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Causal Inference Under Mis-Specification:
Adjustment Based on the Propensity Score
(with Discussion)*

David A. Stephenst, Widemberg S. Nobre!, Erica E. M. Moodie?,
and Alexandra M. Schmidt¥

Abstract. We study Bayesian approaches to causal inference via propensity score
regression. Much of Bayesian methodology relies on parametric and distributional
assumptions, with presumed correct specification, whereas the extant propensity
score methods in Bayesian literature have relied on approaches that cannot be
viewed as fully Bayesian in the context of conventional ‘likelihood times prior’ pos-
terior inference. We emphasize that causal inference is typically carried out in set-
tings of mis-specification, and develop strategies for fully Bayesian inference that
reflect this. We focus on methods based on decision-theoretic arguments, and show
how inference based on loss-minimization can give valid and fully Bayesian infer-
ence. We propose a computational approach to inference based on the Bayesian
bootstrap which has good Bayesian and frequentist properties.

Keywords: Bayesian bootstrap, Bayesian causal inference, de Finetti’s
representation, model mis-specification, propensity score adjustment.

1 Introduction

In the study of the causal relationship between an exposure (or treatment) and an
outcome, bias in the estimation of the exposure effect may occur due to confounding
if the exposure is not an experimental intervention. Confounding exists whenever the
exposure assignment is dependent on predictors that also influence the outcome. If the
dependence of outcome on exposure and predictors is modelled correctly, standard re-
gression is adequate to obtain correct inference about the exposure effect. When correct
specification cannot be guaranteed, the propensity score can be used to break the de-
pendence between confounders and exposure, to create balance in the distribution of
confounders across exposure groups, and facilitate correct inference. This paper studies
how the propensity score can be deployed in a Bayesian causal analysis.
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Adjustment via the propensity score can be carried out using regression, inverse
weighting, stratification or matching. In regression settings, parametric models are pro-
posed to represent the propensity score and the (expected) outcome given the propensity
score. In frequentist approaches, adjustment is carried out by estimating parameters in
the propensity score and the outcome models separately. In a fully Bayesian framework,
such a two-step analysis is uncommon; it would be more natural to fit a single joint
model for the treatment and outcome. This has led to discussion as to how Bayesian
methods can be used in the causal setting, and even whether Bayesian methods are
valid. There is a growing literature on sophisticated procedures for performing Bayesian
causal analysis, but in a fully Bayesian framework, some aspects of the methodologies
deployed appear non-standard and not justified via Bayesian logic.

We address these issues in this paper. Section 2 recaps the regression approach
to causal estimation, and Section 3 describes how the key to valid Bayesian causal
inference results from the assumption of exchangeability of the observable quantities to
be modelled, which can be derived through de Finetti’s representation, and a review of
Bayesian adjustments using the propensity score. Section 4 describes Bayesian decision-
theoretic inference which gives the framework for inference under mis-specification, and
Section 5 gives the non-parametric computational strategy that we deploy. We provide
simulation studies in Section 6, and conclude with a discussion in Section 7.

We note here that Bayesian methods that do not rely on the propensity score are also
quite widely used: these methods utilize flexible parametric or non-parametric proce-
dures to represent the outcome model as a function of the treatment and other predictors
and attempt to avoid mis-specification. These methods are certainly useful, and the in-
ferential theory supporting such one-stage analyses is more straightforward. However,
such flexible outcome regression models cannot estimate the causal effect of interest
in all cases, such as those where a more general target of inference is defined. These
models are not the primary focus of this paper. Similarly, we will not discuss Bayesian
matching methods in detail, although some comments are given in Section 7.

2 Background

To formulate causal inference estimation, potential or counterfactual outcomes are often
used. Potential outcomes, {Y'(z)} for z in some putative treatment set, represent the out-
comes that would be observed if treatment level Z was set to z. If exposure Z takes two
levels labelled {0, 1}, the potential outcomes represent values of outcome Y that would
be observed had exposure been set by intervention to z = 0,1 respectively (Neyman,
1923; Rubin, 1974, 1985; Holland, 1986). We consider n subjects, and for the ith subject,
let Y; be the outcome of interest, Z; be the exposure, and X; = (X;1, X;o0,..., Xip)T be
a p-dimensional vector of confounders. We denote the data observation space by X'

2.1 The average treatment effect (ATE)

The Average Treatment Effect (ATE) for a binary treatment is defined by
T =E[Y(1)] — E[Y(0)]. (2.1)
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If Z is assigned independently of covariates X, Z 1 X, then the assumption of no
unmeasured confounding or ignorability is trivially satisfied, implying that {Y(z)} L
Z|X, and so the ATE is given by

T=Eyz[Y|Z =1] = Ey2[Y|Z = 0] = Ex[Ey|x z[Y|X,Z = 1] - Ey|x 2[Y|X, Z = 0]].

(2.2)

This definition differs notationally from the formulation via counterfactual or potential

outcomes (Rubin, 1974) or the do-operator (Pearl, 2009), but under the independence

assumption is equivalent. Equation (2.2) defines a marginal (over X) estimand, although

conditional (subset-specific) estimands may also be defined. The calculation in (2.2) can
be mimicked in the observed data to yield the estimate

1 n
= S (Eyix z[YIX =2, Z =1] - Eyx z[Y|X = 2;,Z = 0)) (2.3)

i=1

but this requires knowledge of the conditional expectation Ey|x z[Y|X = z,Z = 2] for
all (z, z), and the assumption of no unmeasured confounding. Typically, this expectation
would be represented using a regression model. If the regression model is misspecified,
this approach can lead to incorrect inference about 7 when the independence assumption
does not hold and X is also associated with Y (i.e. in the presence of confounding).

2.2 The role of the propensity score

To estimate the ATE in the presence of confounding, Rosenbaum and Rubin (1983)
showed that if the exposure assignment is ignorable and b(X) is a balancing score, defined
so that X | Z|b(X), the ATE can be evaluated by averaging conditional means given Z
and b(X). If Z is binary, a typical choice for the balancing score is the propensity score,
where b(X) = Pr[Z = 1|X]. Conditioning on the propensity score allows estimation of
7 in the presence of confounding when the conditional model for Y given X and Z is
not correctly specified by breaking the dependence between X and Z.

Propensity score regression represents the expected outcome conditioned on the
exposure, confounders and propensity score. The ATE 7 from (2.2) can be evaluated as

T =Ex {Eyx,p2[YIX,b(X),Z =1] — Ey|x,5,2[Y|X,b(X),Z = 0]} (2.4)

as b(X) is a balancing score, using a model for Ey|x p z[Y|X = x4, B = b(z;), Z = 2]
for a modified version of (2.3) — see Rosenbaum and Rubin (1983) or Rubin (1985).

Typically b(.) is represented using a parametric model, b(x) = b(x;~), with ~ esti-
mated from the observed Z and X data. However, the balancing result X | Z | B only
holds when b(X; ) correctly characterizes the probability that Z = 1 for any given X;
this corresponds to the existence of a true value g of v which defines the function pre-
cisely. For v # 79, the method of proof of Rosenbaum and Rubin (1983) does not work
to establish balance; see Supplement A.1 (Stephens et al., 2022) for a summary of the
argument. Therefore, in a correctly specified parametric formulation of the propensity
score, to yield balance, we must identify a single point in the parameter space, and use
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that to define the propensity score. If v is not known, we must resort to substituting a
consistent estimator 7 for ~, and then the required balancing result will hold asymp-
totically. In this paper we focus on parametric representations for the propensity score,
but briefly discuss extensions in Section 7.

2.3  An illustrative model

Suppose the observed outcome data are generated according to the structural model
Yi = Xoi§ + ZiT + €, (2.5)

where for p-dimensional parameter £ the term Xg;& defines the true treatment-free
mean model, and 7 defines the ATE. If a regression model matching this specification
is fitted using least squares, then the resulting estimator for 7 is consistent. Similarly,
if Z is assigned independently of X, then the estimator for 7 is consistent even if the
treatment-free mean model is mis-specified. However, if the model is mis-specified and
Z and X are not independent, then the estimator of 7 is in general inconsistent due to
confounding. As demonstrated by Robins et al. (1992) the regression model

where ¢ is a scalar parameter, yields a consistent estimator of 7, albeit one whose
variance is at least as large as the variance of the estimator arising from the correctly
specified model. An ‘augmented’ model that contains an additional ‘prognostic’ linear
predictor term X;( involving nuisance parameter (3, that is, with

Yi = Xif +0(X3)o + Zim + ¢ (2.7)

can be fitted as an attempt to reduce the variance for 7; note, however, that the inclusion
of this augmenting term is not necessary for consistent estimation of 7 provided the
propensity score model is correctly specified. Robins et al. (1992) provides a foundational
treatment of the use of mis-specified regression models in the causal literature.

If a parametric model b(x) = b(x;y) is used, then parameter v must be consistently
estimated for the adequate adjustment. A plug-in estimation procedure, where ~y is
replaced by 7, and the regression utilizes b(z;7) is typically used and corresponds to the
‘feasible’ E-estimator of Robins et al. (1992). It is justified in part by the asymptotic
independence of 4 and (QAS, 7) (Henmi and Eguchi, 2004). The extended model (2.7)
has the advantage that provided the X;3 component is correctly specified (i.e. reflects
the data-generating mechanism), the estimator of 7 is consistent even if the propensity
score is not correctly specified. This is known as double robustness. If the data generating
model contains a more general treatment effect structure, the propensity score regression
approach must be modified. For example, if the model takes the form

Y = X0i§ + Zi Moip + €, (2.8)

where v is a ¢ X 1 vector parameter and My; is a 1 x ¢ vector of predictors, the ATE
is E[My;]v. This quantity (and the parameters ¢)) can be consistently estimated using
the propensity score regression approach based on the model

Y = Xi8 4+ b(X;) Moip + Z; Mo:p + €, (2.9)
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where now ¢ is a ¢ X 1 parameter, that is, with an interaction term involving the
propensity score configured to match the treatment effect structure. This construction
is necessary to ensure that confounding via the open paths that involve the interaction
terms is also removed by conditioning on the propensity score. Further modifications are
necessary if the structural model is extended beyond the linear case, or if multi-stage
treatments are considered; see Supplement A.2.

3 Bayesian inference under exchangeability

The key construction for any Bayesian inference problem to be solved under an as-
sumption of exchangeability of the observable quantities is de Finetti’s representation,
which leads to the standard definitions of likelihood, prior, parameters and the notion
of ‘correct specification’. If {O;}52, is a sequence of exchangeable observable quantities,
where each O; takes values on X', the de Finetti representation for any collection of size
n > 1 of the observables defines their joint density of po(01.,), which in turn defines
the posterior distribution, ., (0) where

[T folos:0)mo(0) 11 folos 0)mo(6)

,_.
.
I

A

n(0) = —
/Hfo(out)ﬂ'o(t)dt po(olzn)

=1

3

say, where 7o () is the prior distribution on parameter § € ©. In the causal setting, ¢
indexes the joint distribution of the observables 01., = (1.1, Y1:n, 21:n). We have

pO(Olzn) = pX(xlzn)pZ\X(len|x1:n)pY|Z,X (yl:n|x1:n7 Zl:n)' (31)

Decomposing 6 = (1,7, (), and assuming independent prior structure, we require that
the three components in (3.1) each admit a de Finetti representation based on what
we term conditional exchangeability assumptions (Saarela et al., 2022). For n > 1, the
triples (X;,Y;,Z;), i = 1,...,n, are assumed to be conditionally independent given 6,
and the Bayesian specification is completed after defining a probability distribution
mo(6) = mo(n)mo(7)mo(C). Specifically

px (1) = / [T f s Omof€)ec
pz|X(Z1:n|331:n) :/HfZ|X(Zi|xi§7)7TO(7)d7a (3.2)

n
PY|X,Z(y1:n|$1:n,Z1:n) :/HfY\X,Z(yi|-Ti7Zi§77)71'0(77)d77-
i=1

This formulation proposes that in the data generating model the Y;s are conditionally
independent given the (X;, Z;) pairs and parameter 7. This is a standard assumption in
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the frequentist parametric sequel, and would hold in any conventional regression model.
The full probability model for observables and unobservables can be decomposed as

Ix (@103 O) f21x (212105 7) fy1 2.5 (W1:] T 10, 21005 1) T0 ()0 (V) 0 (1)

with the usual conditional independence decompositions of the ‘likelihood’ terms. The
prior independence assumption is natural in light of the conditional exchangeability
formulation in (3.1). This leads to the posterior distribution m,(n,v,¢) in the usual
way. Under standard assumptions, the posterior distribution converges as n — co to a
unique degenerate limit at a single point (19, Y0, o), and the data generating model is
in fact factorized fx (x;Co)fzx (2]2;7)fy|x,z Y|z, 2;10). The Bayesian model is con-
sidered correctly specified if this limiting behaviour holds.

The formulation above is parametric, but extensions to the non-parametric case
where 0 is infinite dimensional are straightforward. We regard a valid Bayesian approach
as one which relies on the de Finetti representation for observable quantities in the data
generating model, with inference following a decision-theoretic argument, as outlined in
Section 4. Note that under exchangeability, the de Finetti representation defines (up to
the choice of the prior) the complete probabilistic specification for the model, whether
or not we opt to depend on it for inference. Furthermore, it determines the frequentist
characteristics of Bayesian inference procedures.

In the context of adjustment using the propensity score, some modifications to the
Bayesian methodology are necessary for the reasons described in Section 2.2. Specifi-
cally, the outcome component fy |z x(y|z,2;n) in (3.2) is not explicitly used; instead
an outcome model that conditions on the propensity score is deployed, and for correct
confounding adjustment this model needs to rely on the true value of the parameter ~q.
This issue has been approached in several ways that we describe in the next section.

3.1 Existing approaches to Bayesian causal inference

A parametric Bayesian analysis based on the true model (2.5) or proposed model (2.6)
would proceed in a standard fashion. The marginal posterior distributions for 7 derived
from (2.5) and (2.6) are in general different. However, model (2.5) is essentially an ‘or-
acle’ model to which we do not have access. In this case, it is relatively straightforward
to show that as n increases, the posterior distribution for 7 derived from (2.6) becomes
concentrated at the true (data generating) value of the ATE present in the structural
model, despite the mis-specification present in (2.6). This asymptotic calculation hy-
pothesizes an increasingly large sample of data drawn from the same probability model.
These arguments hold for the extended model (2.7).

