2 Lin3 LinAll
� σ2

μ/ε
Size No Π Π No Π Π No Π Π No Π Π

0 1 0.10 1.00 1.00 1.00 1.00 1.00 1.00 0.06 0.11
0 1 0.05 1.00 1.00 1.00 1.00 1.00 1.00 0.03 0.05
0 0.2 0.10 0.84 0.88 0.80 0.85 0.77 0.82 0.05 0.13
0 0.2 0.05 0.71 0.77 0.65 0.75 0.62 0.72 0.02 0.07

0.75 1 0.10 1.00 1.00 1.00 1.00 1.00 1.00 0.07 0.14
0.75 1 0.05 1.00 1.00 1.00 1.00 1.00 1.00 0.03 0.07
0.75 0.2 0.10 0.95 0.97 0.89 0.93 0.80 0.87 0.07 0.14
0.75 0.2 0.05 0.89 0.94 0.80 0.89 0.66 0.80 0.03 0.07

Table 10

Finite Dimensional Model. Simulated frequency of rejections for n = 1000, and various
combinations of signal to noise ratio σ2

μ/ε
, and variables correlation �. The true model is

LinAll. Restrictions Lin1, Lin2, and Lin3 should be rejected. The column heading “Size”
stands for the nominal size.

Lin1 Lin2 Lin3 LinAll
� σ2

μ/ε
Size No Π Π No Π Π No Π Π No Π Π

0 1 0.10 1.00 1.00 1.00 1.00 1.00 1.00 0.49 0.08
0 1 0.05 1.00 1.00 1.00 1.00 1.00 1.00 0.23 0.05
0 0.2 0.10 1.00 1.00 1.00 1.00 1.00 1.00 0.08 0.10
0 0.2 0.05 1.00 1.00 1.00 1.00 1.00 1.00 0.04 0.06

0.75 1 0.10 1.00 1.00 1.00 1.00 1.00 1.00 0.07 0.10
0.75 1 0.05 1.00 1.00 1.00 1.00 1.00 1.00 0.03 0.05
0.75 0.2 0.10 1.00 1.00 1.00 1.00 1.00 1.00 0.06 0.10
0.75 0.2 0.05 1.00 1.00 1.00 1.00 1.00 1.00 0.03 0.05

Table 11

Finite Dimensional Model. Simulated frequency of rejections for n = 100, and various
combinations of signal to noise ratio σ2

μ/ε
, and variables correlation �. The the true model

is Lin1Poly4. Restrictions Lin1, Lin2, Lin3, and LinAll should be rejected. The column
heading “Size” stands for the nominal size.
Lin1 Lin2 Lin3 LinAll Lin1Poly

� σ2
μ/ε

Size No Π Π No Π Π No Π Π No Π Π No Π Π
0 1 0.10 0.97 0.94 0.97 0.94 0.97 0.95 0.59 0.61 0.03 0.15
0 1 0.05 0.94 0.91 0.95 0.92 0.95 0.92 0.54 0.50 0.01 0.09
0 0.2 0.10 0.71 0.72 0.72 0.74 0.73 0.75 0.30 0.31 0.04 0.12
0 0.2 0.05 0.57 0.62 0.58 0.64 0.61 0.68 0.23 0.23 0.01 0.06

0.75 1 0.10 0.94 0.95 0.93 0.93 0.85 0.88 0.61 0.61 0.02 0.13
0.75 1 0.05 0.89 0.92 0.86 0.90 0.69 0.79 0.54 0.52 0.01 0.06
0.75 0.2 0.10 0.70 0.77 0.57 0.66 0.32 0.39 0.33 0.31 0.01 0.14
0.75 0.2 0.05 0.55 0.68 0.39 0.53 0.17 0.28 0.25 0.24 0.00 0.08
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Table 12

Finite Dimensional Model. Simulated frequency of rejections for n = 1000, and various
combinations of signal to noise ratio σ2

μ/ε
, and variables correlation �. The true model is

Lin1Poly4. Restrictions Lin1, Lin2, Lin3, and LinAll should be rejected. The column
heading “Size” stands for the nominal size.

Lin1 Lin2 Lin3 LinAll Lin1Poly
� σ2

μ/ε
Size No Π Π No Π Π No Π Π No Π Π No Π Π

0 1 0.10 1 1 1 1 1 1 0.92 0.91 0.03 0.1
0 1 0.05 1 1 1 1 1 1 0.9 0.88 0.02 0.05
0 0.2 0.10 1 0.99 1 0.99 1 0.99 0.75 0.72 0.04 0.1
0 0.2 0.05 1 0.98 1 0.98 1 0.99 0.7 0.65 0.01 0.05

0.75 1 0.10 1 1 1 1 1 1 0.89 0.87 0.02 0.09
0.75 1 0.05 1 1 1 1 1 1 0.87 0.84 0 0.05
0.75 0.2 0.10 1 0.99 1 0.99 0.99 0.99 0.75 0.73 0.02 0.11
0.75 0.2 0.05 1 0.99 1 0.99 0.99 0.98 0.72 0.67 0.01 0.06

Table 13

Infinite Dimensional Model. Simulated frequency of rejections for n = 100, and various
combinations of signal to noise ratio σ2

μ/ε
, and variables correlation �. The true model is

Lin1Poly2. Restriction LinAll should be rejected. The column heading “Size” stands for the
nominal size.

