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Abstract

We present a simple criterion, only based on second moment assumptions, for the con-
vergence of polynomial or Wiener chaos to a Gaussian limit. We exploit this criterion
to obtain new Gaussian asymptotics for the partition functions of two-dimensional
directed polymers in the sub-critical regime, including a singular product between
the partition function and the disorder. These results can also be applied to the KPZ
and Stochastic Heat Equation. As a tool of independent interest, we derive an explicit
chaos expansion which sharply approximates the logarithm of the partition function.

Keywords: polynomial chaos; Wiener chaos; central limit theorem; directed polymer in random
environment; stochastic heat equation; KPZ equation; Edwards-Wilkinson fluctuations.
MSC2020 subject classifications: Primary 60F05, Secondary 82B44; 35R60.

Submitted to EJP on December 23, 2021, final version accepted on May 18, 2022.

1 Introduction

In this paper we investigate the convergence to a Gaussian limit for random variables
that have the structure of a polynomial chaos, that is a multi-linear polynomial of
independent random variables, or alternatively of a Wiener chaos, that is a sum of
multiple Wiener integrals with respect to a Gaussian random measure. Our main
motivation is the study of directed polymers in random environment, whose partition
function provides a discretization of the solution of the multiplicative Stochastic Heat
Equation (SHE), while its logarithm corresponds to the solution of the KPZ equation.
Many convergence results to Gaussian limits have been obtained in recent years for
directed polymers and for SHE and KPZ (see the discussion in Section 3) based on
polynomial chaos or Wiener chaos, often exploiting the Fourth Moment Theorem and
variations thereof. Our purpose is to present a general approach which makes it possible
to recover these results in a simpler and unified way and, furthermore, to obtain novel
results. Let us give an overview of the paper.
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Gaussian limits for subcritical chaos

In Section 2 we state our first main result: a general criterion for the convergence
of polynomial chaos or Wiener chaos to a Gaussian limit only based on second moment
assumptions, see Theorems 2.1 and 2.5. Besides the fact that we do not require higher
moment bounds, we can work directly with a superposition of chaos of different orders,
with no need of treating them individually as in the Fourth Moment Theorem. Our
criterion gives conditions that are sufficient, not necessary, but its simplicity makes it
potentially suitable to many different contexts.

In Section 3 we study the partition function Z f, of two-dimensional directed polymers
in random environment. In the limit N — o0, and for a suitable tuning of the inverse
temperature 5 = By (in the so-called sub-critical regime), the partition function exhibits
Edwards-Wilkinson fluctuations [CSZ17b], i.e., it converges to a log-correlated Gaussian
field when averaged over the starting point. An analogous result was obtained in
[CSZ20] for the logarithm of the partition function. Our criterion from Section 2, besides
providing alternative and more elementary proofs of Edwards-Wilkinson fluctuations,
gives a natural framework to obtain new Gaussian asymptotics. We give two main
illustrations.

* We prove that a singular product between the partition function and the underlying
disorder has a non-trivial Gaussian limit, see Theorem 3.4. This result sheds light
on the mechanism which produces Edwards-Wilkinson fluctuations, explaining the
source of the non-trivial factor which arises in the limiting equation.

* For the partition function Z ][f, with a fixed starting point, we obtain an explicit chaos
expansion Xﬁ,‘)m which sharply approximates log 7%, see Theorem 3.5; then we
prove that Xﬁ,om, hence log va too, is asymptotically Gaussian, see Theorem 3.6.
We thus recover the main result in [CSZ17b] with a simpler and more conceptual
proof.

These results can also be formulated in the continuum setting of the SHE and KPZ
equation. We refer to Subsection 3.5 for a discussion and further perspectives.

The following Sections 4-7 contain the proofs of our main results, while some techni-
cal lemmas have been deferred to Appendix A.

2 Gaussian limits for polynomial and Wiener chaos

Our general convergence results can be phrased in a discrete setting (polynomial
chaos) and in a continuum one (Wiener chaos). We start with the former, which is more
elementary.

2.1 Polynomial chaos

Let T be a countable set. For each N € IN, we consider a family n"V = (/)1 of
independent random variables, not necessarily identically distributed, with zero mean
and unit variance:

E[n]1=0,  E[@)*]=1. (2.1)

We further require the uniform integrability of the squares:

lim  su E[ N2 q ]:0, 2.2)
L—o0 Ne]N,Ize’Jl‘ | {ni'1>L}

which follows from (2.1) if the n,"’s have the same distribution. In general, a sufficient
easy condition for (2.2) is that sup , E[|n}" [’] < oo for some p > 2.
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We consider a sequence of random variables (X y)nen that are polynomial chaos, i.e.
multi-linear polynomials in the 7, ’s. More precisely, we assume that

Xy = >, an(A)nN(4),  with  pV(A):=]]n", (2.3)
AcT te A

where ¢y (+) are real coefficients and the sum ranges over finite nonempty subsets A ¢ T
(i.e. qn(A) # 0 only if 0 < |A| < o). We can split the sum according to the cardinality

k of the subset A: if we write A = {t1,...,t;} for distinct points ¢; € T, we can rewrite
(2.3) as
0 k
Xn=> > av({ti...t}) [ [nf (2.4)
k=1 {t1,...,t; }<T i=1
ity Vit]

We assume that > , gy (A4)? < o0, so that X is a well-defined random variable with

E[XN] =0, E[XZQV] = Z QN(A)27 (2.5)
AcT
because (7™ (A))acr are centered and orthogonal random variables in L2.

Our goal is to prove convergence in distribution of Xy toward a Gaussian random
variable. This can be achieved via the celebrated Fourth Moment Theorem, formulated
in our context in [NPR10] and slightly extended in [CSZ17b, Theorem 4.2]; see also the
previous works [NuaPec05, deJ90, deJ87, Rot79] and the book [NouPec12]. The Fourth
Moment Theorem deals with a sequence X of polynomial chaos in a fixed order chaos
(i.e. a single term k in (2.4)) and it requires to compute the second and fourth moments
of XN.

Our first main result gives sufficient conditions for convergence to a Gaussian limit
only based on second moment assumptions on X, which can be directly applied to a
superposition of chaos of different orders. Let us introduce the shorthand

ox(B):= > qn(A)?® for Bc T, (2.6)
AcB
which gives the contribution to the second moment of X of the subsets of B (recall
(2.5)). We can formulate our conditions as follows.

1. Limiting second moment:

li 2(T) = 1i A)? = o2 2.7
Nl_rgoaN( ) Jim A;qu( ) o” € (0,:), (2.7)

i.e. the second moment of X converges to a finite limit.
2. Subcriticality:

lim limsu A2 =0, (2.8)
K—w NHoOp AZC]’]I‘ qN( )
|[A|>K

i.e. the contribution of high order chaos to the second moment of X is negligible.
3. Spectral localization: for any M, N € IN we can find M disjoint subsets (“boxes”):

IBl,...,IBMCT with IBiﬂIBjZQ fOTi?fj,

(where B; = ]BEN’M) may depend on NV, M) such that the following conditions hold
(recall (2.6)):

M
lim lim 0% (B;) = o* 2.9
M- N> 4 N( l) 7 ( )
i=1
lim limsu { max o4 (B; } =0 2.10
M—>o0 N_,OCp i=1,. M ~(B:) ’ ( )
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i.e. the main contribution to the second moment of X comes from subsets con-
tained in one of the boxes By, ..., B, whose individual contribution is uniformly
small.

Note that conditions (1), (2), (3) are second moment assumptions. The name “subcriti-
cality” for condition (2) is inspired by directed polymers, that we discuss in Section 3,
and more generally by marginally relevant disordered systems, see [CSZ17a], which
undergo a phase transition at a critical point determined precisely by the failure of
condition (2.8).

We can now state our first main result.

Theorem 2.1 (Gaussian limits for polynomial chaos). Let X be a polynomial chaos as
in (2.3), with coefficients qy (-) satisfying the assumptions (1), (2), (3) (see (2.7)-(2.10)),
with respect to independent random variables n™¥ = (n))1 which satisfy (2.1) and
(2.2). Then as N — o0 we have the convergence in distribution

Xy -5 N(0,0%). (2.11)
The proof is given in Section 4 and comes in two steps:

« first we approximate Xy in L? by a sum Zﬁl X ,; of independent random variables,
for a suitable M = My — o0;

» then we show that the random variables (X ;)1<i<im,y Satisfy the assumption of
the Central Limit Theorem for triangular arrays, which eventually yields (2.11).

We will also replace the random variables (n{¥) by a family of random variables with
bounded moments of some order p > 2 (e.g. by Gaussians) to exploit the hypercontractiv-
ity of polynomial chaos, see [MOO10]. The justification of this replacement will be given
at the end of the proof exploiting a suitable Lindeberg principle, see [MOO10, CSZ17a].

Remark 2.2. When the polynomial chaos X belongs to a fixed order chaos, the con-
ditions of the Fourth Moment Theorem are known to be optimal, i.e. necessary and
sufficient for the asymptotic Gaussianity of X . It would be interesting to investigate
how far from optimality are our conditions (2.7)-(2.10) in this setting. A direct compari-
son between our conditions and the Fourth Moment Theorem is not straightforward, due
to the freedom in the choice of the boxes B; in (2.9)-(2.10).

2.2 Wiener chaos

Theorem 2.1 has a direct translation for Wiener chaos. Let (E,&, u) be a Polish
(complete separable metric) space, endowed with its Borel o-field £ and with a non-
atomic measure pu. Let £* = {A € £ : u(A) < o} be the class of measurable sets
with finite measure. By Gaussian random measure on (F, £, 1) we mean a centered
Gaussian process W = (W(A)) gcex with Cov[W(A), W(B)] = u(A n B), defined on
some probability space (€2, A, P). We often use the informal notation W (dxz). The most
important example is given by white noise, which corresponds to £ = R? with p =
Lebesgue measure.

We fix a Gaussian random measure W (dz) on (E,&, u). For every k € IN and every
real function f € L?(E*, u®%), by [Ito51, NouPec12] we can define the stochastic integral

WEEf) = | o) W(dar) - W (day)
E
which is a centered random variable in LQ(Q) (non Gaussian as soon as k£ > 1 and f # 0).
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For symmetric functions f € L2(E*, u®*) and g € L2(E* | u®*') we have the Ito isometry:
E[WE*(f) WO (g)] = Lympry KIS, D12 sk oy
= Loy k‘!J ) flzr, .. xp) g(ar, ..o o) p(day) - - p(deyg) .
E
(2.12)

In this “continuum setting”, in analogy with the discrete polynomial chaos (2.4), we
consider a sequence (Xy)nen of Wiener chaos with respect to W(dz), that is

0
Xn=), J Gy (w1, .. k) W(day) - - - W(da), (2.13)
k=1 JE"
where Gy is a symmetric L? function defined on | J,—_, (E*, £%*, ,®F). Then, by (2.12),

o0 0
ELXv] =0, BIG] = X Ml lagen = D8 | av(one ) udon) - uldan).
k=1 k=1 E
(2.14)
Remark 2.3. Every centered random variable in L?(Q2), which is measurable with re-

spect to the o-algebra generated by W, admits an expansion like (2.13).

