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Gaussian limits for subcritical chaos
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Abstract

We present a simple criterion, only based on second moment assumptions, for the con-
vergence of polynomial or Wiener chaos to a Gaussian limit. We exploit this criterion
to obtain new Gaussian asymptotics for the partition functions of two-dimensional
directed polymers in the sub-critical regime, including a singular product between
the partition function and the disorder. These results can also be applied to the KPZ
and Stochastic Heat Equation. As a tool of independent interest, we derive an explicit
chaos expansion which sharply approximates the logarithm of the partition function.
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1 Introduction

In this paper we investigate the convergence to a Gaussian limit for random variables
that have the structure of a polynomial chaos, that is a multi-linear polynomial of
independent random variables, or alternatively of a Wiener chaos, that is a sum of
multiple Wiener integrals with respect to a Gaussian random measure. Our main
motivation is the study of directed polymers in random environment, whose partition
function provides a discretization of the solution of the multiplicative Stochastic Heat
Equation (SHE), while its logarithm corresponds to the solution of the KPZ equation.
Many convergence results to Gaussian limits have been obtained in recent years for
directed polymers and for SHE and KPZ (see the discussion in Section 3) based on
polynomial chaos or Wiener chaos, often exploiting the Fourth Moment Theorem and
variations thereof. Our purpose is to present a general approach which makes it possible
to recover these results in a simpler and unified way and, furthermore, to obtain novel
results. Let us give an overview of the paper.
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Gaussian limits for subcritical chaos

In Section 2 we state our first main result: a general criterion for the convergence
of polynomial chaos or Wiener chaos to a Gaussian limit only based on second moment
assumptions, see Theorems 2.1 and 2.5. Besides the fact that we do not require higher
moment bounds, we can work directly with a superposition of chaos of different orders,
with no need of treating them individually as in the Fourth Moment Theorem. Our
criterion gives conditions that are sufficient, not necessary, but its simplicity makes it
potentially suitable to many different contexts.

In Section 3 we study the partition function ZβN of two-dimensional directed polymers
in random environment. In the limit N Ñ 8, and for a suitable tuning of the inverse
temperature β “ βN (in the so-called sub-critical regime), the partition function exhibits
Edwards-Wilkinson fluctuations [CSZ17b], i.e., it converges to a log-correlated Gaussian
field when averaged over the starting point. An analogous result was obtained in
[CSZ20] for the logarithm of the partition function. Our criterion from Section 2, besides
providing alternative and more elementary proofs of Edwards-Wilkinson fluctuations,
gives a natural framework to obtain new Gaussian asymptotics. We give two main
illustrations.

• We prove that a singular product between the partition function and the underlying
disorder has a non-trivial Gaussian limit, see Theorem 3.4. This result sheds light
on the mechanism which produces Edwards-Wilkinson fluctuations, explaining the
source of the non-trivial factor which arises in the limiting equation.

• For the partition function ZβN with a fixed starting point, we obtain an explicit chaos

expansion Xdom
N which sharply approximates logZβN , see Theorem 3.5; then we

prove that Xdom
N , hence logZβN too, is asymptotically Gaussian, see Theorem 3.6.

We thus recover the main result in [CSZ17b] with a simpler and more conceptual
proof.

These results can also be formulated in the continuum setting of the SHE and KPZ
equation. We refer to Subsection 3.5 for a discussion and further perspectives.

The following Sections 4–7 contain the proofs of our main results, while some techni-
cal lemmas have been deferred to Appendix A.

2 Gaussian limits for polynomial and Wiener chaos

Our general convergence results can be phrased in a discrete setting (polynomial
chaos) and in a continuum one (Wiener chaos). We start with the former, which is more
elementary.

2.1 Polynomial chaos

Let T be a countable set. For each N P N, we consider a family ηN “ pηNt qtPT of
independent random variables, not necessarily identically distributed, with zero mean
and unit variance:

ErηNt s “ 0 , ErpηNt q
2s “ 1 . (2.1)

We further require the uniform integrability of the squares:

lim
LÑ8

sup
NPN, tPT

E
”

|ηNt |
2 1t|ηNt |ąLu

ı

“ 0 , (2.2)

which follows from (2.1) if the ηNt ’s have the same distribution. In general, a sufficient
easy condition for (2.2) is that supN,tEr|η

N
t |

ps ă 8 for some p ą 2.
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Gaussian limits for subcritical chaos

We consider a sequence of random variables pXN qNPN that are polynomial chaos, i.e.
multi-linear polynomials in the ηNt ’s. More precisely, we assume that

XN “
ÿ

AĂT

qN pAq η
N pAq , with ηN pAq :“

ź

tPA

ηNt , (2.3)

where qN p¨q are real coefficients and the sum ranges over finite nonempty subsets A Ă T
(i.e. qN pAq ‰ 0 only if 0 ă |A| ă 8). We can split the sum according to the cardinality
k of the subset A: if we write A “ tt1, . . . , tku for distinct points ti P T, we can rewrite
(2.3) as

XN “

8
ÿ

k“1

ÿ

tt1,...,tkuĂT
ti‰tj @i‰j

qN ptt1, . . . , tkuq
k
ź

i“1

ηNti . (2.4)

We assume that
ř

AĂT qN pAq
2 ă 8, so that XN is a well-defined random variable with

ErXN s “ 0, ErX2
N s “

ÿ

AĂT

qN pAq
2 , (2.5)

because pηN pAqqAĂT are centered and orthogonal random variables in L2.
Our goal is to prove convergence in distribution of XN toward a Gaussian random

variable. This can be achieved via the celebrated Fourth Moment Theorem, formulated
in our context in [NPR10] and slightly extended in [CSZ17b, Theorem 4.2]; see also the
previous works [NuaPec05, deJ90, deJ87, Rot79] and the book [NouPec12]. The Fourth
Moment Theorem deals with a sequence XN of polynomial chaos in a fixed order chaos
(i.e. a single term k in (2.4)) and it requires to compute the second and fourth moments
of XN .

Our first main result gives sufficient conditions for convergence to a Gaussian limit
only based on second moment assumptions on XN , which can be directly applied to a
superposition of chaos of different orders. Let us introduce the shorthand

σ2
N pBq :“

ÿ

AĂB

qN pAq
2 for B Ă T , (2.6)

which gives the contribution to the second moment of XN of the subsets of B (recall
(2.5)). We can formulate our conditions as follows.

1. Limiting second moment :

lim
NÑ8

σ2
N pTq “ lim

NÑ8

ÿ

AĂT

qN pAq
2 “ σ2 P p0,8q , (2.7)

i.e. the second moment of XN converges to a finite limit.
2. Subcriticality:

lim
KÑ8

lim sup
NÑ8

ÿ

AĂT
|A|ąK

qN pAq
2 “ 0 , (2.8)

i.e. the contribution of high order chaos to the second moment of XN is negligible.
3. Spectral localization: for any M,N P N we can find M disjoint subsets (“boxes”) :

B1, . . . ,BM Ă T with Bi XBj “ H for i ‰ j ,

(where Bi “ B
pN,Mq
i may depend on N,M ) such that the following conditions hold

(recall (2.6)):

lim
MÑ8

lim
NÑ8

M
ÿ

i“1

σ2
N pBiq “ σ2 , (2.9)

lim
MÑ8

lim sup
NÑ8

!

max
i“1,...,M

σ2
N pBiq

)

“ 0 , (2.10)
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Gaussian limits for subcritical chaos

i.e. the main contribution to the second moment of XN comes from subsets con-
tained in one of the boxes B1, . . . ,BM , whose individual contribution is uniformly
small.

Note that conditions (1), (2), (3) are second moment assumptions. The name “subcriti-
cality” for condition (2) is inspired by directed polymers, that we discuss in Section 3,
and more generally by marginally relevant disordered systems, see [CSZ17a], which
undergo a phase transition at a critical point determined precisely by the failure of
condition (2.8).

We can now state our first main result.

Theorem 2.1 (Gaussian limits for polynomial chaos). Let XN be a polynomial chaos as
in (2.3), with coefficients qN p¨q satisfying the assumptions (1), (2), (3) (see (2.7)–(2.10)),
with respect to independent random variables ηN “ pηNt qtPT which satisfy (2.1) and
(2.2). Then as N Ñ8 we have the convergence in distribution

XN
d
ÝÝÑ N p0, σ2q . (2.11)

The proof is given in Section 4 and comes in two steps:

• first we approximateXN in L2 by a sum
řM
i“1XN,i of independent random variables,

for a suitable M “MN Ñ8;

• then we show that the random variables pXN,iq1ďiďMN
satisfy the assumption of

the Central Limit Theorem for triangular arrays, which eventually yields (2.11).

We will also replace the random variables pηNt q by a family of random variables with
bounded moments of some order p ą 2 (e.g. by Gaussians) to exploit the hypercontractiv-
ity of polynomial chaos, see [MOO10]. The justification of this replacement will be given
at the end of the proof exploiting a suitable Lindeberg principle, see [MOO10, CSZ17a].

Remark 2.2. When the polynomial chaos XN belongs to a fixed order chaos, the con-
ditions of the Fourth Moment Theorem are known to be optimal, i.e. necessary and
sufficient for the asymptotic Gaussianity of XN . It would be interesting to investigate
how far from optimality are our conditions (2.7)–(2.10) in this setting. A direct compari-
son between our conditions and the Fourth Moment Theorem is not straightforward, due
to the freedom in the choice of the boxes Bi in (2.9)-(2.10).

2.2 Wiener chaos

Theorem 2.1 has a direct translation for Wiener chaos. Let pE, E , µq be a Polish
(complete separable metric) space, endowed with its Borel σ-field E and with a non-
atomic measure µ. Let E˚ “ tA P E : µpAq ă 8u be the class of measurable sets
with finite measure. By Gaussian random measure on pE, E , µq we mean a centered
Gaussian process W “ pW pAqqAPE˚ with CovrW pAq,W pBqs “ µpA X Bq, defined on
some probability space pΩ,A,Pq. We often use the informal notation W pdxq. The most
important example is given by white noise, which corresponds to E “ Rd with µ “

Lebesgue measure.

We fix a Gaussian random measure W pdxq on pE, E , µq. For every k P N and every
real function f P L2pEk, µbkq, by [Ito51, NouPec12] we can define the stochastic integral

Wbkpfq “

ż

Ek
fpx1, . . . , xkqW pdx1q ¨ ¨ ¨W pdxkq

which is a centered random variable in L2pΩq (non Gaussian as soon as k ą 1 and f ı 0).
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Gaussian limits for subcritical chaos

For symmetric functions f P L2pEk, µbkq and g P L2pEk
1

, µbk
1

q we have the Ito isometry:

ErWbkpfqWbk1pgqs “ 1tk“k1u k! xf, gyL2pEk,µbkq

“ 1tk“k1u k!

ż

Ek
fpx1, . . . , xkq gpx1, . . . , xkqµpdx1q ¨ ¨ ¨µpdxkq .

(2.12)

In this “continuum setting”, in analogy with the discrete polynomial chaos (2.4), we
consider a sequence pX̃N qNPN of Wiener chaos with respect to W pdxq, that is

X̃N “

8
ÿ

k“1

ż

Ek
q̃N px1, . . . , xkqW pdx1q ¨ ¨ ¨W pdxkq , (2.13)

where q̃N is a symmetric L2 function defined on
Ť8

k“1pE
k, Ebk, µbkq. Then, by (2.12),

ErX̃N s “ 0 , ErX̃2
N s “

8
ÿ

k“1

k! }q̃N }
2
L2pEkq “

8
ÿ

k“1

k!

ż

Ek
q̃N px1, . . . , xkq

2 µpdx1q ¨ ¨ ¨µpdxkq .

(2.14)

Remark 2.3. Every centered random variable in L2pΩq, which is measurable with re-
spect to the σ-algebra generated by W , admits an expansion like (2.13).

Remark 2.4. The factor k! in (2.14) is due to the fact that q̃N in (2.13) is a symmetric
function of the ordered variables x1, . . . , xk, whereas qN in (2.4) is a function of unordered
variables (i.e. subsets) tt1, . . . , tku. To formally match (2.4)-(2.5) with (2.13)-(2.14), we
should identify qN with k! q̃N and

ř

tt1,...,tkuĂT

śk
i“1 η

N
ti with 1

k!

ş

Ek
W pdx1q ¨ ¨ ¨W pdxkq.

Mimicking (2.6), we set

σ̃2
N pBq :“

8
ÿ

k“1

k!

ż

Bk
q̃N px1, . . . , xkq

2 µpdx1q ¨ ¨ ¨µpdxkq for measurable B Ă E , (2.15)

which gives the contribution to the second moment of X̃N of subsets in B, see (2.14). We
can now formulate our conditions in the continuum setting.

1̃. Limiting second moment :

lim
NÑ8

σ̃2
N pEq “ lim

NÑ8

8
ÿ

k“1

k! }q̃N }
2
L2pEkq “ σ2 P p0,8q , (2.16)

i.e. the second moment of X̃N converges to a finite limit.

2̃. Subcriticality:
lim
KÑ8

lim sup
NÑ8

ÿ

kąK

k! }q̃N }
2
L2pEkq “ 0 , (2.17)

i.e. the contribution of high order chaos to the second moment of X̃N is negligible.

3̃. Spectral localization: for any M,N P N we can find M disjoint subsets (“boxes”) :

B1, . . . ,BM Ă E with Bi XBj “ H for i ‰ j

(where Bi “ B
pN,Mq
i may depend on N,M ) such that, recalling (2.15),

lim
MÑ8

lim
NÑ8

M
ÿ

i“1

σ̃2
N pBiq “ σ2 , (2.18)

lim
MÑ8

lim
NÑ8

!

max
i“1,...,M

σ̃2
N pBiq

)

“ 0 , (2.19)
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Gaussian limits for subcritical chaos

i.e. the main contribution to the second moment of X̃N comes from subsets con-
tained in one of the M boxes B1, . . . ,BM , whose individual contribution is uniformly
small.

