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Abstract

Consider the following one player game. A deck containing m copies of n different
card types is shuffled uniformly at random. Each round the player tries to guess the
next card in the deck, and then the card is revealed and discarded. It was shown
by Diaconis, Graham, He, and Spiro that if m is fixed, then the maximum expected
number of correct guesses that the player can achieve is asymptotic to Hm logn,
where Hm is the mth harmonic number.

In this paper we consider an adversarial version of this game where a second
player shuffles the deck according to some (possibly non-uniform) distribution. We
prove that a certain greedy strategy for the shuffler is the unique optimal strategy in
this game, and that the guesser can achieve at most logn expected correct guesses
asymptotically for fixed m against this greedy strategy..
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1 Introduction

Consider the following one player game played by a player Guesser. A deck with
n different card types with each card type appearing m times is shuffled uniformly at
random. Each round, Guesser guesses what the card type of the next card in the deck is.
After the guess is made, the true identity of the card is revealed and then discarded from
the deck. This process continues until the deck is depleted, at which point the game
ends and Guesser is given a point for each correct guess they made during the game.

This game is called the complete feedback model, and it was motivated by several
real world problems related to clinical trials [4, 10] and to extrasensory perception
experiments [6]. We refer the interested reader to [8] for more information on the
history of this model, as well as to variants of the model which involve different levels of
feedback.
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Online card games

A natural question to ask regarding the complete feedback model is how many points
Guesser can expect to guess if they try to maximize or minimize their score. To this
end, if G is a strategy in the complete feedback model1 and if π is a way to shuffle a
deck which consists of m copies of n different card types, we define Cm,n(G, π) to be the
number of correct guesses made by Guesser in the complete feedback model if they use
the strategy G and if the deck is shuffled according to π. Building on work of Diaconis
and Graham [6], the following was proven by Diaconis, Graham, He, and Spiro [7] and
by He and Ottolini [14]. Here and throughout log n denotes the natural logarithm and
Γ(x) denotes the gamma function.

Theorem 1.1 ([6, 7, 14]). For any fixed m and n tending towards infinity, we have

max
G
E[Cm,n(G, π)] ∼ Hm log n,

min
G
E[Cm,n(G, π)] ∼ Γ

(
1 +

1

m

)
n−1/m,

where the maximum and minimums run over all strategies G, the shuffling π is chosen
uniformly at random, and Hm :=

∑m
i=1 i

−1 is the m-th harmonic number. Moreover, G
achieves this maximum/minimum if it guesses a most/least likely card each round.

We note that the regime where n is fixed and m tends to infinity is studied in [6], and
in this case both the maximum and minimum scores are asymptotic to m.

The focus of this paper is in studying the complete feedback model with a deck of
cards that is not shuffled uniformly at random, which is a reasonable assumption to make
when considering real life applications. There is a vast literature concerning different
models for shuffling a deck of cards, and we briefly summarize some of these models
below. For the following discussion, we restrict ourselves to decks consisting of n distinct
cards (so m = 1 in our language).

One popular way to shuffle cards (both in real life and mathematically) is the riffle
shuffle, which informally involves splitting the deck roughly in half and then interleaving
the two halves together. A mathematical framework for modeling riffle shuffles was
established by Gilbert, Shannon, and Reeds [13], and it was shown by Bayer and
Diaconis [3] that roughly 3

2 log2 n riffle shuffles suffices to produce a deck which is “close”
to being shuffled uniformly. The n = 52 case of their analysis has led to the maxim that
seven riffle shuffles suffice to make a standard deck of playing cards close to uniformly
shuffled.

A simpler model of shuffling cards is the top to random shuffle, which involves taking
the topmost card of the deck and inserting it uniformly at random into the deck. It
was shown by Aldous and Diaconis [2] that it takes about n log n top to random shuffles
to get a deck which is close to uniformly shuffled. There are many other kinds of
shuffling models that can be considered, such as random transpositions [9] and overhand
shuffles [15].

Given these various models for how to shuffle a deck of cards, it is reasonable to ask
how well a player can do in the complete feedback model if the deck is shuffled in some
non-uniform way. Specifically, Bayer and Diaconis [3] asked what the optimal score in
the complete feedback model is when the deck is shuffled using k riffle shuffles. The
case of k = 1 was essentially solved by Liu [18] and later refined by Krityakierne and
Thanatipanonda [17]. Ciucu [5] established similar results in the no feedback model (i.e.
where the Guesser is told nothing after each successive guess) after the deck has been
riffle shuffled once. Further work in the no feedback model was done by Pehlivan [19] in
the setting of top to random shuffles.

1We formally define what a “strategy” is in Section 2. Intuitively, it is a function which takes in the
information which is currently known to Guesser and outputs a (possibly random) card type to guess.
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Online card games

In this paper we consider a somewhat more general situation by allowing any dis-
tribution for shuffling of the cards to be used in the complete feedback model. More
precisely, we consider the following two player game played by Guesser and Shuffler.
The game starts with an initial deck of cards. Each round Shuffler chooses a card which
is in the deck2, and simultaneously Guesser guesses the card type of the selected card.
The card is then revealed and discarded. The game continues in this way until the
deck is completed. We call this the Guesser-Shuffler game. We define Cm,n(G,S) to be
the number of correct guesses made by Guesser in this game if the deck starts with m
copies of n different card types and if Guesser and Shuffler use the strategies G and S,
respectively.