If b(z) is replaced by b(z;7) in (2.6) or (2.7), and ~ is treated as an unknown pa-
rameter, the question arises whether this log-likelihood, coupled with the log-likelihood
for ~y itself, should be used as the basis of a three-parameter posterior in the parameters
(¢, 7,7). It is not evident on first inspection whether this posterior, or the bivariate
posterior based on (¢, 7) for some plug-in value 74 as in the frequentist approach is
justified in a formal Bayesian inference setting. Zigler (2016) emphasizes that model
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mis-specification is a key issue, studies the most commonly used approaches, and de-
scribes directions in which the Bayesian formulation may be developed productively.
We summarize some of the key elements below.

Joint Bayesian modelling: The Bayesian propensity score model proposed by Mc-
Candless et al. (2009) assumes a joint parametric model and for (2.7), the joint model
considers conditional models fzx(z|z) = fzix(z|z;v) and fy|x zB(ylr, 2,b(x)) =
Jvix,z,8ylz, 2,b(x;v); B). This leads to a joint likelihood function for (v, 3, ¢, 7):

Ln(B,¢,7,7) = H fzix (zilzi ¥) fyx,2 (Wil 20, @6, D(2637); B, &, 7), (3.3)

i=1

with inference carried out using Markov chain Monte Carlo (MCMC) — specifically
the Gibbs sampler — by sampling recursively from the two full conditional distribu-
tions 7(Y|8, Ty Y1:ns 21:m, X1:n) and w(8, &, 7|7, Y1:n, 21:n, X1:n), along with any additional
parameters that appear in the proposed models.

Cutting feedback: The joint model based on (3.3) does not create the required balance,
or correct appropriately for confounding, due the presence of what is termed feedback,
and the marginal posterior for 7 does not concentrate at the true value. To overcome
this, McCandless et al. (2010) proposed that the full conditional distribution of  should
be independent from the rightmost term of the likelihood in equation (3.3);

Tn (7) X fZ|X(len|X1:n; ’Y)ﬂ-o (7) (34)

This is known as the cutting feedback approach which can be implemented as follows:
a sample of size L of m,(y) is produced, and then used to construct propensity score
sampled values bl(-l) = Pr[Z; = 1|X; = x4;7Y], where () denotes the I-th sample from
mn (7). Then, a sample of size L is obtained for the outcome parameters, with the I-th
sample, for [ = 1,--- , L being generated from

777(5) (/Ba ¢7 T) X fY|X,Z,B(y1!‘rL|X1:'rL7 Z1in bgl)rm ﬂa ¢a T)WO(B7 (ba T)' (35)

Two-step inference: A two-step procedure (Zigler et al., 2013) assumes complete sep-
aration between the exposure and outcome models. First, a point estimate of ~ is ob-
tained from m,(y) computed via (3.4). This point estimate is then used to construct
an estimate of the propensity score, 31' = fz1x(1]2;7), which is then plugged into the
outcome model. A posterior sample is then obtained from

7Tn(57 ¢7 T) X fY|X,Z,B(y1:n‘lena Xl:nygl:n; 55 ¢’ T),/TO(ﬂa ¢a 7_)' (36)

In the cutting feedback and two-step approaches, it is not immediately clear how the
inferential uncertainty concerning v in the estimation of 7 should be handled. Several
methods to evaluate the variance of the posterior distribution of 7 have been proposed;
see for example Kaplan and Chen (2012). The cutting feedback approach attempts
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to account for the uncertainty in the estimation of v by direct sampling from ()
in (3.4) with posterior computation for the remaining parameters being carried out
conditionally on each sampled value of «; the two-step approach as described above
ignores the uncertainty in ~, but an adjustment based on Taylor expansions around 7
can be implemented (Graham et al., 2016).

Several of the applications described above do not use regression on the propensity
score itself, but instead attempt adjustment based on a stratification procedure by
defining a factor predictor using quantiles of the observed propensity score distribution.
Each observed b(z;) is converted into a categorical variable corresponding to the quantile
interval within which b(z;) lies. This method can be very effective in practice, but we
note that it can only provide approximate correction for confounding, and will yield
consistent estimation only if the number of categories used (and hence the number
of associated coefficients) grows with n. In effect, the stratification approach provides
an effective way of approximating the true data generating mean model rather than
adjusting for confounding in the same way that the Robins et al. (1992) model operates.

The methods outlined in this section have elements that do not follow the classical
Bayesian formulation outlined above, and therefore there is debate as to whether they
can be formally classed as fully Bayesian procedures. However, it transpires that they
can in fact be viewed as ‘generalized’ Bayesian procedures (Bissiri et al., 2016) that use a
specific decision-theoretic framework; we present a detailed exposition in Supplement B,
and discuss other related formulations in Section 4.2. In this paper, we present a valid
conventional Bayesian approach that relies on a non-parametric formulation based on
consciously mis-specified models.

3.2 Current literature

It is not universally accepted that fully Bayesian inference is possible using the fitted
propensity score in a regression as in Robins et al. (1992), or via other methods such
as inverse probability weighting (see Supplement A.2), as such methods involve a plug-
in strategy that is not fully Bayesian; see the discussion of Saarela et al. (2015). For
example, it is contended that if the propensity model is unknown and must be estimated,
the plug-in estimation of b(x) is contrary to conventional Bayesian inference based on
a ‘likelihood times prior’ formulation.

Despite such objections, there has been a marked increase in research on Bayesian
methods for causal quantities based on propensity score adjustment (see, for example,
Adhikari et al., 2020; Comment et al., 2019; Geneletti et al., 2019; Samartsidis et al.,
2020; Nethery et al., 2020; Liu et al., 2020). While sharing a common goal of adjusting
for bias due to confounding with a Bayesian lens, it is clear that consensus has not been
reached on how to perform inference with propensity score-based approaches. For in-
stance, Comment et al. (2019), Nethery et al. (2020), and Liao and Zigler (2020) all use
an approach that succeeds in cutting feedback, using the propensity score to create a
matched sample; these authors view the matching step as part of a ‘design’ rather than
analytic phase of the analysis. Bornn et al. (2019) use a form of joint modelling of the
treatment and outcome, as do Ray and van der Vaart (2020). Two-step approaches are
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widely used, although there is no agreement in the literature on whether to plug in fixed
quantities (such as a posterior mean or mode) or random (draws from the posterior). For
instance, Vegetabile et al. (2020) use a Bayesian non-parametric approach to estimate
the propensity score which is then plugged into a standard (frequentist) estimator of
the average treatment effect. Some authors try multiple approaches; for example, Wang
et al. (2012) use both a joint modelling and a two-step approach, where the latter is
employed as a device to cut feedback. Wang and Rosner (2019) use propensity score
regression, conditioning on the expected value of the propensity score. In contrast, Xu
et al. (2018) take a propensity regression approach to estimate the quantile (rather than
average) treatment effect, conditioning on draws from the posterior distribution of the
propensity score. Hahn et al. (2020) sample the estimated propensity score’s posterior
distribution, incorporating the samples into a nonlinear regression model for the out-
come (including heterogeneous treatment effects) using additive regression trees. Liu
et al. (2020) use inverse weighting in a two-step procedure and propagate uncertainty
using the Bayesian bootstrap; see also Graham et al. (2016). Other authors have com-
bined aspects of Bayesian and frequentist modelling to address complex models. Davis
et al. (2019) use approximate Bayesian methods to estimate both a propensity score
and an outcome model, and then combine predictions from these into a frequentist
doubly-robust estimator in a spatial modelling context. Antonelli et al. (2022) consider
the high-dimensional case, also using Bayesian methods to estimate both a propensity
score and an outcome model and computing a doubly-robust estimator by averaging
over draws from the posterior distribution of the parameters of these models.

Models (2.6) or (2.7) are simple compared to some of the approaches described above,
but serve to illustrate the relevant theoretical issues. Flexible models that attempt to
model the outcome directly can be extremely useful in capturing the causal relationship
by overcoming issues of mis-specification, or to represent the propensity score and, de-
spite some drawbacks, such models can be effective. The methods described in this paper
are relevant to any form of propensity score analysis, that is, the use of a propensity
score in the analytic stage, rather than in a design phase, such as when it is employed
to perform matching to create an analytic dataset.

4 Bayesian decision-theoretic inference

In this section, we recap details of Bayesian decision-theoretic procedures to build a
framework in which to consider the setting where data are generated according to some
likelihood model fo(.;60) which we cannot and do not need to specify correctly. Rather,
we will focus on the consequences for inference in a second, alternative model with den-
sity f, acknowledging that this density is mis-specified. As noted above, causal inference
is most often employed when the functional form of the dependence of the outcome on
the treatment and covariates is not known, such that reliance on the propensity score
is required to break the confounding that biases the estimated effect of treatment.

The Bayes estimate is a function of the observed data that minimizes the Bayes risk,
or the posterior expected loss for some loss function £(¢,60) : © x © — R™, that is

0 = arg min Ex, [£(t,0)] = arg Itrélél/g(t, ), (6) db.
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If the loss function can be written
L(t,0) = /u(s,t)fo(s;e) ds = Eg, [u(S,t);0] (4.1)

for some function u(s,t) : X x © — R, then the estimation problem can be rewritten

~

9 = arg min / u(s, 1) { / Fo(5:0)mn (6) de} ds = agminE,, [u(S,0)],  (42)

where p,,(s) is the posterior predictive distribution implied by the Bayesian specification.
For example, if, for t € O, u(s,t) = —log fo(s;t), (see Bernardo (1979)) we have that

§ — arg max / { / log fo (s: ) fo(s: 0) ds}ﬂn(O) o). (4.3)

te®

For example, in the Normal model with fo(s;t) = Normal(t, 1), the calculation becomes

argrtréiél //(s—t)2¢(s—9) dsm,(0) df = / {/s¢(s —0) ds} m(0) df = /97rn(9) de,

where ¢(.) is the standard Normal pdf, that is, the estimate is the posterior mean.
Equation (4.2) indicates that Bayesian parameter estimation can be formulated as a
prediction problem if an appropriate loss function is defined. Equation (4.1) depends
on an integral over a single variable s that can be taken to be a single ‘future’ variate
drawn from fo(.;0), but the formulation extends to m independent ‘future’ variates,
and can be expressed via the m-fold posterior predictive.

4.1 Bayesian inference under mis-specification

Broadly, mis-specification of a Bayesian model arises either if the ‘likelihood” model —
the conditional density of the observables given the parameters — does not match fo,
or if the true value 0y does not lie in the support of the prior. In such cases, there
is no guarantee of reliable statistical behaviour. However, certain mis-specified models
can have utility; for example, the model in (2.6) is not the data generating model, and
yet can provide consistent frequentist inference provided the propensity score model is
correctly specified. In this section we examine some aspects of mis-specification.

Suppose initially we retain the data generating likelihood model fo(.;8), but con-
sider the implications for inference in an alternative model with density f with support
X, parameterized by ¥ € ©’. That is, while assuming the data are generated by fo,
we wish to perform inference for 9 acknowledging that f is mis-specified. Conventional
Bayesian inference for ¢ can be performed using a likelihood based on f, but it is
difficult to justify the resulting posterior as the focus of inference since the model is
mis-specified; see, for example, Walker (2013) and its discussion. The decision theoretic
framework can still be deployed, however: define loss function £(¢',60) : © x © — R
by

fo(s;0)
f(s:t)

Ut 0) = K(fo(.;0), f(.;t) = /log ( ) fo(s;0) ds = E,[ug(S,1'); 0],



D. A. Stephens, W. S. Nobre, E. E. M. Moodie, and A. M. Schmidt 649

where ug(s,t') = log (fo(s;0)/f(s;t')), which extends the calculation in (4.1) to allow
the function u(.,.) to depend on 6 — note that the resulting optimization over ¢ may
still not depend on 6. By arguments equivalent to those leading to (4.3), we have that

J = arg max / {/log f(s;t) fo(s; 0) ds} 7 (0) d6. (4.4)

If standard Bayesian theory is used to compute the posterior for 8, then the posterior
for 1 also may be computed (at least numerically) via the deterministic transformation
implied by (4.4). For example, to compute the posterior distribution for ¥, we may use a
simulation-based strategy: if a single sampled variate ) is generated from 7, (6), then
we may convert this into a sampled variate 9! from the posterior for ¥ by performing
the transformation

00 = arg / log f(s1') fo(s:0V)) ds (4.5)
Ie 7

and then replicate this for [ = 1,..., L. In general, the integral with respect to s may
not be analytically tractable, but can be approximated using Monte Carlo by sampling
Sk, k=1,...,N from fo(.;0), and computing

N
o) — !
9 argtrpezgg;logf(sk,t).

The Kullback-Leibler loss can be modified to reflect quantitative statements about
¥ in the alternative model. For example, we may specify

ug(s,t") = log (%) + log ug(t") (4.6)
for some non-negative function wug(.) with domain ©’ that does not depend on 6 or
s. This additional term essentially functions as (minus) a log prior distribution on ¢,
although as we explicitly acknowledge that the model f is mis-specified, and ¥ has no
real-world interpretation, this interpretation may be problematic for some Bayesians.
In any case, the maximizations leading to the estimate 9 in (4.4) and sampled variate
9W in (4.5) can be modified accordingly.

4.2 Conscious mis-specification and modularization

The formulation of inference under mis-specification is inspired by the reasoning that
inference concerning an alternative target model may be of interest in its own right (for
example, simplicity of interpretation). In addition, note that the calculation in (4.2)
does not require explicit computation of the posterior 7, (6), so in principle a repre-
sentation of, approximation to, or samples drawn directly from the posterior predictive
distribution p, (s) can be used to compute the estimate or posterior sample for J. Such a
strategy would be useful if complex models such as flexible Bayesian models or artificial
neural networks were used to construct prediction techniques. In the causal inference
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setting, the parameters of interest are not defined in the actual data generating model,
but rather are quantities defined with respect to some hypothetical data generating
process where confounding is not present. It is possible to construct examples where
even a correctly specified regression model, say, cannot yield consistent estimators of the
causal effect of interest, although these examples typically need to have more complex
structural forms than those in (2.5), involving multiple treatments. We return to these
examples in Supplement A.2.

Such ‘conscious’ mis-specification has direct relevance in the causal setting, but it has
also been argued that similar calculations, where the data generating model does not cor-
respond to the inference model, may be relevant in Bayesian calculations more generally.
Bayarri et al. (2009) argue for a form of Bayesian inference based on ‘modularization’ of
the model, where a form of stagewise analysis in complex models is used. Motivated by
formulations based on Bayesian mis-specification, Jacob et al. (2017) provide extensive
evidence that such modularized inference can be advantageous in Bayesian settings, in-
cluding a study of the empirical properties of propensity score stratification estimators
using the methods from Section 3.1. The approaches described in Jacob et al. (2017)
are entirely parametric in nature, and therefore approach the issue of mis-specification
from a different perspective, by deliberately using mis-specified models for statistical
advantage; see also Pompe and Jacob (2021). Finally, in the causal setting of Section 2.3,
a very specific approach to modularized inference must be adopted. We discuss this in
more detail below.