We can finally state the version of Theorem 2.1 for Wiener chaos. We omit the proof
because it follows very closely that of Theorem 2.1, given in Section 4.

Theorem 2.5 (Gaussian limits for Wiener chaos). Let X̃N be a Wiener chaos as in (2.13),
with coefficients q̃N p¨q satisfying the assumptions (1̃), (2̃), (3̃) (see (2.16)–(2.19)), with
respect to a Gaussian random measure W pdxq on a Polish measure space pE, E , µq. Then
as N Ñ8 we have the convergence in distribution

X̃N
d
ÝÝÑ N p0, σ2q . (2.20)

3 Applications to directed polymers

We now present applications of our convergence results in Section 2 to directed
polymers in random environment on Z2.

3.1 Directed polymers and stochastic PDEs

Let S “ pSnqně0 be the simple symmetric random walk on Z2, whose law we denote
by P. Let ω “ pωpn, xqqnPN,xPZ2 be a family of i.i.d. random variables, independent of S,
with law P and such that

Erωpn, xqs “ 0 , Erωpn, xq2s “ 1 , λpβq :“ logEreβωpn,xqs ă 8 @β ą 0 . (3.1)

Intuitively, trajectories of the random walk S represent polymer configurations, while
configurations ω describe the disorder, which plays the role of a random environment.
Given a scale parameter N P N, a starting time-space point pm, zq P t0, . . . , Nu ˆZ2 and
an interaction strength β ą 0, the partition function of the directed polymer model is

ZβN pm, zq :“ E
”

e
řN
n“m`1pβωpn,Snq´λpβqq

ˇ

ˇ

ˇ
Sm “ z

ı

. (3.2)

Directed polymers were originally introduced as an effective interface model in the
framework of the Ising model with impurities, but over the years they have become an
object of independent study and a prototype of a disorder system which is amenable to
detailed rigorous investigation. We refer to the monograph by Comets [Com17] for a
recent account.

A source of interest for directed polymers is their link with the multiplicative Stochas-
tic Heat Equation (SHE), which is the stochastic PDE formally written as follows:

Btupt, xq “
1

2
∆xupt, xq ` β 9W pt, xqupt, xq , (3.3)

where β ą 0 tunes the interaction strength and 9W pt, xq denotes white noise on p0,8qˆR2.
In one space dimension d “ 1, this equation admits a rigorous integral formulation by
the classical Ito-Walsh integration. In higher dimensions d ě 2, this approach fails due to
strong irregularity of white noise and no obvious meaning can be given to its solution
upt, xq.

By the Markov property of simple random walk, the diffusively rescaled partition
function

UN pt, xq :“ ZβN ptNtu, t
?
Nxuq (3.4)

solves a discretized version of (3.3) (with Bt and 1
2∆x replaced by ´Bt and 1

4∆x, see (3.24)
below). This explains the interest for the convergence as N Ñ 8 of UN pt, xq, possibly
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for suitable β “ βN , since it provides an approximation of the ill-defined SHE solution
upt, xq.

It is also very interesting to look at the logarithm of the partition function

logZβN ptNtu, t
?
Nxuq

because it provides an approximation for the solution hpt, xq “ log upt, xq of the Kardar-
Parisi-Zhang equation (KPZ), which is the stochastic PDE formally given by

Bthpt, xq “
1

2
∆xhpt, xq `

1

2
|∇xhpt, xq|

2 ` β 9W pt, xq “´ 8 ” , (3.5)

where the last term “´8” indicates a form of renormalization.

Remark 3.1 (Edwards-Wilkinson equation). The Stochastic Heat Equation (3.3) is sin-
gular due to the multiplicative noise term 9Wu. The additive version of this equation,
known as the Edwards-Wilkinson equation, is well-posed and reads as follows:

Btvpt, xq “
s

2
∆xvpt, xq ` c 9W pt, xq , (3.6)

where s ą 0 and c P R are given parameters. Starting from vp0, ¨q ” 0, the solution v “
vps,cq is a random distribution (i.e. generalized function) which is Gaussian with explicit
covariance, see [CSZ20, Remark 1.5]. More precisely, if we denote by xvps,cq, ψy the
pairing between the distribution vps,cq and a test function ψ, which formally corresponds
to

xvps,cq, ψy :“

ż

R2

vps,cqpt, xqψpt, xqdtdx , (3.7)

then xvps,cq, ψy for ψ P C8c pr0,8q ˆR
2q is a centered Gaussian process with

Cov
“

xvps,cq, ψy, xvps,cq, ψ1y
‰

“

ż

pr0,8qˆR2q2
ψpt, xqK

ps,cq
t,t1 px, x

1qψ1pt1, x1qdtdxdt1 dx1 , (3.8)

where the covariance kernel is given by

K
ps,cq
t,t1 px, x

1q :“
s c2

2

ż spt`t1q

s|t´t1|

gupx´ x
1qdu , where gupyq :“

e´
|y|2

2u

2πu
. (3.9)

3.2 Edwards-Wilkinson fluctuations

Let us define

un :“
ÿ

zPZ2

PpSn “ zq2 “ PpS2n “ 0q „
1

π

1

n
, (3.10)

RN :“
N
ÿ

n“1

ÿ

zPZ2

PpSn “ zq2 “
N
ÿ

n“1

un „
1

π
logN , (3.11)

where the asymptotic relations (respectively as n Ñ 8 and as N Ñ 8) follow by the
local central limit theorem (see (A.14) below). Henceforth we are going to fix β “ βN
given by

βN :“
β̂

?
RN

„
β̂
?
π

?
logN

with β̂ P p0, 1q , (3.12)

also known as the sub-critical regime. This ensures that the partition function ZβNN
has a bounded second moment as N Ñ 8, see [CSZ17b]. It was recently shown in
[LZ21+, CZ21+] that in fact all moments of ZβNN are bounded in this regime.
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We look at the fluctuations of the diffusively rescaled partition function, encoded by

VN pt, xq :“
1

βN

`

ZβNN ptNtu, t
?
Nxuq ´ 1

˘

for pt, xq P r0, 1s ˆR2 . (3.13)

It was shown in [CSZ17b, Theorem 2.13] that ZβNN exhibits Edwards-Wilkinson fluctu-
ations, because VN pt, xq converges as N Ñ 8 to a solution of the Edwards-Wilkinson
equation (3.6):

VN pt, xq
D
ùñ ṽpt, xq :“ vp

1
2 ,cβ̂qp1´ t, xq where cβ̂ :“

d

1

1´ β̂2
, (3.14)

where “
D
ùñ” denotes convergence in law as a random distribution:1 for ψ P Ccpr0, 1sˆR2q

xVN , ψy :“

ż

RˆR2

VN pt, xqψpt, xqdtdx
d
ÝÝÑ xṽ, ψy . (3.15)

The convergence (3.14) was proved in [CSZ17b] using the Fourth Moment Theorem,
based on a polynomial chaos expansion of the partition function, see (3.30) below.
Remarkably, our Theorem 2.1 allows for an alternative and more elementary proof of
(3.14), based on second moments calculations. The details will be presented in [Cot23].

Remark 3.2. The factor 1
2 in the parameters of ṽpt, xq “ vp

1
2 ,cβ̂qp1 ´ t, xq, see (3.14), is

due to the fact that ErS
piq
1 , S

pjq
1 s “ 1

21i“j for i, j P t1, 2u. In view of (3.6), note that ṽ
satisfies

´ Btṽpt, xq “
1

4
∆xṽpt, xq ` cβ̂

9W pt, xq . (3.16)

Edwards-Wilkinson fluctuations also hold for the logarithm of the partition function,
suitably centered and rescaled as in (3.13):

HN pt, xq :“
1

βN

´

logZβNN ptNtu, t
?
Nxuq ´ E

“

logZβNN ptNtu, t
?
Nxuq

‰

¯

. (3.17)

Indeed, it was shown in [CSZ20, Theorem 1.6] that a precise analogue of (3.14) holds:

HN pt, xq
D
ùñ ṽpt, xq “ vp

1
2 ,cβ̂qp1´ t, xq . (3.18)

This convergence was in fact deduced in [CSZ20] from (3.14) by means of a highly non
trivial linearization procedure. The alternative and more elementary proof of (3.14)
based on our Theorem 2.1 can then be transferred to yield a proof of (3.18) as well. We
refrain from giving the details, which will be presented in [Cot23].

Remark 3.3. A simultaneous and independent proof of (3.18) was given in [G20] for
small β̂ ą 0 in a closely related context, namely for the KPZ equation (3.5) where the
noise 9W pt, xq is regularized by mollification (rather than by discretization, as we consider
here). Previously, the existence of non-trivial subsequential limits had been shown
in [CD20]. We refer to [DG20+, NN21+] for some recent extensions and generalizations.

In this paper, we exploit Theorem 2.1 to prove two new Gaussian convergence results
related to the partition function, that we now describe.

1By the Cramér-Wold device [Bil95, Theorem 29.4], relation (3.15) implies convergence of all finite-
dimensional distributions of the random field pxVN , ψyqψ toward xṽ, ψy.
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3.3 Main result I (singular product)

The diffusively rescaled partition function UN pt, xq in (3.4) approximates the solution
of the Stochastic Heat Equation (3.3) with multiplicative noise. It is not clear a priori
why the fluctuations of UN pt, xq, encoded by VN pt, xq in (3.13), converge to ṽpt, xq which
solves the Stochastic Heat Equation with additive noise, see (3.16), with an intensity cβ̂
which explodes as β̂ Ò 1. We now present a result which sheds light on the mechanism
which leads to (3.16).

Let us introduce a modified disorder ηN “ pηN pm, zqqmPN,zPZ2 , recalling (3.1):

ηN pm, zq :“
eβNωpm,zq´λpβN q ´ 1

σN
where σ2

N :“ eλp2βN q´2λpβN q´ 1 „
NÑ8

β2
N . (3.19)

We denote by 9WN pt, xq, for t ą 0, x P R2, the diffusively rescaled version of ηN :

9WN pt, xq :“ N ηN ptNtu, t
?
Nxuq . (3.20)

For any N P N, the modified disorder ηN “ pηN pm, zqqmPN,zPZ2 is i.i.d. with ErηN pm, zqs “
0 and ErηN pm, zq2s “ 1, see (3.1), and higher moments of ηN are uniformly bounded (see
[CSZ17a, eq. (6.7)]). It follows that 9WN converges in law to the white noise:

9WN pt, xq
D
ùñ 9W pt, xq , (3.21)

that is x 9WN , ψy
d
Ñ x 9W,ψy „ N p0, }ψ}2L2q as N Ñ8, for ψ P C8c pr0, 1s ˆR

2q.

We now consider the product between 9WN and UN pt, xq ´ 1, i.e. the centered and
diffusively rescaled partition function ZβNN ptNtu, t

?
Nxuq ´ 1, see (3.4):

ΞN pt, xq :“ 9WN pt, xq
`

UN pt, xq ´ 1
˘

“ βN 9WN pt, xqVN pt, xq ,
(3.22)

where we recall that VN pt, xq “ β´1
N pUN pt, xq ´ 1q is defined in (3.13).

We know that VN
D
ùñ ṽ and 9WN

D
ùñ W as N Ñ 8, see (3.15) and (3.21). Since

βN Ñ 0, one could expect that ΞN
D
ùñ 0, but this turns out to be false. The point is

that VN and 9WN only converge as random distributions, and the product of distributions
is not a continuous operation (it is generally not even defined). The following result
shows that ΞN has in fact a non-trivial limit as N Ñ 8. We prove it in Section 5 as an
application of our Theorem 2.1.

Theorem 3.4 (White noise from singular product). Let β “ βN be fixed as in (3.12), and
set cβ̂ :“ p1´ β̂2q´1{2. As N Ñ8, we have the joint convergence in law:

p 9WN ,ΞN q
D
ùñ

´

9W,
b

c2
β̂
´ 1 9W 1

¯

,

where 9W and 9W 1 denote two independent white noises on r0, 1s ˆR2. More precisely,
for any ψ P C8c pr0, 1s ˆR

2q, the following joint convergence in distribution holds:

`

x 9WN , ψy, xΞN , ψy
˘ d
ÝÝÑ N

`

0, }ψ}2L2 Σβ̂
˘

where Σβ̂ “

˜

1 0

0 c2
β̂
´ 1

¸

.

We can finally give a heuristic explanation for equation (3.16). One can check that
ZβNN pm, zq in (3.2) solves the following difference equation, for m ď N and z P Z2:

ZβNN pm´ 1, zq ´ ZβNN pm, zq “
1

4
∆Z2ZβNN pm, zq ` σN

1

4

ÿ

z1„z

ηN pm, z
1qZβNN pm, z1q , (3.23)
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where z1 „ z means z1 P tz˘p1, 0q, z˘p0, 1qu and ∆Z2fpzq :“
ř

z1„ztfpz
1q´ fpzqu denotes

the lattice Laplacian (we recall that σN and ηN pm, zq are defined in (3.19)).
By (3.13) and (3.20), we can rewrite (3.23) as follows, for pt, xq P pp0, 1s X Z

N q ˆ pR
2 X

Z2
?
N
q:

´ B
pNq
t UN pt, xq “

1

4
∆pNqx UN pt, xq ` σN

1

4

ÿ

x1
N
„ x

9WN pt, x
1qUN pt, x

1q , (3.24)

where x1
N
„ x means x1 P tx˘ p 1?

N
, 0q, x˘ p0, 1?

N
qu and we define the rescaled operators

B
pNq
t fpt, xq :“ N

 

fpt, xq ´ fpt´ 1
N , xq

(

,

∆pNqx fpt, xq :“ N
ÿ

x1
N
„ x

 

fpt, x1q ´ fpt, xq
(

.

