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Regularized Zero-Variance Control Variates∗

L. F. South†,‡, C. J. Oates§, A. Mira¶, and C. Drovandi‖

Abstract. Zero-variance control variates (ZV-CV) are a post-processing method
to reduce the variance of Monte Carlo estimators of expectations using the deriva-
tives of the log target. Once the derivatives are available, the only additional com-
putational effort lies in solving a linear regression problem. Significant variance
reductions have been achieved with this method in low dimensional examples, but
the number of covariates in the regression rapidly increases with the dimension of
the target. In this paper, we present compelling empirical evidence that the use of
penalized regression techniques in the selection of high-dimensional control vari-
ates provides performance gains over the classical least squares method. Another
type of regularization based on using subsets of derivatives, or a priori regular-
ization as we refer to it in this paper, is also proposed to reduce computational
and storage requirements. Several examples showing the utility and limitations
of regularized ZV-CV for Bayesian inference are given. The methods proposed in
this paper are accessible through the R package ZVCV.
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1 Introduction

Our focus in this paper is on calculating the expectation of a square integrable function
ϕ(θ) with respect to a distribution with (Lebesgue) density p(θ), θ ∈ Θ ⊆ Rd. Given

independent and identically distributed (iid) samples {θi}Ni=1
iid∼ p(θ), the standard
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Monte Carlo estimator,

̂Ep[ϕ(θ)] =
1

N

N∑
i=1

ϕ(θi), (1.1)

is an unbiased estimator of Ep[ϕ(θ)] =
∫
Θ
ϕ(θ)p(θ)dθ and its variance is O(1/N).

Reducing the variance of this estimator by increasing N is often infeasible due to the
cost of sampling from p(θ) and potentially the cost of evaluating ϕ(θ). If the samples are
not iid then the functional form of the estimator is the same and the methods described
in this work still apply.

Recent control variate methods have focused on reducing the variance of (1.1) using
the derivatives of the log target,∇θ log p(θ), or some unbiased estimator of this quantity.
Zero-variance control variates (ZV-CV) (Assaraf and Caffarel, 1999; Mira et al., 2013)
and control functionals (CF) (Oates et al., 2017) are two such methods. ZV-CV amounts
to solving a linear regression problem and CF is a non-parametric alternative. These
methods can be used as post-processing procedures after N samples, not necessarily
iid, from p have been produced along with evaluations of ∇θ log p(θ) and ϕ(θ) for each
of the samples. Often ∇θ log p(θ) is already available because derivative-based methods
like Metropolis adjusted Langevin algorithm (MALA) (Roberts and Stramer, 2002;
Girolami and Calderhead, 2011) or Hamiltonian Monte Carlo (HMC) (Duane et al.,
1987; Girolami and Calderhead, 2011) have been used in the sampling algorithm.

The parametric approximation in ZV-CV is based on a polynomial in θ, so the
number of coefficients to estimate rapidly increases both with the polynomial order and
with d. As a result of restricting to a low polynomial order, ZV-CV tends to offer less
substantial improvements than CF for challenging low-dimensional applications. This is
not surprising given the good statistical properties of CF which have been described in
Oates et al. (2019); Barp et al. (2022). However, CF has an O(N3) computational cost,
compared to ZV-CV with has computational cost of O(N), and it also suffers from the
curse of dimensionality with respect to d due to the use of non-parametric methods.
Some results in Oates et al. (2017), shown mainly in the appendices, suggest that the
performance of CF compared to ZV-CV may deteriorate in higher dimensions.

One aim of this work is to develop derivative-based control variate methods which
are inexpensive, effective and capable of handling higher dimensions than existing
derivative-based methods. The novel methods that we introduce are referred to as regu-
larized ZV-CV and they are based on two types of regularization: penalization methods
for linear regression and what we refer to as a priori regularization. Penalized ZV-CV
allows higher order polynomials to be used than could be considered with ordinary least
squares. This method is motivated by showing that L2 penalized ZV-CV is equivalent
to CF with a second-order differential operator and finite-dimensional polynomial ker-
nel. A priori ZV-CV is most beneficial when N < d. Empirical results in Section 4
suggest that significant variance reductions can be achieved with a priori ZV-CV when
N < d or with penalized ZV-CV when the polynomial order is pushed beyond the
limits of what standard ZV-CV can handle. We have developed an R package, ZVCV
(South, 2018), which implements several derivative-based variance reduction techniques
including standard ZV-CV, CF and regularized ZV-CV.
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An important application area for ZV-CV and regularized ZV-CV is Bayesian in-
ference, where Monte Carlo integration is commonly used. The use of ZV-CV and CF
to improve posterior expectations based on samples from Markov chain Monte Carlo
(MCMC) (Metropolis et al., 1953) is well established (see e.g. Mira et al. (2013); Papa-
markou et al. (2014); Oates et al. (2017)). ZV-CV and CF have also been applied to the
power posterior (Friel and Pettitt, 2008) estimator of the normalizing constant in an
MCMC setting by Oates et al. (2016) and Oates et al. (2017), where they refer to this
method as controlled thermodynamic integration (CTI). In this paper we go beyond
existing literature and describe how regularized ZV-CV fits naturally into the context
of sequential Monte Carlo (SMC) samplers (Del Moral et al., 2006; Chopin, 2002). In
doing so, we provide a setting where adaptive methods can easily be applied to the CTI
estimator. A novel reduced-variance normalizing constant estimator using the standard
SMC identity is also proposed.

An introduction to derivative-based Monte Carlo variance reduction methods is pro-
vided in Section 2. The main methodological contributions in terms of developing regu-
larized ZV-CV methods can be found in Section 3. Section 4 contains a simulation study
comparing methods and estimators on the novel application to SMC. A final discussion
of limitations and possible future work is given in Section 5.

