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Abstract

The Marked Binary Branching Tree (MBBT) is the family tree of a rate one binary
branching process, on which points have been generated according to a rate one
Poisson point process, with i.i.d. uniformly distributed activation times assigned to
the points. In frozen percolation on the MBBT, initially, all points are closed, but as
time progresses points can become either frozen or open. Points become open at their
activation times provided they have not become frozen before. Open points connect
the parts of the tree below and above it and one says that a point percolates if the
tree above it is infinite. We consider a version of frozen percolation on the MBBT
in which at times of the form θn, all points that percolate are frozen. The limiting
model for θ → 1, in which points freeze as soon as they percolate, has been studied
before by Ráth, Swart, and Terpai. We extend their results by showing that there
exists a 0 < θ∗ < 1 such that the model is endogenous for θ ≤ θ∗ but not for θ > θ∗.
This means that for θ ≤ θ∗, frozen percolation is a.s. determined by the MBBT but for
θ > θ∗ one needs additional randomness to describe it.
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rkp. 3., H-1111 Budapest, Hungary. Alfréd Rényi Institute of Mathematics, Reáltanoda utca 13-15, 1053
Budapest, Hungary. E-mail: szokemarton3@gmail.com

https://imstat.org/journals-and-publications/electronic-journal-of-probability/
https://doi.org/10.1214/22-EJP872
https://ams.org/mathscinet/msc/msc2020.html
https://arXiv.org/abs/2103.14408
mailto:rathb@math.bme.hu
mailto:swart@utia.cas.cz
mailto:szokemarton3@gmail.com


A phase transition between endogeny and nonendogeny

Contents

1 Introduction and main results 2
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Frozen percolation on the MBBT . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Burning times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Almost sure uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Scale invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6 Scale invariant solutions to the bivariate RDE . . . . . . . . . . . . . . . . . 10

2 Frozen percolation on the MBBT 11
2.1 Existence and uniqueness in law . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Scale invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Scale invariant solutions to the bivariate RDE 26
3.1 Main lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Conditions for f to be a signature . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Basic properties of fθ,c(n) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4 Signature of a scale invariant solution of the bivariate RDE . . . . . . . . . 34
3.5 Definition of θ∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.6 The θ ≤ θ∗ case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.7 The θ > θ∗ case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

References 43

1 Introduction and main results

1.1 Introduction

The concept of frozen percolation was introduced by Aldous [Ald00]. In it, i.i.d.
activation times that are uniformly distributed on [0, 1] are assigned to the edges of
an infinite, unoriented graph. Initially, all edges are closed. At its activation time, an
edge opens, provided it is not frozen. Here, by definition, an edge freezes as soon as
one of its endvertices becomes part of an infinite open cluster. For general graphs, the
existence of a process satisfying this description is not obvious. Indeed, Benjamini and
Schramm observed that on the square lattice, frozen percolation does not exist (see
[BT01, Section 3] for an account of the argument).

On the other hand, Aldous [Ald00] showed that frozen percolation on the infinite
3-regular tree does exist. Under natural additional assumptions, such a process is even
unique in law. This was partially already observed in [Ald00] and made more precise
in [RST19, Thm 2]. The problem of almost sure uniqueness stayed open for 19 years,
but has recently been solved negatively in [RST19, Thm 3], where it is shown that
the question whether a given edge freezes cannot be decided only by looking at the
activation times of all edges.

The proof of [RST19, Thm 3] depends on detailed calculations that are specific to the
details of the model. As a result, the question of almost sure uniqueness is still open for
frozen percolation on n-regular trees with n > 3. This raises the question whether model
specific calculations are necessary, or whether the absence of almost sure uniqueness
can alternatively be demonstrated by more general, “soft” arguments that have so far
been overlooked.

The results in the present paper suggest that this is not the case and model specific
calculations are, to some degree, unavoidable. We look at a modified model in which
edges can freeze only at a certain countable set of times. For the resulting model, which
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depends on a parameter 0 < θ < 1, we show that under the same natural additional
assumptions that guarantee uniquess in law, there exists a nontrivial critical value θ∗

such that almost sure uniqueness holds for θ ≤ θ∗ but not for θ > θ∗.

It turns out that it is mathematically simpler to formulate our results for frozen
percolation on a certain oriented tree, the Marked Binary Branching Tree (MBBT), a
random oriented continuum tree introduced in [RST19]. Using methods of Section 3 of
that paper, our results can also be translated into results for the unoriented 3-regular
tree. For brevity, we omit the details of the latter step and stick for the remainder of the
paper to the oriented (rather than the unoriented) setting on the MBBT (rather than the
3-regular tree).

1.2 Frozen percolation on the MBBT

Let T be the set of all finite words i = i1 · · · in (n ≥ 0) made up from the alphabet
{1, 2}. We call |i| := n the length of the word i and denote the word of length zero by
∅, which we distinguish notationally from the empty set ∅. The concatenation of two
words i = i1 · · · in and j = j1 · · · jm is denoted by ij := i1 · · · inj1 · · · jm. We view T as an
oriented tree with root ∅, in which each point i has two offspring i1 and i2, and each
point i = i1 · · · in except for the root has one parent

←
i := i1 · · · in−1. In pictures, we draw

the root at the bottom and we draw the descendants of a point above their predecessor.
By definition, a rooted subtree of T is a subset U ⊂ T such that

←
i ∈ U for all i ∈ U\{∅}.

We call ∂U := {i ∈ T\U :
←
i ∈ U} the boundary of U, and we use the convention that

∂U = {∅} if U = ∅.
Let (τi, κi)i∈T be i.i.d. uniformly distributed on [0, 1] × {1, 2}. We interpret τi as the

activation time of i and κi as its number of legal offspring. If κi = 1, then we call i1 and
i2 the legal and illegal offspring of i, respectively. Points i ∈ T with κi = 1 or = 2 are
called internal points and branching points, respectively. We denote the corresponding
sets as I := {i ∈ T : κi = 1} and B := {i ∈ T : κi = 2}. Only activation times of internal
points matter; activation times of branching points will not be used. For any i ∈ T and

A ⊂ T, we write i
A−→∞ if there exist (jk)k≥1 such that

(i) jk+1 ≤ κij1···jk and (ii) ij1 · · · jk ∈ A for all k ≥ 0. (1.1)

In words, this says that there is an infinite open upwards path through A starting at i
such that each next point is a legal offspring of its parent.

We will be interested in frozen percolation on T with the following informal descrip-
tion. At any time, points can be closed, frozen, or open. Once a point is frozen or open, it
stays that way. Initially, all branching points are open and all internal points are closed.
Branching points stay open for all time. An internal point i becomes open at its activation
time τi provided that, by this time, it has not yet become frozen. The rules for freezing
points are as follows. We fix a set Ξ ⊂ (0, 1] that is closed w.r.t. the relative topology
of (0, 1]. Letting Ot denote the set of open points at time t, we decree that up to and
including its activation time, a closed internal point i becomes frozen at the first time in

Ξ when its legal offspring percolates, i.e., when i1
Ot−→∞.

Let

Tt := {i ∈ I : τi ≤ t
}
∪B (0 ≤ t ≤ 1) (1.2)

denote the set of all points at time t that are either an internal point that has already been
activated or a branching point. Let F denote the set of internal points that eventually
become frozen. Since once a point opens or freezes, it stays open or frozen for the
remaining time, the set of open points at time t is given by Ot = Tt\F. In view of this,
we make our informal description precise by saying that a random subset F of T solves
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the frozen percolation equation for the set of possible freezing times Ξ if

i ∈ F if and only if κi = 1 and i1
Tt\F−→ ∞ for some t ∈ Ξ ∩ (0, τi], (1.3)

which says that the points that eventually become frozen are those internal points i for
which i1 percolates at some time in Ξ before or at the activation time of i.

It turns out that solutions to (1.3) always exist, but the question of uniqueness is
more subtle. To get at least uniqueness in law, we impose additional conditions. We
write ωi := (τi, κi) (i ∈ T) and for any j ∈ T, we let

Ωj :=
(
ωji

)
i∈T (1.4)

denote the i.i.d. randomness that resides in the subtree of T rooted at j. In particular,
we write Ω := Ω∅. If F is a solution to the frozen percolation equation, then for each
j ∈ T, we define a random subset Fj of T by

Fj := {i ∈ T : ji ∈ F}. (1.5)

We say that a solution F to the frozen percolation equation (1.3) is stationary if the
law of (Ωj,Fj) does not depend on j ∈ T. We say that F is adapted if for each finite
rooted subtree U ⊂ T, the collection of random variables (Ωj,Fj)j∈∂U is independent of
(ωi)i∈U. Finally, we say that F respects the tree structure if (Ωj,Fj)j∈∂U is a collection of
independent random variables for each finite rooted subtree U ⊂ T.

With these definitions, we can formulate our first result about existence and unique-
ness in law of solutions to the frozen percolation equation (1.3). In the special case that
Ξ = (0, 1], the following theorem has been proved before in (in a somewhat different
guise) in [RST19, Thm 2].

Theorem 1.1 (Uniqueness in law of frozen percolation). Let Ξ be a closed subset of (0, 1]

(w.r.t. the relative topology). Then there exists a solution F of the frozen percolation
equation (1.3). This solution can be chosen so that it is stationary, adapted, and respects
the tree structure. Subject to these additional conditions, the joint law of Ω and F is
uniquely determined.

We will prove Theorem 1.1 in Subsection 2.1. As we will see in the coming subsections,
the question of almost sure uniqueness of solutions to the frozen percolation equation is
subtle and the answer depends on the choice of the closed set Ξ.

In the remainder of the present subsection, which can be skipped at a first reading,
we explain how our set-up relates to the definition of the Marked Binary Branching Tree
(MBBT) introduced in [RST19]. Let

S :=
{
i1 · · · in ∈ T : im ≤ κi1···im−1

∀1 ≤ m ≤ n
}

(1.6)

denote the random rooted subtree of T consisting of all legal descendants of the root.
Then S is the family tree of a branching process in which each individual has one or two
offspring, with equal probabilities. For any rooted subtree U ⊂ S, we call

∇U := ∂U ∩ S (1.7)

the boundary of U relative to S.
Let (`i)i∈T be i.i.d. exponentially distributed random variables with mean 1/2, inde-

pendent of Ω. We interpret `i as the lifetime of the individual i and let

bi1···in :=

n−1∑
k=0

`i1···ik and di1···in :=

n∑
k=0

`i1···ik (1.8)
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with b∅ := 0 and d∅ := `∅ denote the birth and death times of i1 · · · in ∈ T. For h ≥ 0, we
let

Th :=
{
i ∈ T : di ≤ h

}
, ∂Th =

{
i ∈ T : bi ≤ h < di

}
,

Sh := Th ∩ S, ∇Sh = ∂Th ∩ S
(1.9)

denote the sets of individuals in T or S that have died by time h and those that are alive
at time h, respectively. Note that the former are a.s. finite rooted subtrees of T and S,
respectively, and the latter are their boundaries relative to T or S. Now

(∇Sh)h≥0 (1.10)

is a continuous-time branching process subject to the following dynamics:

• each individual i is with rate 1 replaced by two new individuals i1 and i2,

• each individual i is with rate 1 replaced by one new individual i1.

Let (∇Sh−)h≥0 denote the left-continuous modification of the branching process in (1.10)
and let

T :=
{

(i, h) : i ∈ ∇Sh−, h ≥ 0
}
. (1.11)

As in [RST19, Subsection 1.5], we equip T with a metric d by setting d
(
(i, h), (j, g)

)
:=

h+ g − τ , where τ is the last time before h ∧ g when there existed a common ancestor of
i and j. Then T is a random continuum tree. We can think of T as the family tree of a
rate one binary branching process. Recall that I = {i ∈ T : κi = 1} denotes the set of
internal points of T. Let

Π0 :=
{

(i, di) : i ∈ I ∩ S
}

and Π :=
{

(i, di, τi) : i ∈ I ∩ S
}
. (1.12)

In words, Π0 consists of all points z = (i, di) in the continuum tree T at which an
individual i dies and is replaced by a single new individual i1, and Π consists of all pairs
(z, τz) where z ∈ Π0 and τz is the activation time of the individual that dies at this point.
Then the pair (T ,Π) is a Marked Binary Branching Tree (MBBT) as defined in [RST19,
Subsection 1.5]. As explained in [RST19, Subsection 1.7], the MBBT naturally arises as
the near-critical scaling limit of percolation on a wide class of oriented trees.

If we forget about the specific labeling of elements of T , i.e., if we are only interested
in T as a metric space where we view two metric spaces as equal if they are isometric,
then we can no longer recognise from T at which points a single individual is replaced by
a single individual with a different label. In such a setting one can check that conditional
on T , the set Π is a Poisson point process of intensity one on T × [0, 1]. In particular, Π0

is a Poisson point process of intensity one on T and conditionally on (T ,Π0), there is an
independent, uniformly distributed activation time τz attached to each point z ∈ Π0.

Frozen percolation on the MBBT has been introduced in [RST19, Subsection 1.6].
Our earlier definitions, translated into the language of the MBBT, result in a process with
the following informal description. Initially, all points z ∈ Π0 are closed. Such points
open at their activation time τz, provided that by this time they have not yet become
frozen. A point z ∈ Π0 freezes at the first time in Ξ before or at its activation time when
the open component of T that sits just above the point has infinite size.

1.3 Burning times

Let Ξ ⊂ (0, 1] be a relatively closed set of possible freezing times and let F be a
solution to the frozen percolation equation (1.3). We define the burning time of a point
i ∈ T as

Yi := inf
{
t ∈ Ξ : i

Tt\F−→ ∞
}

(i ∈ T), (1.13)
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with the convention that inf ∅ :=∞. The choice of the term “burning time” is motivated
by a certain analogy with forest fire models. The following lemma implies that if Yi ≤ 1,
then the infimum in (1.13) is in fact a minimum.

Lemma 1.2 (Percolation times). For any random subset A ⊂ T and i ∈ T, the set

{t ∈ [0, 1] : i
Tt\A−→ ∞} is a.s. closed.

We will prove Lemma 1.2 and Lemma 1.3 below in Section 2.1. By formula (1.13), the
burning times (Yi)i∈T are a.s. uniquely determined by the set F and the i.i.d. randomness
Ω. The following lemma shows that conversely, given Ω and (Yi)i∈T, one can recover F.

Lemma 1.3 (Frozen points). Let F be a solution to the frozen percolation equation (1.3)
and let (Yi)i∈T be defined by (1.13). Then

F =
{
i ∈ I : Yi1 ≤ τi

}
. (1.14)

Remark 1.4. If F is adapted, then Yi1 is independent of τi and hence P[Yi1 = τi] = 0 for
each i ∈ T. According to our definitions, the point i freezes when Yi1 = τi, but as long as
we only discuss adapted solutions, it in fact does not matter how things are defined in
this case.

Let I := [0, 1] ∪ {∞}. If F is a solution to the frozen percolation equation (1.3), then it
is not hard to see that the burning times (Yi)i∈T satisfy the inductive relation

Yi = χ[τi, κi](Yi1, Yi2), (1.15)

where χ : [0, 1]× {1, 2} × I2 → I is the function

χ[τ, κ](x, y) :=


x if κ = 1, x > τ,

∞ if κ = 1, x ≤ τ,

x ∧ y if κ = 2.

(1.16)

Assume that F is stationary, adapted, and respects the tree structure. Then the law
of Y∅ satisfies the Recursive Distributional Equation (RDE)

Y∅
d
= χ[ω](Y1, Y2), (1.17)

where
d
= denotes equality in distribution, Y1, Y2 are i.i.d. copies of Y∅, and ω is an

independent uniformly distributed random variable on [0, 1]× {1, 2}. Proposition 37 of
[RST19] classifies all solutions of the RDE (1.17). Expanding on that result, we can prove
the following lemma, which is the basis of our proof of Theorem 1.1.

Lemma 1.5 (Law of burning times). For each set Ξ ⊂ (0, 1] that is closed w.r.t. the relative
topology of (0, 1], there exists a unique probability measure ρΞ on I such that

1. ρΞ solves the RDE (1.17),

2. ρΞ is concentrated on Ξ ∪ {∞},

3. ρΞ

(
[0, t]

)
≥ 1

2 t for all t ∈ Ξ.

Assume that F solves the frozen percolation equation (1.3) for the set of possible freezing
times Ξ and that F is stationary, adapted, and respects the tree structure. Then the
burning time of the root Y∅, defined in (1.13), has law ρΞ.

We will prove Lemma 1.5 together with Lemma 1.6 below in Section 2.1. The following
lemma shows that every solution of the RDE (1.17) is of the form ρΞ for some closed set
Ξ ⊂ (0, 1]. Below, supp(µ) denotes the support of a measure µ.
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Lemma 1.6 (General solutions to the RDE). If ρ solves the RDE (1.17), then ρ = ρΞ with
Ξ := (0, 1] ∩ supp(ρ).

By condition (ii) of Lemma 1.5, for a general closed subset Ξ ⊂ (0, 1], we have
(0, 1] ∩ supp(ρΞ) ⊂ Ξ. This inclusion may be strict,1 however, so the correspondence
between solutions of the RDE (1.17) and sets of possible freezing times is not one-to-one.

1.4 Almost sure uniqueness

Recall from (1.4) that Ω = (ωi)i∈T with ωi = (τi, κi). For a given set Ξ ⊂ (0, 1] of
possible freezing times, we say that solutions to the frozen percolation equation (1.3)
are almost surely unique if, whenever F and F′ solve (1.3) relative to the same Ω, one
has F = F′ a.s.

Let us first note that it is easy to show that if Ξ is a finite subset of (0, 1] then the
solutions of (1.3) are almost surely unique. Indeed, if Ξ = {t1, ..., tn} with 0 < t1 < · · · <
tn ≤ 1 then one proves by induction on k = 1, . . . , n that the set of vertices that burn at
time tk is determined by Ω. This implies that the burning time Yi of each vertex i ∈ T is
determined by Ω, hence the set F is also determined by Ω using Lemma 1.3.

For the remainder of the paper, we will mostly focus our attention on a one-parameter
family of sets of possible burning times. For 0 < θ < 1, we define Ξθ := {θn : n ∈ N}
(with N := {0, 1, 2, . . .}) and we set Ξ1 := (0, 1], which can naturally be viewed as the limit
of Ξθ as θ → 1. As a straightforward application of [RST19, Prop 37], one can check that
for these sets, the probability laws ρΞ from Lemma 1.5 are given by

ρΞθ (dt) =
1− θ
1 + θ

∞∑
k=0

θkδθk(dt) +
θ

1 + θ
δ∞(dt) (0 < θ < 1),

ρΞ1
(dt) = 1

2dt+ 1
2δ∞(dt).

(1.18)

It is not hard to see that ρΞθ converges weakly to ρΞ1 as θ → 1.
We conjecture that for the sets Ξθ with 0 < θ < 1

2 , solutions to the frozen percolation
equation are almost surely unique. We have not been able to prove this, but we can
prove that there exists a 1

2 < θ∗ < 1 such that almost sure uniqueness does not hold for
θ > θ∗ and almost sure uniqueness holds under additional assumptions for θ ≤ θ∗.