For example, Shuffler could use the strategy “shuffle the deck uniformly at random
at the start of the game, then sequentially pick the top card from the deck each round.”
Under this strategy the game reduces to the complete feedback model, and we know
from Theorem 1.1 that Guesser can play so that they get Hm log n points in expectation.
The central question we wish to answer is: can Shuffler significantly decrease this
quantity if they use a different strategy?

To this end, we say that a strategy S for Shuffler is a minimizing Shuffler strategy if
for all m,n we have

max
G
E[Cm,n(G,S)] = min

S′
max
G
E[Cm,n(G,S ′)],

where here the maximums and minimums range over all strategies for Guesser and
Shuffler, respectively. We similarly define what it means for a strategy to be a maximizing
Shuffler strategy. To state the main result of this paper, we define the following.

Definition 1.2. The greedy strategy Sg for Shuffler is defined as follows. Each round,
if the deck has s different card types remaining in the deck, then Shuffler selects each
card type with probability proportional to s−1.

For example, if at some point the deck consisted of 100 copies of one card type and 1
copy of another card type, then Sg would select each of these card types with probability
1
2 . One can easily show that the greedy strategy minimizes the probability that Guesser
correctly guesses a card type in any given round, but it is far from obvious that it is a
minimizing Shuffler strategy. Indeed, in our example, if Shuffler chooses the card type
with multiplicity 1, then Guesser can guarantee 100 correct guesses from later rounds.
Thus it might be the case that Shuffler should choose this low multiplicity card type with
probability smaller than 1

2 . However, this turns out not to be the case.

Theorem 1.3. The greedy strategy Sg is both a minimizing and maximizing Shuffler
strategy for the Guesser-Shuffler game. Moreover, it is the unique minimizing Shuffler
strategy.

We note that there is no unique maximizing Shuffler strategy. Indeed, once a card
type i has been exhausted from the deck, Guesser can minimize their score by guessing
i every round, and at this point the strategy that Shuffler uses is irrelevant. However, it
is possible to show that every maximizing Shuffler strategy must agree with the greedy
strategy until a card type runs out of the deck, see Theorem 2.5 for a precise statement
of this form.

By using Theorem 1.3 together with results from variants of the coupon collector and
birthday problems, we can prove asymptotic bounds on how many correct guesses are

2In this formulation of the game, Shuffler chooses each card in an online fashion, possibly based on what
Guesser has done in previous rounds. Alternatively one could consider a model where Shuffler shuffles the
deck at the start of the game and then draws each card according to this shuffling. It is not difficult to show
that the optimal expected scores under these two models are the same, but for concreteness we will only
consider the online setting.
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Online card games

made in the Guesser-Shuffler game when one player tries to minimize the number of
correct guesses and the other tries to maximize it.

Theorem 1.4. For m fixed and n tending towards infinity, we have

min
S

max
G
E[Cm,n(G,S)] = max

G
E[Cm,n(G,Sg)] ∼ log n, (1.1)

max
S

min
G
E[Cm,n(G,S)] = min

G
E[Cm,n(G,Sg)] ∼ Γ

(
1 +

1

m

)
(m!)1/m · n−1/m. (1.2)

In particular, comparing Theorem 1.4 with Theorem 1.1, we see that Shuffler can
significantly decrease or increase the expected number of correct guesses if they use
the greedy strategy as opposed to shuffling the deck uniformly at random.

To give some intuition for the bound in (1.1), let G+ be the Guesser strategy which
uniformly at random chooses a card type which has the maximum number of copies
left in the deck. It is not hard to show that the expected score under this strategy is
at least the nth harmonic number Hn ∼ log n regardless of how the deck is shuffled.
Thus (1.1) can be interpreted as saying that no strategy for Guesser can asymptotically
outperform G+ when the deck is shuffled adversarily. This is in contrast to having the
deck shuffled uniformly at random, since in that setting Theorem 1.1 shows that G+
achieves significantly higher scores for larger values of m.

Lastly, we consider a variant of the Guesser-Shuffler game that we call the Restricted
Matching Pennies game. This is a two player game which starts with both players being
given an identical deck of cards. Each round the two players simultaneously select a
card from their deck, reveal their cards, and then discard them. This continues until
the two decks are depleted. We define Mm,n(A,B) to be the number of times that the
selected cards matched during a round of the game if the deck starts with m copies of n
different card types and if the two players use strategies A and B.

One can view this game as a symmetric version of the Guesser-Shuffler game where
Guesser is forced to guess each card type exactly m times (with Guesser’s deck recording
the remaining guesses that they are allowed to make). This can also be seen as a variant
of the classical game “Matching Pennies.” In each round of this game, two players
simultaneously reveal a penny from their hand, where one player gets a point if the coins
match (i.e. if they are both heads or both tails), and the other gets a point if they do
not match. In contrast, the Restricted Matching Pennies game allows n different types
objects to be chosen from each round, and it adds the restriction that the number of
times each object is chosen in total is fixed.

