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Abstract: We consider the problem of detecting a general sparse mix-
ture and obtain an explicit characterization of the phase transition under
some conditions, generalizing the univariate results of Cai and Wu. Addi-
tionally, we provide a sufficient condition for the adaptive optimality of a
Higher Criticism type testing statistic formulated by Gao and Ma. In the
course of establishing these results, we offer a unified perspective through
the large deviations theory. The phase transition and adaptive optimality
we establish are direct consequences of the large deviation principle of the
normalized log-likelihood ratios between the null and the signal distribu-
tions.
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1. Introduction

Modern technological advancements have ushered in a new scientific regime in
which researchers simultaneously take measurements of a very large number of
units with only a small fraction of units potentially exhibiting a signal. Typical
examples include microarrays in genomics [13] and microwave probes in cos-
mology [39]; this new regime is ubiquitous in modern science [14]. Moreover, in
many applications the signal is believed to be not only sparse but also sufficiently
weak such that consistent identification of signal exhibiting units is impossible.
In such a regime, two statistical problems immediately come to mind. First is
the detection problem: for which sparsity levels can the presence of a signal be
consistently detected? Second is the adaptation problem: does there exist a test
which can detect a detectable signal without knowledge of the signal sparsity?

The detection problem is formally stated as a sparse mixture testing problem

H
(n)
0 : X1, . . . , Xn

iid∼ Pn, (1)

H
(n)
1 : X1, . . . , Xn

iid∼ (1 − εn)Pn + εnQn (2)
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where εn ∈ (0, 1) and {Pn} and {Qn} are collections of probability distributions
on, say for convenience, a separable metric space X . A consistent sequence of
tests for testing (1)-(2) is a sequence of measurable functions ϕn : Xn → {0, 1}
such that

lim
n→∞

P
H

(n)
0

(ϕn(X1, . . . , Xn) = 1) + P
H

(n)
1

(ϕn(X1, . . . , Xn) = 0) = 0.

To model the sparsity of the signal, the sparse mixture detection literature has
adopted the calibration

εn = n−β (3)

with 0 < β < 1. This calibration is used throughout, and henceforth we drop
the subscript n from εn. The detection problem is to characterize, for fixed
{Pn} and {Qn}, the values β such that there exists a consistent sequence of
tests for the testing problem (1)-(2). For such β, the collection of mixtures
{(1 − n−β)Pn + n−βQn} is said to be detectable. Note that by the Neyman-
Pearson lemma, the likelihood ratio test is consistent whenever the collection of
mixtures {(1 − n−β)Pn + n−βQn} is detectable. However, the likelihood ratio
test is not a solution to the adaptation problem as it requires knowledge of β.
The adaptation problem remains of practical interest.

Arguably the prototypical sparse mixture detection problem is the sparse
normal mixture detection problem considered by Ingster [23] and Jin [24, 25].
Specifically, this is the testing problem (1)-(2) under calibration (3) with Pn =
N(0, 1) and Qn = N(μn, 1) where μn =

√
2r logn and r ∈ (0, 1). Ingster [23] and

Jin [24, 25] independently derived a subtle phase transition in this seemingly
simple detection problem. A delicate asymptotic analysis showed that if β <
β∗(r), then there exists a consistent sequence of tests to test (1)-(2) where

β∗(r) =
{

1
2 + r if r ≤ 1

4 ,

1 − (1 −√
r)2+ if r > 1

4 .

Here, the notation (x)+ := max{x, 0} for x ∈ R is used. Additionally, Ingster
and Jin independently showed that if β > β∗(r), then no sequence of tests is
consistent for testing (1)-(2). The existence of a subtle phase transition in an
apparently simple detection problem sparked subsequent research interest in
sparse mixture detection. Phase transitions have been discovered in a variety
of other sparse mixture detection problems beyond the sparse normal mixture
setting [19, 2, 10, 5, 12, 18]. In other words, the literature has established in
various settings the existence of some β∗ which characterizes when it is possible
to consistently test (1)-(2). We generically refer to β∗ as a detection boundary. In
investigating the asymptotic consequences of signal rarity and strength on vari-
ous statistical tasks, a theoretical framework called the Asymptotic Rare/Weak
(ARW) model has been introduced [27, 11]. The framework’s introduction has
been followed by an active research program arguably spearheaded by Jin and
collaborators [11, 27, 20, 5, 28, 26, 29]. We refer the reader to the review articles
[11, 27] for a detailed treatment.
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In the context of sparse mixture detection, the phase transitions were initially
obtained through delicate asymptotic analyses of the likelihood ratio test. Later,
a unified approach to deriving phase transitions for general sparse mixtures on R

was put forth by Cai and Wu [6]. Cai and Wu characterized the exact asymptotic
order of the Hellinger distance between Pn and (1− n−β)Pn + n−βQn in terms
of β, and it turns out the exact asymptotic order fundamentally determines
the phase transition (under some regularity conditions). Many of the phase
transitions in the literature follow directly from the results of Cai and Wu (see
Section V of [6]). Ditzhaus [9] extended the results of Cai and Wu [6] to a
larger class of univariate sparse mixtures beyond those satisfying the regularity
conditions of [6].

In the adaptation problem, Donoho and Jin [10] delivered a key construction
when investigating the sparse normal mixture detection problem. Donoho and
Jin formulated a sequence of tests based on Tukey’s Higher Criticism statistic
that is consistent whenever β < β∗(r) and adapts to not only the sparsity level
β but also to the signal strength r. Specifically, Donoho and Jin considered the
sequence of tests

ψHCn
:= 1{

HCn>
√

2(1+δ) log logn

} (4)

where δ > 0 is an arbitrary constant and the Higher Criticism statistic is defined
as

HCn := sup
t∈R

∣∣∑n
i=1 1{Xi≤t} − nΦ(t)

∣∣√
nΦ(t)(1 − Φ(t))

. (5)

Here, Φ is the cumulative distribution function of the standard normal distribu-
tion. Calculating pi = 1 − Φ(Xi), a change of variable yields a more evocative
form

HCn = sup
u∈(0,1)

∣∣∑n
i=1 1{pi≤u} − nu

∣∣√
nu(1 − u)

.

With this formulation in mind, Higher Criticism is attractive in that it can
be widely applied to sparse mixture detection beyond the initial sparse normal
mixture setting. One need only craft p-values {pi}1≤i≤n from the observations
{Xi}1≤i≤n to use in HCn. We refer the reader to the review articles [11, 27] for
a detailed discussion of Higher Criticism and its applications beyond the sparse
normal mixture detection problem originally in mind.

Remarkably, Higher Criticism achieves the detection boundary in many other
sparse mixture detection problems beyond the sparse normal mixture setting.
For example, the optimality of Higher Criticism for signal detection in the het-
eroscedastic sparse normal mixture with Pn=N(0, 1) and Qn=N(

√
2r logn, σ2)

was established by Cai, Jeng, and Jin [5]. In the case of Gaussian null Pn =
N(0, 1) and general Qn (under some conditions), Cai and Wu proved that Higher
Criticism is optimal. Later, Ditzhaus [9] proved that Higher Criticism is optimal
for general distributions Pn and Qn on R (again, under some conditions).
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1.1. Our contributions

Our main contribution is a unified perspective through which we answer the
detection problem and the adaptation problem in the general case where Pn

and Qn are probability distributions on an abstract space X . Each is discussed
in the context of the existing literature.

1.1.1. Detection problem

The existing literature has largely focused on the setting where the probability
distributions Pn and Qn are on R. However, the data measured from each unit
in many modern applications is typically multivariate or structured in some
manner (e.g. graphs, partitions, and ranks). In particular, the sparse signal
detection problem is of interest when Pn and Qn are probability distributions
on an abstract space X . The existing literature does not offer a clean and unified
solution in this general settings (such as that of [6] in the case X = R). Namely,
a general framework is not available to derive the detection boundary β∗.

Of course, the Neyman-Pearson lemma asserts that the optimal testing proce-
dure is the likelihood ratio test since (1)-(2) is a testing problem with simple null
and alternative hypotheses. In principle, the detection boundary β∗ can always
be derived via a direct examination of the asymptotics of the likelihood ratio
test. But even in the case X = R the analysis is often difficult and is delicately
tailored on a problem-by-problem basis. In fact, Cai and Wu [6] themselves
note that existing analyses of the likelihood ratio test in the literature (such as
[10, 23]) rely “on the normality assumption of the null distribution” in order to
obtain “the limiting distribution of the log-likelihood ratio near the detection
boundary” (page 2219 in [6]). The work of Cai and Wu [6] is groundbreaking
precisely because it sidesteps such an analysis. Specifically, they obtain a uni-
fied solution in the case of X = R by examining the Hellinger distance between
Pn and (1 − ε)Pn + εQn rather than examining the asymptotic distribution
of the likelihood ratio. Thus, we aim to obtain a similar unified framework in
the abstract X case which sidesteps the need for establishing the asymptotic
distribution of the likelihood ratio.

One might argue that a new abstract framework is not needed to derive the
detection boundary in the abstract X case. It might be suggested that the data
be reduced to real-valued summary statistics, that is, to consider a function
T : X → R and obtain the real-valued statistics {T (Xi)}ni=1. Letting PT

n and
QT

n denote the distribution of T (X) when X ∼ Pn and X ∼ Qn respectively,
we then have the induced testing problem

H
(n)
0 : T (X1), . . . , T (Xn) iid∼ PT

n ,

H
(n)
1 : T (X1), . . . , T (Xn) iid∼ (1 − ε)PT

n + εQT
n .

Since the {T (Xi)}ni=1 are real-valued, one might then attempt to apply the result
of Cai and Wu [6] to derive the detection boundary in this induced problem.
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One might then hope this corresponds to the detection boundary for the original
problem (1)-(2).

This line of thinking is attractive but it is very unclear how to choose T ,
especially in the our general setup with abstract X . A poor choice of T will result
in summary statistics {T (Xi)}ni=1 which lose too much information compared to
the original data {Xi}ni=1. Then the detection boundary in the induced problem
will not match the detection boundary in (1)-(2). Of course, in light of the
Neyman-Pearson lemma, one can always choose the likelihood ratio T (x) =
dMn

dPn
(x) where Mn = (1 − ε)Pn + εQn. Though this choice does not lose us

information in the context of testing, an attempt to apply Theorem 3 of [6]
requires us to understand the asymptotic behavior of the null distribution of the
likelihood ratio dMn

dPn
(null distribution quantiles are needed to apply Theorem

3 of [6]). This is precisely the difficulty we are trying to avoid in the first place!
There is no other obvious choice for T , and so there is a substantial gap between
the result of Cai and Wu [6] and solution for the detection problem for abstract
X . Hence, we seek to generalize the framework of Cai and Wu [6] to the abstract
setting.