Remark 2.4. The factor k! in (2.14) is due to the fact that ¢y in (2.13) is a symmetric
function of the ordered variables x1, ..., xx, whereas gy in (2.4) is a function of unordered
variables (i.e. subsets) {t1,...,t;}. To formally match (2.4)-(2.5) with (2.13)-(2.14), we
should identify ¢y with !¢y and 3., cp [15, n with 5§ W(da) - - W (day,).

Mimicking (2.6), we set

a0
53(B) := Z k! ka qn(x1, ... xp)? u(dzy) - p(dey)  for measurable B < E, (2.15)
k=1

which gives the contribution to the second moment of X n of subsets in BB, see (2.14). We
can now formulate our conditions in the continuum setting.

1. Limiting second moment:

a0
lim 6% (E) = lim > kqn|Gegpe) = 0% € (0,90), (2.16)
k=1

N—w0

i.e. the second moment of Xy converges to a finite limit.
. Subcriticality:

[N}

. . ~ 2 _
Kh_r)noo hjr\lfnsup Z kY an|T2cpe) =0, (2.17)

=% k>K

i.e. the contribution of high order chaos to the second moment of Xy is negligible.
3. Spectral localization: for any M, N € IN we can find M disjoint subsets (“boxes”):

By,....BycE with B;nB,=¢ fori#j

(where B, = IBZ(.N’M) may depend on N, M) such that, recalling (2.15),
M
Jim - lim ; 52,(B;) = o2, (2.18)
i, i, { s, 060} =0
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i.e. the main contribution to the second moment of X ~ comes from subsets con-
tained in one of the M boxes Bq, ..., Bj;, whose individual contribution is uniformly
small.

We can finally state the version of Theorem 2.1 for Wiener chaos. We omit the proof
because it follows very closely that of Theorem 2.1, given in Section 4.

Theorem 2.5 (Gaussian limits for Wiener chaos). Let X’N be a Wiener chaos as in (2.13),
with coefficients Gy (-) satisfying the assumptions (1), (2), (3) (see (2.16)<(2.19)), with
respect to a Gaussian random measure W (dx) on a Polish measure space (E, &, ). Then
as N — oo we have the convergence in distribution

Xy -5 N(0,0%). (2.20)

3 Applications to directed polymers

We now present applications of our convergence results in Section 2 to directed
polymers in random environment on Z?2.

3.1 Directed polymers and stochastic PDEs

Let S = (S,)n>0 be the simple symmetric random walk on Z?, whose law we denote
by P. Let w = (w(n, %)) nen zez2 be a family of i.i.d. random variables, independent of S,
with law IP and such that

Elw(n,z)] =0, Elwhnz)?]=1, Ag):=logE[e**™] <w ¥8>0. (3.1)

Intuitively, trajectories of the random walk S represent polymer configurations, while
configurations w describe the disorder, which plays the role of a random environment.
Given a scale parameter N € IN, a starting time-space point (m, z) € {0,..., N} x Z? and
an interaction strength 3 > 0, the partition function of the directed polymer model is

78 (m,z) = E[eﬁimﬂ(5W<”7SHH</3>> ‘S - z] . (3.2)

Directed polymers were originally introduced as an effective interface model in the
framework of the Ising model with impurities, but over the years they have become an
object of independent study and a prototype of a disorder system which is amenable to
detailed rigorous investigation. We refer to the monograph by Comets [Com17] for a
recent account.

A source of interest for directed polymers is their link with the multiplicative Stochas-
tic Heat Equation (SHE), which is the stochastic PDE formally written as follows:

dpu(t, z) = %Amu(t,w) + BW(t,x)u(t,z), (3.3)

where 8 > 0 tunes the interaction strength and W (¢, 2) denotes white noise on (0, o) x R2.
In one space dimension d = 1, this equation admits a rigorous integral formulation by
the classical Ito-Walsh integration. In higher dimensions d > 2, this approach fails due to
strong irregularity of white noise and no obvious meaning can be given to its solution
u(t, x).
By the Markov property of simple random walk, the diffusively rescaled partition
function
Un(t,x) := Z5(|Nt], |V Nz]) (3.4)

solves a discretized version of (3.3) (with J; and %Aw replaced by —d; and iAI, see (3.24)
below). This explains the interest for the convergence as N — w0 of Uy(t,x), possibly

EJP 27 (2022), paper 81. https://www.imstat.org/ejp
Page 6/35


https://doi.org/10.1214/22-EJP798
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Gaussian limits for subcritical chaos

for suitable 5 = By, since it provides an approximation of the ill-defined SHE solution
u(t, x).
It is also very interesting to look at the logarithm of the partition function

log Zy (|Nt], [V Nz])

because it provides an approximation for the solution A(¢,z) = log u(t, «) of the Kardar-
Parisi-Zhang equation (KPZ), which is the stochastic PDE formally given by

1 1 .
Oih(t,x) = 5Agﬂh(t,m) + §|Vxh(t,x)|2 + BW(t,z)“— o”, (3.5)

where the last term “—o0” indicates a form of renormalization.

Remark 3.1 (Edwards-Wilkinson equation). The Stochastic Heat Equation (3.3) is sin-
gular due to the multiplicative noise term Wu. The additive version of this equation,
known as the Edwards-Wilkinson equation, is well-posed and reads as follows:

ow(t,x) = %Amv(t, )+ cW(t,z), (3.6)

where s > 0 and ¢ € R are given parameters. Starting from v(0, -) = 0, the solution v =
v($:9 is a random distribution (i.e. generalized function) which is Gaussian with explicit
covariance, see [CSZ20, Remark 1.5]. More precisely, if we denote by <v(5’c), 1) the
pairing between the distribution v(*°) and a test function 1, which formally corresponds
to

W), ) = f vt x) (¢, ) dt de, (3.7)
R2
then (v(%) 4 for 1) € CZ([0,0) x R?) is a centered Gaussian process with
Cov [, 4y, (=) 4] = f Gt 2) K5 (@, 2) ¢/ () dt de d da’, (3.8)
([0,00) x R2)2 '

where the covariance kernel is given by

(s.c) sc2 [+t e 3%
s,c N . / .
K5 (z,20) = < e gu(x — ') du, where  g,(y) := T (3.9
3.2 Edwards-Wilkinson fluctuations
Let us define
Up = Z P(Sn = 2)2 = P(SQn = 0) ~ l la (3.10)
T™n
z€Z2
N N 1
Ry = P(S, = 2)? = Uy, ~ —log N, (3.11)

where the asymptotic relations (respectively as n — o0 and as N — o) follow by the
local central limit theorem (see (A.14) below). Henceforth we are going to fix 8 = By
given by R R
B = B BT
Ry  logN
also known as the sub-critical regime. This ensures that the partition function Zf,”

has a bounded second moment as N — o0, see [CSZ17b]. It was recently shown in
[LZ21+, CZ21+] that in fact all moments of Zf,” are bounded in this regime.

with  B€(0,1), (3.12)
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We look at the fluctuations of the diffusively rescaled partition function, encoded by

Vn(t,z) = BLN(ZJ%N([NH, |VNz|)—1)  for (t,x)e[0,1] x R?. (3.13)

It was shown in [CSZ17b, Theorem 2.13] that Z]%N exhibits Edwards-Wilkinson fluctu-
ations, because Vy(t,z) converges as N — oo to a solution of the Edwards-Wilkinson
equation (3.6):

1
Vn(t,o) = o(t,a) = v (1~ t,2)  where c;i=, /1732, (3.14)

D . o
where “=" denotes convergence in law as a random distribution:! for ) € C.([0, 1] x R?)

<VN,w>:=J Vn(t,z)p(t z)dtde —L (0, 0). (3.15)

RxR2

The convergence (3.14) was proved in [CSZ17b] using the Fourth Moment Theorem,
based on a polynomial chaos expansion of the partition function, see (3.30) below.
Remarkably, our Theorem 2.1 allows for an alternative and more elementary proof of
(3.14), based on second moments calculations. The details will be presented in [Cot23].

Remark 3.2. The factor 3 in the parameters of o(t,z) = v(%’cé)(l —t,x), see (3.14), is

due to the fact that E[5\", §V)] = 11;_; for i,j € {1,2}. In view of (3.6), note that ¢
satisfies

— 00t x) = iAxf;(t,a:) +es Wit x). (3.16)

Edwards-Wilkinson fluctuations also hold for the logarithm of the partition function,
suitably centered and rescaled as in (3.13):

1
H (1) i= 5 ( log Z8¥ (|Nt], |V Nz]) — E[ log Z2¥ (|N1), [\/ij)]) . (3.17)
N
Indeed, it was shown in [CSZ20, Theorem 1.6] that a precise analogue of (3.14) holds:
D 1.
Hy(t,z) = o(t,z) =02 (1 —t,z). (3.18)

This convergence was in fact deduced in [CSZ20] from (3.14) by means of a highly non
trivial linearization procedure. The alternative and more elementary proof of (3.14)
based on our Theorem 2.1 can then be transferred to yield a proof of (3.18) as well. We
refrain from giving the details, which will be presented in [Cot23].

Remark 3.3. A simultaneous and independent proof of (3.18) was given in [G20] for
small B > (0 in a closely related context, namely for the KPZ equation (3.5) where the
noise W(t, x) is regularized by mollification (rather than by discretization, as we consider
here). Previously, the existence of non-trivial subsequential limits had been shown
in [CD20]. We refer to [DG20+, NN21+] for some recent extensions and generalizations.

In this paper, we exploit Theorem 2.1 to prove two new Gaussian convergence results
related to the partition function, that we now describe.

1By the Cramér-Wold device [Bil95, Theorem 29.4], relation (3.15) implies convergence of all finite-
dimensional distributions of the random field ((Viv, %)), toward (7, ).
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3.3 Main result I (singular product)

The diffusively rescaled partition function Ux (¢, z) in (3.4) approximates the solution
of the Stochastic Heat Equation (3.3) with multiplicative noise. It is not clear a priori
why the fluctuations of Uy (¢, x), encoded by Vy (¢, x) in (3.13), converge to o(¢, z) which
solves the Stochastic Heat Equation with additive noise, see (3.16), with an intensity ¢ 5
which explodes as B 1 1. We now present a result which sheds light on the mechanism
which leads to (3.16).

