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Abstract: Graphical models are useful to characterize the dependence
structure of variables and have been commonly used for analysis of complex
structured data. While various estimation methods have been developed
under different graphical models, those methods are, however, inadequate
to handle noisy data with measurement error. The development of most
existing approaches relies on the implicit yet stringent assumption that
the associated variables must be measured precisely. This assumption is
unrealistic for many applications because mismeasurement in variables is
usually presented in the data collection process. In this paper, we consider
analysis of error-prone data under graphical models. To understand the
impact of measurement error, we first study the asymptotic bias of the
naive analysis which disregards the feature of measurement error in the
variables. Furthermore, we develop a de-noising estimation procedure to
account for measurement error effects. Theoretical results are established
for the proposed method and numerical studies are reported to assess the
finite sample performance of our proposed method.
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1. Introduction

Graphical models have been commonly used to describe data with complex struc-
tures arising in various fields, including genomic studies, cancer research, and
medical health record frameworks. In particular, the Ising model and the Gaus-
sian graphical model are popularly used to describe association structures for
binary and continuous variables, respectively, and different inference methods
have been proposed accordingly. For instance, [20] proposed an inferential pro-
cedure to estimate the graph for the Ising model. [29] considered the Gaussian
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graphical model and adopted an interior point optimization method to obtain
the network structure for the variables. [13] proposed the graphical lasso to se-
lect the variables and estimate the model parameters. The Gaussian graphical
model with complex features was explored by many authors such as [11], [12],
[21], [23], [24], and [37].

Extensions of the Gaussian graphical model and the Ising model have been
explored in the literature. The exponential family graphical model was developed
by [28]. Mixed graphical models were proposed to handle settings where the
variables contain both continuous and discrete ones. For example, [18] discussed
the pseudo-likelihood method to deal with the mixture of the Gaussian graphical
model and the Ising model. [9] proposed the group lasso to conduct inferences
under the mixed graphical models. [5] extended mixed graphical models by
considering a mixture of Poisson distributions and exponential distributions.

Even though analysis of graphical models has been widely explored, research
gaps still remain. A typical feature that is left unattended to is about handling
noisy data with measurement error. Concerning regression analysis, research on
measurement error has attracted extensive attention. It has been well under-
stood that treating noisy data as if they were error-free often yields seriously
biased and misleading results (e.g., [4]; [30]). A large body of research papers
have been available to address measurement error effects for different settings
(e.g., [6]; [7]; [8]; [32]; [33]; [35]). For detailed discussions, see the monographs
including [2]; [3]; [4]; [14]; [15]; [30]; and [31].

While great attention on measurement error has been directed to regression
analysis, there has been little work on investigating measurement error effects
under graphical models. In this paper we discuss this important problem and
explore graphical models with error-prone measurements. We consider graphical
models which are described by the exponential family distribution. We inves-
tigate the asymptotic biases of analyzing noisy data using the naive method
which disregards noise effects. Our development accommodates all the three
scenarios of noisy data with mismeasurement: (1) all the error-prone variables
are continuous, (2) all the error-prone variables are discrete, and (3) error-prone
variables include both continuous and discrete components. Furthermore, we de-
velop a de-noise inference procedure to address the effects due to noisy data.
We establish theoretical results for the proposed method.

The remainder is organized as follows. In Section 2, we introduce the graphical
model and discuss its estimation procedure. In Section 3, we describe measure-
ment error models to characterize noisy data and explore the asymptotic biases
induced from the naive analysis ignoring the feature of noisy data. We propose a
simulation-based method to accommodate mismeasurement effects in Section 4
and establish theoretical results in Section 5. Empirical studies, including sim-
ulation results and real data analysis, are provided in Section 6. We conclude
the article with discussion in Section 7.
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2. Model framework

2.1. Mixed graphical model

Consider a p-dimensional random vector X = (X1, · · · , Xp)
�
, where the di-

mension p is a given positive integer. We use an undirected graph, denoted
G = (V,E), to describe the relationship among the components of X, where
V = {1, · · · , p}, called the vertex set, includes all the indices of the random
variables, and E ⊂ V × V , called the edge set, contains all the pairs of con-
nected indices in V . Here (r, s) ∈ E if Xr and Xs are conditionally dependent,
given other variables; and (r, s) is called an edge.

To characterize the distribution of a random vector X, one often considers
the graphical model with the exponential family distribution (e.g., [5]; [28])

P (X; θ,Θ) = exp

{∑
r∈V

θrF (Xr) +
∑

(s,t)∈V×V

θstF (Xs)F (Xt)

+
∑
r∈V

H(Xr)−A(θ,Θ)

}
, (1)

where the function A(θ,Θ) is the normalizing constant, also called the log-
partition function, which makes (1) be integrated as 1, F (·) and H(·) are given

functions, θ = (θ1, · · · θp)� is a p-dimensional vector of parameters, and Θ = [θst]
is a p×p symmetric matrix with zero diagonal elements. Parameters θst facilitate
the association of Xs and Xt for s �= t; θst = 0 shows that Xs and Xt are
conditionally independent, given the remaining variables.

Formulation (1) covers a broad class of models whose distribution is of an
exponential form. Model (1) has been used to facilitate the setting where the
components inX are either all continuous or all discrete. For example, for r ∈ V ,

we set F (Xr) =
Xr

σr
and H(Xr) = − X2

r

2σ2
r
with σr being a positive constant, then

(1) is proportional to

exp

⎛⎝∑
r∈V

1

σr
θrXr +

∑
(s,t)∈V ×V

1

σrσt
θstXsXt −

∑
r∈V

X2
r

2σ2
r

⎞⎠ , (2)

yielding the Gaussian graphical model ([13]; [16]; [18]). If we constrain θr to be
0 for all r ∈ V and let F (Xr) = Xr and H(Xr) = 0 with Xr ∈ {−1, 1}, then
(1) reduces to

exp

⎧⎨⎩ ∑
(s,t)∈V ×V

θstXsXt −A(Θ)

⎫⎬⎭ , (3)

which is the Ising model without the singleton for the simplicity [20]. The struc-
ture (1) was discussed by [5] and [28] in detail.
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In applications, one may have to deal with the settings where X contains

both continuous and discrete variables with X =
(
XC�, XD�)�. Here XC =

(XC
1 ,· · · ,XC

pC)
� is a pC-dimensional continuous random vector andXD=(XD

1 , · · · ,
XD

pD)
� is a pD-dimensional discrete random vector with pC + pD = p. For ease

of referral, in the following discussions, we respectively use superscripts “C”
and “D” to label continuous and discrete random variables or their associated
quantities.

Now we extend (1) to a mixed graphical model. To show the nature of the
variables in X, we write V = V C ∪ V D, where V C and V D represent the set of
all the indices of continuous and discrete random variables, respectively. Let EC

and ED represent the set of the edges restricted to the pairs of the indices in
V C and V D, respectively, and let ECD denote the set of heterogeneous edges for
the pairs of the indices in V C and V D, i.e.,

ECD = {(r, t′) : r ∈ V C, t′ ∈ V D, and XC

r and XD

t′ are conditionally

dependent given the remaining variables}.

In the same spirit of graphical model (1), we formulate a mixed graphical
model as

P (XC, XD; θ,Θ)

= exp

{ ∑
r∈V C

θC

rX
C

r +
∑

(r,t)∈V C×V C

θC

rtX
C

r X
C

t +
∑
r∈V C

HC(XC

r )

+
∑

r′∈V D

θD

r′X
D

r′ +
∑

(r′,t′)∈V D×V D

θD

r′t′X
D

r′X
D

t′ +
∑

r′∈V D

HD(XD

r′)

+
∑

(r,t′)∈V C×V D

θCD

rt′X
C

r X
D

t′ −Amix(θ,Θ)

}
, (4)

where θ =
(
θC�, θD�)� with θC =

(
θC
1 , · · · , θC

pC

)�
and θD =

(
θD
1 , · · · , θD

pD

)�
;

Θ =

[
ΘC ΘCD

ΘCD� ΘD

]
is a block matrix with pC × pC matrix ΘC = [θC

rt], p
D × pD

matrix ΘD = [θD

r′t′ ], and pC × pD matrix ΘCD = [θCD

rt′ ]; Amix(θ,Θ) is the normal-
izing constant of (4); HC(·) and HD(·) are given functions based on continuous
and discrete random variables, respectively, playing the same role as H(·) in
(1); θC

r and θD

r′ are the parameters corresponding to XC
r and XD

r′ for r ∈ V C and
r′ ∈ V D, respectively; θC

rt and θD

r′t′ are the parameters indicating the pairwise
dependence of the variables in EC and ED; and θCD

rt′ is the parameter show-
ing the pairwise dependence of (XC

r , X
D

t′) for r ∈ V C and t′ ∈ V D. Different
from the setting in [5], our setup accommodates both homogeneous edges and
heterogeneous edges.
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2.2. Notation and definition

In this subsection, we first introduce basic notation and then present definitions
for the mixed graphical model in Section 2.1.

For a p-dimensional vector z = (z1, · · · , zp)�, let ‖z‖∞ � max1≤i≤p |zi| de-
note the infinity norm of z, let ‖z‖1 �

∑p
j=1 |zj | denote the L1 norm of z, and

let ‖z‖22 �
∑p

j=1 |zj |
2
denote the square of the L2 norm of z. For r = 1, · · · , p,

let z\r = (z1, · · · , zr−1, zr+1, · · · , zp)� denote the (p−1)×1 subvector of z with
the rth component removed.

For a p × p matrix Ω = [ωij ], its L1-norm and the Frobenius norm are
respectively defined as

‖Ω‖1 = max
j=1,··· ,p

p∑
i=1

|ωij | and ‖Ω‖F =

√√√√ p∑
i=1

p∑
j=1

|ωij |2,

and let Λmax(Ω) denote its largest eigenvalue.
For r = 1, · · · , p, let Ω\r denote the (p − 1) × (p − 1) submatrix of Ω with

its rth row and rth column deleted. For a positive integer ζ, let Ωζ denote the
product that Ω multiplies itself ζ times.

For a univariate differentiable function f(β), let f ′(β), f ′′(β), and f ′′′(β)
denote its first, second, and third order derivative with respect to β, respectively.

For a twice differentiable multivariate function f(β), let ∇βf (β) = ∂f(β)
∂β and

∇2
βf (β) = ∂2f(β)

∂β∂β� denote the gradient and Hessian of f(β), respectively.
Next, for the mixed graphical model in Section 2.1, we describe basic notation

or definitions. For r ∈ V C, let N C(r) = {t ∈ V C : (r, t) ∈ EC} denote the homo-
geneous neighbourhood of r containing all the indices of continuous random vari-
ables XC

t that are conditionally dependent on XC
r , given other variables; and let

N CD(r) = {t′ ∈ V D : (r, t′) ∈ ECD} represent the heterogeneous neighbourhood
of r containing all the indices of discrete random variablesXD

t′ that are condition-
ally dependent on XC

r , given the remaining variables. Similarly, for r′ ∈ V D, de-
fine ND(r′) = {t′ ∈ V D : (r′, t′) ∈ ED} and NDC(r′) = {t ∈ V C : (t, r′) ∈ ECD}.

For r ∈ V C and r′ ∈ V D, let

θCD

r =
(
θCD

r1 , · · · , θCD

rpD

)�
and θDC

r′ =
(
θCD

1r′ , · · · , θCD

pCr′

)�
. (5)

That is, θCD
r is the vector collecting all the parameters showing the conditional

dependence of a discrete random variable on the continuous random variable
XC

r ; θDC

r′ is the vector collecting all the parameters showing the conditional
dependence of a continuous random variable on the discrete random variable
XD

r′ . Moreover, define

θC(r) =
(
θC

r , θ
C�
\r , θCD�

r

)�
and θD(r′) =

(
θD

r′ , θ
D�
\r′ , θ

DC�
r′

)�
, (6)

where θC

\r = (θC
rt : t ∈ V C \ {r})� and θD

\r′ = (θD

r′t′ : t
′ ∈ V D \ {r′})�. Let

θC
0 (r) =

(
θC
0;r, θ

C�
0;\r, θ

CD�
0;r

)�
and θD

0 (r
′) =

(
θD

0;r′ , θ
D�
0;\r′ , θ

DC�
0;r′

)�
denote the true
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values of θC(r) and θD(r′), respectively. Let θC
0;rt, θ

D

0;r′t′ , and θCD

0;rt′ denote the
true value of θC

rt, θ
D

r′t′ and θCD

rt′ , respectively.
Now we re-express θC

0 (r) and θD
0 (r

′) by explicitly spelling out their nonzero
and zero components. For r ∈ V C, let

SC

r (V
C) =

{
t ∈ V C : θC

0;rt �= 0
}

and SC

r (V
D) =

{
t′ ∈ V D : θCD

0;rt′ �= 0
}
.

Then let

SC

r � SC

r (V
C) ∪ SC

r (V
D) (7)

denote the set of all indices having connections with continuous random variable
XC

r .
Similarly, for r′ ∈ V D, let

SD

r′(V
D) =

{
t′ ∈ V D : θD

0;r′t′ �= 0
}

and SD

r′(V
C) =

{
t ∈ V C : θCD

0;tr′ �= 0
}
.

Then the set

SD

r′ � SD

r′(V
D) ∪ SD

r′(V
C) (8)

includes all indices having connections with discrete random variable XD

r′ .

Let SC

r and SD

r′ denote the complement sets of (7) and (8), respectively. Let
dC
r = |SC

r | and dD

r′ = |SD

r′ | denote number of elements in SC
r and SD

r′ , respectively,
and let dC � max{dC

r : r ∈ V C} and dD � max{dD

r′ : r
′ ∈ V D}. With (7) and (8),

for r ∈ V C and r′ ∈ V D, we define

θ0;SC
r
�
(
θC

0;rt, θ
CD

0;rt′ : t ∈ SC

r (V
C) and t′ ∈ SC

r (V
D)
)�

(9)

and

θ0;SD
r′

�
(
θD

0;r′t′ , θ
CD

0;tr′ : t ∈ SD

r′(V
C) and t′ ∈ SD

r′(V
D)
)�

, (10)

and define

θ
0;SC

r
�
(
θC

0;rt, θ
CD

0;rt′ : t, t
′ ∈ SC

r

)�
and θ

0;SD
r′

�
(
θD

0;r′t′ , θ
CD

0;tr′ : t, t
′ ∈ SD

r′

)�
.

