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Distributed Computation for Marginal
Likelihood based Model Choice∗

Alexander Buchholz†,¶, Daniel Ahfock§,¶, and Sylvia Richardson‡

Abstract. We propose a general method for distributed Bayesian model choice,
using the marginal likelihood, where a data set is split in non-overlapping subsets.
These subsets are only accessed locally by individual workers and no data is shared
between the workers. We approximate the model evidence for the full data set
through Monte Carlo sampling from the posterior on every subset generating a
model evidence per subset. The results are combined using a novel approach which
corrects for the splitting using summary statistics of the generated samples. Our
divide-and-conquer approach enables Bayesian model choice in the large data
setting, exploiting all available information but limiting communication between
workers. We derive theoretical error bounds that quantify the resulting trade-off
between computational gain and loss in precision. The embarrassingly parallel
nature yields important speed-ups when used on massive data sets as illustrated
by our real world experiments. In addition, we show how the suggested approach
can be extended to model choice within a reversible jump setting that explores
multiple feature combinations within one run.
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1 Introduction

The marginal likelihood, also known as the posterior normalising constant or the Bayesian
model evidence, is a quantity that is notoriously difficult to calculate, but crucial for
model selection in a Bayesian setting (Kass and Raftery, 1995; Robert, 2007). Evaluation
of the marginal likelihood is particularly computationally challenging with massive data
sets that are too large to fit in the memory of a single computational node. Distributed
computing is attractive in such a situation, as the data set can be split into smaller
manageable subsets which can be allocated to different nodes and then processed in
parallel. Such divide-and-conquer approaches are particularly useful in settings where
communication among different workers is costly or limited. Moreover, privacy concerns,
governance issues, data security or institutional constraints often make sharing data dif-
ficult, a situation which is common when processing medical data. We suggest a novel
method for the distributed calculation of the marginal likelihood with large data sets
under communication constraints.
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Distributed Bayesian computation largely falls in the MapReduce or split-apply-
combine frameworks for computation (Dean and Ghemawat, 2008; Wickham, 2011).
The distributed Bayesian computational workflow can be described in three key steps:

• Split: Divide the data set into subsets and distribute across nodes (workers).

• Apply: Each worker independently computes a posterior distribution based on a
subset.

• Combine: Aggregate the worker posterior distributions to form a consensus.

The combine step involves the synthesis of multiple probability distributions, and falls
under the general umbrella of belief aggregation, a well studied topic in meta-analysis
and probabilistic forecasting (West, 1984; Genest, 1984; Dietrich, 2010). Our goal is to
determine how marginal likelihood based Bayesian model choice can be operationalised
within the aforementioned computational framework. We find that belief aggregation
rules for model choice differ in some key aspects compared to fixed model inference and
examine the theoretical and computational consequences.

In summary, our main contributions are the following.

• We derive a general decomposition of the marginal likelihood that enables efficient
divide-and-conquer calculation without accessing the data in one single place. The
combination of the results requires minimal communication and no exchange of
data. The computational complexity per worker is O(n/S) instead of O(n) on
a single machine, where n is the number of observations and S the number of
workers.

• We provide a theoretical analysis of two different algorithms for distributed cal-
culation of the marginal likelihood. The first is a simulation consistent approach
making use of data augmentation, and the second is an approximate approach
relying on local normal approximations. Error bounds are developed for the ap-
proximate approach.

• We illustrate the performance of our method on several challenging applications
with millions of data points and show that the computation time is reduced by
several orders of magnitude, incurring only a negligible bias.

• We show how to apply our approach in a reversible jump setting where a Markov
chain Monte Carlo (MCMC) sampler moves between different feature spaces.

The rest of our work is structured as follows. We discuss related work in Section 2 and
introduce relevant background material in Section 3. Then we present our main contri-
butions on distributed Bayesian model choice in Section 4. In Section 5 we demonstrate
the applicability of our approach on several data sets and models before discussing
possible extensions in Section 6.
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2 Related Work

Previous work on computationally efficient methods for processing data sets with mas-
sive sample sizes can generally be divided into two broad categories. Bardenet et al.
(2017), Jahan et al. (2020) and Zhu et al. (2017) provide reviews focusing on Bayesian
methods for big data.

A first stream of work focuses on speeding up computation using mini batches (i.e.,
random subsets) of the entire data. Initially introduced via optimisation in the field of
machine learning, the idea of approximating a posterior using mini batches has received
substantial attention since the work of Welling and Teh (2011) on stochastic gradient
Langevin sampling and the work of Hoffman et al. (2013) on mini batch sampling for
variational inference. Subsequent work on this family of algorithms has included theo-
retical analysis and practical extensions, see, for example, Chen et al. (2014); Alquier
et al. (2016); Quiroz et al. (2019); Dang et al. (2019). The calculation of normalising
constants, however, has received less attention despite the work of Lyne et al. (2015);
Gunawan et al. (2020).