To explain this in more detail, fix Ω = (ωi)i∈T, let F be a solution to the frozen
percolation equation (1.3) that is stationary, adapted, and respects the tree structure,
and let (Yi)i∈T be the burning times defined in (1.13). Then

1. For each finite rooted subtree U ⊂ T, the r.v.’s (Yi)i∈∂U are i.i.d. and independent
of (ωi)i∈U.

2. Yi = χ[ωi](Yi1, Yi2) (i ∈ T).

This means that (ωi, Yi)i∈T is a Recursive Tree Process (RTP) as defined in [AB05]. Note
that since by Theorem 1.1, the joint law of (Ω,F) is uniquely determined, the same is true
for the law of the RTP (ωi, Yi)i∈T. Following a definition from [AB05], one says that such
an RTP is endogenous if Y∅ is measurable w.r.t. the σ-field generated by the collection of
random variables Ω = (ωi)i∈T. We make the following observation.

Lemma 1.7 (Endogeny and almost sure uniqueness). Let (ωi, Yi)i∈T be the RTP defined
above. Then the following claims are equivalent:

1. The RTP (ωi, Yi)i∈T is endogenous.

1For example, if Ξ = {s, t} with 0 < s < t ≤ 1 and t ≤ 2s, then using Lemma 2.2 below it is easy to check
that ρΞ = sδs + (1− s)δ∞.
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2. If F and F′ solve (1.3) relative to the same Ω, and moreover F and F′ are stationary,
adapted, and respect the tree structure, then F = F′ a.s.

Proof. Fix Ω = (ωi)i∈T and let F be a solution to (1.3) relative to Ω that is stationary,
adapted, and respects the tree structure. By Theorem 1.1, such a solution exists (perhaps
on an extended probability space) and the joint law of (Ω,F) is uniquely determined.
Let (ωi, Yi)i∈T be the corresponding RTP defined by (1.13). Endogeny says that Y∅ is
measurable w.r.t. the σ-field generated by Ω. Since (ωji, Yji)i∈T is equally distributed
with (ωi, Yi)i∈T, endogeny implies that Yj is measurable w.r.t. the σ-field generated by Ω

for each j ∈ T. This shows that endogeny is equivalent to the statement that (Yi)i∈T is
measurable w.r.t. the σ-field generated by Ω. Since by (1.13) and Lemma 1.3, given Ω, the
set F and collection of random variables (Yi)i∈T determine each other a.s. uniquely, this
is in turn equivalent to the statement that F is measurable w.r.t. the σ-field generated
by Ω. Equivalently, this says that the conditional law of F given Ω is a delta-measure.
This shows that (i) implies (ii). Conversely, if (i) does not hold, let us construct a
random variable F′ such that F′ is conditionally independent of F given Ω, moreover the
conditional distributions of F and F′ are the same if we condition on Ω. In particular,
F′ then also solves (1.3) relative to Ω and is stationary, adapted, and respects the tree
structure. Since the conditional law of F given Ω is not a delta-measure, we then have
F 6= F′ with positive probability, showing that (ii) does not hold.

It follows from Lemma 1.7 that if the RTP (ωi, Yi)i∈T is nonendogenous, then solutions
to the frozen percolation equation (1.3) are not almost surely unique. We pose the
converse implication as an open problem:

Question 1 Does endogeny of the RTP (ωi, Yi)i∈T imply almost sure unique-
ness of solutions to the frozen percolation equation (1.3)?

In other words, Question 1 asks whether in part (ii) of Lemma 1.7, one can remove the
conditions that F and F′ are stationary, adapted, and respect the tree structure.

We now address the question of endogeny. To state our main result, we need one
technical lemma, which introduces a parameter θ∗. Numerically, we find that θ∗ ≈ 0.636.

Lemma 1.8 (The critical parameter). Let g : (0, 1)→ R be defined as

g(θ) := 2(1 + θ)−
∞∑
`=0

θ2`(1− θ2)

2/(1 + θ)− θ`
. (1.19)

Then g is a strictly decreasing continuous function that changes sign at a point θ∗ ∈ ( 1
2 , 1).

The following theorem is the main result of our paper. For θ = 1, the result has been
proved in [RST19, Thm 12] but the result is new in the regime 0 < θ < 1.

Theorem 1.9 (Endogeny). Let θ∗ be as in Lemma 1.8. Let 0 < θ ≤ 1, and for the set
of possible freezing times Ξθ, let (Ω,F) be defined as in Theorem 1.1. Let (ωi, Yi)i∈T be
the corresponding RTP of burning times defined in (1.13). This RTP is endogenous for
0 < θ ≤ θ∗ but not for θ∗ < θ ≤ 1.

In the Subsections 1.5 and 1.6 below, we eleborate a bit on our methods for proving
Theorem 1.9. We use the remainder of the present subsection to make a few additional
comments on Question 1 posed above.

Set F0 := ∅ and define inductively for k ≥ 1

Y ki := inf
{
t ∈ Ξ : i

Tt\Fk−1−→ ∞
}

(i ∈ T) and Fk :=
{
i ∈ I : Y ki1 ≤ τi

}
, (1.20)
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with the usual convention that inf ∅ :=∞. Then it is not hard to see that

(i) F2n ⊂ F2n+1 (ii) F2n+1 ⊃ F2n+2,

(iii) F2n ⊂ F2n+2 (iv) F2n+1 ⊃ F2n+3,
(n ∈ N). (1.21)

Moreover, if F solves the frozen percolation equation (1.3), then

F2n ⊂ F ⊂ F2n+1 (n ∈ N). (1.22)

For the sets of possible burning times Ξθ with 0 < θ ≤ 1, it is possible to verify by
calculation that F2 = ∅ a.s. if and only if θ ≥ 1/2. In particular, if θ < 1/2, then there
are points that must freeze in any solution to the frozen percolation equation (1.3). We
conjecture that in fact, for any θ < 1/2, the sets

⋃
n∈N F2n and

⋂
n∈N F2n+1 are a.s. equal

and as a result, solutions to the frozen percolation equation (1.3) are a.s. unique for all
θ < 1/2. Note that even if this conjecture is correct, it does not not fully settle Question 1,
since the parameter θ∗ from Lemma 1.8 is strictly larger than 1/2.

1.5 Scale invariance

We fix a set of possible burning times Ξ, construct a frozen percolation process (Ω,F)

as in Theorem 1.1 and let (ωi, Yi)i∈T be the corresponding RTP of burning times defined
in (1.13). Conditional on Ω = (ωi)i∈T, let (Y ′i )i∈T be an independent copy of (Yi)i∈T. Then
endogeny is equivalent to the statement that Y∅ = Y ′∅ a.s. An easy argument, which
can be found in [MSS18, Appendix B], shows that the joint law of (Y∅, Y

′
∅) solves the

bivariate RDE
(Y∅, Y

′
∅)

d
=
(
χ[ω](Y1, Y2), χ[ω](Y ′1 , Y

′
2)
)
, (1.23)

where (Y1, Y
′
1) and (Y2, Y

′
2) are independent copies of (Y∅, Y

′
∅) and ω is an independent

uniformly distributed random variable on [0, 1]× {1, 2}. We define probability laws on I2

by
ρ(2)

Ξ
:= P

[
(Y∅, Y

′
∅) ∈ ·

]
and ρ

(2)
Ξ := P

[
(Y∅, Y∅) ∈ ·

]
. (1.24)

The marginals of these measures are the measure ρΞ defined in Lemma 1.5. General
theory for RTPs yields the following:

Proposition 1.10 (Bivariate uniqueness). The following statements are equivalent:

1. The RTP (ωi, Yi)i∈T is endogenous.

2. ρ(2)
Ξ = ρ

(2)
Ξ .

3. The measure ρ(2)
Ξ is the only solution of the bivariate RDE (1.23) in the space of

symmetric probability measures on I2 with marginals given by ρΞ.

Proof. The equivalence of (i) and (ii) follows immediately from the definitions in (1.24),
the equivalence of (i) and (iii) is proved in [AB05, Thm 11] (see also [MSS18, Thm 1]),
and the implication (iii)⇒(ii) is trivial.

Proposition 1.10 is our main tool for proving Theorem 1.9, but in order to be able
to successfully apply Proposition 1.10, we need one more idea. For a general set of
possible burning times Ξ, it is difficult to find all solutions of the bivariate RDE (1.23)
in the space of symmetric probability measures with marginals given by ρΞ. For the
special sets Ξθ with 0 < θ ≤ 1, however, it turns out to be sufficient to look only at
scale invariant solutions of the bivariate RDE. As we will explain below, this leads to a
significant simplification of the problem, which allows us to prove Theorem 1.9 for the
sets Ξθ, but not for general Ξ.
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It has been proved in [RST19, Prop 9] that the law of the MBBT is invariant under a
certain scaling relation. This is ultimately the consequence of the fact that the MBBT is
itself the scaling limit of near-critical percolation on trees of finite degree. We will not
repeat the scaling property of the MBBT here but instead formulate scaling properties
of solutions to the RDE (1.17) and bivariate RDE (1.23) that are consequences of the
scaling of the MBBT.

For each t > 0, we define a scaling map ψt : I → I by

ψt(y) :=

{
t−1y if y ≤ t,
∞ otherwise.

(1.25)

We letM(1) denote the space of all probability measures ρ on I = [0, 1]∪{∞} that satisfy
ρ
(
[0, t]

)
≤ t for all 0 ≤ t ≤ 1, and we define scaling maps Γt by

Γtρ := t−1ρ ◦ ψ−1
t + (1− t−1)δ∞ (ρ ∈M(1), t > 0), (1.26)

where δ∞ denotes the delta-measure at∞. It is not hard to see that Γt maps the space
M(1) into itself. In particular, for 0 < t < 1, the assumption ρ

(
[0, t]

)
≤ t guarantees that

Γtρ puts nonnegative mass at∞. The following lemma says that the set of solutions to
the RDE (1.17) is invariant under the scaling maps Γt. Below, ρΞ denotes the measure
defined in Lemma 1.5.

Lemma 1.11 (Scale invariance of the RDE). Let ρ be a solution to the RDE (1.17). Then
ρ ∈ M(1), and for each t > 0, the measure Γtρ is also a solution to the RDE (1.17). In
particular, if Ξ is a relatively closed subset of (0, 1], then

ΓtρΞ = ρΞ′ with Ξ′ := {t−1y : y ∈ Ξ} ∩ [0, 1] (t > 0). (1.27)

For the bivariate RDE, a result similar to Lemma 1.11 holds, which we formulate now.
We say that a probability measure on I2 is symmetric if it is invariant under the map
(y1, y2) 7→ (y2, y1). LetM(2) denote the space of all symmetric probability measures ρ(2)

on I2 that satisfy
ρ(2)

(
[0, t]× I ∪ I × [0, t]

)
≤ t ∀0 ≤ t ≤ 1. (1.28)

We define ψ(2)
t : I2 → I2 by ψ(2)

t (y, y′) :=
(
ψt(y), ψt(y

′)
)

and we define Γ
(2)
t :M(2) →M(2)

by
Γ

(2)
t ρ := t−1ρ ◦ (ψ

(2)
t )−1 + (1− t−1)δ(∞,∞) (ρ ∈M(2), t > 0). (1.29)

We will prove that ρ ∈M(2) indeed implies Γ
(2)
t ρ ∈M(2) in Section 2.2. With the above

definitions, we have the following lemmas, which are analogous to Lemma 1.11. The
measures ρ(2)

Ξ and ρ(2)
Ξ that occur in Lemma 1.13 are defined in (1.24).

Lemma 1.12 (Scale invariance of bivariate RDE). Let ρ(2) be a symmetric solution to the
bivariate RDE (1.23). Then ρ(2) ∈M(2), and for each t > 0, the measure Γ

(2)
t ρ(2) is also a

solution to (1.23).

Lemma 1.13 (Scale invariance of special solutions). Let Ξ ⊂ (0, 1] be relatively closed.
Then, for each t > 0,

Γ
(2)
t ρ(2)

Ξ
= ρ(2)

Ξ′
and Γ

(2)
t ρ

(2)
Ξ = ρ

(2)
Ξ′ with Ξ′ := {t−1y : y ∈ Ξ} ∩ [0, 1]. (1.30)

1.6 Scale invariant solutions to the bivariate RDE

In the present subsection, we explain how scale invariance helps us prove our main
result Theorem 1.9. It follows from Lemma 1.11, and can also easily be checked by direct
calculation using formula (1.18), that the measures ρΞθ are invariant under scaling by
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θ, and hence also by θn for each n ≥ 0. Likewise, ρΞ1
is invariant under scaling by any

0 < t ≤ 1, so we have

ΓtρΞθ = ρΞθ

(
0 < θ ≤ 1, t ∈ Ξθ). (1.31)

Motivated by this, for 0 < θ ≤ 1, we letM(2)
θ denote the space of probability measures

ρ(2) on I2 such that:

1. ρ(2) ∈M(2),

2. the marginals of ρ(2) are given by ρΞθ ,

3. Γ
(2)
t ρ(2) = ρ(2) for all t ∈ Ξθ.

Let 0 < θ ≤ 1, and for the set of possible freezing times Ξθ, let (Ω,F) be defined as in
Theorem 1.1. Let (ωi, Yi)i∈T be the corresponding RTP of burning times defined in (1.13).
It follows from Proposition 1.10 and Lemma 1.13 that the RTP (ωi, Yi)i∈T is endogenous

if and only if ρ(2)
Ξθ

is the only solution of the bivariate RDE (1.23) in the spaceM(2)
θ . In

view of this, Theorem 1.9 is implied by the following theorem.

Theorem 1.14 (Scale invariant solutions of the bivariate RDE). Let θ∗ be as in Lemma 1.8
and let 0 < θ ≤ 1. Then:

1. If θ ≤ θ∗ then ρ(2)
Ξθ

is the only solution of the bivariate RDE (1.23) in the spaceM(2)
θ .

2. If θ∗ < θ, then there exists a measure ρ̂(2) ∈M(2)
θ with ρ̂(2) 6= ρ

(2)
Ξθ

that solves (1.23).

We call ρ(2)
Ξθ

the diagonal solution of the bivariate RDE since it is concentrated on
{(y, y) : y ∈ I} (see (1.24)). In the special case θ = 1, Theorem 1.14 has been proved
in [RST19, Thm 12], where it is moreover shown that the bivariate RDE (1.23) has
precisely two solutions in the spaceM(2)

1 . We conjecture that this holds more generally.
In Remark 3.33 below, we present numerical evidence for the following conjecture.

Conjecture 1.15 (Uniqueness of the nondiagonal solution). For all θ∗ < θ ≤ 1, the
measures ρ(2)

Ξθ
and ρ(2)

Ξθ
defined in (1.24) are the only solutions of the bivariate RDE (1.23)

in the spaceM(2)
θ .

The main advantage of scale invariance is that it reduces the number of parameters.
In general, we can characterise a measure on [0, 1]2 by its distribution function, which is
a real function of two variables. However, using scale invariance, we can characterise a
measure ρ(2) ∈M(2)

θ using a real function of one variable only, see Definition 3.2 below.
This significantly simplifies the calculations.

We can in fact be a little more general. Generalizing the definition above (1.18), for
0 < θ < 1 and 0 < α ≤ 1, let us define Ξθ,α := {αθn : n ∈ N}. Then Lemma 1.11 implies
that ρΞθ,α = Γ1/αρΞθ . Moreover, Proposition 1.10 and Lemma 1.13 imply that the RTP
corresponding2 to ρΞθ,α is endogenous if and only if the RTP corresponding to ρΞθ is
endogenous. Since this does not conceptually add anything new, for simplicity, we have
formulated our main results only for the set of possible burning times Ξθ.

2 Frozen percolation on the MBBT

2.1 Existence and uniqueness in law

In this subsection, we prove Theorem 1.1 and Lemmas 1.2, 1.3, 1.5, and 1.6.

2The precise definition of an RTP corresponding to a solution to an RDE can be found below formula (2.15)
below.
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Proof of Lemma 1.2. It suffices to prove the claim for i = ∅. Let P := {t ∈ [0, 1] : ∅ Tt\A−→
∞}. Similar to the definition in (1.1), for any i,k ∈ T and A ⊂ T, we write i

A−→ k if there
exist a j = j1 · · · jn ∈ T such that k = ij and

(i) jk+1 ≤ κij1···jk (0 ≤ k < n) and (ii) ij1 · · · jk ∈ A (0 ≤ k ≤ n). (2.1)

By (1.2), the set T (i) := {t ∈ [0, 1] : i ∈ Tt} is closed for each i ∈ T, so for each finite n,
the set

Pn :=
{
t ∈ [0, 1] : ∅ Tt\A−→ j for some j ∈ T with |j| = n

}
, (2.2)

being a finite intersection and union of sets of the form T (i), is also closed. It follows
that the same is true for P =

⋂
n≥0 Pn.

Proof of Lemma 1.3. By Lemma 1.2, for each i ∈ T, the set

T (i) :=
{
t ∈ [0, 1] : i

Tt\F−→ ∞
}

is a random closed subset of [0, 1]. By Lemma 2.14 below, P[i
Tt\F−→ ∞] ≤ P[i

Tt−→ ∞] = t

for all t ∈ (0, 1], so there a.s. exists a random ε > 0 such that T (i) ⊂ [ε, 1], i.e., T (i) is a
random compact subset of (0, 1]. Since Ξ is a closed subset of (0, 1] this implies that on

the event that Yi ≤ 1, the infimum in (1.13) is in fact a minimum and i
Tt\F−→ ∞ for t = Yi.

Let i ∈ I. If Yi1 > τi, then clearly there exists no t ∈ (0, τi] such that i1
Tt\F−→ ∞, and

hence by (1.3) i 6∈ F. On the other hand, if Yi1 ≤ τi, then by what we have just proved,

setting t := Yi1 we have t ∈ Ξ ∩ (0, τi] and i1
Tt\F−→ ∞, which by (1.3) shows that i ∈ F.

To prepare for the proof of Lemma 1.5, we need a bit of theory. Let BV denote the
space of functions F : R→ R that are locally of bounded variation. For each F ∈ BV, the
right and left limits F (t+) := lims↓t F (s) and F (t−) := lims↑t F (s) exist for each t ∈ R,
and F defines a signed measure dF on R by any of the equivalent formulas

dF
(
(s, t]

)
= F (t+)− F (s+) (s < t) and dF

(
[s, t)

)
= F (t−)− F (s−) (s < t). (2.3)

For G,F ∈ BV, we let GdF denote the signed measure obtained by weighting dF with
the density G. For F ∈ BV, we define

F (t) := 1
2

(
F (t−) + F (t+)

)
(t ∈ R). (2.4)

It is well-known that a right-continuous function with left limits makes at most countably
many jumps, and hence F (t) 6= F (t) for at most countably many values of t. We will need
the following simple fact.

Lemma 2.1 (Product rule). For F,G ∈ BV, one has FG ∈ BV and d(FG) = FdG+GdF .

Proof. The statement is well-known if F and G are continuous. Therefore, since our
formula is linear in F and G and since each measure can be decomposed into an atomic
and nonatomic part, it suffices to prove the statement only when dF and dG are purely
atomic. Using again linearity and a simple limit argument, it suffices to prove the
statement only in the case that dF = δs and dG = δt for some s, t ∈ R. If s 6= t, the
statement is trivial. If s = t, then the statement follows from the observation that

F (t+)G(t+)− F (t−)G(t−) = 1
2

(
F (t+) + F (t−)

)(
G(t+)−G(t−)

)
+ 1

2

(
G(t+) +G(t−)

)(
F (t+)− F (t−)

)
.

(2.5)
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We cite the following lemma from [RST19, Lemma 38].