Consequently, θC
0 (r) and θD

0 (r
′) can be, respectively, rewritten as

θC

0 (r) =
(
θC

0;r, θ
�
0;SC

r
, θ�

0;SC
r

)�
and θD

0 (r
′) =

(
θD

0;r′ , θ
�
0;SD

r′
, θ�

0;SD
r′

)�
. (11)

2.3. Separate estimation

In this subsection, we describe a neighbourhood selection approach to identify
the structure of mixed graphical models and estimate the associated parame-
ters. The procedures are basically addressed to continuous and discrete random
variables in a separate manner.
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Following the same spirit of deriving Proposition 1 of [28], we obtain that the
conditional distribution of the rth continuous random variable XC

r , given XC

\r
and XD, is

P
(
XC

r |XC

\r, X
D

)
= exp

{
XC

r η
C

X,r +HC (XC

r )−KC(ηC

X,r)
}
, (12)

where ηC

X,r = θC
r +

∑
t∈V C\{r} θ

C
rtX

C
t +

∑
t′∈V D θCD

rt′X
D

t′ and KC(ηC

X,r) is the

normalizing constant ensuring the integration of the right-hand side (12) to be
one. Similarly, the conditional distribution of the r′th discrete random variable
XD

r′ , given XD

\r′ and XC, is given by

P
(
XD

r′ |XD

\r′ , X
C

)
= exp

{
XD

r′η
D

X,r′ +HD (XD

r′)−KD(ηD

X,r′)
}

(13)

with ηD

X,r′ = θD

r′ +
∑

t′∈V D\{r′} θ
D

r′t′X
D

t′ +
∑

t∈V C θCD

tr′X
C
t and the normalizing

constant KD(ηD

X,r′).
To estimate parameters of model (4) or identify the graphic structure of (4),

we assume the availability of a random sample
{
X(i) : i = 1, · · · , n

}
of size n,

where X(i) =
(
XC(i)�, XD(i)�)� represents the random vector for observation

i which follows the same distribution as X =
(
XC�, XD�)�. By (12) and (13),

we define

�C (θC(r)) = − 1

n

n∑
i=1

log
{
P
(
XC(i)

r

∣∣∣XC(i)
\r , XD(i)

)}
(14)

and

�D (θD(r′)) = − 1

n

n∑
i=1

log
{
P
(
X

D(i)
r′

∣∣∣XD(i)
\r′ , XC(i)

)}
. (15)

To carry out selection of those nonzero elements associated with θC

\r, θ
D

\r′ , θ
CD
r

and θDC

r′ , we implement the lasso penalty function [25] and obtain the estimators
of θC(r) and θD(r′), respectively, by

θ̃C(r) = argmin
θC(r)

{
�C (θC(r)) + λC

n1

∥∥∥θC

\r

∥∥∥
1
+ λC

n2 ‖θCD

r ‖1
}

(16)

and

θ̃D(r′) = argmin
θD(r′)

{
�D (θD(r′)) + λD

n1

∥∥∥θD

\r′
∥∥∥
1
+ λD

n2 ‖θDC

r′ ‖1
}
, (17)

where λC
n1, λC

n2, λD
n1, and λD

n2 are tuning parameters. For simplicity, we set
λC
n1 = λC

n2 and λD
n1 = λD

n2, and let λC
n and λD

n denote them, respectively.
In the special case where X contains one type of variables only (e.g., either

continuous or discrete but not both), then the preceding procedure is simpler
with the last term in (16) or (17) becoming null.
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3. Noisy data with measurement error and misclassification

3.1. Mismeasurement models

In applications, we often collect noisy data with measurement error. To feature
this, let X∗ denote the observed surrogate version of X. Similar to the presenta-

tion of X =
(
XC�, XD�)� in Section 2.1, we write X∗ = (X∗C�, X∗D�)� where

X∗C is the surrogate measurement ofXC, andX∗D is the surrogate measurement
of XD.

To delineate the relationship between X∗ and X, we employ the widely used
classical additive measurement error model [30, Ch2] to describe the relationship
between X∗C and XC:

X∗C = XC + ε, (18)

where ε is independent of X as well as X∗D, and ε ∼ N(0,Σε) with covariance
matrix Σε.

To describe the relationship between X∗D and XD, we first write the vectors
of all possible values of XD as x(1), x(2), · · · , x(m), where m is a positive integer.
Assume that

P
(
X∗D = x(k)

∣∣XD = x(l), X
C
)
= P

(
X∗D = x(k)

∣∣XD = x(l)

)
. (19)

Let pkl = P
(
X∗D = x(k)|XD = x(l)

)
be the (mis)classification probability for

k, l = 1, · · · ,m, and define the m×m (mis)classification matrix P = [pkl]m×m.

Noting that P
(
X∗D = x(k)

)
=

∑m
l=1 pklP

(
XD = x(l)

)
for all k = 1, · · · ,m,

we have the matrix expression⎛⎜⎝ P
(
X∗D = x(1)

)
...

P
(
X∗D = x(m)

)
⎞⎟⎠ = P

⎛⎜⎝ P
(
XD = x(1)

)
...

P
(
XD = x(m)

)
⎞⎟⎠ . (20)

To ease notation, let MC [P ] (·) denote the misclassification operator, and we
then write (20) as

X∗D = MC [P ] (XD) (21)

as a short form; we may treat (21) as a link to connect X∗D and XD, or broadly
as a mapping from XD to X∗D through the operation P . Expression (20) ex-
tends the misclassification operator used by [4, p.125] and [17] who considered
a misclassified binary random variable only. Consistent with [4, p.125], suppose
that P has the decomposition P = ΩDΩ−1, where D is the diagonal matrix of
eigenvalues of P and Ω is the corresponding matrix of eigenvectors.

In applications, Σε in (18) and P in (20) are usually unknown. To estimate
Σε and P , one may need auxiliary information, such as repeated measurements
or validation data; discussions about this are placed in Section 7. In the absence
of auxiliary information, we can employ sensitivity analyses to specify values
of Σε and P , and examine the measurement error effects (e.g., [6]; [7]; [8]), as
shown in Section 6. In the following development, Σε and P are taken as given.
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3.2. Impact of naive analysis

In the presence of noisy data with mismeasurement, a naive approach is to dis-
regard the feature of noise and directly employ an available inference procedure
to the available data with X∗. This approach is tempting in its easiness of im-
plementation. However, it may yield biased results. To understand the impact of
ignoring the feature of noisy data, we study the asymptotic bias of the estimator
derived from the naive analysis.

For i = 1, · · · , n, let X∗(i) denote the observed surrogate for the true random
vector X(i) for observation i. To ease the discussion, we consider the case where
all variables in the model are continuous. In this case, the distribution of the

graphical model is given by (1), and the conditional distribution (12) of X
(i)
r

given X
(i)
V \{r} reduces to

P
(
X(i)

r |X(i)
\r

)
= exp

⎧⎨⎩θrX
(i)
r +X(i)

r

∑
t∈V \{r}

θrtX
(i)
t +H(X(i)

r )

−KC

⎛⎝θr +
∑

t∈V \{r}
θrtX

(i)
t

⎞⎠⎫⎬⎭ . (22)

The naive analysis is based on replacing X(i) in (22) with the surrogate
random vector X∗(i), yielding the naive negative log likelihood function

�nv(θ(r)) = − 1

n

n∑
i=1

log
{
P
(
X∗

r
(i)|X∗(i)

\r

)}
, (23)

where P
(
X∗

r
(i)|X∗(i)

\r

)
is determined by (22) with X(i) replaced by X∗(i) and

θ(r) =
(
θr, θ

�
\r

)�
for r ∈ V . Then the naive estimator of θ(r) is obtained as

θ̂nv(r) = argmin
θ(r)

{
�nv(θ(r)) + λn

∥∥θ\r∥∥1} , (24)

where λn is the tuning parameter.
To discuss the asymptotic bias of the naive estimator θ̂nv(r) for r ∈ V ,

we introduce some notation. Let θ0(r) =
(
θ0;r, θ

�
0;\r

)�
denote the true value

of θ(r). For r ∈ V , define Qr = E
{(

X
(i)�
\r X

(i)�

\r

)
KC

′′
(
θ0;r +X

(i)�
\r θ0;\r

)}
and Dr = E

{
KC

′′
(
θ0;r +X

(i)�
\r θ0;\r

)}
, where KC

′′
(·) represents the second

derivative of KC(·). Let Σε;\r be the covariance matrix Σε with the rth row and
the rth column deleted.

Theorem 3.1. Assume that regularity conditions in Section 3.1 of [28] hold.
Then for any r ∈ V , there exist constants α̃ ∈ (0, 1) and ρ̃ > 0 such that∥∥∥θ̂nv(r)− θ0(r)

∥∥∥
∞
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≥
{
‖Qr‖∞ +

∥∥Σε;\rDr

∥∥
∞
}−1

(
‖∇θ�nv (θ0)‖∞ − λnα̃

4 (2− α̃)
− 2λn

)
−
{
1 + ‖Qr‖−1

∞
∥∥Σε;\rDr

∥∥
∞
}−1

ρ̃λn. (25)

With the range of λn specified in [28, p.3839], Theorem 3.1 shows that the

naive estimator θ̂nv(r) is not close to the true parameter θ0(r) in the infinity
norm if the right-hand-side of (25) is positive. This suggests that the estimated
graph generally differs from the true graph, which is also confirmed numerically
by the simulation studies to be reported in Section 6. Consequently, with noisy
data involving mismeasurement, it is imperative to account for the induced error
effects in inferential procedures.

4. De-nosing analysis with noisy data under mixed graphical models

To accommodate effects induced from noisy data, we develop a simulation-based
neighbourhood-set likelihood method. The basic idea is to first depict how the
bias is related to the degree of mismeasurement, and then use this relation to
extrapolate it to the case without mismeasurement. Such an idea is motivated
by the simulation-extrapolation (SIMEX) approach proposed by [10] and the
misclassification SIMEX (MC-SIMEX) method considered by [17]; those meth-
ods were developed for regression models with mismeasured covariates which
are either continuous or discrete. However, our setting is pertinent to mixed
continuous and discrete variables with network structures. As both continuous
and discrete variables are error-contaminated, the development here is more
complex in technical details. Because the proposed method concerns addressing
measurement error effects as well as identifying the association structure among
the variables, the establishment of its theoretical results is more challenging
than those focusing on one feature only.

4.1. Estimation procedure

The simulation-based neighbourhood-set likelihood method consists of the fol-
lowing four steps.

Step 1: Simulation
For observation i, let X∗C(i) and X∗D(i) denote the observed surrogates
of XC(i) and XD(i), respectively. Let B be a given positive integer and let
Z = {ζ0, ζ1, · · · , ζM} be a sequence of pre-specified values with 0 = ζ0 <
ζ1 < · · · < ζM , where M is a positive integer.

For i = 1, · · · , n and b = 1, · · · , B, we generate U
(i)
b from N(0,Σε) and

then define

W
C(i)
b (ζ) = X∗C(i) +

√
ζU

(i)
b (26)

for ζ ∈ Z. For the discrete random vector X∗D(i), we generate

W
D(i)
b (ζ) = MC[Pζ ]

(
X∗D(i)

)
(27)
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for ζ ∈ Z, where Pζ = ΩDζΩ−1 and Dζ represents the matrix derived
from D by replacing its diagonal elements, say djj , with dζjj .

For b = 1, · · · , B, ζ ∈ Z, and i = 1, · · · , n, let W (i)
b (ζ) =

(
W

C(i)�
b (ζ),

W
D(i)�
b (ζ)

)�
and we call it working data.

Step 2: Estimation
For r ∈ V C and r′ ∈ V D, let �Cb,ζ (θ

C(r)) and �Db,ζ (θ
D(r′)) be determined by

(14) and (15), respectively, with X(i) replaced by W
(i)
b (ζ). Then for each

ζ ∈ Z and b = 1, · · · , B, compute

θ̂C(r; ζ, b) = argmin
θC(r)

{
�Cb,ζ (θ

C(r)) + λC

n

(∥∥∥θC

\r

∥∥∥
1
+ ‖θCD

r ‖1
)}

(28)

and

θ̂D(r′; ζ, b) = argmin
θ̂D(r′)

{
�Db,ζ (θ

D(r′)) + λD

n

(∥∥∥θD

\r′
∥∥∥
1
+ ‖θDC

r′ ‖1
)}

, (29)

where λC
n and λD

n are tuning parameters. Next, we calculate

θ̂C(r; ζ) =
1

B

B∑
b=1

θ̂C(r; ζ, b) and θ̂D(r′; ζ) =
1

B

B∑
b=1

θ̂D(r′; ζ, b). (30)

Step 3: Extrapolation
Grouping the estimates obtained from (30), we obtain two sequences SC

r ={(
ζ, θ̂C (r; ζ)

)
: ζ ∈ Z

}
and S

D

r′ =
{(

ζ, θ̂D (r′; ζ)
)
: ζ ∈ Z

}
for r ∈ V C and

r′ ∈ V D. Then we respectively regress θ̂C (r; ζ) and θ̂D (r′; ζ) on ζ by fitting
models

θ̂C (r; ζ) = GC (ζ,ΓC) + δC and θ̂D (r′; ζ) = GD (ζ,ΓD) + δD (31)

to the sequences S
C
r and S

D

r′ , where GC(·, ·) and GD(·, ·) are use-specified
regression functions (such as linear or quadratic functions), ΓC and ΓD

are the associated parameter vectors, and δC and δD represent the noise
terms.

Parameters ΓC and ΓD can be estimated by applying the least squares
method to the sequences S

C
r and S

D

r′ ; let Γ̂C and Γ̂D denote the resulting
estimates of ΓC and ΓD, respectively. Next, we extrapolate models in (31)
by letting ζ = −1 and calculate

θ̂C(r) � GC(−1, Γ̂C) and θ̂D(r′) � GD(−1, Γ̂D). (32)

Step 4: Graph Assembling

Corresponding to expression (6), we write θ̂C(r) =
(
θ̂C
r , θ̂

C�
\r , θ̂CD�

r

)�
and

θ̂D(r′) =
(
θ̂D

r′ , θ̂
D�
\r′ , θ̂

DC�
r′

)�
as the estimators of θC(r) and θD(r′) for r ∈
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V C and r′ ∈ V D, respectively. Then the homogeneous neighbourhoods

N C(r) and ND(r′) for r ∈ V C and r′ ∈ V D are estimated by N̂ C(r) =
{
t ∈

V C\{r} : θ̂C
rt �= 0

}
and N̂D(r′) =

{
t′ ∈ V D \ {r′} : θ̂D

r′t′ �= 0
}
, respectively,

and the heterogeneous neighbourhoods N CD(r) and NDC(r′) are estimated

by N̂ CD(r) =
{
t′ ∈ V D : θ̂CD

rt′ �= 0
}

and N̂DC(r
′) =

{
t ∈ V C : θ̂CD

tr′ �= 0
}
,

respectively.
To obtain an estimator of Θ, one may consider to repeat the same

procedures for r ∈ V C and r′ ∈ V D, which, however, is flawed since Θ
is a symmetric matrix with θC

rt = θC
tr and θD

rt = θD
tr for t �= r, but their

estimators do not necessarily possess this symmetry property. As a remedy,
we apply the AND rule proposed by [19]. That is, for the nodes related
to continuous random variables, the AND rule declares that (r, t) belongs

to the estimated edge set ÊC if both r ∈ N̂ C(t) and t ∈ N̂ C(r) hold;
the similar rule applies to the parameters θD

r′t′ related to the discrete
random variables and the parameters θCD

rt′ related to the mixture of random
variables.

4.2. Remarks of the implementation procedure

The implementation procedure described in Section 4.1 applies for any given
tuning parameters λC

n and λD
n in (28) and (29). One may wonder how to choose

λC
n and λD

n to obtain sensible results. Here we use the Bayesian Information Cri-
terion (BIC) (e.g., [7]; [27]; [34]) to select the tuning parameters. Specifically, for

r ∈ V C and r′ ∈ V D, we let θ̂C(r; ζ, b, λC
n) and θ̂D(r′; ζ, b, λD

n) respectively denote
the estimator obtained from (28) and (29) by spelling out their dependence on
the tuning parameters. For given b and ζ, define

BIC (λC

n) = 2n�Cb,ζ

(
θ̂C(r; ζ, b, λC

n)
)
+ (logn)× df

(
θ̂C(r; ζ, b, λC

n)
)

(33)

and

BIC (λD

n) = 2n�Db,ζ

(
θ̂D(r′; ζ, b, λD

n)
)
+ (log n)× df

(
θ̂D(r′; ζ, b, λD

n)
)
, (34)

where notation df (a) represents the number of nonzero elements in a vector a.
Consider a grid for λC

n and λD
n, denoted ΛC and ΛD, respectively. The opti-

mal tuning parameters λC
n and λD

n, denoted by λ̂C
n and λ̂D

n, are determined by
minimizing (33) and (34) over ΛC and ΛD, respectively. That is,

λ̂C

n = argmin
λC
n∈ΛC

BIC (λC

n) and λ̂D

n = argmin
λD
n∈ΛD

BIC (λD

n) .

Consequently, with given b and ζ, the estimators of θC(r) and θD(r′) are deter-

mined by θ̂C(r; ζ, b) � θ̂C(r; ζ, b, λ̂C
n) and θ̂D(r′; ζ, b) � θ̂D(r′; ζ, b, λ̂D

n) for r ∈ V C

and r′ ∈ V D, respectively.
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We conclude this subsection with remarks. Different from the conventional
graphical model which focuses on either continuous or discrete random vari-
ables, we consider settings with both continuous and discrete random variables
accommodated simultaneously and allow error-prone variables to be a mix of
continuous and discrete variables.