Note that (3.24) is a discretization of the (time reversed) Stochastic Heat Equation (3.3),
with the factor 1

4 instead of 1
2 (see Remark 3.2) and with σN „ βN in place of β.

We now consider VN pt, xq “ β´1
N pUN pt, xq ´ 1q, see (3.14). By (3.24) we obtain

´B
pNq
t VN pt, xq “

1

4
∆pNqx VN pt, xq`

σN
βN

1

4

ÿ

x1
N
„ x

"

9WN pt, x
1q ` βN 9WN pt, x

1qVN pt, x
1q

*

. (3.25)

The last term βN 9WN pt, x
1qVN pt, x

1q is nothing but ΞN pt, x
1q in (3.22), which formally van-

ishes as N Ñ8 but actually converges to an independent white noise
b

c2
β̂
´ 1 9W 1pt, xq,

by Theorem 3.4 (note that x1
N
„ x implies |x1 ´ x| “ 1{

?
N Ñ 0). If we assume that

VN pt, xq converges to a limit ṽpt, xq, by taking the formal limit of (3.25) we finally obtain

´ Btṽpt, xq “
1

4
∆xṽpt, xq ` 9W pt, xq `

b

c2
β̂
´ 1 9W 1pt, xq . (3.26)

Note that this is equivalent to (3.16), because 9W pt, xq `
b

c2
β̂
´ 1 9W 1pt, xq

d
“ cβ̂

9W pt, xq.

In conclusion, Theorem 3.4 provides an intuitive explanation why the random field
ṽpt, xq to which VN pt, xq converges should satisfy the equation (3.16), or more pre-
cisely (3.26). The factor cβ̂ in (3.16) arises from the singular product ΞN pt, xq “

βN 9WN pt, xqVN pt, xq which gives rise to an independent white noise, by Theorem 3.4.
This result is the first step toward a “robust analysis” of the two-dimensional SHE

(3.3), which would allow for a rigorous derivation of (3.26) from (3.25).

3.4 Main result II (log-normality)

So far we have discussed the distribution of the partition function ZβNN pm, zq, suitably
rescaled, as a random field, i.e. averaging over the starting point pm, zq. We now look
at the distribution of ZβNN pm, zq for a fixed starting point: we fix pm, zq “ p0, 0q by
stationarity and we set

ZβNN :“ ZβNN p0, 0q . (3.27)

It was shown in [CSZ17b, Theorem 2.8] that ZβNN is asymptotically log-normal :

logZβNN
d
ÝÝÑ N

`

´ 1
2σ

2
β̂
, σ2

β̂

˘

where σ2
β̂
“ log c2

β̂
“ log 1

1´β̂2
. (3.28)

The original proof of this result, based on the Fourth Moment Theorem, is long and
technical. Our goal is to provide a less technical and more insightful proof, based on
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second moment computation, exploiting our Theorem 2.1. The problem is that, unlike
for ZβNN , we do not have a polynomial chaos expansion for logZβNN , which is essential for
Theorem 2.1. We solve this problem by first proving a result of independent interest,
which shows that logZβNN is sharply approximated in L2 by an explicit polynomial chaos
expansion Xdom

N .
We need some setup. We recall that the modified disorder pηN pn, xqqnPN,xPZ2 was

defined in (3.19). We also introduce the transition kernel of the simple random walk:

qnpxq :“ PpSn “ x |S0 “ 0q (3.29)

and we recall the polynomial chaos expansion of the partition function [CSZ17a]:

ZβNN pm, zq :“ 1`
8
ÿ

k“1

pσN q
k

ÿ

m“:n0ăn1ă...ănkďN
x0:“z, x1,...,xkPZ

2

k
ź

i“1

qni´ni´1
pxi ´ xi´1q ηN pni, xiq . (3.30)

We define a new polynomial chaos expansion Xdom
N , obtained from the centered partition

function ZβNN ´ 1 “ ZβNN p0, 0q ´ 1 imposing the constraint that all increments ni ´ ni´1

for i ě 2 are dominated by the first time n1:

Xdom
N :“

8
ÿ

k“1

pσN q
k

ÿ

0“:n0ăn1ă...ănkďN :
maxtn2´n1,n3´n2,...,nk´nk´1uďn1

x0:“0, x1,...,xkPZ
2

k
ź

i“1

qni´ni´1
pxi ´ xi´1q ηN pni, xiq .

(3.31)

Our key approximation result shows that Xdom
N is a sharp approximation of logZβNN . The

reason why this approximation is possible will be clear in the proof, but one can already
give a look at equation (6.3), which shows that a natural approximation of ZβNN has a
product structure, where (a restricted version of) Xdom

N appears.

Theorem 3.5 (Polynomial chaos for logZ). Set β “ βN as in (3.12). Then

lim
NÑ8

›

› logZβNN ´
 

Xdom
N ´ 1

2 ErpX
dom
N q2s

(
›

›

L2 “ 0 . (3.32)

We then show, by our general Theorem 2.1, that Xdom
N is asymptotically Gaussian.

Theorem 3.6 (Asymptotic Gaussianity of Xdom
N ). Set β “ βN as in (3.12). Then

lim
NÑ8

E
“

pXdom
N q2

‰

“ σ2
β̂
“ log 1

1´β̂2
and Xdom

N
d
ÝÝÑ N

`

0, σ2
β̂

˘

. (3.33)

We prove Theorems 3.5 and 3.6 in Sections 6 and 7. Note that relations (3.32) and
(3.33) together provide a strengthening of the asymptotic log-normality of ZβNN , see
(3.28).

3.5 Conclusions and perspectives

We discussed several convergences to a Gaussian limit for directed polymers: the
Edwards-Wilkinson fluctuations (3.14) and (3.18), the singular product in Theorem 3.4
and the asymptotic log-normality in Theorem 3.6. We stress that these results hold in the
sub-critical regime (3.12) with β̂ ă β̂c “ 1, while they break down in the critical regime
β̂ “ 1 (note that cβ̂ Ñ8 and σβ̂ Ñ8 as β̂ Ò 1).

It would be interesting to understand whether these results can be suitably extended
to a “nearly critical regime”, i.e. when one takes β̂ “ β̂N Ò 1 slowly enough, strictly
below the critical window β̂ “ 1`Op 1

logN q studied in [BC98, GQT21, CSZ19b, CSZ21+].
We plan to investigate this issue in future work, building on the new proofs that we
presented in this paper, which are more robust and suitable for generalization.

EJP 27 (2022), paper 81.
Page 11/35

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP798
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Gaussian limits for subcritical chaos

Another direction of research is about higher dimensions d ě 3. The Edwards-
Wilkinson fluctuations (3.14) and (3.18) have been proved for d ě 3 in the so-called
“L2 regime” in [LZ20+] and [CNN20+], sharpening previous work from [MU18, GRZ18,
CCM20, DGRZ20]; see also [CCM21+] for related recent results. It would be interesting
to apply the approach of our paper in this higher dimensional context, to check whether
it is possible to go slightly beyond the “L2 regime” (cf. the “nearly critical regime”
mentioned above for d “ 2).

Finally, we point out that many of the cited works focus on the “continuum setting”
of the SHE (3.3) and KPZ equation (3.5) where the noise 9W pt, xq is mollified (see also
Remark 3.3). Our results of this section are formulated in the discrete setting of directed
polymers, which correspond to the stochastic PDEs (3.3) and (3.5) where the noise
9W pt, xq is discretized rather than mollified, but we stress that our approach can also

be applied to the continuum setting with mollification, using Theorem 2.5 instead of
Theorem 2.1.

4 Proofs of Theorem 2.1

As a preliminary step to prove Theorem 2.1, we replace the random variables pηNt qtPT
in the definition (2.3) of XN by independent standard Gaussians. We will show in
Subsection 4.4 that such a replacement does not affect the asymptotic distribution of
XN as N Ñ8.

We therefore assume that ηNt „ N p0, 1q. We then exploit the hypercontractivity of
polynomial chaos, which allows us to bound moments of order p ą 2 in terms of second
moments, see [MOO10, Section 3.2] and [Jan97, Theorem 5.1]:

@p ą 2 : E

„ˇ

ˇ

ˇ

ˇ

ÿ

AĂT

qN pAq η
N pAq

ˇ

ˇ

ˇ

ˇ

p

ď

ˆ

ÿ

AĂT

pp´ 1q|A| qN pAq
2

˙

p
2

. (4.1)

Remark 4.1. The choice of a Gaussian distribution for the ηNt ’s is not fundamental here:
hypercontractivity of polynomial chaos holds for arbitrary distributions of the ηNt ’s with
uniformly bounded moments: if supN,tEr|η

N
t |

p̄s ă 8 for some p ą p, then

E

„
ˇ

ˇ

ˇ

ˇ

ÿ

AĂT

qN pAq η
N pAq

ˇ

ˇ

ˇ

ˇ

p

ď

ˆ

ÿ

AĂT

C |A|p qN pAq
2

˙

p
2

, (4.2)

for a suitable Cp ă 8 with limpÓ2 Cp “ 1: see [CSZ20, Theorem B.1].

4.1 Preparation

We consider a sequence of polynomial chaos XN , with coefficients qN p¨q as in (2.3),
which satisfy assumptions (1), (2), (3), see the equations (2.7)-(2.10). We now build two
suitable diverging sequences of integers MN Ñ8, KN Ñ8.

• We fix MN Ñ 8 slowly enough so that assumption (3) still holds with M “ MN .
More explicitly, for every N P N we can find disjoint subsets (“boxes”) Bi “ B

pNq
i :

B1, . . . ,BMN
Ă T with Bi XBj “ H for i ‰ j ,

such that the following versions of (2.9)-(2.10) hold:

lim
NÑ8

MN
ÿ

i“1

σ2
N pBiq “ σ2 and lim

NÑ8

!

max
i“1,...,MN

σ2
N pBiq

)

“ 0 . (4.3)
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• By the second relation in (4.3), we can fix KN Ñ8 slowly enough so that

lim
NÑ8

8KN max
i“1,...,MN

σ2
N pBiq “ 0 . (4.4)

The reason for this specific choice will be clear later, see the discussion after (4.14).
Note that by our assumption (2), see (2.8), for any KN Ñ8 we have

lim
NÑ8

ÿ

AĂT
|A|ąKN

qN pAq
2 “ 0 . (4.5)

Remark 4.2. It is standard to deduce (4.3) from (2.9)-(2.10). Indeed, given any real
sequence aN,M which admits the limits

lim
MÑ8

lim sup
NÑ8

aN,M “ lim
MÑ8

lim inf
NÑ8

aN,M “ α ,

we can always choose M “MN Ñ8 slowly enough so that limNÑ8 aN,MN
“ α, as one

can check directly. Then, to obtain (4.3) from (2.9)–(2.10), it suffices to consider

aN,M “

M
ÿ

i“1

σ2
N

`

B
pN,Mq
i

˘

, resp. aN,M “ max
i“1,...,M

σ2
N

`

B
pN,Mq
i

˘

.

We next proceed with the actual proof of Theorem 2.1. We follow the two steps
outlined after the statement of Theorem 2.1:

• first we approximate the polynomial chaos XN in (2.3) by a sum of suitable inde-
pendent random variables, see Subsection 4.2;

• then we apply the Feller-Lindeberg CLT to obtain the asymptotic Gaussianity (2.11),
see Subsection 4.3.

4.2 Approximation of XN

We recall the notation ηN pAq :“
ś

tPA η
N
t , see (2.3). We define a triangular array of

random variables pXN,iqi“1,...,MN
by setting

XN,i :“
ÿ

AĂBi
|A|ďKN

qN pAq η
N pAq for i “ 1, . . . ,MN , (4.6)

where we recall that MN Ñ8 and KN Ñ8 have been fixed so that (4.3)–(4.5) hold.
We now show that the sum

řMN

i“1 XN,i is a good approximation of XN .

Lemma 4.3. The following holds:

lim
NÑ8

›

›

›

›

›

XN ´

MN
ÿ

i“1

XN,i

›

›

›

›

›

L2

“ 0 . (4.7)

Proof. Let us define a modification of the random variables XN,i in (4.6), where we
simply remove the constraint |A| ď KN :

X̃N,i :“
ÿ

AĂBi

qN pAq η
N pAq for i “ 1, . . . ,MN .

We are going to show that

lim
NÑ8

›

›

›

›

›

XN ´

MN
ÿ

i“1

X̃N,i

›

›

›

›

›

L2

“ 0 and lim
NÑ8

›

›

›

›

›

MN
ÿ

i“1

X̃N,i ´

MN
ÿ

i“1

XN,i

›

›

›

›

›

L2

“ 0 . (4.8)
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The first relation is a direct consequence of our assumptions (1) and (3). Indeed,
since the boxes Bi are disjoint, the random variable

řMN

i“1 X̃N,i is the polynomial chaos

where we only sum over subsets A Ă
ŤMN

i“1 Bi, hence the difference XN ´
řMN

i“1 X̃N,i is

orthogonal in L2 to
řMN

i“1 X̃N,i. As a consequence, recalling also (2.6), we can write

›

›

›

›

›

XN ´

MN
ÿ

i“1

X̃N,i

›

›

›

›

›

2

L2

“
›

›XN

›

›

2

L2 ´

›

›

›

›

›

MN
ÿ

i“1

X̃N,i

›

›

›

›

›

2

L2

“
ÿ

AĂT

qN pAq
2 ´

MN
ÿ

i“1

σ2
N pBiq ,

hence the first relation in (4.8) follows by (2.7) and the first relation in (4.3).

The second relation in (4.8) follows by our assumption (2), see (4.5), because

›

›

›

›

›

MN
ÿ

i“1

X̃N,i ´

MN
ÿ

i“1

XN,i

›

›

›

›

›

2

L2

“

MN
ÿ

i“1

ÿ

AĂBi
|A|ąKN

qN pAq
2 ď

ÿ

AĂT
|A|ąKN

qN pAq
2 .