Lemma 2.2 (Integral formulation of RDE). A probability measure ρ on I solves the RDE
(1.17) if and only if ∫

[0,t]

ρ(ds)s = ρ
(
[0, t]

)2 (
t ∈ [0, 1]

)
. (2.6)

The following lemma is just a simple rewrite of the previous one. Below, we let
µ
∣∣
A

denote the restriction of a (signed) measure µ to a measurable set A, defined as
µ
∣∣
A

(B) := µ(A ∩B).

Lemma 2.3 (Differential formulation of RDE). Let T denote the identity function T (t) := t

(t ∈ R). Assume that F ∈ BV is right-continuous and nondecreasing and satisfies
F (t) = 0 (t < 0), F (t) = F (1) (t > 1), and

TdF = 2FdF. (2.7)

Then there exists a unique solution ρ to the RDE (1.17) such that

ρ
(
[0, t]

)
= F (t)

(
t ∈ [0, 1]

)
, (2.8)

and each solution ρ to the RDE (1.17) arises in this way.

Proof. Let ρ be a solution of the RDE (1.17) and let F : [0, 1]→ R be defined as in (2.8).
Extend F to a function in BV by setting F (t) := 0 for t < 0 and F (t) := F (1) for t > 1.
Then by Lemma 2.2,

∫
(0,t]

TdF = F (t)2 (t ∈ [0, 1]), which by Lemma 2.1 implies that F
solves (2.7).

Assume, conversely, that F ∈ BV is right-continuous and nondecreasing and satisfies
F (t) = 0 (t < 0) and (2.7). Then clearly F ≥ 0. Formula (2.7) implies that for a.e. t
w.r.t. dF , we have F (t) = 1

2 t, which by the fact that F ≥ 0 implies F (t) ≤ t. It follows
that setting ρ([0, t]) := F (t) (t ∈ [0, 1]) defines a subprobability measure on [0, 1], which
can uniquely be extended to a probability measure on [0, 1] ∪ {∞}. Lemma 2.1 implies
that

∫
(0,t]

TdF = F (t)2 (t ∈ [0, 1]), so using the fact that ρ({0}) = F (0)− F (0−) = 0 and
Lemma 2.2, we conclude that ρ solves the RDE (1.17).

Let T ∈ BV denote the identity function T (t) := t (t ∈ R). For a given closed
set Ξ ⊂ R, we will be interested in right-continuous functions F ∈ BV that solve the
differential equation

(i) TdF = 2FdF, (ii) dF
∣∣
Ξ

= dF (iii) F (t) ≥ 1
2 t (t ∈ Ξ). (2.9)

Note that condition (ii) says that the signed measure dF is concentrated on Ξ. Our first
lemma says that the distance between two solutions of (2.9) is a nonincreasing function
of time.

Lemma 2.4 (Distance between two solutions). Let Ξ ⊂ R be closed and for i = 1, 2,
let Fi ∈ BV be right-continuous solutions to the differential equation (2.9). Then∣∣F1(t)− F2(t)

∣∣ ≤ ∣∣F1(s)− F2(s)
∣∣ (s ≤ t).

Proof. We observe that by (i), we have F i(t) = 1
2 t for a.e. t w.r.t. dFi. In particular,

F i(t) = 1
2 t whenever Fi(t−) 6= Fi(t), which we can combine with condition (iii) to get

(iii)’ F i(t) ≥ 1
2 t (t ∈ Ξ).

We now use Lemma 2.1 to calculate
1
2d(F1 − F2)2 = (F 1 − F 2)(dF1 − dF2)

= F 1dF1 − F 1dF2 − F 2dF1 + F 2dF2 = ( 1
2T − F 2)dF1 + ( 1

2T − F 1)dF2,
(2.10)

where in the last step we have used (i). Using moreover (ii) and (iii)’, we see that the right-
hand side of (2.10) is nonpositive, so the claim of the lemma follows by integration.
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Let F denote the space of all right-continuous, nondecreasing functions F : R→ R

that satisfy 0 ≤ F (t) ≤ 0 ∨ t (t ∈ R). In other words, these are the distribution functions
of nonnegative measures dF on [0,∞) that satisfy dF ([0, t]) ≤ t for all t ≥ 0. We equip F
with a topology that corresponds to vague convergence of the measures dF . Then F is a
compact, metrisable space and Fn → F in the topology on F if and only if Fn(t)→ F (t)

for each continuity point t of F . Our aim is to prove that each closed set Ξ ⊂ [0,∞),
there exists a unique F ∈ F that solves (2.9). Uniqueness follows from Lemma 2.4, so it
remains to prove existence. We will use an approximation argument. We start by proving
the statement for finite Ξ.

Lemma 2.5 (Finite sets). For each finite set Ξ ⊂ (0,∞), there exists an F ∈ F that solves
(2.9).

Proof. Let Ξ = {t1, . . . , tn} with 0 =: t0 < t1 < · · · < tn. We inductively define F so that
it is constant on each of the intervals (−∞, t1), [t1, t2),. . . [tn−1, tn), and [tn,∞), satisfies
F (0) = 0, and

F (tk) := F (tk−1) ∨
(
tk − F (tk−1)

)
(1 ≤ k ≤ n). (2.11)

Note that the average of F (tk−1) and tk − F (tk−1) is 1
2 tk, so their maximum is ≥ 1

2 tk. In
view of this, F clearly satisfies (2.9) (ii) and (iii). Moreover, for each 1 ≤ k ≤ n, we have
either F (tk) = F (tk−1) or F (tk) = tk − F (tk−1). In either case,

tk
(
F (tk)− F (tk−1)

)
= 2 · 1

2

(
F (tk) + F (tk−1)

)(
F (tk)− F (tk−1)

)
, (2.12)

which shows that F satisfies (2.9) (i). It is clear that F is right-continuous, nonnegative,
and nondecreasing, and by induction (2.11) also implies that F (t) ≤ t for all t ≥ 0,
showing that F ∈ F .

Let d be any metric generating the topology on [0,∞] and let K[0,∞] denote the space
of all closed subsets of [0,∞]. For each A ∈ K[0,∞] and ε > 0, we set

Aε :=
{
t ∈ [0,∞] : d(t, A) < ε

}
where d(t, A) := inf

s∈A
d(t, s). (2.13)

We equip K[0,∞] with the Hausdorff metric

dH(A,B) := inf
{
ε > 0 : A ⊂ Bε and B ⊂ Aε

}
. (2.14)

By [SSS14, Lemma B.1], the topology generated by dH does not depend on the choice
of the metric d generating the topology on [0,∞]. The following lemma lists some
elementary properties of the space K[0,∞].

Lemma 2.6 (Properties of the Hausdorff metric). The space K[0,∞] is compact and the
set of all finite subsets of (0,∞) is dense in K[0,∞].

Proof. Since [0,∞] is homeomorphic to [0, 1], we may equivalently show that K[0, 1] is
compact and the set of all finite subsets of (0, 1) is dense in K[0, 1], where the Hausdorff
metric on K[0, 1] is defined in the same way as in (2.13)–(2.14), with d(x, y) := |x − y|
the usual metric on [0, 1]. The fact that K(E) is compact if E is compact is well-known,
see, e.g., [SSS14, Lemma B.4]. If Ξ ⊂ [0, 1] is closed, then it is easy to see that the sets
Ξn := {k/n : 1 < k < n, d(k/n,Ξ) ≤ 1/n} converge to Ξ in the Hausdorff metric. This
shows that the set of finite subsets of (0, 1) is dense in K[0, 1].

Our next lemma will allow us to construct solutions to (2.9) for general Ξ by approxi-
mation with finite Ξ.

Lemma 2.7 (Limits of solutions). Let F, Fn ∈ F and Ξn,Ξ ∈ K[0,∞] satisfy Fn → F and
Ξn → Ξ. Assume that Fn solves (2.9) relative to Ξn ∩ [0,∞) for each n. Then F solves
(2.9) relative to Ξ ∩ [0,∞).
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Proof. Recall that Fn → F means that dFn → dF vaguely, or equivalently, Fn(t)→ F (t)

for each continuity point t of F . Since T is a continuous function, the vague convergence
dFn → dF implies that also TdFn → TdF vaguely. By Lemma 2.1, 2FdF = dF 2. Now if
Fn(t)→ F (t) for each continuity point t of F , then also F 2

n(t)→ F 2(t) for each continuity
point t of F 2, so taking the value limit on the left- and right-hand sides of the equation,
we see that F solves (2.9) (i). Since Ξn → Ξ, we easily obtain that dF is concentrated
on Ξε for each ε > 0, and hence F satisfies (2.9) (ii). To see that F also satisfies (2.9)
(iii), fix t ∈ Ξ. Since Ξn → Ξ we can find tn ∈ Ξn such that tn → t. Then for each
s > t, we have Fn(s) ≥ Fn(tn) ≥ 1

2 tn for all n large enough. Taking the limit, it follows
that F (s) ≥ 1

2 t for each s ≥ t that is a continuity point of F , and hence F (t) ≥ 1
2 t by

right-continuity.

We can now prove existence of solutions to (2.9) for general Ξ.

Lemma 2.8 (Existence of solutions to the RDE). For each closed set Ξ ⊂ [0,∞), there
exists a function F ∈ F that solves (2.9).

Proof. By Lemma 2.6, for each closed Ξ ⊂ [0,∞], there exist finite Ξn ⊂ (0,∞) such that
Ξn → Ξ. By Lemma 2.5, for each n there exists an Fn ∈ F so that Fn solves (2.9) relative
to Ξn. Since F is compact, by going to a subsequence if necessary we can assume
that Fn → F for some F ∈ F . Then Lemma 2.7 tells us that F solves (2.9) relative to
Ξ ∩ [0,∞).

Before we prove Lemma 1.5, we recall the general definition of an RTP. Let T denote
the space of all finite words i = i1 · · · in (n ≥ 0) made up from the alphabet {1, . . . , d},
where d ≥ 1 is some fixed integer. All previous notation involving the binary tree
generalizes in a straightforward manner to the d-ary tree T. Let I and Ω be Polish
spaces, let γ : Ω × Id → I be a measurable function, and let (ωi)i∈T be i.i.d. Ω-valued
random variables. Let ν be a probability law on I that solves the Recursive Distributional
Equation (RDE)

X∅
d
= γ[ω∅](X1, . . . , Xd), (2.15)

where
d
= denotes equality in distribution, X∅ has law ν, and X1, . . . , Xd are copies of

X∅, independent of each other and of ω∅. A simple argument based on Kolmogorov’s
extension theorem (see [MSS20, Lemma 1.9]) tells us that the i.i.d. random variables
(ωi)i∈T can be coupled to I-valued random variables (Xi)i∈T in such a way that:

1. For each finite rooted subtree U ⊂ T, the r.v.’s (Xi)i∈∂U are i.i.d. with common law
ν and independent of (ωi)i∈U.

2. Xi = γ[ωi](Xi1, . . . , Xid) (i ∈ T).

Moreover, these conditions uniquely determine the joint law of (ωi, Xi)i∈T. We call the
latter the Recursive Tree Process (RTP) corresponding to the maps γ and solution ν of
the RDE (2.15).

Proof of Lemma 1.5. Let Ξ ⊂ (0, 1] be relatively closed and let Ξ := Ξ ∪ {0}. By Lemma
2.8, there exists a solution F ∈ F of the differential equation (2.9) relative to Ξ. Set
ρΞ([0, t]) := F (t) (t ∈ [0, 1]) and ρΞ({∞}) := 1 − F (1) (which is ≥ 0 since F (1) ≤ 1 by
the definition below (2.10) of the class F) and observe that ρΞ({0}) = 0. Then ρΞ is
a probability measure on I that satisfies conditions (ii) and (iii) of Lemma 1.5, and by
Lemma 2.3 also condition (i). Assume, conversely, that ρΞ satisfies conditions (i)–(iii) of
Lemma 1.5, and set F (t) := ρΞ([0, t]) (t ∈ [0, 1]), F (t) := 0 (t < 0), F (t) := F (1) (t > 1).
Then by Lemma 2.3, F solves the differential equation (2.9) subject to the initial condition
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F (t) := 0 (t < 0). By Lemma 2.4, these conditions uniquely determine F and hence also
ρΞ.

Assume that F solves the frozen percolation equation (1.3) for the set of possible
freezing times Ξ and that F is stationary, adapted, and respects the tree structure.
Generalising (1.13), for any ∆ ⊂ (0, 1] that is relatively closed, we set

Y ∆
i := inf

{
t ∈ ∆ : i

Tt\F−→ ∞
}

(i ∈ T). (2.16)

Then in particular, Y Ξ
i is the burning time Yi defined in (1.13). As in (1.4), we write

ωi = (τi, κi) (i ∈ T).Since F is stationary, adapted, and respects the tree structure, the
random variables (ωi, Y

Ξ
i )i∈T form an RTP corresponding to the map χ in (1.16) and

some solution ρΞ to the RDE (1.17). To complete the proof, we need to show that ρΞ also
satisfies conditions (ii) and (iii) of Lemma 1.5. Since ρΞ is the law of Y Ξ

i (i ∈ T), it clearly
satisfies condition (ii) of Lemma 1.5. To also prove (iii), we use that by Lemma 1.3, we
have F =

{
i ∈ I : Y Ξ

i1 ≤ τi
}
, which allows us to apply [RST19, Prop. 39], which tells us

that
P
[
Y

(0,1]
i ≤ t

]
= F (t) ∨

(
t− F (t)

) (
i ∈ T, t ∈ [0, 1]

)
, (2.17)

where F (t) := ρΞ

(
[0, t]

) (
t ∈ [0, 1]

)
. Since

Y Ξ
i = inf

{
t ∈ Ξ : t ≥ Y (0,1]

i

}
(i ∈ T), (2.18)

it follows that

F (t) = ρΞ

(
[0, t]

)
= P

[
Y Ξ
i ≤ t

]
= P

[
Y

(0,1]
i ≤ t

]
= F (t) ∨

(
t− F (t)

)
(t ∈ Ξ), (2.19)

where the two probabilities are equal by (2.18) and the fact that t ∈ Ξ. This proves that
ρΞ satisfies condition (iii) of Lemma 1.5.

Proof of Lemma 1.6. If ρ solves the RDE (1.17), then by Lemma 2.3, the function F ∈ BV

defined in (2.8) is right-continuous and nondecreasing with F (0) = 0 and satisfies (2.7).
Let Ξ := supp(dF ) ∩ (0, 1]. Then (2.7) implies that F (t) = 1

2 t for a.e. t w.r.t. dF . Since F
is right-continuous with left limits, this implies that F (t) = 1

2 t for all t ∈ Ξ, and hence
F (t) ≥ 1

2 t for all t ∈ Ξ. It follows that ρ satisfies conditions (i)–(iii) of Lemma 1.5 and
hence ρ = ρΞ.

The following lemma settles the existence part of Theorem 1.1.

Lemma 2.9 (Frozen points). Let Ξ ⊂ (0, 1] be closed w.r.t. the relative topology of (0, 1],
let (ωi, Yi)i∈T be the RTP corresponding to the solution ρΞ to the RDE (1.17) defined in
Lemma 1.5, and let F be defined by (1.14). Then F solves the frozen percolation equation
(1.3) for the set of possible freezing times Ξ and F is stationary, adapted, and respects
the tree structure. Moreover, the Yi are given by (1.13).

Proof. It follows from the properties of an RTP that F, defined by (1.14), is stationary,
adapted, and respects the tree structure. The inductive relation (1.15) implies that if
Yi <∞, then there exist (jk)k≥1 such that ij1 · · · jn is a legal descendant of ij1 · · · jn−1 and
Yi = Yij1···jn for all n ≥ 1. For all n ≥ 0 such that κij1···jn = 1, the fact that Yij1···jn <∞
and (1.15) moreover imply that Yij1···jn1 > τi. Therefore, we have that

i
Tt\F−→ ∞ if t = Yi <∞. (2.20)

Since Yi takes values in Ξ ∪ {∞}, it follows that

Yi ≥ inf
{
t ∈ Ξ : i

Tt\F−→ ∞
}

(i ∈ T). (2.21)
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To prove that this is actually an equality, let Y ′i denote the right-hand side of (2.21). Since
F is stationary, adapted, and respects the tree structure, as pointed out in Section 1.3,
the random variables (ωi, Y

′
i )i∈T form an RTP corresponding to the map χ in (1.16) and

some solution ρ to the RDE (1.17). By Lemma 1.5, ρ = ρΞ, so Y ′i and Yi are equal in law,
which by (2.21) implies that they are a.s. equal. This proves that the Yi are given by
(1.13). By assumption, F is defined by (1.14). Inserting (1.13) into (1.14), we see that F
solves the frozen percolation equation (1.3).

Proof of Theorem 1.1. Lemma 2.9 proves existence of a solution F of the frozen percola-
tion equation (1.3) for the set of possible freezing times Ξ that is stationary, adapted,
and respects the tree structure. It remains to prove uniqueness in law. Set ωi := (τi, κi)

(i ∈ T) and let Ω = (ωi)i∈T. Let Yi (i ∈ T) be the burning times defined in (1.13). Since F
is stationary, adapted, and respects the tree structure, as pointed out in Section 1.3, the
random variables (ωi, Yi)i∈T form an RTP corresponding to the map χ in (1.16) and some
solution ρ to the RDE (1.17). By Lemma 1.5, ρ = ρΞ, and hence by [MSS20, Lemma 1.9]
the law of (ωi, Yi)i∈T is uniquely determined. By Lemma 1.3, this implies that the joint
law of (Ω,F) is also uniquely determined.

2.2 Scale invariance

In this subsection, we prove Lemmas 1.11, 1.12, and 1.13 about invariance of solutions
of the (bivariate) RDE under the scaling maps Γt and Γ

(2)
t . We will generalise a bit and

define scaling maps Γ
(n)
t for any 1 ≤ n ≤ ∞, where the case n =∞ will play an important

role in the proof of Lemma 1.13.
Recall the definition of the scaling maps ψt : I → I (t > 0) in (1.25). For t > 0, we

define a cut-off map ct : I → I by

ct(y) :=

{
y if y ≤ t,

∞ otherwise.
(2.22)

Note that ct is the identity map when t ≥ 1. It is easy to check that

ψ1/t ◦ ψt = ct (t > 0). (2.23)

For 1 ≤ n < ∞, we write [n] := {1, . . . , n} and we set [∞] := N+. We denote a generic

element of In by ~y = (yk)k∈[n] and we define ψ
(n)
t : In → In and c

(n)
t : In → In in a

coordinatewise way by ψ(n)
t (~y) :=

(
ψt(y

k)
)
k∈[n]

and c(n)
t (~y) :=

(
ct(y

k)
)
k∈[n]

.
We say that a probability measure on In is symmetric if it is invariant under a permu-

tation of the coordinates. Generalising the definitions ofM(1) andM(2) in Subsection 1.5,
for any 0 < t ≤ 1 and 1 ≤ n ≤ ∞, we letM(n) denote the space of symmetric probability
measures ρ(n) on In such that

ρ(n)
(
Jn[t]

)
≤ t (0 < t ≤ 1) with Jn[t] :=

{
~y ∈ In : ∃k ∈ [n] s.t. yk ≤ t

}
. (2.24)

Note that Jn[1] = In\{ ~∞}, where ~∞ denotes the element ~y ∈ In with yk := ∞ for all

k ∈ [n]. Generalising the definitions of Γ
(1)
t and Γ

(2)
t in Subsection 1.5, for each 1 ≤ n ≤ ∞

and t > 0, we define

Γ
(n)
t ρ(n) := t−1ρ(n) ◦ (ψ

(n)
t )−1 + (1− t−1)δ ~∞

(
ρ(n) ∈M(n)). (2.25)

We also define cut-off maps C(n)
t by

C
(n)
t ρ(n) := ρ(n) ◦ (c

(n)
t )−1

(
ρ(n) ∈M(n)) (2.26)
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and in particular set Ct := C
(1)
t . Finally, for all 1 ≤ n ≤ ∞, we define a map T (n) acting

on probability measures on In by

T (n)ρ(n) := the law of
(
χ[ω](Y k1 , Y

k
2 )
)
k∈[n]

, (2.27)

where (Y k1 )k∈[n] and (Y k2 )k∈[n] are independent random variables with law ρ(n), and ω is
an independent random variable that is uniformly distributed on [0, 1]× {1, 2}. We call
the equation

T (n)ρ(n) = ρ(n) (2.28)

the n-variate RDE. In particular, for n = 1 this is the RDE (1.17) and for n = 2 this is
bivariate RDE (1.23). The following lemma, which will be proved below, shows that all
these maps are well-defined on the spaceM(n).