To account for the effects of mismeasurement in the variables, we employ a
simulation-based strategy by combining the simulation-extrapolation (SIMEX)
method [10] and the MC-SIMEX method [17] which are separately developed for
handling error-contaminated continuous and discrete variables. The basic idea
of this strategy is to delineate how estimation biases for the model parameters
may depend on varying magnitudes of mismeasurement by considering a series
of artificial scenarios. Its implementation hings on three steps. The first simula-
tion step creates artificial settings with different degrees of mismeasurement in
the variables. The second estimation step quantifies induced biases for varying
magnitudes of mismeasurement using a usual method developed for error-free
settings. The third extrapolation step first traces the pattern of the estimation
biases and then extrapolates it to the setting without measurement error which
is reflected by setting ζ = −1.

To see why ζ = −1 represents the error-free setting, one may, for each i and
b, re-write (26) and (27) as

W
C(i)
b (ζ) ∼ N

(
XC(i), (1 + ζ)Σε

)
and W

D(i)
b (ζ) = MC

[
P1+ζ

] (
XD(i)

)
(35)

for ζ ∈ Z. Different values of ζ reflect different degrees of mismeasurement in the

artificially generated surrogates W
C(i)
b (ζ) and W

D(i)
b (ζ). With ζ = 0, W

C(i)
b (ζ)

and W
D(i)
b (ζ) recover the actually collected surrogates X∗C(i) and X∗D(i). With

a positive and increasing ζ, W
C(i)
b (ζ) and W

D(i)
b (ζ) incur an increasing amount

of mismeasurement. While (35) is defined for ζ ∈ Z which are all nonnegative, if
one extrapolates its value to be −1, then ζ = −1 makes the right-hand side of the
two expressions in (35) represent the true variablesXC(i) andXD(i), respectively,
the ideal situation without mismeasurement. Since the value ζ = −1 is not in
Z, calculating the fitted values with ζ = −1 in (31) is not called determining
predicted values as usual but is termed as extrapolating. To have an intuitive
illustration of the meaning corresponding to ζ = −1, one may consider a simple
linear regression response model with an additive measurement error model for
the error-prone predictor. For details, see [30, pp.63-64].

The idea of the estimation steps is conceptually straightforward, yet the im-
plementation can be computationally demanding, which typically depends on
the specification of B and Z in Step 1. Although taking a larger value of B and
more points in Z may help improve estimation results, it will greatly increase
computation time. The choice of B and Z is driven by the balance of the af-
fordability of computation resources and accuracy of results. While B and Z
are not uniquely specified, commonly, B is set as a value between 100 and 500,
Z is taken as a collection of M points that equally cut the interval [0, 1] or [0, 2]
with M set as 5 or 10. Further, the implementation requires the specification
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of the extrapolation function in Step 3, and numerical experience suggests that
the quadratic extrapolation function tends to perform well in various settings.
Detailed comments on these are available in [4, p.106] and [30, p.64].

5. Theory

In this section we establish theoretical results for the proposed estimators. First,
we introduce additional notation based on those defined in Section 2.2 and the
negative log-likelihood functions in Section 4.1. For r ∈ V C and r′ ∈ V D, define
QC

ζ = ∇2
θC(r)�

C

b,ζ(θ
C
0 (r)) and QD

ζ = ∇2
θD(r′)�

D

b,ζ(θ
D
0 (r

′)), and based on (7) and (8),

we write them as the block matrices

QC

ζ =

(
Qζ,SC

r SC
r

Q
ζ,SC

r SC
r

Q
ζ,SC

r SC
r

Q
ζ,SC

r SC
r

)
and QD

ζ =

(
Qζ,SD

r′S
D
r′

Q
ζ,SD

r′S
D
r′

Q
ζ,SD

r′SD
r′

Q
ζ,SD

r′S
D
r′

)
,

where

Q
ζ,SC

r SC
r
= ∇θSC

r

{
∇θSC

r
(r)�

C

b,ζ(θ
C

0 (r))
}
, Q

ζ,SC
r SC

r
= Q�

ζ,SC
r SC

r

,

Qζ,SC
r SC

r
= ∇2

θSC
r

�Cb,ζ(θ
C

0 (r)), and Q
ζ,SC

r SC
r
= ∇2

θSC
r

�Cb,ζ(θ
C

0 (r));

and

Qζ,SD
r′S

D
r′

= ∇2
θSD

r′
�Db,ζ(θ

D

0 (r)), Q
ζ,SD

r′S
D
r′

= ∇2
θSD

r′
�Db,ζ(θ

D

0 (r
′))

Q
ζ,SD

r′S
D
r′

= ∇θSD
r′

{
∇θSD

r′
(r′)�

D

b,ζ(θ
D

0 (r
′))

}
, and Q

ζ,SD
r′SD

r′
= Q�

ζ,SD
r′S

D
r′
.

Corresponding to (11), for r ∈ V C and r′ ∈ V D, we write the estimators θ̂C(r)

and θ̂D(r′) obtained from Step 4 of Section 4.1 as

θ̂C(r) =
(
θ̂C

r , θ̂
�
SC
r
, θ̂�SC

r

)�
and θ̂D(r′) =

(
θ̂D

r′ , θ̂
�
SD
r′
, θ̂�SD

r′

)�
,

respectively, where

θ̂SC
r
=
(
θ̂C

rt, θ̂
CD

rt′ : t ∈ SC

r (V
C) and t′ ∈ SC

r (V
D)
)�

and

θ̂SD
r′

=
(
θ̂D

r′t′ , θ̂
DC

tr′ : t ∈ SD

r′(V
C) and t′ ∈ SD

r′(V
D)
)�

are the estimators for (9) and (10), respectively.
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5.1. Regularity conditions

To establish the asymptotic results of the developed method, the following con-
ditions are required.

(A1) There exists a positive value α ∈ (0, 1) such that∥∥∥Qζ,SC
r SC

r
Q−1

ζ,SC
r SC

r

∥∥∥
∞

≤ 1− α

and ∥∥∥Qζ,SD
r′SD

r′
Q−1

ζ,SD
r′S

D
r′

∥∥∥
∞

≤ 1− α

for ζ ∈ Z, r ∈ V C, and r′ ∈ V D.
(A2) There exists ρ2 < ∞ such that

Λmax

(
n∑

i=1

W
(i)
b (ζ)W

(i)�
b (ζ)

)
< ρ2

for all b = 1, · · · , B and ζ ∈ Z.
(A3) Functions KC(·) and KD(·) are third-order differentiable, and there exist

positive η1 and η2 such that∣∣∣KC
′′
(y)

∣∣∣ < η1,
∣∣∣KD

′′
(y)

∣∣∣ < η1,
∣∣∣KC

′′′
(y)

∣∣∣ < η2, and
∣∣∣KD

′′′
(y)

∣∣∣ < η2

for every y.
(A4) The exact extrapolation functions in Step 3 of Section 4.1 are assumed to

be known.
(A5) There exist constants κ1 and κ2 > 0 such that

E (XC

r ) < κ1 and E
{
(XC

r )
2
}
< κ2

for all r = 1, · · · , pC.

Assumptions (A1) and (A2), called mutual incoherence and dependency con-
dition, respectively, (e.g., [19]), are frequently assumed in the literature (e.g.,
[5]; [19]; [20]; [28]). Assumption (A3) describes boundness and differentiation
conditions for KC(·) and KD(·). (A4) is a regular condition required to es-
tablish the consistency for the SIMEX estimators (e.g., [4]). (A5) requires the
first and second moments of the continuous random variables to be bounded
(e.g., [5]; [28]), and this condition also implies the boundness of the moments
for working data. To see this, let Σε;r,r denote entry (r, r) of Σε. For any

b = 1, · · · , B and ζ ∈ Z, E
{
WC

b,r(ζ)
}

= E
{
E
(
WC

b,r(ζ)|XC
r

)}
= E (XC

r ) and

E

[{
WC

b,r(ζ)
}2

]
= E

(
E

[{
WC

b,r(ζ)
}2 ∣∣∣XC

r

])
= E

{
(XC

r )
2
}
+(1+ ζ)Σε;r,r, and

thus, E

[{
WC

b,r(ζ)
}2

]
< κ2 + (1 + ζ)Σε;r,r.
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5.2. Theoretical results

We now establish theoretical results for the estimators proposed in Section 4.1.
For ζ ∈ Z, let ρζ > 0 denote the smallest eigenvalue for allQζ,SC

r SC
r
andQζ,SD

r′S
D
r′

with r ∈ V C and r′ ∈ V D. Define ρ � min{ρζ : ζ ∈ Z}.
Theorem 5.1 (Sparsity recovery). Assume regularity conditions in Section 5.1.
Suppose that tuning parameters λC

n and λD
n satisfy√

η1κ∗
2 log p

n

(
2− α

α

)
< λC

n <
ρ2

η1ρ∗2d
C

(36)

and √
η1κ∗

2 log p

n

(
2− α

α

)
< λD

n <
ρ2

η1ρ∗2d
D
, (37)

where ρ∗2 = 288ρ2 and κ∗
2 = 64κ2, with ρ2 and κ2 being defined in Conditions

(A2) and (A5), respectively. Then with probability greater than 1 − τn where

τn =
[
c1{max(n, p)}−2 + exp(−c2n)

]
for some positive constants c1 and c2,

N̂ C(r) = N C(r) and N̂ CD(r) = N CD(r) (38)

for r ∈ V C, and

N̂ D(r′) = N D(r′) and N̂ DC(r′) = N DC(r′) (39)

for r′ ∈ V D.

This theorem shows that with a given sample of size n, the estimated graph
can be ensured to equal the true graphical structure with a probability greater
than 1 minus a value related to {max(n, p)}−2 and exp(−n) if tuning parameters
λC
n and λD

n are properly chosen; when the sample size n approaches infinity,
the probability that the estimated graph equals the true graph approaches 1.
Both tuning parameters λC

n and λD
n are required to be lower bounded by the

same value proportional to n−1/2. Such a lower bound enables the probability
of having the desired result (i.e., (38) and (39)) to be high, as indicated by
the form of τn, and shown in Lemma A.2 and (C.11) in Step 1 appearing in
Appendix C. Thereby, the desired result holds with probability approaching
one as n goes to infinity (e.g., [20, p.1299]). Meanwhile, both λC

n and λD
n need

to be upper bounded by functions of the eigenvalues of Qζ,SC
r SC

r
and Qζ,SD

r′S
D
r′
,

which ensures the derivations for (38) and (39), as shown in (C.10) and (C.11)
in Appendix C.

Theorem 5.2. For r ∈ V C, let θC

0;SC
r
(r) =

(
θC
0;r, θ

�
0;SC

r

)�
denote the true value

for the subvector of nonzero parameters associated with r, and let θ̂C

SC
r
(r) =(

θ̂C
r , θ̂

�
SC
r

)�
denote its estimator. For r′ ∈ V D, let θD

0;SD
r′
(r′) =

(
θD

0;r′ , θ
�
0;SD

r′

)�
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denote the true value for the subvector of nonzero parameters associated with

r′, and let θ̂D

SD
r′
(r′) =

(
θ̂D

r′ , θ̂
�
SD
r′

)�
denote its estimator. Assume regularity con-

ditions in Theorem 5.1. Then with probability greater than 1 − {max(n, p)}−2,
the following results hold for r ∈ V C and r′ ∈ V D:

(a) Sign recovery:

sign
(
θ̂C

SC
r
(r)

)
= sign

(
θC

0;SC
r
(r)

)
and sign

(
θ̂D

SD
r′
(r′)

)
= sign

(
θD

0;SD
r′
(r′)

)
.

(b) Boundness of the estimators:∥∥∥θ̂C

SC
r
(r)− θC

0;SC
r
(r)

∥∥∥
∞

≤ 6
√
dC
rλ

C
n

ρ

and ∥∥∥θ̂D

SD
r′
(r′)− θD

0;SD
r′
(r′)

∥∥∥
∞

≤
6
√
dD

r′λ
D
n

ρ
.

Theorem 5.2 describes the finite sample performance of the proposed method
with probability higher than 1−{max(n, p)}−2. As n goes to infinity, the results
hold with probability approaching one. Theorem 5.2 (a) says that the sign of
the estimators is identical to that of the true parameter values. For r ∈ V C and
r′ ∈ V D, regarding the subvectors of nonzero parameters θC

0;SC
r
(r) and θD

0;SD
r′
(r′)

in θC
0 (r) and θD

0 (r
′), respectively, Theorem 5.2 (b) offers upper bounds for the

differences between their estimators and their true values. These bounds suggest
that the discrepancies of the proposed estimators from their target parameters
are not unlimited but are bounded. We stress that the dependence of the upper
bounds on the magnitude of mismeasurement in XC and XD is tacitly reflected
by ρ. Being the smallest eigenvalue of Qζ,SC

r SC
r

and Qζ,SD
r′S

D
r′

for all ζ ∈ Z, ρ

implicitly depends on both the original degrees of mismeasurement in (18) and
(21) and those artificially generated magnitudes of mismeasurements in (26)
and (27). As the dependence of ρ involves the latter ones, the identified upper
bounds in Theorem 5.2 (b) are not sharp. This latter dependence also reflects the
use of working data (26) and (27) when implementing the estimation procedure.
While the inequalities in Theorem 5.2 (b) do not show analytical forms in terms
of Σε or P , the impact of measurement error can be evaluated using numerical
studies, as shown in Section 6.

When components of X are all continuous (or discrete), i.e., X = XC (or
X = XD), results similar to Theorems 5.1 and 5.2 still hold for the corresponding
estimators.

6. Numerical studies

In this section, we conduct numerical studies to assess the performance of the
proposed estimators for a variety of settings. We first design the simulation
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Fig 1. The left-hand-side structure is a Lattice and the right-hand-side structure is a Hub.

settings and then present the simulation results. Finally, the proposed method
is implemented to analyze a real dataset, where we set B = 500 and Z =
{0, 0.25, 0.50, 0.75, 1, 1.25, 1.50, 1.75, 2}.

6.1. Model settings

Let Θ0 be the p× p matrix which is specified to have the network structure, a
lattice or a hub structure, as shown in Figure 1. Let X denote the p-dimensional
random vector which follows the exponential family distribution (4), where the
continuous random vector XC assumes the structure (2), and the discrete ran-
dom vector XD assumes the form (3).

For the measurement error process, we consider the following three scenarios:

Scenario 1: Only continuous variables are subject to measurement error
In this scenario, all error-prone random variables are continuous, i.e., X =
XC, and they assume the classical additive measurement error model (18),
where ε is independent of XC, ε ∼ N(0,Σε), and Σε is a p × p diagonal
matrix with entries σ2

ε , with σ2
ε set as 0.15, 0.5 or 0.75 to reflect increasing

degrees of measurement error.
Scenario 2: Only binary variables are subject to misclassification

In this scenario, all the error-contaminated random variables are consid-
ered to be binary, taking value 1 or −1, i.e., X = XD. In contrast to the
misclassification probabilities defined in Section 3.1, we consider that

pll = P
(
X∗D = x(l)|XD = x(l)

)
(40)

assumes a common value, say π, for l = 1, · · · ,m, where m = 2p, rep-
resenting the cardinality of the set {−1, 1}p. Thus, the misclassification
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matrix is the m×m matrix

P =

⎡⎢⎢⎢⎢⎢⎣
π 1− π 0 0 · · · 0 0 0

1
2 (1− π) π 1

2 (1− π) 0 · · · 0 0 0
0 1

2 (1− π) π 1
2 (1− π) · · · 0 0 0

...
...

...
...

. . .
...

...
...

0 0 0 0 · · · 0 1− π π

⎤⎥⎥⎥⎥⎥⎦ ,

where we set π = 0.7, 0.8, or 0.9 to reflect different degrees of misclassifi-
cation.