2 Control Variates Based on Stein Operators

In this section, we recall previous work on control variate methods. The classical frame-
work for control variates (Ripley, 1987; Hammersley and Handscomb, 1964) is to de-
termine an auxiliary function ϕ̃(θ) = ϕ(θ) + h(θ) such that Ep[ϕ̃(θ)] = Ep[ϕ(θ)] and
Vp[ϕ̃(θ)] < Vp[ϕ(θ)], where Vp denotes the variance with respect to p(θ). Estima-
tor (1.1) can then be replaced with the unbiased, reduced variance estimator,

̂Ep[ϕ(θ)] =
1

N

N∑
i=1

[ϕ(θi) + h(θi)] . (2.1)

A control variate which has been considered in (Assaraf and Caffarel, 1999; Mira
et al., 2013; Barp et al., 2022) is

hg(θ) = Lg(θ) = ∇θ · (p(θ)∇θg(θ))

p(θ)

= Δθg(θ) +∇θg(θ) · ∇θ log p(θ),

(2.2)

where L is a second-order Langevin Stein operator (Stein, 1972; Gorham and Mackey,
2015) depending on p, Δθ is the Laplacian operator represented in coordinates as∑d

j=1 ∇2
θ[j] on Rd, · is the dot product operator such that a · b = a�b and g : Θ → R

is a twice continuously differentiable function to be specified.

Langevin Stein operators are helpful in generating control variates for two reasons.
Firstly, they can be applied in Bayesian inference because they do not require the
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normalizing constant of p. Furthermore, by definition a Stein operator L depending on
p(θ) satisfies Ep[Lg(θ)] = 0 for all functions g(θ) in a set called a Stein function class
(see Section 2.2) and therefore Ep[ϕ̃(θ)] = Ep[ϕ(θ)] under mild conditions. Typically it
is also a requirement that Stein operators L fully characterize p but this is not necessary
for Stein-based control variates.

What remains is to choose g. The function g for which ϕ̃(θ) is constant, and thus
zero variance is achieved, is generally intractable. In practice, g is restricted to some
function class G and is estimated based on samples targeting p.

2.1 Choice of Function g

Variance reduction is effected through judicious choice of g. Once a function class G
has been selected, the function g ∈ G is estimated by performing a regression task. As
described in Barp et al. (2022), a generalization of several existing regression methods
for this problem is

(ĉ, ĝ) ∈ argmin
c∈R

g∈G

1

N

N∑
i=1

[ϕ(θi)− c+ Lg(θi)]2 + λPEN(g), (2.3)

where PEN(g) is a penalty function to be specified and λ ≥ 0. This amounts to a pe-
nalized least squares approach to estimating ϕ(θ) using the functional form c−Lg(θ).
This perspective on the optimization problem encompases ZV-CV, CF and neural con-
trol variates (Zhu et al., 2019) as special cases. Further details on how ZV-CV and CF
fit into this framework are given below. The main developments in this paper are based
on considering alternative penalty functions.

Two recent contributions in control variates have optimization functions which do
not fit into this framework, though the developments in penalty functions that are pro-
posed in this paper could still be considered in these alternative frameworks. Belomestny
et al. (2017) consider empirical variance minimization since minimizing a square error
objective function may not be optimal. Brosse et al. (2019) consider an alternative
optimization problem which is motivated by minimizing the asymptotic variance of a
Langevin diffusion, which may be more suitable when samples have been obtained using
MCMC with multivariate normal random walk or MALA proposals.

Control Functionals

CF (Oates et al., 2017; Barp et al., 2022) is based on choosing G ≡ H where H is a
user-specified Hilbert space of twice differentiable functionals on Θ. The penalty term
PEN(g) considered in CF is PEN(g) = ‖g‖2H, where ‖ · ‖H is the norm associated with
the Hilbert space H. The existence of a solution pair (ĉ, ĝ) ∈ R ×H, together with an
explicit algorithm for its computation, was obtained in that work under the assumption
that the Hilbert space H admits a reproducing kernel (see Berlinet and Thomas-Agnan
(2011) for background). This method leads to estimators with super-root-N convergence
under conditions described in Oates et al. (2019) and Barp et al. (2022). However, the
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cost associated with computation of ĝ is O(N3), due to the need to invert a dense kernel
matrix, and moreover this matrix is typically not well-conditioned. For applications that
involve MCMC and SMC, typically N will be at least 103 and thus (in the absence of
further approximations) the algorithm of Oates et al. (2017); Barp et al. (2022) can
become impractical.

Zero-Variance Control Variates

ZV-CV (Assaraf and Caffarel, 1999; Mira et al., 2013) amounts to using G as the class
of Qth order polynomial functions in θ, and λ = 0. The polynomials P (θ) that we
consider have total degree Q ∈ Z≥0, meaning that the maximum sum of exponents

is Q and the monomial basis is θ[1]α1 · · · θ[d]αd where
∑d

j=1 αj ≤ Q and α ∈ Zd
≥0.

Substituting g(θ) = P (θ) =
∑J

j=1 βjPj(θ) into (2.2), where Pj(θ) is the jth monomial

in the polynomial and β ∈ RJ is the vector of polynomial coefficients, gives

hP (θ) = LP (θ)

=

J∑
j=1

βjLPj(θ)

= β�x(θ).

The jth zerovariate (covariate in the regression), xj(θ) = LPj(θ), is a term containing
θ and ∇θ log p(θ). Its exact form is given in Appendix A of the Online Resources (South
et al., 2022). For a Qth order polynomial when the dimension of θ is d, the constant
J =

(
d+Q
d

)
− 1 is the number of regression parameters, excluding the intercept which is

in the null space of the Stein operator.

The standard approach in the literature for choosing β is to perform ordinary least
squares (OLS) (Glasserman, 2003). This is equivalent to choosing λ = 0 in (2.3). The
computational cost of ZV-CV is O(J3 + NJ2), which scales better with N than CF
which has computational cost O(N3), where often J � N . Unlike in CF, regularization
methods have not previously been used in connection with ZV-CV.

