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Abstract

In this paper, we show that the diagonal of a high-dimensional sample covariance
matrix stemming from n independent observations of a p-dimensional time series with
finite fourth moments can be approximated in spectral norm by the diagonal of the
population covariance matrix. We assume that n, p→ ∞ with p/n tending to a constant
which might be positive or zero. As applications, we provide an approximation of
the sample correlation matrix R and derive a variety of results for its eigenvalues.
We identify the limiting spectral distribution of R and construct an estimator for the
population correlation matrix and its eigenvalues. Finally, the almost sure limits of
the extreme eigenvalues of R in a generalized spiked correlation model are analyzed.
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1 Introduction

In time series analysis the notions of covariance and correlation play a vital role in
multivariate statistical analysis for parameter estimation, goodness-of-fit tests, change-
point detection, etc.; see for example the classical monographs [15, 40]. With the
rapid improvements of modern data collection devices, large data sets occur in many
fields such as finance, telecommunications and meteorology. In high-dimensional data
analysis, a good understanding of the population correlation and covariance matrices
provides important insight into the dependence structure and the geometry of the
underlying distribution. When considering random matrices X = Xn = (x1, . . . ,xn)

with high-dimensional time series observations xt = (X1t, . . . , Xpt)
′, t ∈ Z, the main

focus of interest has been on the asymptotic properties of the eigenvalues of the sample
covariance matrix S = n−1XX′; see for instance [7, 43]. A large amount of recent

*Fakultät für Mathematik, Ruhruniversität Bochum, Universitätsstrasse 150, D-44801 Bochum, Germany.
E-mail: johannes.heiny@rub.de

https://imstat.org/journals-and-publications/electronic-journal-of-probability/
https://doi.org/10.1214/22-EJP817
https://ams.org/mathscinet/msc/msc2020.html
https://arXiv.org/abs/2201.00916v1
mailto:johannes.heiny@rub.de


Large sample correlation matrices

literature is devoted to the study of S in a setting where the dimension p and and the
sample size n are of comparable magnitude, that is, the ratio p/n tends to a positive
constant as n, p→∞; see [18,28] for a discussion of typical applications where such an
assumption is natural.

Under finite variance of the entries of X, the spectral properties of the sample covari-
ance matrix S have been well analyzed in random matrix theory since the pioneering
work [35] where it is shown that for iid (independent and identically distributed) compo-
nents of xt the empirical spectral distribution of S converges weakly to the celebrated
Marčenko–Pastur law. For many time series models the limiting spectral distribution
can be characterized in terms of an integral equation for its Stieltjes transform. Explicit
solutions are more involved; see the monographs [6,7,43]. Over the last couple of years
significant progress on limiting spectral distributions for dependent time series was
achieved [9–11]. Subsequently, several ground-breaking results such as the convergence
of the largest eigenvalue λ1(S) and the smallest eigenvalue λp(S) to the edges of the
Marčenko–Pastur law [4,42], asymptotic normality of linear spectral statistics of S [2], or
its edge universality towards the Tracy-Widom law [28,39,41] were established. Apart
from the convergence of λp(S) all those results require a finite fourth moment of the
entries of X.

In case of infinite fourth moments, the theory for the eigenvalues and eigenvectors
of S is quite different from the aforementioned Marčenko–Pastur theory. For example,
if the distribution of the Xij is regularly varying with index α ∈ (0, 4), the properly
normalized largest eigenvalue of S converges to a Fréchet distribution with parameter
α/2. A detailed account on the developments in the heavy-tailed case can be found
in [1,12,17,23].

For the sample correlation matrix R = {diag(S)}−1/2S{diag(S)}−1/2, the situation
gets more complicated because of the specific nonlinear dependence structure caused by
the normalization {diag(S)}−1/2, which makes the analysis of this random matrix quite
challenging. As a consequence, the study of the high-dimensional sample correlation
matrix is more recent and somewhat limited. Sometimes practitioners would like to know
“to which extent the random matrix results would hold if one were concerned with sample
correlation matrices and not sample covariance matrices [19]”. In case the elements
of the data matrix X are iid with zero mean, variance equal to one and finite fourth
moment it is shown by Jiang [27] (see also [19] and [24]) that the Marčenko–Pastur law
is still valid for the sample correlation matrix R. The first result for the linear spectral
statistics of R was proved in [22] under existence of the fourth moment. Moreover, the
properly normalized largest off-diagonal entry of R converges to a Gumbel distribution
as first shown in [26] and recently generalized to a dependent structure of the population
distribution in [21] and to a point process setting in [25].

The aim of this paper is to provide asymptotic theory for the sample correlation matrix
and to estimate the population correlation matrix. We will show that, under a finite
fourth moment assumption (that cannot be improved), the diagonal matrix {diag(S)}−1/2
is approximated in spectral norm by the diagonal of the population covariance matrix,
which in turn greatly simplifies the study of R.

1.1 The model and notation

We consider n independent and identically distributed (iid) observations xt from a
p-dimensional time series. The observations have the structure xt = Azt, where

zt = (Z1t, Z2t, . . . , Zpt)
′ , t = 1, . . . , n ,

are iid random vectors with iid real-valued components with generic element Z
d
= Zit.

Throughout this paper, we assume that E[Z] = 0 and E[Z2] = 1, unless explicitly stated
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Large sample correlation matrices

otherwise. Moreover, A = Ap ∈ Rp×p is a sequence of p× p matrices satisfying

c1 < min
i=1,...,p

(ApA
′
p)ii ≤ ‖Ap‖2 ≤ c2 , p ≥ 1 , (1.1)

for some positive constants c1, c2. Note that the subscript p is usually suppressed in
our notation. For any p× p symmetric matrix C, we denote its ordered eigenvalues by
λ1(C) ≥ · · · ≥ λp(C). The spectral (or operator) norm of C is given as ‖C‖ =

√
λ1(CC′),

while the empirical spectral distribution of C is defined by FC(x) = 1
p

∑p
i=1 1{λi(C)≤x}

for x ∈ R.
Setting Z = (z1, . . . , zn) = (Zit)i=1,...,p;t=1,...,n our data matrix X becomes

X = AZ (1.2)

and the p× p sample covariance matrix S = (Sij) is given by

S =
1

n

n∑
t=1

xtx
′
t =

1

n
XX′ . (1.3)

Note that the columns of X are independent. The so-called population covariance matrix
Σ, which is defined as the covariance matrix of the first column of X, equals Σ = AA′.
Since X is centered, we have E[S] = Σ.