It turns out that in the Restricted Matching Pennies game that the optimal strategy
for both players is to shuffle their decks uniformly at random, which is in sharp contrast
to Theorem 1.3.

Proposition 1.5. For all m,n we have

max
A

min
B
E[Mm,n(A,B)] = m.

Moreover, if U is the strategy of choosing each card from the remaining deck uniformly
at random, then for any strategies A,B we have

E[Mm,n(A,U)] = E[Mm,n(U ,B)] = m.

The rest of this paper is organized as follows. In Section 2 we prove Theorem 1.3
showing that the greedy strategy is optimal in the Guesser-Shuffler game. We then prove
the asymptotic bounds of Theorem 1.4 in Section 3 and the results for the Restricted
Matching Pennies game in Section 4. Concluding remarks and some open problems are
given in Section 5.
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2 Proof of Theorem 1.3

To prove our results, we first formally define some of the terms used in the introduc-
tion.

We say that d is an n-vector if it is a vector (d1, . . . , dn) of non-negative integers, and
we think of di as the number of card types of type i left in a deck of cards. We define
the support of d to be supp(d) = {i : di > 0}, and if X is a random variable we define its
support by supp(X) = {x : Pr[X = x] > 0}.

We say that G is a Guesser strategy if it is a function which takes in nonzero n-vectors
d (for all n) and which outputs a random variable G(d) whose support is in [n]. We say
that S is a Shuffler strategy if it is a function which takes in nonzero n-vectors d (for
all n) and outputs a random variable S(d) whose support is in supp(d). Intuitively, these
definitions say that Guesser is allowed to guess any card type in [n] while Shuffler must
select a card type that is still in the deck. For all nonzero d we define the greedy strategy
Sg by

Pr[Sg(d) = i] = |supp(d)|−1 ∀i ∈ supp(d).

When n is understood, we let δi be the n-vector which has a 1 in position i and
0’s everywhere else. We recursively define the score C(d,G,S) where d is an n-vector
and G/S are Guesser/Shuffler strategies by having C(d,G,S) = 0 if d = (0, . . . , 0), and
otherwise having

C(d,G,S) = 1S(d)=G(d) + C(d− δS(d),G,S). (2.1)

That is, if Shuffler chooses some i = S(d), then a point is scored if Guesser chooses i as
well, and in either case the game continues with the deck d− δi since one copy of i has
been removed.

For d an n-vector and S a Shuffler strategy, define

f(d,S) = max
G
E[C(d,G,S)] f(d) = min

S
f(d,S)

F (d,S) = min
G
E[C(d,G,S)] F (d) = max

S
F (d,S),

where the maximum and minimums run through all possible Shuffler and Guesser
strategies as appropriate. Intuitively, f(d,S) is the score of the game when Guesser tries
to maximize their score given that the deck starts as d and Shuffler uses strategy S, with
the other functions having analogous interpretations. The fact that these maximums
and minimums exist can be seen, for instance, by observing that the space of possible
strategies forms a compact set. If S is such that f(d) = f(d,S) for all n-vectors d of any
length n, then we say that S is a minimizing Shuffler strategy, and similiary we define
what it means for S to be a maximizing Shuffler strategy.

The key lemma that we use throughout this section is the following recurrence
relation.

Lemma 2.1. Let S be a Shuffler strategy. If d is an n-vector and pi = Pr[S(d) = i], then

f(d,S) = max
i∈[n]

pi +
∑
j∈[n]

pjf(d− δj ,S),

F (d,S) = min
i∈[n]

pi +
∑
j∈[n]

pjf(d− δj ,S).

Proof. Given any Guesser strategy G, we have by (2.1) that

E[C(d,G,S)] = Pr[S(d) = G(d)] +
∑

pj ·E[C(d− δj ,G,S)] ≤ max pi +
∑

pj · f(d− δj ,S),
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and taking a maximum over G shows that

f(d,S) = max
G
E[C(d,G,S)] ≤ max pi +

∑
pj · f(d− δj ,S).

Moreover, it is straightforward to prove by induction on
∑
di that the strategy G which

always guesses some k with pk = max pi achieves this upper bound. The proof for F (d,S)

is essentially the same and we omit the details.

Another key lemma we make use of is the following, which intuitively says that if
S,S ′ are two strategies which act the same on d as well as on any deck which is “smaller”
than d, then these two strategies give the same expected score if we start with d.

Lemma 2.2. Let S,S ′ be two shuffler strategies and d an n-vector such that S(d′) = S ′(d′)
for all n-vectors d′ which satisfy d′i ≤ di for all i. Then

f(d,S) = f(d,S ′), F (d,S) = F (d,S ′).

Proof. We prove the more general result that, for d,S,S ′ as in the hypothesis, we have

E[C(d,G,S)] = E[C(d,G,S ′)] (2.2)

for all Guesser strategies G. With this the stated result following by taking maxi-
mum/minimums with respect to this equality.