Common practice is to default to Q = 2 in ZV-CV. Mira et al. (2013) consider
Q = 1 to at most Q = 3 and find that Q = 2 is sufficient to achieve orders of magnitude
variance reduction in most of their examples. Papamarkou et al. (2014) consider Q ≤ 2,
pointing out that “first and second degree polynomials suffice to attain considerable
variance reduction.” Low polynomial orders are also typically used in applications, for
example Baker et al. (2019) use Q = 1 and Oates et al. (2016) use Q ≤ 2. Oates et al.
(2017) compare CF with ZV-CV using Q = 2 in most examples.

It has previously been proposed to increase the number of control variates as the
sample size increases (see e.g. Portier and Segers (2019) and the appendices of Oates
et al. (2017)). This approach can be motivated by the Stone-Weierstrass theorem (Stone,
1948), which states that polynomial functions can be used to uniformly approximate,
to an arbitrary level of precision, continuous functions on closed intervals. However,
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the increased number of coefficients in higher order polynomials may not be feasible or
efficient to estimate with OLS.

We demonstrate in Section 4 that the common practice of defaulting to Q = 2 with
OLS is often sub-optimal. Regularization approaches are proposed in Section 3 to enable
higher degree polynomials to be employed whilst avoiding over-fitting of the regression
model used to estimate the optimal coefficients of the polynomials.

2.2 Unbiasedness

Suppose that g(θ) and p(θ) are sufficiently regular so that log p(θ) has continuous
first order derivatives and g(θ) has continuous first and second order derivatives. Also
suppose that, if g is to be estimated, then the samples used in estimating g(θ) are inde-
pendent of those used in evaluating (2.1). If Θ 
= Rd, then we require that Θ is compact
and has piecewise smooth boundary ∂Θ. Under these conditions, estimator (2.1) with

samples {θi}Ni=1
iid∼ p(θ) is unbiased if∮

∂Θ

p(θ)∇θg(θ) · n(θ)S(dθ) = 0, (2.4)

where
∮
∂Θ

is a surface integral over ∂Θ, n(θ) is the unit vector orthogonal to θ at

the boundary ∂Θ and S(dθ) is the surface element at θ ∈ ∂Θ. When Θ = Rd is
unbounded, condition (2.4) becomes a tail condition which is satisfied if

∫
Γr

p(θ)∇θg(θ)·
n(θ)S(dθ) → 0 as r → ∞ where Γr ∈ Rd is a sphere centred at the origin with radius r
and n is the unit vector orthogonal to θ at Γr. This requirement is given in Equation 9
of Mira et al. (2013) and Assumption 2 of Oates et al. (2017) and it is a direct result of
applying the divergence theorem to Ep[Lg(θ)] = 0. In the ZV-CV context for Θ = Rd,
a sufficient condition for (2.4) is that the tails of p decay faster than polynomially
(Appendix B of Oates et al., 2016).

The unbiased estimator which uses independent samples for estimation of g(θ) and
evaluation of (2.1) is referred to as the “split” estimator. In practice, the so-called
“combined” estimator which uses the full set of N samples for both estimation of g(θ)
and evaluation of (2.1) can have lower mean square error than the split estimator but
is no longer unbiased. If MCMC methods are employed then bias is unavoidable and
the combined estimator is likely to be preferred.

2.3 Parameterization

An additional consideration when performing either ZV-CV or CF is the adopted pa-
rameterization. Any deterministic, invertible transformation of the random variables
ψ = f(θ) can be used so one can estimate

̂Epθ
[ϕ(θ)] =

1

N

N∑
i=1

(
ϕ(f−1(ψi)) + Δψg(ψi) +∇ψg(ψi) · ∇ψ log pψ(ψi)

)
, (2.5)
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instead of (2.1), where pθ ≡ p is the probability density function for θ, pψ is the
probability density function for ψ obtained through a change of measure and {ψi}Ni=1 ∼
pψ. For simplicity, the θ parameterization is used in notation throughout the paper.
The best parametrization to adopt for any given application is an open problem. If the
original parameterization does not satisfy boundary condition (2.4), one could consider
a reparameterization such that the boundary condition is satisfied.

3 Regularized Zero-Variance Control Variates

The aim of this section is to develop methods which are computationally less demanding
than CF and offer improved statistical efficiency over standard ZV-CV. We describe
two types of regularization: regularization through penalized regression and a priori
regularization. The latter is primarily for cases where not all derivatives of the log
target are available or when N � d. Combinations of the two regularization ideas are
also possible. Methods to choose between control variates are described in Section 3.3.

3.1 Regularization Through Penalized Regression

As mentioned earlier, the number of regression parameters in ZV-CV grows rapidly with
the order Q of the polynomial and with the dimension d of θ. Therefore, the polynomial
order that could be considered is limited by the number of samples required to ensure
existence of a unique solution to the OLS problem, eliminating the potential reduction
that could be achieved using higher order polynomials. In this section, we propose to
use penalized regression techniques to help overcome this problem.

In most contexts, using penalized regression reduces variance at the cost of intro-
ducing bias. Recall that the conditions for unbiasedness in Section 2.2 do not depend
on the mechanism for estimating β, as long as the samples used in estimating β are
independent of those used in evaluating (2.1). Thus, the use of penalized regression
methods does not introduce bias into ZV-CV.

The regularization methods introduced in Sections 3.1 and 3.1 involve a penalty
function on β so we use standardization for stability and to be able to employ a single
λ. The regression problem becomes:

(ĉ, β̂s) ∈ argmin
c∈R

βs∈R
J

1

N

N∑
i=1

[
ϕs(θi)− c+ β�

s xs(θi)
]2

+ λPEN(βs), (3.1)

where the subscript s is in reference to the response and predictors being standardized
by their sample mean and standard deviation. Specifically, using the notation ā =
1
N

∑N
i=1 ai and σa =

√∑N
i=1(ai − ā)2/(N − 1), we have that ϕs(θi) = (ϕ(θi)− ϕ)/σϕ,

xs[j](θi) = (x[j](θi) − x[j])/σxj for j = 1, . . . , J and βs represents the coefficients

on this standardized scale. The estimated coefficients on the original scale are β̂[j] =

β̂s[j]
σϕ

σx[j]
.