Remark 1.1. The uniform boundedness of (‖A‖) prevents an explosion of the largest
eigenvalue of S caused by the deterministic matrix A. Indeed, we have the inequality
‖S‖ ≤ ‖A‖2‖n−1ZZ′‖. The lower bound in (1.1) ensures that the variance of each
component of the observations does not vanish. This way we avoid asymptotically
non-random components of xt.

While the literature on large sample covariance matrices S is extensive, the sample
correlation matrix R = (Rij) = {diag(S)}−1/2S{diag(S)}−1/2 with entries

Rij =
Sij√
SiiSjj

, i, j = 1, . . . , p , (1.4)

has been less studied. Here, diag(S) denotes the diagonal matrix with the same diag-
onal elements as S. Sometimes we will simply refer to diag(S) as the diagonal of S.
Analogously, we define offdiag(S) = S− diag(S).

Next, we introduce the population correlation matrix Γ = (Γij) which takes the form

Γ = (diag(Σ))−1/2Σ(diag(Σ))−1/2 . (1.5)

For 1 ≤ i, j ≤ p, Rij is an asymptotically unbiased estimator of Γij . More precisely,

E[Rij ] = Γij +O(n−1) , as p→∞ ; (1.6)

see for instance [31, eq. (4)].

1.1.1 Growth rates

Both the dimension p and the sample size n are large and tend to infinity together. In
this paper, the sample size is a function of the dimension and the dimension increases at
most proportionally to the sample size. To be precise, we assume

n = np →∞ and
p

np
→ γ ∈ [0,∞) , as p→∞ . (Cp,n)

The constant γ controls the growth of the dimension relative to the sample size. Most of
the random matrix literature focuses exclusively on the case γ > 0, while the case γ = 0

plays only a minor role. In many cases, however, the wider range of possible growth
rates arising in the γ = 0 regime is desirable. The framework in this paper unifies these
two lines of research.
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1.2 First result: approximation of the diagonal of the sample covariance ma-
trix

We provide an approximation of diag(S). The next result shows that, despite the
dependence within the columns of X, the diagonal of the sample covariance matrix can
be approximated by diag(Σ) and the quality of the approximation improves if the order
of the ratio n/p increases.

Theorem 1.2. We consider the model X = AZ from (1.2), where the matrix A satis-
fies (1.1) and Z has iid entries. Assume the growth condition (Cp,n) and E[Z4] < ∞.
Then we have √

n/p ‖diag(S)− diag(Σ)‖ a.s.−→ 0 , p→∞ , (1.7)

and √
n/p ‖(diag(S))−1/2 − (diag(Σ))−1/2‖ a.s.−→ 0 , p→∞ . (1.8)

The proof will be presented in Section 3. Theorem 1.2 is the key to deriving a
multitude of asymptotic results for the sample correlation matrix R,

R = (diag(S))−1/2S(diag(S))−1/2 . (1.9)

We have R = YY′, where

Y = n−1/2 (diag(S))−1/2X and Yij =
Xij√∑n
`=1X

2
i`

.

In general, any two entries of Y = (Yij) are dependent. This is in stark contrast to (1.3)
because the data matrix X possesses independent columns. The full dependence within
Y requires a more careful analysis and considerably complicates the proofs of results
about R = YY′. Even worse, the dependence caused by multiplication with (diag(S))−1/2

is nonlinear and moment calculations of self-normalized random variables like Yij are
not available in the literature. In this light, Theorem 1.2 facilitates the derivation of limit
theory for sample correlation matrices immensely. By replacing the stochastic diag(S)

with the deterministic diag(Σ) one removes the dependence of the columns and the
dependence within a column is linear.

Remark 1.3. (1) It is important to note that the moment condition E[Z4] < ∞ in
Theorem 1.2 cannot be improved. In fact, in the special case A = I (the p× p identity
matrix) and p/n → γ > 0, the limit relation (1.7) is equivalent to E[Z4] < ∞, by
Lemma A.1.

(2) If we assume that |Z| is regularly varying with index α ∈ (0, 4) implying E[Z4] =

∞, then the precise behavior of ‖ diag(S) − I‖ can be deduced from [23]. Thus, let
P(|Z| > x) = x−αL(x) for x > 0, where L is a slowly varying function (at infinity). Then
an application of Lemma 3.8 in [23] yields that n(np)−2/α`(np)‖ diag(S)− I‖ converges to
a Fréchet distributed random variable η with parameter α/2, as p→∞, for some slowly
varying function `. Since α ∈ (0, 4), we have

lim
p→∞

√
n/p

n(np)−2/α`(np)
=∞ ,

from which it is easy to conclude that
√
n/p ‖diag(S)− I‖ → ∞, as p→∞.

The rest of this paper is structured as follows. In Section 2, Theorem 1.2 will be
crucial in

• approximating the sample correlation matrix R,

• identifying the limiting spectral distribution of R,
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• determining under which growth rates R is a consistent estimator for the popu-
lation correlation matrix Γ and constructing such an estimator if straightforward
estimation is biased,

• estimating the population spectrum (λ1(Γ), . . . , λp(Γ),

• finding the a.s. limits of sample eigenvalues in a generalized spiked correlation
model.

The proofs are collected in Section 3, while Appendix A contains some useful auxiliary
results.

2 Applications to sample correlation matrices

From (1.5) we know the connection between the population correlation matrix Γ

and the population covariance matrix Σ. An important question is how their empirical
versions R and S are related.

2.1 Approximation of the sample correlation matrix

In view of Theorem 1.2, it is natural to expect that asymptotically diag(S) can be
replaced by diag(Σ) in (1.9).

