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Abstract: Determining the number of clusters is crucial for the successful
application of clustering. In this paper, we propose a new order-determination
method called the data augmentation estimator (DAE), for the general
model-based clustering. The estimator is based on a novel idea that aug-
ments data with an independently generated small cluster, which enables
us to justify how the instability of clustering changes with the number of
clusters assumed in clustering. The pattern of instability provides an alter-
native characterization of the true number of clusters to the commonly used
goodness-of-fit measure. By combining the two sources of information ap-
propriately, the proposed estimator reaches asymptotic consistency under
general conditions and is easily implementable. It is also more efficient than
the conventional BIC-type approaches that use the goodness-of-fit measure
only. These properties are illustrated by the simulation studies and real
data examples at the end.

Keywords and phrases: Data augmentation, instability of clustering,
model-based clustering, order determination.

Received August 2021.

1. Introduction

Clustering has been an important research problem in unsupervised statistical
learning for decades. It helps the researchers to detect the latent grouping pat-
tern of data, so that specific sub-populations can be identified. In supervised
learning procedures, the effect of the predictor may vary with the underlying
sub-populations, so clustering of the predictor, if feasible, can also facilitate
statistical modeling.

In the statistical literature, the clustering problem is commonly formulated as
fitting a mixture model [13, 18, 24]. That is, suppose the observed random vector
X is p-dimensional and is absolutely continuous with respect to the Lebesgue
measure ζp on R

p; we assume that f0(·), the probability density function (pdf)
of X, has the form

f0(x) =
∑K

k=1
πk,0f(x, μk,0), (1)

where π1,0, . . . , πK,0 are positive weights with
∑K

k=1
πk,0 = 1, and each cluster

f(·, μk,0) is a pdf with respect to ζp and belongs to the prefixed parametric family
H1 = {f(x, μ) : x ∈ R

p, μ ∈ R
q}. To ensure the identifiability of (1), μk,0’s must

3910

https://imstat.org/journals-and-publications/electronic-journal-of-statistics/
https://doi.org/10.1214/22-EJS2032
mailto:weiluo@zju.edu.cn


Determine the number of clusters by data augmentation 3911

be distinct from each other, and additional regularity conditions must be made
on H1. These regularity conditions were built in 1960s and are applicable to
general parametric families of continuous distributions, except for the family of
uniform distributions with unspecified supports. A summary of relative details
can be found in [19] and [31]. Under these regularity conditions, the parameter
of interest in Model (1) can be formulated as the set ω0 = {(πk,0, μk,0) : k =
1, . . . ,K}, which is invariant of the rearrangements of its elements and thus is
identifiable.

To fit the mixture model (1), numerous methods have been proposed, includ-
ing the maximal likelihood estimator [MLE; 19], the method of moments [19],
and the Group-Sort-Fuse procedure [GSF; 18], etc. Except for GSF, a common
feature of these methods is that their consistency or efficiency hinges on a true
specification of the number of clusters K: if K is underestimated, the working
mixture model cannot recover (1) and the result loses consistency; if K is overes-
timated, the working mixture model will contain redundant parameters, which
adds inefficiency and potential instability to the subsequent modeling. Hence,
the order determination of K is a crucial problem in clustering.

Following the literature of model selection, order determination for clustering
has often been conducted by information criteria, such as BIC and the integrated
completed likelihood [ICL; 5], etc. The common strategy of these methods is to
incorporate a penalty function of the working number of clusters into an appro-
priate goodness-of-fit measure. Commonly used goodness-of-fit measures include
the log-likelihood [13, 17, 22, 24, 32], the gap statistic [30, 33], and the distortion
statistic [26], etc. Because these measures convey an elbow shape asymptotically,
with the elbow converging to K, the consistency of the information criteria di-
rectly follows [14, 19]. Based on the log-likelihood, a sequential testing procedure
has also been constructed for order determination [19], but its validity highly
relies on the true specification of H1. The aforementioned GSF [18] selects K
automatically by fusing similar estimates of clusters into one when fitting (1).
It requires arranging the clusters appropriately according to their similarities,
whose feasibility, however, can be questionable in practice. We refer to [12] and
[18] for a comprehensive review of the existing order-determination methods for
mixture models.

As an alternative to the model-based clustering, distance-based clustering
has also been widely studied, particularly in the literature of machine learning
research. In this scenario, the research interest is to obtain a cluster assignment
rule that divides the data into clusters or equivalently associates each outcome
with a specific cluster. Representative distance-based clustering methods include
the K-means method and its generalizations such as the power K-means method
[34] and the convex clustering methods [23, 27, 28], etc. Order determination for
the K-means method is often based on the instability of clustering, measured
by the variation of cluster assignment rules derived from different samples [8,
11, 29]. With the conjecture that an overestimate of K would cause an instable
clustering, researchers commonly estimate K by the largest working number of
clusters that leads to a stable clustering. While this criterion is frequently used
in practice, its underlying conjecture remains unjustified.
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In this paper, we focus on order determination for the model-based cluster-
ing. However, we will borrow the concept of the instability measures originally
designed for distance-based clustering, and combine it with the conventional
goodness-of-fit measure to sharpen the estimation. Under Model (1), given an
working number of clusters L and an estimate {(π̂l,0, μ̂l,0) : l = 1, . . . L} of ω0,
a cluster assignment rule is naturally derived by the Bayes theorem that asso-
ciates an outcome x with the cluster that has the maximal π̂l,0f(x, μ̂l,0) among
all l ∈ {1, . . . , L}. Thus, the instability of a cluster assignment rule is equivalent
to a measure of variation in estimating ω0. While this term is generally difficult
to be delineated for the original data, we will address the issue by adopting
a novel data augmentation approach, where a small new cluster is generated
independently and merged into the original data.

Compared with the goodness-of-fit measure, the clustering instability pro-
vides an alternative characterization of K and conveys a compensative pattern,
so these two together can generate a consistent estimator of K that is more
efficient than the BIC-type approaches. By its nature, we call this estimator the
data augmentation estimator (DAE). As we shall see later, DAE does not involve
asymptotic inference results, so it is more robust to the parametric assumption,
i.e. the specification of H1, than the likelihood-based sequential testing proce-
dure. In addition, its implementation requires no arrangement of clusters as in
GSF. In these ways, DAE outperforms the existing order-determination meth-
ods. With the aid of bootstrap re-sampling, we also propose a variation of DAE,
called DAE-II, which shares the same properties.

The rest of the paper is organized as follows. In Section 2, we formulate the
model fitting procedure for (1) in a general manner. The idea of data augmenta-
tion is introduced in Section 3, where we also study how it impacts the clustering
results. We propose DAE and DAE-II in Section 4, and discuss their implemen-
tations in Section 5. Section 6 and Section 7 are devoted to simulation studies
and real data applications, respectively. A summary of the proposed work is
presented in Section 8 at the end. For ease of presentation, we assume X to be
continuous throughout the theoretical development. The proposed method also
works for discrete X; see the simulation studies for an illustration.

2. A formulation of model fitting

We now formulate the estimation procedure for Model (1) based on the litera-

ture reviewed in Section 1. Let X1, . . . , Xn be the sample copies of X, and let F̂n

be the corresponding empirical distribution function, i.e. F̂n(A) =
∑n

i=1
I(Xi ∈

A)/n for any measurable set A ⊂ R
p. We assume independence or weak de-

pendence between X1, . . . , Xn, such that the general parametric analysis based
on F̂n has the desired n1/2-consistency. Let F0 be the distribution function of
X, i.e. that corresponds to the pdf f0 in (1), and let G be the collection of all

the probability distributions on R
p, which includes both F̂n and F0. For each

positive integer L, let HL be the family of the pdf of mixture models induced
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from H1 with at most L clusters, i.e.

HL = ∪L

l=1{
∑l

i=1
πif(·, μi) : πi > 0,

∑l

i=1
πi = 1, f(·, μi) ∈ H1, μi �= μj}.

This definition complies with the previously definedH1 when L = 1. As L grows,
HL forms an increasing sequence, i.e. H1 ⊆ H2 ⊆ . . .. In particular, HL includes
the true density f0 whenever L ≥ K, which means that K is the smallest integer
such that HK includes f0. We equip the functional L2 distance on HL, i.e.

‖f − g‖2 ≡
∫
Rp{f(x)− g(x)}2dx (2)

for any f, g ∈ HL. When L < K, we regard HL as a subset of HK . Then,
under the regularity conditions on H1 that ensure the identifiability of f0 (see
Section 1), HL has a positive distance with f0.