This completes the proof.

4.3 Asymptotic Gaussianity of XN

In view of Lemma 4.3, to prove (2.11) it remains to prove the convergence in distri-
bution

MN
ÿ

i“1

XN,i
d

ÝÝÝÝÑ
NÑ8

N p0, σ2q . (4.9)

Note that pXN,iqi“1,...,MN
are independent random variables with zero mean and

finite variance, see (4.6), because the boxes Bi Ă T are disjoint. By the Central Limit
Theorem for triangular arrays [Bil95, Theorem 27.2], it suffices to check the convergence
of the variance:

lim
NÑ8

E

«˜

MN
ÿ

i“1

XN,i

¸2ff

“ σ2 , (4.10)

and the Lindeberg condition:

@ε ą 0 : lim
NÑ8

MN
ÿ

i“1

E
”

`

XN,i

˘2
1t|XN,i|ąεu

ı

“ 0 . (4.11)

Relation (4.10) follows by Lemma 4.3, see (4.7), and our assumption (1), see (2.7).
Next we are going to prove the following Lyapunov condition:

for some p ą 2 : lim
NÑ8

MN
ÿ

i“1

E
”

ˇ

ˇXN,i

ˇ

ˇ

p
ı

“ 0 , (4.12)

which implies Lindeberg’s condition (4.11) since

E
“`

XN,i

˘2
1t|XN,i|ąεu

‰

ď E

«

|XN,i|
p

|XN,i|
p´2

1|XN,i|ąεu

ff

ď
E
“
ˇ

ˇXN,i

ˇ

ˇ

p‰

εp´2
.

To obtain (4.12), we apply the hypercontractivity bound (4.1) to XN,i, see (4.6), to get

E
”

ˇ

ˇXN,i

ˇ

ˇ

p
ı

2
p

ď
ÿ

AĂBi
|A|ďKN

pp´ 1q|A| qN pAq
2 ď pp´ 1qKN σ2

N pBiq , (4.13)
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where we recall that σ2
N pBiq “

ř

AĂBi
qN pAq

2. Then we can write, for any p ą 2,

MN
ÿ

i“1

E
”

ˇ

ˇXN,i

ˇ

ˇ

p
ı

ď

ˆ

max
i“1,...,MN

E
”

ˇ

ˇXN,i

ˇ

ˇ

p
ı

˙1´ 2
p MN

ÿ

i“1

E
”

ˇ

ˇXN,i

ˇ

ˇ

p
ı

2
p

ď

#

pp´ 1qpKN
´

max
i“1,...,MN

σ2
N pBiq

¯p´2
+

1
2 MN

ÿ

i“1

σ2
N pBiq .

(4.14)

If we fix p “ 3, the term in brackets vanishes as N Ñ 8 by our choice (4.4) of KN .
The last sum converges to σ2 as N Ñ8, see (4.3), hence it is uniformly bounded. This
completes the proof of (4.12).

4.4 Switching to Gaussian random variables

We finally complete the proof of Theorem 2.1 by justifying the preliminary step: we
show that replacing the random variables pηNt qtPT in (2.3) by standard Gaussians does
not change the asymptotic distribution of XN . More precisely, if pη̂tqtPT are independent
N p0, 1q and we set

X̂N “
ÿ

AĂT

qN pAq η̂pAq , with η̂pAq :“
ź

tPA

η̂t , (4.15)

it suffices to show that for every bounded and smooth f : RÑ R we have

lim
NÑ8

ˇ

ˇErfpXN qs ´ ErfpX̂N qs
ˇ

ˇ “ 0 . (4.16)

Indeed, since X̂N
d
Ñ N p0, σ2q by the first part of the proof, (4.16) implies XN

d
Ñ N p0, σ2q.

We exploit the Lindeberg principle [CSZ17a, Theorem 2.6], which generalizes [MOO10],
to show that ErfpXN qs is close to ErfpX̂N qs. Let us fix f : RÑ R of class C3 with

Cf :“ maxt}f 1}8, }f
2}8, }f

3}8u ă 8 . (4.17)

For L ą 0, denote by mąL2 the second moment tail of the random variables ηNt and η̂t:

mąL2 :“ sup
NPN, tPT

max
!

E
“

|ηNt |
21|ηNt |ąL

‰

, E
“

|η̂t|
21|η̂t|ąL

‰

)

. (4.18)

Let CXďKN
, CXąKN be the second moments of XN truncated to chaos of order ď K and

ą K:
CXďKN

:“
ÿ

AĂT
|A|ďK

qN pAq
2 , CXąKN :“

ÿ

AĂT
|A|ąK

qN pAq
2 . (4.19)

Finally, define the influence of the variable t P T on XN by2

InftrXN s :“
ÿ

AĂT
AQt

qN pAq
2 . (4.20)

By [CSZ17a, Theorem 2.6], for any L ą 0 such that mąL2 ď 1
4 and for every K P N we

have

ˇ

ˇErfpXN qs ´ ErfpX̂N qs
ˇ

ˇ ď Cf

"

2
b

CXąKN ` 16K2 CXďKN
mąL2

` 70K`1 CXďKN
L3K max

tPT

a

InftrXN s

*

.

(4.21)

It remains to show that the r.h.s. of this expression is small as N Ñ8, to prove (4.16).
We fix any ε ą 0 and we argue as follows:

2Note that we can write InftrXN s “ E
“

Var
“

XN pηq|pη
N
s qsPTzt

‰‰

.
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Gaussian limits for subcritical chaos

• by assumption (2.8), we can choose K “ Kε such that lim supNÑ8 CXąKN ď ε;

• by assumption (2.7), for any K P N we can bound lim supNÑ8 CXďKN
ď σ2;

• by assumption (2.2), we can choose L “ Lε such that mąLε2 ď ε{pK2
ε σ

2q;

• finally, we show below that

lim sup
NÑ8

max
tPT

a

InftrXN s “ 0 . (4.22)

As a consequence, when we plug K “ Kε and L “ Lε in (4.21) and we let N Ñ8, we get

lim sup
NÑ8

ˇ

ˇErfpXN qs ´ ErfpX̂N qs
ˇ

ˇ ď Cf
 

2
?
ε ` 16 ε

(

,

from which (4.16) follows because ε ą 0 is arbitrary.
It only remains to prove (4.22). By assumption there are disjoint boxes B1, . . . ,BMN

Ă

T, with MN Ñ 8, such that relation (4.3) holds. In particular, recalling also (2.6) and
(2.7), it follows that subsets A Ă T not contained in any of the boxes Bi give a negligible
contribution:

∆N :“
ÿ

AĂT:
AĆBi @i“1,...,MN

qN pAq
2 “ σ2

N pTq ´

MN
ÿ

i“1

σ2
N pBiq ÝÝÝÝÑ

NÑ8
0 . (4.23)

Recall now the definition (4.20) of InftrXN s. Fix t P T and a subset A Ă T which
contains t, i.e. A Q t. We distinguish two cases:

• if t R Bi for all i “ 1, . . . ,MN , then A Q t implies A Ć Bi for all i “ 1, . . . ,MN , hence
by (4.23) we can bound InftrXN s ď ∆N ;

• if t P Bj for some (necessarily unique) j “ 1, . . . ,MN , then A Q t implies that either
A Ă Bj , or A Ć Bi for all i “ 1, . . . ,MN (we cannot have A Ă Bi for some i ‰ j),
hence by (2.6) and (4.23) we can bound InftrXN s ď σ2

N pBjq `∆N .

It follows that
max
tPT

InftrXN s ď max
j“1,...,MN

σ2
N pBjq ` ∆N ,

hence (4.22) follows by (4.3) and (4.23). The proof of Theorem 2.1 is complete.

5 Proof of Theorem 3.4

5.1 Preparation

We need to show that

p 9WN ,ΞN q
D
ùñ

´

9W,
b

c2
β̂
´ 1 9W 1

¯

,

that is, for any fixed ψ P C8c pr0, 1s ˆR
2q we have

`

x 9WN , ψy, xΞN , ψy
˘ d
ÝÝÑ N

`

0, }ψ}2L2 Σβ̂
˘

where Σβ̂ “

˜

1 0

0 c2
β̂
´ 1

¸

. (5.1)

By the Cramér-Wold device [Bil95, Theorem 29.4], it suffices to show that for all λ, µ P R

XN :“ µ x 9WN , ψy ` λ xΞN , ψy
d
ÝÝÑ N

´

0, σ2 :“ }ψ}2L2

`

µ2 ` λ2 pc2
β̂
´ 1q

˘

¯

. (5.2)

To this purpose we are going to apply Theorem 2.1.
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Recall the definitions (3.20) and (3.22) of 9WN and ΞN (see also (3.13)), we can write

XN “ N

ż

p0,1sˆR2

ψpt, xq ηN
`

tNtu, t
?
Nxu

˘

!

µ` λ
`

ZβNN ptNtu, t
?
Nxuq ´ 1

˘

)

dtdx

“
1

N

ż

p0,NsˆR2

ψ
`

t
N ,

x?
N

˘

ηN
`

ttu, txu
˘

!

µ` λ
`

ZβNN pttu, txuq ´ 1
˘

)

dtdx .

(5.3)

Let us define ψN : NˆZ2 Ñ R as the average of ψ
`

¨
N ,

¨?
N

˘

over cubes:

ψN pn, zq :“

ż

pn´1,nsˆtpz1´1,z1sˆpz2´1,z2su

ψ
`

t
N ,

x?
N

˘

dtdx for pn, zq P NˆZ2 . (5.4)

Recalling the polynomial chaos expansion (3.30) of ZβNN pm, zq, we can rewrite XN as
follows:

XN “
1

N

N
ÿ

n0“1

ÿ

x0PZ2

ψN pn0, x0q ηN pn0, x0q

#

µ ` λ
8
ÿ

k“1

pσN q
k

ÿ

n0ăn1ă...ănkďN
x0,x1,...,xkPZ

2

k
ź

j“1

qnj´nj´1
pxj ´ xj´1q ηN pnj , xjq

+

.

Renaming pn0, . . . , nkq as pn1, . . . , nk`1q and similarly px0, . . . , xkq as px1, . . . , xk`1q, and
subsequently renaming k ` 1 as k, we obtain the compact expression

XN “
1

N

8
ÿ

k“1

pσN q
k´1

ÿ

0ăn1ă...ănkďN
x1,...,xkPZ

2

fN pn1, x1, . . . , nk, xkq
k
ź

j“1

ηN pnj , xjq , (5.5)

where we set

fN pn1, x1, . . . , nk, xkq :“
 

µ1tk“1u ` λ1tkě2u

(

ψN pn1, x1q

k
ź

j“2

qnj´nj´1
pxj ´ xj´1q . (5.6)

In conclusion, we can write XN “
ř

AĂT qN pAq η
N pAq as in (2.3)-(2.4), with the

following correspondences:

• the index set is T :“ NˆZ2;

• the random variables ηNt “ ηN pm, zq, for t “ pm, zq P T, are defined in (3.19): they
satisfy (2.1) by construction, while they satisfy (2.2) because supN Er|ηN pm, zq|

ps ă

8 for all p ă 8 by (3.1) (see [CSZ17a, eq. (6.7)]);

• the kernel qN pAq, for A :“ tt1, . . . , tku “ tpn1, x1q, . . . , pnk, xkqu Ď T, is

qN pAq “
1

N
pσN q

k´1 fN pn1, x1, . . . , nk, xkq1t0ăn1ă...ănkďNu .

By Theorem 2.1, to prove XN
d
Ñ N p0, σ2q as in (5.2), we check the following conditions.

1. Limiting second moment: we need to prove that limNÑ8ErX
2
N s “ σ2.

2. Subcriticality: we need to show that

lim
KÑ8

lim sup
NÑ8

ÿ

AĂT
|A|ąK

qN pAq
2 “ 0 . (5.7)
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3. Spectral localization: for any M,N P N we define the disjoint subsets

Bj :“
`

j´1
M N, jMN

‰

ˆ Z2 for j “ 1, . . . ,M ,

and, recalling that σ2
N pBjq :“

ř

AĂBj
qN pAq

2, we need to show that

lim
MÑ8

M
ÿ

j“1

lim
NÑ8

σ2
N pBjq “ σ2 and lim

MÑ8

!

max
j“1,...,M

lim sup
NÑ8

σ2
N pBjq

)

“ 0 .

(5.8)

5.2 Proof of (2).

We need to prove (5.7). For K ě 1 we can write, by (5.5)-(5.6),

ÿ

AĂT
|A|ąK

qN pAq
2 “

λ2

N2

ÿ

kąK

pσ2
N q

k´1
ÿ

0ăn1ă...ănkďN
x1,...,xkPZ

2

ψN pn1, x1q
2

k
ź

j“2

qnj´nj´1pxj ´ xj´1q
2.

(5.9)
We can enlarge the sums to 0 ă mj :“ nj´nj´1 ď N and change variables yj :“ xj´xj´1,
for j “ 2, . . . , k, to get the upper bound

ÿ

AĂT
|A|ąK

qN pAq
2 ď

λ2

N2

ÿ

kąK

pσ2
N q

k´1
ÿ

0ăn1ďN
x1PZ

2

ψN pn1, x1q
2

k
ź

j“2

#

ÿ

0ămjďN

yjPZ
2

qmj pyjq
2

+

“ λ2

#

1

N2

ÿ

0ăn1ďN
x1PZ

2

ψN pn1, x1q
2

+

pσ2
N RN q

K

1´ σ2
N RN

,

(5.10)

where we used
ř

0ămďN

ř

yPZ2 qmpyq
2 “

ř

0ămďN um “ RN , see (3.10)-(3.11), and we

remark that σ2
NRN ă 1 for N large enough, because σ2

N „ β̂2{RN , see (3.12), and β̂ ă 1.
Then, by Riemann sum approximation, from (5.4) we get

lim sup
NÑ8

ÿ

AĂT
|A|ąK

qN pAq
2 ď λ2

"
ż

r0,1sˆR2

ψpt, xq2 dtdx

*

pβ̂2qK

1´ β̂2
“ λ2 }ψ}2L2

pβ̂2qK

1´ β̂2
, (5.11)

from which (5.7) follows.