Theorem 2.1. We consider the model X = AZ from (1.2), where the matrix A satis-
fies (1.1) and Z has iid entries. Assume the growth condition (Cp,n) and E[Z4] < ∞.
Then we have, as p→∞,√

n

p
‖R− (diag(Σ))−1/2S(diag(Σ))−1/2‖ a.s.−→ 0 . (2.1)

Proof. By the triangle inequality, one has√
n

p
‖R− (diag(Σ))−1/2S(diag(Σ))−1/2‖

=

√
n

p
‖(diag(S))−1/2S(diag(S))−1/2 − (diag(Σ))−1/2S(diag(Σ))−1/2‖

≤
√
n

p

(
‖(diag(S))−1/2S

[
(diag(S))−1/2 − (diag(Σ))−1/2

]
‖

+ ‖
[
(diag(S))−1/2 − (diag(Σ))−1/2

]
S(diag(Σ))−1/2‖

)
≤
√
n

p
‖(diag(S))−1/2 − (diag(Σ))−1/2‖‖S‖(‖(diag(S))−1/2‖+ ‖(diag(Σ))−1/2‖) a.s.−→ 0 .

For the last step we used Theorem 1.2, the fact that ‖S‖ ≤ ‖n−1ZZ′‖‖AA′‖ is bounded

by a constant for sufficiently large p, and ‖(diag(Σ))−1/2‖ ≤ c−1/21 by (1.1).

Consider the transformed data matrix Q = (diag(Σ))−1/2X and the associated sample
covariance matrix SQ = n−1QQ′. Then (2.1) reads as√

n

p
‖R− SQ‖ a.s.−→ 0 , (2.2)

from which we see that the sample correlation matrix is close to the matrix SQ.
Since correlations are scale invariant one can always renormalize the data first to

ensure that the empirical variance in each component is 1. If diag(Σ) = I, we obtain√
n/p ‖R − S‖ a.s.−→ 0 as a special case. As a consequence, R and S possess the same

spectral properties.
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Thanks to Theorem 2.1 many interesting results about the spectrum of R can be
directly deduced from the theory of large sample covariance matrices. As examples
we will present the limiting spectral distribution of R and the behavior of a variety of
eigenvalues of R.

As regards the eigenvalues, an application of Weyl’s perturbation inequality yields√
n

p
max
i=1,...,p

∣∣∣λi(R)− λi(SQ)
∣∣∣ ≤√n

p
‖R− SQ‖ a.s.−→ 0 . (2.3)

2.2 Limiting spectral distribution

A major problem in random matrix theory is to find the weak limit of a sequence
of empirical spectral distributions. By almost sure (a.s.) weak convergence of the
sequence of empirical spectral distributions (FRp

) to a probability distribution F , we
mean limp→∞ FRp

(x) = F (x) a.s. for all continuity points of F . In this context a useful
tool is the Stieltjes transform of FR:

sR(z) =

∫
R

1

x− z
dFR(x) =

1

p
tr(R− zI)−1 , z ∈ C+ ,

where C+ denotes the complex numbers with positive imaginary part. Almost sure weak
convergence of (FR) to F is equivalent to sFR

(z)→ sF (z) a.s. for all z ∈ C+.
Our approximation of the sample correlation matrix R also reveals its limiting spectral

distribution in a straightforward way. By [7, Theorem A.45], the Lévy distance between
the empirical spectral distributions of

√
n/pR and

√
n/p (diag(Σ))−1/2S(diag(Σ))−1/2 is

bounded by the left-hand side in (2.1). This observation combined with the limit theory for
empirical spectral distributions of sample covariance matrices; see [43, Theorem 2.14]
and [36, Theorem 1]; yields the following result.

Theorem 2.2. Assume the conditions of Theorem 1.2 and that the empirical spectral
distribution of

Γ = (diag(Σ))−1/2Σ(diag(Σ))−1/2

(or equivalently Σ(diag(Σ))−1) converges to a probability distribution H(·).

1. If p/n→ γ ∈ (0,∞), then FR converges weakly, with probability one, to a unique
distribution function Fγ,H , whose Stieltjes transform s satisfies

s(z) =

∫
dH(t)

t(1− γ − γs(z))− z
, z ∈ C+ . (2.4)

2. If p/n→ 0, then F√
n/p (R−Γ)

converges weakly, with probability one, to a unique

distribution function F , whose Stieltjes transform s satisfies

s(z) = −
∫

dH(t)

z + ts̃(z)
, z ∈ C+ , (2.5)

where s̃ is the unique solution to s̃(z) = −
∫

(z + ts̃(z))−1tdH(t) and z ∈ C+.

Theorem 2.2 is interesting for applications since it allows a wide range of dependence
structures. Part (1) improves Theorem 1 in [19] where E[Z4(log |Z|)2] <∞ was required.
In the literature, (2.4) is sometimes written as

z = − 1

s(z)
+ γ

∫
tdH(t)

1 + ts(z)
, z ∈ C+ ,

where s(z) = −(1− γ)/z + γs(z).
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Example 2.3. We investigate the special case A = I in Theorem 2.2. The empirical
spectral distribution of A is the Dirac measure at 1 and hence H = δ{1}.

1. If p/n→ γ ∈ (0,∞), equation (2.4) reduces to

s(z) =
1

1− γ − γs(z)− z
, z ∈ C+ ,

with solution

sFγ (z) =
1− γ − z +

√
(1 + γ − z)2 − 4γ

2γz
. (2.6)

This is the Stieltjes transform of the famous Marčenko–Pastur law Fγ . If γ ∈ (0, 1],
Fγ has density,

fγ(x) =

{
1

2πxγ

√
(b− x)(x− a) , if a ≤ x ≤ b,

0 , otherwise,
(2.7)

where a = (1−√γ)2 and b = (1 +
√
γ)2. If γ > 1, the Marčenko–Pastur law has an

additional point mass 1− 1/γ at 0.

2. Next, we assume p/n→ 0. From (2.5) we obtain s(z) = −(z+ s(z))−1 , z ∈ C+, with
solution

sG(z) =

√
z2 − 4− z

2
.

sG is the Stieltjes transform of the semicircular law whose density is given by

g(x) = 1
2π

√
4− x21[−2,2](x) , x ∈ R .