Lemma 2.10 (Maps are well-defined). For each 1 ≤ n ≤ ∞ and t > 0, the maps Γ
(n)
t ,

C
(n)
t , and T (n) map the spaceM(n) into itself.

The following lemma says that as long as we are interested in symmetric solutions of
the n-variate RDE (2.28), it suffices to look for solutions in the spaceM(n).

Lemma 2.11 (Solutions to the RDE are scalable). If a symmetric probability measure
ρ(n) on In solves the n-variate RDE (2.28), then ρ(n) ∈M(n).

The following lemma is the central result of this subsection.

Lemma 2.12 (Commutation relation). For each 1 ≤ n ≤ ∞, one has

Γ
(n)
t T (n)ρ(n) = tT (n)Γ

(n)
t ρ(n) + (1− t)Γ(n)

t ρ(n) (t > 0, ρ(n) ∈M(n)). (2.29)

We first show how Lemmas 2.10–2.12 imply Lemmas 1.11 and 1.12, and then prove
Lemmas 2.10–2.12. We start by proving a more general statement.

Lemma 2.13 (Scale invariance of n-variate RDE). Let 1 ≤ n ≤ ∞ and let ρ(n) be a
symmetric solution to the n-variate RDE (2.28). Then ρ(n) ∈ M(n), and for each t > 0,
the measure Γ

(n)
t ρ(n) is also a solution to (2.28).

Proof. Let 1 ≤ n ≤ ∞ and let ρ(n) be a symmetric solution to the n-variate RDE (2.28).
Then ρ(n) ∈ M(n) by Lemma 2.11. Moreover, for each t > 0, Lemma 2.12 and the fact
that T (n)ρ(n) = ρ(n) imply that

Γ
(n)
t ρ(n) = tT (n)Γ

(n)
t ρ(n) + (1− t)Γ(n)

t ρ(n) (2.30)

which shows that T (n)Γ
(n)
t ρ(n) = Γ

(n)
t ρ(n), i.e., the measure Γ

(n)
t ρ(n) solves the n-variate

RDE (2.28).

Proof of Lemmas 1.11 and 1.12. Most of the statements of Lemmas 1.11 and 1.12 follow
by specialising Lemma 2.13 to the cases n = 1 and n = 2, respectively. Apart from this,
we only need to prove (1.27). Let Ξ ⊂ (0, 1] be relatively closed and let Ξ′ be as in (1.27).
Then ΓtρΞ solves the RDE (1.17) by Lemma 2.13. Using the definition of Γt, it is easy to
see that the fact that ρΞ has properties (ii) and (iii) of Lemma 1.5 implies that ΓtρΞ has
these same properties with Ξ replaced by Ξ′, i.e., ΓtρΞ is concentrated on Ξ′ ∪ {∞}, and
ΓtρΞ

(
[0, t′]

)
≥ 1

2 t
′ for all t′ ∈ Ξ′. Now Lemma 1.5 allows us to identify ΓtρΞ as ρΞ′ .

We now provide the proofs of Lemmas 2.10–2.12.

Proof of Lemma 2.10 (partially). Let ρ(n) ∈ M(n). It is clear that the right-hand side of
(2.25) defines a signed measure that is symmetric with respect to a permutation of the
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coordinates and that satisfies Γ
(n)
t ρ(n)(In) = 1. We observe that by (1.25),

(ψ
(n)
t )−1(Jn[s]) =

{
~y ∈ In : ∃k ∈ [n] s.t. ψt(y

k) ≤ s
}

=
{
~y ∈ In : ∃k ∈ [n] s.t. yk ≤ t and t−1yk ≤ s

}
=
{
~y ∈ In : ∃k ∈ [n] s.t. yk ≤ st ∧ t

}
,

(2.31)
and hence

Γ
(n)
t ρ(n)(Jn[s]) = t−1ρ(n) ◦ (ψ

(n)
t )−1(Jn[s]) = t−1ρ(n)(Jn[st ∧ t]) ≤ t−1(st ∧ t) ≤ s. (2.32)

for each t > 0 and 0 < s ≤ 1. Applying this with s = 1 and using the fact that
In = Jn[1] ∪ { ~∞} we see that Γ

(n)
t ρ(n) is a probability measure. More generally, (2.32)

shows that Γ
(n)
t maps the spaceM(n) into itself.

It is clear that C(n)
t ρ(n), defined in (2.26), is a (symmetric) probability measure on In

whenever ρ(n) is. If moreover ρ(n) ∈M(n), then

C
(n)
t ρ(n)(Jn[s]) = ρ(n) ◦ (c

(n)
t )−1(Jn[s]) = ρ(n)(Jn[s ∧ t]) ≤ s (2.33)

for each t > 0 and 0 < s ≤ 1, which shows that C(n)
t maps the spaceM(n) into itself.

This proves the claims for Γ
(n)
t and C(n)

t . We postpone the proof of claim for T (n) until
the proof of Lemma 2.12, where it will follow as a side result of the main argument.

The proof of Lemma 2.11 uses the following simple lemma, which we cite from
[RST19, Lemma 8].

Lemma 2.14 (Percolation probability). One has P
[
∅ Tt−→∞

]
= t (0 ≤ t ≤ 1).

Proof of Lemma 2.11. We will prove the following, somewhat stronger statement. Let
1 ≤ n ≤ ∞ and let ρ(n) be a solution to the n-variate RDE (2.28). Then we will show that
ρ(n) satisfies (2.24). In particular, if ρ(n) is symmetric, this implies that ρ(n) ∈M(n).

Let ρ(n) be a solution to the n-variate RDE (2.28) and for k ∈ [n], let ρk denote the n-th
marginal of ρ(n). It is clear from (2.28) that ρk solves the RDE (1.17), so by Lemma 1.6,
for each k ∈ [n], there exists a relatively closed set Ξk ⊂ (0, 1] such that ρk = ρΞk . Since
ρ(n) solves the n-variate RDE (2.28), by [MSS20, Lemma 1.9], we can construct an
n-variate RTP (

ωi, ~Yi
)
i∈T (2.34)

where ~Yi = (Y ki )k∈[n] are In-valued random variables such that ~Yi is inductively given

in terms of ~Yi1 and ~Yi2 as in (2.28). In particular, for each k ∈ [n], (ωi, Y
k
i )i∈T is an RTP

corresponding to ρk = ρΞk . Let

Fk =
{
i ∈ I : Y ki1 ≤ τi

}
(k ∈ [n]). (2.35)

Then Lemma 2.9 tells us that

Y ki := inf
{
t ∈ Ξ : i

Tt\Fk−→ ∞
}

(i ∈ T, k ∈ [n]), (2.36)

with the convention that inf ∅ :=∞. Using Lemma 2.14, we can now estimate

P
[

inf
k∈[n]

Y k∅ ≤ t
]
≤ P

[
∅ Tt−→∞

]
= t (0 < t ≤ 1), (2.37)

which proves that ρ(n) satisfies (2.24).
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Proof of Lemma 2.12. We will first prove (2.29) for 0 < t ≤ 1, and on the way also
establish that T (n) mapsM(n) into itself, which is the missing part of Lemma 2.10 that
still remains to be proved. Fix 1 ≤ n ≤ ∞, 0 < t ≤ 1, and ρ(n) ∈M(n). Let ~Y = (Y k)k∈[n]

be a random variable with law ρ(n). It follows from (2.24) that we can couple ~Y to a
Bernoulli random variable B such that P[B = 1] = t and P[B = 1 | infk∈[n] Y

k ≤ t] = 1.
More formally, there exists a probability measure µ on In × {0, 1} whose first marginal is
ρ(n), whose second marginal is the Bernoulli distribution with parameter t, and that is
concentrated on {(~y, b) : b = 1 if infk∈[n] yk ≤ t}. Such a measure µ is not unique, but we

fix one from now on. Let (~Y1, B1) and (~Y2, B2) be independent random variables with law
µ. Then

(i) P
[
Bi = 1

∣∣ inf
k∈[n]

Y ki ≤ t
]

= 1, (ii) P[Bi = 1] = t. (i = 1, 2). (2.38)

Let ω = (τ, κ) be an independent random variable that is uniformly distributed on
[0, 1]× {1, 2}. We define

(i) ~Y∅ :=
(
χ[ω](Y k1 , Y

k
2 )
)
k∈[n]

,

(ii) B∅ := 1{κ=1}1{τ≤t}B1 + 1{κ=2}(B1 ∨B2).
(2.39)

The second definition is motivated by the heuristic idea that if Bi is the event that the
subtree rooted at i percolates at time t (neglecting the freezing), then B∅ is the event
that the whole tree percolates at time t. We claim that

(i) P
[
B∅ = 1

∣∣ inf
k∈[n]

Y k∅ ≤ t
]

= 1, (ii) P[B∅ = 1] = t. (2.40)

Indeed, if Y k∅ ≤ t for some k, then by the definition of χ in (1.16), a.s. either κ = 1 and
τ < Y k1 ≤ t, or κ = 2 and Y k1 ∧ Y k2 ≤ t. In either case, it follows that B∅ = 1, proving
part (i) of (2.40). Part (ii) follows by writing

P[B∅ = 1] = 1
2 tP[B1 = 1] + 1

2P[B1 ∨B2 = 1] = 1
2 t

2 + 1
2 [1− (1− t)2] = t. (2.41)

We next claim that for each measurable subset A ⊂ In,

(i) T (n)ρ(n)(A) =P
[
~Y∅ ∈ A

]
,

(ii) Γ
(n)
t ρ(n)(A) =P

[
ψ

(n)
t (~Yi) ∈ A

∣∣Bi = 1
]

(i = 1, 2),

(iii) Γ
(n)
t T (n)ρ(n)(A) =P

[
ψ

(n)
t (~Y∅) ∈ A

∣∣B∅ = 1
]
.

(2.42)

Part (i) of (2.42) is immediate from (2.39) (i). Since both sides of the equation are prob-
ability measures, it suffices to prove part (ii) for A ⊂ In\{ ~∞}. Then ψ

(n)
t (~Yi) ∈ A

implies infk∈[n] Y
k
i ≤ t which by (2.38) (i) in turn implies Bi = 1. It follows that

P[ψ
(n)
t (~Yi) ∈ A] = P[ψ

(n)
t (~Yi) ∈ A, Bi = 1] = tP[ψ

(n)
t (~Yi) ∈ A |Bi = 1] (i = 1, 2). Compar-

ing with the definition of Γ
(n)
t in (2.25), we see that part (ii) holds. Formulas (2.42) (i)

and (2.40) imply that

T (n)ρ(n)(Jn[t]) = P
[

inf
k∈[n]

Y k∅ ≤ t
]
≤ P

[
B∅ = 1

]
= t. (2.43)

Since this holds for general 0 < t ≤ 1, and since T (n) also clearly preserves the symmetry
of ρ(n), we conclude that T (n) maps the spaceM(n) into itself. In particular, this shows
that Γ

(n)
t T (n)ρ(n) is well-defined. Using (2.40), part (iii) of (2.42) now follows by the same

argument as part (ii), but applied to ~Y∅ which by part (i) has law T (n)ρ(n). We next prove
(2.29) for 0 < t ≤ 1. We set

B◦ := 1{κ=1}1{τ≤t}B1 + 1{κ=2}(B1 ∧B2). (2.44)
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We claim that for each measurable subset A ⊂ In,

(i) P
[
B◦ = 1

]
= t2, (ii) T (n)Γ

(n)
t ρ(n)(A) = P

[
ψ

(n)
t (~Y∅) ∈ A

∣∣B◦ = 1
]
. (2.45)

Part (i) is a consequence of the independence of τ, κ,B1 and B2 which yields P[B◦ = 1] =
1
2 · t · t+ 1

2 · t · t. To prove part (ii), we introduce the function

Φ[s](y) :=

{
y if s < y,

∞ if y ≤ s,
(
s ∈ [0, 1], y ∈ I

)
, (2.46)

with the help of which we can write the function χ from (1.16) as

χ[τ, κ](y1, y2) :=

{
Φ[τ ](y1) if κ = 1,

y1 ∧ y2 if κ = 2.
(2.47)

We define Φ(n)[s](~y) and ~y1 ∧ ~y2 in a componentwise way, i.e., Φ(n)[s](~y) := (Φ[s](yk))k∈[n]

and ~y1 ∧ ~y2 := (yk1 ∧ yk2 )k∈[n]. Using the facts that

(i) ψt(Φ[s](y)) = Φ[t−1s](ψt(y)) (s ≤ t),

(ii) ψt(y1 ∧ y2) = ψt(y1) ∧ ψt(y2),
(2.48)

we can write

P
[
ψ

(n)
t (~Y∅) ∈ A

∣∣B◦ = 1
]

= P
[
κ = 1, ψ

(n)
t (Φ(n)[τ ](~Y1)) ∈ A

∣∣B◦ = 1
]

+ P
[
κ = 2, ψ

(n)
t (~Y1 ∧ ~Y2) ∈ A

∣∣B◦ = 1
]

= 1
2P
[
Φ(n)[t−1τ ](ψ

(n)
t (~Y1)) ∈ A

∣∣ τ ≤ t, B1 = 1
]

+ 1
2P
[
(ψ

(n)
t (~Y1) ∧ ψ(n)

t (~Y2)) ∈ A
∣∣B1 = 1 = B2

]
.

(2.49)
Using (2.42) (ii) and the fact that conditional on τ ≤ t, the random variable t−1τ is
uniformly distributed on [0, 1], we can rewrite this as

1
2P
[
Φ[τ̃ ](~Z1) ∈ A

]
+ 1

2P
[
(~Z1 ∧ ~Z2) ∈ A

]
, (2.50)

where ~Z1, ~Z2 are independent with law Γ
(n)
t (ρ(n)) and τ̃ is an independent random

variable that is uniformly distributed on [0, 1]. In view of (2.47) and the definition of T (n)

in (2.27), we arrive at (2.45) (ii).
Formulas (2.40) (ii), (2.42) (iii), and (2.45) give, for any measurable subset A ⊂ In,

tΓ
(n)
t T (n)ρ(n)(A) =P

[
ψ

(n)
t (~Y∅) ∈ A, B∅ = 1

]
,

t2T (n)Γ
(n)
t ρ(n)(A) =P

[
ψ

(n)
t (~Y∅) ∈ A, B◦ = 1

]
.

(2.51)

We observe that the event {B◦ = 1} is contained in the event {B∅ = 1} and the difference
of these events is the event that κ = 2 and precisely one of the random variables B1

and B2 is one. On the event that κ = 2 by (2.48) (ii) we have ψ(n)
t (~Y∅) = ψ

(n)
t (~Y1 ∧ ~Y2) =

ψ
(n)
t (~Y1)∧ψ(n)

t (~Y2). Moreover on the event thatBi = 0, by (2.38) (i) we have infk∈[n] Y
k
i > t

and hence ψ(n)
t (~Yi) = ~∞. In view of this, for any measurable subset A ⊂ In,

tΓ
(n)
t T (n)ρ(n)(A)− t2T (n)Γ

(n)
t ρ(n)(A)

= P
[
ψ

(n)
t (~Y1) ∈ A, κ = 2, B1 = 1, B2 = 0

]
+ P

[
ψ

(n)
t (~Y2) ∈ A, κ = 2, B1 = 0, B2 = 1

]
= 1

2 t(1− t)P
[
ψ

(n)
t (~Y1) ∈ A

∣∣B1 = 1
]

+ 1
2 t(1− t)P

[
ψ

(n)
t (~Y2) ∈ A

∣∣B2 = 1
]

= t(1− t)Γ(n)
t ρ(n)(A),

(2.52)
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where in the last step we have used (2.42) (ii). Dividing by t, we see that (2.29) holds for
0 < t ≤ 1.

To derive (2.29) also for t ≥ 1, replacing t by 1/t, we may equivalently show that

Γ
(n)
1/tT

(n)ρ(n) = t−1T (n)Γ
(n)
1/tρ

(n) + (1− t−1)Γ
(n)
1/tρ

(n) (0 < t ≤ 1, ρ(n) ∈M(n)). (2.53)

For 0 < t ≤ 1, we set

M(n)[t] :=
{
ρ(n) ∈M(n) : ρ(n) is concentrated on Int

}
with It := [0, t] ∪ {∞}. (2.54)

We observe that ψt : It → I is a bijection and ψ1/t is its inverse. As a result, Γ
(n)
t :

M(n)[t]→M(n) is a bijection and Γ
(n)
1/t is its inverse. Using this and applying (2.29) for

0 < t ≤ 1 to the measure Γ
(n)
1/tρ

(n), we conclude that

Γ
(n)
t T (n)Γ

(n)
1/tρ

(n) = tT (n)Γ
(n)
t Γ

(n)
1/tρ

(n) + (1− t)Γ(n)
t Γ

(n)
1/tρ

(n)

= tT (n)ρ(n) + (1− t)ρ(n).
(2.55)

By our earlier remarks, we have Γ
(n)
1/tρ

(n) ∈ M(n)[t], which is easily seen to imply that

also T (n)Γ
(n)
1/tρ

(n) ∈ M(n)[t]. Using this, we can apply Γ
(n)
1/t from the left to (2.55) and

multiply by t−1 to obtain

t−1T (n)Γ
(n)
1/tρ

(n) = Γ
(n)
1/tT

(n)ρ(n) + (t−1 − 1)Γ
(n)
1/tρ

(n), (2.56)

which proves (2.53).