Let us introduce a modified disorder nx = (nn(m, 2))men,-ez2, Tecalling (3.1):

efNw(m,z)=A(Bn) _ 1

nn(m,z) = - where ¢ := M2AN)=22(BN) _q o B2 (3.19)

We denote by Wy (t,z), for t > 0, z € R2, the diffusively rescaled version of 7 :
W (t,z) := Nnn(|INt], |VNz]). (3.20)

For any N € IN, the modified disorder ny = (nn (M, 2))men, zez2 is i.i.d. with E[ny(m, 2)] =
0 and E[nx(m, 2)?] = 1, see (3.1), and higher moments of 7 are uniformly bounded (see
[CSZ17a, eq. (6.7)]). It follows that W converges in law to the white noise:

Wi (t,2) = W(t, ), (3.21)

that is (W, 1) 5 (W, ¢) ~ N(0, [¢]2,) as N — oo, for ¢ € C2([0,1] x R2).
We now consider the product between Wy and Uy (t,z) — 1, i.e. the centered and
diffusively rescaled partition function Z f,” (|Nt], [V Nz|) — 1, see (3.4):

En(tz) == Wi(t,z) (Un(t,z) — 1)

. (3.22)
= BN WN(tv :E) VN(t7 fE) )

where we recall that Vy (¢, ) = 85" (Un(t, ) — 1) is defined in (3.13).
We know that Vi % v and WN % W as N — oo, see (3.15) and (3.21). Since

Bn — 0, one could expect that =y 2 0, but this turns out to be false. The point is
that Vy and Wy only converge as random distributions, and the product of distributions
is not a continuous operation (it is generally not even defined). The following result
shows that =y has in fact a non-trivial limit as NV — c0. We prove it in Section 5 as an
application of our Theorem 2.1.

Theorem 3.4 (White noise from singular product). Let 8 = By be fixed as in (3.12), and
setcy = (1— ?)~1/2. As N — o, we have the joint convergence in law:

(WN7EN) % (W, A /C% - 1W’),

where W and W’ denote two independent white noises on [0,1] x R2. More precisely,
for any ¢ € C*([0,1] x R?), the following joint convergence in distribution holds:

. 1 0
B

We can finally give a heuristic explanation for equation (3.16). One can check that
ZI%N (m, 2) in (3.2) solves the following difference equation, for m < N and z € Z?:

1 1
ZRN(m = 1,2) — Z8N (m, z) = ZAZ"‘Z]%N (m,z) + on ) Z nn(m, 2') Z8¥ (m, 2'), (3.23)

z'~z
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where 2’ ~ zmeans 2’ € {z+(1,0),2+(0,1)} and Az f(2) :=>,,, . {f(¢') — f(2)} denotes
the lattice Laplacian (we recall that o and ny(m, z) are defined in (3.19)).

By (3.13) and (3.20), we can rewrite (3.23) as follows, for (t,z) € ((0,1] n £) x (R? n
VAR
vk

1 1 .
— oMUy (t,z) = 1AgN>UN(t,gc) +onyg N Wt a') Un(t.a'), (3.24)
/Nw

where 2’ X z means 2’ ¢ {z+( 0),z + (0, ﬁ)} and we define the rescaled operators

\/%7
oMM f(t,x) == N{f(t,z) — f(t — %, 2)},
AN f(t,x) =N Z {ft,a") = f(t,x)}.

'~

Note that (3.24) is a discretization of the (time reversed) Stochastic Heat Equation (3.3),
with the factor 1 instead of  (see Remark 3.2) and with oy ~ By in place of 3.
We now consider Vi (t,2) = By' (Un(t,z) — 1), see (3.14). By (3.24) we obtain

1 1 . .
oMV (t,x) = ZAgNWN(t,m% ) {Ww?x’) + Bn Wi (t,2) vN@,x')} . (3.25)
N

'~z

The last term Sy Wy (t,2') Vi (t, 2') is nothing but Ex (¢, 2') in (3.22), which formally van-
ishes as N — oo but actually converges to an independent white noise , /c% —1W'(t,z),

by Theorem 3.4 (note that 2’ X x implies |2/ — 2| = 1/v/N — 0). If we assume that
Vn (t, z) converges to a limit (¢, x), by taking the formal limit of (3.25) we finally obtain

1 . .
— 00(t,x) = zAwﬁ(t,x) + W(t,z) + 4 /cf§ —1W'(t,z). (3.26)
Note that this is equivalent to (3.16), because W (¢, z) + , /c% —1W'(t,z) 4 s W(t,z).
In conclusion, Theorem 3.4 provides an intuitive explanation why the random field
0(t,x) to which Vy(¢,x) converges should satisfy the equation (3.16), or more pre-
cisely (3.26). The factor c; in (3.16) arises from the singular product En(t,z) =

By Wi (t, z) Vi (t, ) which gives rise to an independent white noise, by Theorem 3.4.
This result is the first step toward a “robust analysis” of the two-dimensional SHE
(3.3), which would allow for a rigorous derivation of (3.26) from (3.25).

3.4 Main result II (log-normality)

So far we have discussed the distribution of the partition function Z f,” (m, z), suitably
rescaled, as a random field, i.e. averaging over the starting point (m, z). We now look
at the distribution of ZJ%N (m, z) for a fixed starting point: we fix (m,z) = (0,0) by
stationarity and we set

Z8N = ZR¥(0,0) . (3.27)

It was shown in [CSZ17b, Theorem 2.8] that Zf,” is asymptotically log-normal:

log Z5% 2, N(- %ag, JE) where o2 = log C?% = log 17132 ) (3.28)

The original proof of this result, based on the Fourth Moment Theorem, is long and
technical. Our goal is to provide a less technical and more insightful proof, based on
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second moment computation, exploiting our Theorem 2.1. The problem is that, unlike
for Z ff,N, we do not have a polynomial chaos expansion for log Z ]’f,N, which is essential for
Theorem 2.1. We solve this problem by first proving a result of independent interest,
which shows that log Z IﬂvN is sharply approximated in L? by an explicit polynomial chaos
expansion X $°™.

We need some setup. We recall that the modified disorder (ny(n,)),eN zez2 Was
defined in (3.19). We also introduce the transition kernel of the simple random walk:

Gn(x) :=P(S, =2|Sy =0) (3.29)

and we recall the polynomial chaos expansion of the partition function [CSZ17a]:

0 k
ZﬁN (m, z) Z: Z H Gni—ni—y (Ti — Tim1) NN (N4, 23) - (3.30)

m=mog<ni<..<np<N i=1
Z0i=2, T1,...,0EL>

We define a new polynomial chaos expansion X {*™, obtained from the centered partition
function ZﬁN 1= ZﬁN (0,0) — 1 imposing the constraint that all increments n; — n;_1
fori > 2 are dominated by the first time nq:

0

X](i]om .= Z(O.N)k Z ant —ni_ 1 - Ti— 1)7]N(nuxz)

k=1 O=ng<ni<...<np<N:
max{nz—nl,ng—ng,...,nk—nk,l}<n1
xo:=0, wl,..‘7wk€Z2

(3.31)

Our key approximation result shows that X$°™ is a sharp approximation of log Z I%N. The
reason why this approximation is possible will be clear in the proof, but one can already
give a look at equation (6.3), which shows that a natural approximation of Z}"f,” has a
product structure, where (a restricted version of) X§ dom anpears.

Theorem 3.5 (Polynomial chaos for log Z). Set 8 = By as in (3.12). Then

dim |log Zy¥ — {X{™ — S E[(XF™)1}] . = 0. (3.32)

We then show, by our general Theorem 2.1, that X {°™ is asymptotically Gaussian.
Theorem 3.6 (Asymptotic Gaussianity of X]dvom). Set 8 = By as in (3.12). Then

lim E[(X{™)?] = O’ = log

1 s and  XPT SN (0,07) (3.33)
—0

We prove Theorems 3.5 and 3.6 in Sections 6 and 7. Note that relations (3.32) and
(3.33) together provide a strengthening of the asymptotic log-normality of Zf,N , see
(3.28).

3.5 Conclusions and perspectives

We discussed several convergences to a Gaussian limit for directed polymers: the
Edwards-Wilkinson fluctuations (3.14) and (3.18), the singular product in Theorem 3.4
and the asymptotic log-normality in Theorem 3.6. We stress that these results hold in the
sub-critical regime (3.12) with B < BC = 1, while they break down in the critical regime
Bz 1 (notethatcB ﬁooandaB HooasBTl).

It would be interesting to understand whether these results can be suitably extended
to a “nearly critical regime”, i.e. when one takes B = BN 1 1 slowly enough, strictly
below the critical window [3 =1+ O( ) studied in [BC98, GQT21, CSZ19b, CSZ21+].
We plan to investigate this issue in future work, building on the new proofs that we
presented in this paper, which are more robust and suitable for generalization.
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Another direction of research is about higher dimensions d > 3. The Edwards-
Wilkinson fluctuations (3.14) and (3.18) have been proved for d > 3 in the so-called
“L? regime” in [LZ20+] and [CNN20+], sharpening previous work from [MU18, GRZ18,
CCM20, DGRZ20]; see also [CCM21+] for related recent results. It would be interesting
to apply the approach of our paper in this higher dimensional context, to check whether
it is possible to go slightly beyond the “L? regime” (cf. the “nearly critical regime”
mentioned above for d = 2).

Finally, we point out that many of the cited works focus on the “continuum setting”
of the SHE (3.3) and KPZ equation (3.5) where the noise W(t, x) is mollified (see also
Remark 3.3). Our results of this section are formulated in the discrete setting of directed
polymers, which correspond to the stochastic PDEs (3.3) and (3.5) where the noise
W(t, x) is discretized rather than mollified, but we stress that our approach can also
be applied to the continuum setting with mollification, using Theorem 2.5 instead of
Theorem 2.1.

4 Proofs of Theorem 2.1

As a preliminary step to prove Theorem 2.1, we replace the random variables (1}" )it
in the definition (2.3) of Xy by independent standard Gaussians. We will show in
Subsection 4.4 that such a replacement does not affect the asymptotic distribution of
Xy as N — oo.

We therefore assume that Y ~ N(0,1). We then exploit the hypercontractivity of
polynomial chaos, which allows us to bound moments of order p > 2 in terms of second
moments, see [MOO10, Section 3.2] and [Jan97, Theorem 5.1]:

2

p] < ( 2, - qN(A)2>2. (4.1)

Vp>2: IE[
AcCT

D7 an(A) 0N (4)

AcT

Remark 4.1. The choice of a Gaussian distribution for the n{¥’s is not fundamental here:
hypercontractivity of polynomial chaos holds for arbitrary distributions of the n}Y ’s with
uniformly bounded moments: if sup , E[|n"|?] < co for some p > p, then

il

for a suitable C), < oo with lim, > C}, = 1: see [CSZ20, Theorem B.1].

7 gn(4) nN<A>ﬂ (X qN<A>2)g, 4.2)

AcCT AcCT

4.1 Preparation

We consider a sequence of polynomial chaos Xy, with coefficients ¢y (-) as in (2.3),
which satisfy assumptions (1), (2), (3), see the equations (2.7)-(2.10). We now build two
suitable diverging sequences of integers My — o0, Ky — 0.