5 Bayesian non-parametric formulation

We now implement the decision-theoretic ideas from Section 4 in the causal setting
using a non-parametric model.

5.1 The Dirichlet process model

In order to weaken the parametric assumption concerning fo, we allow 6 to become
an infinite dimensional parameter describing the distribution of O. Suppose that Fo(.)
parameterizes unknown distribution function of the data with true value Fy, such that
in reality Oq,...,0, ~ Fy(.) are independent; this interpretation is consistent with
the de Finetti formulation, with the Fy(.) interpreted as the limiting empirical cdf
derived from the exchangeable sequence. The Dirichlet process model DP (o, G) is a
probability measure on the set of distribution functions with countable support, with
probabilities w;,j = 1,2,... at locations z;,j = 1,2,... € X, and the DP(«, G) model
induces randomness by drawing the w;s via a probabilistic algorithm that depends on «
— commonly the so-called ‘stick-breaking’ algorithm is used — and the x; independently
from G. In the most common form of Bayesian non-parametric analysis, the Dirichlet
process acts as a prior for parameter Fp; hyperparameter o > 0 acts as a concentration
parameter, and G(.) is a prior (base) distribution with domain X. In light of data
01.n, the resulting posterior distribution is also a Dirichlet process DP(«,, G,) where
ap =a+nand Gp(.) = w,G(.) + (1 — wn)Fy(.), where w, = /(a4 n) and F,(.) is
the empirical measure derived from o1.,.
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It is straightforward to generate samples from DP(a,, Gy) (that is, randomly gener-
ated distributions that represent sampled versions of ‘parameter’ Fp) and also from the
implied model for the observable quantities in light of the data (that is, a randomly gen-
erated posterior predictive distribution). Furthermore, the Dirichlet process posterior
becomes concentrated at the data generating model Fj in the limit as n — oo (Ghosal
and van der Vaart, 2017, section 4.7), and provides a consistent estimation procedure.

With this relaxation of the parametric assumption about the data generating model,
the calculations from Section 4.1 can be reproduced. The Bayes estimate again results
from a minimum loss calculation based on the posterior predictive distribution. When
the posterior distribution is the DP(«,,, G,,) distribution, we have, for example repli-
cates 9,1 =1,..., L sampled from the posterior for ¥ given by

o0
9O = arg max Z wj(»l) log f(sy); t'), (5.1)
j=1

where {wj(-l) ,j=1,2,...} are a sample of probabilities drawn by, say, stick-breaking with

parameter o, , and {sgl),j =1,2,...} are drawn independently from G,,. In practice, the
infinite sum is truncated by machine accuracy, as the w; values decrease in expectation
as j increases. The {w;} may also be drawn such that they are decreasing in magnitude,
rendering the truncation straightforward to implement.

5.2 The Bayesian bootstrap

The Bayesian bootstrap (Rubin, 1981) posits a multinomial likelihood on the finite
set O = {o1,...,0,} with unknown probabilities @ = (wy,...,w,) attached to each
element, and combines this with a Dirichlet(a, ..., «) prior to yield the posterior dis-
tribution for w to be Dirichlet(a + 1,...,a + 1). Taking o —» 0 yields the Bayesian
bootstrap, in which the predictive distribution is represented

pnl0) = Z”i‘s‘” (0), (5.2)

where w ~ Dirichlet(1,...,1), identical to the posterior distribution.

Originally the Bayesian bootstrap was proposed as a heuristic strategy, but its the-
oretical properties have since been widely studied; see for example Lo (1987); Cheng
and Huang (2010) and Ghosal and van der Vaart (2017). The argument confirming
that this strategy was in fact producing approximate Bayesian posterior statements
was formalized by Newton and Raftery (1994). The procedure was used in the Bayesian
causal settings in Saarela et al. (2015) and Saarela et al. (2016): in those papers, the
utility argument is made explicit, and the log-density utility is justified by considering
a hypothetical experimental data generating mechanism that is explicitly misspecified
(compared to the observational data generating model). See Chamberlain and Imbens
(2003), Graham et al. (2016) and Lyddon et al. (2019) for examples and generalizations.
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The Bayesian bootstrap results from a Dirichlet process specification for the observed
data 01., in the limiting case « — 0. Sampling from the posterior predictive coincides
with the Bayesian bootstrap; if w = (w1, ...,w,) ~ Dirichlet(1,1,...,1), (5.2) yields
the estimation procedure

¥ = arg max Z w; log f(0s;t") (5.3)
i1

with ¢ now being a random quantity as w is random. The summation in this expression
is a deterministic function of w for every fixed t'; therefore the corresponding ¥ is also
a deterministic function of w. Hence, once we have sampled the weights in the Dirichlet
process formulation, a transformation yields ¢, and thus ¥ is simply a functional of the
Dirichlet process posterior on Fp. Therefore the posterior sample formed by repeatedly
sampling the Dirichlet weights to yield w®, ... w®) with subsequent transformations
to yield 9V, ... 9F) is an exact sample from the posterior distribution for ©. Such
inference is a fully Bayesian expression of posterior beliefs concerning the target of
inference under the Bayesian non-parametric formulation. A proper prior 7y(¢}) can be
incorporated by modifying the specified utility function as in (4.6).

5.3 Bayesian inference for the structured causal model

For the causal inference problem with observed data 01., = (1.0, Y1:n, 21.n), fOr a para-
metric analysis, we may compute the posterior distribution for 8 = (n,, () using a fac-
torization of the full model as in (3.2). We can also define the alternative model to respect
the entire factorization, or target some component of interest. For example, a condi-
tional model for Y given (X, Z) might be targeted, with ug(o,9) = —log f(y|z, z; )
for some conditional density f(.;z, z;19). Then, by sampling the posterior for 6, or the
posterior predictive distribution, the method of Section 4 can be deployed.

For the illustrative model of Section 2.3, let § = (£,7) and ¥ = (¢, 7) be the pa-
rameters in the data generating and alternative models respectively. In this parametric
setting, assuming Normally distributed residual errors in both models, m, () is readily
computable, and using the methods described in Section 4 we can obtain a sample from
the posterior distribution and estimate for ¥ in the alternative model. Specifically, from
the model (2.6), we have for b(.) known wugy(0,9) = ((y — b(z)¢ — z7)/X)?. In this case
the parameter of interest 7 is identical in the two models, and the posterior computed
for m,(0) yields correct inference under the presumed correct specification of the con-
ditional model. The posterior for 7 as a component of ¥ would still concentrate at true
value 79, but in finite sample the posterior variance would be larger than that computed
from the correctly specified model that led to 7, ().

To relax the assumption of Normal residual errors in the data generating model, we
may use the Bayesian bootstrap, and obtain a sampled variate from the posterior as

(60,70 = arg min S0P (i — b(xi)g — 27)? (5.4)
Q)

for which the minimization can be achieved analytically for [ = 1,..., L.
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In (5.4), the Bayesian bootstrap is being used to sample the Dirichlet process poste-
rior for the entire unknown joint distribution of the observables, but in the alternative
parametric model only the conditional distribution for Y given X and Z is studied — the
joint distribution does correspond to an implied conditional distribution. This possibil-
ity of partial specification of the model of interest is an advantage of the formulation
from Section 4. In addition, if the utility is modified to be

up(0,9) = —log fi(y|z, z;91) — log fa(z|z;¥2)

for proposed conditional densities f; and fo. Estimation or posterior sampling of
and ¥ using the parametric or non-parametric algorithms can proceed by the obvious
extension, and in this separable loss function the two optimizations can be carried out
separately. However, in the inference problem for (2.6) with propensity score unknown,
a modification of the loss function is required for optimal inference. Suppose that

ug(0,9) = *logfl(y\x,z;ﬂl,ﬁzopT) —log fa(z|z; V2), (5.5)

where 99T is the loss minimizing value of 95 obtained by considering the second term
only. This utility reflects the estimation task in the causal problem based on (2.6); the
outcome model based on f; is adjusted using the fitted propensity score computed using
the best estimate of the data generating parameter in the model fs.

Taking (2.6) or (2.7) as the alternative model, inference for ¢¥; = (8, ¢, ) will be
correct (specifically consistent for, and with the posterior concentrated at, true value
7o) provided the propensity score model encapsulated in model fy is itself correctly
specified with 95 = ~, so that the estimated propensity score based on the posterior
mode f5(z|x;¥2) consistently estimates the true propensity score.

It is clear that the form in (5.5) represents a form of modularized inference akin
to the “cut” posteriors described in Jacob et al. (2017) and Pompe and Jacob (2021),
which do include propensity score regression examples. However, the specific application
of the methodology that is required to solve the causal problem does not deploy the
cut posterior in the conventional sense, due to the presence of 99FT in the first term —
recall that this is necessary to achieve removal of confounding. The two optimizations
are linked by the presence of common generated (z,y, z) values in the two terms, which
are (re)sampled from the joint Dirichlet process posterior.

6 Simulation studies

We examine the performance of the conventional Bayesian computational methods de-
scribed in Section 3.1 with the decision-theoretic and non-parametric methods from
Sections 4 and 5.

If the treatments are conditionally Normally distributed, then identical logic applies
in the balancing argument (see for example Imai and van Dyk (2004)), and we may
use the (fitted) conditional mean in a linear regression model for Z as the balancing
score. In this simulation, the data generating mechanism assumes p = 3 confounders,
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with z = (21, 22,23)" ~ Normal((—1,2,0.5)T,%), with 3;; = Cov(X;, X;) = 0.8/l
for 4,5 = 1,2,3. We consider sample sizes n = 200, 500, 1000 and 2000, and simulate
a continuous treatment Z; and continuous outcome Y; from Normal distributions with
unit variance and means

pz =1 —x1 + 22 + 203 — 172 + 20273,

py =1+5z+ 21 + 22 + 23 + dxoxs,

respectively. For each sample size, we generate 1000 datasets under the above scheme.
For the exposure model, we fit the mean model uz = Zv, where the linear predictor is
based on row vector T = (1, z1, x2, T3, T1T2, T1X3, T2T3, T1T2T3), using linear regression.

Conventional Bayesian methods

We fitted several parametric models under the assumption of Normal errors. In the
cutting feedback models, b; = ;7 with 7 being the sampled value of v in a Gibbs
sampler procedure, and in the two-step models b; = Z;7, where 5 is the Bayesian
estimator of v obtained from the fitted exposure model.

e ‘Unadjusted (UN)’: unadjusted for confounding;
UN: Bo+ Tz

UN — ext : Bo + 181 + x2f2 + 2383 + T2
e ‘Joint (JT)’: the joint model from equation (3.3);
JT: Bo + ¢xy + T2
JT —ext : Bo + 2101 + 2282 + 1383 + pTy + T2
e ‘Cutting feedback (CF)’: the cut feedback approach via equation (3.4)
CF: Bo + ¢E+ TZ
CF —ext: Bo + 2151 + waBa + x38s + T2 + ¢b
e ‘Two-step (2S):
2S : Bo + qbg—i— TZ
2S — ext : Bo + 151 +x262+$3ﬁs+¢3+72

e ‘Correct’: a correct specification of the linear regression model.

Table 1 contains the estimated bias and root mean square error (RMSE) the posterior
estimates (means), and coverage of the 95% credible interval for 7. The unadjusted and
joint models perform poorly as theory suggests. Estimation based on cutting feedback
yields a small amount of bias, which decreases as the sample size n increases. The two-
step approaches yield unbiased estimators. However, in all cases the coverage of the
Bayesian credible intervals is not adequate when the outcome model is mis-specified,
even though coverage at the nominal level can be obtained using a correct specification.
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Outcome 200 500 1000 2000
UN 2.084 2.092 2.093 2.089
UN-ext 2.401 2.448 2.444 2.444
JT —0.355 —0.345 —0.344 —0.345
@ JT-ext —0.092 —0.088 —0.089 —0.090
A CF 0.059 0.027 0.013 0.006
CF-ext 0.045 0.021 0.011 0.005
2S —0.002 0.001 0.001 0.000
2S-ext —0.002 0.001 0.001 0.000
Correct —0.002 0.001 —0.001 0.000
UN 2.086 0.093 2.093 2.089
UN-ext 2.416 2.454 2.447 2.445
JT 0.365 0.349 0.346 0.346
% JT-ext 0.117 0.100 0.095 0.093
E CF 0.092 0.054 0.035 0.024
CF-ext 0.084 0.051 0.034 0.023
2S 0.071 0.047 0.033 0.023
2S-ext 0.071 0.047 0.033 0.023
Correct 0.056 0.036 0.025 0.018
UN 0.0 0.0 0.0 0.0
UN-ext 0.0 0.0 0.0 0.0
o JT 0.1 0.0 0.0 0.0
§ JT-ext 75.0 49.7 19.8 2.1
z CF 100.0 100.0 100.0 100.0
O  CF-ext 100.0 100.0 100.0 100.0
2S 100.0 100.0 100.0 100.0
2S-ext 100.0 100.0 100.0 100.0
Correct 94.1 94.5 94.1 94.0

Table 1: Summary of the conventional Bayesian estimates of 7 under a normal exposure.
The rows correspond to mean bias of the point estimates, RMSE and the coverage rates
of the posterior 95% credible intervals of 7. Results over 1000 replicate data sets.

Here, we have focused on a Normally distributed exposure represented using a linear
model. Additional related results can be found in Supplement C.1. The binary exposure
case can be found in Supplement C.2.

Estimation via the Bayesian bootstrap

The results demonstrate that model mis-specification disrupts parametric Bayesian in-
ference. We repeated the analysis using the Bayesian bootstrap approach, restricting
attention to the cutting feedback and two-step estimation procedures. To implement the
cutting feedback procedure, recall that the Bayesian bootstrap produces a sample from
the posterior for a target parameter. In our analysis, we assume correct specification for
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the treatment assignment model, and so for the posterior for 7, (), we may either use
the exact posterior computed under a Normal assumption, or the Bayesian bootstrap.
Having obtained a sample of size L from this posterior, we then use the Bayesian boot-
strap to generate L posterior samples for 7, conditioning on the fitted value b; = ;7.
For the two-step method, we may proceed in the same fashion, but instead use b; = 7;7,
where 7 is the posterior mean derived from 7, (7).