As mentioned before, Cai and Wu [6] characterized the exact asymptotic
order of the Hellinger distance between Pn and (1−n−β)Pn +n−βQn to derive
the detection boundary β∗. Their results and proofs rely on examining the
asymptotic behavior of the function x �→ dQn

dPn
(x) evaluated at specific quantiles

of Pn (e.g. Theorem 3 in [6]). The fact that Pn and Qn are distributions on R is
put to good use by virtue of examining quantiles. Since we are considering the
abstract X case, the notion of quantiles is ill-defined and there is no immediately
natural analogue. To address the abstract X case, our first contribution is a
unified perspective through the theory of large deviations. The core idea of Cai
and Wu [6] in characterizing the sharp Hellinger asymptotics is crucial to our
analysis; the large deviations theory gives suitable tools to treat the general case
with Cai and Wu’s idea in hand.

1.1.2. Adaptation problem

Just as the detection problem is of interest when Pn and Qn are probability
distributions on an abstract space X , so too is the adaptation problem. Given
the success of Higher Criticism (5) in the case X = R, one would hope to modify
Higher Criticism in some way to the abstract setting. The natural idea is to use
a function T : X → R to obtain the real-valued statistics {T (Xi)}ni=1 and apply
Higher Criticism.

While one cannot select T to be the the likelihood ratio x �→ dMn

dPn
(x), where

Mn = (1 − ε)Pn + εQn, since it relies on knowledge of β, we are able to select
T (x) = dQn

dPn
(x). Applying Higher Criticism to both of these choices is exactly

equivalent since the definition (5) involves a supremum over t ∈ R. Though
generically requiring knowledge of both Pn and Qn, the statistic is adaptive to
the signal sparsity.

This Higher Criticism type testing statistic was proposed by Gao and Ma
(Section 3.2 of [18]). While the statistic’s formulation is general, Gao and Ma
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studied the behavior of this statistic in a specific sparse mixture detection prob-
lem. It is not known in the literature whether this statistic is optimal in our
abstract setting, that is to say, it is unknown whether it achieves the detec-
tion boundary. Our second main contribution is the formulation of a sufficient
condition ensuring the optimality of Gao and Ma’s statistic.

Organization

The remainder of the paper is organized as follows. Section 2 reviews the con-
nection between Hellinger asymptotics and phase transitions established by Cai
and Wu [6], states some requisite definitions from large deviations theory, and
presents our first main result characterizing the phase transition in general
sparse mixture testing problems (under some technical conditions). Section 3
reviews the Higher Criticism type testing statistic proposed by Gao and Ma
(Section 3.2 of [18]) and presents a sufficient condition under which this statis-
tic furnishes optimal tests that are adaptive to the signal sparsity. Section 4
illustrates our results through some examples; derivations for these results are
found in the supplement [30]. These derivations in the supplement importantly
showcase the typical methods of using the results presented here in the main
text. Section 5 discusses our results and a few directions of further work. Proofs
not presented in the main text are found in the supplement [30].

Notation

We use the following notation throughout the paper. For a, b ∈ [−∞,∞], denote
a ∨ b = max{a, b} and a ∧ b = min{a, b}. For sequences {an}, {bn} ⊂ [−∞,∞],
denote an = o(bn) if an

bn
→ 0 as n → ∞. Further, denote an = ω(bn) if

bn = o(an). For positive sequences {an}, {bn}, denote an � bn if there exists a
constant C > 0 not depending on n such that an ≤ Cbn. Denote an � bn if
bn � an, and denote an � bn if an � bn and an � bn. For a ∈ [−∞,∞], denote
(a)+ = max{a, 0}. Denote R+ = [0,∞). For a probability measure P , let Pn de-
note the n-fold product measure of P . A probability measure Q on a measurable
space is said to be absolutely continuous with respect to a probability measure
P on the same measurable space if P (A) = 0 implies Q(A) = 0 for every mea-
surable set A. We denote this as Q 
 P . The total variation distance between
P and Q is given by TV(P,Q) = supA |P (A) − Q(A)|. The Hellinger distance

between P and Q is given by H(P,Q) =
(∫ (√

dP/dν −
√
dQ/dν

)2
dν

)1/2

where ν is a measure such that P,Q 
 ν. We also use P ⊗ Q to denote the
product measure with marginals P and Q respectively.

2. A large deviations perspective on detection limits

To determine the fundamental detection limits, we follow the approach laid out
by Cai and Wu [6] in characterizing the Hellinger asymptotics. Cai and Wu [6]



4988 S. Kotekal

only obtain results in the univariate case, namely where {Pn} and {Qn} are
probability distributions on R. We generalize their results and offer a unified
perspective through the theory of large deviations.

2.1. Preliminaries

Without loss of generality, we will take Qn 
 Pn for all n ≥ 1. No generality is
lost as argued in Section III.C in [6]. Assume further that {Pn} and {Qn} are
dominated by a common measure on X and so admit densities {pn} and {qn}.
We bundle these assumptions together as Assumption 2.1, which will be in force
for the remainder of the paper.

Assumption 2.1. The probability distributions {Pn} and {Qn} are dominated
by a common measure on a separable metric space X and admit densities {pn}
and {qn}. Furthermore, Qn 
 Pn for all n ≥ 1.

The following definition introduces precise quantities β∗ and β∗ which enable
a precise statement of the detection problem. Specifically, the detection problem,
for fixed {Pn} and {Qn}, is the problem of explicitly characterizing β∗ and β

∗.

Definition 2.1. Consider the testing problem (1)-(2) with calibration (3). De-
fine

β
∗ := inf

{
β ≥ 0 : lim

n→∞
TV(Pn

n , ((1 − n−β)Pn + n−βQn)n) = 0
}
,

β∗ := sup
{
β ≥ 0 : lim

n→∞
TV(Pn

n , ((1 − n−β)Pn + n−βQn)n) = 1
}

where TV denotes the total variation distance.

By the Neyman-Pearson lemma, β
∗ is the smallest number such that if

β > β
∗, then every sequence of tests for testing (1)-(2) has a sum of Type I

and Type II errors converging to one. Likewise, β∗ is the largest number such
that if β < β∗, then there exists a sequence of tests for testing (1)-(2) with
vanishing sum of Type I and Type II errors. The quantities β

∗ and β∗ can
be equivalently characterized by the asymptotics of the Hellinger distance. The
analysis is much more amenable due to the tensorization of the Hellinger dis-
tance, and the following lemma gives a clean characterization [6].

Lemma 2.1 (Equations (25) and (26) - [6]). Consider the testing problem (1)-
(2) with calibration (3). Let H2

n(β) := H2(Pn, (1 − n−β)Pn + n−βQn) where H
is the Hellinger distance. Then

β
∗ = inf{β ≥ 0 : H2

n(β) = o(n−1)},
β∗ = sup{β ≥ 0 : H2

n(β) = ω(n−1)}.

Lemma 1 of [6] establishes the result 0 ≤ β∗ ≤ β
∗ ≤ 1, confirming the

intuition that β∗ ≤ β
∗ and additionally establishing that any phase transition

must occur in [0, 1].
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2.2. Main results

We present our main results in this section. First, we briefly state a few def-
initions which are special cases of definitions formulated in the general large
deviations theory [8].

To motivate the forthcoming definitions, we sketch our approach to the detec-
tion problem. In the univariate case (X = R), Cai and Wu [6] examine qn

pn
(x) at

various quantiles of the null distribution Pn. Roughly speaking, the intuition is
that the value of qn

pn
(x) quantifies how much evidence observing the realization

X = x gives us towards determining whether X comes from the null distribution
Pn or the signal distribution Qn. To elaborate, for each s > 0 let xs denote the
n−s quantile of Pn. As described in [6], in many situations a function t : R+ → R

such that qn
pn

(xs) = nt(s)(1+o(1)) can be found. The value t(s) thus indicates how
much evidence observing X = xs provides for favoring Qn over Pn. Of course,
the right tail of Pn (that is, 1−n−s quantiles) is also examined [6]. The function
t turns out to be fundamental in that Cai and Wu [6] are able to establish an
explicit formula for the detection boundary β∗ in terms of t.

Their intuition is attractive, namely to quantify the evidence for which ob-
serving the quantile xs gives for favoring Qn over Pn. The issue is that the
notion of quantiles is not sensible for an abstract X . Our approach is to invert
the idea. We seek a function s : R → [0,∞] such that for an “evidence” level
t ∈ R, the probability a draw X ∼ Pn from the null yields evidence level t is
approximately n−s(t). Roughly speaking, we wish to be able to say something
to the effect of P

{
qn
pn

(X) ≈ nt
}

≈ n−s(t) where X ∼ Pn. If such a statement
could be made, then perhaps an explicit formula for the detection boundary β∗

could be derived in terms of the function s.
The large deviations theory enables us to make this intuition rigorous. The

first definition is that of a rate function, which essentially plays the role of the
function s described in our sketch.

Definition 2.2. Let Y be a separable metric space. A rate function I : Y →
[0,∞] is a lower semicontinuous function. A rate function I is good if the sublevel
sets {y ∈ Y : I(y) ≤ α} are compact for all α ≥ 0.

We have stated the general, standard definition of the rate function. For our
main purpose, we will take Y = R since an evidence level t is a real number.
However, there will be occasions to make other choices of Y , mainly in inter-
mediate steps of proofs in the study of various applications. The next definition
enables us to make precise probability statements of the kind we desire. Again,
it is stated in its general, standard form.

Definition 2.3. Let {μn} be a family of probability measures on (Y ,B) where
Y is a separable metric space and B is the completed Borel field on Y . We
say that {μn} satisfies the large deviation principle with speed {an} and rate
function I if for all Γ ∈ B,

− inf
y∈Γ◦

I(y) ≤ lim inf
n→∞

an logμn(Γ) ≤ lim sup
n→∞

an logμn(Γ) ≤ − inf
y∈Γ

I(y).
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Here, {an} is a sequence of reals with an → 0. Additionally, Γ◦ and Γ denote
the interior and closure of Γ respectively.

We specialize the definition of the large deviation principle further to a form
most frequently used in our arguments. Note that the following definition re-
quires that I be a good rate function, whereas the general definition of the large
deviation principle does not have such a requirement.

Definition 2.4. Suppose {Pn} and {Qn} satisfy Assumption 2.1. We say that
the sequence of (normalized) log-likelihood ratios

{ log qn
pn

logn

}
satisfies the large

deviation principle under the null if there exists a good rate function I : R →
[0,∞] and for all Borel sets Γ ⊂ R we have

− inf
t∈Γ◦

I(t) ≤ lim inf
n→∞

1
logn · logP

(
log qn

pn
(Xn)

logn ∈ Γ
)

≤ lim sup
n→∞

1
logn · logP

(
log qn

pn
(Xn)

logn ∈ Γ
)

≤ − inf
t∈Γ

I(t)

where Xn ∼ Pn.

With these definitions in place, we have a framework in place such that the
rough statement P{ qn

pn
(Xn) ≈ nt} ≈ n−I(t) can be made precise and manipu-

lated rigorously. Beyond just this technical utility, there is also some intuition.
The rate function I quantifies the asymptotic order by which Qn deviates from
Pn. For example, if t ∈ R is an evidence level such that I(t) is large, then it
is relatively unlikely to observe qn

pn
(Xn) ≈ nt when the observation Xn is truly

from the null, i.e. Xn ∼ Pn. In other words, observing qn
pn

(Xn) ≈ nt consti-
tutes evidence against the null. In our main result, the rate function I is the
fundamental object determining the phase transition.