*« We fix My — oo slowly enough so that assumption (3) still holds with M = My.
More explicitly, for every N € IN we can find disjoint subsets (“boxes”) B; = ]B,EN):

Bi,...,By, =T with BinB; =& fori+#j,

such that the following versions of (2.9)-(2.10) hold:

My

lim o2(B;) = o2 and lim { max o3 (B; } =0. 4.3
Noow ; ~(B:) Nooo lizi,...My ~(B:) (4.3)
EJP 27 (2022), paper 81. https://www.imstat.org/ejp
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* By the second relation in (4.3), we can fix Ky — oo slowly enough so that

lim 8% max o3 (B;) = 0. (4.4)
N—ow i=1,...,Mn

The reason for this specific choice will be clear later, see the discussion after (4.14).
Note that by our assumption (2), see (2.8), for any Ky — o0 we have

lim Y gn(4)’ =0. (4.5)

N—w AcT
Remark 4.2. It is standard to deduce (4.3) from (2.9)-(2.10). Indeed, given any real
sequence ay,) which admits the limits
li li ;= li lim inf =
i, Tep avor = i Binf avar = o
we can always choose M = My — oo slowly enough so that limy_, an vy = @, as one
can check directly. Then, to obtain (4.3) from (2.9)—(2.10), it suffices to consider
(N,M)
BNVADY |

2 2 (RN.M) 2
aN .M = oN (IBZ ) s resp. aN .M = iirlnaxM O’N(
i=1 S

We next proceed with the actual proof of Theorem 2.1. We follow the two steps
outlined after the statement of Theorem 2.1:

 first we approximate the polynomial chaos X in (2.3) by a sum of suitable inde-
pendent random variables, see Subsection 4.2;

* then we apply the Feller-Lindeberg CLT to obtain the asymptotic Gaussianity (2.11),
see Subsection 4.3.

4.2 Approximation of Xy
We recall the notation 7™V (A4) := [],., ", see (2.3). We define a triangular array of
My by setting

.....

Xnit= Y, an(A)nN(A)  fori=1,..., My, (4.6)

where we recall that My — o and Ky — oo have been fixed so that (4.3)-(4.5) hold.
We now show that the sum Zf\g Xy ; is a good approximation of Xy.

Lemma 4.3. The following holds:
My

XN — Z XN

i=1

= 0. (4.7)

lim
N—

L2

Proof. Let us define a modification of the random variables Xy ; in (4.6), where we
simply remove the constraint |A| < Ky:

Xy = Z an(A)nN(A)  fori=1,...,My.

AcCB;
We are going to show that
My My My
Jim | Xy — ;XW B =0 and  lim ;XN — ;XN@ B =0. (4.8)
EJP 27 (2022), paper 81. https://www.imstat.org/ejp
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The first relation is a direct consequence of our assumptions (1) and (3). Indeed,
since the boxes B; are disjoint, the random variable Zf\i T X ~,i is the polynomial chaos
where we only sum over subsets 4 | JMY B;, hence the difference Xy — Y'Y Xy, is
orthogonal in L2 to Zﬁq X ~,i- As a consequence, recalling also (2.6), we can write

2 2

XN — Z Xni = HXNHiQ -

' Mn
i=1

My
= 3 an(4? = Y o%(B)),
i=1

My
> X
i=1 12 AcT

hence the first relation in (4.8) follows by (2.7) and the first relation in (4.3).
The second relation in (4.8) follows by our assumption (2), see (4.5), because

L2

2

My My My
MXni— D Xna| =D D an(A)? < ) an(4)?.
i=1 i=1 12 i=1 AcB; AcT
|A|>KnN |[Al>Kn
This completes the proof. O

4.3 Asymptotic Gaussianity of Xy

In view of Lemma 4.3, to prove (2.11) it remains to prove the convergence in distri-

bution
My

3 Xni —— N(0,0?). (4.9)
i=1 N=e

Note that (X ;)i=1,...,my are independent random variables with zero mean and

finite variance, see (4.6), because the boxes B; — T are disjoint. By the Central Limit
Theorem for triangular arrays [Bil95, Theorem 27.2], it suffices to check the convergence

of the variance:
My 2
lim E ( > XNJ-> 1 =02, (4.10)
i=1

N—

and the Lindeberg condition:

My
. 2
ve>0:  lim > B|(Xni)* gxpsq| = 0- (4.11)

i=1

Relation (4.10) follows by Lemma 4.3, see (4.7), and our assumption (1), see (2.7).
Next we are going to prove the following Lyapunov condition:

My
f 2. 1 E[X i”] - 4.12
or some p > Jim Z; | X, 0, ( )

which implies Lindeberg’s condition (4.11) since

2 | X w4 |P E[| Xyl
E[(XNvi) ]1{|XN,i\>E}:| < Elp(]\lNip_Q]lXN’il>6}] < Hep_2|]

To obtain (4.12), we apply the hypercontractivity bound (4.1) to Xy ;, see (4.6), to get

2
BllXni"]" < Y =DM an(4)? < (0 1) o} (B, (4.13)
AclB;
[AlI<KN
EJP 27 (2022), paper 81. https://www.imstat.org/ejp
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where we recall that o3, (1B;) = > 4, qn(A)2. Then we can write, for any p > 2,

1-2 My

My 2 .
izzl E[|XN’i|p] S (if?%INE“XN’iFD ;E[|XN’i|p]
Iy (4.14)
— N
< {(p— 1)PEN <i=1ma>2<wN JZQV(]Bi)>p 2} o2 (B;).
im1

If we fix p = 3, the term in brackets vanishes as N — o by our choice (4.4) of Ky.
The last sum converges to 02 as N — o, see (4.3), hence it is uniformly bounded. This
completes the proof of (4.12).

4.4 Switching to Gaussian random variables

We finally complete the proof of Theorem 2.1 by justifying the preliminary step: we
show that replacing the random variables (7} )t in (2.3) by standard Gaussians does
not change the asymptotic distribution of X y. More precisely, if (7};);eT are independent
N(0,1) and we set

Xy =D an(A)i(4),  with  9(A):=] ], (4.15)
AcT teA

it suffices to show that for every bounded and smooth f : R — R we have

lim |E[f(Xn)] — E[f(Xn)]| = 0. (4.16)

N—>w

Indeed, since Xy > N (0, 0?) by the first part of the proof, (4.16) implies X x 4 N(0,02).
We exploit the Lindeberg principle [CA821 7a, Theorem 2.6], which generalizes [MOO10],
to show that E[f(Xx)] is close to E[f(Xy)]. Let us fix f : R — R of class C® with

Cyr = max{| f'loo, 1f" loos [ /"]l o0} < 0. (4.17)

For L > 0, denote by m5 the second moment tail of the random variables 7" and 7;:

mz" = sup max{E[lniVIQﬂmgv\>L],E[\ﬁtIQLﬁM]}. (4.18)
NeN, teT

Let Cx<x, Cxzx be the second moments of X truncated to chaos of order < K and
> K:

Cyer = D1 an(A)?, Cxzroi= > an(A)°. (4.19)
AcCT AcCT
[Al<K |A|>K

Finally, define the influence of the variable t € T on X by?

Infy[Xn] := ). qn(A)*. (4.20)
AcT
Ast

By [CSZ17a, Theorem 2.6], for any L > 0 such that m2>L < i and for every K € IN we
have

E[f(Xn)] - E[f(Xn)]] < Cf {24 JCxzx + 16K° Cxsx my L
+ 70K Cypan L3F max +/Infy[ X ] } .
N S

It remains to show that the r.h.s. of this expression is small as N — oo, to prove (4.16).
We fix any € > 0 and we argue as follows:

(4.21)

Note that we can write Inf;[Xn] = E [Var [Xn(0)|(n))ser¢]]-

EJP 27 (2022), paper 81. https://www.imstat.org/ejp
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* by assumption (2.8), we can choose K = K, such that limsupy_,, CX?VK <€
* by assumption (2.7), for any K € IN we can bound lim supy_, Cxﬁx < 0%

« by assumption (2.2), we can choose L = L. such that m; % < ¢/(K? 02);

+ finally, we show below that

lim sup max Inf;[Xn] = 0. (4.22)

N—w0 te

As a consequence, when we plug K = K. and L = L. in (4.21) and we let N — o0, we get

limsup [B[f(Xn)] —E[f(Xn)]] < Cr{2+e + 16¢},

N—w0

from which (4.16) follows because ¢ > 0 is arbitrary.

It only remains to prove (4.22). By assumption there are disjoint boxes By, ..., By, <
T, with My — oo, such that relation (4.3) holds. In particular, recalling also (2.6) and
(2.7), it follows that subsets A — T not contained in any of the boxes B; give a negligible
contribution:

My
Ay := > an(A)? = o} (T) = > o (B;)) —— 0. (4.23)
i=1

N—

Recall now the definition (4.20) of Inf;[Xy]. Fix t € T and a subset A ¢ T which
contains ¢, i.e. A 5 t. We distinguish two cases:

e ift¢ B, foralli=1,..., My, then A>timplies A ¢ IB; foralli =1,..., My, hence
by (4.23) we can bound Inf;[Xy] < Ap;

* if t € B, for some (necessarily unique) j = 1, ..., My, then A 5t implies that either
Ac Bj,orAd B;foralli=1,...,My (we cannot have A — B, for some i # j),
hence by (2.6) and (4.23) we can bound Inf,[Xy] < 0% (BB;) + An.

It follows that

Inf,[Xn] < 2 (B; A
I?e%l“x nfi [ X ] j:{?éﬁvm on( J) + AN,

hence (4.22) follows by (4.3) and (4.23). The proof of Theorem 2.1 is complete. O

5 Proof of Theorem 3.4

5.1 Preparation
We need to show that

(WN7EN) % (W, A /C% - 1W’),

that is, for any fixed ¢ € C%([0, 1] x R?) we have

. 1 0
(W, ), (En, 1)) = N(0, 0] ¥;)  where X, = (O 2 1) : (5.1)
B

By the Cramér-Wold device [Bil95, Theorem 29.4], it suffices to show that for all A\, u € R
Xy = (W, ¥y + AEn,¥) L J\/(o,a2 = l7e (0* + N (c — 1))) : (5.2)

To this purpose we are going to apply Theorem 2.1.
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Recall the definitions (3.20) and (3.22) of WN and =y (see also (3.13)), we can write

Xy=N J ¥(t, z) nn (|Nt], |V Nz]) {u + M(Z¥ (INt], [V Nz|) — 1)}dtdx

(0,1]xR2
1 (5.3)
—v | eGe g e lal) {ar M2 el LoD - 1) f e,
(0,N]xR?2
Let us define 1y : IN x Z? — R as the average of w(ﬁ7 \/—ﬁ) over cubes:
Uy(n,z) = J (%, LN) dtdr  for (n,z)e NxZ%. (5.4)

(n—1,n]x{(z1—1,2z1] % (22—1,22]}

Recalling the polynomial chaos expansion (3.30) of Zf,N (m, z), we can rewrite Xy as
follows:

N
Xy :% D1 D) Wn(no,wo) nv(no, xo)

no=1 zyeZ?

o0 k
{u + A (on)" > [T an,—n,i (2 l’j—l)nN(”jvl”j)}-
k=1

no<ni<..<np<N j=1

Renaming (ng,...,nk) as (n1,...,ng+1) and similarly (zo,...,zx) as (z1,...,Zr+1), and
subsequently renaming k£ + 1 as k£, we obtain the compact expression

1 0 k
XN = N};l (UN)k_l Z fN(’thl'l,...,TLk,fL'k) nnN(n]7mj)7 (55)

O<ni<..<np<N Jj=1
wl,...,wk€Z2

where we set

k
vz, a) = {p Loty + Aoy} (g, 21) n Gn;—n,_,(x; —xj_1). (5.6)
j=2
In conclusion, we can write Xy = >, pan(4) nN(A) as in (2.3)-(2.4), with the
following correspondences:

o the index setis T := IN x Z2;

* the random variables 7Y = ny(m, z), fort = (m, z) € T, are defined in (3.19): they
satisfy (2.1) by construction, while they satisfy (2.2) because sup y E[|nn (m, 2)|P] <
oo for all p < o0 by (3.1) (see [CSZ17a, eq. (6.7)]);

* the kernel qi(A), for A := {t1,...,tx} = {(n1,21),...,(ng, zx)} S T, is

1 _
qN(A> = N (UN)k ! fN(n17 T1y... 7nk7xk) ]1{O<n1<...<nk.SN} .