2.3 Extreme eigenvalues

We determine the almost sure limits of the largest and smallest eigenvalues of R and
S in the case A = I. Since the rank of S is at most min(p, n) we have λmin(p,n)+1(S) = 0.
Therefore we interpret λmin(p,n)(S) as the smallest eigenvalue of S.

Theorem 2.4. We consider the iid case X = Z. Assume the growth condition (Cp,n) and
E[Z4] <∞. Then

lim
p→∞

√
n/p (λ1(R)− 1) = 2 +

√
γ and lim

p→∞

√
n/p (λmin(p,n)(R)− 1) = −2 +

√
γ a.s.

(2.8)
as well as

lim
p→∞

√
n/p (λ1(S)− 1) = 2 +

√
γ and lim

p→∞

√
n/p (λmin(p,n)(S)− 1) = −2 +

√
γ a.s.

(2.9)

A nice feature of this result is that it includes both cases γ > 0 and γ = 0 which are
usually separated in the random matrix literature. The proof of Theorem 2.4 is provided
in Section 3.

The novelty of Theorem 2.4 lies in the case γ = 0, except the limit of λ1(S) which
was shown in [16, Theorem 3]. For γ > 0 equivalent statements to (2.8) and (2.9) were
first proved in [5,27,44]. In this case Theorem 2.4 asserts that the largest and smallest
eigenvalues converge to the right and left endpoints, respectively, of the Marčenko–
Pastur law Fγ ; see (2.7). For p/n → 0, the extreme eigenvalues tend to one, but after
rescaling and centering they converge to the endpoints of the semicircular law.
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2.4 Operator norm consistent estimation of sample correlation matrices

Under the assumptions of Theorem 2.4 it follows from (2.8) that√
n/p ‖R− I‖ a.s.−→ 2 +

√
γ , p→∞ . (2.10)

Such a result is quite informative regarding the operator norm consistent estimation
of sample correlation matrices and will be generalized in the next theorem to general
population correlation matrices.

Theorem 2.5. Under the assumptions of Theorem 1.2 we have, as p→∞,

‖R− Γ‖ = O(
√
p/n) a.s.

Proof. By assumption, it holds ‖A‖ ≤ c2 and mini Σii > c1 for some positive constants
c1, c2, where we recall that Σ = AA′. We have

‖R− Γ‖ = ‖(diag(S))−1/2S(diag(S))−1/2 − (diag(Σ))−1/2Σ(diag(Σ))−1/2‖ .

Using the triangle inequality to replace diag(Σ) by diag(S), an application of Theorem 1.2
yields √

n/p ‖R− Γ‖ ≤ c
√
n/p ‖S−Σ‖ ≤ c

√
n/p ‖n−1ZZ′ − I‖‖Σ‖ = O(1) a.s. ,

where Theorem 2.4 was used in the last step. Here and throughout this paper, c stands
for some positive constant whose value is not important and may change from line to
line.

Hence, operator norm consistent estimation is only possible if p/n→ 0. Intuitively,
this makes a lot of sense. Indeed, it is natural to expect that R constitutes a better
estimator for Γ if the sample size n grows at a faster rate than the dimension p.

If p/n → γ > 0, we have seen in Theorem 2.5 that ‖R − Γ‖ = O(1) = ‖S −Σ‖ a.s.

Estimators R̂, Ŝ based on R and S, respectively, such that as p→∞,

‖R̂− Γ‖ = o(1) = ‖Ŝ−Σ‖ a.s. (2.11)

are more desirable. So how can we construct them? The authors of [13,14] considered
estimators of the form

Ŝij =
(
Sij1(|Sij | > tp)

)
and R̂ij =

(
Rij1(|Rij | > tp)

)
, (2.12)

for some threshold sequence tp → 0. For tp = c
√

(log p)/n, [13, Theorem 1] shows (2.11)
under some technical conditions on A and the assumption that the iid noise (Zij) is
standard Gaussian. Gaussianity is a very strong assumption. We will only require a finite
sixth moment.

Theorem 2.6. We consider the iid case X = Z. Assume p/n → γ > 0 and E[Z6] < ∞.
Set

tp = M

√
log p

n
, for some M > 2 .

Then the estimators R̂, Ŝ defined in (2.12), satisfy (2.11).

Proof. In view of Theorem 2.1, it suffices to prove

‖R̂− I‖ = o(1) a.s.

Define the random variable

∆p = 1
(

max
1≤i 6=j≤p

|Rij | > tp

)
.
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Since E[Z6] <∞ the results in [32] imply√
n

log p
max

1≤i6=j≤p
|Rij |

a.s.−→ 2 , p→∞;

see also [26,33,34] for the fluctuations of the largest off-diagonal entry of R. This implies
∆p = 0 a.s. for large p.

We have, for p→∞,

‖R̂− I‖ ≤ ‖diag(R̂)− I‖+ ‖ offdiag(R̂)∆p‖+ ‖ offdiag(R̂)(1−∆p)‖ = o(1) a.s.

The first summand converges a.s. to zero by Theorem 1.2; the second due to the
boundedness of ‖ offdiag(R̂)‖ and ∆p

a.s.−→ 0; and the third one is identically zero by
construction.

The assumption E[Z6] <∞ allows a simple proof but is not necessary. For a weaker
condition we refer to Theorems 2.3 and 2.4 in [32].

In the general case, i.e. A 6= I, the estimators R̂ and Ŝ, with tp = M
√

(log p)/n and
the constant M depending on a bound of ‖A‖, yield good approximations as well. Indeed,
since

S = A diag
(
1
nZZ′)A′ + A offdiag

(
1
nZZ′)A′

and
‖A diag

(
1
nZZ′)A′ −Σ‖ a.s.−→ 0 ,

one just needs certain technical assumptions on A (similar to those in [13,14]) to ensure
that the thresholded version of A offdiag

(
1
nZZ′)A′ converges to zero in spectral norm.

We omit details.

2.5 Estimating the population eigenvalues

In this subsection, we propose a procedure to estimate

spec(Γ) := (λ1(Γ), λ2(Γ), . . . , λp(Γ))

given some time series observations (x1, . . . ,xn) = X from the model X = AZ. For a
general introduction to the topic of spectrum reconstruction the interested reader is
referred to [30, Section 1].