For the most generality of our theory, given the working number of clus-
ters L, we formulate the estimation of Model (1) as maximizing a stochastic

functional φL : HL × G 
→ R over HL × F̂n, where × denotes the Cartesian
product, and the pdf of mixture models, instead of the corresponding param-
eters, is used as the arguments to ease the presentation. As L varies, φL(·, ·)
differs only in its domain. This procedure includes the existing estimations
such as MLE as special cases, where φL(·, F̂n) is the log-likelihood function

n−1
∑n

i=1
log{

∑L

l=1
πlf(Xi, μl)} for each working L.

For regularity, we assume that, for each positive integer L and each F ∈ G,
there always exists the unique maximizer of φL(·, F ). This imposes restrictions
such as the boundedness of φL(·, F ), which exclude certain scenarios from our
discussion, such as the log-likelihood for mixture of multivariate normal distribu-
tions with free covariance matrices and unrestricted parameter space. Generally,
φL(·, ·) can be treated as a measure of similarity between two distributions, in

which sense maximizing φL(·, F̂n) over HL amounts to finding the element of HL

that best approximates to the observed data. Because a rich literature has been
developed for implementing MLE via the EM algorithm, etc. [20], we omit the

relative details and consider the maximizer of φL(·, F̂n) as granted throughout
the theoretical development.

In addition, for the consistency of estimation, we adopt the following regu-
larity conditions.

(C1) If F is a continuous distribution with its pdf f falls in HL, then f is the
unique maximizer of φL(·, F ).

(C2) For each F ∈ G, φL(·, F ) is continuous everywhere on HL. For any com-

pact set A ⊂ HL, φL(f, F̂n) − φL(f, F0) converges to zero in probability
uniformly for f ∈ A.

(C3) For any L ≥ K and any sequences {fn ∈ HL : n = 1, . . .} converging to
f0, we have

φL(fn, F̂n) = φL(f0, F0) +
∫
Rp Hf(x){fn(x)− f0(x)}2dx

+
∫
Rp KF (x){dF̂n(x)− f0(x)dx}+O(n−1/2‖fn − f0‖2 + n−1) + o(‖fn − f0‖2

2),
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where KF (·) is square integrable under F0,
∫
Rp KF (x)dF̂n(x) denotes the

sample mean n−1
∑n

i=1
KF (Xi), and Hf(·) < −δ for some δ > 0 almost

everywhere on R
p.

Condition (C3) assumes a second-order von Mises expansion of φL(·, ·) at (f0, F0),

which essentially permits a quadratic approximation of φL(fn, F̂n). The von
Mises expansion is a generalization of the usual Taylor expansion to the func-
tionals, where the usual derivative is replaced with the Gateaux derivative; see
[9, Chapter 3] and [25, Chapter 6] for more details. The term that corresponds
to the first-order partial Gateaux derivative with respect to f ∈ HL is missing
in this expansion because, as indicated by (C1), f0 is the unique maximizer of

φL(·, F0). The generality of these conditions can also be seen if we set φL(·, F̂n)
to be the log-likelihood function, in which case (C3) reduces to the commonly
adopted smoothness condition for the consistency of MLE [21] if we instead use
ω0 as the working argument.

Let f̂L be the unique maximizer of φL(·, F̂n). When L ≥ K, recall that f0

falls in HL. Thus, (C1) implies that f0 is the unique maximizer of φL(·, F0).

The closeness between F̂n and F0 implies the closeness between φL(·, F̂n) and
φL(·, F0) under (C2), which then further implies the closenesses between their

maximizers f̂L and f0, and between their maxima φL(f̂L, F̂n) and φL(f0, F0),
under (C3). Note that, in this case, φL(f0, F0) is invariant of L and is always
equal to φK(f0, F0). By contrast, when L < K, the fact that f0 has a positive
distance with HL implies that f0 must also have a significant distance with
f̂L, which makes φL(f̂L, F̂n) significantly less than φK(f0, F0). These suggest an

elbow shape of −φL(f̂L, F̂n), which conforms to the literature mentioned earlier.

For convenience, we call −φL(f̂L, F̂n) a goodness-of-fit measure. To formulate
these intuitions, we introduce the concept of O+

P (1) for a “large” stochastic
sequence; that is, a sequence of random variables {Zn : n = 1, . . . , } is O+

P (1) if
Zn > δ with probability converging to one for some δ > 0. We refer to [15] for
more details about this concept.

Theorem 1. Under Conditions (C1)-(C3), we have

(i) ‖f̂L − f0‖2 = O+

P (1) and φL(f̂L, F̂n) = φK(f0, F0)−O+

P (1) when L < K;

(ii) ‖f̂L − f0‖2 = OP (n
−1/2) and φL(f̂L, F̂n) = φK(f0, F0) + OP (n

−1/2) when
L ≥ K.

Proof. For any L < K, because minf∈HL
‖f − f0‖2 > 0, we have ‖f̂L − f0‖2 =

O+

P (1). Thus, (i) follows immediately by (C1) and (C2). For any L ≥ K, by
(C1), we have

φL(f0, F0) > φL(f̂L, F0), (3)

and, by (C3), we have φL(f0, F0)−φL(f0, F̂n) = −
∫
R
p KF (x){dF̂n(x)−f0(x)dx}+

OP (n
−1). By the definition of f̂L, we have φL(f̂L, F̂n) > φL(f0, F̂n). These to-
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gether imply

φL(f̂L, F̂n) > φL(f0, F0) +
∫
R
p KF (x){dF̂n(x)− f0(x)dx}+ εn, (4)

where εn is a sequence of random variables with εn > 0 and εn = OP (n
−1). Let

Aδ = {f ∈ HL : ‖f − f0‖2 ≤ δ}. Then Aδ is a compact set in HL under the L2

distance. Given f̂L ∈ Aδ, (C2) implies φL(f̂L, F̂n) = φL(f̂L, F0) + oP (1), which,
together with (3) and (4), implies

φL(f̂L, F0) = φL(f0, F0) + oP (1).

By (C2) again, this implies ‖f̂L−f0‖2 = oP (1) given f̂L ∈ Aδ. By letting δ → ∞,

we have ‖f̂L − f0‖2 = oP (1). By (C3), this implies

φL(f̂L, F̂n) = φL(f0, F0) +
∫
R
p H0(x){f̂L(x)− f0(x)}2dx

+
∫
R
p KF (x){dF̂n(x)− f0(x)dx}+OP (n

−1/2‖f̂L − f0‖2 + n−1) + o(‖f̂L−f0‖2

2)

where H0(·) satisfies Hf(·) < −δ almost everywhere for some δ > 0. Together
with (4), we have

δ‖f̂L − f0‖2

2 −OP (n
−1/2‖f̂L − f0‖2 + n−1)− o(‖f̂L − f0‖2

2) ≤ εn = OP (n
−1),

(5)

which immediately implies ‖f̂L − f0‖2 = OP (n
−1/2). By plugging this result in

(C3), we have (ii). This completes the proof.

Let ω̂L = {(π̂L,l , μ̂L,l) : l = 1, . . . , L} be the estimator of ω0 induced from f̂L.

When L > K, the closeness between f̂L and f0 means that either some π̂L,l is
asymptotically negligible, potentially leading to a large variation of the corre-
sponding μ̂L,l , or some μk,0 is approximated by multiple μ̂L,l ’s, where the index
k is potentially random. In both cases, there will be a large variation of the
cluster estimates {μ̂L,1, . . . , μ̂L,L}. As mentioned in Section 1, this was heuristi-
cally used in [8] and [11], etc., to conduct order determination for distance-based
clustering. We next seek for a data augmentation approach, under which a vari-
ation pattern of the cluster estimates can be rigorously built under the general
settings.

3. Data augmentation and clustering instability

The concept of data augmentation has been employed in the literature of vari-
able selection [2, 3] and dimension reduction [16], where augmentation means
increasing the dimension of the predictor by generating new random variables,
often called the knock-off variables. The augmentation in our context is funda-
mentally different in the sense that we enlarge n rather than enlarge p; that is,
we artificially generate a new cluster and merge it with the original data.
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For simplicity, we generate the sample observations in the new cluster in-
dependently and identically from some pdf f(·, μA,0) that falls in the same
parametric family H1. Let m denote the sample size of the new cluster and
W1, . . . ,Wm be the corresponding observations. Let πA,0 denote m/n, where m
and n are omitted from its subscript. For any observation in the augmented data
set {X1, . . . , Xn,W1, . . . ,Wm}, if we pretend not knowing whether it is from the
original data or from the new cluster, then, by averaging out the cluster indexes,
it will have pdf

f
∗
0 (x) =

∑K

k=1
π∗

k,0f(x, μk,0) + π∗
A,0f(x, μA,0), (6)

where π∗
k,0 = πk,0/(1 + πA,0) for k = 1, . . . ,K and k = A. To guarantee the

identifiability of Model (6), we emphasize here that μA,0 must be chosen to
differ from any of μ1,0, . . . , μK,0, or equivalently that the new cluster must be
relatively separate from the main data clouds.