Theorem 2.1. Suppose {Pn} and {Qn} are probability distributions that satisfy
Assumption 2.1 for the testing problem (1)-(2) with calibration (3). Suppose
there exists some γ > 1 such that the tail condition

lim sup
n→∞

1
logn · logE

[(
qn
pn

(Xn)
)γ]

< ∞ (6)

holds, where Xn ∼ Pn. Suppose further that
{ log qn

pn

logn

}
satisfies the large deviation

principle under the null. Let I : R → [0,∞] be the associated good rate function.
Then

β
∗ ≤ 1

2 +
(

sup
t≥0

{
t− I(t) + 1 ∧ I(t)

2

})
+
.

and
β∗ ≥ 1

2 + sup
t>0

{
t− I(t) + 1 ∧ I(t)

2

}
.
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The most interesting situation is when the upper and lower bounds meet,
yielding a detection boundary.

Corollary 2.1. Consider the setting of Theorem 2.1. If the conditions of The-
orem 2.1 hold and(

sup
t≥0

{
t− I(t) + 1 ∧ I(t)

2

})
+

= sup
t>0

{
t− I(t) + 1 ∧ I(t)

2

}
,

then β∗ = β
∗ = β∗ where

β∗ := 1
2 +

(
sup
t≥0

{
t− I(t) + 1 ∧ I(t)

2

})
+
. (7)

Corollary 2.1 is our main result concerning phase transitions in the general
sparse mixture detection problem. As mentioned before, the rate function I is
fundamental in that it fully determines the detection boundary (provided the
conditions of Corollary 2.1 hold).

2.3. Comparison to Cai and Wu

It is worth pausing to compare the role of the rate function with an analogous
function in the framework of Cai and Wu [6]. We state the main theorem re-
garding phase transitions from [6] below with notational modifications to fit our
context. Recall that Cai and Wu work in the X = R setting.

Theorem 2.2 (Theorem 3 - [6]). Consider the testing problem (1)-(2) with
calibration (3). Suppose Assumption 2.1 holds. Let Fn and zn denote the cumu-
lative distribution function and quantile function of Pn respectively, i.e. zn(p) =
inf{y ∈ R : Fn(y) ≥ p} for p ∈ [0, 1]. Assume that the log-likelihood ratio
�n := log qn

pn
satisfies

lim
n→∞

sup
s≥(log2 n)−1

∣∣∣∣�n(zn(n−s)) ∨ �n(zn(1 − n−s))
logn − γ(s)

∣∣∣∣ = 0

for some measurable function γ : R+ → R. If γ > 0 on a set of positive Lebesgue
measure, then

β∗ = 1
2 +

(
ess sup

s≥0

{
γ(s) − s + s ∧ 1

2

})
+
.

Here, ess sup denotes the essential supremum with respect to Lebesgue measure
on R.

In Theorem 3 of [6], the fundamental object determining the phase transition
is the function γ : R+ → R, which is determined by the asymptotics of the
log likelihood ratio log qn

pn

logn evaluated at the n−s and 1 − n−s quantiles of Pn
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across s ≥ (log2 n)−1. Intuitively, the function γ quantifies the order at which
Qn deviates from Pn. Roughly speaking, the points s at which γ(s) > 0 are
those Pn-quantiles which are “relatively more likely” under Qn compared to Pn;
roughly, γ quantifies the order of “more likely”.

As discussed earlier, it is clear that the univariate nature of Pn and Qn is
heavily exploited as it is the likelihood ratio’s asymptotic behavior at quan-
tiles of Pn that determines the fundamental object γ. In the abstract setting,
it is the rate function of a large deviation principle that precisely quantifies the
asymptotic order of the likelihood ratio at various regions in the sample space.
The rate function gives us a way to measure how much Qn “deviates” from Pn

asymptotically, thus allowing us to lift the core idea of Cai and Wu (namely
the idea to sharply characterize Hellinger asymptotics) to the abstract setting.
We investigate the relationship between the rate function I and the function γ
below in Proposition 2.1. In fact, we can show that our condition that the nor-
malized log-likelihood ratios satisfy the large deviation principle under the null
(Definition 2.4) is implied, under some constraints, by the condition formulated
in Theorem 3 of [6].

Proposition 2.1. Suppose {Pn} and {Qn} are probability distributions on R

satisfying Assumption 2.1 for the testing problem (1)-(2). Let z(n) denote the
quantile function of Pn. Assume there exist measurable functions α0 : R+ → R

and α1 : R+ → R such that

lim
n→∞

sup
s≥(log2 n)−1

∣∣∣∣∣ log qn
pn

(z(n)(n−s))
logn − α0(s)

∣∣∣∣∣ = 0, (8)

lim
n→∞

sup
s≥(log2 n)−1

∣∣∣∣∣ log qn
pn

(z(n)(1 − n−s))
logn − α1(s)

∣∣∣∣∣ = 0. (9)

If α0 and α1 are continuous, then
{ log qn

pn

logn

}
satisfies the large deviation principle

under the null with good rate function

I(t) = I0(t) ∧ I1(t)

where I0 and I1 are good rate functions given by

I0(t) = inf{s ≥ 0 : t = α0(s)},
I1(t) = inf{s ≥ 0 : t = α1(s)}.

We use the convention that inf ∅ = ∞.

Note that if the conditions of Corollary 2.1 also hold, then the detection
boundary is

β∗ = 1
2 +

(
sup
t≥0

{
t− I(t) + 1 ∧ I(t)

2

})
+
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= 1
2 +

(
sup
t≥0

sup
s:s=I(t)

{
t− s + 1 ∧ s

2

})
+

= 1
2 +

(
sup

s∈I(R)
sup

t:I(t)=s

{
t− s + 1 ∧ s

2

})
+

= 1
2 +

(
sup

s∈I(R)

{
α0(s) ∨ α1(s) − s + 1 ∧ s

2

})
+

= 1
2 +

(
sup
s≥0

{
α0(s) ∨ α1(s) − s + 1 ∧ s

2

})
+

where the final equality follows from the observation that −s + 1∧s
2 ≤ 0 for all

s ≥ 0. Observe that this is the same formula that appears in Theorem 3 of [6]
with γ(s) = α0(s)∨α1(s). Note that essential supremum and supremum coincide
as we assumed α0 and α1 are continuous. However, note that the conditions of
Theorem 3 in [6] are not exactly the same as the conditions in Proposition 2.1,
and so Proposition 2.1 does not fully import the results of Theorem 3 in [6].

3. A Higher Criticism type statistic

Beyond the detection problem, the adaptation problem is of practical interest.
Namely, it is of interest to furnish an optimal sequence of tests that adapts to the
unknown signal sparsity β. The existing literature of sparse mixture detection
has focused on the setting where Pn and Qn are distributions on R, and a useful
idea in this setting is to compare the empirical distribution of the data to the null
distribution, usually after some transformation. Typically, this transformation
takes the form of calculating a p-value pi from each univariate data point Xi. In
the abstract setting, this idea can be mimicked by calculating a p-value pi from
some univariate statistic of the abstract observation Xi. As mentioned in the
introduction, Higher Criticism can be interpreted as evaluating the goodness-of-
fit between the empirical p-value distribution and the null distribution. Recall
that the associated test is given by ψHCn

= 1{
HCn>

√
2(1+δ) log logn

} where

δ > 0 is an arbitrary constant and the Higher Criticism statistic is

HCn = sup
u∈(0,1)

∣∣∑n
i=1 1{pi≤u} − nu

∣∣√
nu(1 − u)

.

Ditzhaus [9] established that Higher Criticism is adaptively optimal (meaning
it achieves the detection boundary without needing knowledge of β) in a wide
class of univariate sparse mixture detection problems beyond the original sparse
normal mixture problem considered by Donoho and Jin [10].

To apply Higher Criticism to a sparse mixture detection problem with ab-
stract X , a univariate p-value pi from a univariate summary statistic of Xi ∈ X
must be constructed. Gao and Ma, in Section 3.2 of [18], propose to apply
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Higher Criticism to the univariate statistics
{

qn
pn

(Xi)
}n

i=1
. In this section, we

first review Gao and Ma’s construction and then give a sufficient condition for
optimality.

3.1. Gao and Ma’s construction

For notational convenience, we will refer to the null and alternative hypotheses
in (1)-(2) as H0 and H1, suppressing the dependence on n as the context makes
it clear. Gao and Ma formulate a Higher Criticism type testing statistic for the
testing problem (1)-(2) when the distributions {Pn} and {Qn} are known but
β is unknown. We reproduce their formulation here (see Sections 3.2 and A.5 of
[18]). For a collection of events A , define

HCn(A ) := sup
A∈A

|Tn(A)|

where
Tn(A) :=

∑n
i=1 1{Xi∈A} − nPn(A)√
nPn(A)(1 − Pn(A))

.

As Gao and Ma note, the supremum in the definition of HCn(A ) is largely for
the sake of adapting to the unknown sparsity parameter β. Focusing attention
on Tn, fix A ∈ A and consider the test

ϕA := 1{|Tn(A)|>cn}

where cn is a positive diverging sequence to be specified. Observing that
EH0(Tn(A)) = 0 and VarH0(Tn(A)) = 1 for all n ≥ 1, consider

PH0{ϕA = 1} = PH0{|Tn(A)| > cn} ≤ 1
c2n

by Chebyshev’s inequality, and so the Type I error goes to zero. Turning at-
tention to the Type II error, observe that if cn diverges at a slower order than
|EH1(Tn(A))| diverges, then for all sufficiently large n, it follows that

PH1{ϕA = 0} = PH1{|Tn(A)| ≤ cn}
≤ PH1{|EH1(Tn(A))| − |Tn(A) −EH1(Tn(A))| ≤ cn}
= PH1{|EH1(Tn(A))| − cn ≤ |Tn(A) −EH1(Tn(A))|}

≤ VarH1(Tn(A))
(|EH1(Tn(A))| − cn)2

� VarH1(Tn(A))
(EH1(Tn(A)))2 .

Therefore, if cn diverges sufficiently slowly and (EH1 (Tn(A)))2
VarH1 (Tn(A)) → ∞, then both

the Type I and Type II error go to zero and so the test ϕA is consistent. Thus,
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characterizing the consistency of the test ϕA boils down to characterizing when
(EH1 (Tn(A)))2
VarH1 (Tn(A)) → ∞.