The parameter λ is chosen to minimize the k-fold cross-validation mean square error.
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L2 Penalization: PEN(g) = ‖βs‖2
2

The first type of penalization that we consider is Tikhonov regularization (Tikhonov
et al., 2013), or ridge regression as it is known when applied in regression (Hoerl and
Kennard, 1970). This involves using a squared L2 penalty, PEN(g) = ‖βs‖22. Ridge
regression mitigates overfitting and allows for estimation when the regression problem
is ill-posed due to a small number of observations. Closed form solutions for ĉ and β̂ are
available, leading to the same computational cost as OLS of O(J3 +NJ2). The use of
L2 penalized ZV-CV can also be motivated using the results of Belkin et al. (2019), who
argued that using J ≥ N with an interpolation-based approach (i.e. CF or regularized
ZV-CV) can lead to better mean square loss compared to restricting to J ≤ N (i.e.
standard ZV-CV) in situations where there is no reason to pre-suppose the first J basis
functions are also the most useful. The latter condition may be satisfied when ϕ is too
complex to be well-approximated using control variates based on low order polynomials.

To motivate this particular form of penalization, we now consider interpreting this
method as a computationally efficient variant of CF. To facilitate a comparison with
the approach of Barp et al. (2022), we consider a particular instance of CF with a
reproducing kernel Hilbert space H that is carefully selected to lead to an algorithm
with lower computational cost. Namely, we select a polynomial kernel

k(θ,θ′) =
J∑

j=1

Pj(θ)Pj(θ
′),

where Pj(θ) denotes the jth of all J monomial terms in θ up to order Q. For such a
kernel, a well-defined Hilbert space H = span{Pj}j=1,...,J is reproduced and we have an
explicit expression for the Hilbert norm

∥∥∥∥∥∥
J∑

j=1

βjPj

∥∥∥∥∥∥
H

=

⎛
⎝ J∑

j=1

β2
j

⎞
⎠

1/2

,

which reveals the method of Barp et al. (2022) as an L2-penalized regression method.
As such, the optimization problem in ZV-CV with PEN(g) = ‖βs‖22 is equivalent to the
optimization problem in CF (without the standardization of the response and predic-
tors) and it can be solved as a least-squares problem with complexity O(J3 + NJ2).
The first main contribution of our work is to propose a more practical alternative to the
method of Barp et al. (2022), which we recall has O(N3) computational cost, by using
such a finite-dimensional polynomial kernel. Our results in this direction are empirical
(only) and we explore the properties of this method for various values of Q in Section 4.

Tikhonov regularization has been applied implicitly in the context of CF but, to the
best of our knowledge, this is the first time that general penalized regression methods
have been proposed in the context of ZV-CV. Results in Section 4 demonstrate that the
new estimators can offer substantial variance reduction in practice when the number of
samples is small relative to the number of coefficients being estimated.
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L1-Penalization: PEN(g) = ‖βs‖1

The principal aim in the design of a control variate h is to accurately predict the
value that the function ϕ takes at an input θ∗ not included in the training dataset
{(θi, ϕ(θi))}Ni=1. It is well-understood that L1-regularization can outperform L2-regula-
rization in the predictive context when the function ϕ can be well-approximated by
a relatively sparse linear combination of predictors. In our case, the unstandardized
predictors are the functions in the set {1}∪{LPj}j=1,...,J . Given that low-order polyno-
mial approximation can often work well for integrands ϕ of interest, it seems plausible
that L1-regularization could offer an improvement over the L2-regularization used in
Oates et al. (2017); Barp et al. (2022). Investigating this question is the second main
contribution of our work.

In the context of ZV-CV, L1-penalization can be interpreted as using the least ab-
solute shrinkage and selection operator (LASSO, Tibshirani (1996)). LASSO introduces
an L1 penalty PEN(g) = ‖βs‖1 where ||βs||1 =

∑
j |βs[j]|. The effect of the penalty is

that some coefficients are estimated to be exactly zero.

3.2 A priori Regularization

As an alternative to penalized regression methods, in this section we consider restricting
the function g to vary only in a lower-dimensional subspace of the domain Θ ⊆ Rd. More
specifically, a subset of parameters S ⊆ {1, . . . , d} is selected prior to estimation and
the function g is defined, in a slight abuse of notation, as g(θ) = P (θ[S]). The log
target derivatives, ∇θ log p(θ), only appear in the control variates (2.2) through the dot
product ∇θg(θ) ·∇θ log p(θ). Therefore if j /∈ S then the derivative ∇θ[j] log p(θ) is not
required. We refer to this approach as a priori regularization.

A priori regularization makes ZV-CV feasible when some derivatives cannot be
used, for example due to intractability, numerical instability, computational expense or
storage constraints. An example of where some derivatives may be difficult to obtain
is in Bayesian inference for ordinary differential equation (ODE) models. Evaluating
∇θ log p(θ) requires the sensitivities of the ODE to be computed, which involves aug-
menting the system of ODEs with additional equations. If some additional equations
render the system stiff, then more costly implicit numerical solvers need to be used and
in such cases it would be useful to avoid including sensitivities corresponding to the
difficult elements of θ. It may also be infeasible to use the O(d) storage required to
run standard ZV-CV. Storing a subset of the parameters and derivatives for use in a
priori regularization may, however, be achievable. Another benefit of a priori ZV-CV is
that it reduces the number of coefficients to estimate, making estimation feasible when
N � d. Zhuo et al. (2018) consider similar ideas to a priori ZV-CV in the context of
Stein variational gradient descent, where they use the conditional independence in p(θ)
for probabilistic graphical models to separate high dimensional inference problems into
a series of lower dimensional problems.