By definition, the augmented data have K + 1 clusters. If we let πA,0 vanish
to zero as n grows, then the new cluster is not as “important” as the original
clusters; that is, the loss of information is asymptotically negligible if the newly
added cluster is not recovered in clustering. This suggests that, if we still specify
K to be the working number of clusters for clustering on the augmented data,
then we will tend to end up with recovering the K original clusters as if the
new cluster were not involved. By contrast, if we specify any L > K to be
the working number of clusters, then as long as the gain of recovering the new
cluster dominates the gain of over-fitting the original data (though both are
asymptotically negligible), we will end up with recovering both the original
clusters and the new cluster. Intuitively, this will happen if πA,0 vanishes at a
relatively slow rate. Putting these together, it is natural to imagine that the data
augmentation has a negligible impact on the estimation of individual clusters
when L = K, and this impact will be elevated to be statistically significant
when L increases to K + 1, i.e. by recovering the new cluster, and it will stay
significantly large for all L > K.

Based on the discussion in Section 2, the speculation above can be rigor-
ously justified by a slight modification of Theorem 1(ii) for the augmented

data. Let F̂ ∗
n+m denote the empirical distribution induced by the augmented

data {X1, . . . , Xn,W1, . . . ,Wm}, which, in a rough sense, deviates from f0 by
OP (πA,0 + n−1/2) and deviates from the augmented pdf f∗

0 by OP (n
−1/2). Let

f̂∗
L(·) =

∑L

l=1
π̂∗

L,lf(·, μ̂
∗
L,l) be the unique maximizer of φL(·, F̂ ∗

n+m). We call f̂∗
L

the augmented pdf estimate in contrast to the original pdf estimate f̂L. A par-
allelization of Theorem 1 implies the following result, proof omitted.

Theorem 2. Under Conditions (C1)-(C3), we have

(i) ‖f̂∗
K − f0‖2 = OP (πA,0 + n−1/2) if πA,0 → 0 as n → ∞.

(ii) ‖f̂∗
L − f∗

0 ‖2 = OP (n
−1/2) for each L > K.

Theorem 2(i) implies that, when K is correctly determined and πA,0 vanishes,

each of the K clusters of the augmented estimate f̂∗
K must consistently recover
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Fig 1. The change of the impact of data augmentation on the estimation of f0 as L varies:
the original data are generated from the univariate standard normal distribution with sample
size n = 400 and the new cluster is generated from N(3.5, 1) with sample size 42. The left
panel displays the case of L = 1 and the right panel is for L = 2. In each panel, the dashed
curve displays f̂L derived from the original data, and the dotted curve displays f̂∗

L derived
from the augmented data.

one of those of f0, which means that f̂∗
K must not recover the newly added

cluster and behaves similarly to the original estimate f̂K derived before data
augmentation. When X is univariate or bivariate, in which case f0, f̂K and f̂∗

K

can be depicted, one will observe that f̂K and f̂∗
K have the same shape and both

are close to f0, with f̂∗
K being slightly more biased due to the data augmentation.

This is revealed in the left panel of Figure 1, where we draw the graphs of f0, f̂K ,
and f̂∗

K with the original data generated from the univariate standard normal
distribution with sample size n = 400, i.e. with K = 1, and the new cluster
generated from N(3.5, 1) with sample size 42, i.e. πA,0 ≈ n−.375.

By contrast, whenever L > K, Theorem 2(ii) implies that the augmented

estimate f̂∗
L must recover the newly added cluster up to an error of OP (n

−1/2),

as long as πA,0 vanishes at a slower rate than n−1/2. Thus, f̂∗
L would differ from

the original estimate f̂L in the sense that it has at least one extra cluster that has
small size but is away from the clusters of f̂L. An example of this case is depicted
in the right panel of Figure 1, where both the original and the augmented data
are generated in the same way as in the previous paragraph but the working L
for clustering is increased to two. If the newly added cluster has an excessively
small size, i.e. πA,0 = O(n−1/2), then f̂∗

L needs not recover the new cluster, even
though it still deviates from the augmented pdf f∗

0 by an error of OP (n
−1/2).

Overall, Theorem 2 justifies the change of behavior of f̂∗
L when L increases from

K to larger values.
We now construct a measure of deviation from f̂∗

L to f̂L that amplifies their
difference when L > K. For each working number of clusters L, let ω̂∗

L =

{(π̂∗
L,l , μ̂

∗
L,l) : l = 1, . . . , L} be the parameter estimate induced by f̂∗

L. Denote the
element of {μ̂∗

L,1, . . . , μ̂
∗
L,L} that is closest to μA,0 by μ̂∗

L,A, i.e. ‖μ̂
∗
L,A − μA,0‖2 =
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minl=1,...,L ‖μ̂∗
L,l − μA,0‖2. We introduce

τ(f̂L, f̂
∗
L) = min{‖μ̂L,l − μ̂

∗
L,A‖2 : l = 1, . . . , L, π̂L,l > πA,0}. (7)

The reason that we adopt the threshold π̂L,l > πA,0 in this measure is to exclude

the noises caused by those cluster estimates in f̂L who have asymptotically
negligible sizes, for which the behavior of the corresponding μ̂L,l is intractable.
To avoid the case that no cluster estimates satisfy π̂L,l > πA,0, which may occur
if the sample size is limited and L is large, in practice, we set πA,0 adaptively
to L, e.g. proportional to L−1, such that it is always less than L−1; see Section
4 for a relative discussion and Section 5 for more details. Based on Theorem 2
and the discussions above, μ̂∗

L,A must consistently estimate μA,0 when L > K,
and it instead converges to one of μ1,0, . . . , μK,0 when L = K. Together with

Theorem 1, τ(f̂L, f̂
∗
L) essentially detects whether μ̂∗

L,A recovers the newly added
cluster or one of the original clusters, and it should be negligible when L = K
and jumps to be significantly positive when L is larger. These are justified in
the next corollary.

Corollary 1. Let τ(f0, f
∗
0 ) = min{‖μk,0 − μA,0‖2 : k = 1, . . . ,K}. Under Con-

ditions (C1)-(C3), we have

(i) τ(f̂K , f̂
∗
K) = OP (πA,0 + n−1/2) if πA,0 → 0 as n → ∞;

(ii) τ(f̂L, f̂
∗
L) = τ(f0, f

∗
0 ) + OP (n

−1/2/πA,0) if L > K and n−1/2/πA,0 → 0 as
n → ∞.

Proof. Under the identifiability of the representation of f0, Theorem 2(i) im-
plies that, for each k = 1, . . . ,K, there must exist l(k) ∈ {1, . . . ,K} such that
‖π̂∗

K,kf(·, μ̂∗
K,k)−πl(k),0f(·, μl(k),0)‖2 = OP (πA,0+n−1/2), and that (l(1), . . . , l(K))

is a permutation of (1, . . . ,K). Equivalently, we have π̂∗
K,k = πl(k),0 +OP (πA,0 +

n−1/2) and μ̂∗
K,k = μl(k),0 +OP (πA,0 + n−1/2) for k = 1, . . . ,K. For simplicity, we

assume that there exists the unique μC,0 ∈ {μk,0 : k = 1 . . . ,K} that is closest to
μA,0 among all the μk,0’s, i.e. ‖μC,0 − μA,0‖2 = mink=1,...,K ‖μk,0 − μA,0‖2. These
together indicate

μ̂
∗
K,A = μC,0 +OP (πA,0 + n

−1/2
), (8)

By applying the same arguments to Theorem 1(ii) with L = K, we have π̂K,k =
πh(k),0 +OP (n

−1/2) and μ̂K,k = μh(k),0 +OP (n
−1/2) for each k = 1, . . . ,K, where

(h(1), . . . , h(K)) is a permutation of (1, . . . ,K). These together imply

min{‖μ̂K,k − μC,0‖2 : k = 1, . . . ,K, π̂K,k > πA,0}
= min{‖μh(k),0 − μC,0‖2 : k = 1, . . . ,K}+OP (n

−1/2
) = OP (n

−1/2
). (9)