To prove this general result, assume for the sake of contradiction that there is some d
and strategies S,S ′,G that satisfy the hypothesis of the lemma and such that (2.2) does
not hold, and choose such an example with

∑
di as small as possible. Observe that d− δi

for i ∈ supp(d) together with S,S ′ also satisfies the hypothesis of the lemma since d does,
so by the minimality of d we must have E[C(d− δi,G,S)] = E[C(d− δi,S ′,G)] for all such
i. The desired equality now follows from the recursion (2.1).

The next result shows the intuitive fact that if, say, d = (100, 1) and Shuffler is trying
to minimize their score, then it would be better for them to draw a 1 than a 2 (since the
latter will guarantee 100 correct guesses from Guesser).

Lemma 2.3. Let d be an n-vector. If di ≥ dj > 0, then

f(d− δi) ≤ f(d− δj), F (d− δi) ≥ F (d− δj).

Proof. Assume for contradiction that there exists such a d with f(d − δi) > f(d − δj),
and choose this d so that

∑
dk is as small as possible. Observe that if di = dj , then the

entries of d− δi and d− δj are permutations of one another, so by the symmetry of the
problem we see that f(d− δi) = f(d− δj). Thus we can assume di > dj , and in particular
di ≥ 2.

Let S be a minimizing Shuffler strategy and define S ′ by having S ′(d− δi) = S(d− δj)
and S ′(d′) = S(d′) for all other d′. Observe that this is indeed a Shuffler strategy because

supp(S ′(d− δi)) = supp(S(d− δj)) ⊆ supp(d− δj) ⊆ supp(d) = supp(d− δi),

where the last equality used di ≥ 2. Let pk = Pr[S(d − δj) = k]. We claim that the
following is a consequence of Lemmas 2.1 and 2.2:

f(d−δi)−f(d−δj) ≤ f(d−δi,S ′)−f(d−δj ,S) =
∑

k∈supp(d−δj)

pk(f(d−δi−δk)−f(d−δj−δk)).

(2.3)
In more detail, we have f(d− δi) ≤ f(d− δi,S ′) because f is a minimum over all possible
Shuffler strategies, and f(d − δj) = f(d − δj ,S) because S is a minimizing Shuffler
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strategy. This gives the inequality of (2.3). For the equality, we expand f(d− δi,S ′) and
f(d− δj ,S) using Lemma 2.1, noting that maxk∈[n] Pr[S ′(d− δi) = k] = maxk∈[n] pk and

f(d− δi − δk,S ′) = f(d− δi − δk,S) = f(d− δi − δk),

where the first equality uses Lemma 2.2 and the second that S is a minimizing strategy.
This proves (2.3).

Because di > dj , we have (d − δk)i ≥ (d − δk)j for all k, so by the minimality of our
choice of d we have f(d− δk − δi) ≤ f(d− δk − δj) for all k. Applying this to each term of
(2.3) gives f(d− δi) ≤ f(d− δj), a contradiction to our assumption on d. This implies the
result for f , and an analogous argument gives the result for F .

In order for the greedy strategy Sg to be a minimizing Shuffler strategy, it is necessary
that f(d− δi) ≤ 1 + f(d− δj) for all d and i, j ∈ supp(d). Indeed if this failed for some d,
then it would be better for Shuffler to deterministically choose j (giving up a point) than
to use any strategy which could draw i. The following shows that a generalization of
this condition is true if we inductively assume that the greedy strategy is optimal for all
smaller decks.

Lemma 2.4. Let d be an n-vector such that f(d′,Sg) = f(d′) for all d′ 6= d which satisfy
d′k ≤ dk for all k ∈ [n]. Then for all J ⊆ supp(d) and i ∈ supp(d), we have

|J |f(d− δi) < 1 +
∑
j∈J

f(d− δj),

|J |F (d− δi) > 1 +
∑
j∈J

F (d− δj).

Proof. Let d, i, J be as in the hypothesis of the lemma and assume for contradiction
that |J |f(d− δi) ≥ 1 +

∑
j∈J f(d− δj). Moreover, choose d so that

∑
k dk is as small as

possible, and then choose a set J as small as possible such that this inequality holds for
d. By Lemma 2.3, if di ≥ dj′ for some j′ ∈ J , then f(d− δi) ≤ f(d− δj′). Thus

|J |f(d− δi) ≥ 1 +
∑
j∈J

f(d− δj) =⇒ |J \ {j′}|f(d− δi) ≥ 1 +
∑

j∈J\{j′}

f(d− δj),

contradicting the minimality of J . Thus we must have dj > di > 0 for all j ∈ J , and in
particular supp(d− δj) = supp(d) for all j ∈ J . Let s = |supp(d)|.