N
By Theorem 2.1, to prove Xy 4 N(0,0?) as in (5.2), we check the following conditions.

1. Limiting second moment: we need to prove that limy_,, E[X%] = o2

2. Subcriticality: we need to show that

lim limsup Z qn(A)? =0. (5.7)
K—©0 N AcT
|[A|>K
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3. Spectral localization: for any M, N € IN we define the disjoint subsets
B, := (54N, &N] x z*  forj=1,...,M,
and, recalling that o3, (B;) := 4., an(A)*, we need to show that

M
]\/lllinoc ]Z ]\}i_rfloc U?V(IB]') = o2 and ]VlIiLnOO {j:IE.aji(]\/[ li]rvnj;p 0'12\[(18]')} =0.

5.2 Proof of (2).
We need to prove (5.7). For K > 1 we can write, by (5.5)-(5.6),

2 k
Z QN(A)2 = % Z (U?V)k_l Z JN(nl’wl)2 anj*nj—l(wj - xj*1>2'
j=2

AcCT k>K O<ni<...<ng<N
|A|>K T1,e,x €22

(5.9)
We can enlarge the sums to 0 < m; := nj—n;_1 < N and change variables y; := x; —x;_1,
for j = 2,...,k, to get the upper bound

2 k
D1 an(4)? < % 2O D Oyl an)? H{ ) qmj(yj)Q}

‘ﬁ‘cﬂ% k>K 0<n1<2N 0<m;<N
= x1€EZ =72
' vz (5.10)
2 1 - 2 (UJQV RN)K
=AWz > () 1_o2 R’
O<ni<N Oy L'N
acleZ2

where we used Y_,, <y Dyezz in(Y)? = Doomen Um = Ry, see (3.10)-(3.11), and we
remark that 0% Ry < 1 for N large enough, because 0% ~ 3%/Ry, see (3.12), and 8 < 1.
Then, by Riemann sum approximation, from (5.4) we get
A2\ K 2K
lim sup Z an(A)? < )\2{J Y(t, x)? dtdw} B" M]3, @, (5.11)
[0,1]x R2 1— 32

32
N—o  jcr 1- B
[A|>K

from which (5.7) follows.

5.3 Proof of (1) and (3)
We are going to show that for all M e Nand j € {1,..., M}

lim o} (B;) = (1* + /\2(62 -1)) Y(t,r)* dtda. (5.12)
N—w0 (%mjﬁ]XRz

Note that this proves (5.8) and also (for j = M = 1) limy_o E[X%/] = 02, see (5.2).
To compute 0% (B;) := 2, qn (A)? we first consider the contribution of sets A < B;
with |A| = 1, that is A = {(n1,21)}. Since fy(n1,71) = py(n1, 1), see (5.6), we get

2
2 - 2 N—w 2 2
an(4)” = = Z Uy(ni,z)? —> p o Y(t,z)* dtde,
AcBj, [Al=1 I N<ni <4 N S arxR?

IIGZz

by Riemann sum approximation. Note that this matches with the first term in (5.12).
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We next focus on sets A — B; with |A| > 1. Note that >}, | 451 qn(A)? is given
by (5.9) with K = 1 and with the sum restricted to J N <ni <...<np< J 7 N. Then,
arguing as in (5.10), we obtain an analogue of (5.1 1)

62
lim sup Z an(A)? < A2 J Y(t,z)? dt dz )
J]\/I ’J\/{]X]R2 1 ﬂQ

N=0 4cB;, |Al>1 -

which agrees with the second term in (5.12) because f;z =2 — 1, see (3.14). To

complete the proof, it suffices to prove a matching lower bound, that is

22

liminf > gn(A)? = /\Q{J ¢(t,x)2dtdx} " il
JZ\/I M]XRZ

(5.13)
N—w
ACIBJ'7 |A‘>1

Let us fix H € ]N large, such that - < . Starting from the expression (5.9) for

K =1 and with £ N <n <...< nk J&N , we get a lower bound by the following
restrictions:

l<k<H, ZN<n<(L&-%)N, 0<nj—nj_1<:4N Vji=2..k,

E‘u.

which ensure that ny < ny + Z?zg(nj —nj_1) < (& — &)N + HgzN < £ N as required.
Then, similarly to (5.10), we get the following lower bound on >, . |4j=1 qn(A)?:

2

)\ = 2 \k—1 u 2
RS NE D me? T 8 o)

G <"1\(W_*)N =2 Lo<m;<gz N
e ) nett 2 ; (5.14)
22 _ 9 O‘NRN/Hz—(UNRN/Hz)
RN ‘ Z Yy (n1, 1) } 1-02 R )
{ %<N1\(W**)N On {in/m2
11€Z
where we recall that ZkHZQ zhl = ’31__””: for |z| < 1. Since Ry /g» ~ Ry for fixed H € IN,
we have shown that
22 _ (QR2\H
liminf > gn(A)? > )\Q{Jv qp(t,m)Zdtdx} %
N=e AcBj, [A]>1 (57 A — # 1 xR? 1-5
We can finally take the limit H — o to see that (5.13) holds. O

6 Proof of Theorem 3.5

The proof is organised in four parts: we give different approximations of the partition
function Z J%N and of its logarithm, which will lead us to the proof of our goal (3.32). Let
us present a general overview of the strategy.

Part 1 (record times). Let us define a “constrained version” Xd° N [a b b,](:z: z;2') of X%,O“‘
from (3.31), where we fix (ng, ni;ng) = (a,b; ') and (xg, x1;2) = (x, 2; 2'):

0
XN[abb/ r,2;2) = 2 qbaz—x)mv(bz)
(6.1)
x Z Z HQnﬁm (@i = wima) v (na, @) -
b=mi<ns<..<np_i<np=:1b" T1=2,TK=2" Y
max{na—mni,....,ng—Nk_1}<b xo,...,x_1€Z%>2
EJP 27 (2022), paper 81. https://www.imstat.org/ejp
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o

by by b bh bs 3

[ I I [Tl [T 1 1l H »
LI LILLI mTrimm I T LILIL T T L

b276,1>b1 bg*b/2>b2 623

Figure 1: An example of the variables b;, b, in (6.2). These correspond to record times
which satisfy b; — b,_, > b;_1, see subsection 6.1.

(Note that if b = b’ only the terms k = 1 contributes to the sum — and we must have z = 2/,
otherwise the sum vanishes — while if b < ' only the terms k > 2 give a contribution.)

We first show that the partition function Z ]BVN in (3.30) can be written as a concate-
nation of products of Xd° f“ bib] (z, z;2")’s corresponding to suitable record times, see
Figure 1. The next result is proved in subsection 6.1.

Lemma 6.1 (Record times). The following equality holds, with (b, z,) := (0,0):

w ¢
Z8 =14y 3 2 xRS anGinziz), (60

=1 0<by<b)<...<be<b)<N: z,2'€(Z?)* i=1
bibl bi 1 Vie2, .0

where we use the shortcuts z = (z1,...,2) and 2’ = (21, ..., zp).

Part 2 (coarse-graining and diffusive approximation). We fix a large parameter M € IN
and we define an approximation Z (d‘ff) of the partition function ZJBVN from (6.2), as
follows:3

1. wesetd, , =0, z,_, =0in each Xd"f“, vt (Fioas zi 2

2. we impose that each pair b; < b} belongs to the same interval (N s N %], for some
j=1,...,M, and we ignore the constraint b; — b,_; > b;_1.

This yields the following definition of Z](\?‘Jf&)

M
diff om /[ : om (
ZZ(VJV[)' 1+Z Z HXJdVM]v IH(1+Xd M) (6.3)
=1 1<j1<...<je<M i=1 j=1
where we set
XJC%/'OTI\I/II( ) = Z Z X]%/'(jig,b;b’] (O, zZ; Z/) fOI‘j = 1, ceey M. (64)

bgb’e(N%,Nl%I] 2,2/ €72
We prove that ZJ(\?iAff[) is close to Z f,N in L? for N » M >» 1, in the following sense.

Lemma 6.2 (Coarse-graining and diffusive approximation). The following holds:

limsup lim sup HZ’BN Z]\C,hf[)

M—0

|,»=0. (6.5)

The proof of this result is given in subsection 6.2 below.

Part 3 (log approximation). The product form of Z, (diff M in (6.3) is especially suitable to
take the logarithm. We thus prove a preliminary version of our goal (3.32), where we

SHeuristically, these are good approximations because the main contribution to (6.2) will be shown to come
7
from b}, ~ N%i-1 and b; ¥ N with o, _; < o, hence b, | « b;.
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replace log Z I%N by log Z, (dlﬁ (and convergence in L? by convergence in probability). To
this purpose, we define the event

AN = ﬂ {IX¥mr ()l < 3}, (6.6)
. (diff)
which ensures that Z )/ > 0, see (6.3).
Lemma 6.3 (log approximation). Recall Xj‘{,om from (3.31). For any ¢ > 0 we have
hm hmsup IP(!log Z](\;“H) {Xdom — %E[(Xdom ]}| > €, AN7M) =0, (6.7)
M—o0o N— ?

for An pm < {Z](\;h]fvf[) > 0} defined in (6.6) (so that log Z](\(;M is well-defined) which satisfies

lim limsup IP((AMM)C) =0. (6.8)

M—w0 N

The proof of this result is given in subsection 6.3 below.

Part 4 (final approximation). At last, we complete the proof of Theorem 3.5. Our final goal
(3.32) is a consequence of the next lemma, where we prove convergence in probability
and boundedness in L? for some p > 2.