Together with (8), we have τ(f̂K , f̂
∗
K) = OP (πA,0+n−1/2), which is statement (i)

of the theorem.
For L > K, Theorem 2(ii) implies that there is a subset I(A) of {1, . . . L}

such that ‖
∑

l∈I(A)
π̂∗

L,lf(·, μ̂
∗
L,l)− πA,0f(·, μA,0)‖2 = OP (n

−1/2), which means∑
l∈I(A)

π̂∗
L,l = πA,0 +OP (n

−1/2), (10)
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∑
l∈I(A)

π̂∗
L,l‖μ̂

∗
L,l − μA,0‖2 = OP (n

−1/2). (11)

Let D ∈ I(A) be such that π̂∗
L,D = maxl∈I(A) π̂

∗
L,l . Then (10) implies π̂∗

L,D ≥
πA,0/L, which, together with (11), implies ‖μ̂∗

L,D − μA,0‖2 = OP (n
−1/2/πA,0). By

the definition of μ̂∗
L,A, we have

‖μ̂∗
L,A − μA,0‖2 = OP (n

−1/2
/πA,0). (12)

Similarly to (10) and (11), Theorem 1(ii) implies the existence of (I(1), . . . , I(K))
that partitions (1, . . . , L), such that, for each k = 1, . . . ,K,∑

l∈I(k)
π̂L,l = πk,0 +OP (n

−1/2), (13)∑
l∈I(k)

π̂L,l‖μ̂L,l − μk,0‖2 = OP (n
−1/2). (14)

For each k = 1, . . . ,K, (13) implies that there must exist l ∈ I(k) such that
π̂L,l ≥ πk,0/L + oP (1), which, by πA,0 = o(1), means π̂L,l > πA,0 in probability.
Thus, without loss of generality, we can assume that, for each k = 1, . . . ,K,
there always exists l ∈ I(k) such that π̂L,l > πA,0. In addition, (14) implies
that for each l ∈ I(k), ‖μ̂L,l − μk,0‖2 = OP (n

−1/2)/π̂L,l , which is OP (n
−1/2/πA,0)

if π̂L,l > πA,0. Together with (12) and that (I(1), . . . , I(K)) is a partition of
(1, . . . , L), we have

τ(f̂L, f̂
∗
L) = min

k=1,...,K
min{‖μ̂L,l − μA,0‖2 +OP (n

−1/2
/πA,0) : l ∈ I(k), π̂L,l > πA,0}

= min{‖μk,0 − μA,0‖2 +OP (n
−1/2

/πA,0) : k = 1, . . . ,K}
= τ(f0, f

∗
0 ) +OP (n

−1/2
/πA,0),

which is statement (ii) of the theorem. This completes the proof.

We emphasize here that τ(f̂L, f̂
∗
L) is not the only measure that one can use to

represent the impact of data augmentation on clustering: theoretically, Corol-
lary 1 also applies for other measures as long as they can detect the sudden
change of cluster estimates caused by data augmentation when L jumps from
K to larger values. The two statements in Corollary 1 together require πA,0 to
vanish but in a slower rate than n−1/2, which complies with Theorem 2 and the
relative discussions above. We will study its convergence rate in more details in
the simulation studies.

It is important to note that the data augmentation can be regarded as a
negligible perturbation of the original data, in the sense that the augmented
empirical distribution F̂ ∗

m+n differs from its original counterpart F̂n negligibly. In
this spirit, Corollary 1 justifies the instability of clustering as a characterization
of K; that is, the clustering is stable when K is truly specified and is instable
when K is overestimated.

As mentioned in Section 1, the instability of clustering has only been used
heuristically for distance-based clustering in the literature. From the discussion
below Theorem 2 and also the proof of Corollary 1, we speculate that a data
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Fig 2. The left panel depicts the change of the impact of data augmentation on clustering as
L varies: the underlying model is Model 4 in Section 6 with K = 3; the solid curve displays
the sample mean of (7) as L varies and the two dashed curves display its 2.5% and 97.5%
sample quantiles, respectively, based on 2000 independent samples. The middle panel and the
right panel depict the same curves for the negative maximum log-likelihood and for η(L) as
L varies, respectively, for the same model; see Section 4 later for detail.

perturbation procedure that leads to a justifiable pattern of instability of clus-
tering must satisfy two conditions. First, it perturbs the data by an larger error
than O(n−1/2). Second, the distribution for the perturbed data must have a sig-
nificantly different parameter from the original distribution F0. These conditions
exclude the cross-validation and bootstrap approaches, and possibly make data
augmentation exclusive for characterizing the instability of clustering.

To illustrate the results of Corollary 1, we generate the original data under
Model 4 in the simulation studies later, which consist of three clusters, and
generate the new cluster using the method suggested in Section 5. With n set at
400, the left panel of Figure 2 displays the summary curves of τ(f̂L, f̂

∗
L), i.e. its

mean and its 95% pointwise confidence interval, approximated based on 2000
independent runs. Clearly, the function vanishes at three, i.e. the true value of
K, and it suddenly jumps to a large value afterwards. For this model, τ(f̂L, f̂

∗
L)

also vanishes when L < K.

Generally, when L < K, there is no simple answer on whether data aug-
mentation will cause significant change of the cluster estimates. For example, if
φL(·, F0) has the unique maximizer or equivalently that the clustering is asymp-
totically stable, then ω̂∗

L will only slightly modify ω̂L due to the closeness between

F̂ ∗
n+m and F̂n. In particular, if we set L at one, then μ̂1 and μ̂∗

1 will be the same

statistical functional of F̂n and F̂ ∗
n+m, respectively, which certainly approximate

to each other. By contrast, φL(·, F0) can have multiple maximizers when certain
symmetry exists in F0. For example, suppose F0 consists of four bivariate normal
distributions with the covariance matrices uniformly being the identity matrix
and the set of means {θi,0 : i = 1, . . . , 4} being invariant of a 90-degree rotation
of the coordinate system. Then F0 is invariant of a 90-degree rotation as well,
which means that any maximizer of φL(·, F0) must still maximize this function
after being rotated by 90 degrees. Since a mixture of two or three bivariate
normal distributions must be different after being rotated by 90 degrees, the set
of maximizers of φL(·, F0) must include multiple elements for both L = 2 and
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L = 3. In these cases, ω̂L may not be convergent, and the negligible disturbance
we add to F̂n may cause a substantially different ω̂∗

L and thus deliver μ̂∗
L,A that

differs dramatically from any of μ̂L,1, . . . , μ̂L,L. Fortunately, as seen in the next

section, the asymptotic behavior of τ(f̂L, f̂
∗
L) for L < K is not needed in the

proposed work.
Finally, it is only for the ease of theoretical development to generate the new

cluster under the same parametric family as the original clusters. When it is
inconvenient or infeasible to do so, the readers are free to generate the new
cluster under other distributions. For example, when the original clusters have
bounded or curved sample supports, the new cluster can still be generated from a
multivariate normal distribution. Accordingly, φL(·, F̂ ∗

n+m) needs to be adjusted,
e.g. by allowing up to one cluster distribution to be multivariate normal if
φL(·, F̂ ∗

n+m) is the log-likelihood function. As long as πA,0 is controlled to vanish
at a slow rate, the same theory still applies following similar reasonings.

4. The data augmentation estimator

By Corollary 1, the change of cluster estimates before and after the data aug-
mentation, as measured by τ(f̂L, f̂

∗
L), displays a pattern that characterizes the

number of clusters K. As pointed out by an anonymous Referee, a variety of
methods can be constructed based on τ(f̂L, f̂

∗
L) for consistent order determi-

nation. For example, one can estimate K as the largest L such that τ(f̂L, f̂
∗
L)

is less than a prefixed threshold. Here, we choose to combine τ(f̂L, f̂
∗
L) with

the goodness-of-fit measure −φL(f̂L, F̂n) to construct an objective function that

tends to be minimized at K. The motivation is that, as −φL(f̂L, F̂n) has a sud-
den drop when L increases from K − 1 to K and stays nearly flat afterwards,
it conveys a scree plot that is compensative to the pattern of τ(f̂L, f̂

∗
L), so the

two sources of information together can sharpen the order determination.
Let KM be a prefixed upper bound of K. We define η : {1, . . . ,KM} → R as

η(L) =
c · τ(f̂L, f̂

∗
L)

maxl=1,...,KM
τ(f̂L, f̂

∗
L)

+
φKM

(f̂KM
, F̂n)− φL(f̂L, F̂n)

φKM
(f̂KM

, F̂n)− φ1(f̂1, F̂n)
, (15)

where both terms on the right-hand side are normalized so that the function is
invariant of stretches of data, and c > 0 controls the balance between the two
terms. To address the case of K = 1, i.e. if the data only consist of one cluster,
we further require c > 1. The explanation is deferred to later.