These methods follow the conventional approach of separating the posteriors from
the two parts of the model. However, following the argument leading to (5.5), the correct
Bayesian approach retains the linkage of the two models via the common Dirichlet
weights noted in (5.3); that is, a single draw of weights w is used in the optimization
over v and the consequent optimization over (3, ¢, 7). This linkage reflects a Bayesian
non-parametric assumption concerning the full joint distribution of the observables.

For the treatment assignment model, we carry out analysis using the True propen-
sity score, and then compute m,(v) using a Parametric (logistic regression) analy-
sis, using the Bayesian bootstrap in an Unlinked fashion (via independent Dirichlet
weights in the two components of expression (5.5)), and in a Linked fashion using a
single Dirichlet draw. For the outcome model, we use a least-squares optimization for
the Bayesian bootstrap sampling of (3, ¢, 7). The analyses were conducted in 1000 repli-
cate data sets, using 1000 Bayesian bootstrap draws for each replicate. For each data
replicate, we compute the RMSE of the Bayesian posterior estimates; coverage rates
were computed by constructing, for each replicate data set, posterior sample quantiles.

Results are presented in Table 2, for the same data generation and estimation pro-
cedures as described above. All of the methods were unbiased in large sample, although
the CF method showed a small bias as discussed in Supplement B.3 when n was small,
and also larger variability. In terms of RMSE, the two-step methods generally performed
best. Coverage at the nominal level was recovered for the two-step method in a Linked
analysis, as suggested by the theory studied in Section 5.

7 Discussion

When causal inference is the aim of a statistical analysis, control of confounding is an
essential consideration. If an outcome model can be correctly specified or flexibly ap-
proximated, causal inferences may follow with or without the use of propensity score
methods. However, when it is not possible to correctly capture the outcome process,
propensity score methods can be very valuable, particularly when the treatment allo-
cation process is easier to characterize. A joint modelling approach to the estimation
of the propensity score and outcome model parameters can result in feedback from the
outcome into the propensity score which prevents the estimated propensity score from
providing balance, thus resulting in biased estimators of the treatment effect. Tech-
niques aimed at cutting feedback have been suggested; we recap the reasoning as to
why a Bayesian two-step approach, rather than one that cuts feedback is the correct
approach to pursue, even if in large samples, a cutting feedback approach can provide
adequate results. We demonstrated that the standard Bayesian two-step estimator re-
sults in poor frequentist performance, but shown that this can be rectified by using the
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n
Outcome 7, (7) 200 500 1000 2000
PS True 0.417 0.272 0.194 0.132
PS-ext True 0.214 0.143 0.096 0.069
CF Parametric 0.093 0.056 0.035 0.024
CF-ext Parametric 0.084 0.052 0.035 0.023
2S Parametric 0.073 0.048 0.032 0.023
E}i 2S-ext Parametric 0.072 0.047 0.032 0.022
E CF Unlinked BB 5.487 3.518 2.532 1.757
CF-ext Unlinked BB 0.083 0.052 0.034 0.023
2S Unlinked BB 0.078 0.050 0.033 0.022
2S-ext Unlinked BB 0.072 0.048 0.032 0.022
2S5 Linked BB 0.071 0.047 0.032 0.022
2S-ext Linked BB 0.071 0.047 0.032 0.022
PS True 94.2 94.0 95.0 96.0
PS-ext True 93.1 92.8 94.1 94.8
CF Parametric 100.0 100.0 100.0 100.0
CF-ext Parametric 100.0 100.0 100.0 100.0
) 2S Parametric 100.0 100.0 100.0 100.0
g 2S-ext Parametric 100.0 100.0 100.0 100.0
Z CF Unlinked BB 96.5 95.3 94.1 95.1
O  CF-ext Unlinked BB 100.0 100.0 100.0 100.0
2S Unlinked BB 100.0 100.0 100.0 100.0
2S-ext Unlinked BB 100.0 100.0 100.0 100.0
2S Linked BB 94.2 92.8 94.7 94.1
2S-ext Linked BB 94.2 92.8 94.7 94.1

Table 2: Summary of the estimates of 7 under a normal exposure using the Bayesian
bootstrap in the outcome model, and different approaches to the propensity score model
parameters posterior: True indicates the true value of v is used in the propensity score
(PS) regression model; Parametric indicates a parametric Normal model is used; Un-
linked indicates that the posteriors for v and (8, ¢,7) were computed using separate
Bayesian bootstrap computations and different Dirichlet weights (Unlinked Bayesian
bootstrap, UBB); Linked (LBB) indicates that common Dirichlet weights were used in
the two model components. Rows correspond to RMSE and the coverage rates of the
posterior 95% credible intervals. Results over 1000 replicate data sets, using the same
data generation and models for estimation as in Table 1.

Bayesian bootstrap with linkage between the two component models, yielding a fully
Bayesian procedure with good frequentist properties.

Our argument is based on the realization that the causal analysis is carried out
under conscious mis-specification of the Bayesian model, and develop the framework
reflecting the literature on Bayesian analysis under mis-specification (Walker, 2013) in
the causal problem. The causal setting gives a concrete example where inference under
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a mis-specified model — that is, where the target of inference is not a parameter in the
data generating model — is actually the objective. Methods that posit the capability of
recovering the correct components of the outcome model using flexible modelling with-
out reference to the propensity score also provide valid routes to inference about this
target, but these methods often carry a heavier computational burden. There are also
links to modularized Bayesian inference (Bayarri et al., 2009; Jacob et al., 2017) which
also depend on a ‘conscious mis-specification’ formulation, and in the causal setting (the
main examples and the examples in Supplement A.2) existing frequentist semiparamet-
ric theory can give insight into the operating characteristics of such Bayesian analyses;
see Pompe and Jacob (2021) for initial explorations in this direction.

The Bayesian bootstrap described in Section 5 relies on the limiting Dirichlet process
specification with « — 0, although equation (5.1) indicates that a more general model
with a > 0 can be deployed. In the inference methodology described in Section 4.1, the
requirement is simply to be able to sample independently from the posterior predictive
distribution, where that distribution is consistent for the data generating process; this
can be achieved by statistical procedures beyond those based on the Dirichlet process.
In this paper, we have considered loss functions derived from parametric target models,
corresponding to the loss functions in (5.5). The propensity score (nuisance) model is
parameterized by -, and for consistent estimation using propensity score regression, this
model must be correctly specified up to parametric form. If this correct specification
holds along with the standard causal assumptions, frequentist theory confirms that
estimation of this nuisance model does not perturb the consistency of the Bayesian
estimator, or the approximate Normality of the large sample posterior distribution, for 1
under the Dirichlet process model for the observational data process. The result is more
complicated if the nuisance model (loss function) is represented non-parametrically, and
care must be taken to ensure that convergence of the posterior for 1 is preserved if the
nuisance model is estimated at a slower than parametric rate. Results in this direction
are available following the procedures laid out in Ghosal and van der Vaart (2017), and
we will report on them elsewhere.

We have not discussed propensity score matching methods in detail. Such methods
have been deployed successfully (Liao and Zigler, 2020) by using the propensity score to
create a matched sample of treated and untreated individuals. The principles outlined
in this paper suggest that matching on an estimated propensity score, rather than aver-
aging over the posterior distribution of the propensity score parameters, would provide
superior inference, although this would arguably depend on the matching criterion used.
This is an interesting direction for future research.

Supplementary Material

Supplementary Material for Causal inference under mis-specification: adjustment based
on the propensity score (DOI: 10.1214/22-BA1322SUPP; .pdf).
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Invited Discussion

Pierre E. Jacob* and Christian P. Robert!

We congratulate the authors for a stimulating article that touches upon many timely
topics. Two-step procedures are standard in econometrics (Pagan, 1984; Murphy and
Topel, 1985) but have only been taken seriously more recently in Bayesian inference
(Liu et al., 2009) and remain surprisingly controversial, possibly because they clash
with the plan of setting up a joint distribution on all observed and latent quantities and
then simply conditioning on all observed data. Let us re-introduce a concrete example
from Section 6 of the article. Triplets (z; 1, 2; 2, %;,3) are sampled independently for all
i = 1,...,n, from a Normal distribution, and rows of covariates are constructed as
@i = (1,41, %52, %33, Ti1 - Ti2, Ti1 - T53,T52 - Ti3,Ti1 - Tij2 - T33). The two modeling
stages are:

8
i — Ly z,t ’ 2,1 ) )
(first stage) z; =z;v+e€,; for y€R®, ¢,; ~Normal(0,1)
(second stage) y; = fo+ ¢ (ziy) + T2 +€y; for [o,é,7€R, €,,; ~ Normal(0,1).

The coefficient of interest 7 can be interpreted as the average treatment effect under
adequate assumptions. In the experiments the variable z is generated at the first stage
using a certain parameter 7°, and then y is generated through y; = 1 + 52 + =1 + 22 +
a3+ bxexs + Normal(0, 1) so that the second stage is generally misspecified. The article
proposes an interesting comparison of the following approaches to infer 7.

1. Two-step without uncertainty propagation: at the first stage, inference on v is
made through a distribution 7, (v), for example using the Weighted Likelihood
Bootstrap (Newton and Raftery, 1994) which amounts to drawing Exponential
weights and solving a weighted least squares program. Then the distribution 7, ()
is summarized into the point estimator 4 defined as the mean of 7, (7). At the sec-
ond stage, inference is performed conditionally on {y = 4}, yielding a distribution

T (T[9)-

2. Two-step with uncertainty propagation (cutting feedback): at the first stage, v is
inferred through m, (7). Then draws v*) for £ = 1,..., L are obtained from m,, ()
and inference about 7 in the second stage is conducted conditionally on each ().
The overall inference on 7 is obtained by averaging over the L draws of 7, which
approximates [ 7, (7]y)m,(dy). This is different from a standard “joint model”
Bayesian treatment because, here, v is obtained independently of the outcome y.

*ESSEC Business School, Cergy, France, pierre.jacob@essec.edu

TCEREMADE, CNRS, UMR 7534, Université Paris-Dauphine, PSL University, Paris, France, xian@
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Advantage of not propagating uncertainty? The quantity of interest 7 can be inter-
preted as the average treatment effect as long as the scores b; = z;y used in the second
stage are “balanced”: the treatment level z; must be independent of the covariates x;
conditionally on b;. It is the case here if v equals the data-generating +°, but we can
only estimate v°. The authors rather surprisingly advocate the use of two-step without
uncertainty propagation, for example in Supplement B.3 of the article (“Finite sample
bias of the cutting feedback approach”), by making the argument that the variance of
draws from 7, () translates into a biased estimation of 7, as with generated regressors.
In passing, the authors do not justify the choice of the mean as a point estimator to
summarize 7, (7). Is there a justification for using the mean rather than the result of a
genuine decision-making process?

Both two-step strategies are based on plugging some ~ vectors that are close to 70 as
n — 00. The posterior mean 4 of the first stage would typically fluctuate with variance
of order n=!, and the variance of the posterior distribution 7, () is of the same order. It
appears important to take (first stage) sampling variability into account in order to draw
a principled comparison between the two-step approaches with respect to the bias that
they induce at the second stage. This is especially relevant from a Bayesian perspective,
whose main justification stands in a coherent representation of uncertainties associated
with parameters and other quantities of interest. Informally this first stage variability
is expected to translate into a bias of order n~! for 7, which becomes negligible in the
overall mean squared error at the second stage as n — oo. Is this also expected by the
authors?

Prior information An appeal of a Bayesian approach is the possibility of using prior
information to improve performance in small samples. Informative priors could reduce
the variability of the inferred ~ at the first stage, and thus mitigate bias in the second
stage. There might also be some available information on sign and magnitude of 7.
The possibility of using prior information could be a reason to go for Bayesian causal
inference over more traditional methods. Li et al. (2023) discuss the choice of prior in
general causal inference settings. It would be interesting to read the authors’ view in
the specific setting of this article, e.g. on the interplay between prior choices and finite
sample bias. In the numerical experiments it appears that the authors have experimented
mostly with fairly vague Normal/Inverse Gamma or flat priors.

Weighted Likelihood Bootstrap As described in the article and in Pompe and Jacob
(2021), the implementation of cutting feedback in a Weighted Likelihood Bootstrap
manner (Newton and Raftery, 1994) involves choosing whether to use the same random
weights at both stages or to re-sample them independently (Linked or Unlinked Bayesian
Bootstrap in the article). Pompe and Jacob (2021) study the sampling variability of
such schemes and support the use of the same weights (Linked Bayesian Bootstrap)
here, as the data in both stages concern the same n individuals. It is unclear whether
Unlinked Bayesian Bootstrap should be considered here. Furthermore, the techniques
described in e.g. Lyddon et al. (2018, 2019); Pompe (2021) can accommodate prior
information. Pompe (2021) employs Edgeworth expansions to identify the impact of
the prior penalization and provides concrete guidelines for its choice; see also Section
3.3 in Pompe and Jacob (2021).