Lemma 6.4 (Final approximation). Recall Xﬂ,‘“m from (3.31). For any ¢ > 0 we have

Jim P (|log Zy — {X3¥™ — JE[(X3™)]}] > ¢) = 0. (6.9)
Moreover, for some p > 2 we have
sup IEH log Z]B\,N|p] < 0, sup ]E[|X]G\1,0m|p] < 0. (6.10)
NelN NelN

Notice that, once we have convergence in probability (6.9), to obtain convergence in
L? it suffices to show uniform integrability of the squares of log Z IBVN and Xj%,om, which is
in turn implied by boundedness in L? for some p > 2, as in (6.10).
Intuitively, we can deduce (6.9) from (6.7) by exploiting the approximation (6.5), but
some care is needed to handle the logarithm.
The proof of Lemma 6.4, given in subsection 6.4, concludes the proof of Theorem 3.5.
O

6.1 Proof of Lemma 6.1

We rewrite the sum over nq,...,n; in (3.30) according to suitable record times. The
first record time is n; the second record time is the smallest n; for which the previous
jump n; —n;_; exceeds n;; and so on. More precisely, the record times are n;,,n,,...,n;,
where we define j; := 1 and, assuming that j,. < 0, we set j,41 := min{i € {j. +1,...,k}:
ng — Nnj—1 > Ny, }, where we agree that min ¢ := 0. The number of record times is
therefore ¢ := min{r > 1: j,41 = o0}.

If we rename the record times as b, := n;,, and we also set b/._; := n; _1, we have
by construction b, — b] > b; and, more generally, b, — b, ; > b;_; fori = 2,...,¢ (see
Figure 1). If we name the corresponding space variables z, := z;, and z,._; := xy _, then

we can rewrite (3.30) equivalently as (6.2), with X dom (x,z;2') defined in (6.1). O

N, [a,b;b']
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6.2 Proof of Lemma 6.2

The proof, which is long and structured, is based on explicit L? computations. A key
observation is that, by the expression (6.2) for Z ]%N, we can write

B[(zp)Y]=1+Y X S TTE[ )]

=1 0<b;<b)<...<be<b)<N: z,2/€(Z?)* i=1
bi—b]_ >bi_1 Vi=2,...,0

(6.11)
To see why this holds, note that by (3.30) we can write

E[(Z3")"] = Z 2 an] e (@5 = 25-1)%, (6.12)

O=:nmop<ni<...<np<N j=1
xo:=0, wl,...,mkeZz

with ¢, (z) = P(S, = x| Sp = 0), see (3.29), and oy as in (3.19). Similarly, by (6.1),
0]
E[(chifc,)ab:b'] (x,z;z ] Z P gp-alz —x)?x

k
X Z Z ani*ni—l(mi - xifl)Q'

b=mi<ns<..<np_i<np=b wxi=z;xKp=2" 1=2
max{ng—mni,....,ng—Nk_1}<b Tg,...,x)_1EZ>

(6.13)

When we plug (6.13) into (6.11) we obtain (6.12) by the same argument in the proof of
Lemma 6.1, see subsection 6.1, because the sum over n;, z; in (6.12) can be rewritten in
terms of record times, which lead to the variables b,/ and z,, 2. in (6.11).

We now turn to the proof of (6.5). We will define two “coarse-grained approximations”
Zﬁi)(  and Z}VgK) - Which depend on a further parameter K € IN, and we will show that

(cg) (cg) (cg’) (cg)  (diff)
Z ~ ZNgK M ZNgKM ZNgKM» ZN,gK,M ~IN s

where ~ denotes closeness in L? when we let N — oo, then K — oo and finally M — co.
More precisely, we are going to prove the following relations:

hj/[nsg)p hglstlop hjr\?jup HZBN ZJ(\?KM”L2 =0, (6.14)
hj\r/rflbgop hlr(nbloép h]rvnbup HZA?gI)( M Z](\?K M”L2 =0, (6.15)
limsup limsup lim sup HZA‘,:gK)M Zl(\iijvff[) HL2 =0, (6.16)

M—o0 K—w N—

which together yield (6.5). We accordingly split the proof in three steps.

6.2.1 Step 1: definition of Z](\ff%M and proof of (6.14).

Letus fix M, K, N e Nwith 1 « M « K « N. Our first coarse-graining approximation
ZJ(\(;’E})(’ s of the partition function Z f,” in (6.2) is obtained by suitably restricting the sums

overb,b and z, 2’

o]
Z](\?,gl)(,lw =1+ 2 2 Z Z HXdomL Lbisbl] 1(zi1, 205 27)

(=1 je{l,. M}, (bb)EBL(j) (2,2)eSt(bb) i=1
(6.17)
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where we sum over j = (ji, ..., j¢) in the following set:
(1,..., MY :={1<j1 < <je<M: ji—ji =2 w=2,...7£}7 (6.18)
then, given j = (ji,...,j¢), we sum over (b,b’) in the set

B(j) := {(gg’) eN' xIN': bye (N, LN#], b e[b, Kb] Vi= 1,...,12}, (6.19)

and finally, given (b,b'), we sum over z, 2’ in the “diffusive set”
S'(bb) = {(g,g’) e (Z2) x (Z2)' : |z < K\/bi, |2 < K2/b; Vi=1,... ,e}.

To see that Z](\?,gl)(,M in (6.17) is a restriction onf,N in (6.2), note that for (b,b') € B(j)
wehave 0 <b; <V} <...< bg < by < N, and for large N we also have b; — b;_; > b;_4

> KN7b;,_; (recall that j; — j;_1 > 2) hence

Ji—1+1

for ¢ > 2, because b; > N e >N
b —b,_, > KNWb,_y — Kby = (N¥ —1)Kb;_y >b;_; for N >2M.

Thus the range of the sums in (6.17) is included in the range of the sums in (6.2). Since
the terms in the polynomial chaos (3.30) are orthogonal in L2, it follows that

V28 = 28l = 123~ 1255l (6.20

hence to prove (6.14) it suffices to show that

. 2

hzrvnjip E[(Z]%N) ] < -t (6.21)
.. .. . (cg) 2 1
l}vrjnﬁnolof hlr(nﬁloréf I%nio%f E[(ZN7K7M) ] > 71 - 32 . (6.22)

Relation (6.21) can be easily deduced from the expression (6.12). Indeed, enlarging
the sums to 1 < n; —n;_; < N and recalling the definition (3.11) of Ry, we get

Bl(Z3)] <1+ 203" ) 3 an,fn“ —z;0)°

k=1 1<7Lj—'VL] 1<N zo:=0, x1,.. ,xkEZQ j=1
Jj=1,..., k
o) k o0 & 1
_ 2 \k 2 _ 2 -
_1+Z(O'N) (ZZq,L(J:)> —1+Z(JNRN) T2 Ry
k=1 n=1ze7?2 k=1

(6.23)

Since oy ~ Oy ~ Bﬁ/\/log N, see (3.19) and (3.12), and since Ry ~ %log N, see (3.11),
we see that (6.21) is proved.
We next prove (6.22). By definition (6.17) of ZJ(\;:@})(’M, in analogy with (6.11), we have

o0 V4
Bl (Z5%)° | =14 Y, X > TTB[ (¥ oy Glrze)?]
=1 je{l,..M}e (bb)eB(j) =1
(2.2)eS* (b))
(6.24)

We now give a lower bound on E[ (X P e (Fios 235 z;))2] when we sum over b;, b/

and z;, 7, in the sets Be( /) and S*(b, o). The next result is proved in Appendix A.1.
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Lemma 6.5. For N,M,K e N and j € {1,..., M}, define

= V= inf E[Xdom (27 2]. 6.25
N,k () mt e Z Z (XN Top0 (5 2:2)) (6.25)
0<a<N be(N 7 ,%Nﬁ |z|<KVb
|m|<K Vva v e[b,Kb] \z'|<K2\/l;

Then, forany M € N and j € {1,..., M}, we have

B2

K—w N-oo© i1 1 — 32
— — ]71 ﬁS

Coming back to (6.24), by definition (6.25) of EN,M’K(j), we have the lower bound
(cg) ) 0 14
E[(Z]\‘;i{,M) ] > 1+ Z Z HEN,M,K(ji)7 (6.27)
=1 je{1,...M} i=1
which yields, by (6.26),

0 L

. o (cg) 2 .

liminf Hminf B[(Z5%,,)°] =1+, ] [ 1200 (6.28)
(=1 jequo iy =1

Recalling the definition (6.18) of {1,..., M}i, we can rewrite the r.h.s. of (6.28) as

0 1 M £
1+ g!{(ZIM(j)> - Z Inr(51) "'IM(jE)}.
J=1 jlx"w.jfe{lv“vM}
Ik G —gnl <1

The second term gives a vanishing contribution as M — oo, because maxi<j<m Iar(j) <

=, with C := ﬁ
o0 0 Z /
1 ) 1 _ (G VN
Zz > Ine(Gr) -+ I (o) < ZeM(>M61—M—w’O7
=1 """ ji,....50€{1,....M} =1

where (}) is the number of pairs {h, k} with h # k and ?)Mf_1 bounds the number of

choices of jy, ..., j¢ with j, € {jx—1, jk, jx+1}. Since Z] (g So - 52 ds = log —— = 52'
we have finally shown that
(ce) S ¢ 1
it Hpninf gnind Bl (45" 200 3 g (la) = = 629
which is (6.22). This completes the proof of (6.14). O

6.2.2 Step 2: definition of ZJ(\?gK) » and proof of (6.15).

Starting from ZJ(\?g}){ A in (6.17), we set b,_; = 0 and z]_, = 0 inside each X{™ to obtain

our second approximation:

0
2§80 =1+ Z 3 3 3 HXdO%bL,bIOZi;zD- (6.30)

L jefl,.. .M} (bb)eB!()) (z.2)eS4(bY) =1
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Heuristically, the reason Why we set b;_; = Oisthatb; » b]_,, hence b; —b;_; ~ b; (indeed,
note that b; > N o > N i > b,_, since j; — 1> j;,_1, see (6.19) and (6.18)).
We need to prove (6.15). Given b, b and z,2', let us introduce the shortcuts

X = Xdofnl bl,b;] (27/;_17 245 Z;) ) Y = AXdOI[’IO1 b; b/](O’ 235 Z;), (6.31)

‘Ll’

so that, comparing (6.17) and (6.30), we can write

o0 / Y4
A2 -y Y Y Y (nnnxi)
=1 je{ i=1

Lo MYe (bb)EB()) (z.2)eSt(bY) \i=1

=§]] Z Z Z Z{ﬁYi}(YhXh){ ﬁXi},

1 je(l, MY, (bb)eBE()) (z.2)eS8(bY) h=1 * i=1 i=h+1

and note that different terms in the sums are orthogonal in L2. We justify below the
following key estimate, see Lemma 6.7: for any € > 0, for N large enough, we can bound
foralli=1,...,¢

E[(Y; — X))?] < €E[Y?]. (6.32)

By the triangle inequality, this implies E[X?]"/2 < (1 + ¢)E[Y?]"/? < 2 E[Y?]"/2, hence

SR I EES N D I I CEiD | E

j€{1,..,M} (b,b)eB()) (z,2)eS (bb) h=1 i=1

- .
< € Z 4 Z 2 2 HE[Y;Q],

=1 jefl,...M}, (bb)eB'(j) (z.2)eS(b L) i=1

because Zizl 22(=h) — % < 4Y. We now enlarge the sum ranges to obtain the
factorization

E[(ZN% 0 — Z8n)]

<é i 4 3 ﬁ{ D 5 ]E[Yiz]} (6.33)

= <7 1 L<Je< =1 Ji—1 Ji4 .zl 2
=1 1<ji<j2<...<jes<M 1 bi<ble(N 41 Nﬁ] 2i,2,€Z

The following asymptotics on the term in brackets is proved in Appendix A.2.