Clearly, the first term of η(·) is always non-negative. By definition, φL(f̂L, F̂n)
is monotone increasing with L, so the second term of η(·) is also non-negative
and bounded from above by one. By Theorem 1(i), when L < K, the second
term of η(L) is large, and so is η(L). By Corollary 1(ii), when L > K, the
first term of η(L) is large, and so is η(L) again. By contrast, Theorem 1(ii)
and Corollary 1(i) together indicate the asymptotic negligibility of η(K), as
long as K > 1. Therefore, when K > 1, i.e. if there are indeed at least two
clusters mixed in the original data, the minimizer of η(·) must converge to K
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in probability. These are illustrated in Figure 2 in Section 3, where again the
data are generated from Model 4 in the simulation studies with n = 400, and
the same summary curves as for τ(f̂L, f̂

∗
L) in the left panel are depicted for

−φL(f̂L, F̂n) and η(L), respectively, in the middle and right panels. As K = 3
for this model, η(·) is clearly consistently minimized at K.

When K = 1, φL(f̂L, F̂n) is constantly negligible for all L ∈ {1, . . . ,KM}, so
both the numerator and the denominator of the second term of η(L) are neg-
ligible, making this term intractable and potentially jeopardize the consistency
of order determination. To address this issue, we need to modify the arguments
above for K = 1. By Corollary 1, in this case, τ(f̂L, f̂

∗
L) will converge to zero

when L = 1 and will converge to the positive constant τ(f0, f
∗
0 ) whenever L > 1.

Thus, the first term of η(L) will converge to zero when L = 1 and will converge to
c whenever L > 1. By construction, the second term of η(L) is always bounded
by zero and one, which means that it is less than one when L = 1 and greater
than zero when L > 1. These together imply

η(1) ≤ 1 + εn, and η(L) ≥ c+ ε′n for all L > 1,

for some random sequences {εn : n = 1, . . .} and {ε′n : n = 1, . . .} that both
are oP (1). Hence, η(·) tends to be minimized at L = 1 asymptotically as long
as c > 1. For simplicity of implementation, we choose c = 3 uniformly in the
numerical studies later in this paper. In practice, if the researchers can confirm
that K must be greater than one before order determination, i.e. if there is
clustering in the data, then they can confidently set c at one or a smaller positive
value.

We summarize the discussions above in the next theorem. Its proof essentially
resembles these discussions and thus is omitted.

Theorem 3. Under Conditions (C1)-(C3), if we set πA,0 appropriately such
that πA,0 +n−1/2π−1

A,0 → 0 and set c > 1 in (15), then η(·) tends to be minimized
uniquely at K; that is,

lim
n→∞

P [min{η(L) : L = 1, . . . ,KM , L �= K} > η(K)] = 1.

Let K̂ be the minimizer of η(·). By Theorem 3, K̂ is a consistent estimator of
K. Because the estimation procedure is featured by data augmentation, we call
K̂ the data augmentation estimator (DAE). Following the spirit of BIC, we can
regard the first term of η(·) as a penalty function of L. Compared with its coun-
terpart in BIC, this penalty function is data-driven, and has the fundamental
advantage that it explores an intrinsic property of clustering and provides the
unique characterization of K. For this reason, we expect DAE to be more effec-
tive than BIC in practice. In addition, because DAE does not involve asymptotic
inference results such as the limiting distribution of ω̂L or φL(f̂L, F̂n), it should
be more robust to the parametric assumption H1 than the likelihood-based se-
quential tests. Finally, it is also easily implementable as it requires no additional
calculation, e.g. arrangement of clusters for GSF in [18].



Determine the number of clusters by data augmentation 3923

If we increase πA,0, then there will be an increasing chance of recovering the
new cluster for the augmented data or equivalently deriving a large value of
τ(f̂L, f̂

∗
L), particularly when L is slightly less than K. Thus, the minimizer of

η(·) will be shifted to the left probabilistically. This impact is significant if πA,0 is

non-vanishing, delivering an underbiased K̂. In practice, when n is limited and
the working number of clusters L is relatively large, all the estimated clusters in
the original data may have small sizes, which easily makes the size of the new
cluster excessively large and the resulting K̂ underbiased even if πA,0 vanishes
asymptotically. Fortunately, with πA,0 set adaptive to L as mentioned below (7)
in Section 3 (also see Section 5 for more details), the size of the new cluster
keeps shrinking as L increases, which helps stabilize the sample performance of
K̂. The consistency of K̂ still applies for this adaptive choice of πA,0.

A limitation of DAE is that its consistency can be jeopardized when the data
are imbalanced, i.e. if the smallest cluster of the data is negligible compared
with the largest. In this case, the desired pattern of τ(f̂L, f̂

∗
L) in Corollary 1 can

easily fail, as it is implausible to find an appropriate size for the new cluster that
is simultaneously small enough to be dominated by the smallest of the original
clusters, and large enough to make the gain of fitting the new cluster dominate
the gain of over-fitting the largest of the original clusters. By contrast, when the
data are nearly balanced, we expect DAE to be consistent even when K is large,
although all the clusters are small in this case. This is because, if we set πA,0

to be nr−1/L for some r ∈ (1/2, 1), then it is dominated by K−1 when L = K
even if K is large, and it dominates n−1/2 for L > K as long as n is reasonably
large with respect to L. Thus, τ(f̂L, f̂

∗
L) still conveys the desired pattern as in

Corollary 1. These points will be re-visited in the simulation studies.
As mentioned below Theorem 2 in Section 3, when πA,0 is too small, i.e. of

order O(n−1/2), the newly added cluster cannot make a notable change to the
parameter estimation even when L > K. In this case, the first term in η(·) will
display a flat curve and become useless to the order determination. To alleviate
this issue, we incorporate the heuristics on the instability of clustering mentioned
in Section 1 into the data augmentation procedure; that is, we construct the
augmented data set by merging the new cluster with a bootstrap copy of the
original data, i.e. {X̃1, . . . , X̃n} generated independently and identically from the

empirical distribution F̂n. Let F̃
∗
n+m be the empirical distribution of the modified

augmented data {X̃1, . . . , X̃n,W1, . . . ,Wm}, and, for each L = 1, . . . ,Km, let

f̃∗
L(·) =

∑L

l=1
π̃∗

L,lf(·, μ̃
∗
L,l) be the maximizer of φL(·, F̃ ∗

n+m) and μ̃∗
L,A be the

element of {μ̃∗
L,1, . . . , μ̃

∗
L,L} such that ‖μ̃∗

L,A − μA,0‖2 = minl=1,...,L ‖μ̃L,l − μA,0‖2.

We propose K̃ as the minimizer of η̃ : {1, . . . ,KM} → R with

η̃(L) =
c · τ(f̂L, f̃

∗
L)

maxl=1,...,KM
τ(f̂l , f̃

∗
l )

+
φKM

(f̂KM
, F̂n)− φL(f̂L, F̂n)

φKM
(f̂KM

, F̂n)− φ1(f̂1, F̂n)
, (16)

and call this estimator DAE-II. Under the conditions in Theorem 3, K̃ also
consistently recovers K. The heuristics on the instability of clustering suggests
that the bootstrap re-sampling has a chance to provide additional deviation
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between the cluster estimates for small samples when L > K, and thus sharpens
the desired pattern of τ(f̂L, f̃

∗
L). Thus, DAE-II may outperform DAE in terms of

the robustness against excessively small πA,0, when the sample size is limited.

5. Details of implementation

We now summarize the implementation of DAE as follows. DAE-II can be imple-
mented in the same way, except that the original data need to be replaced with
a bootstrap sample generated independently from the empirical distribution F̂n

in the following Step 2. Recall that πA,0 is defined as m/n where m is the size
of the new cluster. Hence, the requirement that πA,0 vanishes in a slower rate
than n−1/2 is equivalent to that m diverges faster than n1/2 but slower than n.
For each working number of clusters L, we take m to be the nearest integer to
nr/L for some r ∈ (1/2, 1).

Step 1 For each L = 1, . . . ,KM , maximize φL(·, F̂n) over HL to derive f̂L.