In the iid case, i.e. Xit = Zit, we have seen in (2.8) that if p/n→ γ ∈ (0, 1), one has

lim
p→∞

λ1(R) = (1 +
√
γ)2 > λ1(Γ) = 1 = λp(Γ) > (1−√γ)2 = lim

p→∞
λp(R) a.s.

This means that in high dimensions the eigenvalues of R are not good estimators for the
eigenvalues of Γ. Our goal is to obtain an accurate approximation of the vector spec(Γ).

To this end, we need some notation. For an n × n matrix M = (Mij) and σ =

(σ1, . . . , σk) ∈ {1, . . . , n}k, k ≥ 1, let

M(σ) =

k∏
i=1

Mσi,σi+1
,

where σk+1 is interpreted as σ1. Recall that for k ≥ 1,

tr(Σk) =

p∑
i=1

(λi(Σ))k and tr(Γk) =

p∑
i=1

(λi(Γ))k .

The following result [30, Fact 2] is useful to estimate population covariance eigenvalues.
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Lemma 2.7. We consider the matrix X = AZ in (1.2). Let k ≥ 1 and σ1, . . . , σk ∈
{1, . . . , n} be pairwise distinct. Then we have

E[(X′X)(σ)] = tr(Σk) . (2.13)

Proof. Recall that Σ = AA′ and

Xit =

p∑
k=1

AikZkt and (X′X)ij =

p∑
t=1

XtiXtj .

We have

E[(X′X)(σ)] = E
[ k∏
i=1

p∑
ti=1

Xti,σiXti,σi+1

]
=

p∑
t1,...,tk=1

E
[ k∏
i=1

Xti,σiXti−1,σi

]

=

p∑
t1,...,tk=1

k∏
i=1

E
[
Xti,σiXti−1,σi

]
=

p∑
t1,...,tk=1

k∏
i=1

Σti,ti−1

= tr(Σk) ,

where t0 was interpreted as tk.

For k ≥ 1 we call σ = (σ1, . . . , σk) ∈ {1, . . . , n}k a k-path. While (X′X)(σ) is an
unbiased estimator for tr(Σk), its variance is quite large. The natural way to reduce the
variance would be to average over all k-paths with distinct entries. However, such an
implementation comes at a high computational price. If we instead average over all k-
paths, we obtain tr(Sk), which is easy to compute but biased in high dimensions. In [30],
a “theoretically optimal and computationally efficient” algorithm to overcome this issue is
studied. They suggest to average over all

(
n
k

)
increasing k-paths; i.e. σ1 < σ2 < · · · < σk;

and consider (
n

k

)−1 ∑
σ increasing k-path

(X′X)(σ) (2.14)

By [30, Lemma 1], the expression in (2.14) can be written as(
n

k

)−1
tr
(
Gk−1X′X

)
, (2.15)

where G denotes the matrix X′X with the diagonal and lower triangular entries set to
zero.

Based on Theorem 1.2 and (2.15) we propose a 3-step-procedure to estimate spec(Γ)

from the data matrix X.

Step 1. Set B := diag(S) and consider the modified sample covariance matrix

1
nB−1/2XX′B−1/2 .

If we interpret B as deterministic for a second, the associated population covariance
matrix would be B−1/2ΣB−1/2. For different values of k ≥ 2, we estimate

mk = tr
((

B−1/2ΣB−1/2
)k)

via (2.15) and set

m̂k =

(
n

k

)−1
tr
(
Gk−1XB−1X′

)
,
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where G denotes the matrix XB−1X′ with the diagonal and lower triangular entries set
to zero. Some properties of this estimator are discussed in [30].

Step 2. By Theorem 1.2, diag(Σ) can be approximated by B. Indeed, B concentrates
closely around diag(Σ). This implies that for ` > 0,(

p, m̂2, m̂3, . . . , m̂`

)
(2.16)

estimates ( p∑
i=1

λi(Γ),

p∑
i=1

(λi(Γ))2, . . . ,

p∑
i=1

(λi(Γ))`
)
.

Step 3. Based on the (estimated) moments in (2.16), we can finally estimate

(λ1(Γ), λ2(Γ), . . . , λp(Γ)) .

The introduction of [30] contains an overview of various approaches to the spectrum esti-
mation given moments. For an implementation of the estimation of spec(Γ) given (2.16),
and L1 error bounds we refer to Section 3 in [30].

Remark 2.8. The paper [29] provides a detailed overview about the characterization
of probability distributions through their moments. It discusses Carleman’s condition,
which is widely used in random matrix theory, and many more necessary and sufficient
criteria.

2.6 A generalized spiked population correlation model

The spiked population covariance model was introduced by Johnstone [28] in 2001.
In its base form, all the eigenvalues of the population covariance matrix are one, except
for a fixed number of so-called spike eigenvalues. The motivation behind the spiked
population covariance model was to provide a better fit to time series in finance and other
areas. Since its birth in 2001, many generalizations of the original spiked population
covariance model have been proposed, and the effects of the spikes on the sample
eigenvalues have been studied; see [8,37,38] and the references therein.

In the (generalized) spiked population correlation model the population correlation
matrix Γ has the blockdiagonal structure

Γp =

(
Λ 0

0 Vp

)
∈ Rp×p . (2.17)

We assume that

(A1) Λ is a positive semidefinite m×m matrix for some fixed m > 0 and diag(Λ) = Im.
The eigenvalues of Λ in decreasing order are

α1, . . . , α1︸ ︷︷ ︸
m1

, α2, . . . , α2︸ ︷︷ ︸
m2

, . . . , αK , . . . , αK︸ ︷︷ ︸
mK

,

where the multiplicities (mi) of the eigenvalues satisfy m1 + · · ·+mK = m.

(A2) The empirical spectral distribution of Vp converges, with probability one, weakly
to a probability distribution H as p→∞.

(A3) At least one αi does not lie in supp(H), the support of H.

(A4) We require
lim
p→∞

max
j=1,...,p−m

d(βp,j , supp(H)) = 0 ,

where βp,1, . . . , βp,p−m are the eigenvalues of Vp and d(x,A) denotes the Euclidean
distance of the point x from the set A.
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In words, the eigenvalues of Vp lie in supp(H). Since the spectra of Vp and Γp
differ by exactly m values, Vp and Γp possess the same limiting spectral distribution H.
Eigenvalues αi /∈ supp(H) are called spike eigenvalues or simply spikes. By construction,
a spike αi is an eigenvalue of Γp with multiplicity mi for all p sufficiently large.