The rest of this subsection is devoted to the proof of Lemma 1.13. The maps Γ
(∞)
t ,

C
(∞)
t , and T (∞) will play an important role in the proof. Symmetric probability measures

on I∞ are also known as exchangeable probability measures. We will use De Finetti’s
theorem to associate the spaceM(∞) with a subspaceM∗ of the space of all probability
measures on the space of probability measures on I. The spaceM∗ is naturally equipped
with a special kind of stochastic order, called the convex order, and we will use a
characterisation, proved in [MSS18], of the measures ρ(2)

Ξ and ρ(2)
Ξ from (1.24) in terms

of the convex order.
We now give the precise definitions. We let P(In) denote the space of all probability

measures on In and denote the subspace of symmetric probability measures by Psym(In).
We equip P(I) with the topology of weak convergence and the associated Borel-σ-field
and let P(P(I)) denote the space of all probability measures on P(I). Each ν ∈ P(P(I))

is the law of a P(I)-valued random variable, i.e., we can construct a random probability
measure ξ on I such that ν = P[ξ ∈ · ] is the law of ξ. By definition, for 1 ≤ n ≤ ∞,

ν(n) := E
[
ξ ⊗ · · · ⊗ ξ︸ ︷︷ ︸

n times

]
(2.57)

is called the n-th moment measure of ν. Here ξ ⊗ · · · ⊗ ξ denotes the product measure
of n identical copies of ξ and the expectation of a random measure µ on a Polish space
Ω is the deterministic measure E[µ] defined by

∫
Ω
φdE[µ] := E

[ ∫
Ω
φdµ

]
for all bounded

measurable φ : Ω → R. Let ξ be a P(I)-valued random variable with law ν, and
conditional on ξ, let (Y k)k∈[n] be i.i.d. with law ξ. Then it is easy to see (compare [MSS18,
formula (4.1)]) that the unconditional law of (Y k)k∈[n] is given by ν(n), i.e.,

ν(n) = P
[
(Y k)k∈[n] ∈ ·

]
where P

[
(Y k)k∈[n] ∈ ·

∣∣ ξ] = ξ ⊗ · · · ⊗ ξ︸ ︷︷ ︸
n times

. (2.58)
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We observe that ν(n) ∈ Psym(In) for all ν ∈ P(P(I)) and 1 ≤ n ≤ ∞. In fact, by De
Finetti’s theorem, the map ν 7→ ν(∞) is a bijection from P(P(I)) to Psym(I∞). This allows
us to identify the spaceM(∞) with a subspace of P(P(I)). We set (compare (2.24))

M∗ :=
{
ν ∈ P(P(I)) : ν(J∗[t]) ≤ t ∀0 < t ≤ 1

}
with J∗[t] :=

{
ξ ∈ P(I) : ξ([0, t]) > 0

}
(0 < t ≤ 1).

(2.59)

Note that J∗[1] = P(I)\{δ∞}, where δ∞ denotes the delta-measure at∞. The following
lemma identifiesM(∞) withM∗.
Lemma 2.15 (Probability measures on probability measures). The map ν 7→ ν(∞) is a
bijection fromM∗ toM(∞).

In order to expose the main line of the argument, we postpone the proof of this
and some of the following lemmas till later. It follows immediately from Lemmas 2.10
and 2.15 that there exist unique maps Γ∗t , C

∗
t , and T ∗, mapping the spaceM∗ into itself,

such that

(Γ∗t ν)(∞) = Γ
(∞)
t ν(∞), (C∗t ν)(∞) = C

(∞)
t ν(∞), and (T ∗ν)(∞) = T (∞)ν(∞) (2.60)

for any t > 0 and ν ∈M∗. The equation T ∗ν = ν has been called the higher-level RDE in
[MSS18] and we will refer to Γ∗t , C

∗
t , and T ∗ as higher-level maps. The following lemma

gives a more explicit description of Γ∗t and C∗t .

Lemma 2.16 (Higher-level scaling and cut-off maps). Let ν ∈ M∗ and let ξ be a P(I)-
valued random variable with law ν. Then for each t > 0, the maps Γ∗t and C∗t defined in
(2.60) are given by

(i) Γ∗t ν= t−1P
[
ξ ◦ ψ−1

t ∈ ·
]

+ (1− t−1)δδ∞ ,

(ii) C∗t ν=P
[
ξ ◦ c−1

t ∈ ·
]
,

(2.61)

where δδ∞ ∈ P(P(I)) denotes the delta measure at the point δ∞ ∈ P(I).

The following lemma, which we cite from [MSS18, Lemma 2], identifies the map
T ∗ more explicitly. Recall the definition of the map χ[ω] : I2 → I in (1.16). In line
with earlier notation, in (2.62) below, ξ1 ⊗ ξ2 ◦ χ[ω]−1 denotes the image of the random
measure ξ1 ⊗ ξ2 under the random map χ[ω].

Lemma 2.17 (Higher-level RDE map). Let ν ∈M∗, let ξ1, ξ2 be independent P(I)-valued
random variables with law ν, and let ω be an independent random variable that is
uniformly distributed on [0, 1]× {1, 2}. Then the map T ∗ defined in (2.60) is given by

T ∗(ν) = P
[
ξ1 ⊗ ξ2 ◦ χ[ω]−1 ∈ ·

]
. (2.62)

We equip the space P(P(I)) with the convex order, which we denote by ≤cv. Two
measures ν1, ν2 ∈ P(P(I)) satisfy ν1 ≤cv ν2 if and only if the following two equivalent
conditions are satisfied, see [MSS18, Thm 13]:

1.
∫
φ dν1 ≤

∫
φdν2 for all convex continuous functions φ : P(I)→ R.

2. There exists an I-valued random variable Y defined on a probability space (Ω,F ,P)

and σ-fields F1 ⊂ F2 ⊂ F such that νi = P
[
P[Y ∈ · |Fi] ∈ ·

]
(i = 1, 2).

The convex order is a partial order, in particular, ν1 ≤cv ν2 ≤cv ν1 implies ν1 = ν2, see
[MSS18, Lemma 15]. The following lemma says that the scaling maps Γ∗t preserve the
convex order.

Lemma 2.18 (Monotonicity with respect to the convex order). Let t > 0 and let Γ∗t be
defined in (2.60). Then ν1, ν2 ∈M∗ and ν1 ≤cv ν2 imply Γ∗t ν1 ≤cv Γ∗t ν2.
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Let (ωi, Yi)i∈T be an RTP corresponding to a solution ρ to the RDE (1.17) and let
Ω := (ωi)i∈T. We define ρ, ρ ∈ P(P(I)) by

ρ := P
[
P[Y∅ ∈ · |Ω] ∈ ·

]
and ρ := P

[
δY∅ ∈ ·

]
. (2.63)

We observe that the second moment measures of ρ and ρ are given by

ρ(2) = P
[
(Y∅, Y

′
∅) ∈ ·

]
and ρ(2) = P

[
(Y∅, Y∅) ∈ ·

]
, (2.64)

where (Y ′i )i∈T is conditionally independent of (Yi)i∈T given Ω and conditionally equally
distributed with (Yi)i∈T. In particular, if ρ = ρΞ, then ρ(2) and ρ(2) are the measures
defined in (1.24). The following proposition, which we cite from [MSS18, Props 3 and
4], says that ρ and ρ are the minimal and maximal solutions, with respect to the convex
order, of the higher-level RDE T ∗(ν) = ν.

Proposition 2.19 (Minimal and maximal solutions). Let ρ be a solution to the RDE (1.17).
Then the set

Sρ :=
{
ν ∈ P(P(I)) : T ∗(ν) = ν, ν(1) = ρ

}
(2.65)

has a unique minimal element ρ and maximal element ρ with respect to the convex order,
and these are the measures defined in (2.63).

We will derive Lemma 1.13 from the following, stronger statement. We will first
give the proofs of Lemmas 2.20 and 1.13 and then provide the proofs of the remaining
lemmas.

Lemma 2.20 (Scaling of minimal and maximal solutions). Let ρ be a solution to the RDE
(1.17) and let t > 0. Then

(i) C∗t ρ = Ctρ, (ii) C∗t ρ = Ctρ, (iii) Γ∗t ρ = Γtρ, (iv) Γ∗t ρ = Γtρ. (2.66)

Proof. We first prove (2.66) (i) and (ii). Recall from (2.26) that Ctρ := ρ ◦ c−1
t where ct is

the cut-off map defined in (2.22). Let (ωi, Yi)i∈T be the RTP corresponding to ρ. Then it
is easy to see that (ωi, ct(Yi))i∈T is the RTP corresponding to Ctρ. Applying the definition
in (2.63), it follows that

Ctρ = P
[
P[ct(Y∅) ∈ · |Ω] ∈ ·

]
= P

[
P[Y∅ ∈ · |Ω] ◦ c−1

t ∈ ·
]

= C∗t ρ, (2.67)

where in the last equlity we have used Lemma 2.16. This proves (2.66) (i). The proof of
(2.66) (ii) is similar, using the fact that δct(Y∅) = δY∅ ◦ c−1

t .
We next prove (2.66) (iii) and (iv). We start by observing that (2.60) implies that

(Γ∗t ν)(1) = Γtν
(1) (ν ∈M∗, t > 0). (2.68)

We moreover claim that

Γ∗1/t ◦ Γ∗t ν = C∗t ν (ν ∈M∗, t > 0). (2.69)

To see this, define ψ∗t : P(I) → P(I) by ψ∗t (ξ) := ξ ◦ ψ−1
t . Then (2.61) (i) says that

Γ∗t ν = t−1ν ◦ (ψ∗t )−1 + (1− t−1)δδ∞ . A simple calculation using the fact that ψ∗t (δ∞) = δ∞
then gives

Γ∗sΓ
∗
t ν = (st)−1ν ◦ (ψ∗t )−1 ◦ (ψ∗s )−1 + (1− (st)−1)δδ∞ (s, t > 0). (2.70)

Applying this with s = 1/t, using (2.23), and (2.61) (ii), it follows that if ξ is a P(I)-valued
random variable with law ν, then

Γ∗1/t ◦ Γ∗t ν = P
[
ξ ◦ ψ−1

t ◦ ψ−1
1/t ∈ ·

]
= P

[
ξ ◦ c−1

t ∈ ·
]

= C∗t ν, (2.71)
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which proves (2.69). Let ρ be a solution to the RDE (1.17), let 0 < t ≤ 1, and let ρ′ := Γ1/tρ.
Then, by Lemma 1.11, ρ′ also solves the RDE (1.17). Moreover, ρ′ is concentrated on
[0, t] ∪ {∞} and hence in view of (2.23) Γtρ

′ = ρ. Let us write

M∗ρ :=
{
ν ∈M∗ : ν(1) = ρ

}
(2.72)

and let M∗ρ′ be defined similarly with ρ replaced by ρ′. Since t ≤ 1, the cut-off map
c1/t and hence also C∗1/t are the identity maps and hence it follows from (2.69) with 1/t

instead of t and from (2.68) that

Γ∗1/t is a bijection fromM∗ρ toM∗ρ′ and that Γ∗t is its inverse. (2.73)

It follows from Lemma 2.11 and our identification ofM(∞) withM∗ in Lemma 2.15
and (2.60) that the sets Sρ and Sρ′ defined in (2.65) are subsets ofM∗ρ andM∗ρ′ , respec-
tively. Using moreover Lemma 2.13, we see that Γ∗1/t maps Sρ into Sρ′ and that Γ∗t maps
Sρ′ into Sρ. By (2.73), we conclude that Γ∗1/t is a bijection from Sρ to Sρ′ . By Lemma 2.18,
the map Γ∗1/t is monotone with respect to the convex order. By Proposition 2.19, the set
Sρ has unique minimal and maximal elements with respect to the convex order, which are
ρ and ρ. Likewise, ρ′ and ρ′ are the unique minimal and maximal elements of Sρ′ . Since
Γ∗1/t is a monotone bijection from Sρ to Sρ′ , it must map ρ and ρ to ρ′ and ρ′, respectively.
Recalling that ρ′ = Γ1/tρ, this shows that

Γ∗1/tρ = Γ1/tρ, Γ∗1/tρ = Γ1/tρ, (2.74)

which proves (2.66) (iii) and (iv) in the special case that t ≥ 1.
To prove (2.66) (iii) for 0 < t ≤ 1, let ρ′′ be a solution to the RDE (1.17), let ρ := Γtρ

′′,
and as before let ρ′ = Γ1/tρ. Then, by (2.23), ρ′ = Γ1/t ◦ Γtρ

′′ = Ctρ
′′. Our previous

arguments show that Γ∗1/t maps ρ into ρ′ and hence the inverse map Γ∗t maps ρ′ into ρ,
i.e.,

Γ∗t ρ
′ = ρ. (2.75)

Formulas (2.69) and (2.66) (i) tell us that

Γ∗1/t ◦ Γ∗t ρ
′′ = C∗t ρ

′′ = Ctρ
′′ = ρ′. (2.76)

Applying Γ∗t from the left, using (2.73) and (2.75), we obtain that

Γ∗t ρ
′′ = Γ∗t ρ

′ = ρ. (2.77)

Since ρ = Γtρ
′′, this proves (2.66) (iii) for 0 < t ≤ 1. The proof of (2.66) (iv) for 0 < t ≤ 1

goes exactly in the same way.

Proof of Lemma 1.13. It follows from Lemma 2.20 and (2.60) that Γ
(2)
t ρ

(2)
Ξ = ΓtρΞ

(2) and

Γ
(2)
t ρ

(2)
Ξ = ΓtρΞ

(2)
, where ΓtρΞ = ρΞ′ by Lemma 1.11.

We cited Lemma 2.17 and Proposition 2.19 from [MSS18], so to complete the proofs
of this subsection, it only remains to provide the proofs of Lemmas 2.15, 2.16, and 2.18.

Proof of Lemma 2.15. By De Finetti’s theorem, the map ν 7→ ν(∞) is a bijection from
P(P(I)) to Psym(I∞), so it suffices to show that for ν ∈ P(P(I)), one has ν ∈M∗ if and
only if ν(∞) ∈M(∞). Let ξ be a P(I)-valued random variable with law ν and conditional
on ξ, let (Y k)k∈N+ be i.i.d. with law ξ. Then the unconditional law of (Y k)k∈N+ is ν(∞).
By the definition in (2.59), ν ∈M∗ if and only if P[ξ([0, t]) > 0] ≤ t for all 0 < t ≤ 1. The
event {ξ([0, t]) > 0} is a.s. equal to the event {∃k ∈ N+ s.t. Y k ≤ t}, so comparing with
the definition in (2.24) we see that ν ∈M∗ if and only if ν(∞) ∈M(∞).
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Proof of Lemma 2.16. We need to show that Γ∗t and C∗t defined as in (2.61) satisfy (2.60).
Conditional on ξ, let (Y k)k∈N+

be i.i.d. with law ξ. Then the unconditional law of (Y k)k∈N+

is ν(∞) and by (2.26) C(∞)
t ν(∞) is the (unconditional) law of (ct(Y

k))k∈N+
, which is the

same as (C∗t ν)(∞). The claim for Γ∗t follows in the same way, using (2.25) and the fact

that δ(∞)
δ∞

= δ ~∞.

Proof of Lemma 2.18. Assume that ν1, ν2 ∈M∗ satisfy ν1 ≤cv ν2. By characterisation (ii)
of the convex order, we can find a random variable Y and σ-fields F1 ⊂ F2 such that
νi = P

[
P[Y ∈ · |Fi] ∈ ·

]
(i = 1, 2). Then, by (2.61) (i),

Γ∗t νi = t−1ν̃i + (1− t−1)δδ∞ with ν̃i := P
[
P[ψt(Y ) ∈ · |Fi] ∈ ·

]
(i = 1, 2). (2.78)

Since F1 ⊂ F2, by characterisation (ii) of the convex order, we see that ν̃1 ≤cv ν̃2. Using
characterisation (i) of the convex order, it follows that Γ∗t ν1 ≤cv Γ∗t ν2.

3 Scale invariant solutions to the bivariate RDE

The goal of this section is to prove Theorem 1.14. Let θ ∈ (0, 1). Throughout Section 3
we will use the shorthand ρ to denote the probability measure ρΞθ defined in (1.18). Let

xk := θk and ck :=
1− θ
1 + θ

· θk, k ∈ N. (3.1)

thus we have

ρ = ρΞθ =

∞∑
k=0

ckδxk +
θ

1 + θ
δ∞. (3.2)

For simplification we also introduce the notation

x−1 :=∞ and c−1 := ρ({∞}) =
θ

1 + θ
. (3.3)

Using this notation we have ρ({xk}) = ck for every k ≥ −1.

Definition 3.1. Let P(2)
θ denote the space of symmetric probability measures on I × I

such that its marginal distributions are ρ.

3.1 Main lemmas

In Section 3.1 we state the key lemmas of Section 3 and prove Theorem 1.14 using
them.

Definition 3.2 (The signature of a scale invariant measure). Let θ ∈ (0, 1). The signature

of a scale invariant measure ρ(2) ∈M(2)
θ is the function fρ(2) : N→ R defined by

fρ(2)(n) := ρ(2)
(
{[0, xn]× I} ∪ {I × [0, 1]}

)
, n ∈ N. (3.4)

The signature of the diagonal measure ρ(2) (c.f. (1.24)) is

fρ(2)(n) = P
[
Y∅ ≤ xn or Y∅ ≤ 1

]
=

∞∑
k=0

ck =
1

1 + θ
, n ∈ N. (3.5)

Lemma 3.3 (Conditions for f to be a signature). If θ ∈ (0, 1) and f : N→ R then there

exists a (unique) probability measure ρ(2) ∈M(2)
θ such that f is its signature if and only

if

1. f(0) ≤ 1,
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2. limn→∞ f(n) = 1
1+θ ,

3. f(n) is non-increasing,

4. (1 + θ) · f(0) ≤ 2f(1),

5. (1 + θ) · f(n) ≤ θ · f(n− 1) + f(n+ 1) for every n ≥ 1.

We will prove this lemma in Section 3.2. Next we define a function fθ,c(n), n ∈ N that
will help us identify the signature of a scale invariant solution of the bivariate RDE.

Lemma 3.4 (Implicit equation for fθ,c(n)). Let θ ∈ (0, 1) and c ≥ 0 be arbitrary. The
system of equations

fθ,c(0)2 − 1

1 + θ
fθ,c(0) = 2c, (3.6)

fθ,c(n− 1)2 − fθ,c(n)2 = θn−1 (fθ,c(n− 1)− fθ,c(n)) + c · θ2n−2(1− θ2), n ≥ 1, (3.7)

fθ,c(0) > 0, fθ,c(n) >
θn−1

2
, n ≥ 1 (3.8)

has a unique solution fθ,c(n), n ∈ N.

Lemma 3.5 (Existence and continuity of fθ,c(∞)). If θ ∈ (0, 1), c ≥ 0, then the limit

fθ,c(∞) := lim
n→∞

fθ,c(n) (3.9)

exists and the function c 7→ fθ,c(∞) is continuous.

We will prove Lemmas 3.4 and 3.5 in Section 3.3. Note that if c = 0 then

fθ,0(n) =
1

1 + θ
, n ∈ N (3.10)

is a solution of (3.6)-(3.8) (and it follows from the uniqueness statement of Lemma 3.4
that (3.10) is the only solution of of (3.6)-(3.8) in the c = 0 case).

Remark 3.6. Note that if we rearrange (3.6) and (3.7), we get

fθ,c(0)2 − fθ,c(0)

1 + θ
= 2c,

fθ,c(n− 1)− fθ,c(n)

θn−1 − θn
=

c · θn−1 · 1+θ
2

fθ,c(n−1)+fθ,c(n)
2 − θn−1

2

. (3.11)

Now if we non-rigorously define the function f by f(θn) := fθ,c(n) when θ is very close
to 1, moreover we denote r := θn, then in the θ → 1 limit we get

f(1)2 − 1

2
f(1) = 2c,

∂

∂r
f(r) =

c · r
f(r)− r/2

(3.12)

i.e., conditions (iii) and (i) of equation (2.2) of [RST19]. We also note that condition (ii)
of equation (2.2) of [RST19],i.e., f(0) = 1

2 , corresponds to the condition fθ,c(∞) = 1
1+θ in

our current discrete setting. We will see that the key question is whether there exists
c > 0 for which fθ,c(∞) = 1

1+θ holds.

Lemma 3.7 (Signature of scale invariant solution of the bivariate RDE). Let ρ(2) ∈M(2)
θ

and let fρ(2) denote its signature.

1. ρ(2) is a solution of the bivariate RDE (1.23) if and only if there exists c ≥ 0 such
that fρ(2)(n) = fθ,c(n) holds for every n ∈ N.