The downside of using a priori ZV-CV is that the potential for variance reduction
is reduced, except for under both conditions (a) θ[S] is independent of θ[S̄] according
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to p(θ), where S̄ = {1, . . . , d} \ S, and (b) ϕ(θ) = ϕ(θ[S]). Outside of this situation,
restricting the polynomial to g(θ) = P (θ[S]) will give varying levels of performance
depending on the subset that is selected. Intuitively, one may wish to choose the subset of
variables so that θ[S] and/or∇θ[S] log p(θ) have high correlations with ϕ(θ). In practice,
this is easiest to do when there is a priori knowledge and therefore not all derivatives
need to be calculated and stored. Given (b), it is suspected that this method will be
more useful for individual parameter expectations than for expectations of functions of
multiple parameters.

Estimators using this approach are unbiased under the same conditions as ZV-CV
and penalized ZV-CV. This method is also applicable to CF, though nonlinear approx-
imation may be more difficult in this non-parametric setting.

3.3 Automatic Selection of Control Variates

The performance of regularized ZV-CV depends upon the polynomial order, the pe-
nalization type and on S. We demonstrate in Section 4 that the common practice of
defaulting to Q = 2 with OLS is often sub-optimal and also that the optimal control
variate depends on a variety of factors including N and p(θ). It has previously been
proposed to increase the number of control variates as the sample size increases (see
e.g. Portier and Segers (2019) and the appendices of Oates et al. (2017)). However, in
these existing works the mechanism whereby the complexity of the control variate was
increased was not data-dependent.

To choose between control variates in this work, we use 2-fold cross-validation so
that our selection is data-dependent. For each combination of penalization type and S,
we start with polynomial order Q = 1 and we continue to increase the polynomial order
until the average cross-validation error is larger for Q+1 than for Q. The combination of
regularization method and polynomial order which gives the minimum cross-validation
error is selected and we perform estimation using that method on the full set of samples.
The cross-validation error that we use here is the sums of square residuals in the hold-out
set, averaged across the two folds.

4 Empirical Assessment

In this section, we perform comparisons of regularized ZV-CV to ZV-CV and CF on
Bayesian inference examples. In Bayesian statistics, the posterior distribution of the
parameters θ of a statistical model given observed data y is

p(θ|y) = 	(y|θ)p0(θ)
Z

,

where the function 	(y|θ) is the likelihood function, p0(θ) encorporates prior infor-
mation and Z is a normalizing constant. Interest is in estimating posterior expec-
tations

∫
Θ
ϕ(θ)p(θ|y)dθ and the normalizing constant or so-called “evidence” Z =∫

Θ
	(y|θ)p0(θ)dθ for Bayesian model choice. Posterior expectations and Z are typi-

cally analytically intractable and challenging to estimate due to the potentially high
dimensional integration required.
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ZV-CV and CF have both been applied in the context of estimating posterior expec-
tations, for example by Mira et al. (2013); Papamarkou et al. (2014); Friel et al. (2016);
Oates et al. (2017); Baker et al. (2019). Oates et al. (2016) and Oates et al. (2017) have
also applied ZV-CV and CF, respectively, to a thermodynamic integration (Gelman and
Meng, 1998; Ogata, 1989; Friel and Pettitt, 2008) estimator for the evidence, calling the
resulting method controlled thermodynamic integration (CTI). The thermodynamic in-
tegration estimator gives the log evidence as the sum of multiple expectations with
respect to pt where pt = 	(y|θ)tp0(θ)/Zt and t is referred to as the inverse tempera-
ture. Oates et al. (2017) use population Monte Carlo (Jasra et al., 2007) to obtain the
samples from pt for t = 0, . . . , T and they consider specifically tj = (j/T )5. A total
of 2(T + 1) expectations are involved, with ZV-CV applied to the estimator for each
expectation.

We propose to use sequential Monte Carlo (SMC, Del Moral et al. (2006)) with the
tuning method of Salomone et al. (2018) for sampling, rather than the standard choices
of MCMC or population MCMC. The benefit of this approach is that the samples are
roughly independent which can be preferable over the high autocorrelation that can be
seen in MCMC samples. The standard SMC evidence estimator is the product of T
expectations, so we consider improving this estimator using ZV-CV and CF. Further
details about implementation in SMC and the advantages of this approach are given
in Appendix B of the Online Resources. From the perspective of comparing variance
reduction methods, the application of ZV-CV to posterior expectations and to multiple
evidence estimators means that ZV-CV can be compared on a variety of functions ϕ(θ)
and distributions p(θ).

We perform an empirical comparison of the following methods using examples of
varying complexity:

• vanilla: Monte Carlo integration without control variates.

• ZVQ: ZV-CV with OLS and order Q polynomial.

• l-ZVQ: ZV-CV with LASSO and order Q polynomial.

• r-ZVQ: ZV-CV with ridge regression and order Q polynomial.

• subk-: This prefix indicates a priori ZV-CV with a subset of size k. Applications
are limited to d > 1 dimensions. We only apply subk- ideas to posterior expecta-
tions since ϕ(θ) is a function of a single parameter and a potentially reasonable
subset may be known a priori.

• crossval: Control variate selection using 2-fold cross-validation. This method
chooses between ZVQ, l-ZVQ, r-ZVQ and subk- where applicable.

• CF: Control functionals with a second-order Stein operator, a Gaussian kernel
k(θ,θ′) = exp(−‖θ − θ′‖22/σ2) and selection of σ2 using 5-fold cross-validation
with the generous 15-value grid 10κ where κi = −3 + 0.5i for i = 0, . . . , 14.

Methods written with the prefix subk- or the name l-ZVQ, r-ZVQ or crossval are novel
for all Q and k. The main purposes of these comparisons are to investigate the perfor-
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mance of higher order polynomials, the utility of penalized regression and the ability
to achieve variance reduction using a subset of derivatives. The purpose of the compar-
isons to CF is not necessarily to outperform CF, as CF can be infeasible to apply in
its basic form for large N , but to benchmark the performance of these novel methods
against CF. A variety of sample sizes, integrands ϕ(θ) and target distributions p are
used for fair comparisons. We focus on sample sizes that are typical of SMC, ranging
from N = 10 to N = 10,000 but we note that larger sample sizes can be accommo-
dated by the regularized ZV-CV methods which have a computational complexity of
O(N).