Gao and Ma directly calculate (equation (A.36) in Section A.5 of [18])

(EH1(Tn(A)))2

VarH1(Tn(A)) � (nε(Qn(A) − Pn(A)))2

nPn(A) + nεQn(A)

and so if (nεQn(A))2
nPn(A)+nεQn(A) → ∞, then (EH1 (Tn(A)))2

VarH1 (Tn(A)) → ∞. (As Gao and Ma
note, the condition nε2Pn(A) → ∞ is also sufficient but has the strong and
uninteresting requirement β < 1

2 .) Equivalently, if both

nε2Qn(A)2

Pn(A) → ∞,

nεQn(A) → ∞

hold, then (EH1 (Tn(A)))2
VarH1 (Tn(A)) → ∞. The conditions are equivalent to

β <
1
2 + logQn(A)

logn + 1
2 min

(
1,− logPn(A)

logn

)
. (10)

In other words, if β satisfies condition (10) for all n sufficiently large for some
sequence of events {An} ⊂ A and cn is a positive sequence diverging sufficiently
slowly, then the sequence of tests ϕAn is consistent for testing (1)-(2). To maxi-
mize the set of β satisfying condition (10) for all n sufficiently large, one should
select an event An that maximizes the right hand side of (10) for each n. Since
the right hand side of (10) is increasing in Qn(A) and decreasing in Pn(A), Gao
and Ma argue that the Neyman-Pearson lemma implies that the maximum is
achieved by the event An =

{
x ∈ X : qn

pn
(x) > tn

}
for some tn > 0. With this

observation in mind, Gao and Ma naturally select the collection of events

A ∗
n :=

{{
x ∈ X : qn

pn
(x) > t

}
: t > 0

}
(11)

and define the general HC-type statistic

HC∗
n := HCn(A ∗

n ) = sup
t>0

∣∣∣∣∑n
i=1 1{ qn

pn
(Xi)>t

} − nP
(

qn
pn

(Yn) > t
)∣∣∣∣√

nP
(

qn
pn

(Yn) > t
)
P
(

qn
pn

(Yn) ≤ t
) (12)

where Yn ∼ Pn are independent of the data {Xi}ni=1. The corresponding higher
criticism test is

ψHC∗
n

:= 1{
HC∗

n>
√

2(1+δ) log log(n)
} (13)

where δ > 0 is an arbitrary constant. Note that the cutoff
√

2(1 + δ) log logn
is the same cutoff used in Donoho and Jin’s original formulation of the Higher
Criticism test (4); this choice of cutoff is not at all surprising since HC∗

n is
precisely Higher Criticism applied to univariate statistics.
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3.2. A sufficient condition for optimality

With the review of Gao and Ma’s construction complete, we now proceed to
giving a sufficient condition for its optimality. We formally define a quantity
βHC which demarcates the sparsity levels for which ψHC∗

n
consistently tests

(1)-(2).

Definition 3.1. Consider the testing problem (1)-(2) with calibration (3). De-
fine

βHC := 1
2 + sup lim inf

n→∞

{
logQn(An)

logn + 1
2 min

(
1,− logPn(An)

logn

)}
where the supremum runs over sequences of events {An} with An ∈ A ∗

n . Here,
A ∗

n is given by (11).

Proposition 3.1. Consider the testing problem (1)-(2) with calibration (3). If
β < βHC, then ψHC∗

n
is consistent. Here, ψHC∗

n
is given by (13).

Proof. The choice of threshold
√

2(1 + δ) log log(n) is given by Theorem 1.1
of [10]. Theorem 1.1 of [10] implies that this choice of threshold results in a
vanishing Type I error of ψHC∗

n
.

Turning attention to the Type II error, if β in the calibration (3) satisfies
condition (10) for all n sufficiently large for some sequence of events Ãn ∈ A ∗

n ,
then it immediately follows that

PH1{ψHC∗
n

= 0} = PH1

{
sup

An∈A ∗
n

|Tn(An)| ≤
√

2(1 + δ) log log(n)
}

(14)

≤ PH1

{
|Tn(Ãn)| ≤

√
2(1 + δ) log log(n)

}
(15)

= PH1{ϕÃn
= 0} (16)

where cn =
√

2(1 + δ) log log(n). Since β satisfies condition (10) for Ãn for all
sufficiently large n, it immediately follows that |EH1(Tn(Ãn))| diverges at a
polynomial rate. Moreover, it follows that cn diverges sufficiently slowly as cn
grows at a sub-polynomial rate. Hence, PH1{ϕÃn

= 0} converges to zero and so
the Type II error of ψHC∗

n
vanishes. Therefore, it has been shown that if β in

the calibration (3) satisfies condition (10) for some sequence of events Ãn ∈ A ∗
n

for all n sufficiently large, then ψHC∗
n

is consistent.

At first glance, it seems that HC∗
n requires full knowledge of both the null

{Pn} and signal {Qn} distributions. In contrast, Donoho and Jin’s formulation
of Higher Criticism (5) for the sparse normal mixture detection problem does
not require knowledge of the signal strength r. The key observation is that
the computation of HC∗

n actually only requires knowledge of the collection A ∗
n

so that one may calculate supA∈A ∗
n
|Tn(A)|. In some cases, it is possible to

calculate the supremum without knowing {Qn} explicitly. For example, consider
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the sparse normal mixture detection problem with Pn = N(0, 1) and Qn =
N(

√
2r logn, 1) with 0 < r ≤ 1. A direct calculation shows

A ∗
n =

{{
x ∈ R : qn

pn
(x) > t

}
: t > 0

}
=
{{

x ∈ R : exp
(
x
√

2r logn− r logn
)
> t
}

: t > 0
}

= {{x ∈ R : x > t} : t ∈ R} .

Therefore, HC∗
n reduces to Donoho and Jin’s Higher Criticism statistic HCn

given in (5), and so knowledge of the signal strength r is not required. In many
problems, it may be the case that computation of HC∗

n does not require full
knowledge of the signal distribution Qn even though Gao and Ma’s construction
gives that impression.

With the HC∗
n testing statistic in hand, the next challenge is to investigate

βHC. When
{ log qn

pn

logn

}
satisfies the large deviation principle under the null, a

lower bound can be derived for βHC.

Proposition 3.2. Consider the testing problem (1)-(2) with calibration (3).
Suppose there exists some γ > 1 such that the tail condition (6) holds for
Xn ∼ Pn. Suppose further that

{ log qn
pn

logn

}
satisfies the large deviation principle

under the null. Let I : R → [0,∞] be the associated good rate function. Then,

β∗ ≥ βHC ≥ 1
2 + sup

c≥0

{
sup
t>c

{t− I(t)} + 1 ∧ inft≥c I(t)
2

}
. (17)

When the rate function associated to the large deviation principle is convex
(and satisfies some further constraints) and the conditions of Corollary 2.1 hold,
it can be shown that the lower and upper bounds in (17) match.

Theorem 3.1. Consider the setting of Proposition 3.2 and suppose that the
conditions of Corollary 2.1 hold. Suppose I is convex. Let D := {t ∈ R : I(t) <
∞} and note that D is an interval with some left endpoint d and some right
endpoint d. Suppose further that I is such that if d ∈ D, we have that I is right-
continuous at d and if d ∈ D, we have that I is left-continuous at d. Let I ′−(t) be
the left derivative of I (see Definition 6.2) with the domain of definition extended
as in the statement of Theorem 6.3. Define t0 := sup{t ≥ 0 : I ′−(t) ≤ 0} and set
t0 = 0 if {t ≥ 0 : I ′−(t) ≤ 0} = ∅. Likewise, define t1 := sup{t ≥ 0 : I ′−(t) ≤ 1}
and set t1 = 0 if {t ≥ 0 : I ′−(t) ≤ 1} = ∅. If t0 ∨ t1 < ∞, then

βHC = β∗ = β
∗ = β∗ = 1

2 +
(

sup
t≥0

{
t− I(t) + 1 ∧ I(t)

2

})
+
.

The Gärtner-Ellis Theorem gives general conditions ensuring the convexity of
the rate function. We state a special case of the Gärtner-Ellis Theorem (Theo-
rem 2.3.6 in [8]) specialized for our use in the sparse mixture detection problem.
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In many problems, the Gärtner-Ellis Theorem greatly simplifies the work needed
in determining whether the large deviation principle under the null holds and
computing the corresponding rate function. First, a regularity condition (Defi-
nition 2.3.5 from [8]) is needed.

Definition 3.2. Let Λ : R → (−∞,∞] be a convex function and let DΛ := {λ ∈
R : Λ(λ) < ∞}. We say Λ is essentially smooth if D◦

Λ �= ∅, Λ is differentiable
on D◦

Λ, and limn→∞ |Λ′(λn)| = ∞ for any sequence {λn} ⊂ D◦
Λ converging to a

point on the boundary of D◦
Λ.

The following statement of the Gärtner-Ellis Theorem follows the presenta-
tion of Theorem 2.3.6 in [8] with modifications to suit our setting.

Theorem 3.2 (Gärtner-Ellis). Suppose {Pn} and {Qn} are probability measures
for the testing problem (1)-(2). For λ ∈ R, define

Λn(λ) := 1
logn · logE

[(
qn
pn

(Xn)
)λ
]

where Xn ∼ Pn. Assume that the limit

lim
n→∞

Λn(λ) =: Λ(λ) (18)

exists in [−∞,∞] for λ ∈ R. If Λ is essentially smooth, is a lower semicontin-
uous function, and 0 ∈ D◦

Λ, then
{ log qn

pn

logn

}
satisfies the large deviation principle

under the null with good, convex rate function

Λ∗(t) := sup
λ∈R

{λt− Λ(λ)} .

Proof. Since limn→∞ Λn(λ) exists in [−∞,∞] and 0 ∈ D◦
Λ, it follows that As-

sumption 2.3.2 of [8] is satisfied. Then, Lemma 2.3.9 of [8] yields the convexity
of Λ as well as establishing that Λ(λ) > −∞ for all λ and that Λ∗ is a good
convex rate function. Finally, Theorem 2.3.6 (Gärtner-Ellis) in [8] implies that{ log qn

pn

logn

}
satisfies the large deviation principle under the null with rate function

Λ∗.

Remark 3.1. The Gärtner-Ellis Theorem simplifies calculating the rate function
of the large deviation principle in some exponential families. Suppose {fθ : θ ∈
Θ} is an exponential family in the natural parametrization on a separable metric
space with Θ ⊂ R

d. Write

fθ(x) = c(θ)h(x) exp (〈θ, T (x)〉) .

Taking pn = fθ for some θ ∈ Θ and qn = fθn for some sequence {θn} in Θ, the
limit (18) becomes

Λ(λ) := lim
n→∞

λ log c(θn) + (1 − λ) log c(θ) − log c(λ(θn − θ) + θ)
logn
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where we take log c(λ(θn − θ) + θ) = −∞ if λ(θn − θ) + θ �∈ Θ. Of course, one
must check that the limit exists and the remaining conditions of Theorem 3.2
hold.

4. Examples

To illustrate our results and typical applications, we consider a few examples
and state explicit detection boundaries. Details of our calculations are found in
the supplementary material [30]. The derivations in the supplement highlight
the typical methods of calculation when using the results of Sections 2 and 3.