Calculate φL(f̂L, F̂n).
Step 2 For each L = 1, . . . ,KM , set m to be nearest integer to nr/L for some

r ∈ (1/2, 1); generate m independent observations from the pdf f(·, μA,0)
and merge these observations into the original data to form the augmented
empirical distribution F̂ ∗

n+m; maximize φL(·, F̂ ∗
n+m) over HL to derive f̂∗

L

and calculate τ(f̂L, f̂
∗
L).

Step 3 Calculate η(·) as in (15) and minimize η(·) to derive K̂.

When φL(·, F̂n) is non-concave if regarded as a function of ω and thus is hard
to maximize, we suggest running the numerical algorithm for multiple times with
different initial values, and choosing the optimal result that delivers the maximal
value of φL(·, F̂n). Theoretically, the proposed estimators must be robust against
the selection of KM , as long as KM ≥ K. This is because when L is too large,
the excessive number of parameters will cause a large estimation bias in both
f̂L and f̂∗

L, which naturally leads to a large τ(f̂L, f̂
∗
L) and consequently a large

η(L). To help avoid KM < K, one can adopt an adaptive strategy in practice:
for a given KM , if the proposed estimators select K to be KM , then we increase
KM until it is sufficiently large.

To choose the value of μA,0, we suggest two principles. First, the new cluster
should be reasonably separate from the original data to ensure a large deviation
between μA,0 and {μ1,0, . . . , μK,0}, so that the change of cluster estimates can

be fully represented in τ(f̂L, f̂
∗
L) when L > K. Second, μA,0 should make the

resulting f̂∗
L robust to both the choice of πA,0 and the randomness of the obser-

vations in the new cluster for all L, so that the proposed estimators are reliable
to use in practice. When μA,0 includes the mean θA,0 of the new cluster, we
speculate that these principles require θA,0 to be distant from the original data
in the directions that the latter vary the least. Namely, let X̄n and Sn be the
sample mean and sample covariance matrix of the original data, respectively,
and let Un ∈ R

p×(p−1) be set of eigenvectors of Sn associated with its largest
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p − 1 eigenvalues and Vn be the eigenvector of Sn associated with its smallest
eigenvalue σ2

n. We suggest

θA,0 = UnU
T

nX̄n + Vn(V
T

n X̄n + 2σn). (17)

In particular, if the clusters are known (or assumed) to have multivariate normal
distributions with common but unspecified covariance matrix Σ0, then, for each
working number of clusters L, we generate the new cluster from N(θA,0, Σ̂L)

with θA,0 specified in (17) and Σ̂L being the estimate of Σ0 in f̂L.

6. Simulation studies

We now use simulation examples to illustrate the effectiveness of the proposed
estimators, in comparison with the aforementioned GSF [18] equipped a variety
of penalty functions, including SCAD [7], MCP [35], and Adaptive Lasso [36], as
well as AIC and BIC [5] that were shown most effective among all the existing
information criteria in [18]. These methods are available from the R packages
GroupSortFuse [18], mixtools [4], and mclust [10], respectively. In addition,
we will study how the performance of the proposed estimators is affected by
both the size of the new cluster and the pre-fixed upper bound KM .

For a fair comparison, we adopt the following simulation models listed in the
ascending order of the number of clusters they induce, among which Models 3,
4, 5, 6, and 7 were also adopted in [18]. Let 0p be the origin of Rp and Ip be
the p-dimensional identity matrix, and, for any nonzero scalar a, let (a|i−j|)p be
the p-dimensional square matrix whose (i, j)th entry is a|i−j|. In Model 5, we
generate discrete data where each cluster has a multinomial distribution with
50 trials in total, denoted by M(50, μ) with μ being the mean of a single trial.
This case is not covered in the theoretical development above. For convenience,
wheneverK > 1 and the data are continuous, we fix the mean of the first cluster,
i.e. θ1,0, at 0p.
Model 1: X ∼ N(05, (0.8

|i−j|)5).
Model 2: X ∼ (U 2

1 , U
2

2 , U
2

3 )
T, each Ui generated independently from the uniform

distribution on (−1/2, 1/2).
Model 3. X =

∑2

k=1
.5N(θk,0, (0.5

|i−j|)2), θ2,0 = (2, 2)T.
Model 3∗. Same as Model 3 but with Σ1,0 = I2 and Σ2,0 = (0.5|i−j|)2.

Model 4: X =
∑3

k=1
(1/3)N(θk,0, I4),

{
θ2,0 = (2.5, 1.5, 2, 1.5)T

θ3,0 = (1.5, 3, 2.75, 2)T
.

Model 5: X =
∑3

k=1
(1/3)M(50, μk,0),

⎧⎨
⎩
μT

1,0 = (.2, .2, .2, .2, .2)
μT

2,0 = (.1, .3, .2, .1, .3)
μT

3,0 = (.3, .1, .2, .3, .1)
.

Model 6: X =
∑4

k=1
(1/4)N(θk,0, (0.5

|i−j|)2), θk,0 = (2k − 2, 2k − 2)T.
Model 6∗. Same as Model 6 but with Σ1,0 = Σ3,0 = (0.5

|i−j|
)2 and Σ2,0 = Σ4,0 = I2.

Model 7: X =
∑5

k=1
(1/5)N(θk,0, I8),

⎧⎪⎪⎨
⎪⎪⎩
θ2,0 = (1, 1.5, .75, 2, 1.5, 1.75, .5, 2.5)T

θ3,0 = (2, .75, 1.5, 1, 1.75, .5, 2.5, 1.5)T

θ4,0 = (1.5, 2, 1, .75, 2.5, 1.5, 1.75, .5)T

θ5,0 = (.75, 1, 2, 1.5, .5, 2.5, 1.5, 1.75)T

.
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Model 8: X =
∑8

k=1
(1/8)t3(θk,0, 5) where θ2,0 = (0, 0, 2)T, θ3,0 = (0, 2, 0)T, θ4,0 =

(0, 2, 2)T, θ5,0 = (2, 0, 0)T, θ6,0 = (2, 0, 2)T, θ7,0 = (2, 2, 0)T, θ8,0 = (2, 2, 2)T, and
t3(θk,0, 5) denotes the three-dimensional multivariate noncentral t distribution
with five degrees of freedom and θk,0 being the mean.

For clarity, in these models, the number of clusters K is 1, 1, 2, 2, 3, 3, 4, 4,
5, and 8, and the dimension of data is 5, 3, 2, 2, 4, 5, 2, 2, 8, and 3, respectively.
These models represent a variety of numbers of clusters, dimensions of the data,
and cluster distributions that one may meet in practice. To measure the degree
of separation between clusters in each model, which would reveal the difficulty
of clustering analysis and the corresponding order determination, we calculate
the oracle Bayes error rate (OBER) defined as

1−
∫
Rp maxk=1,...,K{πk,0f(x, μk,0)}dx (18)

for continuous X and defined similarly if X is discrete. Because the integrand in
(18) is always bounded by zero and f0(x) =

∑K

k=1
πk,0f(x, μk,0), OBER is always

bounded by zero and one for any data. By construction, the more separate the
clusters from each other, the smaller OBER is. For the models above withK > 1,
OBER is .125, .103, .090, .128, .186, .143, .168, and .170, respectively, so the
clustering analysis can be reasonably accurate but is nontrivial.

To implement DAE and DAE-II in these models, we uniformly assume X
to follow a homogeneous mixture multivariate normal distribution, i.e. with a
common (but unknown) covariance matrix, whenever X is continuous. This
parametric assumption is violated in Models 2, 3∗, 6∗, and 8, from which we
can evaluate the corresponding robustness of the proposed estimators. In Model
5, we treat the family of multinomial distributions with 50 trials as known,
and generate the new cluster from the same family. The choices of μA,0 follow

those suggested in Section 5. For all the models, we set φL(·, F̂n) to be the
log-likelihood function under the working parametric assumption, which again
differs from the true log-likelihood for Models 2, 3∗, 6∗, and 8. As suggested
in Section 5, we maximize φL(·, F̂n) by running the EM algorithm multiple
times with a variety of initial values, and choosing the optimal result. To study
the robustness of the proposed estimators to πA,0 or equivalently to r with
πA,0 = nr−1/L for working L, we set r at .55, .625, and .70 sequentially with
KM set at 10. The robustness to KM will be inspected later.

To make a dynamic comparison as the sample size n varies, we set n at 200,
400, and 800 sequentially for each continuous model with K > 1, and set n at
100, 200, and 400 for Models 1, 2 and 5. These settings comply with [18]. Table 1
records the performance of the aforementioned estimators, measured by the
approximate percentage of correctly determining K based on 2000 independent
runs for each model. For effective presentation, we only report the winner of AIC
and BIC, and the winner of the GSF methods equipped with each of SCAD,
MCP, and Adaptive Lasso penalties, specified for each model and each sample
size after assessing the average performance over all the 2000 runs.