5.3 Proof of (1) and (3)

We are going to show that for all M P N and j P t1, . . . ,Mu

lim
NÑ8

σ2
N pBjq “

`

µ2 ` λ2pc2
β̂
´ 1q

˘

ż

p
j´1
M , jM sˆR

2

ψpt, xq2 dtdx . (5.12)

Note that this proves (5.8) and also (for j “M “ 1) limNÑ8ErX
2
N s “ σ2, see (5.2).

To compute σ2
N pBjq :“

ř

AĂBj
qN pAq

2 we first consider the contribution of sets A Ă Bj

with |A| “ 1, that is A “ tpn1, x1qu. Since fN pn1, x1q “ µψN pn1, x1q, see (5.6), we get

ÿ

AĂBj , |A|“1

qN pAq
2 “

µ2

N2

ÿ

j´1
M Năn1ď

j
MN

x1PZ
2

ψN pn1, x1q
2 NÑ8
ÝÝÝÝÑ µ2

ż

p
j´1
M , jM sˆR

2

ψpt, xq2 dtdx ,

by Riemann sum approximation. Note that this matches with the first term in (5.12).
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We next focus on sets A Ă Bj with |A| ą 1. Note that
ř

AĂBj , |A|ą1 qN pAq
2 is given

by (5.9) with K “ 1 and with the sum restricted to j´1
M N ă n1 ă . . . ă nk ď

j
MN . Then,

arguing as in (5.10), we obtain an analogue of (5.11):

lim sup
NÑ8

ÿ

AĂBj , |A|ą1

qN pAq
2 ď λ2

#

ż

p
j´1
M , jM sˆR

2

ψpt, xq2 dtdx

+

β̂2

1´ β̂2
,

which agrees with the second term in (5.12) because β̂2

1´β̂2
“ c2

β̂
´ 1, see (3.14). To

complete the proof, it suffices to prove a matching lower bound, that is

lim inf
NÑ8

ÿ

AĂBj , |A|ą1

qN pAq
2 ě λ2

#

ż

p
j´1
M , jM sˆR

2

ψpt, xq2 dtdx

+

β̂2

1´ β̂2
. (5.13)

Let us fix H P N large, such that 1
H ă 1

M . Starting from the expression (5.9) for
K “ 1 and with j´1

M N ă n1 ă . . . ă nk ď
j
MN , we get a lower bound by the following

restrictions:

1 ă k ď H , j´1
M N ă n1 ď

`

j
M ´ 1

H

˘

N , 0 ă nj ´ nj´1 ď
1
H2N @j “ 2, . . . , k ,

which ensure that nk ď n1 `
řk
j“2pnj ´ nj´1q ď p

j
M ´ 1

H qN `H
1
H2N ď

j
MN as required.

Then, similarly to (5.10), we get the following lower bound on
ř

AĂBj , |A|ą1 qN pAq
2:

λ2

N2

H
ÿ

k“2

pσ2
N q

k´1
ÿ

j´1
M ăn1ďp

j
M´

1
H qN

x1PZ
2

ψN pn1, x1q
2

k
ź

j“2

#

ÿ

0ămjď
1
H2N

yjPZ
2

qmj pyjq
2

+

“

#

λ2

N2

ÿ

j´1
M ăn1ďp

j
M´

1
H qN

x1PZ
2

ψN pn1, x1q
2

+

σ2
N RN{H2 ´ pσ2

N RN{H2qH

1´ σ2
N RN{H2

,

(5.14)

where we recall that
řH
k“2 x

k´1 “ x´xH

1´x for |x| ă 1. Since RN{H2 „ RN for fixed H P N,
we have shown that

lim inf
NÑ8

ÿ

AĂBj , |A|ą1

qN pAq
2 ě λ2

"
ż

p
j´1
M , jM´

1
H sˆR

2

ψpt, xq2 dtdx

*

β̂2 ´ pβ̂2qH

1´ β̂2
.

We can finally take the limit H Ñ8 to see that (5.13) holds.

6 Proof of Theorem 3.5

The proof is organised in four parts: we give different approximations of the partition
function ZβNN and of its logarithm, which will lead us to the proof of our goal (3.32). Let
us present a general overview of the strategy.

Part 1 (record times). Let us define a “constrained version” Xdom
N,ra,b;b1spx, z; z

1q of Xdom
N

from (3.31), where we fix pn0, n1;nkq “ pa, b; b
1q and px0, x1;xkq “ px, z; z

1q:

Xdom
N,ra,b;b1spx, z; z

1q :“
8
ÿ

k“1

pσN q
k qb´apz ´ xq ηN pb, zqˆ

ˆ
ÿ

b“:n1ăn2ă...ănk´1ănk“:b1

maxtn2´n1,...,nk´nk´1uďb

ÿ

x1“z, xk“z
1,

x2,...,xk´1PZ
2

k
ź

i“2

qni´ni´1
pxi ´ xi´1q ηN pni, xiq .

(6.1)
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0 b1 b11 b2 b12 b3 b13

` “ 3b2 ´ b11 ą b1 b3 ´ b12 ą b2

Figure 1: An example of the variables bi, b1i in (6.2). These correspond to record times
which satisfy bi ´ b1i´1 ą bi´1, see subsection 6.1.

(Note that if b “ b1 only the terms k “ 1 contributes to the sum — and we must have z “ z1,
otherwise the sum vanishes — while if b ă b1 only the terms k ě 2 give a contribution.)

We first show that the partition function ZβNN in (3.30) can be written as a concate-
nation of products of Xdom

N,ra,b;b1spx, z; z
1q’s corresponding to suitable record times, see

Figure 1. The next result is proved in subsection 6.1.

Lemma 6.1 (Record times). The following equality holds, with pb10, z
1
0q :“ p0, 0q:

ZβNN “ 1`
8
ÿ

`“1

ÿ

0ăb1ďb
1
1ă...ăb`ďb

1
`ďN :

bi´b
1
i´1ąbi´1 @i“2,...,`

ÿ

z,z1PpZ2q`

ź̀

i“1

Xdom
N,rb1i´1,bi;b

1
is
pz1i´1, zi; z

1
iq , (6.2)

where we use the shortcuts z “ pz1, . . . , z`q and z1 “ pz11, . . . , z
1
`q.

Part 2 (coarse-graining and diffusive approximation). We fix a large parameter M P N

and we define an approximation Z
pdiffq
N,M of the partition function ZβNN from (6.2), as

follows:3

1. we set b1i´1 “ 0, z1i´1 “ 0 in each Xdom
N,rb1i´1,bi;b

1
is
pz1i´1, zi; z

1
iq;

2. we impose that each pair bi ď b1i belongs to the same interval pN
j´1
M , N

j
M s, for some

j “ 1, . . . ,M , and we ignore the constraint bi ´ b1i´1 ą bi´1.

This yields the following definition of Zpdiffq
N,M :

Z
pdiffq
N,M :“ 1 `

8
ÿ

`“1

ÿ

1ďj1ă...ăj`ďM

ź̀

i“1

Xdom
N,M pjiq “

M
ź

j“1

`

1`Xdom
N,M pjq

˘

, (6.3)

where we set

Xdom
N,M pjq :“

ÿ

bďb1PpN
j´1
M ,N

j
M s

ÿ

z,z1PZ2

Xdom
N,r0,b;b1sp0, z; z

1q for j “ 1, . . . ,M . (6.4)

We prove that Zpdiffq
N,M is close to ZβNN in L2 for N "M " 1, in the following sense.

Lemma 6.2 (Coarse-graining and diffusive approximation). The following holds:

lim sup
MÑ8

lim sup
NÑ8

›

›ZβNN ´ Z
pdiffq
N,M

›

›

L2 “ 0 . (6.5)

The proof of this result is given in subsection 6.2 below.

Part 3 (log approximation). The product form of Zpdiffq
N,M in (6.3) is especially suitable to

take the logarithm. We thus prove a preliminary version of our goal (3.32), where we

3Heuristically, these are good approximations because the main contribution to (6.2) will be shown to come

from b1i´1 « Nα1i´1 and bi « Nαi with α1i´1 ă αi, hence b1i´1 ! bi.
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replace logZβNN by logZ
pdiffq
N,M (and convergence in L2 by convergence in probability). To

this purpose, we define the event

AN,M :“
M
č

j“1

 

|Xdom
N,M pjq| ď

1
2

(

, (6.6)

which ensures that Zpdiffq
N,M ą 0, see (6.3).

Lemma 6.3 (log approximation). Recall Xdom
N from (3.31). For any ε ą 0 we have

lim
MÑ8

lim sup
NÑ8

P
´

ˇ

ˇ logZ
pdiffq
N,M ´

 

Xdom
N ´ 1

2ErpX
dom
N q2s

(
ˇ

ˇ ą ε, AN,M

¯

“ 0 , (6.7)

for AN,M Ď tZ
pdiffq
N,M ą 0u defined in (6.6) (so that logZ

pdiffq
N,M is well-defined) which satisfies

lim
MÑ8

lim sup
NÑ8

P
`

pAN,M q
c
˘

“ 0 . (6.8)

The proof of this result is given in subsection 6.3 below.

Part 4 (final approximation). At last, we complete the proof of Theorem 3.5. Our final goal
(3.32) is a consequence of the next lemma, where we prove convergence in probability
and boundedness in Lp for some p ą 2.

Lemma 6.4 (Final approximation). Recall Xdom
N from (3.31). For any ε ą 0 we have

lim
NÑ8

P
`
ˇ

ˇ logZβNN ´
 

Xdom
N ´ 1

2ErpX
dom
N q2s

(
ˇ

ˇ ą ε
˘

“ 0 . (6.9)

Moreover, for some p ą 2 we have

sup
NPN

E
“
ˇ

ˇ logZβNN
ˇ

ˇ

p‰
ă 8 , sup

NPN
E
“
ˇ

ˇXdom
N

ˇ

ˇ

p‰
ă 8 . (6.10)

Notice that, once we have convergence in probability (6.9), to obtain convergence in
L2 it suffices to show uniform integrability of the squares of logZβNN and Xdom

N , which is
in turn implied by boundedness in Lp for some p ą 2, as in (6.10).

Intuitively, we can deduce (6.9) from (6.7) by exploiting the approximation (6.5), but
some care is needed to handle the logarithm.

The proof of Lemma 6.4, given in subsection 6.4, concludes the proof of Theorem 3.5.

6.1 Proof of Lemma 6.1

We rewrite the sum over n1, . . . , nk in (3.30) according to suitable record times. The
first record time is n1; the second record time is the smallest ni for which the previous
jump ni´ni´1 exceeds n1; and so on. More precisely, the record times are nj1 , nj2 , . . . , nj`
where we define j1 :“ 1 and, assuming that jr ă 8, we set jr`1 :“ minti P tjr`1, . . . , ku :

ni ´ ni´1 ą njru, where we agree that minH :“ 8. The number of record times is
therefore ` :“ mintr ě 1 : jr`1 “ 8u.

If we rename the record times as br :“ njr , and we also set b1r´1 :“ njr´1, we have
by construction b2 ´ b11 ą b1 and, more generally, bi ´ b1i´1 ą bi´1 for i “ 2, . . . , ` (see
Figure 1). If we name the corresponding space variables zr :“ xbr and z1r´1 :“ xb1r´1

, then

we can rewrite (3.30) equivalently as (6.2), with Xdom
N,ra,b;b1spx, z; z

1q defined in (6.1).
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6.2 Proof of Lemma 6.2

The proof, which is long and structured, is based on explicit L2 computations. A key
observation is that, by the expression (6.2) for ZβNN , we can write

E
”

`

ZβNN
˘2
ı

“ 1`
8
ÿ

`“1

ÿ

0ăb1ďb
1
1ă...ăb`ďb

1
`ďN :

bi´b
1
i´1ąbi´1 @i“2,...,`

ÿ

z,z1PpZ2q`

ź̀

i“1

E
”

`

Xdom
N,rb1i´1,bi;b

1
is
pz1i´1, zi; z

1
iq
˘2
ı

.

(6.11)

To see why this holds, note that by (3.30) we can write

E
“`

ZβNN
˘2‰

“ 1`
8
ÿ

k“1

pσ2
N q

k
ÿ

0“:n0ăn1ă...ănkďN
x0:“0, x1,...,xkPZ

2

k
ź

j“1

qnj´nj´1pxj ´ xj´1q
2 , (6.12)

with qnpxq “ PpSn “ x |S0 “ 0q, see (3.29), and σN as in (3.19). Similarly, by (6.1),

E
”

`

Xdom
N,ra,b;b1s

px, z; z1q
˘2
ı

“

8
ÿ

k“1

pσ2
N q

k qb´apz ´ xq
2ˆ

ˆ
ÿ

b“:n1ăn2ă...ănk´1ănk“b
1

maxtn2´n1,...,nk´nk´1uďb

ÿ

x1“z; xk“z
1

x2,...,xk´1PZ
2

k
ź

i“2

qni´ni´1pxi ´ xi´1q
2.

(6.13)

When we plug (6.13) into (6.11) we obtain (6.12) by the same argument in the proof of
Lemma 6.1, see subsection 6.1, because the sum over nj , xj in (6.12) can be rewritten in
terms of record times, which lead to the variables br, b1r and zr, z1r in (6.11).