4.1. Ingster-Donoho-Jin

4.1.1. Univariate

Consider the testing problem (1)-(2) with calibration (3) and distributions Pn =
N(0, 1) and Qn = N(μn, 1). The detection boundary for this testing problem
with calibration μn =

√
2r logn for 0 < r ≤ 1 was obtained by Ingster [23] and

then independently by Jin [24, 25]. Donoho and Jin [10] introduced the Higher
Criticism testing statistic and established its optimality in this sparse mixture
detection problem. Following [6, 18], we refer to the detection boundary as the
Ingster-Donoho-Jin detection boundary.

We illustrate how the large deviations perspective delivers both the Ingster-
Donoho-Jin detection boundary

β∗
IDJ(r) :=

{
1
2 + r if 0 < r ≤ 1

4
1 − (1 −√

r)2+ if r > 1
4

(19)

and the optimality of the Higher Criticism statistic. We use the Gärtner-Ellis
Theorem and Remark 3.1. Before we begin the main computation, note that it
is easily verified that the tail condition (6) is satisfied. Adopting the notation
of Remark 3.1, consider that {N(θ, 1) : θ ∈ R} is an exponential family with
natural parameter θ and log c(θ) = − θ2

2 . Taking θ = 0 and θn = μn, observe
that

Λ(λ) := lim
n→∞

λ log c(θn) + (1 − λ) log c(θ) − log c(λ(θn − θ) + θ)
logn = r(λ2 − λ).

Noting that DΛ = R, Λ is essentially smooth, and Λ is continuous, it follows from
the Gärtner-Ellis Theorem that

{ log qn
pn

logn

}
satisfies the large deviation principle

under the null with good convex rate function Λ∗(t) := supλ∈R
{λt − Λ(λ)}.

Direct calculation yields Λ∗(t) = (t+r)2
4r . It is easily checked that conditions of

Corollary 2.1 are satisfied. Therefore, the detection boundary is given by

β∗(r) = 1
2 +

(
sup
t≥0

{
t− (t + r)2

4r +
1 ∧ (t+r)2

4r
2

})
+

.
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Solving the optimization problem yields β∗(r) = β∗
IDJ (r).

Turning our attention to the Higher Criticism statistic, observe that the gen-
eral HC-type statistic (12) of Gao and Ma reduces to the original Higher Criti-
cism statistic introduced by Donoho and Jin [10]

HC∗
n = sup

t>0

|
∑n

i=1 1{exp(Xiμn−μ2
n/2)>t} − nP (exp(Xμn − μ2

n/2) > t)|√
nP (exp(Xμn − μ2

n/2) > t)P (exp(Xμn − μ2
n/2) ≤ t)

= sup
t∈R

|
∑n

i=1 1{Xi>t} − nP (X > t)|√
nP (X > t)P (X ≤ t)

where X ∼ N(0, 1) is independent of {Xi}ni=1. The conditions of Theorem 3.1
hold, and so the sequence of tests ψHC∗

n
given by (13) achieves the detection

boundary while adapting to the parameters r and β. In other words, βHC = β∗.

4.1.2. Multivariate

The detection boundary for a multivariate version of the sparse normal mixture
testing problem can be obtained in exactly the same fashion. Consider the test-
ing problem (1)-(2) with Pn = N(0,Σ), Qn = N(μn,Σ) where Σ ∈ R

d×d is a
positive definite matrix. Further consider the calibration μn =

√
2r logn·u where

u ∈ R
d with ||u|| = 1. We can use the Gärtner-Ellis Theorem and Remark 3.1.

It can be shown that the large deviation principle under the null is satis-

fied with rate function Λ∗(t) =
(
t+r〈u,Σ−1u〉

)2
4r . Repeating the reasoning from

Section 4.1.1 yields the detection boundary

β∗(r) =

⎧⎨⎩
1
2 + r〈u,Σ−1u〉 if r〈u,Σ−1u〉 ≤ 1

4 ,

1 −
(
1 −
√

r〈u,Σ−1u〉
)2

+
otherwise.

(20)

Details for the relevant calculations are found in the supplement [30].
The term 〈u,Σ−1u〉 captures how the signal direction u and the covariance Σ

interact to influence the detection boundary; the boundary can be summarized
as β∗(r) = β∗

IDJ (〈u,Σ−1u〉r). Notably when Σ = Id we have β∗(r) = β∗
IDJ (r),

meaning neither the direction u nor the dimension d has an impact on the
detection boundary.

One’s initial intuition might raise a red flag here when Σ = Id, thinking that
more structured u ∈ R

d (say, k-sparse) should yield more favorable detection
boundaries than unstructured u ∈ R

d. However, this intuition is applicable
when u is not known exactly but rather is known to belong to a structured
set. In contrast, the problem (1)-(2) is a simple null versus simple alternative
testing problem. With respect to the fundamental limit of the testing problem,
u (along with r and β) are known to the statistician. It is precisely because it is
a simple versus simple testing problem that the likelihood ratio test is optimal
as discussed earlier. Since the likelihood ratio is a function of the univariate
statistics 〈Xi, u〉 when Σ = Id, intuitively the dimension d does not affect the
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detection boundary. Additionally, since Σ = Id an appeal to symmetry implies
u should also not affect the detection boundary.

To illustrate further, consider the one-dimensional problem by forming Wi =
〈Xi, u〉. This transformation intuitively captures all of the relevant information
by an appeal to the likelihood ratio. The transformed data {Wi} is distributed
as

H0 : W1, . . . ,Wn
iid∼ N(0, 1),

H1 : W1, . . . ,Wn
iid∼ (1 − ε)N(0, 1) + εN(

√
2r logn, 1).

The intuition for why β∗(r) = β∗
IDJ(r) is clear after examining this transformed

problem. The application of the Gärtner-Ellis Theorem and Remark 3.1 proves
that this reduction is indeed valid and delivers the correct detection boundary.
Though easy, this multivariate extension of Section 4.1.1 is included to provide
a simple illustration of how the paper’s general theory can quickly yield the
detection boundary in a unified manner. Problem specific transformations can
be completely avoided.

The next natural thought is to compare this multivariate analysis to what
is considered the usual Higher Criticism analysis [11]. For simplicity, consider
Σ = Id and u ∈ R

d a fixed unit vector. In this case, a typical analysis may
combine all of the coordinates of the data {Xi}ni=1 to obtain a collection of nd
univariate data points; Higher Criticism (5) is then applied to the nd points.
To understand how this approach differs from the methodology proposed in
this paper, consider the following natural sparse mixture detection problem
corresponding to the typical Higher Criticism analysis,

H0 : Y1, . . . , Ynd
iid∼ N(0, 1), (21)

H1 : Y1, . . . , Ynd
iid∼ (1 − ε)N(0, 1) + ε(Hu ∗N(0, 1)) (22)

where ε = n−β and Hu = 1
d

∑n
i=1 δ

√
2r logn·ui

. Here, ∗ denotes convolution and
δt denotes the probability measure placing full mass at t.

Now that the data are all univariate, the results of [6] can be applied directly.
Corollary 2 in [6] applies generally to signal distributions which are convolutional
form (here we have Hu ∗N(0, 1)) and so the detection boundary is

β∗
conv(r) =

{
1
2 + r||u||2∞ if r ≤ 1

4||u||2∞
,

1 − (1 − ||u||∞
√
r)2+ if r > 1

4||u||2∞
.

The keen will note β∗
conv(r) = β∗

IDJ(r||u||2∞). In contrast, since Σ = Id and u is
a unit vector, we have β∗(r) = β∗

IDJ(r) where β∗(r) is the detection boundary
(20) coming from the multivariate setup. Notably instead of ||u||2∞ showing up
as in β∗

conv(r), the term ||u||2 = 1 takes its place in β∗(r). Note ||u||∞ ≤ 1, and
so it is easily checked that β∗(r) ≥ β∗

conv(r) for all r > 0.
The inequality β∗ ≥ β∗

conv can be interpreted in plain language as follows.
For any signal strength level r > 0, there exists a consistent sequence of tests
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in the multivariate setup at more severe sparsities than what is possible in the
typical Higher Criticism analysis. Said another way, for a given sparsity level
β, one can successfully test for lower signal strengths r. In other words, there
is nontrivial structure in the multivariate setup which is ignored when one goes
about the usual univariate Higher Criticism analysis.

With the multivariate setup, one is guaranteed that those data points coming
from Qn are, on average, near the point μn =

√
2r logn · u. The structure is

explicitly exploited when applying Gao and Ma’s Higher Criticism type statis-
tic as one essentially calculates 〈Xi, u〉 (see Section A.1.1 in the supplement
[30]). When going about the usual Higher Criticism analysis by putting to-
gether all of the coordinates and considering (21)-(22), one is only guaranteed
that a point coming from Hu ∗ N(0, 1) is near some point in the collection
{
√

2r logn · ui}di=1. The authors of [6] note in Remark 3 that in such convolu-
tional signal distributions the detection boundary is driven only by the maximal
component ||u||∞, and notably the heterogeneity amongst the coordinates in u
is immaterial. In contrast, this heterogeneity is critically exploited in the mul-
tivariate setup.

4.1.3. Brownian motion

With the large deviations perspective in hand, a phase transition can be derived
in a stylized sparse mixture detection problem where our observations are sample
paths of Brownian motion with possible drift. In particular, let X = C([0, 1])
be the space of all real-valued continuous functions on [0, 1], let Pn be the
probability measure on X associated with standard Brownian motion {Bt}t∈[0,1],
and let Qn be the probability measure on X associated with the Brownian
motion with drift {mn(t) + Bt}t∈[0,1]. Here, we take mn(t) =

√
2r logn · f(t)

for some fixed continuously differentiable f : [0, 1] → R with f(0) = 0 and∫ 1
0 |f ′(t)|2 dt = 1. With observations X1, . . . , Xn ∈ X , the problem is to test

(1)-(2). Note that the observations are themselves real-valued functions on [0, 1].
Further note that since f ′ ∈ L2([0, 1]), the measures Pn and Qn are mutually
absolutely continuous (Example 4 in [42]). The normalized log-likelihood ratio
is given by [42]

log dQn

dPn
(X)

logn = − 1
2 logn

∫ 1

0
|m′

n(t)|2 dt + 1
logn

∫ 1

0
m′(t) dXt

= −r +
√

2r√
logn

∫ 1

0
f ′(t) dXt.

It can be shown that the large deviations principle under the null is satisfied with
good rate function I(t) = (t+r)2

4r , and so the detection boundary is exactly given
by β∗

IDJ(r) from Section 4.1.1. Furthermore, it is clear that the rate function I
is indeed convex and that the other conditions of Theorem 3.1 hold. Details for
the relevant calculations are found in the supplement [30].
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4.2. Heteroscedastic normal mixture

Cai, Jeng, and Jin [5] consider the testing problem (1)-(2) in a heteroscedastic
normal mixture setting. More specifically, the setting where Pn = N(0, 1) and
Qn = N(μn, σ

2) is considered with calibration μn =
√

2r logn, r > 0, and fixed
σ2 > 0. Through an analysis of the likelihood ratio, they obtain the detection
boundary

β∗(r, σ2) :=
{

1
2 + r

2−σ2 if 2
√
r + σ2 ≤ 2,

1 − (1−√
r)2+

σ2 if 2
√
r + σ2 > 2.