The second line of work aims to make use of parallel processing for reducing compu-
tation time. The idea of using a divide-and-conquer approach has seen interest in both
the statistics and the machine learning community, see, for example, Deisenroth and Ng
(2015) for an application in Gaussian processes and Jordan et al. (2019) for a general
approach under communication constraints. A variety of follow-up has been sparked by
the work of Scott et al. (2016). The consensus Monte Carlo (CMC) approach performs
posterior sampling on data shards and combines the results on a single worker. This
approach has been discussed and improved both from a theoretical and practical per-
spective (Wang and Dunson, 2013; Neiswanger et al., 2013; Minsker et al., 2014; Scott
et al., 2017; Srivastava et al., 2018; Zhang et al., 2018; Szabó and van Zanten, 2019).
The idea of distributed computation has since been picked up in different communities
as, for example, in sequential Monte Carlo (Rendell et al., 2020) and expectation prop-
agation (Gelman et al., 2017; Barthelmé et al., 2018). Combining different models using
different data sources has also received substantial attention, see for instance Goudie
et al. (2019); Jacob et al. (2017). The concept of federated learning (Li et al., 2020),
where the estimation of a model is achieved in a highly distributed setting with repeated
rounds of communication between a central node and workers, is another adjacent field
to our work. Despite growing interest in Bayesian federated learning (Chen and Chao,
2021; Yurochkin et al., 2019), Bayesian model choice has seen little investigation.

We will proceed under the assumption that there are barriers to implementing a
mini-batch based algorithm. Storing the data in one location may be infeasible, or
privacy restrictions and communication costs rule out the possibility for one central
node to be connected to each site with a subset of the data. Situations where this
may occur include the analysis of electronic health records and the analysis of genetic
data from large cohorts. It is natural to consider the Laplace approximation to the
marginal likelihood given the large sample size (Kass and Raftery, 1995). However, the
assumed barriers impede the ability to compute directly the Laplace approximation as
determining the posterior mode and Hessian would require extensive communication
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between sites and the central node, see, for example, McMahan et al. (2017); Safaryan
et al. (2021). Divide-and-conquer approaches will still be feasible in such a setting.

3 Background

We first give an overview on Bayesian model choice using the marginal likelihood, and
useful computational techniques for estimation of the marginal likelihood. We then
discuss core principles for distributed Bayesian inference, and cover the use of normal
approximations in the consensus Monte Carlo algorithm by Scott et al. (2016).

3.1 Bayesian model choice

The normalising constant We define the posterior distribution of a parameter θ ∈ Θ ⊂
R

p given data y as p(θ|y) = p(y|θ)p(θ)/p(y). It depends on the unknown normalising
constant p(y). This normalising constant is the marginal likelihood of the data given
the model, also called model evidence, and is calculated as

p(y) =

∫
Θ

p(y|θ)p(θ)dθ.

In most settings this constant is not analytically tractable, as it involves the integration
over a potentially high dimensional parameter space Θ. Various sampling based methods
are available for the approximate calculation of the evidence, for example, importance
sampling (IS) (Geweke, 1989), sequential Monte Carlo (Del Moral et al., 2006), nested
sampling (Skilling, 2006) or bridge sampling (Meng and Wong, 1996; Gelman and Meng,
1998). See Knuth et al. (2015) for a review of the different methods.

The Bayes factor The posterior distribution over a set of competing models is defined
using the marginal likelihood and a prior distribution on models. Models may be distin-
guished by different choices of link functions, hyper parameters or feature spaces. The
posterior probability of model mi is given by

p(mi|y) =
p(y|mi)p(mi)∑K

k=1 p(y|mk)p(mk)
, (1)

where p(y|mi) =
∫
Θ
p(y|θ,mi)p(θ|mi)dθ, with both prior and likelihood now being de-

pendent on the model i. Models may also be compared using the Bayes factor (BF)
(Kass and Raftery, 1995). The BF is calculated as

Bm1,m2 =
p(y|m1)

p(y|m2)
=

p(m1|y)
p(m2|y)

× p(m2)

p(m1)
,

where p(mi) denotes the prior probability of model i, p(mi|y) denotes the posterior
probability of the model given the data and p(y|mi) for i = 1, 2 denotes the probability
of the data given the model. For two models the BF allows to select the model with
highest posterior probability while adjusting for the prior odds. It is an alternative to
standard statistical testing when it comes to model choice.
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Data augmentation and conditionally conjugate models Data augmentation has
proven to be an important technique for Bayesian computation, facilitating both poste-
rior sampling and marginal likelihood estimation (van Dyk and Meng, 2001; Tanner and
Wong, 2010). The rationale is to introduce a latent variable z ∈ Z such that the com-
plete data model p(y, z|θ) is more mathematically and computationally tractable than
the marginal model p(y|θ) =

∫
Z p(y, z, |θ) dz. Example applications include binary re-

gression models, mixture models and factor analysers (van Dyk and Meng, 2001; Holmes
and Held, 2006; Tanner and Wong, 2010). A particularly useful strategy is to construct
a sampler on the extended space of θ, z ∼ p(θ, z|y) and to marginalise out z once a cloud
of samples has been generated. This can be an efficient strategy if the full conditionals
p(θ|y, z) and p(z|y, θ) have a known distribution and allows the construction of a Gibbs
sampler. Conditionally conjugate models are obtained when selecting the prior p(θ) to
be conjugate to the complete data likelihood p(y, z, |θ) (Gelman et al., 2013). Prior p(θ)
and the conditional posterior p(θ|y, z) are part of the same distribution family and hence
sampling from the conditional posterior becomes straightforward for commonly chosen
priors. The posterior distribution can be represented as p(θ|y) =

∫
p(θ|z, y)p(z|y) dz.