P. E. Jacob and C. P. Robert 665

References

Li, F., Ding, P., and Mealli, F. (2023). “Bayesian causal inference: a critical review.”
Philosophical Transactions of the Royal Society A, 381(2247): 20220153. 664

Liu, F., Bayarri, M. J., and Berger, J. O. (2009). “Modularization in Bayesian analysis,
with emphasis on analysis of computer models.” Bayesian Analysis, 4(1): 119-150.
MR2486241. doi: https://doi.org/10.1214/09-BA404. (63

Lyddon, S., Walker, S., and Holmes, C. C. (2018). “Nonparametric learning from
Bayesian models with randomized objective functions.” Advances in meural infor-
mation processing systems, 31. 664

Lyddon, S. P., Holmes, C., and Walker, S. (2019). “General Bayesian updating and the
loss-likelihood bootstrap.” Biometrika, 106(2): 465-478. MR3949315. doi: https://
doi.org/10.1093/biomet/asz006. 664

Murphy, K. M. and Topel, R. H. (1985). “Estimation and inference in two-step econo-
metric models.” Journal of Business € Economic Statistics, 3(4): 88-97. MR1940632.
doi: https://doi.org/10.1198/073500102753410417. 663

Newton, M. A. and Raftery, A. E. (1994). “Approximate Bayesian Inference with
the Weighted Likelihood Bootstrap.” Journal of the Royal Statistical Society. Series
B (Methodological), 56(1). MR1257793. doi: https://doi.org/10.2307/2346025.
663, 664

Pagan, A. (1984). “Econometric issues in the analysis of regressions with generated re-
gressors.” International Economic Review, 221-247. MR0741926. doi: https://doi.
org/10.2307/2648877. 663

Pompe, E. (2021). “Introducing prior information in Weighted Likelihood Bootstrap
with applications to model misspecification.” arXiv preprint arXiv:2103.14445. 664

Pompe, E. and Jacob, P. E. (2021). “Asymptotics of cut distributions and robust mod-
ular inference using Posterior Bootstrap.” arXiv preprint arXiv:2110.11149v2. 664


https://mathscinet.ams.org/mathscinet-getitem?mr=2486241
https://doi.org/10.1214/09-BA404
https://mathscinet.ams.org/mathscinet-getitem?mr=3949315
https://doi.org/10.1093/biomet/asz006
https://doi.org/10.1093/biomet/asz006
https://mathscinet.ams.org/mathscinet-getitem?mr=1940632
https://doi.org/10.1198/073500102753410417
https://mathscinet.ams.org/mathscinet-getitem?mr=1257793
https://doi.org/10.2307/2346025
https://mathscinet.ams.org/mathscinet-getitem?mr=0741926
https://doi.org/10.2307/2648877
https://doi.org/10.2307/2648877
https://arxiv.org/abs/arXiv:2103.14445
https://arxiv.org/abs/arXiv:2110.11149v2

666 Invited Discussion

Invited Discussion

Joseph Antonelli*

I would like to congratulate Stephens, Nobre, Moodie, and Schmidt (hereafter SNMS)
on a very interesting article that addresses many issues relevant to the Bayesian analysis
of propensity score approaches. This is an area of research that has seen extensive at-
tention in the recent literature as a Bayesian treatment of propensity scores comes with
additional complexities relative to analogous frequentist counterparts. Various compli-
cations such as model feedback between the treatment and outcome model, whether and
how to account for propensity score uncertainty, or the difficulty in performing Bayesian
inference for estimators that are not likelihood-based have been studied, among others
(McCandless et al., 2010; Kaplan and Chen, 2012; Zigler et al., 2013; Saarela et al.,
2015; Liao and Zigler, 2020). For a recent review of these issues, see Antonelli (2023).
SNMS do a very nice job of reviewing these important issues, and subsequently study
how to perform Bayesian inference when one includes the propensity score in an out-
come model. I think their solution to this problem is elegant, and helped to clarify
certain issues that arise in the Bayesian analysis of propensity scores. I was particularly
intrigued to see that existing, intuitive approaches such as the two-stage or cutting
feedback approaches can lead to poor inferential properties. The authors nicely address
this drawback with a justifiable and well-motivated approach to inference.

In this discussion I touch on three main issues relevant to the manuscript and the
related literature. I will first describe different approaches to Bayesian causal inference
and how they differ with the proposed work. I will then relate the methodology pro-
posed in the manuscript to existing, frequentist resampling techniques to uncertainty
quantification, which can provide insight into when and how the proposed procedures
will be expected to work well. Lastly, I discuss different forms of model misspecification
and their importance to Bayesian causal inference problems.

1 Different notions of Bayesian causal inference

Bayesian causal inference can mean a number of different things with respect to how
Bayesian inference is utilized to solve causal inference problems, and I think it is im-
portant to first discuss their differences and relative merits. One approach to Bayesian
causal inference that dates at least as far back as Rubin (1978) is to explicitly model the
joint distribution of the potential outcomes and impute the missing potential outcomes
from their posterior distribution. Related approaches have been useful for a wide range
of estimands, such as those defined by principal strata, where a Bayesian approach
to updating the joint distribution of potential intermediate variables is natural (Jin
and Rubin, 2008; Schwartz et al., 2011). Another branch of Bayesian causal inference
utilizes traditional frequentist estimators of causal effects, but incorporates Bayesian

*206 Griffin-Floyd Hall, P.O. Box 118545, Gainesville, FL 32611-8545, jantonelli@ufl.edu


mailto:jantonelli@ufl.edu

J. Antonelli 667

modeling of certain unknown quantities such as the propensity score or outcome regres-
sion model, among others. Interest in this methodology stems from the desire to use
uniquely Bayesian tools such as nonparametric prior distributions or Bayesian model
averaging, among others. Additionally, Bayesian approaches to inference can be much
easier in certain difficult settings, such as those with spatially correlated data or high-
dimensional predictor spaces. Some approaches in this framework have aimed to perform
fully Bayesian inference with these estimators (Saarela et al., 2016), while others have
performed explicitly frequentist inference while trying to incorporate beneficial features
of Bayesian modeling (Shin and Antonelli, 2023). The approach taken by SNMS repre-
sents a third distinct branch of Bayesian causal inference that is rooted in exchangeabil-
ity of the observable quantities, where different estimators of causal effects are defined
as those that minimize the Bayes risk under a particular loss function.

Operationally, each of these approaches to Bayesian causal inference (and others not
discussed above) are quite different and it is difficult to make connections between them.
Despite this, I believe that they are all similar in their core purpose, which is to utilize
Bayesian machinery to obtain estimators of causal quantities with improved operating
characteristics, such as root mean squared error (RMSE) or coverage. While critics
have debated whether some of these approaches are truly Bayesian or not, ultimately it
does not matter. Whether something is fully Bayesian, approximately Bayesian, or not
Bayesian at all is irrelevant and not worth debating. All that matters is whether the
proposed methodology leads to estimators with desirable and well-understood operating
characteristics. In my view, Bayesian inference can help in this regard in many situations
and it is therefore important to understand how Bayesian inference can help address
problems in causal inference. I applaud SNMS in this regard, as they motivated an
estimator through the Bayesian paradigm in order to come to an inferential strategy
with good properties, which should be the main goal to begin with.

2 Connection to existing resampling techniques

One aspect of the article that I found particularly interesting was that even though
the proposed framework was motivated entirely through Bayesian decision theory, it
ultimately led to an inferential procedure with close ties to frequentist resampling tech-
niques. The posterior distribution that one obtains from the linked Bayesian bootstrap
procedure is extremely similar to the bootstrap distribution one would obtain if using
frequentist inference and the nonparametric bootstrap. The main difference is in the
construction of the weights assigned to each of the n data points. Whereas the Bayesian
bootstrap assigns weights (w1, ...,w,) ~ Dirichlet(1,...,1), the nonparametric boot-
strap would assign weights w; = M;/n with (M, ..., M,) ~ Multinomial(n,1/n,...,
1/n). For an in-depth discussion of the differences between these two, see Rubin (1981).
Ultimately, however, these differences are minor as the weights have the same expecta-
tion, and inferences from the two should lead to similar conclusions. I also found the idea
of using the Dirichlet process to approximate the distribution of the observed quantities
very interesting, as this would represent something of a balance between the parametric
and nonparametric bootstraps for inference, possibly inheriting the benefits of both.
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This connection to frequentist resampling strategies leads one to consider when the
proposed approach is most useful. The nonparametric bootstrap helps to perform infer-
ence in a wide range of statistical models, but can not be applied universally. The boot-
strap does not work well for more complex situations such as certain high-dimensional
or nonparametric models (El Karoui and Purdom, 2018). Would the proposed linked
Bayesian bootstrap suffer in the same situations? My intuition is that it would, which
is not necessarily a negative feature of the proposed approach as inference is inherently
challenging in these settings. One of the benefits of the Bayesian paradigm, however,
is to be able to provide inference in these more difficult settings through the poste-
rior distribution of the unknown parameters. Additionally, many of the commonly used
Bayesian modeling tools that are utilized in the causal inference literature are nonpara-
metric Bayesian models that help to reduce model misspecification. It is unclear how
these models could be incorporated within the framework presented by SNMS as they
can not necessarily be solved as solutions to optimization problems for every sample
of the linked Bayesian bootstrap. One question I have for the authors is whether the
proposed framework only applies to fully parametric models, and if so, what advantages
does the proposed framework provide over finding frequentist point estimates for these
parametric models and performing inference with the nonparametric bootstrap, which
also does not make any assumptions about the data generating model?

3 Role of misspecification and nonparametric modeling

Throughout the manuscript, SNMS refer to misspecification from a Bayesian model-
ing perspective where the data generating model is misspecified. This is useful in the
manuscript and helps to elucidate inferential issues that arise when including a propen-
sity score in a Bayesian analysis. This is a somewhat different notion of misspecifica-
tion than what is typically seen in the causal inference literature, where misspecifica-
tion would lead to inconsistent estimators of the estimand of interest. In the present
manuscript, this would be a situation where the propensity score model is misspecified,
and one would obtain biased estimates of the treatment effect regardless of the infer-
ential strategy used. The estimation strategy proposed by SNMS separates the data
generating model from the alternative target model, which helps to delineate these two
different sources of misspecification. On one hand, the alternative target model can be
misspecified, which would lead to inconsistent estimation. On the other hand, the data
generating model can be misspecified, even if the alternative model leads to consistent
estimation, which can lead to incorrect inference. This provides insight into why the
cutting feedback and two-stage approaches over-estimated uncertainty in the simula-
tion study and why those approaches don’t lead to correct inferential procedures. I
found this aspect of the manuscript interesting and insightful, and it naturally leads me
to think about the role of flexible modeling in both of these sources of misspecification.

At various times in the manuscript, SNMS acknowledge that flexible outcome mod-
els are also useful for avoiding misspecification, though they state that these can be
problematic at times due to a higher computational burden or the fact that they can-
not estimate the causal effect of interest in all cases. While these statements are true, I
do not think that the computational burden for these approaches is a huge concern, and
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they can be used in a wide range of settings (Linero and Antonelli, 2023). Additionally,
Bayesian nonparametric approaches need not focus solely on estimation of the condi-
tional mean of the outcome, as they can be used for propensity score estimation (as
SNMS notes) or modeling of the full joint distribution of observable quantities, which
can be helpful for missing data imputation or estimation of more general treatment
effects (Roy et al., 2018). Additionally, they have been shown to work well in recent
data analysis competitions, likely because of their robustness to model misspecification
(Dorie et al., 2019). The point I want to emphasize in this discussion is that I believe
nonparametric Bayesian methods can be used to alleviate issues from both types of mis-
specification discussed above. Certainly, nonparametric Bayesian modeling of outcome
regression or propensity score models would reduce bias due to model misspecification,
but they also reduce the impacts of Bayesian misspecification as discussed by SNMS.
The main issue discussed in the manuscript is that the target model used to estimate
the causal effect does not represent the true data generating mechanism, and therefore
a posterior distribution for that model that does not account for this conscious misspec-
ification will lead to incorrect inference. If, however, our target model used to estimate
and perform inference on the treatment effect is a nonparametric Bayesian model, then
it would mostly avoid issues due to conscious misspecification as it would model the
data generating mechanism directly. This would therefore lead to estimators with good
estimation performance (bias, RMSE, etc.), but also good inferential performance as
well (coverage).

4 Summary

The methodology developed by SNMS provides an elegant and simple solution to a dif-
ficult problem of including propensity scores into Bayesian causal inference approaches.
Understanding the different ways in which misspecification can affect a causal analysis
is an important question, and a better understanding of these issues will help alleviate
misspecification in the future. Moving forward, I would be curious to see how the pro-
posed methodology can be combined with existing, powerful Bayesian tools that have
proven so useful for causal inference problems.
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Invited Discussion
P. Richard Hahn*, Andrew Herren*

1 Main critique

We thank the authors and the editors for the opportunity to comment on this manuscript
and congratulate the authors on an ambitiously creative paper. Broadly, the authors
consider the problem of how one ought to think about combining information from both
an outcome regression model Y | X, Z and a treatment, or propensity, model Z | X.
For clarity, we will consider a parametric setting so that the previous two models have
density functions f(y | x, 2,60, 7) and p(z | z, ) respectively. As parametrized here, only
the outcome model plays any role in estimating the treatment effect, supposing that
the priors over (0,7) and 7 are independent. However, as discussed in Zigler (2016)
and Hahn et al. (2018), any reparametrization with shared parameters between the two
likelihoods implies that the propensity model can indeed influence posterior inferences
regarding the ATE. Why might this be desirable? Simply because a correctly specified
joint likelihood provides more/stronger information about the unknown parameters than
the conditional outcome model alone.

Of course, correctly specified is always a big ask. Much of the previous literature
on this problem focuses on methods that prevent a misspecified propensity model from
screwing up inferences when paired with a correct outcome model, while still retaining
the efficiency benefit when the treatment model is specified correctly. However, it should
be emphasized that a joint model is not necessary for ATE estimation, provided that the
outcome model is acceptable. Given the availability of performant and highly flexible
nonlinear regression models (Krantsevich et al., 2023; Hahn et al., 2020; Woody et al.,
2020), this seems to us a worthy approach that was dismissed far too hastily in the
paper.

Conversely, the present paper’s animating concern is that the outcome model it-
self might be misspecified, while a correct propensity model is at hand; in that case,
how might we proceed? In some ways this is an evergreen approach, and has moti-
vated considerable work in the econometrics literature (Morgan and Winship (2015);
Chernozhukov et al. (2018)). The same basic ideas underlie much of this work, and are
implicit in the present paper as well. In the case that the true outcome model is linear in
the treatment variable Z, it is enough to consider a linear regression on E(Z | X) = b(z).
The authors cite Robins et al. (1992), but it is instructive to pause and consider why
this works. Throughout this note we will assume the following structural model, which
is linear in Z:

Zi = b(Xi) + &,

Y; = p(Xa) +7(Xi) Zi + s, (1.1)

*Arizona State University, School of Mathematical and Statistical Sciences, Tempe, Arizona,
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where b(+), u(-) and 7(-) are possibly nonlinear functions of X and both error terms are
exogenous (i.e. independent of all elements of X and Z as well as one another). First,
rewrite the structural model as

Y = u(Xi) + 7(X0)b(X3) + 7(X;) (Zi — b(X5)) + e,

noting that e; = Z; —b(X;) is exogenous. Letting 5y+31b(X) denote the linear projection
of BE(Y | Z) = u(X;) + 7(X;)b(X) onto b(X), the model may again be rewritten, giving

Y; = Bo + B1b(Xi) + R(X;) + 7(Xs) (Z; — b(X3)) + €y

where R(X) = pu(X) + 7(X)b(X) — Bo — £1b(X) is orthogonal to b(X) and mean-zero
by construction.

Next, recall that a linear regression of Y on b(X) and Z is equivalent to first sepa-
rately regressing both Y and Z on b(X) and then regressing Y — Y, on Z — Z, (Frisch
and Waugh (1933), Yule (1907)). This implies that the resulting regression coefficient
estimates

Cov(T(X)(Z = b(X)) + R(X)+¢,Z —b(X))  Cov(r(X)e + R(X),¢)
Var(Z — b(X)) B Var(e)

= E(r(X)),

(1.2)
where an application of the law of total covariance, conditioning on (7(X), R(X)), gives
the final equality.