From Table 1, both the better of AIC and BIC and the best of GSF methods
perform dramatically differently as the model varies: they are consistent in some
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Table 1

The performance of the order-determination estimators: in Row 1, IC stands for the better
performer of AIC and BIC per model and sample size after assessing the average

performance across all runs, GSF stands for the best performer of the GSF methods when
equipped with SCAD, MCP, and Adaptive Lasso penalties per model and sample size after
assessing the average performance across all runs, and DAE and DAE-II are the proposed
estimators, with r = .55, .625, and .70 sequentially; in each cell of Columns 3-10 is an

approximation of percentage of correct order determination based on 2000 independent runs.

Model n IC GSF DAE DAE-II

1
100 0 100 35 30 33 92 82 72
200 0 100 52 51 54 95 92 82
400 0 100 54 64 74 99 98 94

2
100 0 15 33 28 35 89 81 69
200 0 0 54 50 53 94 90 82
400 0 0 60 70 75 99 97 93

3
200 56 59 68 81 90 68 81 89
400 76 71 80 88 98 86 92 98
800 96 99 99 99 99 99 99 99

3∗
200 0 48 89 97 91 91 95 86
400 0 77 90 99 98 92 99 97
800 0 96 96 99 99 98 99 99

4
200 45 43 78 87 96 90 92 94
400 63 54 91 99 99 96 99 99
800 93 96 92 100 100 98 99 100

5
100 80 86 61 71 72 52 52 62
200 80 94 65 72 76 76 61 72
400 82 97 67 75 79 70 74 88

6
200 18 10 47 59 52 30 39 25
400 25 3 48 60 60 33 41 37
800 32 4 49 61 64 40 45 50

6∗
200 3 1 64 48 8 48 30 4
400 3 12 68 59 9 55 42 6
800 0 12 70 77 15 53 65 12

7
200 20 6 43 25 3 11 7 3
400 41 6 59 51 5 20 32 5
800 66 74 91 85 14 51 57 8

8
200 5 7 58 58 54 56 53 55
400 8 35 80 81 84 84 87 88
800 11 60 99 98 98 97 97 95

models but complete fail in some others. By contrast, for all the three choices
of r, both DAE and DAE-II have much stabler performances across models, and
they mostly have higher probabilities of correctly determining K, with Models
1 and 5 being the only exceptions where GSF is better. In particular, both
DAE and DAE-II are consistent in Model 8 where K is relatively large. When
these estimators fail to truly estimate K in probability, i.e. in Models 1, 2, 5, 6,
and 6∗ for DAE and in Models 5, 6, 6∗, and 7 for DAE-II, Table 2 records the
percentages they mis-specify K to be each of K − 2, K − 1, K + 1, and K + 2,
with r = .625 as an illustration. The results suggest that both estimators are
mostly bounded by K − 2 and K + 2, so they can still give reasonable results
when they are inconsistent. In Model 4, DAE-II is more robust to the choice of
r than DAE, which complies with the discussion in Section 4, but there is no
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Table 2

The performance of the proposed estimators in more details: the number in each cell of
Column 4-8 is the estimated percentage that DAE or DAE-II equipped with r = .625 specifies
K to be K − 2, K − 1, K, K + 1, and K + 2, respectively, based on 2000 independent runs.

The number in Column 9 is the total of those in Columns 4-8.

Model Method n K − 2 K − 1 K K + 1 K + 2 Total

1 DAE
100 – – 30 5 23 58
200 – – 51 3 15 69
400 – – 64 28 6 98

2 DAE
100 – – 28 13 9 50
200 – – 50 11 9 70
400 – – 70 2 4 76

5

DAE
100 0 3 71 17 6 97
200 0 1 72 22 4 99
400 0 0 75 23 2 100

DAE-II
100 0 45 52 2 0 99
200 0 36 61 3 0 100
400 0 26 74 0 0 100

6

DAE
200 24 10 59 7 0 100
400 13 9 60 16 2 100
800 38 0 61 1 0 100

DAE-II
200 31 23 39 7 0 100
400 28 20 41 10 1 100
800 42 10 45 3 0 100

6∗

DAE
200 22 30 48 0 0 100
400 13 28 59 0 0 100
800 3 20 77 0 0 100

DAE-II
200 28 42 30 0 0 100
400 21 37 42 0 0 100
800 4 31 65 0 0 100

7 DAE-II
200 44 21 7 2 2 76
400 41 27 32 0 0 100
800 12 22 57 6 3 100

clear winner between the two estimators in general.

From the results for Model 2 in Table 1, when the assumption of homoge-
neous mixture normal distribution fails, DAE-II still consistently estimates K,
and DAE also truly specifies K with an increasing probability as n grows, both
of which behave roughly the same as in Model 1 where the parametric assump-
tion is satisfied and OBER is similar. The same phenomenon can be observed
from Model 8 and also if we compare the performances of DAE and DAE-II in
Models 3 and 6 with those in Models 3∗ and 6∗ (except when r = .70 in Model
6∗), where the distributions of X differ only in the homogeneity of covariance
matrices. These comply with our theoretical anticipation for the robustness of
the proposed estimators to the parametric assumption adopted when fitting the
mixture distribution.

Similarly, promising results about the robustness to the choice of r can be
observed for both DAE and DAE-II in most models, particularly as n grows.
The only exceptions are Models 6∗ and 7 where the proposed estimators almost
completely fail for the choice of r = 0.70. Across different models, there is no
universally optimal choice of r. We recommend using r = .625 as a conservative
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Table 3

The sensitivity of the estimators to the imbalance of data: the pair of numbers in each cell of
Column 1 is the value of (π1,0, π2,0) that generates the original data from the modified Model
3 with n = 400. The meanings of the numbers in the other columns follow those in Table 1.

(π1,0, π2,0) IC GSF DAE DAE-II
(0.1, 0.9) 41 50 18 38 48 15 29 44
(0.2, 0.8) 65 65 29 50 87 48 69 89
(0.3, 0.7) 67 67 56 78 95 69 78 98
(0.4, 0.6) 70 70 73 85 98 85 91 98
(0.5, 0.5) 76 71 80 88 98 86 92 98

choice in practical applications.

As mentioned in Section 4, the proposed DAE and DAE-II can be sensitive
to the imbalance of the data. To illustrate this point, we modify Model 3 by
changing (π1,0, π2,0) to be (0.1, 0.9), (0.2, 0.8), (0.3, 0.7), (0.4, 0.6), sequentially,
with n = 400. The performances of all the aforementioned estimators are sum-
marized in Table 3, with the case of balanced data, i.e. π1,0 = π2,0 = 0.5, copied
from Table 1 and used as the reference.

From Table 3, compared with the existing estimators, the proposed DAE and
DAE-II are indeed more sensitive to the imbalance of the original data: when
one cluster is much smaller than the other, both estimators are sub-optimal to
the information criteria and GSF; when the two clusters have more comparable
sizes, both DAE and DAE-II have elevated performances, and they become the
clear winners when the data are balanced.

Finally, we evaluate the robustness of DAE and DAE-II to the prefixed upper
bound KM of the candidate choices of K. For efficiency of presentation, we
choose r = .625 as suggested above when generating the new cluster. As a
simple illustration, we first apply DAE and DAE-II to Models 3 and 4 with
n = 400, and draw the curve of the probability of true specification of K as
KM increases from 5 to 14, again based on 2000 independent runs. These curves
are displayed in Figure 3, which shows promising results that are indicative for
the robustness of both estimators to the choice of KM . Table 4 illustrates the
results for the other models and sample sizes, with n set the same as in Table 1
and KM set sequentially at 6, 8, 10, 12, and 14. Generally, the same sign for
robustness can be observed from this table, especially as n grows, with Models
1 and 2 being the only exceptions.

Comparing the performance of DAE and DAE-II in all the simulation studies
above, the use of bootstrap re-sampling has negligible impact on the proposed
order-determination procedure for most models, and can be either advantageous
or adverse otherwise. Thus, we make no recommendations on which of DAE or
DAE-II to use in practice. Nonetheless, we still speculate that a more delicate use
of bootstrap re-sampling can polish the order determination at least in certain
scenarios, which will be investigated in the future.
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Fig 3. The robustness of the proposed estimators to KM : the left panel is for Model 3 and
the right panel is for Model 4; in each panel, r is fixed at .625, the x-axis is KM , and the
y-axis is the probability of correct order determination. The solid line connected by ◦ and the
dashed line connected by + correspond to DAE and DAE-II, respectively.