Scenario 3: Both measurement error and misclassification exist
In this scenario, we examine the case where both continuous and discrete
random variables are subject to mismeasurement by combining Scenarios
1 and 2 with additional assumptions that ε in (18) is independent of X∗D.

Consistent with the notation in Section 2.1, let X =
(
XC�, XD�)� be the

vector of the true random variables and let X∗ =
(
X∗C�, X∗D�

)�
denote

the surrogate random vector generated from setting (σ2
ε , π) to be (0.15,

0.9), (0.50, 0.8), or (0.75, 0.7).

We take the regression functions GC(·, ·) and GD(·, ·) in (31) to be the quadratic
or linear function, as considered by [4, p.126]. In each setting, we consider
different combinations of the sample size n and the dimension of X. In Sce-
nario 1, we set (n, pC) = (400, 20), (400, 100), or (200, 400); in Scenario 2 we
examine (n, pD) = (400, 20), (400, 15), or (15, 20); and in Scenario 3 we set
(n, p) = (400, 20), (400, 100), or (200, 300) with (pC, pD) = (10, 10), (90, 10), or
(280, 20). We perform 500 simulations for each setting.

6.2. Simulation results

We examine the accuracy of the estimator of Θ by reporting its L1-norm ‖ΔΘ‖1
and the Frobenius norm ‖ΔΘ‖F , respectively, where ΔΘ = Θ̂ − Θ0. To report
the accuracy of variable selection for the graphical structure, we examine the
specificity (Spe) and the sensitivity (Sen) for the estimator Θ̂. The specificity is
defined as the proportion of zero coefficients that are correctly estimated to be
zero, and the sensitivity is defined as the proportion of nonzero coefficients that
are correctly estimated to be nonzero. The simulation results of the naive and
proposed methods are reported in Tables 1-3, where “naive” refers to the naive
method which ignores the mismeasurement feature, “corrected-Q” represents
the proposed method using the quadratic extrapolation function at Step 3 in
Section 4.1, and ‘corrected-L” indicates the proposed method using the linear
extrapolation function at Step 3 in Section 4.1. As a reference for comparisons,
we also use the true values of X for the estimation, and denote this method as
“true”.

It is apparent that the naive method yields seriously biased results. The
values of the L1-norm and the Frobenius norm are noticeably large whereas the
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specificities are small for various settings. Although the sensitivities are all good
for Scenario 1, they tend to be far off 1 in Scenarios 2 and 3. As the degree of
mismeasurement increases, the bias incurred in the naive method becomes more
substantial.

On the contrary, with measurement error effects taken into account, the pro-
posed method obviously outperforms the naive method with smaller values of
the L1-norm and the Frobenius norm as well as higher specificities and sensitivi-
ties, and thus, yielding more accurate recovery of graphical structures. As noted
in the comments of Theorem 5.2 (b), the measurement error degree has effects
on the performance of the proposed estimators. Simulation results show that the
performance of the proposed method deteriorates as mismeasurement becomes
more severe. In addition, the choice of the extrapolation function affects the
performance of the proposed method, as expected. Our numerical studies sug-
gest that using the quadratic extrapolation function slightly outperforms using
the linear extrapolation function.

To see computational complexity of the proposed method, we apply the R
function proc.time() to record the CPU time (in seconds) taken to implement
the preceding methods. Runtimes based on using Intel(R) Core(TM) i7-6700HQ
CPU2.60GHz are displayed in the last column of Tables 1-3. Unsurprisingly,
the runtime of all the methods increases as dimension p becomes larger. It is
interesting that the runtime of all the methods increases with the increase of
the mismeasurement degree. This may be partly attributed to that data involve
more variability when increasing the mismeasurement magnitude. As expected,
the proposed method is a lot more time-consuming than the naive method, and
using the quadratic extrapolation function takes a longer time than using the
linear extrapolation function.

6.3. Analysis of cell-signalling data

We implement the proposed method to analyze the cell-signalling data [22]. This
dataset contains p = 11 proteins and n = 7466 cells. According to [22], the cell
signaling is a communication process that controls cell activities. When an ex-
ternal signal (e.g., growth factor) binds to its specific cell surface receptor, the
activated receptor will interact with signaling proteins inside cell, which trig-
gers a cascade of information flow or signalling pathway. The signaling pathway
involves chemical, physical or locational modifications of protein-protein inter-
action, which leads to a specific cell response such as inducing the transcription
and translation to produce certain proteins. It is important to understand the
relationship among various signaling proteins/molecules by investigating signal-
ing pathways and the dependence structure of proteins.

To this end, several authors analyzed the data with different approaches. [22]
fitted a directed acyclic graph to the data, and [13] implemented the graphi-
cal lasso method to estimate the network structure of the proteins. However,
those methods do not address the effects due to mismeasurement, a common
phenomenon associated with measurements of cell signaling, as pointed out by
[1] and [36].
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In our analysis here, we address the feature of mismeasurement by apply-
ing the proposed method. Since the dataset has no additional information such
as repeated measurements or validation data to quantify the degree of mea-
surement error, we conduct sensitivity analyses to investigate how the analysis
results are affected by different magnitudes of measurement error. Let ΣX and
ΣX∗ denote covariance matrices of X and X∗, respectively. Let σX;i,j , σX∗;i,j ,
and σε;i,j denote entry (i, j) of ΣX , ΣX∗ , and Σε, respectively. Since the dataset
only contains continuous variables, we adopt measurement error model (18),
which gives that ΣX∗ = ΣX + Σε, suggesting that σX∗;i,j is bigger than σX;i,j

for all i and j. As ΣX∗ is unknown, we use the empirical estimate, denoted by
Σ̂X∗ , to estimate ΣX∗ , and take σX;i,j as σX;i,j = 0.9σ̂X∗;i,j where σ̂X∗;i,j is

entry (i, j) of Σ̂X∗ . Regarding the specification of σε;i,j , we use the reliability
ratio Rij =

σX;i,j

σX∗;i,j
to guide us:

σε;i,j = (R−1
ij − 1)σ̂X∗;i,j . (41)

Taking Rij as a common value, say, R, for all i and j, then (41) gives that

Σε = (R−1 − 1)Σ̂X∗ .

Here we consider R = 0.65, 0.75 and 0.85, and report in Figure 2 the estimated
networks that are determined by the proposed method using both the quadratic
and linear extrapolation functions in Step 3 described in Section 4.1. In com-
parison, we also examine the naive analysis discussed in Section 3.2, and display
the result in Figure 3.

Figure 2 demonstrates that the estimation of the network structure is clearly
influenced by the degree of measurement error and the choice of extrapolation
functions. When the quadratic extrapolation function is used, more connected
edges are identified as R increases; comparing the case with R = 0.75 to that
with R = 0.65 shows two additionally identified pairs (PIP3 and praf; pjnk
and praf); and another two pairs (pakts473 and pjnk; pakts473 and praf)
are revealed by increasing R = 0.75 to R = 0.85.

On the contrary, when the linear extrapolation function is used, we do not
observe the pattern of identifying more connected edges with an increase of R.
Relative to the case with R = 0.65, under the setting with R = 0.75, we find
evidence of four additional edges (pjnk and P38; PKC and P38; PKA and PIP3;
pjnk and pakts473) but no evidence of the edge connecting pjnk and praf;
under R = 0.85, we detect evidence of two extra edges (praf and PIP2; pjnk
and pakts473).

In contrast, the naive method produces a more complex network structure
and the result is clearly different from the proposed method which accounts
for the measurement error effects. The naive method indicates more connected
variables than the method which accommodates different magnitudes of mea-
surement error. These studies demonstrate that in the presence of measurement
error in the variables, ignoring the feature of mismeasurement may produce
spurious correlation structures among the variables.



3882 L.-P. Chen and G. Y. Yi

Fig 2. Identification of graphical structures of 11 proteins using the proposed method by as-
suming different degrees of mismeasurement in cell-signalling data: the first row records the
results obtained from the proposed method using the quadratic extrapolation function; the sec-
ond row displays the results obtained from the proposed method using the linear extrapolation
function.

Fig 3. Identification of graphical structures of 11 proteins using the naive method which
ignores the feature of mismeasurement in cell-signalling data.

7. Discussion

While graphical models have been extensively studied, existing work is mainly
applied to mismeasurement-free data, though [26, Section 11.4.1] considered
Gaussian graphical models with measurement error model (18). It is useful to
develop methods to handle graphical models with error-prone variables, which
is our objective here. Our framework covers a broad range of problems in the



Graphical models with error 3883

sense that (1) both continuous and discrete variables are allowed, (2) graphi-
cal models do not have to be Gaussian but can be featured by the exponential
family distribution, and (3) the variables can be error-contaminated. Our con-
tributions are multiple. First, to demonstrate the mismeasurement effects, we
derive a lower bound of the asymptotic bias due to the naive analysis which
ignores measurement error. Secondly, to address the mismeasurement effects,
we propose a simulation-based method for graph estimation. Thirdly, we es-
tablish theoretical results to justify the validity of the proposed method. Our
development offers a complement to the available research on graphical models
applicable to error-free settings.

To highlight the key ideas, we focus our attention on estimation of the net-
work structure and assume the parameters for the mismeasurement models (18)
and (20) to be known. Such an assumption is typically feasible in two circum-
stances: (i) prior studies provide the information on the degree of mismeasure-
ment, and (ii) we are interested in conducting sensitivity analyses to understand
how mismeasurement effects may affect inference results.

In situations where the parameters for the mismeasurement models (18) and
(20) must be estimated, we may utilize the information carried by additional
data sources such as repeated measurements or validation subsamples. For in-
stance, with the availability of repeated measurements, estimation of misclassi-
fication probabilities can proceed in the same manner as that discussed by [32,
Section 4], and Σε for the measurement error model (18) can be estimated, using
the method of moments, by

Σ̂ε =

n∑
i=1

ni∑
j=1

(
X∗C(ij) − X̄∗C(i)

) (
X∗C(ij) − X̄∗C(i)

)�
n∑

i=1

(ni − 1)
,

where X∗C(ij) denotes the jth replicate of XC(i) with j = 1, · · · , ni, ni is the
number of the replicates for subject i, and X̄∗C(i) = n−1

i

∑ni

j=1 X
∗C(ij) for i =

1, · · · , n. When validation data are available, one may adapt the discussion of
[33] and [35] to incorporate estimation of the parameters for the mismeasurement
models (18) and (20) into inferential procedures.

To describe the relationship between
(
X∗C�, X∗D�

)�
and

(
XC�, XD�

)�
,

we use the factorization[
X∗C, X∗D

∣∣XC, XD
]
=
[
X∗C

∣∣X∗D, XC, XD
]
×
[
X∗D

∣∣XC, XD
]
, (42)

where [ • | • ] represents the conditional distribution for the random variables
indicated by the arguments. Making the independence assumptions in (18) and
(19) allows (42) to be written as[

X∗C, X∗D
∣∣XC, XD

]
=
[
X∗C

∣∣XC
]
×
[
X∗D

∣∣XD
]
,

and thus enabling us to use model (18) to characterize
[
X∗C

∣∣XC
]
and the mis-

classification matrix P in (20) to facilitate
[
X∗D

∣∣XD
]
. Consequently, the SIMEX
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[10] and MC-SIMEX [17] algorithms, developed based on (18) and (20), respec-
tively, can be employed to address the effects of mismeasurement in XC and XD.
It is interesting to extend our development here by relaxing the independence
assumptions in (18) and (19) or considering other mismeasurement models; valid
inference procedures under these settings warrant a careful study.

The development here takes the dimension p as fixed and allows p to be bigger
than the sample size n, as shown in the simulation studies. The order of p is
basically of the same order as n. In situations where p depends on n such as
being of a polynomial or exponential order of n, it is not feasible to apply the
proposed method because of the prohibitive computation time. In addition, our
theoretical results in Section 5 are established only for the case with p fixed.
It is interesting to extend the development to accommodating settings with a
diverging p, such as p  n.

Appendix A: Technical Lemmas

In this section, we present some lemmas which will be used in the proof of the
main theorems.

Lemma A.1. Let Z1, · · · , Zn be independent and identically distributed (i.i.d.)
random variables. Define Z̄ = 1

n

∑n
i=1 Zi. Suppose that E {exp(aZi)} exists for

a > 0, then for any δ > 0,

P
(
Z̄ > δ

)
≤ exp (n log [E {exp(aZi)}])

exp (naδ)
. (A.1)

Proof:

Let Z =
∑n

i=1 Zi, then by the Markov’s inequality, for any a > 0, we have

P
(
Z̄ > δ

)
= P (Z > nδ)

≤ E {exp (aZ)}
exp (naδ)

=

E

{
n∏

i=1

exp (aZi)

}
exp (naδ)

. (A.2)

Noting that E {
∏n

i=1 exp (aZi)} in (A.2) can be written as

E

{
n∏

i=1

exp (aZi)

}
=

n∏
i=1

E {exp (aZi)}

= exp

(
log

[
n∏

i=1

E {exp (aZi)}
])
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= exp

(
n∑

i=1

log [E {exp (aZi)}]
)

= exp (n log [E {exp (aZi)}]) . (A.3)

As a result, combining (A.2) and (A.3) gives (A.1).

Lemma A.2. Assume regularity conditions in Section 5.1. Consider the case
with n ≥ 2κ2 log(p). Then for all r ∈ V C and r′ ∈ V D, there exist positive
constants c1 and c2 such that

P

(∥∥∇θC(r)�
C

b,ζ(θ
C(r))

∥∥
∞ >

α

2− α

λC
n

4

)
< c1{max(n, p)}−2 + exp(−c2n) (A.4)

and

P

(∥∥∇θD(r′)�
D

b,ζ(θ
D(r′))

∥∥
∞ >

α

2− α

λD
n

4

)
< c1{max(n, p)}−2 + exp(−c2n).

Proof:

Here we show only the first inequality; the second inequality can be proved
similarly. Taking partial derivative of �Cb,ζ(θ

C(r)) defined in (28) with respect to
θC(r), we have that for r ∈ V C,

∇θC(r)�
C

b,ζ(θ
C(r)) =

(
∇θC

r
�Cb,ζ(θ

C(r)),∇θC
\r
�C�b,ζ (θ

C(r)),∇θCD
r

�C�b,ζ (θ
C(r))

)�
,

where

∇θC
\r
�Cb,ζ(θ

C(r)) =

(
− 1

n

n∑
i=1

U
C(i)
r,t (b, ζ) : t ∈ V C \ {r}

)
, (A.5)

∇θCD
r

�Cb,ζ(θ
C(r)) =

(
− 1

n

n∑
i=1

U
D(i)
r,t′ (b, ζ) : t

′ ∈ V D

)
, (A.6)

and

∇θC
r
�Cb,ζ(θ

C(r)) = − 1

n

n∑
i=1

U (i)
r (b, ζ) (A.7)

with

U
C(i)
r,t (b, ζ) = W

C(i)
b,r (ζ)W

C(i)
b,t (ζ)−W

C(i)
b,t (ζ)KC’

(
ηC(i)
r (b, ζ)

)
,

U
D(i)
r,t′ (b, ζ) = W

C(i)
b,r (ζ)W

D(i)
b,t′ (ζ)−W

D(i)
b,t′ (ζ)KC’

(
ηC(i)
r (b, ζ)

)
,
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U (i)
r (b, ζ) = W

C(i)
b,r (ζ)−KC’

(
ηC(i)
r (b, ζ)

)
,

and η
C(i)
r (b, ζ) = θC

r +
∑

t∈V C\{r} θ
C
rtW

C(i)
b,t (ζ) +

∑
t′∈V D θCD

rt′W
D(i)
b,t′ (ζ) for t ∈

V C\{r} and t′ ∈ V D. In the sequel, we examine (A.5), (A.6) and (A.7) separately.