We now turn to the proof of (6.5). We will define two “coarse-grained approximations”

Z
pcgq
N,K,M and Zpcg1q

N,K,M , which depend on a further parameter K P N, and we will show that

ZβNN « Z
pcgq
N,K,M , Z

pcgq
N,K,M « Z

pcg1q
N,K,M , Z

pcg1q
N,K,M « Z

pdiffq
N,M ,

where « denotes closeness in L2 when we let N Ñ8, then K Ñ8 and finally M Ñ8.
More precisely, we are going to prove the following relations:

lim sup
MÑ8

lim sup
KÑ8

lim sup
NÑ8

›

›ZβNN ´ Z
pcgq
N,K,M

›

›

L2 “ 0 , (6.14)

lim sup
MÑ8

lim sup
KÑ8

lim sup
NÑ8

›

›Z
pcgq
N,K,M ´ Z

pcg1q
N,K,M

›

›

L2 “ 0 , (6.15)

lim sup
MÑ8

lim sup
KÑ8

lim sup
NÑ8

›

›Z
pcg1q
N,K,M ´ Z

pdiffq
N,M

›

›

L2 “ 0 , (6.16)

which together yield (6.5). We accordingly split the proof in three steps.

6.2.1 Step 1: definition of Zpcgq
N,K,M and proof of (6.14).

Let us fix M,K,N P N with 1 ! M ! K ! N . Our first coarse-graining approximation
Z
pcgq
N,K,M of the partition function ZβNN in (6.2) is obtained by suitably restricting the sums

over b, b1 and z, z1:

Z
pcgq
N,K,M :“ 1`

8
ÿ

`“1

ÿ

jPt1,...,Mu`!

ÿ

pb,b1qPB`pjq

ÿ

pz,z1qPS`pb,b1q

ź̀

i“1

Xdom
N,rb1i´1,bi;b

1
is
pz1i´1, zi; z

1
iq ,

(6.17)
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where we sum over j “ pj1, . . . , j`q in the following set:

t1, . . . ,Mu`! :“
!

1 ď j1 ă . . . ă j` ďM : ji ´ ji´1 ě 2 @i “ 2, . . . , `
)

, (6.18)

then, given j “ pj1, . . . , j`q, we sum over pb, b1q in the set

B`pjq :“
!

pb, b1q P N` ˆN` : bi P pN
ji´1

M , 1
KN

ji
M s , b1i P rbi,Kbis @i “ 1, . . . , `

)

, (6.19)

and finally, given pb, b1q, we sum over z, z1 in the “diffusive set”

S`pb, b1q :“
!

pz, z1q P pZ2q` ˆ pZ2q` : |zi| ď K
a

bi , |z
1
i| ď K2

a

bi @i “ 1, . . . , `
)

.

To see that Zpcgq
N,K,M in (6.17) is a restriction of ZβNN in (6.2), note that for pb, b1q P B`pjq

we have 0 ă b1 ď b11 ă . . . ă b` ď b1` ď N , and for large N we also have bi ´ b1i´1 ą bi´1

for i ě 2, because bi ą N
ji´1

M ě N
ji´1`1

M ě KN
1
M bi´1 (recall that ji ´ ji´1 ě 2) hence

bi ´ b
1
i´1 ą KN

1
M bi´1 ´Kbi´1 “ pN

1
M ´ 1qK bi´1 ą bi´1 for N ą 2M .

Thus the range of the sums in (6.17) is included in the range of the sums in (6.2). Since
the terms in the polynomial chaos (3.30) are orthogonal in L2, it follows that

›

›ZβNN ´ Z
pcgq
N,K,M

›

›

2

L2 “
›

›ZβNN
›

›

2

L2 ´
›

›Z
pcgq
N,K,M

›

›

2

L2 , (6.20)

hence to prove (6.14) it suffices to show that

lim sup
NÑ8

E
“`

ZβNN
˘2‰

ď
1

1´ β̂2
, (6.21)

lim inf
MÑ8

lim inf
KÑ8

lim inf
NÑ8

E
“`

Z
pcgq
N,K,M

˘2‰
ě

1

1´ β̂2
. (6.22)

Relation (6.21) can be easily deduced from the expression (6.12). Indeed, enlarging
the sums to 1 ď nj ´ nj´1 ď N and recalling the definition (3.11) of RN , we get

E
“`

ZβNN
˘2‰

ď 1`
8
ÿ

k“1

pσ2
N q

k
ÿ

1ďnj´nj´1ďN
j“1,...,k

ÿ

x0:“0, x1,...,xkPZ
2

k
ź

j“1

qnj´nj´1
pxj ´ xj´1q

2

“ 1`
8
ÿ

k“1

pσ2
N q

k

ˆ N
ÿ

n“1

ÿ

xPZ2

qnpxq
2

˙k

“ 1`
8
ÿ

k“1

`

σ2
NRN

˘k
“

1

1´ σ2
NRN

.

(6.23)

Since σN „ βN „ β̂
?
π{
?

logN , see (3.19) and (3.12), and since RN „
1
π logN , see (3.11),

we see that (6.21) is proved.
We next prove (6.22). By definition (6.17) of Zpcgq

N,K,M , in analogy with (6.11), we have

E
”

`

Z
pcgq
N,K,M

˘2
ı

“ 1`
8
ÿ

`“1

ÿ

jPt1,...,Mu`!

ÿ

pb,b1qPB`pjq
pz,z1qPS`pb,b1q

ź̀

i“1

E
”

`

Xdom
N,rb1i´1,bi;b

1
is
pz1i´1, zi; z

1
iq
˘2
ı

.

(6.24)

We now give a lower bound on E
“`

Xdom
N,rb1i´1,bi;b

1
is
pz1i´1, zi; z

1
iq
˘2‰

when we sum over bi, b1i

and zi, z1i in the sets B`pjq and S`pb, b1q. The next result is proved in Appendix A.1.
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Lemma 6.5. For N,M,K P N and j P t1, . . . ,Mu, define

ΞN,M,Kpjq :“ inf

0ďaďN
pj´2q`

M

|x|ďK2?a

ÿ

bPpN
j´1
M , 1

KN
j
M s

b1Prb,Kbs

ÿ

|z|ďK
?
b

|z1|ďK2
?
b

E
”

`

Xdom
N,ra,b;b1s

px, z; z1q
˘2
ı

. (6.25)

Then, for any M P N and j P t1, . . . ,Mu, we have

lim inf
KÑ8

lim inf
NÑ8

ΞN,M,Kpjq “ IM pjq :“

ż

j
M

j´1
M

β̂2

1´ β̂2s
ds . (6.26)

Coming back to (6.24), by definition (6.25) of ΞN,M,Kpjq, we have the lower bound

E
”

`

Z
pcgq
N,K,M

˘2
ı

ě 1`
8
ÿ

`“1

ÿ

jPt1,...,Mu`!

ź̀

i“1

ΞN,M,Kpjiq , (6.27)

which yields, by (6.26),

lim inf
KÑ8

lim inf
NÑ8

E
”

`

Z
pcgq
N,K,M

˘2
ı

ě 1`
8
ÿ

`“1

ÿ

jPt1,...,Mu`!

ź̀

i“1

IM pjiq . (6.28)

Recalling the definition (6.18) of t1, . . . ,Mu`!, we can rewrite the r.h.s. of (6.28) as

1`
8
ÿ

`“1

1

`!

#

ˆ M
ÿ

j“1

IM pjq

˙`

´
ÿ

j1,...,j`Pt1,...,Mu
Dh‰k: |jh´jk|ď1

IM pj1q ¨ ¨ ¨ IM pj`q

+

.

The second term gives a vanishing contribution as M Ñ8, because max1ďjďM IM pjq ď
C
M , with C :“ β̂2

1´β̂2
ă 8, hence

8
ÿ

`“1

1

`!

ÿ

j1,...,j`Pt1,...,Mu
Dh‰k: |jh´jk|ď1

IM pj1q ¨ ¨ ¨ IM pj`q ď
8
ÿ

`“1

1

`!

C`

M `

ˆ

`

2

˙

3M `´1 “
C 1

M
MÑ8
ÝÝÝÝÝÑ 0 ,

where
`

`
2

˘

is the number of pairs th, ku with h ‰ k and 3M `´1 bounds the number of

choices of j1, . . . , j` with jh P tjk´1, jk, jk`1u. Since
řM
j“1 IM pjq “

ş1

0
β̂2

1´β̂2s
ds “ log 1

1´β̂2
,

we have finally shown that

lim inf
MÑ8

lim inf
KÑ8

lim inf
NÑ8

E
”

`

Z
pcgq
N,K,M

˘2
ı

ě 1`
8
ÿ

`“1

1

`!

´

log 1
1´β̂2

¯`

“
1

1´ β̂2
, (6.29)

which is (6.22). This completes the proof of (6.14).

6.2.2 Step 2: definition of Zpcg1q
N,K,M and proof of (6.15).

Starting from Z
pcgq
N,K,M in (6.17), we set b1i´1 “ 0 and z1i´1 “ 0 inside each Xdom

N to obtain
our second approximation:

Z
pcg1q
N,K,M :“ 1`

8
ÿ

`“1

ÿ

jPt1,...,Mu`!

ÿ

pb,b1qPB`pjq

ÿ

pz,z1qPS`pb,b1q

ź̀

i“1

Xdom
N,r0,bi;b1is

p0, zi; z
1
iq . (6.30)
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Heuristically, the reason why we set b1i´1 “ 0 is that bi " b1i´1, hence bi´b1i´1 « bi (indeed,

note that bi ě N
ji´1

M " N
ji´1
M ě b1i´1 since ji ´ 1 ą ji´1, see (6.19) and (6.18)).

We need to prove (6.15). Given b, b1 and z, z1, let us introduce the shortcuts

Xi :“ Xdom
N,rb1i´1,bi;b

1
is
pz1i´1, zi; z

1
iq , Yi :“ Xdom

N,r0,bi;b1is
p0, zi; z

1
iq , (6.31)

so that, comparing (6.17) and (6.30), we can write

Z
pcg1q
N,K,M ´ Z

pcgq
N,K,M “

8
ÿ

`“1

ÿ

jPt1,...,Mu`!

ÿ

pb,b1qPB`pjq

ÿ

pz,z1qPS`pb,b1q

˜

ź̀

i“1

Yi ´
ź̀

i“1

Xi

¸

“

8
ÿ

`“1

ÿ

jPt1,...,Mu`!

ÿ

pb,b1qPB`pjq

ÿ

pz,z1qPS`pb,b1q

ÿ̀

h“1

" h´1
ź

i“1

Yi

*

pYh ´Xhq

"

ź̀

i“h`1

Xi

*

,

and note that different terms in the sums are orthogonal in L2. We justify below the
following key estimate, see Lemma 6.7: for any ε ą 0, for N large enough, we can bound
for all i “ 1, . . . , `

E
“

pYi ´Xiq
2
‰

ď ε2ErY 2
i s . (6.32)

By the triangle inequality, this implies ErX2
i s

1{2 ď p1` εqErY 2
i s

1{2 ď 2ErY 2
i s

1{2, hence

E
“`

Z
pcg1q
N,K,M ´ Z

pcgq
N,K,M

˘2‰
ď

8
ÿ

`“1

ÿ

jPt1,...,Mu`!

ÿ

pb,b1qPB`pjq

ÿ

pz,z1qPS`pb,b1q

ˆ

ε2
ÿ̀

h“1

22p`´hq

˙

ź̀

i“1

ErY 2
i s

ď ε2
8
ÿ

`“1

4`
ÿ

jPt1,...,Mu`!

ÿ

pb,b1qPB`pjq

ÿ

pz,z1qPS`pb,b1q

ź̀

i“1

ErY 2
i s ,

because
ř`
h“1 22p`´hq “ 4`´1

4´1 ď 4`. We now enlarge the sum ranges to obtain the
factorization

E
“`

Z
pcg1q
N,K,M ´ Z

pcgq
N,K,M

˘2‰

ď ε2
8
ÿ

`“1

4`
ÿ

1ďj1ăj2ă...ăj`ďM

ź̀

i“1

#

ÿ

biďb1iPpN
ji´1
M ,N

ji
M s

ÿ

zi,z1iPZ
2

ErY 2
i s

+

.
(6.33)

The following asymptotics on the term in brackets is proved in Appendix A.2.

Lemma 6.6. For any M P N and j P t1, . . . ,Mu we have

lim
NÑ8

#

ÿ

bďb1PpN
j´1
M ,N

j
M s

z,z1PZ2

E
“

Xdom
N,r0,b;b1sp0, z; z

1q2
‰

+

“ IM pjq “

ż

j
M

j´1
M

β̂2

1´ β̂2s
ds .

(6.34)

We can plug (6.34) into (6.33) (where the sum is finite: it can be stopped at ` “M ,
since for ` ąM there is no choice of 1 ď j1 ă j2 ă . . . ă j` ďM ), which yields

lim sup
NÑ8

E
“`

Z
pcg1q
N,K,M ´ Z

pcgq
N,K,M

˘2‰
ď ε2

8
ÿ

`“1

4`
ÿ

1ďj1ăj2ă...ăj`ďM

ź̀

i“1

IM pjiq

ď ε2
8
ÿ

`“1

4`

`!

ˆ M
ÿ

j“1

IM pjq

˙`

ď ε2 exp

ˆ

4
M
ÿ

j“1

IM pjq

˙

“
ε2

p1´ β̂2q4
.