2. If ρ(2) is a solution of the bivariate RDE and c is the parameter for which fρ(2)(n) =

fθ,c(n) holds for every n ∈ N, then

c ≤ max

(
0,
θ · (2θ − 1)

(1 + θ)2

)
. (3.13)
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We will prove this lemma in Section 3.4. Note that that the diagonal measure ρ(2)

defined in (1.24) is a solution of the bivariate RDE (1.23), and indeed fρ(2)(n) = 1
1+θ =

fθ,0(n) for every n ∈ N by (3.5) and (3.10), in accordance with Lemma 3.7.

Definition 3.8 (Perturbation of the diagonal signature). Let θ ∈ (0, 1) and c ≥ 0 be
arbitrary and fθ,c. Let us define

f̃θ(n) :=

(
∂

∂c
fθ,c(n)

) ∣∣∣∣
c=0+

and f̃θ(∞) := lim
n→∞

f̃θ(n). (3.14)

We will prove in Section 3.5 that the limit in (3.14) exists. Recall the notion of
θ∗ ∈ ( 1

2 , 1) from Lemma 1.8.

Lemma 3.9 (Critical value). We have f̃θ(∞) > 0 for every θ ∈ (0, θ∗), f̃θ(∞) < 0 for every
θ ∈ (θ∗, 1) and f̃θ∗(∞) = 0.

We will prove this lemma in Section 3.5.

Lemma 3.10 (Solution of the recursion if θ ≤ θ∗). If θ ∈
(

1
2 , θ
∗], then there does not exist

c ∈
(

0, θ·(2θ−1)
(1+θ)2

]
for which fθ,c(∞) = 1

1+θ .

We will prove this lemma in Section 3.6.

Lemma 3.11 (Solution of the recursion if θ > θ∗). For any θ ∈ (θ∗, 1) there exists a ĉ > 0

for which fθ,ĉ(∞) = 1
1+θ , moreover fθ,ĉ also satisfies all of the conditions of Lemma 3.3.

We will prove this lemma in Section 3.7.

Remark 3.12. Figure 1 shows the values of the parameter c for which we have fθ,c(∞) =
1

1+θ for different values of θ ∈ (0.6, 1). It shows that if θ ≤ θ∗ then the only such value
is c = 0, but if θ > θ∗ then there also exists a positive value ĉ. We also note that if
θ → 1 then the numerical simulations suggest that ĉ→ 0.01770838, which coincides with
parameter value of c which gives the non-diagonal solution in the case Ξ1 = (0, 1], see
[RST19, Section 1.6]. In other words, c = 0.01770838 is the unique positive value of c for
which the differential equation (3.12) together with the boundary condition f(0) = 1

2 has
a solution.

Figure 1: The values of c for which fθ,c(∞) = 1
1+θ

Proof of Theorem 1.14. The diagonal measure ρ(2) defined in (1.24) is indeed a solution
of the bivariate RDE (1.23) for every θ ∈ (0, 1).

If θ ≤ 1
2 and ρ(2) ∈ M(2)

θ is a solution of the bivariate RDE, then by Lemma 3.7(ii)
we must have c = 0, where c is the parameter for which fρ(2) ≡ fθ,c (such c exists
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by Lemma 3.7(i)). By (3.10) we have fρ(2)(n) ≡ 1
1+θ , thus by (3.5) and the uniqueness

statement of Lemma 3.3 we obtain that there is no scale invariant solution of the bivariate
RDE other than the diagonal solution in the θ ≤ 1

2 case.

If θ ∈
(

1
2 , θ
∗] and we assume that ρ(2) ∈M(2)

θ is a solution of the bivariate RDE, then

by Lemma 3.7 we have c ∈
[
0, θ·(2θ−1)

(1+θ)2

]
for the parameter c which gives fρ(2) ≡ fθ,c. But

by Lemma 3.10 we know that there is no c ∈
(

0, θ·(2θ−1)
(1+θ)2

]
such that limn→∞ fθ,c(n) = 1

1+θ

holds. Therefore by condition (ii) of Lemma 3.3 we see that again only c = 0 produces a
signature of a scale invariant solution of the bivariate RDE.

If θ > θ∗ then by Lemmas 3.3 and 3.11 there exists a measure ρ̂(2) ∈M(2)
θ for which

fθ,ĉ(n) = fρ̂(2)(n) for every n ∈ N. The measure ρ̂(2) is non-diagonal, as we explain. First
note that ĉ 6= 0 implies fθ,ĉ 6= fθ,0, thus fρ̂(2) 6= fρ(2) (since fρ(2) = fθ,0 by (3.5) and (3.10)),

and thus we must have ρ̂(2) 6= ρ(2), i.e., ρ̂(2) is non-diagonal.
Finally, we observe that ρ̂(2) is a solution of the bivariate RDE (1.23) by Lemma 3.7(i).

3.2 Conditions for f to be a signature

In this section we show the necessary and sufficient conditions for a function f :

N → R to be the signature of some ρ(2) ∈ M(2)
θ , i.e., we prove Lemma 3.3. To do

this, first we define the bivariate signature Fρ(2) in Definition 3.13 for each ρ(2) ∈ P(2)
θ

(c.f. Definition 3.1). In Lemma 3.14 we prove that this function Fρ(2) characterizes the
distribution ρ(2) and in Lemma 3.15 we prove necessary and sufficient conditions for
bivariate functions to be the bivariate signature of some ρ(2) ∈ P(2)

θ . After analysing
the relation between scale invariant measures and scale invariant bivariate signatures
in Lemma 3.17 as well as the relation between Fρ(2) and the univariate signature in
Lemma 3.18, we can easily conclude the proof of Lemma 3.3.

Definition 3.13 (Bivariate signature). Given ρ(2) ∈ P(2)
θ , we define the bivariate function

Fρ(2) : {xk}∞k=0 × {xk}∞k=0 → [0, 1] by

Fρ(2)(xk, xj) := ρ(2)
(
{[0, xk]× I} ∪ {I × [0, xj ]}

)
, j, k ∈ N. (3.15)

Recall the notation from the beginning of Section 3.

Lemma 3.14 (Bivariate signature characterizes the measure). The measure ρ(2) ∈ P(2)
θ

is uniquely characterized by Fρ(2) , in particular, for any j, k ∈ N we have

ρ(2)
(
{∞} × {∞}

)
= 1− Fρ(2)(x0, x0), (3.16)

ρ(2)
(
[0, xk]× {∞}

)
= Fρ(2)(xk, x0)− 1

1 + θ
, (3.17)

ρ(2)
(
{∞} × [0, xj ]

)
= Fρ(2)(xj , x0)− 1

1 + θ
, (3.18)

ρ(2)
(
[0, xk]× [0, xj ]

)
=

xk
1 + θ

+
xj

1 + θ
− Fρ(2)(xk, xj). (3.19)

Proof. The proof of (3.16) follows from Definition 3.13 using x0 = 1 and ρ(2)(([0, 1] ∪
{∞})2) = 1. Since the marginal distribution of ρ(2) is ρ, for every j ∈ N we have
ρ(2)

(
I × [0, xj ]

)
= ρ([0, xj ]) =

∑∞
i=j ci =

xj
1+θ . The equalities (3.17), (3.18) and (3.19)

readily follow. The ρ(2) measure of every atom of ρ(2) can be determined using (3.16)-
(3.19) and inclusion-exclusion.

Lemma 3.15 (Necessary and sufficient conditions on F ). Let θ ∈ (0, 1). Let us assume
that we are given a function F : {xk}∞k=0 × {xk}∞k=0 → [0,∞). There exists a unique
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probability measure ρ(2) ∈ P(2)
θ such that F ≡ Fρ(2) holds (where Fρ(2) is defined in

Definition 3.13) if and only if the following conditions are fulfilled:

1. F (x0, x0) ≤ 1,

2. limk→∞ F (xk, xj) =
xj

1+θ ∀ j ∈ N,

3. F (xk, x0) is non-increasing in k,

4. F (xk, xj) = F (xj , xk) ∀ j, k ∈ N,

5. −F (xk, xj) + F (xk+1, xj) + F (xk, xj+1)− F (xk+1, xj+1) ≥ 0 ∀ j, k ∈ N.

Proof. If ρ(2) ∈ P(2)
θ and we define Fρ(2) as in (3.15), then conditions 1., 2. and 3. trivially

hold for Fρ(2) . Condition 4. follows from the symmetry of ρ(2) and finally condition 5.
also holds, since −Fρ(2)(xk, xj) + Fρ(2)(xk+1, xj) + Fρ(2)(xk, xj+1) − Fρ(2)(xk+1, xj+1) =

ρ(2)(xk, xj), where ρ(2)(xk, xj) is a shorthand for ρ(2)
(
{(xk, xj)}

)
.

In the other direction, the uniqueness statement follows from Lemma 3.14.

If F is a function such that all of the conditions of the lemma hold, then we will define
ρ(2) pointwise on {(xk, xj)}∞k,j=−1 (where x−1 = ∞, c.f. (3.3)) and prove that ρ(2) is a

probability measure, it is in P(2)
θ and F ≡ Fρ(2) holds. For every j, k ∈ N let

ρ(2)(xk, xj) := −F (xk, xj) + F (xk+1, xj) + F (xk, xj+1)− F (xk+1, xj+1), (3.20)

ρ(2)(∞, xk) := F (xk, x0)− F (xk+1, x0), (3.21)

ρ(2)(xk,∞) := F (xk, x0)− F (xk+1, x0), (3.22)

ρ(2)(∞,∞) := 1− F (x0, x0). (3.23)

The non-negativity of ρ(2) follows from conditions 1., 3. and 5., moreover ρ(2) is trivially
symmetric, since F is also symmetric by 4.

The marginals of ρ(2):

•
∞∑

i=−1

ρ(2)(xk, xi) = F (xk, x0)− F (xk+1, x0)+

+

∞∑
i=0

(−F (xk, xi) + F (xk+1, xi) + F (xk, xi+1)− F (xk+1, xi+1)) =

= F (xk, x0)− F (xk+1, x0)− F (xk, x0) + lim
i→∞

F (xk, xi) + F (xk+1, x0)−

− lim
i→∞

F (xk+1, xi)
2.
=

(1− θ) · xk
1 + θ

(3.1)
= ck, k ∈ N (3.24)

•
∞∑

i=−1

ρ(2)(∞, xi) = 1− F (x0, x0) +

∞∑
k=0

(F (xk, x0)− F (xk+1, x0)) =

= 1− F (x0, x0) + F (x0, x0)− lim
k→∞

F (xk, x0)
2.
= 1− x0

1 + θ
= c−1 (3.25)

So the measure ρ(2) has marginal distributions ρ defined as in (3.2). In particular, ρ(2) is
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a probability measure on I2. We still have to check that F ≡ Fρ(2) holds:

Fρ(2)(xk, xj)
(3.15)

= ρ(2)
(
{[0, xk]× I} ∪ {I × [0, xj ]}

)
=

∞∑
i=k

ci +

∞∑
l=j

k−1∑
i=−1

ρ(2)(xi, xl) =

xk
1 + θ

+

∞∑
l=j

(−F (x0, xl)+F (xk, xl)+F (x0, xl+1)−F (xk, xl+1))+F (x0, xj)− lim
j→∞

F (x0, xj) =

xk
1 + θ

−F (x0, xj)+ lim
l→∞

F (x0, xl)+F (xk, xj)− lim
l→∞

F (xk, xl)+F (x0, xj)− lim
j→∞

F (x0, xj)
2.
=

F (xk, xj), j, k ∈ N. (3.26)

Definition 3.16 (Scale invariant bivariate function). F : {xk}∞k=0 × {xk}∞k=0 → [0,∞) is a
scale invariant bivariate function if

F (xk+l, xj+l) = θlF (xk, xj), j, k, l ∈ N. (3.27)

If F is scale invariant then for every 0 ≤ j ≤ k we have

F (xk, xj) = θjF (xk−j , x0). (3.28)

Recall the notation of M(2)
θ from below (1.31) as well as that of P(2)

θ from Defini-
tion 3.1.

Lemma 3.17 (Scale invariant measures and functions). Let ρ(2) ∈ P(2)
θ . ρ(2) ∈M(2)

θ holds
if and only if Fρ(2) defined in Definition 3.13 is a scale invariant function.

Proof. First note that if Fρ(2) is a scale invariant function then

ρ(2)
(
[0, θn]× I ∪ I × [0, θn]

) (3.15)
= Fρ(2)(xn, xn)

(3.27)
= θnFρ(2)(x0, x0) ≤ θn, n ≥ 0. (3.29)

Together with our assumption that both of the marginals of ρ(2) are ρ, this implies that
we have ρ(2)

(
[0, t]× I ∪ I × [0, t]

)
≤ t for all 0 ≤ t ≤ 1, thus by (1.28) we have ρ(2) ∈M(2).

It remains to show that if ρ(2) ∈M(2) ∩ P(2)
θ then Fρ(2) is scale invariant if and only if

Γ
(2)
θ ρ(2) = ρ(2). Let ρ̂(2) := Γ

(2)
θ ρ(2). By the scale invariance of the marginal distribution

(c.f. (1.31)) we have ρ̂(2) ∈ P(2)
θ . Thus by Lemma 3.14 we only need to prove that

Fρ̂(2) ≡ Fρ(2) holds if and only θ−1Fρ(2)(xk+1, xj+1) = Fρ(2)(xk, xj) holds for any k, j ∈ N
(i.e., Fρ(2) satisfies the l = 1 case of (3.27)). This equivalence follows as soon as we
observe that we have

Fρ̂(2)(xk, xj)
(3.15)

= Γ
(2)
θ ρ(2)

(
{[0, xk]× I} ∪ {I × [0, xj ]}

) (1.29)
=

θ−1ρ(2)
(
(ψ

(2)
θ )−1 ({[0, xk]× I} ∪ {I × [0, xj ]})

) (∗)
= θ−1ρ(2)

(
{[0, θxk]×I}∪{I× [0, θxj ]}

) (3.1)
=

θ−1ρ(2)
(
{[0, xk+1]× I} ∪ {I × [0, xj+1]}

) (3.15)
= θ−1Fρ(2)(xk+1, xj+1), k, j ∈ N, (3.30)

where (∗) holds since we defined ψ
(2)
θ : I2 → I2 by ψ(2)

θ (x, x′) :=
(
ψθ(x), ψθ(x

′)
)
, where

ψθ(x) = x/θ if x ≤ θ and ψθ(x) =∞ if x > θ, cf. (1.25).

Lemma 3.18 (Relationship between Fρ(2) and the signature). If ρ(2) ∈M(2)
θ , Fρ(2) is the

function defined in Definition 3.13 and fρ(2) is the signature of ρ(2) (c.f. Definition 3.2),
then

fρ(2)(n) = Fρ(2)(xn, x0) =
1

xk∧j
Fρ(2)(xk, xj) (3.31)

holds for every j, k ∈ N for which n = |k − j|.
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Proof. The first equality is trivial from the definition of fρ(2) and Fρ(2) . The second
equality follows from the fact that Fρ(2) is a scale invariant function (by Lemma 3.17),
xk∧j = θk∧j (cf. (3.1)), (3.28) and symmetry of Fρ(2) (cf. Condition 4. of Lemma 3.15).

Proof of Lemma 3.3. First let ρ(2) ∈ M(2)
θ and fρ(2) be its signature. Let us also define

Fρ(2) as in (3.15), which means fρ(2)(n) = Fρ(2)(xn, x0) by Lemma 3.18.

Let us now check that fρ(2) satisfies the properties (i)-(v) of Lemma 3.3.

1. fρ(2)(0) = Fρ(2)(x0, x0) ≤ 1 using condition 1. of Lemma 3.15.

2. limn→∞ fρ(2)(n) = 1
1+θ by (3.31) and condition 2. of Lemma 3.15.

3. We have fρ(2)(n) = Fρ(2)(xn, x0) ≥ Fρ(2)(xn+1, x0) = fρ(2)(n + 1) for any n ∈ N by
condition 3. of Lemma 3.15.

4. From condition 5. of Lemma 3.15 we know

− Fρ(2)(xk, xj) + Fρ(2)(xk+1, xj) + Fρ(2)(xk, xj+1)− Fρ(2)(xk+1, xj+1) ≥ 0. (3.32)

Using Fρ(2)(xk, xj) = xk∧j ·fρ(2)(|k−j|) (c.f. (3.31)) and substituting j := k into (3.32)
we obtain

− xk · fρ(2)(0) + xk · fρ(2)(1) + xk · fρ(2)(1)− xk+1 · fρ(2)(0) ≥ 0. (3.33)

Dividing by xk, after rearranging we get condition (iv).

5. If we use Fρ(2)(xk, xj) = xk∧j · fρ(2)(|k − j|) in (3.32) if k > j, we get

−xj ·fρ(2)(k−j)+xj ·fρ(2)(k+1−j)+xj+1·fρ(2)(k−j−1)−xj+1·fρ(2)(k−j) ≥ 0. (3.34)

Let n := k − j. If we divide (3.34) by xj , after rearranging we get the required
inequality.

In the other direction, assume that f : N→ R satisfies conditions (i)-(v) of Lemma 3.3.
Our goal is to show that there exists a unique probability measure ρ(2) ∈M(2)

θ such that
f is its signature. As a first step, we define

F (xk, xj) := xk∧j · f(|k − j|), j, k ∈ N (3.35)

and show that the conditions of Lemma 3.15 hold for F . Conditions (i), (ii), (iii) of
Lemma 3.3 on f imply respectively conditions 1., 2. and 3. of Lemma 3.15. Condition 4.
of Lemma 3.15 of F is straightforward from (3.35). Condition 5. of Lemma 3.15 follows
from condition (iv) of Lemma 3.3 (in the k = j case) and condition (v) of Lemma 3.3 (in
the k > j case, and, by symmetry, in the j > k case).

We can thus apply Lemma 3.15 to infer that there exists a probability measure
ρ(2) ∈ P(2)

θ such that F ≡ Fρ(2) holds. In fact ρ(2) ∈ M(2)
θ by Lemma 3.17 and the scale

invariance of F (c.f. (3.27)), which is straightforward from (3.35). Finally f ≡ fρ(2) follows
from Definition 3.2, Lemma 3.18 and (3.35). Uniqueness is clear since the signature of a
bivariate measure inM(2)

θ uniquely determines its bivariate signature by Lemma 3.18,
which in turn uniquely determines the bivariate measure by Lemma 3.14.
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3.3 Basic properties of fθ,c(n)

The main goal of Section 3.3 is to prove Lemmas 3.4 and 3.5, but we will also collect
some other useful properties of fθ,c(n) in Corollary 3.21. We will first define an auxiliary
function gθ,c(n), n ∈ N and later we will identify fθ,c(n) as fθ,c(n) = θngθ,c(n). In order to
construct gθ,c(n), we need the following definition.

Definition 3.19 (Recursion map ψθ,c). Given some θ ∈ (0, 1) and c ≥ 0, let us define the
function ψθ,c : Dθ,c → R by

ψθ,c(x) =
1 +

√
(2x− 1)2 − 4c · (1− θ2)

2θ
, Dθ,c = (

√
(1− θ2)c+ 1/2,+∞). (3.36)

Note that x ∈ Dθ,c if and only if 2x− 1 ≥ 0 and (2x− 1)2 − 4c · (1− θ2) > 0.