The eigenvalues of Γp are

α1, . . . , α1︸ ︷︷ ︸
m1

, α2, . . . , α2︸ ︷︷ ︸
m2

, . . . , αK , . . . , αK︸ ︷︷ ︸
mK

, βp,1, . . . , βp,p−m .

We denote their ordered values by δ1 ≥ δ2 ≥ · · · ≥ δp. For a spike eigenvalue αi let

νi + 1 := min{1 ≤ ` ≤ p : δ` = αi} . (2.18)

In other words, there are νi eigenvalues of Γp larger than αi and p − νi −mi smaller
ones.

For α ∈ (supp(H))c we define the function

ψ(α) = ψγ,H(α) = α+ γ

∫
tα

α− t
dH(t) . (2.19)

Some properties of ψ are discussed in [8]. For our purpose it is only important to know
that ψ is indeed well defined. Its derivative is

ψ′(α) = 1− γ
∫

t2

(α− t)2
dH(t) . (2.20)

The next theorem explains how spikes of the population correlation matrix Γ influence
the spectrum of the sample correlation matrix R.

Theorem 2.9. We consider the model X = AZ from (1.2), where the matrix A satis-
fies (1.1) and Z has iid entries. Let p/n→ γ > 0, E[Z4] <∞ and assume (A1)-(A4).

• For a spike eigenvalue αi of multiplicity mi satisfying ψ′(αi) > 0, we have

lim
p→∞

λνi+`(R) = ψ(αi) a.s. , 1 ≤ ` ≤ mi .

• For a spike eigenvalue αi of multiplicity mi satisfying ψ′(αi) ≤ 0, we have

lim
p→∞

λνi+`(R) = F−1γ,H(H(αi)) a.s. , 1 ≤ ` ≤ mi ,

where Fγ,H is the limiting spectral distribution of R; see Theorem 2.2 part (1); and
F−1γ,H(H(αi)) is the H(αi)-quantile of Fγ,H .

Proof. By (2.3), the statements of the theorem follow immediately from Theorems 4.1
and 4.2 in [8]; compare also with Theorem 11.3 in [43].

Example 2.10. We consider a special case of Theorem 2.9. Let γ ∈ (0, 1], m = 2 and
the eigenvalues of Λ be (α1, α2) = (1 + δ, 1 − δ) for some δ ∈ [0, 1]. Choose Vp = Ip−m,
the (p−m)-dimensional identity matrix. Then the limiting spectral distribution H is the
Dirac measure at 1 and we have for α 6= 1,

ψ(α) = α+
γα

α− 1
and ψ′(α) = 1− γ

(α− 1)2
.

A simple calculation shows that ψ′(α) > 0 if and only if α > 1 +
√
γ or α < 1−√γ.

Therefore, if δ ≤ √γ, there are no spike eigenvalues. The extreme eigenvalues of R

tend towards the endpoints of the support of the limiting spectral distribution, namely

λ1(R)
a.s.−→ (1 +

√
γ)2 and λp(R)

a.s.−→ (1−√γ)2 , p→∞ .
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If δ >
√
γ, then α1 and α2 are spikes with multiplicity 1 and Theorem 2.9 yields

λ1(R)
a.s.−→ ψ(α1) > (1 +

√
γ)2 and λp(R)

a.s.−→ ψ(α2) < (1−√γ)2 , p→∞ .

In this basic example δ quantifies the deviation of spec(Λ) from the support of the limiting
spectral distribution H. The limits of the extreme sample eigenvalues are only pulled out
of the support of the limiting spectral distribution of R if δ exceeds a certain threshold.

3 Proofs

3.1 Proof of Theorem 1.2

We start with the proof of (1.7). Recall that

X = AZ and S =
1

n
XX′ , (3.1)

where Z is a p × n matrix of iid random variables with generic entry Z such that
E[Z] = 0,E[Z2] = 1 and E[Z4] <∞.

We have

√
n/p ‖diag(S)− diag(AA′)‖ =

√
n/p max

i=1,...,p

∣∣∣ 1
n

n∑
t=1

( p∑
j=1

AijZjt

)2
−

p∑
j=1

A2
ij

∣∣∣ .
Since c−1 ≤ mini

∑p
j=1A

2
ij ≤ maxi

∑p
j=1A

2
ij ≤ ‖A‖2 ≤ c for some constant c > 0, one

can assume without loss of generality that
∑p
j=1A

2
ij = 1. Otherwise simply divide the ith

diagonal entry by
∑p
j=1A

2
ij . Thus, we need to show√
n/p ‖diag(S)− I‖ a.s.−→ 0 , p→∞ .

The proof will be in 3 steps.

1. Truncation: Define the truncated random variables Ẑij = Zij1(|Zij | ≤ δp(np)
1/4)

for a suitable sequence δp → 0 and construct X̂ and Ŝ analogously to (3.1). We will

show that
√
n/p ‖diag(S)− diag(Ŝ)‖ a.s.−→ 0 as p→∞.

2. Renormalization: Set Z̃ij =
Ẑij−E[Ẑij ]√

Var(Ẑij)
. For the matrix S̃, defined analogously

to (3.1), we then show that
√
n/p ‖diag(S̃)− diag(Ŝ)‖ a.s.−→ 0 as p→∞.

3. We prove that
√
n/p ‖ diag(S̃)− I‖ a.s.−→ 0 as p→∞.

Step (1)

For i, j ≥ 1 let Ẑij = Zij1(|Zij | ≤ δp(np)1/4), where the sequence of positive δp satisfies

lim
p→∞

δp = 0 , lim
p→∞

δ−4p E[|Z|41(|Z| > δp(np)
1/4)] = 0 , δp(np)

1/4 →∞ . (3.2)

We refer to [16, p. 1408] for the construction of δp. In what follows, we will often drop
the indices to simplify notation.