The authors embrace this misspecified-but-consistent linear regression and proceed
to develop a rather elaborate method for a pseudo-Bayesian estimator based upon it,
bringing in ideas from Gibbs posteriors (Jiang and Tanner, 2008) and Bayesian boot-
strap approximations (more on which to come). Though there is much interesting to
discuss regarding those specific choices, the fundamental issues can be considered in
a more traditional Bayesian modeling framework, which we lay out in the following
subsection.

1.1 Towards Bayesian “double robustness”
Consider yet another reparametrization of our linear-in-Z structural model:
E(Y | X,2,b) = fo + fib(X) + a(X) + 7(X)Z, (1.3)

where
a(X) = p(X) — Bo + B1b(X).

With flat priors on 8y and 1, this model can estimate the ATE even if a(X) is ag-
gressively shrunk towards zero and 7(X) is aggressively shrunk towards an unknown
constant. Such a parametrization is something approaching Bayesian double-robustness,
without the need for intentional model misspecification. In particular, when a(X) and
7(X) are extremely complex and b(X) is relatively simple, the prior bias towards sim-
pler forms may well dominate the outcome model and ATE estimation will implicitly
rely primarily on the linear term. Conversely, if b(X) itself is quite complex, it may be
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regularized towards a constant and relatively simple estimate of a(X) and 7(X) may
drive the estimation. In general, in highly confounded causal effect estimation problems,
regularization can have an outsized impact on finite-sample performance, and the diffi-
culty of estimating b(x) is at least as challenging as estimating the outcome model. In
this regard, the aesthetic appeal of a misspecified-but-consistent linear regression model
may be statistical fool’s gold.

Finally, we wish to emphasize that all of the above argumentation has concerned
only the mean functions; indeed, this is what makes ordinary least squares (OLS) so
powerful even in misspecified settings. (Notably, the above derivations work out even
for binary Z.) However, we urge that there is substantial middle ground between fit-
ting a Bayesian bootstrap to a linear regression optimization function and fitting a
fully-specified nonparametric Bayesian model. Specifically, tree-based mean regression
models with Gaussian errors have proved to be exceptionally capable in problems where
misspecification is of concern. That said, we thank the authors for inspiring this line
of thought about orthodox Bayesian double robust parametrizations and we plan to
explore a linear-in-b(x) offset in the next version of our software (Krantsevich et al.,
2023).

1.2 Critique of the simulated example

Above, we claimed that the magnitude and complexity of 7(x) and/or u(x) relative
to b(x) will determine whether the proposed approach outperforms alternatives. Let
us examine this claim in light of the paper’s simulated demonstration. The authors
present a detailed simulation study comparing several of the approaches to treatment
effect estimation discussed in the paper, including their proposed method that uses the
Bayesian bootstrap. Their data generating process (DGP) is as follows

2

-1 p’ Pt
X1, X2, X3~ N 2,10 A P
0.5 p2 pl PO

Z ~ N (b(X),1)
Y ~ N (u(X) + Z7(X),1)
(X)=1-X1+Xo+2X3 — X1 X2 +2X0X3
,U,(X) = 1 +X1 +X2 +X3 +5X2X3
T(X)=5
They set p = 0.8 so that the covariates are all highly correlated. One striking aspect
of this DGP is the difference in magnitude of the components of the outcome model,
where 7(X)Z swamps u(X), as seen in Figure 1. In this case, the outcome component
which is directly estimated in the authors’ method, E [r(X)], accounts for a large share

of the total outcome variance and the simulations show that the method attains a low
RMSE and high coverage.

Consider instead a scenario in which the magnitude of u(X) is substantially larger
than that of 7(X)Z. This is especially plausible in health and social science settings
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Figure 1: Comparison of u(X) and 7(X)Z.

where outcomes such as blood pressure, test scores, or T cell count are governed by
many complex mechanisms. The OLS estimator 7 in the linear model

Y=0X)p+Zr+v

identifies F [7(X)] per the discussion in Section 1, but its variance depends on the vari-
ance of p(X) which is omitted from the model. We see in simulation studies that the
variance of 7, and thus its RMSE, increase in direct proportionality to the variance of
1(X). Eventually, concerns about the bias of a misspecified outcome model are out-
weighed by concerns about the variance of a procedure that refuses to model p(X) or
7(X).

As a more general remark, we advocate that simulated data for evaluating causal
inference methods be generated with respect to a set of full structural equations rather
than in terms of a non-causal joint distribution; this aids in a degree of realism and
allows finer calibration of the relative sizes of various competing effects (strength of
confounding versus strength of the treatment effect, etc). It is also explicitly permits
more exotic dependence structures that can cause problems for causal methods, such as
the presence of colliders (Greenland, 2003).

1.3 Jeffrey updates and Gibbs posteriors

The OLS-based approach that underlies the authors’ method is clearly well justified as
a point estimate, but the uncertainty quantification is less transparent. The authors cite
the very nice paper of Walker (2013) and provide some decision-theoretic arguments, but
generally speaking the proper interpretation of pseudo-likelihood based posteriors is an
open question. Here, we would like to point out some not-widely-known connections for
readers interested in learning more about the conceptual challenges and some technical
issues related to the use of loss-based likelihoods in a quasi-Bayesian setting.

There are many information-theoretic justifications of pseudo-likelihoods; see for
example Zhang (1999) and Zhang (2006) in addition to Walker (2013). However, none of
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these commonly-cited expositions speak to the interpretation of the resultant posteriors
from the perspective of subjective probability. Surprisingly, work on this perspective
on loss-based likelihoods originates instead in the philosophy literature, specifically the
fascinating work of Richard C. Jeffrey. Jeffrey (1965) proposed a process for updating
subjective probabilities that generalizes conditional probability. The procedure is to
partition the space and to reweight each element of the partition while keeping the
relative probabilities within each element unchanged. In effect, the idea is to decompose
probabilities using the law of total probability and then to (subjectively) change the
weights on each conditional term. In symbols,

Pr(A) = ZP(A | E5)P*(E;)

J

where P* indicates the modified probability and P(A | E;) the original probabilities.
When P*(E;) = 1 for some j, the Jeffrey’s update just gives the usual conditional prob-
ability. For instance, if our probability was over a finite collection of cars of different
makes, models, and years we might update our probability based on some information
that made it twice as likely as before that a car was a sedan. In this example, F; would
index an exhaustive set of mutually exclusive car types (e.g. minivans, coupes, pickup
trucks). Conditional on knowing the car type, the individual probabilities remain un-
changed, but the various groups of cars are reweighted according to the new evaluations
on the partition.

Jeffrey’s idea spawned a number of interesting papers, from the philosophical (Skyrms
(1987)) to the more mathematical (Diaconis and Zabell, 1982). However, his work ap-
pears not to have influenced applied data analysis so much, at least not explicitly. How-
ever, a Jeffrey’s update turns out to underlie a number of applied methods; we claim
without proof that Jeffreys’ (not Jeffrey’s!) substitution likelihood (Jeffreys (1998);
Lavine (1995)) and Hoff’s rank copula (Hoff (2007)) methods can both be recast as
Jeffrey updates.

Here we will show that Jeffrey updates show up twice in the present work, first
because the method of McCandless et al. (2010) is a form of Jeffrey update, and second
because loss-based likelihoods, or Gibbs posteriors (Jiang and Tanner (2008)) are Jeffrey
updates as well. We explain each in turn.

Consider the marginal posterior of target parameter 6 in a model with nuisance
parameter 7, based on data D = (X, Y, Z):

70| D)= [ 7(6.0] Dydn
(1.4)
= [#(@019.D)xt0 | D)

The approach of McCandless et al. (2010) is instead:

(0| D) = / 7(8 | 0, D)x*(n | X, Z)dn, (15)
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where 7*(n | X, Z) comes from the posterior of a model without regard to the observed
values of Y. The parallel with Jeffrey’s update is patent, and the “cutting the feedback”
justification seems pragmatic.

Gibbs posteriors, meanwhile, consider the sigma algebra induced over the parameter
space by measureable function L(6,Y) and fixed data Y. This can be achieved using
the formulation given in Diaconis and Zabell (1982), which takes a familiar form:

Pr'(fe A|Y) = /Pr(@ e A|L6,Y) =r)r*(r)dr,

where Pr(f € A | L(0,Y) = r) is derived from an initial prior measure and 7*(r) is
a density function favoring lower loss evaluations. This is a canonical Gibbs posterior
if p*(r) o exp (—1r), but a transformation of r would yield a Gibbs posterior for a
modified loss function in any case. Contrary to the previous example, the form of 7*(r)
here should give one pause, specifically the so-called “learning rate” parameter ; there
is little consensus (Wu and Martin (2023)) as to how to calibrate it despite it having a
large influence on the variance of the resulting posterior. In the present paper, A plays
a similar (reciprocal) role. Estimating such parameters as if they were parameters in a
traditional data model is common, such as in the asymmetric Laplace distribution for
quantile estimation (Yu and Moyeed (2001)), but the finite-sample implications of this
strategy are unknown to the best of our knowledge.

1.4 The Bayesian Bootstrap for ATE estimation

The authors propose using the Bayesian bootstrap as an approximation to a posterior,
incorporating sampled Dirichlet weights within an optimization algorithm. However,
because the optimization is based on a pseudo-likelihood anyway, the goodness of this
approximation is perhaps besides the point. Frankly, we remain unclear as to what the
Bayesian bootstrap was even supposed to be approximating. The OLS estimation prob-
lem used an estimate of b(z) that was obtained from a separately-fit propensity model,
making their approach a non-standard hybrid. Do the standard justifying arguments
work in this context? As a frequentist procedure there is little doubt, as the b(x) esti-
mate is presumed to be consistent and the OLS procedure is consistent for the ATE.
But what of the inference? We discussed above that the uncertainty measures obtained
from Gibbs posteriors are notoriously hard to parse, and here we have a Gibbs posterior,
partial Bayesian bootstrap method.

In our own work, we appreciate the importance of “relaxing” fully coherent Bayesian
models in the interest of fast estimators with favorable RMSE properties. However, it is
precisely such knowledge and experience which gives us pause in our evaluation of the
authors’ proposed method. The authors dismiss outcome modeling and then proceed
to construct their procedure without any clear exposition of the benefit of avoiding a
classical Bayesian approach. We are receptive to the ideas presented in this work and
glad to see more use of Gibbs posteriors in the literature, but we feel that this paper
should have better justified its particular flavor of non-standard Bayesian treatment
effect estimation.
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In a different vein, we would like to take the opportunity to mention a less exotic
role for the Bayesian bootstrap in causal inference, which is as a nonparametric way
to estimate a population average treatment effect (PATE). For a known treatment
effect function 7(z) = E(Y' —Y°? | X = z), the ATE is defined as [ 7(z)p(z)dz
where p(x) indicates the density function defining some target population. When it is
undesirable to estimate p(x) — and when is it not? — the Bayesian bootstrap offers
an alternative to simply falling back on the sample average treatment effect (SATE) as
an unbiased estimator of the PATE. In particular, rather than recording > | 17(z;)

i=17n
as the (-th posterior sample of the PATE, you instead record > ., wir*(x;), where
w® = (wi,...,w!) are vectors drawn independently from a unit Dirichlet distribution;

the posterior mean remains the same, but the latter approach has increased posterior
variance, as a (partial) reflection of the fact that p(z) is unknown. This rationale was
described to one of us by Antonio Linero in personal communications.

2 Final thoughts

In the end, composing this short comment took a great deal of time and thought, none
of which was wasted! But wrestling with the details of this paper at length did drive
home the fact that it involves several distinct “pivots”, each of which could be having a
separate effect on the method’s performance. As we see it, the proposed method consists
of making a series of choices:

1. How do I specify the propensity model?
2. How do I specify the outcome model?

3. How do I combine information from those two models to produce an estimator for
the ATE?

4. How do I actually compute that estimator?
As we see it, the authors answer these questions as follows:

1. Assume the correct model specification is known.

2. Avoid specifying a direct connection between outcome and covariates. Instead con-
struct a pseudo-model implied by a weighted least squares optimization problem.

3. Provide estimates of b(z) to our pseudo-model and estimate the parameter of
interest conditional on b(z) and z.

4. The Bayesian bootstrap.

The comparisons in the simulation study provide a look at how different choices
of the b(x) model and different implementations of the Bayesian bootstrap performed,
but not in a truly systematic way. This makes it hard to tell which of these nontrivial
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decisions is responsible for any observed performance differences, nor if some of them
work synergistically or antagonistically. As noted in Section 1.4, we feel it behooves the
authors to articulate why many of the above choices were made, ideally with comparisons
made to alternatives in the simulation study. We thank the authors once again for their
work and look forward to their rejoinder.
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Contributed Discussion”

Alejandra Avalos-Pacheco®*, Veronica Ballerini®, Matteo Pedone¥, and Peter Miiller|l

We would like to congratulate the authors for their work, which provides a fully Bayesian
approach for causal inference using propensity scores. The authors proposed an in-
teresting Bayesian decision-theoretic framework for inference under “conscious” mis-
specification. The authors show that their proposed Bayesian two-step approach, paired
with a Bayesian bootstrap, provided a fully Bayesian procedure with good frequen-
tist properties. The proposed approach fully accounts for uncertainty in the propensity
score model, propagating it to the posterior distribution of the object of inference. This
makes this contribution a promising framework for clinical trial design, particularly for
externally controlled trials (ECTs).

ECTs are efficient and ethical alternatives to Randomized controlled trials (RCTs)
that estimate the causal effect of a treatment by comparing the outcomes of an exper-
imental arm to a synthetic control arm derived from external data sources. We refer
to external data as non-concurrent sources of information, such as observational real-
world data (Electronic Health Records and observational studies) or completed trials.
Analyses deploying external data can significantly enhance the statistical power of in-
ference on the treatment effect (Viele et al., 2014), and enable more timely and accurate
decision-making, thus minimizing the risk of subjecting patients to ineffective or toxic
treatments (Avalos-Pacheco et al., 2023). Furthermore, ECTs hold particular value in
scenarios where RCTs are not feasible or not ethical, such as in rare diseases and emer-
gency situations (Rahman et al., 2021). However, it is crucial to properly account for
potential confounders in the statistical design of ECTs to avoid introducing bias into
the evaluation of the experimental treatment (Ventz et al., 2022).

Several ECTs have been proposed in the frequentist paradigm. For instance, Ventz
et al. (2019) introduced ECT designs using inverse probability weighting, matching,
direct standardization, or marginal structural (regression) models. Inference assumes
that the model is correctly specified. More recently in the Bayesian framework, Chan-
dra et al. (2022) proposed an ECT design based on a nonparametric Bayesian (BNP)
common atoms model. They set up two aligned mixture models for the treatment and
external control cohorts, allowing density-free importance sampling to create equivalent
populations, or alternatively nonparametric inference on the treatment effect. Inference
has an interesting interpretation as including cluster-specific propensity scores which
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can be estimated jointly with the desired treatment effect (since propensity scores are
not used in an outcome model joint inference is valid). This and other BNP approaches
avoid complications about model mis-specification because BNP models are “always
right” (in the sense of full prior support and — usually — posterior consistency).