Lin1NonLin2 LinAll
� σ2

μ/ε
Size No Π Π No Π Π

0 1 0.10 0.00 0.12 0.00 0.91
0 1 0.05 0.00 0.06 0.00 0.84
0 0.2 0.10 0.00 0.12 0.00 0.42
0 0.2 0.05 0.00 0.06 0.00 0.31

0.75 1 0.10 0.00 0.11 0.00 0.97
0.75 1 0.05 0.00 0.06 0.00 0.93
0.75 0.2 0.10 0.00 0.11 0.00 0.51
0.75 0.2 0.05 0.00 0.06 0.00 0.38

Table 14

Infinite Dimensional Model. Simulated frequency of rejections for n = 1000, and various
combinations of signal to noise ratio σ2

μ/ε
, and variables correlation �. The true model is

Lin1Poly2. Restriction LinAll should be rejected. The column heading “Size” stands for the
nominal size.

Lin1NonLin2 LinAll
� σ2

μ/ε
Size No Π Π No Π Π

0 1 0.10 0.00 0.09 0.99 1.00
0 1 0.05 0.00 0.04 0.82 1.00
0 0.2 0.10 0.00 0.09 0.00 1.00
0 0.2 0.05 0.00 0.04 0.00 1.00

0.75 1 0.10 0.00 0.11 1.00 1.00
0.75 1 0.05 0.00 0.03 1.00 1.00
0.75 0.2 0.10 0.00 0.11 0.17 1.00
0.75 0.2 0.05 0.00 0.03 0.02 1.00
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Table 15

Infinite Dimensional Model. Simulated frequency of rejections for n = 5000, and various
combinations of signal to noise ratio σ2

μ/ε
, and variables correlation �. The true model is

Lin1Poly2. Restriction LinAll should be rejected. The column heading “Size” stands for the
nominal size.

Lin1NonLin2 LinAll
� σ2

μ/ε
Size No Π Π No Π Π

0 1 0.10 0 0.12 1 1
0 1 0.05 0 0.05 1 1
0 0.2 0.10 0 0.12 1 1
0 0.2 0.05 0 0.05 0.97 1

0.75 1 0.10 0 0.11 1 1
0.75 1 0.05 0 0.06 1 1
0.75 0.2 0.10 0 0.11 1 1
0.75 0.2 0.05 0 0.06 1 1

Table 16

Infinite Dimensional Model. Simulated frequency of rejections for n = 100, and various
combinations of signal to noise ratio σ2

μ/ε
, and variables correlation �. The true model is

Lin1Poly2Local. Restriction LinAll should be rejected. The column heading “Size” stands for
the nominal size. The local power is reported for different deviations from the lower

dimensional model via the constant c defined after (4.2).
� σ2

μ/ε
Size No Π Π No Π Π No Π Π

c
0.1 0.5 1

0 1 0.10 0.00 0.10 0.00 0.13 0.00 0.18
0 1 0.05 0.00 0.06 0.00 0.06 0.00 0.10
0 0.2 0.10 0.00 0.10 0.00 0.11 0.00 0.12
0 0.2 0.05 0.00 0.06 0.00 0.05 0.00 0.06

0.75 1 0.10 0.00 0.12 0.00 0.14 0.00 0.21
0.75 1 0.05 0.00 0.06 0.00 0.07 0.00 0.13
0.75 0.2 0.10 0.00 0.12 0.00 0.12 0.00 0.13
0.75 0.2 0.05 0.00 0.07 0.00 0.06 0.00 0.07

c
2 5 10

0 1 0.10 0.00 0.38 0.00 0.93 0.01 1.00
0 1 0.05 0.00 0.27 0.00 0.86 0.00 0.99
0 0.2 0.10 0.00 0.16 0.00 0.46 0.00 0.88
0 0.2 0.05 0.00 0.09 0.00 0.32 0.00 0.79

0.75 1 0.10 0.00 0.49 0.00 0.98 0.26 1.00
0.75 1 0.05 0.00 0.35 0.00 0.95 0.06 1.00
0.75 0.2 0.10 0.00 0.19 0.00 0.56 0.00 0.95
0.75 0.2 0.05 0.00 0.12 0.00 0.43 0.00 0.91
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