(6.35)

This completes the proof of (6.15), since we can take ε ą 0 as small as we wish.
It only remains to justify (6.32). The following result is proved in Appendix A.3.
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Lemma 6.7. Given K,M P N and ε ą 0, there exists N0 “ N0pε,M,Kq ă 8 such that
for all N ą N0 the following bound holds:

E
“`

Xdom
N,ra,b;b1spx, z; z

1q ´Xdom
N,r0,b;b1sp0, z; z

1q
˘2‰

ď ε2E
“

Xdom
N,r0,b;b1sp0, z; z

1q2
‰

, (6.36)

uniformly for pa, xq, pb, zq, pb1, z1q P Z3
even “ ty P Z

3 : y1 ` y2 ` y3 is evenu such that, for
some j P t1, . . . ,Mu,

a P r0, N
pj´2q`

M s , b P pN
j´1
M , N

j
M s , |x| ď K2

?
a , |z| ď K

?
b . (6.37)

6.2.3 Step 3: proof of (6.16)

Recalling (6.4), we can rewrite Zpdiffq
N,M in (6.3) as follows:

Z
pdiffq
N,M “ 1`

8
ÿ

`“1

ÿ

1ďj1ăj2ă...ăj`ďM

ÿ

b,b1PN`:

biďb
1
iPpN

ji´1
M ,N

ji
M s

ÿ

z,z1pZ2q`

ź̀

i“1

Xdom
N,r0,bi;b1is

p0, zi; z
1
iq .

(6.38)

By (6.30), we see that Zpcg1q
N,K,M is a restriction of the sum which defines Zpdiffq

N,M , therefore

›

›Z
pcg1q
N,K,M ´ Z

pdiffq
N,M

›

›

2

L2 “
›

›Z
pdiffq
N,M

›

›

2

L2 ´
›

›Z
pcg1q
N,K,M

›

›

2

L2 .

Then, to prove (6.16), it is enough to show that

lim inf
MÑ8

lim inf
KÑ8

lim inf
NÑ8

E
“`

Z
pcg1q
N,K,M

˘2‰
ě

1

1´ β̂2
, (6.39)

@M P N : lim sup
NÑ8

E
“`

Z
pdiffq
N,M

˘2‰
ď

1

1´ β̂2
. (6.40)

We first consider (6.39). Recalling (6.30), in analogy with (6.11), we can write

E
“`

Z
pcg1q
N,K,M

˘2‰
“ 1`

8
ÿ

`“1

ÿ

jPt1,...,Mu`!

ÿ

pb,b1qPB`pjq

ÿ

pz,z1qPS`pb,b1q

ź̀

i“1

E
“

Xdom
N,r0,bi;b1is

p0, zi; z
1
iq

2
‰

.

We can now use the quantity ΞN,M,Kpjiq defined in (6.25) to bound

E
“`

Z
pcg1q
N,K,M

˘2‰
ě 1`

8
ÿ

`“1

ÿ

jPt1,...,Mu`!

ź̀

i“1

ΞN,M,Kpjiq ,

which coincides with the r.h.s. of (6.27). As a consequence, the bounds from (6.28) to

(6.29) apply verbatim to E
“`

Z
pcg1q
N,K,M

˘2‰
and show that (6.39) holds.

We finally consider (6.40), which we have essentially already proved. Indeed, note
that E

“`

Z
pdiffq
N,K,M

˘2‰
is given by the second line of (6.33) where we replace ε2 and 4` by 1.

When we apply the limit (6.34), we obtain an analogue of (6.35), again with ε2 and 4`

replaced by 1, which yields precisely (6.40). This completes the proof of Lemma 6.6.
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6.3 Proof of Lemma 6.3

We recall that the event AN,M was defined in (6.6). In order to prove (6.7), it is
enough to show that the following three relations hold:

lim
MÑ8

lim sup
NÑ8

P

ˆ
ˇ

ˇ

ˇ

ˇ

logZ
pdiffq
N,M ´

M
ÿ

j“1

 

Xdom
N,M pjq ´

1
2X

dom
N,M pjq

2
(

ˇ

ˇ

ˇ

ˇ

ą ε , AN,M

˙

“ 0 , (6.41)

lim
MÑ8

lim sup
NÑ8

›

›

›

›

M
ÿ

j“1

Xdom
N,M pjq ´X

dom
N

›

›

›

›

L2

“ 0 , (6.42)

lim
MÑ8

lim sup
NÑ8

›

›

›

›

M
ÿ

j“1

Xdom
N,M pjq

2 ´ ErpXdom
N q2s

›

›

›

›

L1

“ 0 . (6.43)

We are going to exploit the following result.

Lemma 6.8. Fix β̂ ă 1. For every M P N and j P t1, . . . ,Mu we have

lim
NÑ8

E
“

Xdom
N,M pjq

2
‰

“

ż

j
M

j´1
M

β̂2

1´ β̂2s
ds ď

c

M
, with c “ cβ̂ :“ β̂2

1´β̂2
. (6.44)

Moreover, there exist pβ̂ ą 2 and C “ Cβ̂ ă 8 such that for all 2 ă p ď pβ̂

@M P N , @j P t1, . . . ,Mu : lim sup
NÑ8

E
“

|Xdom
N,M pjq|

p
‰

ď
C

M
p
2

. (6.45)

Proof. Relation (6.44) is already proved in (6.34), by the definition (6.4) of Xdom
N,M pjq.

Intuitively, the bound (6.45) holds because E
“

|Xdom
N,M pjq|

p
‰

ď C E
“

Xdom
N,M pjq

2
‰

p
2 by the

hypercontractivity of polynomial chaos. The details are presented in Appendix A.4.

It only remains to prove (6.8) and the three relations (6.41)-(6.43).

Proof of (6.8). For any p ą 2 we can bound, by Markov’s inequality,

P
`

pAN,M q
c
˘

ď

M
ÿ

j“1

P
`

|Xdom
N,M pjq| ą

1
2

˘

ďM 2p max
jPt1,...,Mu

E
“

|Xdom
N,M pjq|

p
‰

,

and relation (6.8) follows directly by (6.45).

Proof of (6.41). By (6.3) we can write logZ
pdiffq
N,M “

řM
j“1 logp1 ` Xdom

N,M pjqq. If we fix

2 ă p ă mint3, pβ̂u, with pβ̂ as in Lemma 6.8, we can bound | logp1`xq´tx´ 1
2x

2u| ď c|x|p

for |x| ď 1
2 , hence

E

«

ˇ

ˇ

ˇ

ˇ

logZ
pdiffq
N,M ´

M
ÿ

j“1

 

Xdom
N,M pjq ´

1
2X

dom
N,M pjq

2
(

ˇ

ˇ

ˇ

ˇ

1AN,M

ff

ď c
M
ÿ

j“1

E
“

|Xdom
N,M pjq|

p
‰

ď c
C

M
p
2´1

,

which proves (6.41), by Markov’s inequality.

Proof of (6.42). The polynomial chaos
řM
j“1X

dom
N,M pjq contains less terms than Xdom

N ,
therefore to prove (6.42) it is enough to show that for any fixed M P N

lim
NÑ8

E

«

ˆ M
ÿ

j“1

Xdom
N,M pjq

˙2
ff

“ lim
NÑ8

E
“`

Xdom
N

˘2‰
“

ż 1

0

β̂2

1´ β̂2s
ds (6.46)
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where the last equality follows by (6.44), because Xdom
N equals Xdom

N,M pjq for M “ j “ 1 (cf.

(3.31) with (6.4) and (6.1)). Since the variables Xdom
N,M pjq’s are centered and independent,

a further application of (6.44) yields

E

«

ˆ M
ÿ

j“1

Xdom
N,M pjq

˙2
ff

“

M
ÿ

j“1

E
“

Xdom
N,M pjq

2
‰ NÑ8
ÝÝÝÝÑ

M
ÿ

j“1

IM pjq “

ż 1

0

β̂2

1´ β̂2s
ds , (6.47)

as desired. This completes the proof.

Proof of (6.43). In view of the first equalities in (6.46) and (6.47), it suffices to show that

lim
MÑ8

lim sup
NÑ8

›

›

›

›

M
ÿ

j“1

 

Xdom
N,M pjq

2 ´ E
“

Xdom
N,M pjq

2
‰(

›

›

›

›

L1

“ 0 . (6.48)

This is a weak law of large numbers for the independent random variables Wj :“

Xdom
N,M pjq

2, which satisfy the following Lyapunov condition (by (6.45) with q :“ p{2):

Dq “ qβ̂ ą 1, C “ Cβ̂ ă 8 : @M P N lim sup
NÑ8

max
jPt1,...,Mu

ErW q
j s ď

C

Mq
. (6.49)

We prove (6.48) by truncation at level TM :“M´α, for an arbitrary α P p 1
2 , 1q. Note

that

›

›

›

›

M
ÿ

j“1

Wj 1tWjąTMu

›

›

›

›

L1

“

M
ÿ

j“1

E
“

Wj 1tWjąTMu

‰

ď

M
ÿ

j“1

ErW q
j s

T q´1
M

ďM1`αpq´1q max
jPt1,...,Mu

ErW q
j s ,

which, by (6.49), vanishes as N Ñ8 followed by M Ñ8 provided 1` αpq ´ 1q ´ q ă 0,
that is α ă 1. To prove (6.48) it only remains to show that

lim
MÑ8

lim sup
NÑ8

›

›

›

›

M
ÿ

j“1

!

Wj 1tWjďTMu ´ E
“

Wj 1tWjďTMu

‰

)

›

›

›

›

L1

“ 0 .

It is simpler to prove convergence in L2, because this follows by a variance computation:

Var

ˆ M
ÿ

j“1

Wj 1tWjďTMu

˙

“

M
ÿ

j“1

Var
`

Wj 1tWjďTMu

˘

ďM T 2
M “M1´2α ,

which vanishes as M Ñ8 provided 1´ 2α ă 0, that is α ą 1
2 .

6.4 Proof of Lemma 6.4

We first prove (6.9). In view of (6.7) and (6.8), it suffices to show that

@ε ą 0 : lim
NÑ8

P
`
ˇ

ˇ logZβNN ´ logZ
pdiffq
N,M

ˇ

ˇ ą ε , AN,M
˘

“ 0 , (6.50)

where we recall that the event AN,M Ď tZ
pdiffq
N,M ą 0u was defined in (6.6).

For any a, b P R and ε, η P p0, 1q we have the following inclusion:

t| log a´ log b| ą εu Ď tb ă 2ηεu Y t|a´ b| ą ηε2u .

Indeed, if both b ě 2ηε and |a´ b| ď ηε2, then a ě b´ ηε2 ě 2ηε´ ηε2 ě ηε, so that both

a, b P rηε,8q, hence | log a´ log b| “ |
şb

a
1
xdx| ď 1

ηε |b´ a| ď
1
ηεηε

2 “ ε. It follows that

P
`
ˇ

ˇ logZβNN ´ logZ
pdiffq
N,M

ˇ

ˇ ą ε, AN,M
˘

ď P
`

Z
pdiffq
N,M ă 2ηε, AN,M

˘

` P
`
ˇ

ˇZβNN ´ Z
pdiffq
N,M

ˇ

ˇ ą ηε2
˘
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and note that the second term in the r.h.s. vanishes as N Ñ8 followed by M Ñ8, for
any fixed ε, η P p0, 1q, thanks to (6.5). It remains to show that

@ε ą 0 : lim
ηÓ0

lim sup
MÑ8

lim sup
NÑ8

P
`

Z
pdiffq
N,M ă 2ηε, AN,M

˘

“ 0 .

To this purpose, we can bound

P
`

Z
pdiffq
N,M ă 2ηε, AN,M

˘

ď P
´

ˇ

ˇ logZ
pdiffq
N,M ´

 

Xdom
N ´ 1

2ErpX
dom
N q2s

(
ˇ

ˇ ą 1, AN,M

¯

` P
´

Xdom
N ´ 1

2ErpX
dom
N q2s ă logp2ηεq ` 1

¯

and note that the first term in the r.h.s. vanishes as N Ñ8 followed by M Ñ8, by (6.7).
To show that the second term vanishes as N Ñ8 followed by η Ó 0, we fix η ą 0 small,
so that logp2ηεq ` 1 ă 0, and we apply Markov’s inequality to bound, for some C ă 8,

P
´

Xdom
N ´ 1

2ErpX
dom
N q2s ă logp2ηεq`1

¯

ď
E
“`

Xdom
N ´ 1

2ErpX
dom
N q2s

˘2‰

| logp2ηεq ` 1|2
ď

C

| logp2ηεq ` 1|2
,

because E
“`

Xdom
N ´ 1

2ErpX
dom
N q2s

˘2‰
converges to a finite limit as N Ñ8, see (6.46).

It only remains to prove (6.10). The second bound in (6.10) follows by (6.45), because
we already remarked that Xdom

N “ Xdom
N,M pjq with j “ M “ 1, see (3.31) and (6.4), (6.1).

The first bound in (6.10) was proved in [CSZ20] (see equations (3.12), (3.14) and the
lines following (3.16)) exploiting concentration of measure for the left tail of logZN .

7 Proof of Theorem 3.6

We have already noticed in (6.46) that

lim
NÑ8

E
“

pXdom
N q2

‰

“ σ2 :“ log 1
1´β̂2

, (7.1)

which follows by (6.44), because Xdom
N “ Xdom

N,1 p1q (see (3.31) and (6.4), (6.1)). Therefore
we only need to prove that

Xdom
N

d
ÝÝÑ N

`

0, σ2
˘

. (7.2)

We can apply Theorem 2.1 to the polynomial chaos Xdom
N defined in (3.31). As in

the proof of Theorem 3.4, we can cast Xdom
N in the form (2.4) with T :“ N ˆ Z2 and

ηNt “ ηN pm, zq defined in (3.19), while for A :“ tt1, . . . , tku “ tpn1, x1q, . . . , pnk, xkqu Ď T

we set

qN pAq “ pσN q
k 1" 0“:n0ăn1ă...ănkďN

maxtn2´n1,...,nk´nk´1uďn1´n0

*

k
ź

j“1

qnj´nj´1pxj ´ xj´1q .

By Theorem 2.1, to prove (7.2) we need to verify the following conditions:

1. Limiting second moment: we already showed that limNÑ8ErpX
dom
N q2s “ σ2, see

(7.1).