First consider the case that di ≥ 2, so supp(d − δk) = supp(d) for all k ∈ supp(d).
Using this and the hypothesis f(d− δk) = f(d− δk,Sg) for all k, we find by Lemma 2.1
that

|J |f(d− δi)−
∑
j

f(d− δj) = |J |f(d− δi,Sg)−
∑
j

f(d− δj ,Sg)

= s−1
∑

k∈supp(d)

|J |f(d− δi − δk)−
∑
j∈J

f(d− δj − δk)

 < s−1
∑

k∈supp(d)

1 = 1,

where the inequality used that each d− δk satisfies the hypothesis of the lemma if d does,
and that d is a counterexample to the lemma with

∑
dp as small as possible. This gives

the desired inequality.
Thus we can assume di = 1. Consider the strategy S ′ which agrees with Sg on

d′ 6= d− δi and which has

Pr[S ′(d− δi) = j] =

{
s−1(|J |−1 + 1) j ∈ J,
s−1 j ∈ supp(d) \ (J ∪ {i}).
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Note that these probabilities sum to 1 and that this is indeed a Shuffler strategy. By
Lemmas 2.1 and 2.2 we have

|J |f(d− δi) ≤ |J |f(d− δi,S ′)

= s−1(1 + |J |) + s−1
∑
j∈J

(1 + |J |)f(d− δi − δj)

+ s−1
∑

k∈supp(d)\(J∪{i})

|J |f(d− δi − δk)

= s−1 + s−1|J |+ s−1
∑
j∈J

f(d− δi − δj) + s−1
∑

k∈supp(d)\{i}

|J |f(d− δi − δk).

On the other hand, we have

∑
j∈J

f(d− δj) = s−1|J |+ s−1
∑
j∈J

f(d− δj − δi) +
∑

k∈supp(d)\{i}

f(d− δj − δk)


= s−1|J |+ s−1

∑
j∈J

f(d− δj − δi) + s−1
∑

k∈supp(d)\{i}

∑
j∈J

f(d− δj − δk)

and subtracting these two expressions gives

|J |f(d− δi)−
∑
j∈J

f(d− δj) ≤ s−1 + s−1
∑

k∈supp(d)\{i}

|J |f(d− δi − δk)−
∑
j∈J

f(d− δj − δk)


< s−1 + s−1 · (s− 1) = 1,

where again this inequality used the minimality of d. This completes the proof for f , and
a nearly identical argument works for F .

With this we can prove our main result for this section, which is a slightly more precise
version of Theorem 1.3. To state our result, we say that an n-vector d is fully-supported
if supp(d) = [n].

Theorem 2.5. Let S be a Shuffler strategy and Sg the greedy strategy. Then S is a
minimizing Shuffler strategy if and only if S(d) has the same distribution as Sg(d) for
all n-vectors d, and S is a maximizing Shuffler strategy if and only if S(d) has the same
distribution as Sg(d) for all fully-supported n-vectors d.

Proof. Let S be a minimizing Shuffler strategy, and assume for contradiction that there
exists an n-vector d such that S(d) does not have the same distribution as Sg(d). Choose
such a d so that

∑
di is as small as possible, which implies that Lemma 2.4 applies to d.

For all k, let pk = Pr[S(d) = k]. By our choice of d, we have pk 6= pk′ for some
k, k′ ∈ supp(d). By relabeling the card types, we can assume

p1 = p2 = · · · = pi > pi+1 ≥ pi+2 ≥ · · · ≥ pn

for some i ≥ 1 with i + 1 ∈ supp(d). Define ε = (p1 − pi+1)/(1 + 1/i) and let S ′ be the
strategy which has S ′(d′) = S(d′) for all d′ 6= d, and for d we have

Pr[S ′(d) = k] =


p1 − i−1ε k ≤ i,
pi+1 + ε k = i+ 1,

pk k > i+ 1.
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Note that this is a Shuffler strategy because these probabilities add to 1 and Pr[S ′(d) =

k] > 0 only if k ∈ supp(d). Also with this we have

max
k

Pr[S ′(d) = k] = pi+1 + ε = p1 − i−1ε.

Using Lemmas 2.1 and 2.2 and that S is a minimizing Shuffler strategy, we find

f(d,S ′) = p1 − i−1ε+
∑
k≤i

(pk − i−1ε)f(d− δk) + (pi+1 + ε)f(d− δi+1) +
∑
k>i+1

pkf(d− δk).

Combining this with the recurrence for S gives

f(d,S ′)− f(d,S) = −i−1ε− i−1ε
∑
k≤i

f(d− δk) + εf(d− δi+1) < 0,

where this last inequality used Lemma 2.4 with i+1 and J = {1, 2, . . . , i}. This contradicts
S being a minimizing Shuffler strategy, giving the desired result.

The proof for the maximizing case is almost identical, and we briefly sketch the ideas
for this argument. If d is not fully-supported then F (d,S) = 0 for all Shuffler strategies,
so S is a maximizing Shuffler strategy if and only if F (d,S) = F (d) for all fully-supported
d. We assume for contradiction that S is a maximizing Shuffler strategy and that there
exists a fully-supported d such that S(d) does not have the same distribution as Sg(d).
This means there exists an i with

p1 = p2 = · · · = pi < pi+1 ≤ pi+2 ≤ · · · ≤ pn.

We then define the strategy S ′ exactly as before except that we use ε = −(p1 − pi+1)/(1 +

1/i). Here d being fully-supported is essential, as otherwise we might have 1 /∈ supp(d)

and that Pr[S ′(d) = 1] = −i−1ε > 0, so this would not be a Shuffler strategy. From here
the same analysis as before gives the result.

3 Proof of Theorem 1.4

Given the work of the previous section, to prove Theorem 1.4, it suffices to determine
how well the greedy strategy does against an optimal Guesser strategy. A key fact is that
every “reasonable” Guesser strategy performs equally well against the greedy strategy
in expectation.