Step 1: Examine U
C(i)
r,t (b, ζ) in (A.5), and show that for r ∈ V C and t ∈

V C \ {r} and any constant a > 0, there exists some vt ∈ (0, 1) such that

E
{
exp

(
aU

C(i)
r,t (b, ζ)

)∣∣∣W C(i)
b;\r (ζ),W

D(i)
b (ζ)

}
= exp

{
a2

2

(
W

C(i)
b,t (ζ)

)2

KC
′′
(
vtaW

C(i)
b,t (ζ) + ηC(i)

r (b, ζ)
)}

for b = 1, · · · , B and ζ ∈ Z, where W
C(i)
b;\r (ζ) is the (pC − 1)-dimensional vector

of W
C(i)
b (ζ) with the rth component deleted.

First, applying the one-to-one transformation, the conditional distribution
(12) based on X(i) can be transferred to

P
(
W

C(i)
b,r (ζ)

∣∣∣WC(i)
b;\r (ζ),W

D(i)
b (ζ)

)
= exp

{
W

C(i)
b,r (ζ)ηC

r (b, r) +HC

(
W

C(i)
b,r (ζ)

)
−KC(ηC

r (b, r))
}
. (A.8)

By the definition of U
C(i)
r,t (b, ζ) in (A.7), we have that for any constant a > 0,

E
{
exp

(
aU

C(i)
r,t (b, ζ)

)∣∣∣WC(i)
b;\r (ζ),W

D(i)
b (ζ)

}
= E

(
exp

[
a
{
W

C(i)
b,r (ζ)W

C(i)
b,t (ζ)−W

C(i)
b,t (ζ)KC’

(
η

C(i)
r (b, ζ)

)}]∣∣∣WC(i)
b;\r (ζ),W

D(i)
b (ζ)

)
=

∫ [
exp

{
aW

C(i)
b,r (ζ)W

C(i)
b,t (ζ)

}
× exp

{
−aW

C(i)
b,t (ζ)KC’

(
ηC(i)
r (b, ζ)

)}
×P

(
W

C(i)
b,r (ζ)

∣∣∣WC(i)
b;\r (ζ),W

D(i)
b (ζ)

) ]
dW

C(i)
b,r (ζ)

=

∫ [
exp

{
aW

C(i)
b,r (ζ)W

C(i)
b,t (ζ)

}
exp

{
W

C(i)
b,r (ζ)ηC(i)

r (b, ζ) +HC

(
W

C(i)
b,r (ζ)

)
−KC

(
ηC(i)
r (b, ζ)

)}
× exp

{
−aW

C(i)
b,t (ζ)KC’

(
ηC(i)
r (b, ζ)

)} ]
dW

C(i)
b,r (ζ)

=

∫ [
exp

{
W

C(i)
b,r (ζ)

(
ηC(i)
r (b, ζ) + aW

C(i)
b,t (ζ)

)
+HC

(
W

C(i)
b,r (ζ)

)
−KC

(
ηC(i)
r (b, ζ)

)}
× exp

{
−aW

C(i)
b,t (ζ)KC’

(
ηC(i)
r (b, ζ)

)}]
dW

C(i)
b,r (ζ),

(A.9)

where the second step is due to the definition of the conditional expectation,
the third step comes from (A.8), and the last step combines the terms with

W
C(i)
b,r (ζ).
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Furthermore, by adding and subtracting an additional term KC

(
η

C(i)
r (b, ζ)+

aW
C(i)
b,t (ζ)

)
, (A.9) can be written as

E
{
exp

(
aU

C(i)
r,t (b, ζ)

)∣∣∣WC(i)
b;\r (ζ),W

D(i)
b (ζ)

}
=

∫ [
exp

{
W

C(i)
b,r (ζ)

(
ηC(i)
r (b, ζ) + aW

C(i)
b,t (ζ)

)
+HC

(
W

C(i)
b,r (ζ)

)
−KC

(
ηC(i)
r (b, ζ) + aW

C(i)
b,t (ζ)

)} ]
dW

C(i)
b,r (ζ)

× exp
{
KC

(
ηC(i)
r (b, ζ) + aW

C(i)
b,t (ζ)

)
−KC

(
ηC(i)
r (b, ζ)

)}
× exp

{
−aW

C(i)
b,t (ζ)KC’

(
ηC(i)
r (b, ζ)

)}
= exp

{
KC

(
ηC(i)
r (b, ζ) + aW

C(i)
b,t (ζ)

)
−KC

(
ηC(i)
r (b, ζ)

)}
× exp

{
−aW

C(i)
b,t (ζ)KC’

(
ηC(i)
r (b, ζ)

)}
= exp

{
a2

2

(
W

C(i)
b,r (ζ)

)2

KC
′′
(
vtaW

C(i)
b,t (ζ) + ηC(i)

r (b, ζ)
)}

, (A.10)

where the second step holds since the integration is one by (A.8), and the third

step is due to the second order Taylor series expansion on KC

(
η

C(i)
r (b, ζ) +

aW
C(i)
b,t (ζ)

)
around a = 0 for some vt ∈ (0, 1).

Step 2: Examine (A.5) and show that

P

(∣∣∣∣∣ 1n
n∑

i=1

U
C(i)
r,t (b, ζ)

∣∣∣∣∣ > α

2− α

λC
n

4

∣∣∣∣∣ E1, E2
)

< exp

{
− n

2η1κ2

(
α

2− α

λC
n

4

)2
}

(A.11)

for b = 1, · · · , B and ζ ∈ Z defined in Section 4.1, where E1 =
{
max
i,r

W
C(i)
b,r (ζ) ≤

4 logn
}
, E2 =

{
max
t∈V C

1
n

n∑
i=1

{
W

C(i)
b,t (ζ)

}2

≤ κ2

}
, λC

n is the tuning parameter de-

fined in (28); α, η1, and κ2 are constants defined in Section 5.1.
By the derivations of Proposition 3 and Lemma 9 in [28], we have P

(
E1

)
≤

c1{max(n, p)}−2 and P
(
E2

)
≤ exp (−b1n) for some positive constants c1 and b1,

where E1 and E2 are the complement sets of E1 and E2, respectively. Therefore,
by Assumption (A3), the upper bound of (A.10) is given by

E
{
exp

(
aU

C(i)
r,t (b, ζ)

)∣∣∣WC(i)
b;\r (ζ),W

D(i)
b (ζ)

}
≤ exp

(
a2

2
η1κ2

)
. (A.12)

By (A.12) and Lemma A.1 with Zi treated as U
C(i)
r,t (b, ζ), we have that for any
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δ > 0,

P

(∣∣∣∣∣ 1n
n∑

i=1

U
C(i)
r,t (b, ζ)

∣∣∣∣∣ > δ

∣∣∣∣∣ E1, E2
)

< exp

{
n

(
η1κ2a

2

2
− δa

)}
,

and specifying a = δ
η1κ2

yields

P

(∣∣∣∣∣ 1n
n∑

i=1

U
C(i)
r,t (b, ζ)

∣∣∣∣∣ > δ

∣∣∣∣∣ E1, E2
)

< exp

(
− nδ2

2η1κ2

)
.

Finally, specifying δ = α
2−α

λC
n

4 gives (A.11).
Step 3: Examine (A.6) and show that for b = 1, · · · , B and ζ ∈ Z,

P

(∣∣∣∣∣ 1n
n∑

i=1

U
D(i)
r,t′ (b, ζ)

∣∣∣∣∣ > α

2− α

λC
n

4

∣∣∣∣∣ E1, E2
)

< exp

{
− n

2η1κ2

(
α

2− α

λC
n

4

)2
}
. (A.13)

By the similar derivations of (A.9) and (A.10), we have that for any a > 0,

E
{
exp

(
aU

D(i)
r,t′ (b, ζ)

)∣∣∣WC(i)
b;\r (ζ),W

D(i)
b (ζ)

}
= E

(
exp

[
a
{
W

C(i)
b,r (ζ)W

D(i)
b,t′ (ζ)−W

D(i)
b,t′ (ζ)KC’

(
η

C(i)
r (b, ζ)

)}]∣∣∣WC(i)
b;\r (ζ),W

D(i)
b (ζ)

)
=

∫ [
exp

{
W

C(i)
b,r (ζ)

(
ηC(i)
r (b, ζ) + aW

D(i)
b,t′ (ζ)

)
+HC

(
W

C(i)
b,r (ζ)

)
−KC

(
ηC(i)
r (b, ζ)

)}
× exp

{
−aW

D(i)
b,t′ (ζ)KC’

(
ηC(i)
r (b, ζ)

)}]
dW

C(i)
b,r (ζ)

=

∫ [
exp

{
W

C(i)
b,r (ζ)

(
ηC(i)
r (b, ζ) + aW

D(i)
b,t′ (ζ)

)
+HC

(
W

C(i)
b,r (ζ)

)
−KC

(
ηC(i)
r (b, ζ) + aW

D(i)
b,t′ (ζ)

)} ]
dW

C(i)
b,r (ζ)

× exp
{
KC

(
ηC(i)
r (b, ζ) + aW

D(i)
b,t′ (ζ)

)
−KC

(
ηC(i)
r (b, ζ)

)}
× exp

{
−aW

D(i)
b,t′ (ζ)KC’

(
ηC(i)
r (b, ζ)

)}
= exp

{
a2

2

(
W

D(i)
b,t′ (ζ)

)2

KC
′′
(
vt′aW

D(i)
b,t′ (ζ) + ηC(i)

r (b, ζ)
)}

,

where the third step is due to adding and subtracting exp
{
KC

(
η

C(i)
r (b, ζ) +

aW
D(i)
b,t′ (ζ)

)}
and vt′ in the fourth step is between 0 and 1. After that, by the

similar derivation in Step 2, we have (A.13).
Step 4: Examine (A.7) and show that for b = 1, · · · , B and ζ ∈ Z,

P

(∣∣∣∣∣ 1n
n∑

i=1

U (i)
r (b, ζ)

∣∣∣∣∣ > α

2− α

λC
n

4

∣∣∣∣∣ E1, E2
)

< exp

{
− n

η1

(
α

2− α

λC
n

4

)2
}
. (A.14)
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Indeed, by the derivations similar to Step 1, for any constant ã > 0, there
exists ṽ ∈ (0, 1) such that

E
{
exp

(
ãU (i)

r (b, ζ)
)∣∣∣WC(i)

b;\r (ζ),W
D(i)
b (ζ)

}
= exp

{
ã2

2
KC

′′
(
ṽtã+ ηC(i)

r (b, ζ)
)}

.

By the derivations similar to Step 2 with Assumption (A3) and ã replaced by
δ̃
η1
, we have that for any constant δ̃,

P

(∣∣∣∣∣ 1n
n∑

i=1

U (i)
r (b, ζ)

∣∣∣∣∣ > δ̃

∣∣∣∣∣ E1, E2
)

< exp

{
−nδ̃2

η1

}
. (A.15)

Finally, replacing δ̃ in (A.15) by α
2−α

λC
n

4 gives (A.14).
Step 5: Examine ∇θC(r)�

C

b,ζ(θ
C(r)) and show the final result.

Recall that

∇θC(r)�
C

b,ζ(θ
C(r)) =

(
∇θC

r
�Cb,ζ(θ(r)),∇θC

\r
�C�b,ζ (θ

C(r)),∇θCD
r

�C�b,ζ (θ
C(r))

)�
.

Then by (A.11), (A.13) and (A.14), we have

P

(∥∥∇θC(r)�
C

b,ζ(θ
C(r))

∥∥
∞ >

α

2− α

λC
n

4

∣∣∣∣ E1, E2)
< 2 exp

{
− n

2η1κ2

(
α

2− α

λC
n

4

)2

+ log p

}
+ exp

{
− n

η1

(
α

2− α

λC
n

4

)2
}
.

As a result, provided that λC
n >

√
η1κ∗

2 log p
n

(
2−α
α

)
with κ∗

2 � 64κ2 and inequality

P (A) ≤ P (E1) + P (E2) + P (A| E1, E2) for an event A [28, pp.29], we have

P

(∥∥∇θC(r)�
C

b,ζ(θ
C(r))

∥∥
∞ >

α

2− α

λC
n

4

)
< c1{max(n, p)}−2 + 2 exp(−b1n) + exp(−c3n)

< c1{max(n, p)}−2 + exp(−c2n)

for some constants c3 and c2 < min{b1, c3} − log 3
n .

Lemma A.3. For r ∈ V C and r′ ∈ V D, let

θ̂C (r; ζ, b) =
(
θ̂C�
SC
r
(r; ζ, b) , θ̂C�

SC
r

(ζ, b)
)�

with θ̂C

SC
r
(r; ζ, b) =

(
θ̂C
r (ζ, b) , θ̂

C�
SC
r
(ζ, b)

)�
and let

θ̂D (r′; ζ, b) =
(
θ̂D�
SD
r′
(r′; ζ, b) , θ̂D�

SD
r′
(ζ, b)

)�
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with θ̂D

SD
r′
(r′; ζ, b) =

(
θ̂D

r′ (ζ, b) , θ̂
D�
SD
r′
(ζ, b)

)�
. Under regularity conditions in Sec-

tion 5.1, we have ∥∥∥θ̂C

SC
r
(r; ζ, b)− θC

0;SC
r
(r)

∥∥∥
2
≤ 6

√
dC
rλ

C
n

ρ
(A.16)

and ∥∥∥θ̂SD
r′
(r′; ζ, b)− θD

0;SD
r′
(r′)

∥∥∥
2
≤

6
√
dD

r′λ
D
n

ρ
. (A.17)

Proof:

In the following proof, we show only (A.16); the second inequality (A.17) can
be proved similarly.

For r ∈ V C, by the definition of SC

r , we have

θ̂C (r; ζ, b) =
(
θ̂C�
SC
r
(r; ζ, b) , θ̂C�

SC
r

(ζ, b)
)�

=
(
θ̂C�
SC
r
(r; ζ, b) , 0�(p−dC

r −1)

)�
,

where 0d stands for the d-dimensional zero vector. We write the true value of

θC(r) as θC
0 (r) =

(
θC�
0;SC

r
(r) , θ�

0;SC
r

)�
=
(
θC�
0;SC

r
(r) , 0�(p−dC

r −1)

)�
with θC

0;SC
r
(r) =(

θC
0;r, θ

�
0;SC

r

)�
for r ∈ V C.

Claim: For r ∈ V C, ζ ∈ Z and b = 1, · · · , B, let ûSC
r
= θ̂C

SC
r
(r; ζ, b)−θC

0;SC
r
(r).

Show that ∥∥ûSC
r

∥∥
2
≤ 6

√
dC
rλ

C
n

ρ
. (A.18)

We define the function Φ : RdC
r +1 → R by

Φ(u) = �Cb,ζ

(
θC

0;SC
r
(r) + u

)
− �Cb,ζ

(
θC

0;SC
r
(r)

)
+λC

n

(∥∥θ0;SC
r
+ u

∥∥
1
−
∥∥θ0;SC

r

∥∥
1

)
, (A.19)

where we express any parameter value θC

SC
r
(r) by u+ θC

0;SC
r
(r).

Note that Φ(u) is a convex function since �Cb,ζ(·) defined in Section 4.1 and the
L1-norm ‖·‖1 are both convex functions. Similar to the derivations for Lemma
3 of [20], to show (A.18), it suffices to show that

Φ(u) > 0 for any u with ‖u‖2 = B, (A.20)

where B =
6
√

dC
r λC

n

ρ .
By the second order Taylor series expansion on

�Cb,ζ

(
θC

0;SC
r
(r) + u

)
− �Cb,ζ

(
θC

0;SC
r
(r)

)
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around u = 0, (A.19) becomes

Φ(u) = T1 + T2 + T3, (A.21)

where

T1 = ∇θC
SC
r
(r)�

C

b,ζ

(
θC

0;SC
r
(r)

)
u; (A.22a)

T2 =
1

2
u�∇2

θC
SC
r
(r)�

C

b,ζ

(
θ0;C;SC

r
(r) + vu

)
u; (A.22b)

T3 = λC

n

(∥∥θ0;SC
r
+ u

∥∥
1
−
∥∥θ0;SC

r

∥∥
1

)
, (A.22c)

and v is some constant in (0, 1).

We first specify B in (A.20) byMλC
n

√
dC
r for someM > 0. The remaining task

is to individually examine T1, T2 and T3 for their bound when ‖u‖2 = MλC
n

√
dC
r .