Note that the detection boundary stated in [5] is in terms of r as a function of
β and σ, whereas the above boundary is in terms of β as a function of r and σ.
The boundaries are equivalent (in [6], see (21) and Section V.C). While one can
straightforwardly obtain the detection boundary through Theorem 1 of [6], we
illustrate a typical calculation under the large deviations perspective. For ease
of calculation, let us take σ2 �= 1 without loss of generality. The case of σ2 = 1
is just the Ingster-Donoho-Jin problem.

To derive the detection boundary, we establish that the large deviation prin-
ciple under the null holds, derive the rate function, and apply Corollary 2.1.
Note that to apply Corollary 2.1, it must be checked that the tail condition (6)
holds; this is verified in the supplement [30]. It can be shown that the large
deviation principle under the null holds with rate function

I(t) =

⎧⎨⎩ σ2

(σ2−1)2

(√
(σ2 − 1)t + r −

√
r
σ2

)2
if t(σ2 − 1) + r ≥ 0,

∞ if t(σ2 − 1) + r < 0.

Corollary 2.1 can be applied (after checking the conditions hold) with the rate
function I to obtain the same detection boundary proved by Cai, Jeng, and
Jin [5]. Additionally, it can be checked that Theorem 3.1 holds and so the
Higher Criticism test defined in (13) achieves the detection boundary. See the
supplement [30] for details.

4.3. Mixture of a mixture I

A sparse mixture detection problem making more use of the multivariate setting
is the following. Consider the testing problem (1)-(2) with Pn = N(0, Id) and
Qn = 1

2N(μ1, Id)+ 1
2N(μ2, Id) where μ1 =

√
2r logn ·u1 and μ2 =

√
2r logn ·u2

where u1, u2 are fixed and linearly independent unit vectors in R
d and r > 0.

Note that the tail condition (6) is easily verified. It can be shown that the large
deviation principle under the null is satisfied with good rate function

I(t) =
{

(t+r)2
4r if t ≥ −r,

(t+r)2
2r(1+〈u1,u2〉) if t < −r.

Given the form of I, Corollary 2.1 immediately implies that the detection bound-
ary β∗(r) is exactly the same as the Ingster-Donoho-Jin detection boundary
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β∗
IDJ(r). It is also readily checked that Gao and Ma’s Higher Criticism statis-

tic furnishes a test which achieves the detection boundary. The details of the
calculations yielding these results are found in the supplement [30].

4.4. Mixture of a mixture II

The following sparse mixture detection problem is inspired by the testing equiv-
alence of clustering problem considered by Gao and Ma (Section 2.3 in [18]).
Let u, v ∈ R

d be orthogonal unit vectors, i.e. ||u|| = ||v|| = 1 and 〈u, v〉 = 0.
Let μn =

√
2r logn · u and νn =

√
2r logn · v with fixed 0 < r ≤ 1. Con-

sider the testing problem (1)-(2) with Pn = 1
2N(μn, Id) + 1

2N(−μn, Id) and
Qn = 1

2N(νn, Id) + 1
2N(−νn, Id). As in previous examples, we establish a large

deviations principle under the null, derive the rate function, and apply Corol-
lary 2.1 to obtain the detection boundary. The tail condition (6) is verified to
hold in the supplement [30].

It can be shown the the large deviation principle under the null is satisfied
with good rate function

I(t) =

⎧⎪⎨⎪⎩
(t+2r)2

4r if t < −2r,
(t+2r)2

8r if |t| ≤ 2r,
(t+2r)2

4r − t if t > 2r.

Since the tail condition (6) is satisfied and since the conditions of Corollary 2.1
can be verified to hold, it follows that the detection boundary is given by an
application of Corollary 2.1. A calculation can be done (see the supplement [30]
for details) to obtain the detection boundary

β∗(r) =
{ 3

2r + 1
2 if r ≤ 1

5 ,√
1 − (1 − 2r)2+ if r > 1

5 .

We have exactly recovered the detection boundary stated in Theorem 2.3 of
[18]. In fact, this detection boundary holds in a more general setting than that
originally considered by Gao and Ma [18]. Additionally, it can be checked that
Theorem 3.1 holds.

4.5. Detection of a low-rank perturbation

Consider the testing problem (1)-(2) with calibration (3) and distributions Pn =
N(0, Ip), Qn = N(0, Ip +H) where H is a rank k < p symmetric matrix with its
k nonzero eigenvalues equal to r > 0. Note that we can write H = Q · rAk ·Qᵀ

where Q ∈ R
p×p is an orthogonal matrix and Ak is a diagonal matrix with the

first k entries on the diagonal equal to one and the remaining diagonal entries
equal to zero.
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It can be shown that the tail condition (6) holds and that the large deviations
principle under the null is satisfied with good rate function

I(t) =
{

r+1
r t if t ≥ 0,

∞ otherwise.

It can be verified that Corollary 2.1 can be applied, yielding the detection bound-
ary

β∗(r) =
{

1
2 if r ≤ 1,
1 − 1

1+r if r > 1.

Note the detection boundary is exactly the same as in the heteroscedastic normal
mixture testing problem with μ = 0 and σ2 = 1 + r. It can also be checked that
Theorem 3.1 holds. Details for the calculations yielding the above results are
found in the supplement [30].

4.6. Detection of sparse correlated pairs

In Section 5 of the review article [11], Donoho and Jin consider the problem
of detecting the presence of a small collection of correlated pairs. More specifi-
cally, the testing problem (1)-(2) with Pn = N(0, I2) and Qn = N(μn12,Σ) is
considered where μn =

√
r logn for r > 0 and

12 =
(

1
1

)
, Σ =

(
1 ρ
ρ 1

)
with −1 < ρ < 1. Without loss of generality, we take ρ �= 0. The case ρ = 0
reduces to a special case of the sparse multivariate normal mixture studied
in Section 4.1.2. Donoho and Jin illustrate the applicability of their original
formulation of the Higher Criticism statistic and perform some simulations. We
will deduce the detection boundary and investigate the behavior of Gao and
Ma’s Higher Criticism type testing statistic. It turns out that the detection
boundary is highly related to the detection boundary in Section 4.2. A large
deviation principle under the null can be established with good rate function

I(t) =

⎧⎨⎩
(ρ−1)(r+2ρt)

2ρ2 if ρt + r ≤ (1+ρ)r
4 ,

1+ρ
ρ2

(√
ρt + r −

√
r

1+ρ

)2
if ρt + r > (1+ρ)r

4 .

An application of Corollary 2.1 along with a lengthy calculation yields the de-
tection boundary

β∗(r, ρ) =
{

1
2 + r

1−ρ if 2
√
r + ρ ≤ 1,

1 − (1−√
r)2+

1+ρ if 2
√
r + ρ > 1.

This is precisely the detection boundary of Cai, Jeng, and Jin [5] with 1+ρ = σ2.
Note that we have parametrized the mean μ =

√
r logn here, whereas the mean
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has parametrization
√

2r logn in Section 4.2. Theorem 3.1 can be verified to
hold. The details for the calculations yielding these results are found in the
supplement [30].

We presented the case d = 2 as this was the problem considered by [11].
However, our techniques can be used to treat the general d > 2 case. For
proper setup, let us parametrize μn =

√
2r
d logn. Set Pn = N(0, Id) and

Qn = N(μn1d,Σ) where 1d ∈ R
d is the vector with all entries equal to one

and Σ = (1 − ρ)Id + ρ1d1ᵀ
d is the matrix with 1 on the diagonal and ρ every-

where else. Since it is anyway required that ρ ∈ (− 1
d−1 , 1) in order for Σ to be

positive definite, let us only consider ρ > 0 for simplicity. Though the details
become more complicated in the d > 2 case, the broad path of the calculation
for the d = 2 case can be followed to derive the rate function,

I(t) =

⎧⎨⎩
(ρ−1)(r(d−1)+ρdt)

ρ2d(d−1) if tρ(d− 1) + r ≤ 1−ρ+ρd
d2 r,

1−ρ+ρd
ρ2(d−1)2

(√
tρ(d− 1) + r −

√
r

1−ρ+ρd

)2
if tρ(d− 1) + r > 1−ρ+ρd

d2 r.

Just as before, the resulting detection boundary is an instantiation of the de-
tection boundary from Section 4.2. The detection boundary is

β∗(r, ρ) =
{

1
2 + r

1+ρ−ρd if 2
√
r + ρ(d− 1) ≤ 1,

1 − (1−√
r)2+

1−ρ+ρd if 2
√
r + ρ(d− 1) > 1.

This is precisely the detection boundary from Section 4.2 with σ2 = 1− ρ+ ρd.
After a moment’s thought, this quantity is natural as it is the eigenvalue of Σ
corresponding to the eigenvector 1√

d
1d, which is the direction of the signal.

The explicit expression for the detection boundary reveals a subtle interaction
between the dimension d and the correlation level ρ. Observe that if d > 1 + 1

ρ ,
then the condition 2

√
r+ρ(d−1) > 1 is satisfied for all r ≥ 0. Hence, if d > 1+ 1

ρ ,
the detection boundary becomes

β∗(r, ρ) = 1 − (1 −√
r)2+

1 − ρ + ρd
.

Strikingly, β∗(r, ρ) is actually increasing in d. In other words, at a given sparsity
level, weaker signals can be detected for larger d compared to smaller d. One’s
intuition might sound the alarm here as it seems the problem should get harder
for larger d.

However, a comparison to Section 4.2 yields clarity. Since the signal is in
the direction of 1√

d
1d, the noise level under the signal distribution is effectively

1 − ρ + ρd. The noise level under the signal distribution grows with d while
the noise level under the null distribution is constant. This is analogous to
σ2 increasing in the detection boundary of Section 4.2. As remarked in [5],
“Interestingly, in certain range, the heteroscedasticity alone can separate the null
and alternative hypotheses (i.e. even if the non-null effects have the same mean
as that of the null effects.)” In our setting, the same phenomenon is attributed
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to the dimension d. In the heteroscedastic problem of Section 4.2, σ2 = 2 is the
critical variance. Namely, heteroscedasticity alone enables successful detection
if and only if σ2 > 2. In the same way, d = 1 + 1

ρ is the critical dimension
(equivalently, one can speak in terms of critical correlation). The supplement
[30] outlines how the rate function and detection boundary are obtained.

4.7. Stochastic block model: Detection of a change in a node’s
community

In some areas (such as sociology, political science, and neuroscience), the ob-
servational units exhibit relationships amongst one another thereby forming a
network. The field of network analysis deals with addressing statistical ques-
tions regarding the observed network, such as determining whether there exist
latent communities in the network, identifying the communities if they do exist,
and possibly estimating parameters of a statistical model. We refer the reader
to a recent survey [17] covering fundamental statistical limits in a number of
estimation and testing tasks in network analysis.