Lemma 3.20 (Recursive definition of gθ,c(n)). For any θ ∈ (0, 1) and c ≥ 0, the recursion

gθ,c(0) =
1 +

√
1 + 8c(1 + θ)2

2(1 + θ)
, gθ,c(n) = ψθ,c

(
gθ,c(n− 1)

)
, n ≥ 1 (3.37)

has a solution (i.e., gθ,c(n) ∈ Dθ,c holds for all n ≥ 0). Moreover, the solution satisfies

gθ,c(n) ≥ gθ,c(n− 1), n ≥ 1. (3.38)

Proof. We first check that gθ,c(0) ∈ Dθ,c holds. In order to do so, let us denote γ = 4c(1 +

θ)2. After some rearrangements, we only need to check that
√

1 + 2γ >
√

(1− θ2)γ + θ

holds. Taking the square of both sides and rearranging, we want to show (1− θ2) + (1 +

θ2)γ > 2θ
√

(1− θ2)γ. Taking the square of both sides again and rearranging, we need

(1− θ2)2 + 2(1− θ2)2γ + (1 + θ2)2γ2 > 0, (3.39)

and this inequality indeed holds, since all of the terms are non-negative for any choice of
θ ∈ (0, 1) and c ≥ 0. We have thus checked gθ,c(0) ∈ Dθ,c.

Next we observe that x 7→ ψθ,c(x) is an increasing and concave function of x ∈ Dθ,c,
moreover d

dxψθ,c(x) > 1/θ > 1 holds for all x ∈ Dθ,c. This implies that the equation

ψθ,c(x) = x has at most one solution in Dθ,c. Let y0 :=
√

(1− θ2)c+ 1/2 denote the left
endpoint of Dθ,c. One easily checks that ψθ,c(y0) ≥ y0 holds if and only if c ≤ 1−θ

4θ2(1+θ)

holds. We will prove Lemma 3.20 by treating the cases ψθ,c(y0) ≥ y0 and ψθ,c(y0) < y0

separately.
If ψθ,c(y0) ≥ y0 then ψθ,c(x) > x for every x ∈ Dθ,c follows from the above listed

properties of ψθ,c. Now it follows from (3.37) by induction on n that gθ,c(n) ∈ Dθ,c
and (3.38) hold for all n ≥ 0.

If ψθ,c(y0) < y0 then the above listed properties of ψθ,c imply that there exists a unique
x∗0 ∈ Dθ,c for which ψθ,c(x∗0) = x∗0, moreover x ≥ x∗0 implies ψθ,c(x) ≥ x. One checks that

x∗0 :=
1+
√

1+4c(1+θ)2

2(1+θ) , thus gθ,c(0) ≥ x∗0 holds. It is enough to prove that gθ,c(n) ≥ x∗0 for

all n ≥ 0 to conclude that gθ,c(n) ∈ Dθ,c for all n ≥ 0. Now both gθ,c(n) ≥ x∗0 and (3.38)
follow by induction on n using the recursive definition (3.37) of gθ,c(n).

Now we are ready to prove the existence and uniqueness of fθ,c(n), n ∈ N.

Proof of Lemma 3.4. We will show by induction on n that

fθ,c(n) = gθ,c(n)θn, n ∈ N (3.40)

is the unique solution of the system of equations (3.6)-(3.8). The induction hypothesis
holds for n = 0, since (3.6) is a quadratic equation for fθ,c(0), which has two solutions,
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one of them is equal to gθ,c(0)θ0, while the other solution is less then or equal to zero,
therefore only gθ,c(0)θ0 satisfies (3.8) for n = 0.

Now assume that n ≥ 1 and (3.40) holds for n − 1, i.e., we have fθ,c(n − 1) =

gθ,c(n − 1)θn−1. We can view (3.7) as a quadratic equation for fθ,c(n) which has two
solutions:

x̃1,2 =
θn−1 ±

√
(2fθ,c(n− 1)− θn−1)2 − 4c · θ2n−2 · (1− θ2)

2
. (3.41)

Now x̃1 = θnψθ,c (gθ,c(n− 1)) = gθ,c(n)θn follows from fθ,c(n−1) = gθ,c(n−1)θn−1, (3.36)
and (3.37), moreover x̃1 > θn−1/2, while x̃2 < θn−1/2, thus only x̃1 satisfies (3.8) and
therefore (3.40) holds.

Corollary 3.21 (Recursion for fθ,c). For any θ ∈ (0, 1] and c ≥ 0 we have

fθ,c(0) =
1 +

√
1 + 8c(1 + θ)2

2(1 + θ)
, (3.42)

fθ,c(n) =
θn−1 +

√
(2fθ,c(n− 1)− θn−1)2 − 4c · θ2n−2 · (1− θ2)

2
, n ≥ 1. (3.43)

Moreover, the function fθ,c(n) decreases in n:

fθ,c(n) ≤ fθ,c(n− 1), n ≥ 1. (3.44)

Proof. The identities (3.42) and (3.43) follow from (3.37) and (3.40).
In order to prove (3.44), we need to show that gθ,c(n) ≤ gθ,c(n − 1)/θ holds for any

n ≥ 1: this inequality follows from the fact that ψθ,c(x) ≤ ψθ,0(x) = x/θ holds for any
x ∈ Dθ,c.

Proof of Lemma 3.5. The limit fθ,c(∞) = limn→∞ fθ,c(n) exists since fθ,c(n) decreases
as n increases (c.f. (3.44)) and fθ,c(n) ≥ 0. It follows from (3.42) and (3.43) by induction
on n that for each n the function c 7→ fθ,c(n) is continuous. Thus, in order to prove that
c 7→ fθ,c(∞) is continuous, we only need to check that the functions c 7→ fθ,c(n) converge
uniformly as n→∞ on [0, c0] for any 0 ≤ c0 < +∞. In order to achieve this, we will show

fθ,c(n− 1)− fθ,c(n) ≤ 1

2

√
4cθ2n−2(1− θ2), n ≥ 1, c ≥ 0. (3.45)

By (3.40) we only need to prove gθ,c(n−1)−θgθ,c(n) ≤ 1
2

√
4c(1− θ2). By (3.36) and (3.37)

it is enough to show that for all x ∈ Dθ,c we have (2x − 1) −
√

(2x− 1)2 − 4c(1− θ2) ≤√
4c(1− θ2), but this inequality easily follows using the properties of Dθ,c listed be-

low (3.36).
It follows from (3.45) that for any c0 > 0 the functions c 7→ fθ,c(n) form a Cauchy

sequence with respect to the sup-norm on [0, c0]. From this the desired uniform conver-
gence readily follows.

3.4 Signature of a scale invariant solution of the bivariate RDE

Our next goal is to prove Lemma 3.7. First we show a formula in Lemma 3.23, which
characterizes the distribution of the right-hand side of the bivariate RDE (1.23) in terms
of the bivariate signature Fρ(2) (c.f. Definition 3.13). Using this we get an equation for
the univariate signature fρ(2) of a scale invariant measure ρ(2) in Lemma 3.24, which
holds if and only if ρ(2) is a solution of the bivariate RDE. In Lemma 3.25 we show that
fθ,c (defined in Lemma 3.4) satisfies a very similar equation. Finally we conclude the
proof of Lemma 3.7.

Recall the notion of P(2)
θ from Definition 3.1.
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Definition 3.22 (Definition of ρ̃(2)). Let θ ∈ (0, 1), ρ(2) ∈ P(2)
θ . Denote by ρ̃(2) the law of

(χ[τ, κ](Y1, Y2), χ[τ, κ](Y ∗1 , Y
∗
2 )), (3.46)

where the function χ is defined in (1.16) and the other notation are defined in (1.23),
so (Y1, Y

∗
1 ) ∼ ρ(2), (Y2, Y

∗
2 ) ∼ ρ(2), τ ∼ UNI[0, 1], κ is a random variable such that

P(κ = 1) = P(κ = 2) = 1
2 and (Y1, Y

∗
1 ), (Y2, Y

∗
2 ), τ and κ are mutually independent.

Lemma 3.23 (Expressing Fρ̃(2) in terms of Fρ(2)). If θ ∈ (0, 1), ρ(2) ∈ P(2)
θ , then for every

j, k ∈ N we have

Fρ̃(2)(xk, xj) = Fρ(2)(xk, xj)−
1

2
Fρ(2)(xk, xj)

2 +
x2
k

2(1 + θ)2
+

x2
j

2(1 + θ)2
+

+
1− θ

2θ

∞∑
t=k∨j+1

[
θt
(
Fρ(2)(xk, xj)− Fρ(2)(xt, xj)− Fρ(2)(xk, xt) + Fρ(2)(xt, xt)

)]
, (3.47)

where Fρ(2) , Fρ̃(2) are the bivariate signatures of ρ(2) and ρ̃(2) respectively (c.f. Defini-
tion 3.13).

Proof. Let us use the notation

(Ỹ, Ỹ ∗) := (χ[τ, κ](Y1, Y2), χ[τ, κ](Y ∗1 , Y
∗
2 )), so that (Ỹ, Ỹ ∗) ∼ ρ̃(2). (3.48)

Let us also use the shorthand F = Fρ(2) , F̃ = Fρ̃(2) in this proof. Thus we have

F̃ (xk, xj) = P(κ = 1, Ỹ ≤ xk or Ỹ ∗ ≤ xj) + P(κ = 2, Ỹ ≤ xk or Ỹ ∗ ≤ xj). (3.49)

Here

P(κ = 1, Ỹ ≤ xk or Ỹ ∗ ≤ xj) =

1

2

[
P(Ỹ ≤ xk |κ = 1) + P(Ỹ ∗ ≤ xj |κ = 1)− P(Ỹ ≤ xk, Ỹ ∗ ≤ xj |κ = 1)

]
. (3.50)

By the definition of χ in (1.16) we will calculate all the three terms on the r.h.s.
of (3.50).

P(Ỹ ≤ xk |κ = 1) = P(Y1 ≤ xk, Y1 > τ) =

∞∑
l=k

P(Y1 = xl, xl > τ)

=

∞∑
l=k

xl · cl =

∞∑
l=k

1− θ
1 + θ

· θ2l = x2
k ·

1− θ
1 + θ

·
∞∑
l=0

θ2l =
x2
k

(1 + θ)2
. (3.51)

Similarly, we have

P(Ỹ ∗ ≤ xj |κ = 1) =
x2
j

(1 + θ)2
. (3.52)

P(Ỹ ≤ xk, Ỹ ∗ ≤ xj |κ = 1) = P(Y1 ≤ xk, Y ∗1 ≤ xj , τ < Y1 ∧ Y ∗1 ) =
∞∑

t=k∨j+1

P(xt < Y1 ≤ xk, xt < Y ∗1 ≤ xj , τ ∈ [xt, xt−1)) =

∞∑
t=k∨j+1

((F (xt, xj) + F (xk, xt)− F (xk, xj)− F (xt, xt))(xt−1 − xt) =

θ − 1

θ

∞∑
t=k∨j+1

[
θt
(
F (xk, xj)− F (xt, xj)− F (xk, xt) + F (xt, xt)

)]
. (3.53)
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Now we calculate the other term of (3.49):

P(κ = 2, Ỹ ≤ xk or Ỹ ∗ ≤ xj) =
1

2
·
(
1− P(Y1 ∧ Y2 > xk, Y

∗
1 ∧ Y ∗2 > xj)

)
(∗)
=

1

2
·
(
1− (1− F (xk, xj))

2
)

= F (xk, xj)−
1

2
· F (xk, xj)

2, (3.54)

where (∗) holds by the independence of (Y1, Y
∗
1 ) and (Y2, Y

∗
2 ). Now (3.47) follows if we

substitute (3.50)-(3.54) into (3.49).

Recall the notation ofM(2)
θ from below (1.31).

Lemma 3.24 (Equation for the signature). ρ(2) ∈ M(2)
θ is a solution of the bivariate

RDE (1.23) if and only if its signature fρ(2) satisfies

fρ(2)(n)2 =
1

(1 + θ)2
+ θn · fρ(2)(n)− (1− θ) ·

∞∑
t=n

θtfρ(2)(t+ 1)+

+

(
1

(1 + θ)2
+
θ · fρ(2)(0)

1 + θ
− (1− θ) ·

∞∑
t=0

θtfρ(2)(t+ 1)

)
· θ2n. (3.55)

Proof. By Lemma 3.14 the measure ρ(2) is a solution of the bivariate RDE (1.23) if and
only if Fρ̃(2) = Fρ(2) . We will prove that if ρ(2) ∈ M(2)

θ then (3.55) holds if and only if
Fρ̃(2) = Fρ(2) .

We have Fρ̃(2) = Fρ(2) in (3.47) if and only if

Fρ(2)(xk, xj)
2 =

x2
k

(1 + θ)2
+

x2
j

(1 + θ)2
+

1− θ
θ

∞∑
t=k∨j+1

[
θt
(
Fρ(2)(xk, xj)− Fρ(2)(xt, xj)− Fρ(2)(xk, xt) + Fρ(2)(xt, xt)

)]
(3.56)

holds for every j, k ∈ N.

By symmetry of Fρ(2) we can assume that 0 ≤ j ≤ k (so xk ≤ xj) and let n := k − j.
We have Fρ(2)(xl, xi) = xl∧if(|l − i|), l, i ∈ N (c.f. (3.31)). Hence

Fρ(2)(xk, xj) = xj · fρ(2)(n), (3.57)
∞∑

t=k∨j+1

θtFρ(2)(xk, xj) =

∞∑
t=k+1

θt · xj · fρ(2)(n) =
xk+j+1 · fρ(2)(n)

1− θ
, (3.58)

∞∑
t=k∨j+1

θtFρ(2)(xt, xj) =

∞∑
t=k+1

θt · xj · fρ(2)(t− j) =

= xk+j+1 ·
∞∑
t=0

θtfρ(2)(t+ n+ 1) = xk+j+1 ·
∞∑
t=n

θt−nfρ(2)(t+ 1),

(3.59)
∞∑

t=k∨j+1

θtFρ(2)(xk, xt) =

∞∑
t=k+1

θtxkfρ(2)(t− k) = x2k+1

∞∑
t=0

θtfρ(2)(t+ 1), (3.60)

∞∑
t=k∨j+1

θtFρ(2)(xt, xt) =

∞∑
t=k+1

θt · xt · fρ(2)(0) =
x2(k+1) · fρ(2)(0)

1− θ2
. (3.61)
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If we substitute all of the above into (3.56) and divide by x2
j = θ2j , we get:

fρ(2)(n)2 =
θ2n

(1 + θ)2
+

1

(1 + θ)2
+ θnfρ(2)(n)− (1− θ)θn ·

∞∑
t=n

θt−nfρ(2)(t+ 1)−

(1− θ) · θ2n ·
∞∑
t=0

θtfρ(2)(t+ 1) +
θ2n+1fρ(2)(0)

1 + θ
. (3.62)

We get (3.55) after rearranging above formula, so Fρ̃(2) = Fρ(2) in (3.47) if and only if
fρ(2) satisfies (3.55), therefore we proved the lemma.

Next we consider the sequence fθ,c(n), n ∈ N (c.f. Lemma 3.4) and derive some
formulas analogous to (3.55).

Lemma 3.25 (Properties of fθ,c). Given some θ ∈ (0, 1) and c ≥ 0, let us assume that
limn→∞ fθ,c(n) = 1

1+θ holds. Under these conditions we have

fθ,c(n)2 =
1

(1 + θ)2
+ θn · fθ,c(n)− (1− θ) ·

∞∑
t=n

θtfθ,c(t+ 1) + c · θ2n, n ∈ N, (3.63)

c =
1

(1 + θ)2
+
θ · fθ,c(0)

1 + θ
− (1− θ) ·

∞∑
t=0

θtfθ,c(t+ 1), (3.64)

1

1 + θ
∧ 2θ

1 + θ
≤ fθ,c(0) ≤ 1

1 + θ
∨ 2θ

1 + θ
, (3.65)

c ≤ 0 ∨ θ · (2θ − 1)

(1 + θ)2
. (3.66)

Proof. To prove (3.63) let us denote by βn the difference of the r.h.s. and the l.h.s.
of (3.63). Our goal is to show βn ≡ 0. For every n ≥ 1 we have

βn − βn−1 =fθ,c(n− 1)2 − fθ,c(n)2 − θn−1fθ,c(n− 1) + θnfθ,c(n)+

+ (1− θ)θn−1fθ,c(n)− c · θ2n−2(1− θ2). (3.67)

The right-hand side of (3.67) is 0 by (3.7). Therefore the sequence βn is constant, but we
also have limn→∞ βn = 0 by the definition of βn and our assumption limn→∞ fθ,c(n) = 1

1+θ .
So βn ≡ 0, thus we get (3.63).

Next we show (3.64). If we take (3.63) at n = 0, we obtain

fθ,c(0)2 =
1

(1 + θ)2
+ fθ,c(0)− (1− θ) ·

∞∑
t=0

θtfθ,c(t+ 1) + c. (3.68)

If we take the difference of (3.6) and (3.68) and rearrange, we get (3.64).
Next we prove (3.65). From our assumption limn→∞ fθ,c(n) = 1

1+θ and (3.44) we

obtain that fθ,c(n) ≥ 1
1+θ for every n ∈ N, hence

c
(3.64)
≤ 1

(1 + θ)2
+
θfθ,c(0)

1 + θ
− (1− θ)

∞∑
t=0

θt

1 + θ
=
θ((1 + θ)fθ,c(0)− 1)

(1 + θ)2
. (3.69)

Putting together (3.6) and (3.69), we obtain the inequality

fθ,c(0)2 − 1

1 + θ
fθ,c(0) ≤ 2

θ((1 + θ)fθ,c(0)− 1)

(1 + θ)2
, (3.70)

which implies (3.65), since the roots of the polynomial x2 − x
1+θ − 2 θ((1+θ)x−1)

(1+θ)2 are 1
1+θ

and 2θ
1+θ . Finally, (3.66) follows by plugging the upper bound of (3.65) into (3.69).
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Proof of Lemma 3.7. First assume that ρ(2) ∈ M(2)
θ is a solution of the bivariate RDE

(1.23) and let us define

c :=
1

(1 + θ)2
+
θ · fρ(2)(0)

1 + θ
− (1− θ) ·

∞∑
t=0

θtfρ(2)(t+ 1). (3.71)

We will prove that fρ(2)(n) = fθ,c(n) holds for this c for every n ∈ N. By Lemma 3.4, it is
enough to show that fρ(2)(n) satisfies (3.6)-(3.8).

By Lemma 3.24 the equation (3.55) holds. If we plug the definition (3.71) of c into
equation (3.55), we get

fρ(2)(n)2 =
1

(1 + θ)2
+ θn · fρ(2)(n)− (1− θ) ·

∞∑
t=n

θtfρ(2)(t+ 1) + c · θ2n. (3.72)

If we take (3.72) at n = 0, subtract 1
1+θ · fρ(2)(0) from both sides and again use the

definition (3.71) of c, we get fρ(2)(0)2 − 1
1+θfρ(2)(0) = 2c, i.e., that (3.6) holds. Now let

n ≥ 1. If we take the difference of (3.72) at n− 1 and at n, we obtain

fρ(2)(n− 1)2 − fρ(2)(n)2 = (3.73)

= θn−1fρ(2)(n− 1)− θnfρ(2)(n)− (1− θ)θn−1fρ(2)(n) + c · θ2n−2(1− θ2),

therefore (3.7) holds. Both inequalities required by (3.8) can be proved using fρ(2)(n) ≥
1

1+θ (which holds by Lemma 3.3), also using 1
1+θ >

1
2 ≥

θn−1

2 in the proof of the n ≥ 1

case of (3.8).
We also need that c ≥ 0: this follows from fρ(2)(0)2 − 1

1+θfρ(2)(0) = 2c and fρ(2)(n) ≥
1

1+θ .