Instead of avoiding or excluding model mis-specification Stephens et al. (2022) em-
brace it and provide an inference framework to coherently account for it, allowing to
leverage propensity score for inference in high-dimensional settings. Therefore, the ap-
proach proposed by Stephens et al. (2022) may be particularly appealing in the context
of ECTs, and its implementation would be straightforward.

Let «; = (241, ... ,glci,g)—r be a p-dimensional vector of observed pre-treatment covari-
ates for patient 4, s = 1,...,n. Let y; denote the response to the treatment of patient .
We restrict here our focus on binary endpoints, such as survival outcomes at 12 months
following enrollment, although other extensions, such as survival time outcomes, could
be easily implemented. We also consider a binary indicator z; to indicate if patient ¢ is
assigned to the experimental treatment, z; := 1, or comes from the externally controlled
arm, z; := 0. We test the hypothesis:

Hy:7<6, vs Hy:7>09,

where 7 represents the average treatment effect (ATE). We then model the data as:

i =1 iy Zi .

where 8 is a p-dimensional vector of pre-treatment coefficients, b(-) is the propensity
score estimated through a parametric model, and ¢ is the associated parameter. The
inference on model (0.1) would proceed following the approaches presented in Section
3.1 of the paper. Specifically, we would adopt a Bayesian decision-theoretic approach
that provides a framework for conducting inference under mis-specification.

Stephens et al. (2022) present a crucial contribution in the context of clinical trials
by offering a treatment effect estimate that is robust to mis-specification of the outcome
process, thereby avoiding the need to accurately capture the outcome model. Moreover,
this approach provides a natural measure of uncertainty derived from Bayesian boot-
strap methodology, key to control type I error rates. To this end, in-silico trials could
be easily simulated under the null hypothesis using posterior predictive sampling from
the entire model, including the marginal distribution of the pre-treatment covariates,
under the bootstrapping scheme proposed by Stephens et al. (2022).

In addition, to address potential mis-specification in the outcome model, our pro-
posed ECT implementation would ensure all of the benefits offered by the Bayesian
approach in clinical trials, including:

(i) monitoring studies through predictive probabilities (Berger and Berry, 1988);

(ii) providing more flexible tools for study design and analysis;
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(iii) incorporating expert knowledge and previous data through informative priors and
hierarchical models to account for complex patterns in the covariates;

(iv) quantifying the uncertainty of estimands and parameters (Berry et al., 2010).
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Francesco Bartolucci*, Stefano Peluso!, and Antonietta Mirat

We read with great interest the paper by Stephens and his colleagues and we congratu-
late them on the high quality of the proposed methods and their potential usefulness for
practitioners. One point that caught our attention is about the role of inverse weighting
based on the propensity score within the framework discussed in the paper.

Suppose that Y is a count variable affected by a binary treatment Z in the presence
of a covariate X and we want to perform Bayesian inference on the average treatment
effect (ATE) under the usual conditions of propensity score methods. Adopting the
standard notation, for the two potential outcomes Y (0) and Y (1) we assume a marginal
model based on a Poisson distribution with parameters Ao = exp(dg) and A\; = exp(d1),
respectively, so that the ATE is 7 = A — A\g. For the conditional distribution of Z
given X we adopt a logistic model with parameter vector + and likelihood based on the
observed data denoted by L(v). Finally, we assume that parameters v, g, and §; are a
priori independent with Normal distribution having mean 0 and large variance encoding
a vague prior belief. Given these assumptions, we can conceive a Markov chain Monte
Carlo (MCMC) algorithm that at the r-th iteration draws values of the parameters,

denoted by ~(7), 56”, (55”, and 7("), as follows:

1. propose a new value for v, denoted by v*, from a bivariate Normal distribution
centered on v("~1) and with variances equal to 0.01 and accept it with probability

(e
s =i (1 R 0y )

2. compute the propensity scores egle
weights wYZL, obtained by normalizing the quantities zi/el(-r) +(1—2)/(1- el(-r)),

i =1,...,n, so that their sum is equal to n;

on the basis of v(") and the corresponding

3. propose a new value of dy, denoted by &%, from distribution N (5"~ 0.0025) and
similarly propose d7; the proposed values are accepted with probability

* * '™ sy
_ . 71-(50)77(51)Hi:zi:Op(yip\O) ’ Hi:zizl p(yl‘)‘l) ! .
a5 =min|l, ——5 1) (D™ D™ |’
(g )m (61 )Hi:zizop(yip‘o )i Hi:zizlp(yip‘l )

4. compute 7(") = /\gr) — )\(()T).
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Figure 1: Estimated posterior distribution of the parameter 7 given the sample obtained
under assignment mechanism (z) with the “unweighted” MCMC algorithm (black curve)
and for the sample obtained under mechanism (i¢) with the “unweighted” (red curve)
and “weighted” (green curve) MCMC algorithm.

We applied the above algorithm to data generated from a model in which, for
i=1,...,n, z; is drawn from a standard Normal distribution and y;(0) and y;(1) are
drawn from two Poisson distributions with mean exp(x;/5) and exp(x;/5) + 1, respec-
tively. Moreover, we considered two different treatment assignment mechanisms which
are: (i) pure randomization with each z; drawn from a Bernoulli distribution with pa-
rameter 0.5; (i4) randomization conditional on x; with each z; drawn from a Bernoulli
distribution with parameter exp(z;)/[1 4+ exp(x;)]. For a single sample of size n = 2000
obtained under design (i) we applied an “unweighted” version of the “weighted” MCMC
algorithm illustrated above where all w; are equal to 1; for the corresponding sample
obtained under design (i¢) we run both the “unweighted” and the “weighted” MCMC
algorithm. The three estimated distributions of parameter 7 are represented in Figure 1.
It clearly emerges that, under assignment (i), the “weighted” MCMC algorithm pro-
duces a distribution of 7 which is very similar to that produced by its “unweighted”
version under randomization, and then the first seems to properly correct the observ-
able confounding due to dependence on the covariates of the potential outcomes and the
binary indicator variable. We obtained similar results for other samples and scenarios.

Overall, the “naive” solution to perform Bayesian inference on the ATE here illus-
trated seems to work well in practice and to be of simple implementation; essentially, this
scheme mimics that adopted in frequentist inference. We would appreciate a comment
from the Authors on this solution in connection with their statements about inverse
weighting within Bayesian inference discussed in Section 3.2 of their paper.
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Rejoinder

D. A. Stephens*, W. S. Nobref, E. E. M. Moodie*, and A. M. Schmidt?

We would like to thank the Editor, Professor Steel, for the invitation to make our paper
a Discussion Paper in the journal. We would also like to thank all the Discussants for
their insightful comments; indeed this paper has benefitted from the ideas of the former
Editor, Professor Guindani, and the Associate Editor and Reviewers as it has passed
through the review process.

At the outset, the principal goal of this work was simply to establish which of the
several proposed methods for Bayesian causal inference that deployed the propensity
score (described in Section 3.1 of the main paper) was most appropriate, and if possible,
to verify that this procedure adhered fully to Bayesian principles. One very thought-
provoking comment that came up during review questioned what was meant by a ‘fully
Bayesian procedure’. This is an issue that still exercises us (as Bayesians from three
continents, albeit ones with strongly orthodox Eurocentric influences), but fundamen-
tally we regard ‘fully Bayesian’ to imply inference that uses probabilistic arguments and
prior-to-posterior updating using Bayes Theorem. This is relevant here as it is clear that
two of the methods of Section 3.1 have elements that are unorthodox (the cut feedback,
CF, and two-step, 2S, methods), whereas the apparently orthodox method (joint esti-
mation) gets the wrong answer when deployed in its most common form. The consensus
in the literature, arguably stemming from the work of Zigler et al. (2013) and Zigler
and Dominici (2014), and emphasized in Zigler (2016), is that the two-step strategy
that plugs in propensity score model parameters, v, into the linear predictor is the most
appropriate strategy when using propensity score regression. Our goal was to assess
the legitimacy of this consensus, to examine its Bayesian credentials, and to establish
the correct way to propagate uncertainty into inference (several procedures had been
proposed to perform this propagation, and on this point, there did not appear to be
any consensus). As noted at the end of Section 1, we consciously did not address other
competing and successful methods for performing inference in the causal setting, such
as flexible outcome regression (which attempts to avoid mis-specification altogether)
and matching (which adjusts for confounding in a different way). These methods were
not at all dismissed, but were simply not the focus of the paper. We note that there
are situations that arise in which outcome regression alone is insufficient as a procedure
for causal adjustment; we discuss this further below, in relation to the comments of
Avalos-Pacheco et al., and to some other models.

Before turning to more specific comments, we are indebted to Hahn and Herren for
their very interesting comments citing Jeffrey updating as a justification for the existing
modularized approaches that underpin the widely used Bayesian-like and generalized
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Bayesian inference procedures that our paper studies. To us, this is very insightful.
To this point we have not found the terminology ‘generalized Bayesian’ attractive for
methods such as the Gibbs posterior, as they lack a fully probabilistic implied model
for the observable quantities. However, as Hahn and Herren indicate, since Jeffrey’s rule
is accepted by many as a generalization of Bayes’s rule for updating probabilities, per-
haps the terminology is acceptable after all. This connection is likely a fruitful avenue
for much future research. We must admit that we are complete novices in the fields of
Jeffrey updating, Dempster-Shafer theory, and the processing of imprecise probabilities,
and therefore cannot comment intelligently on them. Instead, we simply re-iterate (and
give details below) that — for better or worse — our proposed solution, which is inspired
by a specific non-parametric analysis of a mis-specified model, falls fully within the con-
ventional Bayesian inference domain, and that the posterior distributions constructed
are standard Bayesian posteriors computed using Monte Carlo methods. It is puzzling
to us to read of them being referred to as ‘pseudo Bayesian’; perhaps the confusion arises
due to the inclusion of material related to, and some discussion of, the Gibbs posterior
approach in the appendix. We emphasize that although the Gibbs posterior can be a
productive tool, it is not problem-free, and we do not regard it as fully Bayesian, for
the reasons given above.

Antonelli also raises some important philosophical and practical questions concern-
ing the nature of causal inference from a Bayesian viewpoint. It can be persuasively
argued that modern interest in causal inference stemmed from the pioneering work of
D. B. Rubin, and that this work was explicitly Bayesian. The Rubin causal model de-
ploys the potential outcomes construction in a compelling formulation, and clearly lays
out the targets of inference that are typically based on expected differences in potential
outcomes under different treatment interventions. The construction, however, does not
readily lend itself to inference using likelihood-based procedures without reference to
missing data ideas. Although potential outcomes are useful for explanatory purposes,
our preference is to consider the contrasting ‘observational” and ‘experimental’” worlds.
In the former, the data are generated according to a probability distribution with full de-
pendence structure, including the confounding structures that render causal inferences
impossible without further adjustment; in the latter, a hypothetical distribution that
matches the observational distribution in many aspects but posits the independence
of treatment allocation and previously confounding variables, is considered. Bayesian
inference in the target (experimental) world, when the data are generated in the obser-
vational world, is therefore necessarily one that involves mis-specification. We do not
quite see the trichotomy of Bayesian modelling approaches that Antonelli identifies, as
the methods proposed in this paper align quite closely with those proposed in Saarela
et al. (2015, 2016), although we do agree that the specifics — regression modelling as
opposed to weighting — do differ a little.

Antonelli also asserts that the label attached to a particular type of analysis is not
of primary importance, and

“(w)hether something is fully Bayesian, approximately Bayesian, or not Bayesian at all is
irrelevant and not worth debating. All that matters is whether the proposed methodology
leads to estimators with desirable and well-understood operating characteristics.”
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This is perhaps somewhat provocative in a discussion of a paper in a journal entitled
Bayesian Analysis, but on one level we do not disagree. In de Finetti (1974), the author
makes the distinction between the Bayesian viewpoint as a foundation for inference,
underpinned by the coherence embedded in subjective probabilistic formulation, and
Bayesian techniques, that might be implemented in a specific analysis, and concludes
the latter “are no more trustworthy than any other tool”. That is, in the hands of an
analyst with a particular data set in front of them, a Bayesian analysis is as fallible
as analysis derived from any other sort of paradigm. Nevertheless, we contend that
if an analysis can be viewed as following Bayesian orthodoxy, then at least the rules
of probability are being followed, and certain well-established theoretical guarantees
concerning optimal decision making are available in finite sample rather than merely
asymptotically. A case in point in the propensity score setting is the handling of posterior
uncertainty associated with estimation of propensity score parameters v when reporting
posterior credible intervals for average treatment effect 7.

Returning to the methods proposed in the paper, in terms of procedures that deploy
the propensity score in regression, it is useful to recall the distinction between the exist-
ing methods. To recap, inspired initially by the joint model with posterior factorization
7n(0,7) = T (0 | ¥)Tn(7), we may proceed by first sampling vV, I = 1,2,..., L from
(), and then

Cut feedback (CF):  Sample 8,1 =1,2,..., L from 7,(8 | )

Two step (2S): Obtain summary 7
Sample 0,1 =1,2,..., L from T (0]7).

This ‘forward sampling’ approach to the cut feedback settings is possible in this par-
ticular model, but may not be possible for all cut feedback approaches. We argue in
the main paper that the joint model does not represent a correct implementation of the
propensity score regression model, as the balancing property of the propensity score
only holds at the true value vy and not an arbitrary value of ~.

The strategy advocated in the paper is based on the Bayesian bootstrap, which it-
self is based on a Dirichlet process posterior; the procedure represents the inferential
(epistemic) uncertainty concerning the unobservable observational distribution Fp in
a nonparametric fashion, and maps it to the required uncertainty for the parameter of
interest (the causal average treatment effect, ATE) in the experimental (unconfounded)
world by means of a deterministic transformation. As the prior-to-posterior mapping
for Fp is performed in a conventional, fully Bayesian fashion, the method can legiti-
mately be regarded as fully Bayesian; the posterior for the ATE is merely computed
as a functional of the posterior for Fp by transformation. For simplicity, recall equa-
tion (4.5) in the main paper, and imagine that the parametric posterior for § can be
sampled directly, and the integral with respect to s and the minimization over ¢’ can
be performed analytically; the calculation that yields the sampled variate 9 is then
merely a transformation.