7. Real data examples

7.1. Seeds data

We first apply the proposed estimators to the seeds data studied in [18]. The
data set is available in [6], where 210 seeds were collected from three varieties,
and seven features were measured for each seed. Similarly to [6] and [18], we
extract the first three principal components of the data and assume a mixture
multivariate normal distribution with common but unknown covariance matrix
subsequently. Under this assumption, we apply DAE and DAE-II with φ(·, F̂n)
being the log-likelihood, and specify KM = 12 and r = .625. The results are
displayed in Figure 4. Because the true clusters, as indicated by the varieties
the seeds come from, are actually known, we can estimate the oracle Bayes error
rate (18) under the homogeneous mixture normality assumption, which is .428.
Thus, the clustering problem is relatively difficult for this data set.

From the left panel of Figure 4, the data augmentation has a constantly large
impact on clustering when L > 3, both with and without bootstrap re-sampling,
and, as depicted in the middle panel of Figure 4, three is also the location of the
elbow of the curve of −φL(·, F̂n). Thus, as shown in the right panel of Figure 4,
both DAE and DAE-II suggest selecting K = 3. This conforms to the result of
the GSF method equipped with the aforementioned multiple penalty functions
and also to the results of AIC and BIC; see [18] for details.

7.2. Pen digits data

We next apply the proposed estimators to the pen-based recognition of hand-
written digits data set [1], where 44 writers were collected and each created 250
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Table 4

The robustness of the proposed estimators to KM : the number in each cell of Columns 3-12
is the estimated percentage of correct order determination, based on 2000 independent runs;
those in Columns 3-7 are for DAE with KM set at 6, 8, 10, 12, and 14, respectively; those

in Columns 8-12 are for DAE-II likewise.

Model n DAE DAE-II

1
100 64 40 30 25 12 83 82 82 57 14
200 78 67 51 44 30 95 95 92 70 35
400 80 70 64 44 32 99 98 98 79 54

2
100 54 37 28 19 18 82 81 81 38 34
200 75 67 50 35 27 93 93 90 75 37
400 76 70 70 37 27 98 97 97 76 37

3
200 80 80 81 86 58 83 81 81 79 52
400 86 88 88 92 93 85 87 92 92 92
800 99 99 99 98 95 99 99 99 98 97

3∗
200 98 98 97 95 83 97 96 95 92 81
400 99 99 99 98 98 99 99 99 98 95
800 99 99 99 99 99 99 99 99 99 99

4
200 99 96 87 87 84 99 95 92 89 79
400 99 99 99 99 96 99 99 99 99 99
800 100 100 100 100 100 100 100 99 99 99

5
100 72 71 71 70 69 52 52 52 52 51
200 74 72 72 72 70 61 61 61 60 60
400 76 75 75 75 75 75 74 74 73 73

6
200 60 59 59 54 50 45 42 39 39 36
400 62 60 60 59 57 48 46 41 40 39
800 62 62 61 61 60 49 48 45 45 45

6∗
200 52 50 48 39 33 32 30 30 25 18
400 62 62 59 56 52 45 43 42 40 37
800 80 78 77 75 73 65 65 65 64 64

7
200 28 27 25 25 24 12 9 7 7 6
400 52 51 51 49 47 34 34 32 31 31
800 85 85 85 85 85 58 58 57 57 57

8
200 −− 63 58 58 55 −− 55 53 53 53
400 −− 85 81 80 80 −− 89 87 87 83
800 −− 100 98 96 93 −− 99 97 95 95

handwritten digits ranged from zero to nine, and 16 features were extracted
for each handwritten digit. Due to the limit of computational power, here we
only analyze the sub-sample where the digits are one, seven, and nine, which
has 3340 observations in total. These three digits are distinct in general but are
also relatively similar to each other, so we can regard the corresponding groups
of observations, which are of size 1143, 1142, and 1055, respectively, as three
clusters that are partially overlapped. Based on an exploratory data analysis,
each cluster can be considered as following an approximate multivariate normal
distribution. Thus, if we ignore the labels, i.e. the indicator of the digits, and if
we pretend not knowing K = 3, then we can fit a mixture multivariate normal
distribution with equal but unknown covariance matrices on this sub-sample,
with φ(·, F̂n) being the corresponding log-likelihood function.

To ease the clustering, we follow the similar strategy to the analysis of the
seeds data above to only use the first six principal components of the original
data, which count for about 85% of the variation of the data if each feature
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Fig 4. The performance of DAE and DAE-II when applied to the seeds data: in the left panel
displays the change of cluster estimates caused by data augmentation as the working number
of clusters varies, the solid line connected by ◦ for DAE and the dashed line connected by
+ for DAE-II; in the middle panel displays the corresponding change of the negative of the
maximal log-likelihood function; in the right panel displays the curves of η(·), again the solid
line connected by ◦ for DAE and the dashed line connected by + for DAE-II.

Fig 5. The performance of DAE and DAE-II when applied to the pen digits data with three
digits {1, 7, 9}: in the left panel displays the change of cluster estimates caused by data aug-
mentation as the working number of clusters varies, the solid line connected by ◦ for DAE
and the dashed line connected by + for DAE-II; in the middle panel displays the corresponding
change of the negative of the maximal log-likelihood function; in the right panel displays the
curves of η(·), again the solid line connected by ◦ for DAE and the dashed line connected by
+ for DAE-II.

is standardized to have the unit sample standard deviation. The oracle Bayes
error rate (18) of the reduced data is approximately .438 under the mixture
normality assumption, indicating that the clustering problem is relatively diffi-
cult. Figure 5 summarizes the results of DAE and DAE-II with KM = 12 and
r = .625.

Similarly to the above, with bootstrap re-sampling or not, the curve for the
impact of data augmentation always conveys a clear pattern that suggests three
clusters in the data. The goodness-of-fit curve, however, becomes relatively lin-
ear and contributes little to order determination. For both DAE and DAE-II,
the curve of η(·) essentially resembles that for the impact of data augmen-
tation and truly specifies K to be three. This suggests that the data aug-
mentation can sometimes deliver a stronger signal than the commonly used
goodness-of-fit measure, so it should be valued more in the future applica-
tions. For reference, K is mis-specified to be 12, 12, 9, 12, and 8 by AIC, BIC,



Determine the number of clusters by data augmentation 3933

and GSF equipped with SCAD, MCP, and Adaptive Lasso, respectively, all of
which are far biased. The failure of AIC and BIC is easily understood from the
goodness-of-fit curve in Figure 5, which again shows no pattern for characteriz-
ing K.

8. Summary

In this paper, we introduce the novel idea of data augmentation to conduct
consistent order determination for general model-based clustering. The essence
of data augmentation is to perturb the data in a designed manner, so that it
makes negligible change to clustering when the working number of clusters co-
incides with the true number of clusters, and it causes instability of clustering
when the working number of clusters is larger. Although the instability of clus-
tering has been used in multiple existing order-determination methods, as we
are aware of, this is the first time it is justified rigorously under fairly general
conditions.

As mentioned in Section 4, consistent order determination method can be
delivered by using the pattern of the impact of data augmentation alone, i.e.
τ(f̂L, f̂

∗
L), without the aid of goodness-of-fit measure. The key issue for this

approach to find a uniform threshold that determines whether an outcome of
τ(f̂L, f̂

∗
L) is negligible or not, especially when the sample size is limited. An

alternative approach that may avoid this issue is to transform τ(f̂L, f̂
∗
L) appro-

priately in a similar way to the numerous existing transformations of the scree
plot in other scenarios of order determination.

The proposed work still has several limitations. First, as mentioned in Sec-
tion 4 and observed in Section 6, the proposed estimators tend to lose consistency
if the data are severely imbalanced, i.e. if the clusters have dramatically different
sizes. In this case, we suggest using the existing order-determination methods
such as the information criteria and GSF. Second, as mentioned in Section 2,
the proposed theory relies on the uniqueness of the maximizer of φL(·, F ) for
each F ∈ G and candidate L. It remains unclear to us how to use the strat-
egy of data augmentation for order determination in more general cases. Third,
as mentioned in Section 6, the bootstrap re-sampling must be used more deli-
cately to sharpen the instability pattern and improve the sample performance
of the proposed method. Finally, the proposed estimators are not directly gen-
eralizable yet for distance-based clustering methods. Research towards these
directions requires tremendous work, and will be investigated in more detail in
the future.
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