Estimators are compared on the basis of mean square error (MSE), where the gold
standard of estimation is carefully chosen for each example. The main quantity of in-

terest reported in this section is ̂MSEp[vanilla]/M̂SEp[·], the MSE of the vanilla Monte
Carlo estimator estimated from 100 independent SMC runs divided by the estimated
MSE for the method in question. This quantity is referred to as statistical efficiency
and it is reported for each fixed N . Values above one are preferred.

Control variate methods are most valuable when the sampling algorithm is expensive,
for example due to the cost of evaluating the likelihood, or when evaluation of the
function ϕ(θ) is costly. The overall efficiency, as measured by

̂MSEp[vanilla]× ̂time[vanilla]

M̂SEp[·]× t̂ime[·]
,

is also considered for these examples. Here t̂ime[·] is the average time across the 100
runs to compute the estimator in question, including the time spent running the SMC
sampler. We note that the run time is subject to the efficiency of the code and here
(penalized) ZV-CV is based on the R package glmnet (Friedman et al., 2010), cross-
validated ZV-CV is written as a loop in R and CF is implemented in C++. Nevertheless,
our proposed methods offer improved overall efficiency in several of the applications
considered. The computational benefits of our approach will improve with increasing
model complexity in terms of likelihood calculations, since the overhead associated with
penalized regression will become relatively negligible.

Two examples are described in detail in this section. Appendices E, F and G also
include results for a 61-dimensional logistic regression example, a one-dimensional ODE
example which motivates higher order polynomials and a challenging nine-dimensional
ODE model, respectively.

In terms of bias, boundary condition (2.4) is satisfied using the specified parame-
terizations for all examples considered in this paper. This can be verified through the
sufficient condition that the tails of p decay faster than polynomially and Θ = Rd (Ap-
pendix B of Oates et al. (2016)). However, the estimators are generically biased due
to the use of SMC, as they would be with MCMC. All results are based on combined
estimators as opposed to split estimators, so all pairs {θi, ϕ(θi)}Ni=1 are used to build ϕ̃
and also to estimate Ep[ϕ̃(θ)].
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4.1 Recapture Example

This 11-dimensional example demonstrates that reduced variance estimators can be
obtained with the use of higher order polynomials and regularization.

Marzolin (1988) collected data on the capture and recapture of the bird species
Cinclus cinclus over six years. Like Brooks et al. (2000), Nott et al. (2018) and South
et al. (2019b), we use a Bayesian approach to estimate the parameters of a Cormack-
Jolly-Seber model (Lebreton et al., 1992) for the capture and recapture of this species.
The parameters of the Cormack-Jolly-Seber model used here are the probability of
survival from year i to i + 1, φi, and the probability of being captured in year k, pk,
where i = 1, . . . , 6 and k = 2, . . . , 7. Denote the number of birds released in year i as
Di and the number of animals caught in year k out of the number released in year i
as yik. It is simple to show that the number released in year i that are never caught is
di = Di −

∑7
k=i+1 yik and the probability of a bird being released in year i and never

being caught is χi = 1−
∑7

k=i+1 φipk
∏k−1

m=i+1 φm(1− pm). The likelihood is given by

	(y|θ) ∝
6∏

i=1

χdi

i

7∏
k=i+1

[
φipk

k−1∏
m=i+1

φm(1− pm)

]yik

,

where θ = (φ1, . . . , φ5, p2, . . . , p6, φ6p7). Following South et al. (2019b), the parameters
φ6 and p7 are multiplied together due to a parameter identifiability issue.

The prior is θ[j] ∼ U(0, 1) for j = 1, . . . , 11. To satisfy the boundary condition (2.4)
and to improve the efficiency of MCMC proposals, all parameters are transformed to the
real line using ψ[j] = log(θ[j]/(1− θ[j])) so the prior density for ψ[j] is exp(ψ[j])/(1+
exp(ψ[j]))2, for j = 1, . . . , 11.

The gold standard of evidence estimation for this example is the mean evidence
estimate for l-ZV1 at N = 5000. The posterior expectation gold standard is the average
posterior mean for ZV4 at N = 5000.

Posterior Expectations

The average statistical efficiency and overall efficiency across parameters is shown in
Figure 1, excluding a priori regularization results for simplicity. Higher order polyno-
mials become more efficient as N increases and the use of penalized regression means
that higher order polynomials can be considered for smaller N . LASSO regression is
preferable over ridge regression for this example.

Using a priori ZV-CV with S = j, where j is the index of the current parameter
of interest, sub1-ZV1 is on average roughly 10 times more efficient than vanilla Monte
Carlo integration.

Cross-validation generally gives similar results to CF and to the best performing fixed
method. More details about the selected control variates can be found in Appendix C
of the Online Resources.
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Figure 1: Recapture example: (a) statistical efficiency averaged over 11 parameters and
(b) overall efficiency averaged over 11 parameters.

Evidence Estimation

Regularized ZV-CV and automatic control variates give improved statistical efficiency
over ZV-CV and CF for the range of N that are considered here, as seen in Figure 2.
However, there is less improvement in terms of overall efficiency due to the fact that
multiple expectations are required for evidence estimation. This puts the more compu-
tationally intensive methods including higher order polynomials, cross-validation and
CF at a significant disadvantage. We note that this example was selected to allow for
extensive comparisons and the cost of post-processing would have less impact under
more expensive likelihood functions.

The selected control variates for N = 50 and N = 1000 can be found in Appendix
C of the Online Resources.