We proceed with the following four steps.

Step 1: For r ∈ V C, show that

‖T1‖1 <
(λC

n

√
dC
r)

2

4
M for ‖u‖2 = MλC

n

√
dC
r . (A.23)

For the first term T1 in (A.21), by the result in Lemma A.2, we have

‖T1‖1 =

∥∥∥∥∇θC
SC
r
(r)�

C

b,ζ

(
θC

0;SC
r
(r)

)
u

∥∥∥∥
1

≤
∥∥∥∥∇θC

SC
r
(r)�

C

b,ζ

(
θC

0;SC
r
(r)

)∥∥∥∥
∞

‖u‖1

≤
∥∥∥∇θC(r)�

C

b,ζ

(
θC

0;SC
r
(r)

)∥∥∥
∞

√
dC
r ‖u‖2

<
(λC

n

√
dC
r )

2

4
M.

Step 2: For r ∈ V C, show that

T2 ≥ ρ(λC
n

√
dC
r)

2M2

2
for ‖u‖2 = MλC

n

√
dC
r . (A.24)

Note that ∇2
θC
SC
r
(r)

�Cb,ζ

(
θC

0;SC
r
(r) + vu

)
can be expressed as

∇2
θC
SC
r
(r)�

C

b,ζ

(
θC

0;SC
r
(r) + vu

)
(A.25)

=
n∑

i=1

W
(i)
b,\r (ζ)W

(i)�

b,\r (ζ)KC
′′
(
θC

0;r +W
(i)�
b,\r (ζ) (θ0;SC

r
+ vu)

)
.
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Then applying the Taylor series expansion on KC
′′
(·) around θ0;SC

r
= 0, then

(A.25) can be re-written as

∇2
θC
SC
r
(r)�

C

b,ζ

(
θC

0;SC
r
(r) + vu

)
=

n∑
i=1

W
(i)
b,\r (ζ)W

(i)�

b,\r (ζ)KC
′′
(
θC

0;r +W
(i)�
b,\r (ζ) θ0;SC

r

)
+

n∑
i=1

W
(i)
b,\r (ζ)W

(i)�

b,\r (ζ)KC
′′′
(η̄C)

(
vuW

(i)
b,\r (ζ)

)
,

where η̄C lies on the “line segment” between θ0;SC
r
and θ0;SC

r
+ vu. Recall that

ρζ is the smallest eigenvalue of Qζ,SC
r SC

r
. Then by Conditions (A2), (A3), and

(A5), we have

T2 = u�∇2
θC
SC
r
(r)�

C

b,ζ

(
θC

0;SC
r
(r) + vu

)
u

≥ min
u:‖u‖2=B

[
u�

{
n∑

i=1

W
(i)
b,\r (ζ)W

(i)�

b,\r (ζ)KC
′′
(
θC

0;r +W
(i)
b,\r (ζ) θ0;SC

r

)}
u

]

+ min
u:‖u‖2=B

[
u�

{
n∑

i=1

W
(i)
b,\r (ζ)W

(i)�

b,\r (ζ)KC
′′′
(η̄C)

(
vuW

(i)�
b,\r (ζ)

)}
u

]
≥ B2ρζ

− max
u:‖u‖2=B

[
u�

{
n∑

i=1

W
(i)
b,\r (ζ)W

(i)�

b,\r (ζ)KC
′′′
(η̄C)

(
vuW

(i)
b,\r (ζ)

)}
u

]
≥ B2ρ− B3ρ2η2κ1

≥ ρ(λC
n

√
dC
r )

2M2

2
.

Step 3: For r ∈ V C, show that

T3 ≥ −(λC

n

√
dC
r)

2M2 for ‖u‖2 = MλC

n

√
dC
r . (A.26)

Finally, for the last term T3 in (A.21), applying the triangle inequality gives

‖θ0;SC
r
‖1 = ‖θ0;SC

r
+ u− u‖1 ≤ ‖θ0;SC

r
+ u‖1 + ‖u‖1,

which implies

‖θ0;SC
r
+ u‖1 − ‖θ0;SC

r
‖1 ≥ −‖u‖1.

Therefore, we have

T3 = λC

n

(
‖θ0;SC

r
+ u‖1 − ‖θ0;SC

r
‖1
)
≥ −(λC

n

√
dC
r )

2M2.
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Step 4: Establish (A.18).
Therefore, for r ∈ V C, combining (A.23), (A.24), and (A.26) with (A.21)

gives

Φ(u) ≥ (λC

n

√
dC
r )

2M
(
−1

4
+

ρ

4
M− 1

)
. (A.27)

To ensure the right-hand-side of (A.27) be bounded below by zero, we must
have

−1

4
+

ρ

4
M− 1 > 0,

which is equivalent to M > 5
ρ . We take M∗ = 6

ρ , and thus, B = M∗λC
n

√
dC
r =

6
√

dC
r λC

n

ρ and (A.20) holds. As a result, (A.18) is shown.

Lemma A.4. For r ∈ V C and r′ ∈ V D, let

RC

n =
{
∇2

θC(r)�
C

b,ζ

(
θ̄C

)
−∇2

θC(r)�
C

b,ζ (θ
C

0(r))
}{

θ̂C(r; ζ, b)− θC

0(r)
}

(A.28)

and

RD

n =
{
∇2

θD(r′)�
D

b,ζ

(
θ̄D

)
−∇2

θD(r′)�
D

b,ζ (θ
D

0 (r
′))
}{

θ̂D(r′; ζ, b)− θD

0 (r
′)
}
, (A.29)

where θ̄C lies on the “line segment” between θ̂C(r; ζ, b) and θC
0(r), and θ̄D lies on

the “line segment” between θ̂D(r′; ζ, b) and θD
0 (r

′). Then under regularity condi-
tions in Section 5.1, we have

‖RC

n‖∞ ≤ 72η1ρ2d
C
rλ

C2
n

ρ2
and ‖RD

n‖∞ ≤ 72η1ρ2d
D

r′λ
D2
n

ρ2
.

Proof:

Note that ‖RC
n‖∞ and ‖RD

n‖∞ have the similar derivations, so we only demon-
strate the derivations for ‖RC

n‖∞ in the following proof. Similar proofs give the
result of ‖RD

n‖∞.

Since ∇2
θC(r)�

C

b,ζ (θ
C(r)) =

∑n
i=1 W

(i)
b,\r (ζ)W

(i)�

b,\r (ζ)KC
′′
(
η

C(i)
r (b, ζ)

)
, then

∇2
θC(r)�

C

b,ζ

(
θ̄C

)
−∇2

θC(r)�
C

b,ζ (θ
C

0 (r))

=

n∑
i=1

W
(i)
b,\r (ζ)W

(i)�

b,\r (ζ)
{
KC

′′
(
η̄C(i)
r (b, ζ)

)
−KC

′′
(
ηC(i)
r (b, ζ)

)}
for r ∈ V C, where η̄

C(i)
r (b, ζ) is determined by η

C(i)
r (b, ζ) with θC(r) replaced by

θ̄C. By Assumptions (A2) and (A3), the maximum eigenvalue of∇2
θC(r)�

C

b,ζ

(
θ̄C

)
−

∇2
θC(r)�

C

b,ζ (θ
C
0 (r)) is

Λmax

{
∇2

θC(r)�
C

b,ζ

(
θ̄C

)
−∇2

θC(r)�
C

b,ζ (θ
C

0 (r))
}
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= max
ξ:‖ξ‖2=1

ξ�
{
∇2

θC(r)�
C

b,ζ

(
θ̄C

)
−∇2

θC(r)�
C

b,ζ (θ
C

0 (r))
}
ξ

≤ max
ξ:‖ξ‖2=1

ξ�

(
n∑

i=1

W
(i)
b,\r (ζ)W

(i)�

b,\r (ζ)

)
ξ

×ξ�
∣∣∣KC

′′
(
η̄C(i)
r (b, ζ)

)
−KC

′′
(
ηC(i)
r (b, ζ)

)∣∣∣ ξ
≤ 2η1ρ2. (A.30)

As a result, by Lemma A.3 and (A.30), we have

‖RC

n‖1 ≤ ‖RC

n‖
2
2

≤ Λmax

{
∇2

θC(r)�
C

b,ζ

(
θ̄C

)
−∇2

θC(r)�
C

b,ζ (θ
C

0 (r))
}
×
∥∥∥θ̂C(r; ζ, b)− θC

0 (r)
∥∥∥2
2

≤ 2η1ρ2

(
6
√
dC
rλ

C
n

ρ

)2

=
72η1ρ2d

C
rλ

C2
n

ρ2
,

and thus the proof completes.

Appendix B: Proof of Theorem 3.1

In contrast to the naive negative log likelihood function, we first consider the
negative log likelihood function based on true random variables for r ∈ V C:

�(θ(r)) = − 1

n

n∑
i=1

log
{
P
(
X(i)

r |X(i)
\r

)}
,

where P
(
X

(i)
r |X(i)

\r

)
is defined in (22). Similar to (24), the estimator based on

the true random vector X(i) is given by

θ̃(r) = argmin
θ(r)

{
�(θ(r)) + λn

∥∥θ\r∥∥1} (B.1)

with θ̃(r) =
(
θ̃r, θ̃

�
\r

)�
for r ∈ V C. To ease the notation, let θ̃, θ̂nv, θ and θ0

denote θ̃(r), θ̂nv(r), θ(r) and θ0(r), respectively.

Let θ̃rt denote the tth component in θ̃\r. Let z̃ =
(
z̃r, z̃

�
\r

)�
be a p-dimensional

vector with the tth component in z̃\r being z̃t = sign
(
θ̃rt

)
if θ̃rt �= 0 and |z̃t| ≤ 1

otherwise, while z̃r, corresponding to θr, is set to zero since the nodewise term
θr is not penalized in (B.1). In addition, let ẑnv denote a p-dimensional vector

which is defined similar to z̃ but corresponds to θ̂nv. Then by the Karush–Kuhn–
Tucker (KKT) conditions, we have

∇θ�nv

(
θ̂nv

)
+ λnẑnv = 0 (B.2)
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and

∇θ�
(
θ̃
)
+ λnz̃ = 0. (B.3)

By the first order Taylor series expansion on∇θ�nv

(
θ̂nv

)
and∇θ�

(
θ̃
)
around

θ0, we have

∇θ�nv

(
θ̂nv

)
≈ ∇θ�nv (θ0) +∇2

θ�nv (θ0)
(
θ̂nv − θ0

)
(B.4)

and

∇θ�
(
θ̃
)
≈ ∇θ� (θ0) +∇2

θ� (θ0)
(
θ̃ − θ0

)
. (B.5)

Combining (B.4) and (B.5) yields

∇θ�nv

(
θ̂nv

)
−∇θ�

(
θ̃
)

≈ {∇θ�nv (θ0)−∇θ� (θ0)}+∇2
θ�nv (θ0) θ̂nv −∇2

θ� (θ0) θ̃

−
{
∇2

θ�nv (θ0)−∇2
θ� (θ0)

}
θ0. (B.6)

The second order derivative of �nv(θ0) and �(θ0) can be, respectively, ex-
pressed as

∇2
θ�nv (θ0) =

1

n

n∑
i=1

X∗(i)

\r X∗(i)�

\r KC
′′
(
θ0;r +X∗(i)�

\r θ0;\r

)
and

∇2
θ� (θ0) =

1

n

n∑
i=1

X
(i)
\r X

(i)�
\r KC

′′
(
θ0;r +X

(i)�
\r θ0;\r

)
.

Since X∗(i)

\r
∣∣X(i) ∼ N

(
X

(i)
\r ,Σε;\r

)
, we have E

(
X∗(i)

\r X∗(i)�

\r

∣∣∣X(i)
)
= Σε;\r+

X
(i)
\r X

(i)�

\r . Hence, we have

E
{
∇2

θ�nv (θ0)
∣∣X\r

}
=

1

n

n∑
i=1

{(
X

(i)
\r X

(i)�

\r +Σε;\r

)
KC

′′
(
θ0;r +X

(i)�
\r θ0;\r

)}
(B.7)

and

E
{
∇2

θ� (θ0)
∣∣X\r

}
=

1

n

n∑
i=1

{(
X

(i)
\r X

(i)�

\r

)
KC

′′
(
θ0;r +X

(i)�
\r θ0;\r

)}
. (B.8)

Therefore, by the Law of Large Numbers with (B.7) and (B.8), we have that as
n → ∞,

∇2
θ�nv (θ0)

p−→ Qnv and ∇2
θ� (θ0)

p−→ Qr, (B.9)
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where

Qnv = E
{(

X
(i)
\r X

(i)�

\r +Σε;\r

)
KC

′′
(
θ0;r +X

(i)�
\r θ0;\r

)}
(B.10)

and

Qr = E
{(

X
(i)
\r X

(i)�

\r

)
KC

′′
(
θ0;r +X

(i)�
\r θ0;\r

)}
. (B.11)

Then the relationship between (B.10) and (B.11) is determined by

Qnv = Qr +Σε;\rDr, (B.12)

where Dr = E
{
KC

′′
(
θ0;r +X

(i)�
\r θ0;\r

)}
. On the other hand, by (B.2) and

(B.3), we have

∇θ�nv

(
θ̂nv

)
−∇θ�

(
θ̃
)
= −λn (ẑnv − z̃) . (B.13)

Thus, combining (B.9), (B.12), and (B.13) with (B.6) gives

−λn (ẑnv − z̃)

≈ {∇θ�nv (θ0)−∇θ� (θ0)}+
(
Qr +Σε;\rDr

)
θ̂nv −Qr θ̃ − Σε;\rDrθ0

= {∇θ�nv (θ0)−∇θ� (θ0)}+Qr

(
θ̂nv − θ̃

)
+Σε;\rDr

(
θ̂nv − θ0

)
.(B.14)

By the triangle inequality, ‖ẑnv − z̃‖∞ ≤ ‖ẑnv‖∞ + ‖z̃‖∞ < 2. Besides, by
(B.14), we have

‖∇θ�nv (θ0)−∇θ� (θ0)‖∞ ≤ 2λn + ‖Qr‖∞
∥∥∥θ̂nv − θ̃

∥∥∥
∞

+
∥∥Σε;\rDr

∥∥
∞

∥∥∥θ̂nv − θ0

∥∥∥
∞

, (B.15)

and thus rearranging (B.15) gives∥∥∥θ̂nv − θ̃
∥∥∥
∞

≥ ‖Qr‖−1
∞ (‖∇θ�nv (θ0)−∇θ� (θ0)‖∞ − 2λn)

−‖Qr‖−1
∞

∥∥Σε;\rDr

∥∥
∞

∥∥∥θ̂nv − θ0

∥∥∥
∞

. (B.16)

Noting that based on true random variables, Lemmas 9 and 10 in [28] show
that with suitable range of λn, there exist some constants α̃ ∈ (0, 1) and ρ̃ > 0,
such that

‖∇θ� (θ0)‖∞ ≤ λnα̃

4 (2− α̃)
(B.17)

and ∥∥∥θ̃ − θ0

∥∥∥
∞

≤ ρ̃λn (B.18)
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with large probabilities.

Finally, applying the triangle inequality on
∥∥∥θ̂nv − θ0

∥∥∥
∞
, we have∥∥∥θ̂nv − θ0

∥∥∥
∞

≥
∥∥∥θ̂nv − θ̃

∥∥∥
∞

−
∥∥∥θ̃ − θ0

∥∥∥
∞

,

and thus, implementing (B.16), (B.17) and (B.18) gives∥∥∥θ̂nv − θ0

∥∥∥
∞

≥ ‖Qr‖−1
∞

(
‖∇θ�nv (θ0)‖∞ − λnα̃

4 (2− α̃)
− 2λn

)
−‖Qr‖−1

∞
∥∥Σε;\rDr

∥∥
∞

∥∥∥θ̂nv − θ0

∥∥∥
∞

− ρ̃λn.