In the other direction, we assume that for some ρ(2) ∈M(2)
θ we have fρ(2)(n) = fθ,c(n)

for every n ∈ N for some c ≥ 0, and we have to show that ρ(2) is a solution of the bivariate
RDE. By Lemma 3.24 it is enough to show that (3.55) holds for every n ∈ N. In order to
do so, we use Lemma 3.25 (the conditions of which do hold, since limn→∞ fρ(2)(n) = 1

1+θ

by Lemma 3.3): the identity (3.55) follows by putting (3.63) and (3.64) together. This
completes the proof of statement (i) of Lemma 3.7. Also, (3.13) follows from (3.66), i.e.,
statement (ii) of Lemma 3.7 also holds. The proof of Lemma 3.7 is complete.

3.5 Definition of θ∗

In this section our goal is to prove Lemmas 1.8 and 3.9. We will give an explicit
formula for f̃θ(∞) = limn→∞

(
∂
∂cfθ,c(n)

) ∣∣
c=0+

in Lemma 3.26 and prove that it is strictly

decreasing in θ. As we will see, this fact implies Lemmas 1.8 and 3.9. This is a key point:
we will see in Sections 3.6 and 3.7 that the sign of f̃θ(∞) determines whether or not we
have a non-diagonal scale invariant solution of the RDE.

Recall from Corollary 3.21 that fθ,c satisfies (3.42) and (3.43). If we differentiate
these equations with respect to c, we obtain

∂

∂c
fθ,c(0) =

2(1 + θ)√
1 + 8c(1 + θ)2

, (3.74)

∂

∂c
fθ,c(n) =

∂
∂cfθ,c(n− 1) · (2fθ,c(n− 1)− θn−1)− θ2n−2 · (1− θ2)√

(2fθ,c(n− 1)− θn−1)
2 − 4c · θ2n−2 · (1− θ2)

, n ≥ 1. (3.75)

For any θ ∈ (0, 1), let us define

γn(θ) :=
θ2n−2 · (1− θ2)

2
1+θ − θn−1

=
(1 + θ)2θn−1

1 + 2
∑n−1
k=1 θ

−k
, n ≥ 1. (3.76)
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Note that the equality of the two formulas in (3.76) holds for all θ ∈ (0, 1), but the second
formula for γn(θ) extends continuously to θ = 1 as well.

Recall the notations f̃θ(n) and f̃θ(∞) of Definition 3.8.

Lemma 3.26 (Formulas for f̃θ). We have

f̃θ(0) = 2(1 + θ), (3.77)

f̃θ(n) = f̃θ(n− 1)− γn(θ) = 2(1 + θ)−
n∑
k=1

γk(θ), n ≥ 1, (3.78)

f̃θ(∞) = 2(1 + θ)−
∞∑
k=1

γk(θ)
(3.76)

= 1− θ2 −
∞∑
k=2

γk(θ). (3.79)

Proof. Substituting c = 0 into (3.74), we get (3.77). Similarly, if we substitute c =

0 into (3.75) using that fθ,0(n) = 1
1+θ for every n ∈ N (see (3.10)), we get (3.78).

From (3.78) we get (3.79) by the definition of f̃θ(∞) (c.f. (3.14)).

Proof of Lemmas 1.8 and 3.9. Note that the function θ 7→ f̃θ(∞) defined in (3.79) coin-
cides with the function θ 7→ g(θ) defined in Lemma 1.8.

First we show that f̃θ(∞) is a decreasing function of θ ∈ [0, 1). We begin by observing
that γn(θ) is an increasing function of θ ∈ [0, 1) by the second formula for γn(θ) in (3.76).
Thus by the second formula for f̃θ(∞) in (3.79) we obtain that f̃θ(∞) is a decreasing
function of θ ∈ [0, 1). The function θ 7→ f̃θ(∞) is also continuous on any compact
sub-interval of [0, 1), since it is the uniform limit of continuous functions.

In order to complete the proof of Lemmas 1.8 and 3.9, we just have to show that
f̃1/2(∞) > 0 and f̃1−ε(∞) < 0 for some ε > 0. Indeed, f̃1/2(1) = 3

4 and

f̃1/2(∞)
(3.79)

= 1−
(

1

2

)2

−
∞∑
k=2

22−2k · (1− 1
4 )

2
1+1/2 − 21−k ≥

3

4
−
∞∑
k=2

22−2k · (1− 1
4 )

2
1+1/2 − 1/2

=
9

20
> 0. (3.80)

On the other hand, f̃1(2) = −4/3 by (3.76) and (3.78), moreover θ 7→ f̃θ(2) is a continuous
function on [0, 1], therefore f̃1−ε(2) < 0 for some ε > 0, from which f̃1−ε(∞) < 0

follows, since f̃θ(∞) ≤ f̃θ(2) by (3.78) and (3.79). The proofs of Lemmas 1.8 and 3.9 are
complete.

3.6 The θ ≤ θ∗ case

The goal of this section is to prove Lemma 3.10.

Lemma 3.27 (Lower bound on fθ,c(n)). If θ ∈
(

1
2 , θ
∗] and c ∈

(
0, θ·(2θ−1)

(1+θ)2

]
, then

fθ,c(1)− f̃θ(1)c >
1

1 + θ
, (3.81)

fθ,c(n)− f̃θ(n)c ≥ fθ,c(1)− f̃θ(1)c, n ≥ 1. (3.82)

Before we prove Lemma 3.27, let us deduce Lemma 3.10 from it.

Proof of Lemma 3.10. By Lemma 3.9 we have limn→∞ f̃θ(n) = f̃θ(∞) ≥ 0 for any θ ≤ θ∗,
where f̃θ(∞) is defined in Definition 3.8. Thus

lim
n→∞

fθ,c(n) ≥ lim
n→∞

(
fθ,c(n)− f̃θ(n)c

) (3.82)
≥ fθ,c(1)− f̃θ(1)c

(3.81)
>

1

1 + θ
(3.83)

holds for any θ ∈
(

1
2 , θ
∗] and c ∈

(
0, θ·(2θ−1)

(1+θ)2

]
. The proof of Lemma 3.10 is complete.
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Remark 3.28. We will prove (3.82) by induction on n. We have to start the induction
from n = 1, since it can be easily seen that the analogue of (3.81) does not hold in the
n = 0 case, i.e., we have fθ,c(0)− f̃θ(0)c < 1

1+θ .

Proof of (3.81). By (3.76) and (3.78) we have f̃θ(1) = 1−θ2, so by (3.43) we need to show
1
2

(
1 +

√
(2fθ,c(0)− 1)2 − 4c(1− θ2)

)
− (1− θ2)c > 1

1+θ . Applying a series of equivalent

transformations, we see that we need

fθ,c(0) >
1

2

(
1 +

√
(1− θ)2

(1 + θ)2
+ 8(1− θ)c+ 4(1− θ2)2c2

)
. (3.84)

Substituting the formula (3.42) for fθ,c(0) into this, we obtain after some rearrangements
that we need to show√

1 + 8(1 + θ)2c− θ >
√

(1− θ)2 + 8(1− θ)(1 + θ)2c+ 4(1− θ2)2(1 + θ)2c2.

Taking the square of both sides of this inequality, introducing the notation α = (1 + θ)2c

and rearranging a bit, we obtain that we need to show that 8θα > 2θ(
√

1 + 8α − 1) +

4(1− θ)2α2 holds. Introducing the notation β =
√

1 + 8α− 1, we may equivalently rewrite

this and obtain that we need to show β < 4
√
θ

1−θ − 2. Using the definition of α and β, our

assumption c ≤ θ·(2θ−1)
(1+θ)2 becomes β ≤

√
(1− 4θ)2 − 1. Using that θ > 1

2 we see that we

have β ≤ 4θ − 2, so it is enough to show 4θ < 4
√
θ

1−θ to conclude the desired inequality

β < 4
√
θ

1−θ − 2. Now θ <
√
θ

1−θ does hold for all θ ∈ (0, 1) (therefore it holds for θ ∈
(

1
2 , θ
∗]),

completing the proof of (3.81).

Proof of (3.82). We prove (3.82) by induction on n. The n = 1 case trivially holds. Let
n ≥ 2. Let us denote q = f̃θ(n−1)c+fθ,c(1)− f̃θ(1)c. By our induction hypothesis we know
that fθ,c(n− 1) ≥ q holds, and we want to show that (3.82) also holds, or, equivalently,
we want fθ,c(n) ≥ q − γn(θ)c to hold (c.f. (3.76), (3.78)). Let us note that we have

q − γn(θ)c
(3.78),(3.81)
≥ f̃θ(n)c+

1

1 + θ

(∗)
≥ 1

1 + θ
, (3.85)

where (∗) holds since our assumption θ ≤ θ∗ and Lemma 3.9 together imply f̃θ(∞) ≥ 0

and the formulas (3.76), (3.78) and (3.79) together imply f̃θ(n) ≥ f̃θ(∞). Using our
induction hypothesis and (3.43), we see that it is enough to prove

1

2

(
θn−1 +

√
(2q − θn−1)2 − 4cγn(θ)

(
2

1 + θ
− θn−1

))
≥ q − γn(θ)c (3.86)

in order to arrive at the desired fθ,c(n) ≥ q − γn(θ)c. We will now show (3.86). We first
show that the expression under the square root is non-negative:

(2q − θn−1)2 − 4cγn(θ)

(
2

1 + θ
− θn−1

)
(3.85)
≥

((
2

1 + θ
− θn−1

)
+ 2cγn(θ)

)2

−

4cγn(θ)

(
2

1 + θ
− θn−1

)
=

(
2

1 + θ
− θn−1

)2

+ (2cγn(θ))
2 ≥ 0. (3.87)

Using this we can rearrange (3.86) and see that it is equivalent to

(2q − θn−1)2 − 4cγn(θ)

(
2

1 + θ
− θn−1

)
≥
(
(2q − θn−1)− 2γn(θ)c

)2
, (3.88)

which is in turn equivalent to 2
(
q − 1

1+θ

)
≥ γn(θ)c, and this inequality indeed holds

by (3.85). The proof of the induction step is complete.
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The proof of Lemma 3.27 is complete.

Remark 3.29. Our assumption c ∈
(

0, θ·(2θ−1)
(1+θ)2

]
that appears in the statement of Lemma

3.27 (or something similar to it) seems indispensable, because numerical simulations
suggest that the conclusions of Lemma 3.27 do not hold for big values of c.

3.7 The θ > θ∗ case

In this section we prove Lemma 3.11. First we show Lemma 3.30, which implies that
fθ,c(∞) is large if c is large. We will also argue that fθ,c(∞) < 1

1+θ if θ > θ∗ and c is small.

We then combine these facts to show that there exists a ĉ > 0 for which fθ,ĉ(∞) = 1
1+θ .

After that we will see in Lemma 3.31 and 3.32 that this fθ,ĉ satisfies the conditions of

Lemma 3.3 (and therefore it is the signature of a non-diagonal solution ρ̂(2) ∈ M(2)
θ of

the bivariate RDE (1.23)).

Lemma 3.30 (Lower bound on fθ,c). If θ ∈ (0, 1) and c ≥ 4, then

fθ,c(n) ≥ θn

2
+

√(
1

2
+ θ2n

)
· c, n ∈ N. (3.89)

Proof. We prove (3.89) by induction on n. The n = 0 case holds, since

fθ,c(0)
(3.42)
≥

1 +
√

8c(1 + θ)2

2(1 + θ)
≥ 1

4
+
√

2c
(∗)
≥ 1

2
+

√
3

2
c =

θ0

2
+

√(
1

2
+ θ2·0

)
· c, (3.90)

where (∗) holds if c ≥ 4. Now assume that n ≥ 1 and (3.89) holds for n− 1, and we want
to deduce that (3.89) also holds with n as well:

fθ,c(n)
(3.43)

=
θn−1 +

√
(2fθ,c(n− 1)− θn−1)2 − 4c · θ2n−2 · (1− θ2)

2

(∗∗)
≥

θn +
√

4( 1
2 + θ2(n−1))c− 4c · θ2n−2 · (1− θ2)

2
=
θn

2
+

√(
1

2
+ θ2n

)
· c,

where in (∗∗) we used the induction hypothesis and also that θn−1 ≥ θn.

Lemma 3.31 (fθ,c satisfies necessary conditions). If θ ∈ (0, 1) and c ≥ 0 are arbitrary,
then fθ,c satisfies conditions (iii), (iv) and (v) of Lemma 3.3, i.e.

1. fθ,c(n) is non-increasing in n,

2. (1 + θ) · fθ,c(0) ≤ 2fθ,c(1),

3. (1 + θ) · fθ,c(n) ≤ θ · fθ,c(n− 1) + fθ,c(n+ 1) for every n ≥ 1.

Proof. 1. We have already seen this in Corollary 3.21.

2. Recalling the notation introduced at the beginning of Section 3.3 (see in particu-
lar (3.37) and (3.40)), we want to show

(1 + θ)gθ,c(0) ≤ 2θψθ,c
(
gθ,c(0)

)
. (3.91)

Using the definition (3.36) of ψθ,c and Dθ,c one deduces that

the function x 7→ 2θψθ,c(x) is increasing and concave on Dθ,c, (3.92)

d

dx
2θψθ,c(x) = 2

2x− 1√
(2x− 1)2 − 4c · (1− θ2)

> 2 > 1 + θ, x ∈ Dθ,c, (3.93)

lim
x→∞

2θψθ,c(x)− (1 + θ)x = +∞. (3.94)
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It follows from (3.92) and (3.93) that

the equation 2θψθ,c(x) = (1 + θ)x has at most one solution in Dθ,c. (3.95)

Let y0 :=
√

(1− θ2)c + 1/2 denote the left endpoint of Dθ,c. One easily checks that
2θψθ,c(y0) ≥ (1 + θ)y0 holds if and only if c ≤ 1−θ

4(1+θ)3 holds. We will prove (3.91) by

treating the cases 2θψθ,c(y0) ≥ (1 + θ)y0 and 2θψθ,c(y0) < (1 + θ)y0 separately.

If 2θψθ,c(y0) ≥ (1+θ)y0 then 2θψθ,c(x) ≥ (1+θ)x for every x ∈ Dθ,c follows from (3.93),
and in particular (3.91) holds.

If 2θψθ,c(y0) < (1+θ)y0 then this inequality, (3.94) and (3.95) together imply that there
exists a unique x̃ ∈ Dθ,c such that 2θψθ,c(x̃) = (1+θ)x̃, moreover we obtain using (3.93)

that x̃ ≤ x implies 2θψθ,c(x) ≥ (1 + θ)x. One easily finds that x̃ =
1+
√

4(θ+3)(θ+1)c+1

θ+3 ,
thus we only need to check x̃ ≤ gθ,c(0), i.e., by the definition (3.37) of gθ,c(0) we need
to check that αθ(c) ≤ βθ(c) holds for all c ≥ 0, where

αθ(c) :=
1 +

√
4(θ + 3)(θ + 1)c+ 1

θ + 3
, βθ(c) :=

1 +
√

1 + 8(1 + θ)2c

2(θ + 1)
. (3.96)

The inverse functions of both c 7→ αθ(c) and c 7→ βθ(c) are quadratic polynomials:

α−1
θ (y) =

((θ + 3)y − 1)2 − 1

4(θ + 3)(θ + 1)
, β−1

θ (y) =
(2(θ + 1)y − 1)2 − 1

8(θ + 1)2
. (3.97)

It is enough to check that α−1
θ (y) ≥ β−1

θ (y) holds for all y ∈ R, and indeed we have

α−1
θ (y)− β−1

θ (y) = (1−θ)y2
4(θ+1) , which is nonnegative for all θ ∈ (0, 1], y ∈ R.

3. We have to show fθ,c(n) − fθ,c(n + 1) ≤ θ · (fθ,c(n − 1) − fθ,c(n)) for every n ≥ 1.
Rewriting this using the notation introduced in Section 3.3 as well as (3.40), we need
to show that the inequality gθ,c(n)− θgθ,c(n+ 1) ≤ gθ,c(n− 1)− θgθ,c(n) holds. Since
gθ,c(n+ 1) = ψθ,c(gθ,c(n)) and gθ,c(n) = ψθ,c(gθ,c(n− 1)) by (3.37), moreover we know
gθ,c(n) ≥ gθ,c(n − 1) (c.f. (3.38)), it is enough to show that ϕθ,c(x) is a decreasing
function of x, where ϕθ,c(x) := x − θψθ,c(x). This is indeed the case, since we have
ϕ′θ,c(x) = 1− 2x−1√

(2x−1)2−4c(1−θ2)
< 0 for every x in the domain Dθ,c of ϕθ,c(·).

Lemma 3.32 (Upper bound on fθ,ĉ(0)). If θ ∈ (0, 1) and fθ,ĉ(∞) = 1
1+θ , then fθ,ĉ(0) ≤ 1.

Proof. The conditions of Lemma 3.25 are fulfilled for fθ,ĉ, thus we may use (3.65) to
conclude fθ,ĉ(0) ≤ 1

1+θ ∨
2θ

1+θ ≤ 1.

Proof of Lemma 3.11. We will show that the function c 7→ fθ,c(∞) − 1
1+θ takes both

positive and negative values. This is enough to conclude the proof of the first statement
of Lemma 3.11, since this function is continuous by Lemma 3.5.

We know from (3.10) that fθ,0(n) = 1
1+θ for all n ∈ N. By the θ > θ∗ case of Lemma 3.9

we have f̃θ(∞) = limn→∞ f̃θ(n) < 0, therefore we can fix an n ∈ N such that f̃θ(n) < 0.
Recall from Definition 3.8 that f̃θ(n) denotes ∂

∂cfθ,c(n)
∣∣
c=0+

. We can thus fix a small but

positive value of c such that fθ,c(n) < fθ,0(n) = 1
1+θ . Now fθ,c(∞) < 1

1+θ follows from the
fact that fθ,c(n) decreases as n increases (c.f. (3.44)).

Next we show that there exists a c > 0 for which fθ,c(∞) > 1
1+θ . This follows from

Lemma 3.30, since for c ≥ 4 we have

lim
n→∞

fθ,c(n)
(3.89)
≥ lim

n→∞

(
θn

2
+

√(
1

2
+ θ2n

)
· c

)
=

√
1

2
c >

1

1 + θ
. (3.98)
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Therefore there exists ĉ > 0 such that fθ,ĉ(∞) = 1
1+θ .

Now we prove the second statement of Lemma 3.11. Since fθ,ĉ(∞) = 1
1+θ , condition

(ii) of Lemma 3.3 holds and condition (i) also holds by Lemma 3.32. By Lemma 3.31 we
also know that conditions (iii), (iv) and (v) of Lemma 3.3 are true. So we can conclude
that fθ,ĉ satisfies all of the conditions of Lemma 3.3.

Remark 3.33. In Figure 2 we can see f0.85,c(∞) as a function of c, where c is an element

of the interval c ∈
[
0, 0.85·(2·0.85−1)

(1+0.85)2

]
. The horizontal red line is the constant 1

1+θ

θ=0.85
= 20

37 .

We see that first it is decreasing, then it is increasing and goes to infinity, thus there
exists ĉ > 0 for which f0.85,ĉ(∞) = 20

37 . We get a similar picture for every θ ∈ (θ∗, 1).
We also note that Figure 2 suggests that Conjecture 1.15 holds, since this conjecture

is equivalent with the fact that there exists exactly one ĉ > 0 for which fθ,ĉ(∞) = 1
1+θ .

Figure 2: f0.85,c(∞)
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