Lemma 3.1. If G is a Guesser strategy which always guesses a card type that is in the
deck, then

E[Cm,n(G,Sg)] = max
G′

E[Cm,n(G′,Sg)].

If G is a Guesser strategy which, whenever possible, guesses a card type which is not in
the deck, then

E[Cm,n(G,Sg)] = min
G′
E[Cm,n(G′,Sg)].

This result is straightforward to prove by using Lemma 2.1 and induction on
∑
di, so

we omit its proof. With this lemma we can prove the bounds of Theorem 1.4 by analyzing
the performance of any specific Guesser strategy which is “reasonable”. In particular, we
define G+ to be some Guesser strategy which always guesses a card type which appears
with the highest multiplicity in the deck.

Let Ck denote the number of times Guesser correctly guesses a card type which had
multiplicity k in the deck. Note that this is a random variable which depends on the
choices of strategies G,S in the game, and also note that we always have Cm,n(G,S) =∑
Ck. Let tk be the smallest integer such that at the start of round tk, each card type

EJP 27 (2022), paper 42.
Page 9/15

https://www.imstat.org/ejp

https://doi.org/10.1214/22-EJP768
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Online card games

has fewer than k copies left in the deck. Define Vk,` to be the number of card types which
have at least ` copies left in the deck at the start of round tk. For example, Vk,` = 0 for
all k ≤ ` and Vk,` ≤ Vk′,` for all k ≤ k′. We also adopt the convention that Vm+1,m = n.

Lemma 3.2. If Guesser and Shuffler use the strategies G+,Sg in the Guesser-Shuffler
game with a deck which has n card types of multiplicity m, then

E[Cm] = log n+O(1),

and for k < m we have
E[Ck] ≤ log(E[Vk+1,k]) +O(1)

.

Note that Vk+1,k ≥ 1, so this logarithm is well defined.

Proof. We claim that for all k,

E[Ck|Vk+1,k = r] =

r∑
x=1

x−1.

Indeed, after the last card type of multiplicity k+ 1 is drawn, Guesser (using strategy G+)
will continue to guess the remaining r card types of multiplicity k until they are depleted.
Because Shuffler uses the greedy strategy, the probability that the first of these card
types drawn matches what Guesser guesses is exactly r−1, the probability the second
matches is (r − 1)−1 and so on; so the claim follows by linearity of expectation. Thus

E[Ck] =
∑
r≥1

Pr[Vk+1,k = r]·
r∑

x=1

x−1 =
∑
r≥1

Pr[Vk+1,k = r]·(log r+O(1)) = E[log Vk+1,k]+O(1).

The k = m case of the lemma follows because Vm+1,m = n deterministically, and the
k < m result follows from Jensen’s inequality since log is a convex function.

We next show the following.

Lemma 3.3. If Shuffler uses the greedy strategy Sg in the Guesser-Shuffler game with a
deck which has n card types of multiplicity m, then for all k < m we have

E[Vk+1,k] ≤ E[Vm,k] ∼ (log n)k

k!

Proof. The first inequality follows from Vk+1,k ≤ Vm,k since k + 1 ≤ m, so it suffices to
prove the asymptotic result. We do this by showing that Vm,k has the same distribution
as a random variable related to a variant of the coupon collector problem.

The variant goes as follows: every day a household with m brothers b1, . . . , bm receives
a coupon c. There are n different types of coupons, each appearing with probability 1/n.
If bm does not already own a copy of c, then he adds it to his collection. Otherwise he
gives it to his younger brother bm−1 who keeps c if he needs it, and otherwise he gives
it to bm−2 and so on. Observe that bm will always be the first to obtain every type of
coupon. Let Uk denote the number of coupons that bk is missing when bm completes
their collection.

We claim that Uk has the same distribution as Vm,k. Indeed, we can form a coupling
as follows. Let c1, c2, . . . be the sequence of coupons that appear, and let f(t) denote
the tth coupon that was used in one of the m collections (that is, this is the tth coupon
after we throw away any coupon which has already appeared more than m times). We
then define a deck of cards π by letting πt = cf(t) for all t. Because each coupon type is
equally likely to appear each day, it is not hard to show that π is distributed the same as
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if Shuffler made it using the greedy strategy Sg. Moreover, having bk missing r coupon
types when bm finishes their set is equivalent to π having r card types with multiplicity k
after the last card with multiplicity m is drawn in π, proving the claim.

It was proven by Foata, Han, and Lass [11, Equation (10.1)] that

E[Uk] ∼ (log n)k

k!

for any fixed k, proving the result. See also Adler, Oren and Ross [1] for a discussion of
this result in English. This completes the proof.

With this we can now prove our main result.

Proof of Theorem 1.4. By Theorem 1.3 and Lemma 3.1, we see that proving (1.1) is
equivalent to showing that

E[Cm,n(G+,Sg)] ∼ log n,

where G+ is the strategy of guessing a card type which has highest multiplicity in the
deck. This asymptotic result then follows by Lemmas 3.2 and 3.3 together with the trivial
bound Ck ≥ 0 for all k.