2. Subcriticality: we need to show that

lim
KÑ8

lim sup
NÑ8

ÿ

AĂT
|A|ěK

qN pAq
2 “ 0 . (7.3)
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Arguing as in (6.23), we can enlarge the sums to 1 ď nj ´ nj´1 ď N and remove
the constraint maxtn2 ´ n1, . . . , nk ´ nk´1u ď n1 ´ n0, to get the bound

ÿ

AĂT
|A|ěK

qN pAq
2 ď

8
ÿ

k“K

pσ2
N q

k
ÿ

1ďnj´nj´1ďN
j“1,...,k

ÿ

x1,...,xkPZ
2

x0:“0

k
ź

j“1

qnj´nj´1
pxj ´ xj´1q

2

“

8
ÿ

k“K

pσ2
N q

k
´

N
ÿ

n“1

ÿ

xPZ2

qnpxq
2
¯k

“

8
ÿ

k“K

pσ2
N RN q

k NÑ8
ÝÝÝÝÑ

pβ̂2qK

1´ β̂2
,

from which (7.3) follows.

3. Spectral localization: given M,N P N, we define disjoint subsets Bj Ď T by

Bj :“
`

pN
j´1
M , N

j
M s XN

˘

ˆZ2 for j “ 1, . . . ,M ,

and, recalling that σ2
N pBjq :“

ř

AĂBj
qN pAq

2, see (2.6), we need to show that

lim
MÑ8

M
ÿ

j“1

lim
NÑ8

σ2
N pBjq “ σ2 and lim

MÑ8

!

max
j“1,...,M

lim sup
NÑ8

σ2
N pBjq

)

“ 0 .

For this it suffices to note that σ2
N pBjq “ ErX

dom
N,M pjq

2s and then to apply (6.44).

The proof of Theorem 3.6 is completed.

A Some technical results

We collect here the proofs of some technical results.

A.1 Proof of Lemma 6.5

We are going to prove that there is a constant C ă 8 such that, for any given
M,K P N and j P t1, . . . ,Mu, we have

lim inf
NÑ8

ΞN,M,Kpjq ě
`

1´ pβ̂2qK
˘

ż

j
M

j´1
M

β̂2p1´ C
K2 q

1´ β̂2p1´ C
K2 q s

ds , (A.1)

which clearly implies (6.26).
Given a, b P N0 as in the range of the sums (6.25), we note that for large N :

a ď 1
4K

´2b . (A.2)

This clearly holds if a “ 0, hence for j “ 1, because a ď N
pj´2q`

M “ 0, while for j ě 2 from
a ď N

j´2
M and b ą N

j´1
M we get a ď N´

1
M b ď 1

4K
´2b for large N , say N ě p2Kq2M . By

(6.13), for fixed a, b and x, the sums over b1 P rb,Kbs and z, z1 P Z2 in (6.25) equal

ÿ

b1Prb,Kbs

ÿ

|z|ďK
?
b

|z1|ďK2
?
b

E
”

`

Xdom
N,ra,b;b1s

px, z; z1q
˘2
ı

“

8
ÿ

k“1

pσ2
N q

k
ÿ

|x1|ďK
?
b

qb´apx1 ´ xq
2

ÿ

băn2ă...ănkďKb:
maxtn2´b,...,nk´nk´1uďb

x2,...,xkPZ
2: |xk|ďK

2
?
b

k
ź

i“2

qni´ni´1
pxi ´ xi´1q

2.
(A.3)

We get a lower bound by keeping just the first K terms in the sum over k P N. Moreover:
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• we remove the constraint nk ď Kb (because maxtn2 ´ b, . . . , nk ´ nk´1u ď b already
yields nk “ b`

řk
i“2pni ´ ni´1q ď Kb) and sum freely over the increments

mi :“ ni ´ ni´1 P t1, . . . , bu for i “ 2, . . . , k ; (A.4)

• we change variables to y1 :“ x1 ´ x and yi :“ xi ´ xi´1 for i ě 2, that we restrict to

|y1| ď
1
2K
?
b´ a and |yi| ď

1
2K
?
mi for i ě 2 ,

which imply both |x1| ď K
?
b and |xk| ď K2

?
b as required by (A.3). Indeed,

recalling that |x| ď K2
?
a ď 1

2K
?
b by (6.25) and (A.2), we obtain

|x1| ď |y1| ` |x| ď
1

2
K
?
b´ a`

1

2
K
?
b ď K

?
b ,

|xk| ď |x1| `

k
ÿ

i“2

|yi| ď K
?
b` pK ´ 1q

1

2
K
?
b ď K2

?
b .

These restrictions yield the following lower bound on (A.3):

K
ÿ

k“1

pσ2
N q

k

ˆ

ÿ

|y1|ď
1
2K
?
b´a

qb´apy1q
2

˙ k
ź

i“2

ˆ b
ÿ

mi“1

ÿ

|yi|ď
1
2K
?
mi

qmipyiq
2

˙

. (A.5)

Recalling that un and RN are defined in (3.10) and (3.11), we define restricted versions

upKqn :“
ÿ

|y|ď 1
2K
?
n

qnpyq
2 , R

pKq
N :“

N
ÿ

m“1

upKqm “

N
ÿ

m“1

ÿ

|y|ď 1
2K
?
m

qmpyq
2 , (A.6)

so that we can rewrite (A.5) more compactly as follows:

K
ÿ

k“1

pσ2
N q

k u
pKq
b´a

`

R
pKq
b

˘k´1
“ σ2

N u
pKq
b´a

1´
`

σ2
NR

pKq
b

˘K

1´ σ2
NR

pKq
b

.

Bounding pσ2
NR

pKq
b qK ď pσ2

NRN q
K in the numerator and recalling (6.25), we obtain

ΞN,M,Kpjq ě
`

1´
`

σ2
NRN

˘K˘
inf

0ďaďN
pj´2q`

M

ÿ

bPpN
j´1
M `logN, 1

KN
j
M s

σ2
N u

pKq
b´a

1´ σ2
N R

pKq
b

, (A.7)

where we restricted the sum range to b P pN
j´1
M ` logN, 1

KN
j
M s for later convenience.

We now claim that for some C ă 8 we have, for n,N large enough,

upKqn ě p1´ C
K2 q

1

π

1

n
ùñ R

pKq
N ě p1´ C

K2 q
1

π
logN . (A.8)

This follows by (A.6) writing u
pKq
n “ un ´

ř

|y|ą 1
2K
?
n qnpyq

2, recalling that un „
1
π

1
n by

(3.10), bounding supyPZ2 qnpyq ď
c1
n by the local limit theorem (see (A.14) below) and

then estimating

ÿ

|y|ą 1
2K
?
n

qnpyq “ Pp|Sn| ą
1
2K
?
nq ď 4

Er|Sn|
2s

K2 n
“

4

K2
.
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We can plug the bounds (A.8) into (A.7) because, uniformly for a, b in the sum range, we
have b ě b ´ a ě logN Ñ 8 as N Ñ 8. Since σ2

N „ β2
N „ πβ̂2{ logN , see (3.12) and

(3.19), for large N we have (possibly enlarging C)

σ2
N u

pKq
b´a

1´ σ2
NR

pKq
b

ě p1´ C
K2 q

1

b´ a

β̂2

logN

1´ β̂2

logN p1´
C
K2 q log b

. (A.9)

The r.h.s. is a decreasing function of b´ a, hence we get a lower bound setting a “ 0. By
monotonicity in b, we can then bound the sum in (A.7) by an integral:

ΞN,M,Kpjq ě p1´ C
K2 q

`

1´ pβ̂2qK
˘

ż 1
KN

j
M

rN
j´1
M `logNs

1

x

β̂2

logN

1´ β̂2

logN plog xq p1´ C
K2 q

dx .

With the change of variable x “ Ns, the integral equals

ż bN

aN

β̂2

1´ β̂2s p1´ C
K2 q

ds with aN :“
logrN

j´1
M ` logN s

logN
, bN :“

logp 1
KN

j
M q

logN
.

Since limNÑ8 aN “
j´1
M and limNÑ8 bN “

j
M , we have proved (A.1).

A.2 Proof of Lemma 6.6

A lower bound for (6.34) is already provided by (6.26), hence it suffices to prove a
matching upper bound. By (6.13) with pa, xq “ p0, 0q, we can write

ÿ

bďb1PpN
j´1
M ,N

j
M s

ÿ

z,z1PZ2

E
“

Xdom
N,r0,b;b1sp0, z; z

1q2
‰

ď

8
ÿ

k“1

pσ2
N q

k
ÿ

bPpN
j´1
M ,N

j
M s

ÿ

zPZ2

qbpzq
2

ˆ
ÿ

b“:n1ăn2ă...ănkă8
maxtn2´n1,...,nk´nk´1uďb

ÿ

x1:“z
x2,...,xkPZ

2

k
ź

i“2

qni´ni´1pxi ´ xi´1q
2 .

(A.10)

We can sum over the space variables: by (3.10) and (3.11), the r.h.s. equals

8
ÿ

k“1

pσ2
N q

k
ÿ

bPpN
j´1
M ,N

j
M s

ub pRbq
k´1 “

ÿ

bPpN
j´1
M ,N

j
M s

σ2
N ub

1´ σ2
N Rb

. (A.11)

Since σ2
N ub „

β̂2

logN
1
b and σ2

N Rb „
β̂2

logN log b, as N Ñ8 the r.h.s. of (A.11) is asymptotic
to

ÿ

bPpN
j´1
M ,N

j
M s

β̂2

logN
1
b

1´ β̂2

logN log b
„

ż N
j
M

N
j´1
M

β̂2

logN
1
x

1´ β̂2

logN log x
dx “

ż

j
M

j´1
M

β̂2

1´ β̂2 s
ds , (A.12)

by the change of variable x “ Ns. This completes the proof of (6.34).

A.3 Proof of Lemma 6.7

We can assume that j ě 2, because if j “ 1 we have a “ 0 and x “ 0, see (6.37),
hence (6.36) trivially holds.

Note that by (6.1) we can write

E
“

Xdom
N,ra,b;b1spx, z; z

1q2
‰

“ qb´apz ´ xq
2 FN,rb;b1spz; z

1q ,
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where we set

FN,rb;b1spz; z
1q :“

8
ÿ

k“1

pσ2
N q

k
ÿ

b“:n1ăn2ă...ănk´1ănk“b
1

1ďn2´n1,...,nk´nk´1ďb

ÿ

x1:“z, xk:“z1

x2,...,xk´1PZ
2

k
ź

i“2

qni´ni´1
pxi ´ xi´1q

2 .

The key point is that FN,rb;b1spz; z
1q does not depend on pa, xq. It follows that

E
“`

Xdom
N,ra,b;b1spx, z; z

1q ´Xdom
N,r0,b;b1sp0, z; z

1q
˘2‰

“
`

qb´apz ´ xq ´ qbpzq
˘2
FN,rb;b1spz; z

1q ,

therefore, to prove (6.36), it is enough to show that for K,M P N and ε ą 0 there is
N0 “ N0pε,M,Kq ă 8 such that, for N ą N0 and for a, b, x, z as in (6.37), we have

ˇ

ˇ

ˇ

ˇ

1´
qbpzq

qb´apz ´ xq

ˇ

ˇ

ˇ

ˇ

ď ε . (A.13)

We recall the local limit theorem [LL10, Theorem 2.1.3]: as n Ñ 8, uniformly for
y P Z2,4

qnpyq “
1

n{2

`

g
`

y?
n{2

˘

` op1q
˘

21pn,yqPZ3
even

with gpxq :“
e´|x|

2
{2

2π
. (A.14)

In particular, for pn, yq P Z3
even in the “diffusive regime” we can write

qnpyq “
4

n
g
`

y?
n{2

˘`

1` op1q
˘

for |y| “ Op
?
nq . (A.15)

Note that a, b, x, z as in (6.37) satisfy (recall that j ě 2)

0 ď a ď N
j´2
M ď N´

1
M b , |z| ď K

?
b , |x| ď K2

?
a ď K2

a

N´
1
M

?
b . (A.16)

It follows that for any K,M P N, uniformly for a, b, x, z as in (6.37), we have as N Ñ8

a “ opbq , |z| “ Op
?
bq , |x| “ op

?
bq ,

which in turn imply that |z ´ x| ď |z| ` |x| “ Op
?
bq “ Op

?
b´ aq and hence, by (A.15),

qbpzq

qb´apz ´ xq
“
b´ a

b
exp

ˆ

|z ´ x|2

b´ a
´
|z|2

b

˙

p1` op1qq ÝÝÝÝÑ
NÑ8

1 .

This completes the proof of (A.13), hence of (6.36).

A.4 Proof of (6.45)

The random variables ηN in (3.19) satisfy supN Er|ηN |
ps ă 8 for all p ă 8, by the

assumption (3.1) (see [CSZ17a, eq. (6.7)]). We can then estimate E
“

|Xdom
N,M pjq|

p
‰

2
p by the

hypercontractive bound (4.2), which gives rise to the r.h.s. of (A.10) with σ2
N replaced

by Cp σ2
N . We can then follow the proof of Lemma 6.6 in Appendix A.2 verbatim though

(A.11) and (A.12), where we note that the replacement of σ2
N by Cp σ

2
N amounts to

replace β̂2 by Cp β̂2, by (3.19) and (3.12). Since β̂ ă 1 and limpÓ2 Cp “ 1, see [CSZ20,
Theorem B.1], we can fix pβ̂ ą 2 and c̃ “ c̃β̂ ă 1 such that for all 2 ă p ď pβ̂ we can bound

Cpβ̂
2 ď c̃ ă 1, hence

lim sup
NÑ8

E
“

|Xdom
N,M pjq|

p
‰

2
p ď

ż

j
M

j´1
M

Cpβ̂
2

1´ Cpβ̂2s
ds ď

c̃{p1´ c̃q

M
, (A.17)

which completes the proof.

4The scaling factor in (A.14) is n{2 because the simple random walk on Z2 has covariance matrix 1
2
I, while

the factor 21pn,yqPZ3
even

is due to periodicity.
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