Lemma 6.6. Forany M € N and j € {1,..., M} we have

j ~
. dom .2 _ N M 572
z\Pinm { Zl ” E[ X 10,6:11(0, 23 27) ]} = In(j) = J@ 1— 32 ds. (6.34)
, -1 5 M
b<b'e(N M ,NM ]
z,z'€Z2

We can plug (6.34) into (6.33) (where the sum is finite: it can be stopped at ¢ = M
since for ¢ > M there is no choice of 1 < j; < js» < ... < j, < M), which yields

o 14

Jim sup ]E[(ZJ(\?%K{M ZJ(\‘;gK ) Z Z n Ine(5:)
e (=1  1<ji1<jo<..<je<M i=1 (6.35)
2

2 ‘2(2 Ine(G ) <€ exp (4J§1'M(j)> - (lez)‘*

This completes the proof of (6.15), since we can take ¢ > 0 as small as we wish.
It only remains to justify (6.32). The following result is proved in Appendix A.3.
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Lemma 6.7. Given K, M € N and ¢ > 0, there exists Ny = Ny(e, M, K) < oo such that
for all N > Ny the following bound holds:

E[(X%?E,b;b’] (x,22") — de\/cffé,b;b'](ov Z; Z/))Q] <e E[devc,n[g,b;b'] (0, 2:2")7], (6.36)

uniformly for (a,z), (b, 2), (b',2') € Z3,., = {y € Z3 : y1 + y2 + y3 is even} such that, for

some j € {1,..., M},

even

G=2)%
M

ac[0,N“T ], be(NT N, |z|<K>Va, |2 <KVb. (6.37)

6.2.3 Step 3: proof of (6.16)
Recalling (6.4), we can rewrite Z (diff M in (6.3) as follows:

78 —14 Z > > 2 HXdona b (02265 20) (6.38)

(=1 1<j1<j2<...<je<M bbe]N/ 2,2/ (22)t i=1
Ji
bE(N M JN ]

By (6.30), we see that Z](\,g ) %, 1s a restriction of the sum which defines Z](\ii]\f?, therefore

1285 a0 = 2850 15 = 12800 17 = 1285 a7

Then, to prove (6.16), it is enough to show that

e e e e e (cg’) 2 1
l}én_}roéf hign—}cr;lof h]f,n_,lgf E[(ZN,K,M) ] > . 732 , (6.39)
; 1
VMeN: limsup E[(ZED)?] < . (6.40)
P [(Z8a)7] 1— 32

We first consider (6.39). Recalling (6.30), in analogy with (6.11), we can write

B, =143 SN TR 0.2,

=1 je{l,...M}, (bb)eB(j) (z,2')eSt(bY) i=1

We can now use the quantity Ex i x (j;) defined in (6.25) to bound

E[(ZJ(\?,gI/(),M =1+ Z 2 H Ena i (i),

(=1 je{l,..., ML =1

which coincides with the r.h.s. of (6.27). As a consequence, the bounds from (6.28) to
(6.29) apply verbatim to E[(Z](\ng) M)Q] and show that (6.39) holds.

We ﬁnally consider (6.40), which we have essentially already proved. Indeed, note
that ]E[(ZJ(&?M)Z] is given by the second line of (6.33) where we replace €2 and 4¢ by 1.
When we apply the limit (6.34), we obtain an analogue of (6.35), again with €2 and 4¢

replaced by 1, which yields precisely (6.40). This completes the proof of Lemma 6.6. O
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6.3 Proof of Lemma 6.3
We recall that the event Ay s was defined in (6.6). In order to prove (6.7), it is
enough to show that the following three relations hold:

M
log Z(dlﬁ) Z {Xdom ) 1X]<ifog/1[(j)2}
j=1

> €, AN7M) =O7 (641)

M—-w N

lim limsup ]P(

hm lim sup Z XdoHl () — XdOIn =0, (6.42)
M—o0 N-—w ] 1 L2
hm lim sup Z Xdom ()2 = B[(X%m)?2]| =o0. (6.43)
M—o0 N-—w ] 1 Ll

We are going to exploit the following result.

Lemma 6.8. Fix 3 < 1. Forevery M € IN and j € {1,..., M} we have

li E Xdo"l 2 = | ’ d ¢ h = -2
] = < — ] =c; = — . .
1m [ ( ) ] LMl 1 AQS S , with c % (6.44)

Moreover, there exist ps > 2andC = CB < oo such that forall 2 < p < Ps

c
VMeN, Vie{l,...,M}: limsup E [| X373 ()] <

_ (6.45)
N—0 M=

Proof. Relation (6.44) is already proved in (6.34), by the definition (6.4) of Xjf,oj\“}( ).

Intuitively, the bound (6.45) holds because E[| X3y, ()7 ] < CE[ X34 (5)? ] by the
hypercontractivity of polynomial chaos. The details are presented in Appendix A.4. O

It only remains to prove (6.8) and the three relations (6.41)-(6.43).

Proof of (6.8). For any p > 2 we can bound, by Markov’s inequality,

((Axan) Z X¥RO) > 3) < M2 max E[IXPHGP],
and relation (6.8) follows directly by (6.45). O

. diff M om (
Proof of (6.41). By (6.3) we can write log Z](V M) = - log(1 + X]%,,M( ). If we fix
2 < p < min{3, p;}, with p; as in Lemma 6.8, we can bound |log(1 +z) — {z — 32°}| < c|z["
for |z| < 1, hence

M
dlff m /- m / - m C
El log Z( Z {XJ(%TOIVI I(%fOM(J)Q} ]]'AN,I\/I‘| ¢ ];E J%OM |p] c ME1
which proves (6.41), by Markov’s inequality. O

Proof of (6.42). The polynomial chaos Y}/, X% (j) contains less terms than X @™,
therefore to prove (6.42) it is enough to show that for any fixed M € IN

lim ZXdom ] = lim E[(X5™) ]—fl p ds (6.46)
N5 ~ Now Jo 142 '
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where the last equality follows by (6.44), because X ™ equals X% (5) for M = j = 1 (cf.
(3.31) with (6.4) and (6.1)). Since the variables X]‘{,OYI{‘[( j)'s are centered and independent,
a further application of (6.44) yields

2 M N 1 62
(ZX?VOE ' ) = 2 BX¥R ()] —= Z In(j J —ds, (6.47)
j=1 ’ 0o 1—-p3%s
as desired. This completes the proof. O

Proof of (6.43). In view of the first equalities in (6.46) and (6.47), it suffices to show that

=0. (6.48)
L1

Z (X% () - BIXh ()2}

j=1

hm lim sup
M—-w Nowo

This is a weak law of large numbers for the independent random variables W; :=
X}{,?R}, ()2, which satisfy the following Lyapunov condition (by (6.45) with ¢ := p/2):
g=qg;>1, C=Cs<0: VMeNN limsup max E[Wq]éi. (6.49)
po P Noow  je{l,..,M} 757 Ma
We prove (6.48) by truncation at level T, := M ~%, for an arbitrary o € (%, 1). Note
that

M M M E[W/]
W; 1 = N E[W; 1w, < MitelD) E[W}
321 {W;>Tn} o ]; [ J {W]>TM} ; Tq 1 je{rlr,l?),(M} [ J]’

which, by (6.49), vanishes as N — o followed by M — oo provided 1 + a(q¢—1) — ¢ <0,
that is a < 1. To prove (6.48) it only remains to show that

=0.

Lt

JimTim sup H Z W Liw, <1y — E[W ]I{WjSTM}]}

M—-w© N

It is simpler to prove convergence in L2, because this follows by a variance computation:
M M
ar ( W ]l{Wj<TM}) = > Var (W) Liw,<nyy) < M Ti; = M'7>,
j=1 j=1

which vanishes as M — o provided 1 — 2a < 0, that is a > % O

6.4 Proof of Lemma 6.4
We first prove (6.9). In view of (6.7) and (6.8), it suffices to show that

Ve>0:  lim P(|logZy" —log Z\'y)| > €, Ana) =0, (6.50)
N—

where we recall that the event Ay y < {Z](\(,i,i]fvfj) > 0} was defined in (6.6).

For any a,b € R and ¢,n € (0,1) we have the following inclusion:
{|loga —logh| > e} < {b < 2ne} U {|a — b > ne?}.

Indeed, if both b > 2ne and |a — b| < ne?, then a > b —ne? = 2ne — ne? = ne, so that both
a,b € [ne, ), hence |loga — logb| = \Sb 1dx| —a| < ;one® = e. It follows that

P(|log Zy¥ —log Z\'n)| > €, An ) < ]P(Z](;hj? < e, Av) + P(1Z5Y — Z{0) | > ne?)
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and note that the second term in the r.h.s. vanishes as N — o followed by M — oo, for
any fixed €, € (0, 1), thanks to (6.5). It remains to show that

Ve >0: lim limsup limsup ]P(ZJ(\?IM) < 2ne, An M) =0.

70 Moo Now

To this purpose, we can bound
P(Z45) < 2ne, Anar) < P(Jlog 2§ — {X&™ — LEIXW™)%}] > 1, Aw.)
+P (Xdom LE[(X0m)2] < log(2ne) + 1)

and note that the first term in the r.h.s. vanishes as N — oo followed by M — o0, by (6.7).
To show that the second term vanishes as N — o followed by n | 0, we fix n > 0 small,
so that log(2ne¢) + 1 < 0, and we apply Markov’s inequality to bound, for some C' < o0,

E[(xym - JE[(XF™)?)°] . ©
| log(2ne) + 1|2 = |log(2ne) + 1]2”°

P (X]dvom — LE[(X%m)2] < log(2ne) + 1) <

because E[ (X{™ — %E[(Xj‘i,om)Q])Q] converges to a finite limit as N — o, see (6.46).