Consequently, we have∥∥∥θ̂nv − θ0

∥∥∥
∞

≥
{
1 + ‖Qr‖−1

∞
∥∥Σε;\rDr

∥∥
∞
}−1 ‖Qr‖−1

∞

×
(
‖∇θ�nv (θ0)‖∞ − λnα̃

4 (2− α̃)
− 2λn

)
−
{
1 + ‖Qr‖−1

∞
∥∥Σε;\rDr

∥∥
∞
}−1

ρ̃λn

=
{
‖Qr‖∞ +

∥∥Σε;\rDr

∥∥
∞
}−1

(
‖∇θ�nv (θ0)‖∞ − λnα̃

4 (2− α̃)
− 2λn

)
−
{
1 + ‖Qr‖−1

∞
∥∥Σε;\rDr

∥∥
∞
}−1

ρ̃λn. (B.19)

Since (B.19) holds under the range of λn specified in [28, pp.3839], the value λn

taken in such range ensures that the right-hand side of (B.19) is nonnegative.
Thus, desired inequality is obtained, and the proof completes.

Appendix C: Proof of Theorem 5.1

Since the proof of N̂D(r′) = ND(r′) and N̂DC(r′) = NDC(r′) for r′ ∈ V D is

similar to the derivation for N̂ C(r) = N C(r) and N̂ CD(r) = N CD(r) for r ∈ V C,
we only show the latter results in the following derivations that consist of three
steps.

Step 1: For r ∈ V C, let θ̂C
rt(ζ, b) denote the tth component of θ̂C

\r(ζ, b) and

let θ̂CD

rt′(ζ, b) denote the t′th component of θ̂CD
r (ζ, b). Examine

N̂ C

b (r; ζ) =
{
t ∈ V C \ {r} : θ̂C

rt(ζ, b) �= 0
}

and

N̂ CD

b (r; ζ) =
{
t′ ∈ V D : θ̂CD

rt′(ζ, b) �= 0
}
,

and show that

N̂ C

b (r; ζ) = N C(r) and N̂ CD

b (r; ζ) = N CD(r) (C.1)
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with probability greater than 1−
{
c1{max(n, p)}−2 + exp(−c2n)

}
, where N C(r)

and N CD(r) for r ∈ V C are the neighbourhood sets defined in Section 2.2.
In the proof of Lemma A.3, we write

θ̂C (r; ζ, b) =
(
θ̂C�
SC
r
(r; ζ, b) , θ̂C�

SC
r

(ζ, b)
)�

with

θ̂C

SC
r
(r; ζ, b) =

(
θ̂C

r (ζ, b) , θ̂C�
SC
r
(ζ, b)

)�
.

Let ẑC =
(
ẑr, ẑ

�
\r

)�
be a p-dimensional vector with the tth component in ẑ\r

being ẑt = sign
(
θ̂rt(ζ, b)

)
if θ̂rt(ζ, b) �= 0 and |ẑt| ≤ 1 otherwise, while ẑr,

corresponding to θC
r , is set to zero since the nodewise term θC

r is not penalized
in (28). To show the sparsity recovery, we consider the primal dual witness
(PDW) method (e.g., [16, pp.307]). The strategy of the PDW method is to

(i) θ̂C

SC
r

(ζ, b) = 0p−dC
r −1 and

θ̂C

SC
r
(r; ζ, b) = argminθC;SC

r
(r)

{
�Cb,ζ (θ

C(r)) + λC
n

∥∥∥θC

SC
r

∥∥∥
1

}
;

(ii) write ẑC =
(
ẑC�
SC
r
, ẑC�

SC
r

)�
corresponding to the components of θ̂C

SC
r
(r; ζ, b)

and θ̂C

SC
r

(ζ, b);

(iii) show that ∥∥∥ẑC

SC
r

∥∥∥
∞

≤ 1. (C.2)

Indeed, as discussed in Lemma 11.2 of [16, pp.307], if (C.2) is true, then

θ̂C(r; ζ, b) =
(
θ̂C�
SC
r
(r; ζ, b), 0�p−dC

r −1

)�
is an optimal solution of (28), and thus,

(C.1) holds with probability approaching one (e.g., [16, Theorem 11.3]). So, the
remaining task is to show (C.2).

By the KKT conditions, we have

∇θC(r)�
C

b,ζ

(
θ̂C(r; ζ, b)

)
+ λC

nẑ
C = 0. (C.3)

Adding −∇θC(r)�
C

b,ζ (θ
C
0 (r)) to the both sides of (C.3) gives

∇θC(r)�
C

b,ζ

(
θ̂C(r; ζ, b)

)
−∇θC(r)�

C

b,ζ (θ
C

0 (r))

= −λC

nẑ
C −∇θC(r)�

C

b,ζ (θ
C

0 (r)) . (C.4)

By the Mean Value Theorem (MVT), there exists θ̄C which lies on the “line

segment” between θ̂C(r; ζ, b) and θC
0 (r), such that

∇2
θC(r)�

C

b,ζ

(
θ̄C

){
θ̂C(r; ζ, b)− θC

0 (r)
}
= −λC

nẑ
C −∇θC(r)�

C

b,ζ (θ
C

0 (r)) .
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Adding ∇2
θC(r)�

C

b,ζ (θ
C
0 (r))

{
θ̂C(r; ζ, b)− θC

0 (r)
}

to both sides of (C.4) yields

∇2
θC(r)�

C

b,ζ (θ
C

0 (r))
{
θ̂C(r; ζ, b)− θC

0 (r)
}

= −λC

nẑ
C −∇θC(r)�

C

b,ζ (θ
C

0 (r))−
[
∇2

θC(r)�
C

b,ζ

(
θ̄C

){
θ̂C(r; ζ, b)− θC

0 (r)
}

−∇2
θC(r)�

C

b,ζ (θ
C

0 (r))
{
θ̂C(r; ζ, b)− θC

0 (r)
}]

� −λC

nẑ
C − Y C −RC

n, (C.5)

where RC
n is defined (A.28), and Y C = ∇θC(r)�

C

b,ζ (θ
C
0 (r)).

Let Y C =
(
Y �
SC
r
, Y �

SC
r

)�
and RC

n =
(
RC�

n;SC
r
, RC�

n;SC
r

)�
Now, by (C.5) and (i),

we have (
Qζ,SC

r SC
r

Q
ζ,SC

r SC
r

Q
ζ,SC

r SC
r

Q
ζ,SC

r SC
r

)(
θ̂C

SC
r
(r; ζ, b)− θC

0;SC
r
(r)

0

)

= −λC

n

(
ẑC

SC
r

ẑC

SC
r

)
−
(

YSC
r

YSC
r

)
−
(

RC

n;SC
r

RC

n;SC
r

)
,

and it implies that

Qζ,SC
r SC

r

{
θ̂C

SC
r
(r; ζ, b)− θC

0;SC
r
(r)

}
= λC

nẑ
C

SC
r
− YSC

r
−RC

n;SC
r
, (C.6)

and

Q
ζ,SC

r SC
r

{
θ̂C

SC
r
(r; ζ, b)− θ0;SC

r
(r)

}
= λC

nẑ
C

SC
r

− YSC
r
−RC

n;SC
r

. (C.7)

Combining (C.6) and (C.7) yields

Q
ζ,SC

r SC
r
Q−1

ζ,SC
r SC

r

(
−λC

nẑ
C

SC
r
− YSC

r
−RC

n;SC
r

)
= −λC

nẑ
C

SC
r

− YSC
r
−RC

n;SC
r

(C.8)

and thus our target ẑC

SC
r

can be expressed as

ẑC

SC
r

=
1

λC
n

{
Q

ζ,SC
r SC

r
Q−1

ζ,SC
r SC

r

(
λC

nẑ
C

SC
r
+ YSC

r
+RC

n;SC
r

)
−YSC

r
−RC

n;SC
r

}
. (C.9)

We now show (C.2). Given

λC

n <
ρ2

η1ρ∗2d
C

(C.10)
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with ρ∗2 = 288ρ2, then (C.9) gives that

‖ẑSC
r
‖∞ ≤ 1

λC
n

{∥∥∥Qζ,SC
r SC

r
Q−1

ζ,SC
r SC

r

∥∥∥
∞

(
λC

n

∥∥∥ẑC

SC
r

∥∥∥
∞

+ ‖Y C‖∞ + ‖RC

n‖∞
)

+ ‖Y C‖∞ + ‖RC

n‖∞
}

≤ 1

λC
n

{
(1− α)

(
λC

n +
αλC

n

8− 4α
+

72η1ρ2d
CλC2

n

ρ2

)
+

αλC
n

8− 4α

+
72η1ρ2d

CλC2
n

ρ2

}
= 1− α

2
≤ 1, (C.11)

where the first step is due to that
∥∥YSC

r

∥∥
∞ ≤ ‖Y C‖∞,

∥∥∥YSC
r

∥∥∥
∞

≤ ‖Y C‖∞,∥∥∥RC

n;SC
r

∥∥∥
∞

≤ ‖RC
n‖∞ and

∥∥∥RC

n;SC
r

∥∥∥
∞

≤ ‖RC
n‖∞, the second step comes from

Assumption (A1), definition of dC, Lemmas A.2 and A.4, and
∥∥∥ẑC

SC
r

∥∥∥
∞

≤ 1 by

the construction of ẑC

SC
r
, and the third step is due to (C.10).

Hence, by PDW approach, we have (C.1) for every b = 1, · · · , B and ζ ∈ Z
with probability greater than 1−

{
c1{max(n, p)}−2 + exp(−c2n)

}
.

Step 2: Let

θ̂C

rt(ζ) =
1

B

B∑
b=1

θ̂C

rt(ζ, b) and N̂ C(r; ζ) =
{
t ∈ V C \ {r} : θ̂C

rt(ζ) �= 0
}
.

In addition, let

θ̂CD

rt′(ζ) =
1

B

B∑
b=1

θ̂CD

rt′(ζ, b) and N̂ CD(r; ζ) =
{
t′ ∈ V D \ {r} : θ̂CD

rt′(ζ) �= 0
}
.

For r ∈ V C, show that

N̂ C(r; ζ) = N C(r) and N̂ CD(r; ζ) = N CD(r) (C.12)

with probability greater than 1−
{
c1{max(n, p)}−2 + exp(−c2n)

}
.

The derivations of two results in (C.12) are similar, so we only present the
former result.

Since

N̂ C(r; ζ) =

{
t ∈ V C \ {r} :

1

B

B∑
b=1

θ̂C

rt(ζ, b) �= 0

}
⊂

{
t ∈ V C \ {r} : there exists b ∈ {1, · · · , B}



Graphical models with error 3901

such that θ̂C

rt(ζ, b) �= 0
}

=

B⋃
b=1

N̂ C

b (r; ζ)

= N C(r)

with the probability greater than 1−
{
c1{max(n, p)}−2 + exp(−c2n)

}
, where

the last step is due to the result in Step 1 and the finiteness of B.
Next, we show that N C(r) ⊆ N̂ C(r; ζ) with the probability greater than

1−
{
c1{max(n, p)}−2 + exp(−c2n)

}
. For any t ∈ V C \ {r}, by the result in

Step 1, for any b, t ∈ N̂ C

b (r; ζ), i.e., θ̂
C
rt(ζ, b) �= 0, with the probability greater

than 1−
{
c1{max(n, p)}−2 + exp(−c2n)

}
. By (A.16), we can show the bound-

ness of
∥∥∥θ̂C

\r − θC

0;\r

∥∥∥
∞

and the sign recovery of θ̂C
rt(ζ, b) with the probabil-

ity greater than 1−
{
c1{max(n, p)}−2 + exp(−c2n)

}
. Therefore, the sign of

θ̂C
rt(ζ, b) is the same as that of θC

rt for any b with the probability greater than

1−
{
c1{max(n, p)}−2 + exp(−c2n)

}
, showing that θ̂C

rt(ζ) �= 0, or N C(r) ⊆

N̂ C(r; ζ), with the probability greater than 1−
{
c1{max(n, p)}−2 + exp(−c2n)

}
.

Step 3: Establish the desired result.

It suffices to show that N̂ C(r)=
⋃

ζ∈Z N̂ C(r; ζ) and N̂ CD(r) =
⋃

ζ∈Z N̂ CD(r; ζ)

with the probability greater than 1−
{
c1{max(n, p)}−2+exp(−c2n)

}
for r ∈ V C,

and thus, we obtain the desired result by similar derivations in Step 2. In this
step, we only show N̂ C(r) =

⋃
ζ∈Z N̂ C(r; ζ) for r ∈ V C, and similar arguments

yield N̂ CD(r) =
⋃

ζ∈Z N̂ CD(r; ζ).
For ease of presentation, we assume that the extrapolation function is a

quadratic polynomial function with two parameters γ1 and γ2. Let (γ̂1, γ̂2) de-
note the estimators of (γ1, γ2), then

θ̂C

rt(ζ) = γ̂1ζ + γ̂2ζ
2 for t ∈ N C(r), r ∈ V C, and ζ ∈ Z. (C.13)

First, we consider that if t ∈ N̂ C(r), then θ̂C
rt = θ̂C

rt(−1) = −γ̂1 + γ̂2 �= 0,

showing that γ̂1 �= γ̂2. Thus, by (C.13), there exists ζ ∈ Z so that θ̂C
rt(ζ) �= 0,

i.e., t ∈
⋃

ζ∈Z N̂ C(r; ζ). Thus, N̂ C(r) ⊆
⋃

ζ∈Z N̂ C(r; ζ).

Next, suppose that t ∈
⋃

ζ∈Z N̂ C(r; ζ). Then there exists ζ0 ∈ Z such that

t ∈ N̂ C(r; ζ0). By the result in Step 2, we have that t ∈ N C(r), i.e., θC
rt �= 0.

Then by the result in Step 2 again, we have θ̂C
rt(ζ) �= 0 with the probability

approaching one for any ζ ∈ Z. Without loss of generality, we consider the case
that θ̂C

rt(ζ) > 0.
Noting that γ̂1 and γ̂2 in (C.13) are the estimates obtained from fitting{(
θ̂C
rt(ζ), ζ

)
: ζ ∈ Z

}
with the least squares method, we obtain that
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γ̂1 =
1

A1A3 −A2
2

⎧⎨⎩A3

∑
ζ∈Z

ζθ̂C

rt(ζ)−A2

∑
ζ∈Z

ζ2θ̂C

rt(ζ)

⎫⎬⎭
and

γ̂2 =
1

A1A3 −A2
2

⎧⎨⎩−A2

∑
ζ∈Z

ζθ̂C

rt(ζ) +A1

∑
ζ∈Z

ζ2θ̂C

rt(ζ)

⎫⎬⎭ ,

where Ar =
∑

ζ∈Z ζr+1 for r = 1, 2, 3.

Finally, taking ζ = −1 in (C.13) yields

θ̂C

rt =
1

A2
2 −A1A3

M∑
i=1

(A3 −A2ζi +A2 −A1ζi) ζiθ̂
C

rt(ζi), (C.14)

where we use Z = {ζ0, ζ1, · · · , ζM} with ζ0 = 0. Noting that for any ζi ∈ Z,

A3 −A2ζi +A2 −A1ζi =
∑
k>i

(ζk − ζi)
(
ζ3k + ζ2k

)
+
∑
k<i

(ζk − ζi)
(
ζ3k + ζ2k

)
,

we write (C.14) as

θ̂C

rt =
1

A2
2 −A1A3

M∑
i=1

[
ζiθ̂

C

rt(ζi)

{∑
k>i

(ζk − ζi)
(
ζ3k + ζ2k

)
+
∑
k<i

(ζk − ζi)
(
ζ3k + ζ2k

)}]
.