4.2 Log-Gaussian Cox Point Process Example

We now consider an example where the dimension can be adjusted. The log-Gaussian
Cox point process example of Møller et al. (1998) consists of locations of 126 Scots pine
saplings in a 10× 10 m2 plot. The plot can be discretized into n× n grid cells, so that
the dimension d = n2 of the problem can be varied. Here we consider n = 4, n = 8 and
n = 16 so that we have Bayesian inference problems of size d = 16, d = 64 and d = 256.

The model specifications, including code for the log likelihood, log prior and their
gradients, match that of Heng and Jacob (2019). After normalizing the plot to fit onto a
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Figure 2: Recapture example: (a) statistical efficiency for the CTI estimator, (b) overall
efficiency for the CTI estimator, (c) statistical efficiency for the SMC estimator and (d)
overall efficiency for the SMC estimator.

unit square, the number of points at grid cell (i, j) for i, j = 1, . . . , n is denoted yi,j . It is

assumed that the yi,j are conditionally independent and Poisson distributed with mean
Λi,j

n2 . The prior is Λi,j = exp(θi,j) where θi,j has a Gaussian process prior with mean
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Approach Q Stat. Efficiency Comp. Efficiency Overall Efficiency
Vanilla NA 1.0× 100 1.0000 1.0× 100

CF NA 4.4× 101 0.9787 4.3× 101

ZV1 1 2.0× 101 0.9994 2.0× 101

l-ZV1 1 2.2× 101 0.9722 2.2× 101

r-ZV1 1 2.0× 101 0.9719 1.9× 101

ZV2 2 − − −
l-ZV2 2 1.2× 103 0.9315 1.1× 103

r-ZV2 2 2.1× 101 0.8435 1.8× 101

ZV3 3 − − −
l-ZV3 3 5.0× 102 0.8330 4.2× 102

r-ZV3 3 1.7× 101 0.6675 1.1× 101

ZV4 4 − − −
l-ZV4 4 3.2× 102 0.6151 2.0× 102

r-ZV4 4 1.4× 101 0.3857 5.3× 100

sub1-ZV1 1 2.4× 101 0.9996 2.4× 101

sub1-ZV2 2 5.0× 103 0.9996 5.0× 103

sub1-ZV3 3 3.5× 106 0.9996 3.5× 106

sub1-ZV4 4 6.9× 107 0.9995 6.9× 107

crossval NA 2.8× 108 0.2125 5.5× 107

Table 1: 16-dimensional Cox example: efficiency for marginal posterior expectations
when N = 100, averaged over results for all 16 parameters. A “−”’ indicates that the
population size N = 100 is insufficient for standard ZV-CV. We refer the reader to the
beginning of Section 4 for acronym definitions.

μ and covariance function Σ(i,j),(i′,j′) = s2 exp
[
−
√

(i− i′)2 + (j − j′)2/(nβ)
]
, where

β = 1/33, s2 = 1.91 and μ = log(126)− s2/2.

Our goal is to estimate the posterior means for the parameters θi,j for i, j = 1, . . . , n,
and we do so using SMC runs with N = 100 particles. We do not consider evidence
estimation due to lack of a reliable gold standard. Due to memory and time constraints,
the maximum polynomial order is constrained so that the maximum number of covari-
ates in ZV-CV is 5000. The gold standards in this example are the average posterior
expectations across many independent unbiased Riemann-manifold HMC runs (Heng
and Jacob, 2019) with unbiased control variates as described in South et al. (2019a).
Details of the gold standard are available in Appendix D.

Tables 1, 2 and 3 show the mean relative statistical, computational and overall effi-
ciency for posterior expectations in dimensions d = 16, d = 64 and d = 256, respectively,
whenN = 100. In all three settings, the existing methods (vanilla MC, ZV-CV with OLS
and CF) are outperformed by the novel approaches of a priori ZV-CV, cross-validation
and LASSO with a higher order polynomial than OLS could handle. The best perform-
ing novel method has an overall efficiency which is better than the best performing
existing method by a factor of over 1,600,000 for d = 16, over 1,800 for d = 64 and over
25 for d = 256. Results showing the competitive performance of the novel methods for
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Approach Q Stat. Efficiency Comp. Efficiency Overall Efficiency
Vanilla NA 1.0 1.0000 1.0
CF NA 5.9 0.9953 5.9
ZV1 1 4.5 0.9999 4.5
l-ZV1 1 12.0 0.9931 11.9
r-ZV1 1 5.2 0.9924 5.2
ZV2 2 − − −
l-ZV2 2 17.2 0.9574 16.5
r-ZV2 2 5.2 0.9071 4.7
sub1-ZV1 1 13.8 0.9999 13.8
sub1-ZV2 2 2505.3 0.9999 2505.1
sub1-ZV3 3 7181.6 0.9999 7181.0
sub1-ZV4 4 11081.3 0.9999 11080.4
crossval NA 7271.9 0.4631 3369.3

Table 2: 64-dimensional Cox example: efficiency for marginal posterior expectations
when N = 100, averaged over results for all 64 parameters. A “−”’ indicates that the
population size N = 100 is insufficient for standard ZV-CV. We refer the reader to the
beginning of Section 4 for acronym definitions.

Approach Q Stat. Efficiency Comp. Efficiency Overall Efficiency
Vanilla NA 1.0 1.0000 1.0
CF NA 2.0 0.9990 2.0
ZV1 1 − − −
l-ZV1 1 21.2 0.9989 21.2
r-ZV1 1 2.1 0.9980 2.1
sub1-ZV1 1 21.1 1.0000 21.1
sub1-ZV2 2 52.3 1.0000 52.3
sub1-ZV3 3 53.4 1.0000 53.4
sub1-ZV4 4 42.3 1.0000 42.3
crossval NA 32.3 0.9855 31.8

Table 3: 256-dimensional Cox example: efficiency for marginal posterior expectations
when N = 100, averaged over results for all 256 parameters. A “−”’ indicates that the
population size N = 100 is insufficient for standard ZV-CV. We refer the reader to the
beginning of Section 4 for acronym definitions.

N = 1,000 and N = 10,000 are given in Appendix D. Like the results for N = 100,
a priori ZV-CV, cross-validation and LASSO outperform existing alternatives in the
majority of settings.