It only remains to prove (6.10). The second bound in (6.10) follows by (6.45), because
we already remarked that X{™ = Xj‘},‘jj\“}(j) with j = M = 1, see (3.31) and (6.4), (6.1).
The first bound in (6.10) was proved in [CSZ20] (see equations (3.12), (3.14) and the
lines following (3.16)) exploiting concentration of measure for the left tail oflog Zn. O

7 Proof of Theorem 3.6

We have already noticed in (6.46) that

lim ]E[(Xdom) | = = log

Noo - ﬂ2 ’ (7.1)

which follows by (6.44), because X ™ = X371 (1) (see (3.31) and (6.4), (6.1)). Therefore
we only need to prove that

xgom L5 N(0,02). (7.2)

We can apply Theorem 2.1 to the polynomial chaos X ]‘%;)m defined in (3.31). As in
the proof of Theorem 3.4, we can cast Xj'{,"m in the form (2.4) with T := IN x Z2 and
nN = nn(m, z) defined in (3.19), while for A := {t,...,tx} = {(n1,21),..., (Mg, 2x)} S T
we set

qN(A) = (UN)k ]l{ O0=npg<ni<...<np<N } H qn;—ng 1 — Tj— 1)

max{ns—ni,...,ng—Nk—1}<N1—ng
By Theorem 2.1, to prove (7.2) we need to verify the following conditions:

1. Limiting second moment: we already showed that limy_,., E[(X$°™)2] = 02, see
(7.1).

2. Subcriticality: we need to show that

limlimsup D1 an(4)? =0. (7.3)
K—-o© Noop AcT
[A|lZK
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Arguing as in (6.23), we can enlarge the sums to 1 < n; —n;_; < N and remove

the constraint max{ns — ny,...,ng — ng_1} < n1 — no, to get the bound
0 k
D oan(A)? < ) (oR)” > o T T anno (@ —io0)?
‘ﬁlc;;( k=K 1<r;j:1nj,}€<zv ml%ﬂfzz j=1
0 0 22\ K
Noow (B
=S (D Y w@?) = 3 ok A A, BOF
k=K n=1ze7? k=K 1-p

from which (7.3) follows.
3. Spectral localization: given M, N € IN, we define disjoint subsets B; < T by

B,:= (N7 ,N¥]AN)xZ*> forj=1,...,M

and, recalling that 0% (B;) := ZAC]Bj qn(A)?, see (2.6), we need to show that

M

]\/}igloo j; z\Pinoo oy (B;) = 0>  and ]\/1[13100 {j Jmax llgljlmlp o (B, )} =0.

For this it suffices to note that o}, (B,) = E[X{°};(j)?] and then to apply (6.44).

The proof of Theorem 3.6 is completed. O

A Some technical results

We collect here the proofs of some technical results.

A.1 Proof of Lemma 6.5

We are going to prove that there is a constant C' < oo such that, for any given
M,K €WNandje{l,...,M}, we have

M A2 — g
hmmf Evar(j) = (17(6 )K) L_l . 6/3(21(1 _K"‘C))Sds, (A1)
G K2

which clearly implies (6.26).
Given a,b € INg as in the range of the sums (6.25), we note that for large N:

a<iK?b. (A.2)

G-+
M

This clearly holds if a = O hence for j = 1, because a < N = 0, while for j > 2 from
< N and b > N7 wegeta < N-#b < < 1K~?b for large N, say N > (2K)?*M. By
(6.13), for fixed a, b and z, the sums over b’ € [b, Kb] and z, 2’ € Z? in (6.25) equal

)3 2 E[(dev(?ﬁ,b;b'] (2, 2; Z/))Q]

belb,Kb] |z|<Kb

|2/ |<K2vb
o k (A.3)
=Y 0" D Balz—a) > [ Taninis (@i —wic0).
k=1 |x1\<K\/E b<ng<..<np<Kb: =2

max{ns—b,...,ng—np_1}<b
T2,..., :EkGZ |ZL’)¢‘<K2\/E

We get a lower bound by keeping just the first K terms in the sum over k € IN. Moreover:

EJP 27 (2022), paper 81. https://www.imstat.org/ejp
Page 30/35


https://doi.org/10.1214/22-EJP798
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Gaussian limits for subcritical chaos

» we remove the constraint n; < Kb (because max{ns —b,...,ng —ng_1} < b already
yields ny = b + Z?:z(”i —n;_1) < Kb) and sum freely over the increments

mi:=ni—ni,1e{l,...,b} forz'=2,...,k; (A4)
* we change variables to y; := 1 — x and y; := x; — x;_1 for ¢ > 2, that we restrict to
| <iKVb—a and |y <iKym;  fori>2,

which imply both |z;| < K+/b and |z,| < K2vb as required by (A.3). Indeed,
recalling that |z| < K%,/a < $K+/b by (6.25) and (A.2), we obtain

1 1
1] < fyal + 2] < SEVE—a+ S KVh < KV,

k
1
lzk| < |xi| + Z lyil < KVb+ (K — l)iK\[bé K2Vb.
i=2

These restrictions yield the following lower bound on (A.3):
K k b
D) ( >, qba(y1)2> 11 ( XY am, (yz-)2> : (A.5)
k=1 ly1l<3Kvb—a i=2 Ymi=1 |y |< I K\/mi
Recalling that u,, and Ry are defined in (3.10) and (3.11), we define restricted versions
. N N
W= DT @) Ry = a0 =3 Y aa)’ (A.6)
lyl<z Kvn m=1 m=1yl<z Kym

so that we can rewrite (A.5) more compactly as follows:

K 2 p(E\K
2k (K) (p(KNk=1 _ o (k) L= (0] Ry)
2@ s (BRYV)T = ok, 2 g®
k=1 ON1Yy
Bounding (UJQVREK))K < (0% Rn)¥ in the numerator and recalling (6.25), we obtain
K o2 ul)
Enak(j) = (1— (0¥ By)") inf 2 ——=, (A7)
G=2)t 1 — o2 R( )
O<a<N 7 N1

be(N"M +log N,&=N1 ]

where we restricted the sum range to b € (N a4 log N, %N ﬁ] for later convenience.
We now claim that for some C < oo we have, for n, N large enough,

11 1

K C (K) C

ull )2(1_72);5 = Ry 2(1——KZ)—W log N . (A.8)
This follows by (A.6) writing uf) =, — > ly|> LKy dn (y)?, recalling that u, ~ 1 by

(3.10), bounding sup,cz2 ¢.(y) < $* by the local limit theorem (see (A.14) below) and
then estimating

ElS."] _ 4
— 1 n _
Y anl) = PS> 3KV <4500 = o5
ly|>35K+\/n
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We can plug the bounds (A.8) into (A.7) because, uniformly for a, b in the sum range, we

have b > b—a > logN — o as N — o. Since 0% ~ % ~ 74?/log N, see (3.12) and
(3.19), for large N we have (possibly enlarging C')

K B2
U]2V ugft)z > (1 C ) 1 log N
1— 02 R b—aq_

(A.9)

log N

The r.h.s. is a decreasing function of b — a, hence we get a lower bound setting ¢ = 0. By
monotonicity in b, we can then bound the sum in (A.7) by an integral

R %N%} 1 52
Evaix(l) = (1— %) (1—(B)F) f ) z

log N
[N

With the change of variable z = N°?, the integral equals

dx.

o (logz) (1 %)

by 2 log[ N7 + log N
J . p ds with ay:= og[ N3+ log N1
av 1=8%5(1- %)

Since limy o any = % and limy o by = -

log(& N#r)
log N

log N N

W7, We have proved (A.1).
A.2 Proof of Lemma 6.6

A lower bound for (6.34) is already provided by (6.26), hence it suffices to prove a
matching upper bound. By (6.13) with (a,z) = (0,0), we can write

0
dom
2, 2 BB 05 )] < 2,0k
bSb’G(N%,Nﬁ] 2,2/ €72 k=1

IO

— .
be(N% Nir) *€%

(A.10)
x D > anﬁnl (@i = wiea)?.

b=m1<ns<...<njp <o T1:=2 .
max{ns—ni,...,ng—ng_1}<b T2,....,TLEZL

We can sum over the space variables: by (3.10) and (3.11), the r.h.s. equals

© 2
2\k k—1 oN W
> (%) M w(Ry) Y T (A11)
k=1 -1 P N S
be(N M N | be(N M N |
Since 02, up ~ Loe do% R
NUb ™ TogN 3 and o}, Ry ~

1ogb as NV — oo the r.h.s. of (A.11) is asymptotic
to
B> 1 N B> 1 4 59
logN b logN = M ﬁ
Z 7%2 ~ J i #dz = L—l st, (A.12)
be(N%,N%}]l_mbgb N = gw log o 5
by the change of variable x = N¥. This completes the proof of (6.34) O

A.3 Proof of Lemma 6.7

We can assume that j > 2, because if j =
hence (6.36) trivially holds.

1 we have ¢ = 0 and = = 0, see (6.37)
Note that by (6.1) we can write

IE[X]dVC”F;}b;b,] (x,2; z’)z] = @p_a(z —x)? Fn (25 2)
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where we set

o0 k
Fxp(2:2) == D (0%)" ) > [ Tanins (2 = 2i0)?.
k=1

b=ni<no<..<np_i<np=b xi:=z,x,:=2 =2
1<ng—ny,....,np—ng_1<b  xq,...,x)_1€Z>

The key point is that Fy ,,1(2; 2") does not depend on (a, z). It follows that

E[(X?V(?l[g,b;b’] (z,2;2") — XJ(&I(?F(;,b;b’] (0, 2 ZI))Q] = (@—alz — ) - qb(Z))2 Fy (2327 5

therefore, to prove (6.36), it is enough to show that for K, M € IN and ¢ > 0 there is
Np = Ny(e, M, K) < oo such that, for N > Ny and for a, b, x, z as in (6.37), we have

aw(2)

_ _ |<e. A.13
Q—a(z — ) ‘ ( )

;

We recall the local limit theorem [LL10, Theorem 2.1.3]: as n — oo, uniformly for
ye Z2,4
1 e lzl?/2

an(y) = T/Q(g(\/i%) + 0(1)) 21(n,y)ezs,., with  g(z) := or (A.14)

In particular, for (n,y) € Z2, ., in the “diffusive regime” we can write

() = S 9(FE) (1 +o(D)  for ly| = O(a). (A.15)

Note that a, b, z, z as in (6.37) satisfy (recall that j > 2)
0<a<N™ <N Wb, |z|<Kvb, |o|<K>Va<K2VN-%vb. (A.16)
It follows that for any K, M € IN, uniformly for a, b, z, z as in (6.37), we have as N — «©
a=o(), |:/=0Wb), |z]=0(Vb),
which in turn imply that |z — z| < |2| + |z| = O(v/b) = O(v/b — a) and hence, by (A.15),

q(2) b—a |z —z* |2
= - — (1 1) —— 1.
Gp—a(z — ) b P ( b—a b (1+0(1)) N—w
This completes the proof of (A.13), hence of (6.36). O

A.4 Proof of (6.45)

The random variables 7y in (3.19) satisfy supy E[|nn|P] < oo for all p < oo, by the

2

assumption (3.1) (see [CSZ17a, eq. (6.7)]). We can then estimate E[|X]‘{,‘?‘A“4(j)|”] » by the
hypercontractive bound (4.2), which gives rise to the r.h.s. of (A.10) with UJQV replaced
by C, o3;. We can then follow the proof of Lemma 6.6 in Appendix A.2 verbatim though
(A.11) and (A.12), where we note that the replacement of o% by C, 0% amounts to
replace % by C, 32, by (3.19) and (3.12). Since 8 < 1 and lim,» C, = 1, see [CSZ20,
Theorem B.1], we can fix Py > 2and ¢ = ¢y <1 such that forall 2 < p < pj we can bound
C,,Bz < ¢ < 1, hence

2 _ (TG &/(1-2)
limsup E[|X{m (5)P]7 gf — 2T ds < 2, (A.17)
N [| N,M(J)| ] 1 _CpBQS M
which completes the proof. O

4The scaling factor in (A.14) is n/2 because the simple random walk on Z? has covariance matrix %I , while
the factor 21, ,yez3  is due to periodicity.
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