To prove (1.2), let G be any Guesser strategy which stops guessing card types that
are in the deck once a card type runs out in the deck. by Theorem 1.3 and Lemma 3.1, it
suffices to prove

E[Cm,n(G,Sg)] ∼ Γ

(
1 +

1

m

)
(m!)1/m · n−1/m.

Let π be the deck shuffled according to Sg, and let It be the indicator function which is 1
if G correctly guesses πt. Let T denote the largest index t such that {π1, . . . , πt−1} does
not contain a card type with multiplicity m. Then It = 0 if t > T , and more generally we
have

Pr[It = 1] = n−1 · Pr[T ≥ t],

as each card type is equally likely to appear in round t ≤ T . Because Cm,n(G,Sg) =
∑
It,

we see that
E[Cm,n(G,Sg)] = n−1

∑
Pr[T ≥ t] = n−1 · E[T ], (3.1)

so it suffices to compute this expectation.
We can interpret T in terms of a variant of the birthday problem. Namely, we can

consider the following experiment: sample people with replacement until we find m

people which all have the same birthday. If there are n possible birthdays and each
are equally likely, then the number of people we sample has the same distribution as T
(which can be proved using a coupling argument as in Lemma 3.3). The expected value
of this statistic for the birthday problem was computed by Klamkin and Newman [16,
Theorem 2], and their result implies

E[T ] = Γ

(
1 +

1

m

)
(m!)1/m · n1−1/m,

and plugging this into (3.1) gives the desired result.

4 Proof of Proposition 1.5

We formally define the Restricted Matching Pennies game as follows. We define
n-vectors and δi as in Section 2. We say that A is a strategy in this game if it is a function
which takes in two n-vectors a, b (in this order) and outputs a random variable A(a, b)

whose support lies in supp(a). We recursively define the score M(a, b,A,B) where a, b
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are n-vectors with
∑
ai =

∑
bi and A,B are strategies by being 0 if a = b = (0, . . . , 0),

and otherwise having

M(a, b,A,B) = 1A(a,b)=B(b,a) +M(a− δA(a,b), b− δB(b,a),A,B).

Our main goal for this section is to prove the following strengthening of Proposition 1.5
which works for decks with arbitrary multiplicities.

Proposition 4.1. Let U be the strategy with Pr[U(a, b) = i] = ai/
∑
aj for all n-vectors

a, b. Then for any strategies A,B and any two n-vectors a, b with
∑
ai =

∑
bi = N , we

have

E[M(a, b,A,U)] = E[M(a, b,U ,B)] =
∑
i∈[n]

aibi
N

.

Proof. For some slight ease of notation we define f(a, b,A) = E[M(a, b,A,U)]. We prove
by induction on N that for all n-vectors a, b with

∑
ai =

∑
bi = N , we have

f(a, b,A) =
∑
i∈[n]

aibi
N

for all strategies A, with the analogous result for B being proven in exactly the same
way.

The base case N = 0 is trivial. Assume we have proven the result up to some value N
and let a, b be n-vectors with

∑
ai =

∑
bi = N . Let

fi,j(a, b,A) = E[M(a, b,A,U)|A(a, b) = i, U(b, a) = j]

and define pi = Pr[A(a, b) = i]. Because U guesses j with probability bj/N , we see that

f(a, b,A) =
∑
i

pi
∑
j

bjN
−1 · fi,j(a, b,A). (4.1)

By our inductive hypothesis and the definition of M , we have

fi,i(a, b,A) = 1 +
(ai − 1)(bi − 1)

N − 1
+
∑
k 6=i

akbk
N − 1

= (N − 1)−1(N − bi − ai +
∑
k

akbk),

and for i 6= j we have

fi,j(a, b,A) =
(ai − 1)bi
N − 1

+
aj(bj − 1)

N − 1
+
∑
k 6=i,j

akbk
N − 1

= (N − 1)−1(−bi − aj +
∑
k

akbk).

Thus for any fixed i we have

∑
j

bj(N − 1) · fi,j(a, b,A) = Nbi +
∑
j

bj

(
−bi − aj +

∑
k

akbk

)
= Nbi −Nbi −

∑
j

ajbj +N
∑
k

akbk = (N − 1)
∑
j

ajbj ,

where the second equality used that
∑
bj = N in two places. Plugging this expression

into (4.1) and using
∑
i pi = 1 completes the inductive step in the proof of f(a, b,A) =∑

ajbj/N for all strategies A, proving the result.
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5 Concluding remarks

Strategies for Guesser. In Theorem 1.3, we showed that the greedy strategy is
optimal for Shuffler in the Guesser-Shuffler game. It is natural to ask what the optimal
strategies are for Guesser. Computations suggest that such strategies are complicated
to describe, even for n = 2 or m = 2. However, we do know some simple strategies for
Guesser which perform close to best possible. For example, in the introduction we noted
that the Guesser strategy G+ which chooses a card type with highest multiplicity each
round asymptotically gives log n correct guesses in expectation, which is best possible.