The implementation of the proposed strategy in the context of the model of Robins
et al. (1992) is instructive in several aspects, and we reproduce it for clarity here, as
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well as to re-emphasize (in response to the comments of Hahn and Herren) precisely
what it is that the posterior calculation computes. The Robins et al. (1992) model has
special structure and what we learn from it may not be portable to other settings, but
for this case the general version of the proposed algorithm is implemented as follows:
forl=1,2,...,L:

(I) Sample Fg) ~ DP(ay,,G,), represented as
! ! 1
FY'(B) =Y w’15(0)")
j=1

parameterized by {(w](-l), og-l)),j =1,2,...,00}, a countable collection of weights

and ordinates, obtained by stick-breaking or other algorithms.

(IT) Produce a variate 7). by solving the maximization problem

70 = argmax 3w log fo(z,” 231 7)
j=1

based on the treatment allocation model.
O]

(ITI) Form the ‘fitted’ propensity score values b(a:j ), i =1,..., 00.

(IV) Produce variates (7(), () by solving the maximization problem
— DI 1
(0,60 = arg ?3%{2“’5‘ Mog f1(y" 127 (a5 v D); 7, 0)
)

based on the propensity score regression model.

This recommended ‘Linked’ algorithm retains a single set of probability weights sampled
in Step (I) for the two optimizations. The ‘Unlinked’ analyses most closely correspond
to the typical parametric analysis. In the limiting case of the Bayesian bootstrap, with
a — 0, all sums become finite, o, = n, and G, is the empirical measure, and the
procedure effectively coincides with the Newton and Raftery (1994) ‘weighted likelihood
bootstrap’ algorithm. The emphasis of much work on the Newton & Raftery algorithm
is on its large sample properties; in our paper, we emphasize that the procedure is an
exact Bayesian procedure in finite samples (up to Monte Carlo sampling), albeit, for
the Bayesian bootstrap, one that relies upon a non-informative prior specification.

As pointed out by Jacob and Robert, in our Table 2 the method listed as ‘Linked
28’ can be described equally well as a cut feedback (CF) method. The output of Step
(I1) is a sample from, and not a summary of, the posterior arising from the propen-
sity score module. The calculation matches that implied by equation (5.5) in the main
paper, and is what we reported as the Linked version of the 2S procedure. It provides
the correct ‘linkage’ between the two parts of the model, and correctly propagates the
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inferential uncertainty originating in the DP posterior to the marginal for the param-

eter of interest, 7. The procedure has two steps of optimization that implement the

deterministic mapping of F; g ) to 70 via plug-in, but it is perhaps misleading to refer to

it as a ‘25" method. Our use of this terminology arose from a difficulty in distinguish-
ing between ‘Linked’ CF and 2S methods; this distinction is clear for parametric and
‘Unlinked’ approaches where separate Bayesian bootstraps can be implemented for the
two model components. It is important to note this cut feedback ‘sample’ is not drawn
independently of the sampled value from the target parameter at Step (II). This Linked
version is our preferred method in all cases including the case of a binary treatment.
In a parametric analysis, the 2S method is preferred for the binary treatment case, but
it is certainly the case that a posterior mode derived from 7, () would often be supe-
rior plug-in quantity, at least in terms of finite sample bias; this is examined in some
simulations in the arxiv version of the paper https://arxiv.org/pdf/2201.12831.

Jacob and Robert also raise the issue of prior specification. Under the Dirichlet
Process formulation, there is an implied prior for all parameters in the targeted model
that can be computed (at least, sampled) by replacing posterior DP(«y,, Gy,) by prior
DP(ap,Gp) in Step (I) of the above algorithm. In the Bayesian bootstrap version,
the prior is improper, which is not wholly satisfactory. Including extra terms in the
utility function that act as log prior distributions is certainly possible. However, an
issue here concerns appropriate scaling of the two contributing terms. For example, in
the derivation of Section 5.3, the tailored function in equation (5.5)

up(0,9) = —log fi(ylx, z;91,95°") — log fa(z|x;V2)

may be augmented by a ‘prior’ term, ug(¥) = —logmg(9), reflecting prior opinion
about . If f; and fy are densities in y and z respectively, then no further consideration
of scaling is necessary. However, as indicated in equation (5.4), it may be attractive to
base the optimization on the quadratic function (y — b(x; 7°*")¢ — z7)? in which case it
should be noted that this corresponds to a specific choice of f; (Normal) with a specific
known scale parameter, that is, 0% = 1/2. As indicated in the Supplement, it is possible
to include the estimation of an unknown scale parameter in the estimation process: for
example, we might take

1 2

=~z (1= b7 g — 27)

OPT) 5
20%

log fu(ylz. 6,7 7%y - ozt

for the first component representing the mis-specified model, and optimize simultane-
ously over (¢,7) and oy; in this case, analytical solution of the optimization problem
is possible, and the posterior for oy in the mis-specified model can be computed. If f;
is replaced by a loss function that cannot be viewed as a density in y, then the scaling
of the loss function is arbitrary, and the incorporation of a prior distribution is more
complicated; this problem has now been extensively studied in the context of the Gibbs
posterior; see for example Syring and Martin (2018).

Hahn and Herren comment on the choice of parameters for the simulation studies,
and suggest that the magnitude of the treatment effect may lead to unrealistically good
performance of the Bayesian methods. The parameters were not chosen with a great
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degree of forethought (apart perhaps from the propensity score parameters in the binary
treatment cases, to ensure that the propensity scores were not too extreme, and that
there were no violations of positivity requirements) and were largely intended simply
to illustrate the methodology. In retrospect, the effect size 7 = 5 may appear quite
large, and the residual variances quite small. We note that Table C4 in the Supplement
does contain a simulation for binary treatment with no treatment effect whatsoever
(t = 0), which demonstrates that the performance of the linked Bayesian bootstrap
approach is still good in this case, although several of the other methods also perform
adequately. Additional comparisons are also contained in the arxiv version of the paper
https://arxiv.org/pdf/2201.12831, including some studies of performance in the
case of heterogeneous treatment effects. For a further check, we replicated the analyses
for Example 1, first setting 7 = 0, and then setting 7 = 1 and increasing the residual
variances for Y and Z to be 52. The conclusions did not change in any significant way.

Hahn and Herren also comment on simulation study design, and state that struc-
tural models should form the basis of such studies. We re-iterate that our objective
is to draw causal inferences (where this is possible) from observational data; the un-
derlying causal/structural/experimental model is only useful for identifying the target
parameter. In our simulations, where the observational model is a fully specified joint
distribution on all observables, the causal parameter matches precisely the parameter
in the (linear) outcome model studied by Robins et al. (1992). When possible, we prefer
to use ‘plasmode’ type simulations which generate synthetic outcomes (and potentially
treatments) from a structural model formed using real joint data structures from exist-
ing data sets of confounders, as these represent more realistic test scenarios — see for
example Alam et al. (2019).

Bartolucci et al. raise the issue of Bayesian causal inference using weighted likelihood,
with the posterior for z = 0, 1 derived as

Tn(Az) < mo(Asz) H [p(yi | M),

2=z

where, in the weighted likelihood case, w; = z;/e(zi;v)+(1—%)/(1—e(x;;7)). Relatively
diffuse prior distributions complete the Bayesian specification. Bartolucci et al. propose
a cut feedback MCMC approach to updating the (v, Ag, A1) parameters, and then the
average treatment effect is computed as 7 = A1 — Ag.

Weighted likelihood methods can be effective, as in the illustrative Poisson example,
but their use as a standard ‘fully’ Bayesian method is perhaps questionable, as the
weighted likelihood is not a proper likelihood. It is not straightforward to identify a joint
probability model (in the de Finetti representation) that yields the weighted likelihood.
Despite this, it is indeed the case that the proposed MCMC implementation of the mis-
specified Poisson model will produce a ‘posterior’ distribution that will concentrate at
the true value of the causal parameter as the sample size grows. There are well-known
drawbacks of inverse probability weighted approaches, the most significant being that
the weights themselves can be highly variable, which arises when the propensity score
values approach zero or one. However, the main advantage of inverse weighting over the
propensity score regression strategy advanced by Robins et al. (1992) is that it does not
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require correct specification of the model that quantifies the effect of treatment on the
outcome, merely correct specification of the propensity score model.

We implemented the analysis of the Poisson model using the principles established in
the main paper: we compare six approaches for four sample sizes n = 200, 500, 1000, 2000,
replicating 1000 times an analysis that produces L = 2000 sampled values from the pos-
terior for 7. The six methods are

I. Unweighted outcome model;

II. Weighted outcome model using a cut feedback approach (i.e., v sampled from its
posterior and used to form the weights w; at each iteration);

ITI. Weighted outcome model using a two-step approach (i.e., v sampled from its
posterior, then a posterior modal estimate formed, and used to form the weights
w; for use in the second step analysis);

IV. Linked Bayesian bootstrap based on the weighted Poisson loss,
—log f1(ylz, 2z X0, M) = w[A: —ylog A, +logy!]

and Dirichlet-weighted estimation of propensity score parameters, using a common
set of Dirichlet weights;

V. Unlinked Bayesian bootstrap based on the weighted Poisson loss, and Dirichlet-
weighted estimation of propensity score parameters, using a different set of Dirich-
let weights;

VI. Correctly specified outcome model.

In each case, the same priors (as specified in the comment) are used.

The weighted models IT to VI largely perform similarly in terms of bias and RMSE.
The parametric analyses based on weighted Poisson outcome models produce coverage
below the nominal level due to the mis-specification. The Bayesian bootstrap methods
exhibit better coverage and in this example, the unlinked version performs well. Note
also that in the linear outcome model without a heterogeneous treatment effect studied
by Bartolucci et al., we may write the structural model as E[Y,] = Ao + 7z and thus
propensity score regression can be deployed via our proposed non-parametric strategy.
A more conventional log link would be slightly harder to implement using a regression
approach, as discussed in the Supplement, but weighting methods are largely unaffected
by a change of link.

Avalos-Pacheco et al. raised the utility of implementing Bayesian propensity score
regression as presented in the main article in the context of externally controlled trials.
Returning to the discussion of contrasting a propensity score based approach to flexible
outcome regression, we note that while the latter approach can offer good performance
(RMSE, coverage), it is well-known that it is more difficult to assess whether balance
has been achieved — or positivity maintained — in an outcome regression analysis when
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200 500 1000 2000
Bias I 0.259 0.256 0.262 0.257
I | —0.014 -0.007 0.000 —0.001
11 0.005 0.003 0.000 —0.004
v 0.012 0.003 —0.001 0.000
\Y% 0.002 0.000 0.001 0.003
VI 0.001 0.004 —0.006 0.002
RMSE I 0.295 0.272 0.270 0.261
II 0.200 0.119 0.083 0.061
III 0.177 0.119 0.082 0.059
v 0.178 0.120 0.084 0.065
\Y 0.179 0.108 0.090 0.063
VI 0.127 0.088 0.060 0.043
Coverage 1 0.481 0.122 0.006 0.000
II 0.769 0.756 0.790 0.778
1T 0.711 0.712 0.697 0.672
v 0.912 0.922 0.932 0.945
\Y% 0.955 0.958 0.957 0.951
VI 0.965 0.943 0.955 0.948

Table 1: Analysis of Poisson model using weighting methods, and six possible strategies
for computing the posterior distribution. I: Unweighted, II: CF, III: 2S, IV: Linked BB,
V: Unlinked BB, VI: Correct.

the dimension of the confounders is moderate or large. Propensity score methods also
offer an advantage in settings where treatment is not uncommon, but the outcome is:
in such settings, there may be insufficient degrees of freedom to model the outcome
flexibly enough to avoid mis-specification, but sufficient numbers of both treated and
untreated individuals so that many confounders can be adequately (and in a univariate
fashion) summarized through the treatment model. Such a setting is typical of externally
controlled trials, which may be employed in rare disease settings where trial sizes are
limited. Natural extensions to this work to address loss to follow-up or other forms
of systematic imbalance can equally be applied in both randomized and observational
settings, as well as hybrid-settings such as externally controlled trials.

In addition to such situations where propensity modelling is advantageous, there are
settings where outcome regression cannot be readily implemented to estimate causal ef-
fects. Once such setting is detailed in the Supplement to the main paper, where multiple
treatments are given sequentially, with earlier treatments affecting later ones. To recap
the example, two binary treatments (Zi,Zs) are generated as X; ~ Normal(1,1),
Zy ~ Bernoulli(expit(—2 + X1)), and X9 ~ Normal(—3 + X1 + Z31,1) and Zy ~
Bernoulli(expit(2 — X5)) at the second stage, with outcome model Y ~ Normal(X; +
Z1 4+ Xo 4 Z5,1). Then the causal effect of intervening to set (Z1,Zs) = (21, 22) can be
captured by the linear model

E[Y (21,22)] = =1+ 221 + 22 = 9o + Y121 + 222
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say. However, the causal effect cannot be correctly estimated only by regressing the
observed y on the observed (z1, 21, z2, 22), however flexibly. Weighting methods can be
deployed, however, and were the focus of the Bayesian modelling in Saarela et al. (2015).

Ultimately, Hahn and Herren accurately characterize our proposed solutions to their
four questions; our intended contribution lies primarily in the domains of questions 3
and 4, concerning construction and computation of appropriate procedures to facilitate
Bayesian causal inference. The models we deploy are indeed simple and illustrative,
and in practice it is surely the case that more sophisticated modelling of the different
modules will be warranted. Antonelli raises the important issue of the behaviour of
flexible and non-parametric approaches in high-dimensional settings. For example, the
frequentist theory informs us that the estimation of the nuisance propensity model
needs to be carried out adequately, with consistency achieved at a fast enough rate,
for the plug-in strategy to yield consistency and asymptotic Normality of the estimator
of the target parameter. These issues do not disappear in the Bayesian version, and
there is a growing literature studying non- and semi-parametric Bayesian estimation of
nuisance components that goes well beyond the parametric versions given in our paper.
It is also the case that the Bayesian bootstrap implemented in the paper would require
amendment in more complex settings (for example, hierarchical, clustered or dependent
data). However, the principles that we attempted to advocate in the main paper that
aim to facilitate Bayesian inference under mis-specification still hold; we require a model
that can consistently estimate the data generating model, and then a procedure to link
the data generating model to the target approximating model. We re-iterate that the
causal setting, where data arising in the observational world are used to make inferences
pertaining to a hypothetical experimental world, provides a canonical example of where
this kind of approach is necessary.

Code for the examples in this Rejoinder, and in the Main paper and Supplement,
will be available on the GitHub repository https://github.com/mcgdas01/CIMBPS,
maintained by DAS.
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