The stochastic block model (SBM) [21] is a popular model for capturing the
presence of communities in a network. We refer the reader to the survey [1] for
further background. In the simplest case of two communities, consider n nodes
and let z ∈ {−1, 1}n denote the community membership for the n nodes, i.e.
zi denotes to which community node i belongs. The statistician’s observation is
the random symmetric matrix A ∈ {0, 1}n×n, where Aij = Aji = 1 denotes the
presence of an edge between nodes i and j. Likewise, Aij = Aji = 0 denotes the
absence of an edge. The data generating process is determined by the community
structure, namely for 1 ≤ i < j ≤ n, we have independent draws

Aij ∼
{

Bernoulli(p) if zi = zj ,

Bernoulli(q) if zi �= zj .

We set Aji = Aij to enforce symmetry and Aii = 0 to disallow self-loops.
Here, p, q ∈ (0, 1) are parameters. Note that p gives the probability of an edge
between two nodes in the same community and q gives the probability of an
edge between two nodes in different communities. When p > q the SBM is said
to be assortative; otherwise, the SBM is said to be disassortative. There is a
litany of statistical tasks associated with the SBM; perhaps the most popular is
the community detection problem (that is, estimation of z under a suitable loss
function) [1, 41].

To illustrate an application of our results, we will consider a sparse mixture
detection problem related to two sample testing of SBMs. Suppose we observe
two independent SBMs on the same set of n nodes. We have a node of interest,
say node i∗, and the statistical problem is to determine whether i∗ is in a com-
munity with the same members in each observed network. As an example of a
practical application, suppose we observe brain networks consisting of n neurons
from healthy individuals and diseased individuals, and the scientific question of
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interest is to determine whether the connectivity of neuron i∗ to neighboring
neurons differs between healthy and diseased individuals. Another example en-
tails detecting whether the connectivity of gene i∗ in a gene regulatory network
is different between healthy and diseased individuals (or control and treatment
groups, etc.). An extension of this question is to test whether the community
structure of the full network is the same between the two observed SBMs rather
than exclusively focusing on node i∗. In this line of work, [16] has addressed the
two community case.

We now describe the two-sample testing problem with a specific node i∗ of in-
terest. Let z, σ ∈ {−1, 1}n+1 denote community membership for a common set of
n+1 nodes (considering n+1 nodes versus n nodes is only for convenience). The
statistician observes the two independent SBMs denoted by A and B, namely
the independent random symmetric matrices A,B ∈ {0, 1}(n+1)×(n+1) where
Aii = Bii = 0 for all 1 ≤ i ≤ n + 1 and

Aij ∼
{

Bernoulli(p) if σi = σj ,

Bernoulli(q) if σi �= σj ,

Bij ∼
{

Bernoulli(p) if zi = zj ,

Bernoulli(q) if zi �= zj .

for 1 ≤ i < j ≤ n+1 are drawn independently. Here, p, q ∈ (0, 1) are parameters.
To ensure symmetry, set Aji := Aij and Bji := Bij . As mentioned, the problem
of interest is to determine whether node i∗ has the same community members
between the two SBMs A and B. Without loss of generality, let us take i∗ = 1. To
formally state the testing problem, let us define SA := {2 ≤ j ≤ n + 1 : σj = σ1}
and SB := {2 ≤ j ≤ n + 1 : zj = z1}. Concretely, the testing problem is to test,
for ε > 0,

H0 : SA = SB , (23)

H1 : |SA ΔSB |
n

> ε. (24)

Here, Δ denotes symmetric difference and so SA ΔSB = {2 ≤ j ≤ n + 1 : σj =
σ1, zj �= z1 or σj �= σ1, zj = z1}. For ease of notation, let us denote B(π) :=
Bernoulli(π) for π ∈ (0, 1). By sufficiency, only the observed connectivity of
node 1 in both SBMs is relevant to the hypothesis testing problem. Under the
null hypothesis,(

A1j
B1j

)
∼ 1{σ1=σj}B(p) ⊗B(p) + 1{σ1 �=σj}B(q) ⊗B(q)

independently for 2 ≤ j ≤ n + 1. Under the alternative, there are two cases,(
A1j
B1j

)
∼
{

1{σ1=σj}B(p) ⊗B(p) + 1{σ1 �=σj}B(q) ⊗B(q) if j ∈ (SA ΔSB)c,
1{σ1=σj}B(p) ⊗B(q) + 1{σ1 �=σj}B(q) ⊗B(p) if j ∈ SA ΔSB .
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Recall that under the alternative, n−1|SA ΔSB | > ε. Assuming the two com-
munities in A are of roughly equal size, we can formulate the related sparse
mixture detection problem

H0 :
(
A1j
B1j

)
iid∼ 1

2 ·B(p) ⊗B(p) + 1
2 ·B(q) ⊗B(q), (25)

H1 :
(
A1j
B1j

)
iid∼ (1 − ε)

[
1
2 ·B(p) ⊗B(p) + 1

2 ·B(q) ⊗B(q)
]

+ ε

[
1
2 ·B(p) ⊗B(q) + 1

2 ·B(q) ⊗B(p)
]
. (26)

Note that the indices run over 2 ≤ j ≤ n + 1. Adopting an asymptotic per-
spective, we use the calibration ε = n−β as in (3). Furthermore, set p = nr

1+nr

and q = 1
1+nr where r > 0. Taking Pn = 1

2B(p) ⊗ B(p) + 1
2B(q) ⊗ B(q) and

Qn = 1
2B(p) ⊗ B(q) + 1

2B(q) ⊗ B(p), we are exactly in the setting of testing
(1)-(2).

For the sparse mixture detection problem (25)-(26) it can be shown that the
large deviation principle under the null holds with good rate function

I(t) =

⎧⎪⎨⎪⎩
0 if t = −r,

r if t = r,

∞ otherwise.

Moreover, it can be checked that Corollary 2.1 can be applied, and doing so
yields the detection boundary β∗(r) = 1+1∧r

2 . Note that I is not convex, and
so Theorem 3.1 cannot be invoked. It can also be shown that one can reduce
the bivariate observations (A1j , B1j) down to the univariate observations A1j +
B1j mod 2 without losing information (in terms of the detection boundary). The
details for the derivation of these results are given in the supplement [30]. We
also mention to the reader that the problem (25)-(26) is related to the problem
of sparse binary regression [35].

4.8. Detection with side information

Occasionally in applications, there is additional side information that may be
useful in testing the global null hypothesis (1)-(2). The testing problem (1)-(2)
admits a Bayesian interpretation as the two-groups model [13]. In particular, we
have n individual hypotheses {Hi} corresponding to each observation Xi. We are
testing the global null, i.e. whether the individual hypotheses Hi are null with
probability one (that is, Xi ∼ Pn) for all 1 ≤ i ≤ n, against the alternative in
which each Hi has probability ε of being non-null (that is, Xi ∼ (1−ε)Pn+εQn).
With this interpretation, we are in the setting of multiple testing with n individ-
ual hypotheses. This reformulation is usually the situation in which researchers
find themselves; for example, each individual hypothesis might correspond to a
different gene in a microarray or a different study in a meta-analysis. In such
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applications, there is usually detailed contextual information attached to each
hypothesis and it is desirable to leverage this side information for various hy-
pothesis testing tasks [33, 34, 22, 31, 15, 32, 40].

We consider a stylized problem to investigate how side information affects
fundamental statistical limits. Consider a sequence of z-scores Wi for 1 ≤ i ≤ n
which are N(0, 1) under the null. Under the alternative, an ε fraction of the
Wi exhibit elevated mean, that is, Wi ∼ N(μ, 1) where μ > 0. The signal
detection problem (1)-(2) with this setup is precisely the sparse normal mixture
detection problem considered by Ingster [23] as well as Donoho and Jin [10].
However, suppose for each 1 ≤ i ≤ n, we have additional side information
(independent of the z-scores) that provides a clue as to whether Wi follows the
null distribution or the signal distribution. To represent this side information,
we will let Ai denote a Bernoulli random variable in which the outcome Ai = 1
denotes evidence that Wi follows the signal distribution and the outcome Ai = 0
denotes evidence that Wi follows the null distribution. For simplicity, say that
under the null Ai ∼ Bernoulli(1−p) and under the alternative Ai ∼ Bernoulli(p).
In other words, the side information correctly identifies both the null and the
signal with probability p. While this is a stylized setup, one can think of Ai

as the outcome of a well-trained classifier applied to the side information or an
expert’s judgement derived from existing scientific knowledge. Stated formally,
we have the testing problem

H0 :
(
Ai

Wi

)
iid∼ B(1 − p) ⊗N(0, 1), (27)

H1 :
(
Ai

Wi

)
iid∼ (1 − ε)B(1 − p) ⊗N(0, 1) + εB(p) ⊗N(μ, 1) (28)

for 1 ≤ i ≤ n. Here, we use the notation B(π) = Bernoulli(π) for π ∈ (0, 1).
Adopting the asymptotic perspective, let us calibrate ε = n−β as in (3), let
us take p = nr

1+nr for r > 0, and let us take μ =
√

2ρ logn for 0 < ρ ≤ 1.
Furthermore, let us take Pn = B(1 − p) ⊗ N(0, 1) and Qn = B(p) ⊗ N(μ, 1).
Thus, we are in the setting of testing (1)-(2).

It can be shown that the large deviation principle under the null is satisfied
with good rate function

I(t) =
[
(t− r + ρ)2

4ρ + r

]
∧ (t + r + ρ)2

4ρ .

It can be directly checked that I(t) = (t−r+ρ)2
4ρ +r whenever t ≥ 0 since r, ρ > 0.

After an application of Corollary 2.1 and a lengthy calculation, we obtain the
detection boundary

β∗(r, ρ) =
{

1 − (
√

(1 − r)+ −√
ρ)2+ if 1−r

4 < ρ ≤ 1,
1
2 + ρ + r

2 if 0 < ρ ≤ 1−r
4 .

(29)

The detection boundary β∗(r, ρ) given by (29) is exactly the Ingster-Donoho-
Jin detection boundary when we naively “plug-in” r = 0 without care (see
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Section 4.1). This is entirely as expected since the case r = 0 corresponds to the
setting where the sequence of Bernoulli random variables {Ai} does not provide
strong enough information on the location of the sparse signals. Only the se-
quence of Gaussian variables {Wi} exhibits strong enough signal, and so one can
simply throw out the {Ai} sequence without loss of power. On the other hand,
consider that simply “plugging in” ρ = 0 into the detection boundary formula
yields β∗(r, 0) = 1+1∧r

2 . In this setting, the detection boundary is exactly the
boundary one would obtain by throwing out the Gaussian variables {Wi} (which
now have no signal) and only using the Bernoulli sequence {Ai} for detection.
As seen in the calculations presented in the supplement [30], β∗(r, 0) = 1+1∧r

2
is precisely the boundary one obtains through the rate function of the large
deviations principle under the null associated with just {Ai}.