5 Discussion

In this paper, we introduced two types of regularized ZV-CV: regularization through
penalized regression and regularization by selecting a subset of parameters to include
in the regression model. Higher order polynomial basis functions have the potential to
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outperform the commonly used polynomial with Q = 2 as N – the number of Monte
Carlo, MCMC or SMC simulations – increases. Our penalized ZV-CV ensures that the
resulting functional approximation problem remains well-defined when N is less than
the number of control variate coefficients (J) while performing similarly to standard
ZV-CV when N > J . For the examples considered here, we found that LASSO gen-
erally resulted in better performance than ridge regression. A priori ZV-CV led to
significant improvements over vanilla Monte Carlo for posterior expectations, with little
computational overhead.

One of the main applications of the proposed methods is in models where the dimen-
sion, d, is too high for standard variance reduction techniques to be efficient. Empirical
evidence suggests that using ZV-CV and penalized ZV-CV, where Q is increased with
N , offers better statistical performance than CF in high dimensions. However, the com-

putational cost of (penalized) ZV-CV is O(N
(
d+Q
d

)2
+

(
d+Q
d

)3
), which may prohibit

the application of these methods with large Q in high dimensions. This explosion in
complexity for large Q and d is a disadvantage relative to CF when the sample size is
comparable or less than the dimension, though the complexity is similar when N ≈ d
and Q = 1 in (penalized) ZV-CV. One could consider speeding up these algorithms by
using partial LASSO searches (e.g. Efron et al., 2004; Fan and Lv, 2008) or by using
approximate solvers as proposed in Si et al. (2022). Alternatively, in very large dimen-
sions, the a priori ZV-CV approach can be used to obtain variance reductions with a
complexity that is O(N |S|2 + |S|3) where 1 ≤ |S| ≤ d. This a priori approach also
offers benefits when not all derivatives are available, when N � d, or when information
about the relationships between the integrand and parameters is known (for example
when p(θ) has a directed acyclic graph factorization).

Leluc et al. (2019) provide additional theoretical support for LASSO-based control
variate selection. The work of Leluc et al. (2019), which was publicly available after
the pre-print of our paper (South et al., 2018), gives concentration inequalities for the
integration error with LASSO-based control variates and also shows that the correct
control variates are selected with high probability. The theoretical results are based on
bounded control variates, which do not apply in ZV-CV and CF when p has unbounded
support. Leluc et al. (2019) find empirically that a methodological adjustment of per-
forming OLS for estimation once the control variates have been selected via LASSO is
helpful in reducing the variance of the estimator. We point out that this modification
is necessary to obtain the zero-variance property of ZV-CV. The optimal coefficients
required to obtain zero-variance estimators cannot be obtained directly from penalized
regression methods like LASSO and ridge regression with non-zero λ.

We have proposed the consideration of different penalty functions in the optimization
problem for control variates, but we focus specifically on LASSO and ridge regression.
Some other potentially useful regularization methods for the situation where N <

(
d+Q
d

)
are elastic net (Zou and Hastie, 2005) and partial least squares (PLS, Wold (1975)).
Elastic net is a compromise between LASSO and ridge regression which uses two tuning
parameters. PLS is based on choosing the k <

(
d+Q
d

)
− 1 independent linear combi-

nations of covariates that explain the maximum variance in the response, where k is
chosen through cross-validation. Active subspaces (Constantine, 2015) are a more re-
cent dimension-reduction technique which use the derivatives of the function of interest
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to find the linear combinations of covariates that are best at predicting the function.
It would be of interest in future research to compare our LASSO and ridge regression
ZV-CV methods with these alternatives.

The concept of regularization by selecting a subset of parameters is referred to as
nonlinear approximation in approximation theory and applied mathematics (DeVore,
1998), and there is some theoretical evidence to suggest that this can outperform linear
approximation (e.g. penalized regression which is described in Section 3.1). Selecting a
particular subset of monomials which are used in a polynomial interpolant is also the
same idea as in sparse grid algorithms for numerical integration (Smolyak, 1963). These
methods are known to work well in high dimensions and could be useful alternatives for
selecting the subset of monomials in ZV-CV.

Stein-based control variates using neural networks have recently appeared in the
literature (Zhu et al., 2019). Zhu et al. (2019) added details of penalization methods
to their approach, where the control variates cannot be fitted exactly and stochastic
optimization is required. Penalization methods are simpler and more stable in the linear
regression context but in future research it would be of interest to compare to neural
control variates with regularization. This alternative approach is likely to outperform
ZV-CV in some applications, such as when ϕ(θ) is multi-modal.

Finding the optimal parameterization for a given application is a challenging open
problem. Choosing the parameterization is a trade-off between making pφ simpler and
making ϕ(f−1(φ)) simpler. Another potential benefit of reparameterizing for ZV-CV
is that there is the potential to enforce more sparsity in the predictors for improved
performance in L1 penalization.

Derivatives are available in closed form or can be unbiasedly estimated for a large
class of problems. ZV-CV has been applied in big data settings in the context of post-
processing after stochastic gradient MCMC (Baker et al., 2019) and for models with
intractable likelihoods (Friel et al., 2016). Regularized ZV-CV also applies in these
settings. Regularized ZV-CV could also be used in exact approximate settings where a
particle filtering estimate of the likelihood is used (see for example Dahlin et al. (2015)
and Nemeth et al. (2016)). However, derivative-based methods are most appealing when
the derivative of the log target can be obtained with little additional cost relative to the
likelihood itself. An interesting avenue for future research may be to consider automatic
differentiation.

Supplementary Material

Supplementary Material for Regularized Zero-Variance Control Variates
(DOI: 10.1214/22-BA1328SUPP; .pdf). This document provides three additional appli-
cations, further simulation results for the examples in the paper and a more detailed
description of how to implement ZV-CV methods in SMC.

https://doi.org/10.1214/22-BA1328SUPP
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