For the matrix Ẑ = (Ẑij)i≤p;j≤n it is shown in [16, p. 1409] that

P
(

lim sup
p→∞

{Z 6= Ẑ}) = 0 ,

which implies
√
n/p ‖ diag(S)− diag(Ŝ)‖ a.s.−→ 0 as p→∞, where Ŝ = AẐẐ′A′.

EJP 27 (2022), paper 94.
Page 13/20

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP817
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Large sample correlation matrices

Step (2)

We introduce the matrix Z̃ = (Z̃ij)i≤p,j≤n with entries Z̃ij =
Ẑij−E[Ẑij ]√

Var(Ẑij)
and define S̃

analogously to (3.1), i.e., S̃ = AZ̃Z̃′A′. Then we have

‖diag(Ŝ)− diag(S̃)‖ = max
i≤p
|Ŝii − S̃ii| ≤ ‖Ŝ− S̃‖

=
1

n
‖A(ẐẐ′ − Z̃Z̃′)A′‖ ≤ ‖A‖2 1

n
‖ẐẐ′ − Z̃Z̃′‖ .

Since (‖A‖) is uniformly bounded, it is enough to prove that

(np)−1/2 ‖ẐẐ′ − Z̃Z̃′‖ a.s.−→ 0 , p→∞ . (3.3)

By construction, we have E[Ẑ11]→ 0 and Var(Ẑ11)→ 1. More precisely, one gets

|E[Ẑ11]| = |E[Z111(|Z11| > δ(np)1/4)]| ≤ E
[
|Z11|

∣∣∣ Z11

δ(np)1/4

∣∣∣31(|Z11| > δ(np)1/4)
]

= o((np)−3/4) (3.4)

and

|Var(Ẑ11)− 1| =
∣∣E[Z2

111(|Z11| > δ(np)1/4)] + o((np)−3/2)
∣∣ = o((np)−1/2) . (3.5)

In view of the boundedness of the largest eigenvalue of n−1ẐẐ′ and (3.4), we have a.s.

‖ẐẐ′‖ = O(n) and ‖E[Ẑ]‖2 = np|E[Ẑ11]|2 = o((np)−1/2) . (3.6)

By multiplying out one obtains

ẐẐ′ − Z̃Z̃′

(np)1/2
=

(Var(Ẑ11)− 1)ẐẐ′

Var(Ẑ11)(np)1/2
+

ẐE[Ẑ′] + E[Ẑ]Ẑ′ − E[Ẑ]E[Ẑ′]

Var(Ẑ11)(np)1/2

and therefore we conclude by (3.5) and (3.6) that

‖ẐẐ′ − Z̃Z̃′‖
(np)1/2

≤ c |Var(Ẑ11)− 1|‖ẐẐ′‖
(np)1/2

+
c ‖E[Ẑ]E[Ẑ′]‖

(np)1/2
+
c ‖Ẑ‖‖E[Ẑ]‖

(np)1/2

= o(p−1) + o(n−1p−1) + o(n−1/4p−3/4) a.s.

Step (3)

By steps (1) and (2), it is sufficient to work with the truncated and renormalized variables
Z̃ij and the matrix S̃. For simplicity of notation we will omit the tilde in the rest of
this proof. Hence, in addition to E[Z] = 0,E[Z2] = 1 and E[Z4] < ∞ we assume
|Z| ≤ δp(np)1/4, where the sequence of positive δp satisfies δp → 0 and δp(np)1/4 →∞ as
p→∞.

Our goal is to prove that√
n/p ‖ diag(S)− I‖ =

√
n/p max

i=1,...,p
|Sii − 1| a.s.−→ 0 , p→∞ . (3.7)

For 1 ≤ i ≤ p we have

Sii =
1

n

p∑
j=1

A2
ij

n∑
t=1

Z2
jt +

1

n

n∑
t=1

p∑
j1 6=j2=1

Aij1Aij2Zj1tZj2t =: Si(1) + Si(2) . (3.8)
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Due to diag(AA′) = I, we observe that E[Sii] = 1. Clearly,

max
i=1,...,p

√
n/p |Sii − 1| ≤ max

i=1,...,p

√
n/p |Si(1)− 1|+ max

i=1,...,p

√
n/p |Si(2)| . (3.9)

Writing Dj = n−1
∑n
t=1 Z

2
jt one sees that

max
i=1,...,p

√
n/p |Si(1)− 1| ≤ max

i=1,...,p

√
n/p

p∑
j=1

A2
ij |Dj − 1|

≤
√
n/p max

i=1,...,p
|Di − 1| a.s.−→ 0 ,

(3.10)

by Lemma A.1. For the second summand in (3.9), we will show that for any ε > 0, ` > 0,

P
(

max
i=1,...,p

√
n/p |Si(2)| > ε

)
= o(p−`) , (3.11)

from which maxi=1,...,p

√
n/p |Si(2)| a.s.−→ 0 follows via the first Borel–Cantelli lemma. In

view of (3.10), the proof of (3.7) is complete.

It remains to show (3.11). Let

Yit :=

p∑
j1 6=j2=1

Aij1Aij2Zj1tZj2t

so that Si(2) = 1
n

∑n
t=1 Yit. First, we derive moment inequalities for Yit. Clearly E[Yit] = 0.

Since |Z| ≤ δ(np)1/4 we have for q ≥ 2 that

(E[|Z|q])1/q ≤
(
E[Z2](δ(np)1/4)q−2

)1/q
= (δ(np)1/4)1−2/q .

We notice that

p∑
j1 6=j2=1

A2
ij1A

2
ij2 ≤

( p∑
j=1

A2
ij

)2
= 1 .

Therefore an application of Lemma A.2 yields

E[|Yit|q] ≤ Cq qq (δ2
√
np)q−2 , q = 2, 3, . . . , (3.12)

where the positive constant C does not depend on q.