Moreover, further computations give

θ̂C

rt =
1

A2
2 −A1A3

M∑
i=1

M∑
k=i+1

[
(ζk − ζi)

{
ζiθ̂

C

rt(ζi)
(
ζ3k + ζ2k

)
−ζkθ̂

C

rt(ζk)
(
ζ3i + ζ2i

)}]
≥ 1

A2
2 −A1A3

M∑
i=1

M∑
k=i+1

(ζk − ζi) θ̂
C

rt(ζi)ζkζi
(
ζ2k − ζ2i

)
> 0

due to that we assume θ̂C
rt(ζ) > 0. Therefore, we conclude that θ̂C

rt �= 0 with the

probability approaching one. Thus, t ∈ N̂ C(r) and N̂ C(r) ⊇
⋃

ζ∈Z N̂ C(r; ζ).
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Appendix D: Proof of Theorem 5.2

D.1. Proof of Part (b)

By Lemma A.3 and the fact that ‖ · ‖∞ ≤ ‖ · ‖2, we have∥∥∥θ̂C

SC
r
(r; ζ, b)− θC

0;SC
r
(r)

∥∥∥
∞

≤ 6
√
dC
rλ

C
n

ρ

and ∥∥∥θ̂SD
r′
(r′; ζ, b)− θD

0;SD
r′
(r′)

∥∥∥
∞

≤
6
√
dD

r′λ
D
n

ρ

for r ∈ V C and r′ ∈ V D. By the definition (30), we have∥∥∥θ̂C

SC
r
(r; ζ)− θC

0;SC
r
(r)

∥∥∥
∞

≤ 1

B

B∑
b=1

∥∥∥θ̂C

SC
r
(r; ζ, b)− θC

0;SC
r
(r)

∥∥∥
∞

<
6
√
dC
rλ

C
n

ρ

and ∥∥∥θ̂D

SD
r′
(r′; ζ)− θD

0;SD
r′
(r′)

∥∥∥
∞

≤ 1

B

B∑
b=1

∥∥∥θ̂D

SD
r′
(r′; ζ, b)− θD

0;SD
r′
(r′)

∥∥∥
∞

<
6
√
dD

r′λ
D
n

ρ

for r ∈ V C and r′ ∈ V D. Finally, let ζ → −1, we obtain∥∥∥θ̂C

SC
r
(r)− θC

0;SC
r
(r)

∥∥∥
∞

≤ 6
√
dC
rλ

C
n

ρ

and ∥∥∥θ̂D

SD
r′
(r′)− θD

0;SD
r′
(r′)

∥∥∥
∞

≤
6
√
dD

r′λ
D
n

ρ

for r ∈ V C and r′ ∈ V D. Hence, we complete the proof.

D.2. Proof of Part (a)

As discussed in [20, pp.1301], to show the correctness of sign recovery, i.e.,

sign
(
θ̂C

SC
r
(r)

)
= sign

(
θC

0;SC
r
(r)

)
and sign

(
θ̂D

SD
r′
(r′)

)
= sign

(
θD

0;SD
r′
(r′)

)
for r ∈

V C and r′ ∈ V D, it suffices to check the boundness of
∥∥∥θ̂C

SC
r
(r)− θC

0;SC
r
(r)

∥∥∥
∞

and
∥∥∥θ̂D

SD
r′
(r′)− θD

0;SD
r′
(r′)

∥∥∥
∞
. Since Theorem 5.2 (b) holds, we directly obtain

the desired result.
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Table 1

Simulation results for the estimators of Θ under Scenario 1

Model (n, pC) σ2
ε Method Estimator of Θ0 Time

‖ΔΘ‖1 ‖ΔΘ‖F Spe Sen
Lattice (400,20) 0.15 naive 2.773 14.986 0.533 1.000 91.64

corrected-Q 1.691 2.021 0.988 1.000 1033.50
corrected-L 1.789 3.844 0.970 1.000 441.48

0.50 naive 2.711 15.833 0.207 1.000 99.12
corrected-Q 1.741 3.768 1.000 1.000 1892.40
corrected-L 1.846 4.219 0.959 1.000 563.95

0.75 naive 3.111 15.653 0.071 1.000 105.17
corrected-Q 1.956 3.318 0.988 1.000 2497.65
corrected-L 2.208 4.605 0.959 1.000 847.95

true 1.316 1.954 1.000 1.000 90.84
(400, 100) 0.15 naive 2.555 86.625 0.749 1.000 194.15

corrected-Q 0.822 6.061 1.000 1.000 5327.51
corrected-L 0.873 9.734 1.000 1.000 5022.92

0.50 naive 3.434 90.056 0.237 1.000 287.68
corrected-Q 1.064 7.320 0.995 1.000 6922.95
corrected-L 1.083 7.537 0.998 1.000 5518.98

0.75 naive 3.911 96.357 0.094 1.000 373.78
corrected-Q 1.549 14.247 0.995 1.000 11243.00
corrected-L 1.655 15.849 0.991 1.000 9829.60

true 0.664 4.924 1.000 1.000 180.85
(200, 400) 0.15 naive 4.895 106.474 0.298 1.000 1200.00

corrected-Q 1.234 34.828 1.000 0.996 49068.53
corrected-L 1.655 37.441 0.993 0.972 48660.14

0.50 naive 8.243 521.504 0.082 0.903 1592.17
corrected-Q 2.072 56.988 0.999 0.993 66674.65
corrected-L 2.148 60.969 0.986 0.996 66236.65

0.75 naive 11.209 621.102 0.030 1.000 2139.54
corrected-Q 3.908 66.474 0.998 0.956 91102.46
corrected-L 4.342 72.230 0.878 1.000 90503.39

true 0.586 1.954 1.000 1.000 1534.17
Hub (400,20) 0.15 naive 4.857 10.375 0.637 1.000 86.54

corrected-Q 1.933 2.448 1.000 0.944 975.98
corrected-L 1.566 1.680 0.972 1.000 473.42

0.50 naive 4.678 9.716 0.357 1.000 93.57
corrected-Q 1.354 0.799 1.000 1.000 1753.40
corrected-L 1.822 1.962 1.000 0.944 664.59

0.75 naive 4.574 10.173 0.110 1.000 101.40
corrected-Q 1.209 0.674 1.000 1.000 1953.88
corrected-L 2.298 2.314 1.000 0.908 853.10

true 1.651 1.207 1.000 1.000 86.45
(400, 100) 0.15 naive 9.108 43.036 0.735 1.000 185.09

corrected-Q 2.259 3.183 1.000 1.000 5634.23
corrected-L 2.422 3.583 0.997 0.978 5278.04

0.50 naive 9.671 47.410 0.432 1.000 253.01
corrected-Q 2.366 3.477 1.000 1.000 6425.84
corrected-L 2.815 3.624 0.997 1.000 5931.45

0.75 naive 9.676 49.876 0.163 1.000 361.21
corrected-Q 2.659 3.146 0.998 1.000 9838.12
corrected-L 3.309 3.761 1.000 0.936 8412.04

true 1.677 1.364 1.000 1.000 174.51
(200, 400) 0.15 naive 10.179 206.529 0.433 1.000 1149.53

corrected-Q 2.735 15.989 0.999 0.995 44539.17
corrected-L 3.659 16.856 0.988 0.982 41143.39

0.50 naive 12.633 261.196 0.165 1.000 1566.76
corrected-Q 3.280 27.334 0.998 0.989 46597.28
corrected-L 3.678 34.372 0.998 0.957 45821.30

0.75 naive 15.659 332.615 0.041 1.000 1771.28
corrected-Q 3.581 31.680 0.997 0.955 66573.01
corrected-L 3.704 35.842 0.996 1.000 64129.85

true 0.206 7.686 1.000 1.000 1101.59
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Table 2

Simulation results for the estimators of Θ under Scenario 2

Model (n, pD) π Method Estimator of Θ0 Time
‖ΔΘ‖1 ‖ΔΘ‖F Spe Sen

Lattice (400,20) 0.70 naive 2.856 27.741 0.876 0.871 193.70
corrected-Q 1.586 6.607 0.988 0.974 6569.73
corrected-L 1.665 6.021 0.984 0.967 6011.44

0.80 naive 2.571 23.328 0.840 0.868 169.62
corrected-Q 1.606 5.473 1.000 0.974 6016.77
corrected-L 1.635 5.786 1.000 0.946 5640.03

0.90 naive 2.447 21.853 0.858 0.889 168.50
corrected-Q 1.564 5.129 0.994 0.972 4503.77
corrected-L 1.576 5.258 0.986 1.000 4098.05

true 0.879 3.335 1.000 0.996 157.84
(400, 15) 0.70 naive 2.843 19.047 0.779 0.681 150.85

corrected-Q 2.338 12.111 1.000 0.945 4358.09
corrected-L 2.359 12.772 1.000 0.912 3965.89

0.80 naive 2.670 17.959 0.823 0.727 147.23
corrected-Q 1.981 10.231 1.000 0954 3847.65
corrected-L 2.106 11.670 1.000 0.945 3352.87

0.90 naive 2.469 15.573 0.856 0.743 142.59
corrected-Q 1.590 7.038 1.000 0.989 3573.40
corrected-L 1.595 7.514 0.989 1.000 3145.58

true 0.885 2.105 1.000 0.964 143.25
(15, 20) 0.70 naive 7.769 64.859 0.083 1.000 400.98

corrected-Q 2.034 19.371 0.922 0.952 13448.10
corrected-L 2.170 21.330 0.922 0.950 10980.45

0.80 naive 5.313 55.756 0.143 1.000 377.21
corrected-Q 1.130 25.334 0.944 0.903 10339.48
corrected-L 1.345 28.740 0.940 0.900 9453.09

0.90 naive 5.017 54.200 0.159 1.000 375.65
corrected-Q 1.130 21.670 0.968 0.968 8352.76
corrected-L 1.168 24.114 0.950 0.968 6658.41

true 1.760 4.999 0.986 0.973 357.60
Hub (400,20) 0.70 naive 6.781 15.941 0.676 0.844 199.32

corrected-Q 3.648 4.281 0.961 0.945 6342.88
corrected-L 3.970 4.641 0.950 0.928 5877.10

0.80 naive 7.013 15.918 0.692 0.833 193.14
corrected-Q 2.971 4.205 0.987 1.000 5947.03
corrected-L 3.458 4.334 0.976 1.000 5360.14

0.90 naive 5.059 10.779 0.720 0.904 191.62
corrected-Q 1.615 1.074 1.000 1.000 5530.17
corrected-L 2.178 1.555 1.000 1.000 4972.26

true 1.510 0.977 1.000 1.000 122.51
(400, 15) 0.70 naive 4.511 11.085 0.628 0.846 196.60

corrected-Q 2.100 4.800 0.960 0.996 6071.42
corrected-L 2.763 5.085 0.960 1.000 5433.79

0.80 naive 4.572 11.818 0.668 0.615 191.03
corrected-Q 1.903 3.955 0.989 1.000 5488.92
corrected-L 2.411 4.028 0.980 1.000 4930.77

0.90 naive 3.879 8.063 0.658 1.000 189.50
corrected-Q 1.611 1.833 1.000 1.000 5006.33
corrected-L 2.235 2.006 0.990 1.000 4470.89

true 0.996 0.661 1.000 1.000 125.35
(15, 20) 0.70 naive 13.580 71.308 0.050 1.000 411.35

corrected-Q 7.356 36.161 0.918 0.944 12590.44
corrected-L 7.620 39.233 0.915 0.940 9733.56

0.80 naive 10.354 43.816 0.054 1.000 387.85
corrected-Q 6.553 26.891 0.938 0.933 9653.78
corrected-L 6.855 28.115 0.930 0.926 8860.21

0.90 naive 9.406 36.304 0.055 1.000 385.04
corrected-Q 4.973 18.947 0.929 0.954 9044.13
corrected-L 5.235 20.276 0.920 0.947 8033.49

true 2.931 4.650 0.996 0.961 362.98
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Table 3

Simulation results for the estimators of Θ under Scenario 3

Model (n, p)
(
σ2
ε , π

)
Method Estimator of Θ0 Time

‖ΔΘ‖1 ‖ΔΘ‖F Spe Sen
Lattice (400,20) (0.15,0.9) naive 1.878 10.671 0.811 0.839 194.62

corrected-Q 1.111 3.787 0.982 0.939 6634.58
corrected-L 1.305 4.096 0.976 0.916 5873.66

(0.50,0.8) naive 1.921 11.277 0.746 0.806 197.85
corrected-Q 1.630 5.264 0.952 0.942 7465.11
corrected-L 1.718 5.569 0.953 0.906 6450.14

(0.75,0.7) naive 2.305 11.869 0.686 0.839 207.18
corrected-Q 1.692 6.218 0.953 0.967 8892.17
corrected-L 1.705 6.286 0.933 0.905 7253.09

true 0.853 2.210 1.000 0.977 164.68
(400,100) (0.15,0.9) naive 1.893 53.422 0.718 0.744 200.67

corrected-Q 1.685 18.655 0.998 0.928 7459.16
corrected-L 1.753 20.217 0.993 0.933 6534.33

(0.50,0.8) naive 2.110 64.900 0.646 0.744 207.73
corrected-Q 1.800 18.708 0.993 0.928 7853.72
corrected-L 1.902 22.020 0.995 0.917 7079.10

(0.75,0.7) naive 2.266 58.259 0.581 0.739 210.09
corrected-Q 1.812 23.935 0.987 0.933 8511.38
corrected-L 2.150 26.992 0.950 0.933 7725.46

true 1.200 9.068 1.000 0.965 154.01
(200,300) (0.15,0.9) naive 2.538 131.564 0.581 0.866 797.64

corrected-Q 1.914 50.116 0.994 0.958 15948.73
corrected-L 2.466 58.713 0.960 0.950 11456.58

(0.50,0.8) naive 5.223 174.617 0.278 0.872 830.01
corrected-Q 3.767 110.748 0.967 0.958 18943.55
corrected-L 3.956 112.699 0.952 0.958 13149.10

(0.75,0.7) naive 5.991 169.521 0.260 0.879 881.60
corrected-Q 4.136 118.195 0.959 0.956 23578.61
corrected-L 4.574 122.356 0.950 0.947 19744.23

true 0.971 16.218 0.999 0.958 740.78
Hub (400,20) (0.15,0.9) naive 3.397 5.098 0.599 1.000 190.93

corrected-Q 1.142 1.200 1.000 1.000 6743.89
corrected-L 1.194 1.777 1.000 1.000 5376.11

(0.50,0.8) naive 5.190 8.414 0.500 0.667 197.11
corrected-Q 2.301 3.918 0.981 1.000 7568.44
corrected-L 2.357 4.042 0.972 1.000 6340.29

(0.75,0.7) naive 5.351 11.984 0.439 1.000 203.92
corrected-Q 2.266 4.578 0.979 1.000 8413.69
corrected-L 3.359 4.896 0.961 0.989 7148.33

true 0.468 0.755 1.000 0.984 12.28
(400, 100) (0.15,0.9) naive 9.670 27.398 0.769 0.705 211.46

corrected-Q 5.447 14.104 0.992 0.947 9453.22
corrected-L 6.172 16.136 0.985 0.932 7944.25

(0.50,0.8) naive 10.235 35.899 0.628 0.716 215.00
corrected-Q 7.274 24.237 0.958 0.947 9844.06
corrected-L 7.445 26.099 0.953 0.942 8563.74

(0.75,0.7) naive 12.733 60.029 0.673 0.715 213.98
corrected-Q 7.811 29.614 0.961 0.953 10689.40
corrected-L 7.906 32.677 0.938 0.942 9437.51

true 3.337 11.003 0.998 0.973 158.45
(200,300) (0.15,0.9) naive 9.401 83.764 0.401 1.000 906.42

corrected-Q 4.585 32.320 0.987 1.000 16530.48
corrected-L 4.740 33.265 0.974 1.000 12447.50

(0.50,0.8) naive 13.650 132.395 0.206 0.875 938.32
corrected-Q 5.254 117.863 0.957 0.977 20679.23
corrected-L 5.635 120.466 0.946 0.960 16544.83

(0.75,0.7) naive 11.708 159.760 0.176 1.000 989.26
corrected-Q 6.257 120.503 0.951 0.996 29450.77
corrected-L 6.433 121.659 0.945 0.981 20335.40

true 1.101 1.694 0.999 1.000 904.81
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