Similarly one can come up with a strategy G− which achieves at most Θm(n−1/m)

correct guesses in expectation. This strategy goes through several phases, starting
in Phase m. If the strategy is currently in Phase i with i > 0 and there are at least
n(i−1)/m card types in the deck with multiplicity smaller than i, then proceed to Phase
i− 1. Otherwise uniformly at random guess a card type which appears with multiplicity
i. When the game reaches Phase 0 there is some card type which is no longer in the
deck, and we guess this card type for the rest of the game. It is not difficult to show that
the expected score during each Phase is at most n−1/m, so for m fixed this gives about
n−1/m correct guesses.

Partial Feedback. The Guesser-Shuffler game is an adversarial version of the
complete feedback model, and there are natural adversarial versions of other variants of
this model. For example, in the partial feedback model, the Guesser is only told whether
their guess was correct or not each round (cf. this with the complete feedback model
where the card is always revealed to the Guesser each round). Motivated by this, we
define the online partial feedback game to be the two player game where each round
Shuffler chooses a card from the deck, Guesser guesses it, and then Guesser is told
whether their guess is correct or not. We similarly define the offline partial feedback
game where now Shuffler can freely shuffle the deck at the start of the game, but
afterwards can not change the order of the cards.

We note that in the Guesser-Shuffler game, the distinction between online and offline
games were effectively irrelevant. This is roughly because the state of the game (but
not the score) at any point in time depends only on Shuffler’s choices (i.e. the cards
which they discarded from the deck), so Guesser’s actions during the game should not
influence how Shuffler shuffles. However, under partial feedback, the state of the game
also depends on Guesser’s actions (i.e. this determines how much information Guesser
has at any point), and seemingly Shuffler should be able to utilize this information during
the game.

It was shown in [7] that for n significantly large in terms of m, Guesser can not get
more than m+O(m3/4 logm) points in expectation when the deck is shuffled uniformly
at random and the Guesser is given partial feedback. Thus in the adversarial models
one can not hope for Guesser to get asymptotically more than m correct guesses, which
they can always guarantee by guessing the same card type each round. When the deck
is shuffled uniformly at random, it is known [8] that Guesser can play so that they get
m + Ω(m1/2) correct guesses when n is sufficiently large, but we do not know of any
such strategy that works in the adversarial setting.

Question 5.1. Is there a strategy for Guesser in either the online or offline partial
feedback game which uses a deck with m copies of n different card types such that their
expected score is “significantly” larger than m?

The best strategy we are aware of in the offline version is for Guesser to uniformly at
random choose some i1 ∈ [n], then guess i1 each round until they get m correct guesses,
then to uniformly at random choose some i2 ∈ [n] \ {i1} and guess i2 until m correct
guesses are made, and so on. It is not difficult to see that Shuffler can arrange the
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deck ahead of time so that Guesser gets m+ 1/2 correct guesses in expectation under
this strategy when m > 1 (namely by shuffling the deck so that the last n cards are
all distinct). However, in the online version of this game, Shuffler can guarantee that
Guesser gets exactly m correct guesses using this strategy when m > 1.

The best strategy we are aware of in the online setting is for Guesser to uniformly
at random guess either 1 or 2 each round until they correctly guess either m 1’s or m
2’s, at which point they only guess the other card type for the rest of the game. Note
that if Guesser simply uniformly guessed either 1 or 2 each round, then it is easy to
show that they get m points in expectation. By additionally ignoring cards that Guesser
knows are not in the deck, one can show that they improve their score by roughly 2−m

in expectation.
Other Games. One can form a common generalization of the Guesser-Shuffler and

Restricted Matching Pennies games as follows. For any integer k, define the k-Guesser-
Shuffler game to be the same as the Guesser-Shuffler game with the restriction that
Guesser can guess each card type at most k times throughout the game. For example,
if each of the n card types appears m times, then the mn-Guesser-Shuffler game is
equivalent to the Guesser-Shuffler game (since no restriction is placed on Guesser), and
the m-Guesser-Shuffler game is equivalent to the Restricted Matching Pennies game.

Question 5.2. What are the optimal strategies in the k-Guesser-Shuffler game when
one player wishes to maximize and the other wishes to minimize the number of correct
guesses made during this game? How many correct guesses are made in expectation
under these strategies?

Our results in Theorems 1.3, 1.4, and Proposition 1.5 shows that the answers to this
question vary significantly between k = mn and k = m, and it would be interesting to
know if there is some sort of interpolation between these results as k varies.

The k-Guesser-Shuffler game can be viewed as playing multiple rounds of the classical
Matching Pennies game where restrictions are placed on how many times each player
may use each move. It is natural to consider what happens for other games. For example,
the game Rock, Paper, Scissors has two players selecting one of Rock, Paper, or Scissors
each round with Rock beating Scissors, Scissors beating Paper, and Paper beating Rock.
If a player Alice picks a move that beats the move of Bob, then Alice is given a point and
Bob loses a point, and if they pick the same move both players are given 0 points.

Question 5.3. Define the game Semi-Restricted Rock, Paper, Scissors by playing 3m

rounds of Rock, Paper, Scissors where one player must use each move exactly m times
(with no restrictions placed on the other player). What are the optimal strategies in this
game and what is the expected score under these strategies?

We note that similar games have appeared in the manga Tobaku Mokushiroku
Kaiji [12], namely the games “Restricted Rock, Paper, Scissors” and “E-Card.”
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