In the intermediate regimes 0 < r < 1 and 0 < ρ < 1, the detection boundary
β∗(r, ρ) is larger than the Ingster-Donoho-Jin detection boundary and larger
than the boundary 1+1∧r

2 corresponding to using only the Bernoulli sequence
{Ai}. In words, using both the Gaussian and the Bernoulli data yields higher
detection boundaries (meaning we are able to detect weaker signals in sparser
settings) compared to using only the Gaussian data or only the Bernoulli data.
Furthermore, β∗(r, ρ) gives a precise description of how the signal strengths r
and ρ in the Bernoulli and Gaussian sequences relate to one another and affect
the phase transition.

4.9. Curie-Weiss model

We briefly introduce a sparse mixture detection problem in the larger context
of Ising models. There is an existing literature focused on inferential tasks given
multiple independent and identically distributed samples from an unknown
probabilistic graphical model, such as graph selection [38, 3] and property test-
ing/goodness-of-fit testing [7, 4]. Note that in the context of the sparse mixture
detection problems (1)-(2), we have n observations in which possibly (1 − ε)n
are drawn from the Ising model Pn and εn are drawn from the Ising model Qn.
The problem, of course, is to detect the presence of observations drawn from
the Ising model Qn.

We will consider the sample space X =
⋃∞

n=1{−1, 1}n. Consider the testing
problem (1)-(2) where for x ∈ X ,

pn(x) = 1
ZN (θ, 0) exp

⎛⎝ θ

N

∑
1≤i<j≤N

xixj

⎞⎠ · 1{x∈{−1,1}N},

qn(x) = 1
ZN (θ, μ) exp

⎛⎝ θ

N

∑
1≤i<j≤N

xixj + θμ

N∑
i=1

xi

⎞⎠ · 1{x∈{−1,1}N}

where N = �logn�. Further, θ > 0 and μ > 0 are parameters we take to be
fixed and unchanging with n. In the parlance of statistical mechanics, pn and
qn are the Curie-Weiss model on N particles. Each particle takes one of two
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states xi ∈ {−1, 1} for all 1 ≤ i ≤ N . Additionally qn models the existence of an
external magnetic field with strength μ and pn models the absence of an external
magnetic field. The quantity ZN (θ, μ) is the normalizing constant or “partition
function” in the statistical mechanics convention. Note that under both pn and
qn, all of the random variables x1, . . . , xN are all correlated with each other
and the parameter θ controls the strength of this correlation. Intuitively, the
correlation is strong when θ is large and the correlation is weak when θ is small.
Additionally, the parameter μ modulates the probability that each particle takes
value 1 instead of −1. Further background about the Curie-Weiss model (and
related Ising models) can be found in Chapter 2 of [36].

A large deviation principle under the null can be established and the asso-
ciated rate function can be derived. Interestingly, well-known phase transitions
in the behavior of the Curie-Weiss model appear to have an effect on the rate
function and thereby have an effect on the detection boundary. As it is outside
the scope of the present article, we do not undertake a full analysis to obtain
the detection boundary nor evaluate the applicability of Gao and Ma’s statistic.
The situation is discussed in more detail in the supplement [30].

5. Discussion

We have offered a unified perspective on deriving phase transitions in general
sparse mixture detection problems via the large deviations theory. The funda-
mental object determining the phase transition is the the rate function asso-
ciated to the large deviation principle of the normalized log likelihood ratios.
The core phenomenon behind the phase transition lies in the asymptotics of the
Hellinger distance between Pn and (1 − n−β)Pn + n−βQn as identified by Cai
and Wu [6]; the large deviations theory provides suitable machinery to relate
Hellinger asymptotics to phase transitions beyond the univariate sparse mixture
case.

Additionally, we have obtained sufficient conditions on the rate function to
guarantee the optimality of a sequence of tests based on a Higher Criticism type
statistic formulated by Gao and Ma (Section 3.2 of [18]). This statistic HC∗

n

adapts to the signal sparsity β and can be used “off-the-shelf”. Moreover, as
we discussed in Section 3, computation of HC∗

n need not require full knowledge
of the signal distributions {Qn}. Rather, in some problems it may suffice to
consider a certain statistic of the data; of course, considerations will vary on a
problem-to-problem basis.

We imagine that the large deviations perspective offered here will be useful in
deriving phase transitions in more complicated and structured sparse mixture
detection problems beyond what can be derived with the existing univariate the-
ory. Further, we imagine that Gao and Ma’s testing statistic will be practically
useful in light of Theorem 3.1. We conclude with a few remarks.

5.1. Deriving large deviation principles and rate functions

The main results regarding detection boundaries we have presented only specify
how the detection boundary is determined by the rate function when the nor-
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malized log likelihood ratios satisfy a suitable large deviation principle. These
results have nothing to say about how to deduce a large deviation principle
and calculate the associated rate function. This is not so surprising given the
broad setting and the fundamental role of the rate function. Indeed, the main
technical work in specific problems is to deduce the large deviation principle
and the associated rate function. In the few examples we presented in Sec-
tion 4, we have illustrated a small number of techniques useful to establishing
the large deviation principle. Indispensable are the contraction principle (The-
orem 6.1), exponential equivalence (Definition 6.1), and the indistinguishability
of the large deviation principle for exponentially equivalent probability mea-
sures (Theorem 6.2). Lemma 3 in [6] was also quite useful in our examples in
calculating the order of some exponential integrals.

5.2. Sparse mixture of exponentials: necessity of a tail condition

Unfortunately, the tail condition (6) in Theorem 2.1 can preclude calculation of a
detection boundary in some problems. For example, consider the testing problem
(1)-(2) with calibration (3) and Pn = Exponential(1), Qn = Exponential(1+nr)
for r > 0 under the scale parameterization (i.e. Pn has mean 1 and Qn has mean
1 + nr).

It can be shown that lim supn→∞
1

logn logE
[(

qn
pn

(X)
)γ]

= ∞ for all γ > 1
where X ∼ Pn, and so the tail condition (6) fails to hold (see the supplement [30]
for details). However, the testing problem indeed exhibits a detection boundary;
Corollary 4.4 of [9] indicates that β∗ = 1+1∧r

2 . One might be tempted to argue
that the tail condition is simply too strong and that the conclusions of Theo-
rem 2.1 and Corollary 2.1 might still hold. However, it can be shown that this
is not the case. Specifically, it can be shown that the large deviation principle
under the null is satisfied with rate function I with I(t) = t + r for t ≥ −r
and I(t) = ∞ otherwise (see the supplement [30] for details). When r ≤ 1

2 , the
conclusions of Theorem 2.1 and Corollary 2.1 suggest the detection boundary
β∗ = 1 − r, which does not match the detection boundary of [9]. Thus, a tail
condition like (6) is indeed necessary for our large deviations approach. It is
not clear to us if the sparse exponential mixture testing problem can be treated
through alternative means within the large deviations framework.

5.3. Further generalizations

Theorem 2.1 only presents upper and lower bounds on β
∗ and β∗ respectively. In

this paper, we were only interested in when these bounds meet (Corollary 2.1).
It is an open problem to give tight characterizations of β∗ and β∗. Likewise, it is
of interest to furnish an example where normalized log likelihood ratios satisfy
a large deviation principle under the null and where β∗ and β

∗ do not meet.
Finally, it is of interest to develop results in the setting where the observa-

tions are correlated rather than independent and identically distributed. The



5014 S. Kotekal

approach of characterizing the Hellinger asymptotics is no longer tenable as
this method exploited the tensorization property of the Hellinger distance over
product measures. Both problems of determining the phase transitions and de-
veloping optimal procedures are open. In the normal mixture setting, Hall and
Jin [20] develop the Innovated Higher Criticism. Remarkably, Hall and Jin show
that signal detection can actually be easier in some cases; the independent noise
case is statistically the hardest. We refer the interested reader to further discus-
sion in that paper as well as the review article [27].

6. Auxiliary definitions and results

We state below some instrumental results and definitions from the large devia-
tions theory and convex analysis. We follow the presentation found in Chapter
4 of [8] as well as the presentation of [37].

Theorem 6.1 (Contraction principle, Theorem 4.2.1 - [8]). Let X and Y be
Hausdorff topological spaces and f : X → Y a continuous function. Consider a
good rate function I : X → [0,∞].

(a) For each y ∈ Y, define I ′(y) := inf{I(x) : x ∈ X , y = f(x)}. Then I ′ is a
good rate function on Y. Here, we adopt the convention inf ∅ = ∞.

(b) If I controls the large deviation principle with a family of probability mea-
sures {μn} on X , then I ′ controls the large deviation principle associated
with the family of probability measures {μn ◦ f−1} on Y.

Definition 6.1 (Exponential equivalence, Definition 4.2.10 - [8]). Let (Y , d)
be a metric space. The probability measures {μn} and {μ̃n} are called expo-
nentially equivalent with respect to speed {an} if there exist probability spaces
{Ω,Bn, Pn} and two families of Y-valued random variables {Zn} and {Z̃n} with
joint laws {Pn} and marginals {μn} and {μ̃n} respectively such that the follow-
ing condition is satisfied. For each δ > 0, the set {ω ∈ Ω : d(Z̃n, Zn) > δ} is Bn

measurable, and

lim sup
n→∞

an logPn

(
d(Z̃n, Zn) > δ

)
= −∞.

Here, {an} is a sequence of reals with an → 0.

Theorem 6.2 (Indistinguishability of the large deviation principle, Theorem
4.2.13 - [8]). If a large deviation principle with speed {an} and good rate function
I holds for the probability measures {μn}, which are exponentially equivalent to
{μ̃n}, then the same large deviation principle holds for {μ̃n}.

Definition 6.2. Let f : R → [−∞,∞] be a convex function. A real number x∗

is said to be a subgradient of f at x if f(z) ≥ f(x) + x∗ · (z − x) for all z ∈ R.
The set of all subgradients of f at x is called the subdifferential of f at x, and
is denoted by ∂f(x). The mapping x �→ ∂f(x) is called the subdifferential of f .
If ∂f(x) is not empty, f is said to be subdifferentiable at x.
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Theorem 6.3 (Theorem 24.1 - [37]). Let f : R → [−∞,∞] be a closed proper
convex function. For convenience, extend the right and left derivatives f ′

+ and
f ′
− beyond the interval D on which f is finite as follows. For points to the right

of D, set f ′
+ and f ′

− equal to ∞. For points the left of D, set f ′
+ and f ′

− equal
to −∞. Then f ′

+ and f ′
− are increasing functions on R, finite on the interior of

D, such that
f ′
+(z1) ≤ f ′

−(x) ≤ f ′
+(x) ≤ f ′

−(z2)

when z1 < x < z2. Moreover, for every x, we have limz↓x f
′
+(z) = f ′

+(x),
limz↑x f

′
+(z) = f ′

−(x), limz↓x f
′
−(z) = f ′

+(x), and limz↑x f
′
−(z) = f ′

−(x).
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Supplement to “Statistical limits of sparse mixture detection”
(doi: 10.1214/22-EJS2053SUPP; .pdf). This supplement includes proofs for the
results presented in the main text. Additionally, this supplement contains details
for the calculations relevant to the examples discussed in the main text.
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