For an appropriate sequence δ → 0 with δ4np→∞ we choose an integer sequence
h = hp →∞ such that as p→∞,

h

log p
→∞ ,

h2δ2

log(pδ4)
→ 0 and

h

log(pδ4)
> 1 . (3.13)

Following [16, p. 1412] we have for ε > 0,
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P
(

max
i=1,...,p

√
n/p |Si(2)| > ε

)
= P

(
max
i=1,...,p

(np)−1/2
∣∣∣ n∑
t=1

Yit

∣∣∣ > ε
)

≤
p∑
i=1

P
(

(np)−1/2
∣∣∣ n∑
t=1

Yit

∣∣∣ > ε
)

≤
p∑
i=1

ε−h(np)−h/2E
[∣∣∣ n∑
t=1

Yit

∣∣∣h]
(1)

≤
p∑
i=1

ε−h(np)−h/2
h/2∑
m=1

∑
1≤t1<···<tm≤n∑

i1+···+im=h
ij≥2

(
h

i1, . . . , im

)
E[|Yit1 |i1 ]E[|Yit2 |i2 ] · · ·E[|Yitm |im ]

(2)

≤ p ε−h(np)−h/2
h/2∑
m=1

nm
∑

i1+···+im=h
ij≥2

(
h

i1, . . . , im

)
Chhh(δ2

√
np)h−2m

(3)

≤ p ε−h(Chδ2)h
h/2∑
m=1

mh(pδ4)−m
(4)

≤ p ε−h(Chδ2)h
h

2

( h

log(pδ4)

)h
=
((ph

2

)1/h Ch2δ2

ε log(pδ4)

)h (5)
= o(p−`)

for any ` > 0.

Below are some additional explanations of the inequalities:

(1) Multinomial theorem and E[Yit] = 0.

(2) We used (3.12),
∑

1≤t1<···<tm≤n 1 =
(
n
m

)
≤ nm and

∏
i
ij
j ≤ hh.

(3) Using
∑
i1+···+im=h;ij≥2

(
h

i1,...,im

)
≤ mh and simplifying.

(4) We apply the elementary inequality

a−ttb ≤
( b

log a

)b
, for a > 1, b > 0, t ≥ 1 and

b

log a
> 1 .

(5) In view of (3.13), (ph/2)1/h converges to 1 and we have for sufficiently large p that(ph
2

)1/h Ch2δ2

ε log(pδ4)
< ξ ,

for some ξ ∈ (0, 1). Note that ξh = o(p−`) for any ` > 0.

This finishes the proof of (3.11).

Finally, we prove (1.8). In view of the inequality

|a−1/2 − b−1/2| = |a− b|
|ab||a−1/2 + b−1/2|

≤ c|a− b| ,

for a, b in some interval bounded away from zero and∞, equation (1.8) follows from (1.7).
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3.2 Proof of Theorem 2.4

In view of (2.3), it is enough to prove (2.9). Since the rank of S is at most min(p, n)

we have λmin(p,n)+1(S) = 0. Thus, it makes sense to interpret λn(S) as the smallest
eigenvalue of S if p ≥ n.

We start with the case γ ∈ (0,∞). It was shown in [5] that as p→∞,

λ1(S)
a.s.−→ (1 +

√
γ)2 and λmin(p,n)(S)

a.s.−→ (1−√γ)2 ,

which implies (2.9).
In the case γ = 0, Theorem 3 in [16] asserts that√

n/p (λ1(S)− 1)
a.s.−→ 2 = 2 +

√
γ . (3.14)

The authors of [16] focused only on the largest eigenvalue. Fortunately, with a small
adjustment one can prove the a.s. convergence of the smallest eigenvalue in the same
way. From the theorem in [3] we get that

lim sup
p→∞

√
n/p (λp(S)− 1) ≤ −2 a.s.

From steps (1) and (2) of the proof of Theorem 1.2 we know that truncating and renormal-
izing the entries of X does not change the asymptotic a.s. behavior of λp(S). Therefore,
it is sufficient to prove

lim inf
p→∞

√
n/p (λp(S̃)− 1) ≥ −2 a.s., (3.15)

where (as in proof of Theorem 1.2) S̃ denotes the sample covariance matrix based on the
truncated and renormalized entries. Note that because of√

n/p ‖S̃− I‖ =
√
n/p max(λ1(S̃)− 1,−λp(S̃) + 1),

the inequality

lim sup
p→∞

√
n/p ‖S̃− I‖ ≤ 2 a.s. (3.16)

implies (3.15).
Finally, we prove (3.16). For any positive integer sequence k = kp →∞ and ε > 0 we

have

P
(√

n/p ‖S̃− I‖ > 2 + ε
)
≤ (2 + ε)−2k

(n
p

)k
E
[
‖S̃− I‖2k

]
≤ (2 + ε)−2k

(n
p

)k
E
[ p∑
i=1

λi

(
(S̃− I)2k

)]
= (2 + ε)−2k

(n
p

)k
E
[

tr
(

(S̃− I)2k
)]

With an appropriate choice of the sequence k (see [16, p.1413] for details) and some
tedious calculations in the spirit of [3], it is shown in [16, pp. 1413-1418] that

(2 + ε)−2k
(n
p

)k
E
[

tr
(

(S̃− I)2k
)]

= o(p−`) , p→∞ ,

for any ` > 0. By the first Borel–Cantelli lemma this implies (3.16), completing the proof.
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A Auxiliary lemmas

We state Lemma 2 in [5].

Lemma A.1. Let (Xij) be a double array of iid random variables and let α > 1/2, β ≥ 0

and M > 0 be constants. Then as n→∞,

max
j≤Mnβ

∣∣∣n−α n∑
i=1

(Xij − c)
∣∣∣ a.s.−→ 0 ,

if and only if the following hold:

E[|X11|(1+β)/α] <∞ ;

c =

{
E[X11] , if α ≤ 1,

any number , if α > 1.

The next result is Lemma 7.10 in [20].

Lemma A.2. Let X1, . . . , XN be independent centered random variables and assume
that

(E[|Xi|q])1/q ≤ µq , 1 ≤ i ≤ N ; q = 2, 3, . . .

for some fixed constants µq. Then we have for any deterministic complex numbers
aij , 1 ≤ i, j ≤ N that

(
E
[∣∣∣ N∑
i 6=j=1

aijXiXj

∣∣∣q])1/q ≤ C q µ2
q

( N∑
i 6=j=1

|aij |2
)1/2

, q = 2, 3, . . . ,

where the constant C does not depend on q or on the numbers aij .
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