For any ordinate θ, the log marginal likelihood satisfies

log p(y) = log p(θ) + log p(y|θ)− log

∫
p(θ|z, y)p(z|y) dz

Following Chib (Chib, 1995), a simulation consistent estimator of the model evidence is

log p̂(y) = log p(θ) + log p(y|θ)− log

N∑
i=1

p(θ|zi, y)/N,

where the zi are samples from the posterior distribution p(z|y).

3.2 Distributed Bayesian inference

We assume that we observe data y ∈ Y consisting of n data points that can be split
into S non overlapping data shards ys, potentially containing several observations such
that y = {y1, · · · , yS}. The likelihood is assumed to satisfy the independence condi-

tion p(y|θ) =
∏S

s=1 p(ys|θ). As outlined in the introduction, the general strategy for
distributed Bayesian inference is to allocate a shard of data to each worker who will
then compute a local posterior distribution on the basis of the subset ys. The major
challenge in this approach is the formation of a consensus probability distribution given
the individual posterior distributions computed by each worker.

An important tool for the synthesis of probability distributions is product-of-experts
pooling (Genest, 1984; Hinton, 2002; Dietrich, 2010). Taking θ to be the quantity of
interest, the products-of-experts consensus distribution q(θ) is formed by taking the

product of the worker distributions {qs(θ)}Ss=1, so q(θ) ∝
∏S

s=1 qs(θ). The significance
of product-of-experts pooling is readily seen when the model is treated as being fixed
and known. The full posterior can be represented as

p(θ|y) ∝
S∏

s=1

p(ys|θ)p(θ)1/S , (2)
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where p(ys|θ) is a likelihood factor over the shard ys and p(θ)1/S is the unnormalised sub-
prior, i.e. a fraction of the initial prior p(θ). Each worker may compute a so-called sub-
posterior p̃(θ|ys) on a shard of data using the fractionated prior p̃(θ|ys) ∝ p(ys|θ)p(θ)1/S .
The full posterior distribution can then be obtained by product-of-experts pooling of
the subposteriors (Huang and Gelman, 2005; Scott et al., 2016)

p(θ|y) ∝
S∏

s=1

p̃(θ|ys). (3)

This important property does not transfer to model selection. There is no analogous
product-of-experts decomposition of the full posterior distribution over models

p(mi|y) �∝
S∏

s=1

p̃(mi|ys), (4)

where the subposterior model probabilities are defined by p̃(mi|ys) ∝ p̃(y|mi)p(mi)
1/S

and the subposterior evidence p̃(ys|mi) =
∫
Θ
p(ys|θ,mi)p̃(θ|mi) dθ is determined using

the normalised subprior p̃(θ|mi) = p(θ|mi)
1/S/

∫
Θ
p(θ|mi)

1/Sdθ. This is due to the fact
that in general,

p(y|mi) =

∫
Θ

S∏
s=1

p(ys|θ,mi)p(θ|mi)
1/Sdθ �=

S∏
s=1

∫
Θ

p(ys|θ,mi)p(θ|mi)
1/Sdθ.

The lack of a product-of-experts decomposition for the full posterior on models (4)
suggests that the protocol for distributed Bayesian inference in the fixed model setting
may not be effective for model choice. If the goal is to recover the full posterior model
probabilities p(mi|y), it is no longer sufficient to compute subposterior distributions
over models in the apply step and then form a consensus distribution using product-of-
experts pooling in the combine step. The correct belief aggregation procedure for model
selection is developed in Section 4.

In practice, each worker will typically return a Monte Carlo or analytic approxi-
mation of the subposterior distribution. An important consideration with distributed
Bayesian inference is how the mean squared error of the consensus scales with the num-
ber of subsets S (Bardenet et al., 2017; Scott et al., 2016; Neiswanger et al., 2013).
There is almost always a trade-off between the error and the computational benefits
afforded by distributing the workload across more nodes S. This dynamic will be a key
feature in our theoretical analysis and computational experiments.

3.3 Consensus Monte Carlo

The Consensus Monte Carlo algorithm (Scott et al., 2016) is based on the product-of-
experts posterior decomposition (3). The key to the approach is that the product of
normal subposteriors is proportional to another normal distribution:

S∏
s=1

N (θ|μs,Σs) ∝ N (θ|μ,Σ),
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where the overall variance and mean are obtained as Σ−1 =
∑S

s=1 Σ
−1
s and μ =

Σ
∑S

s=1 Σ
−1
s μs.

The consensus Monte Carlo algorithm samples N points θ1s , · · · , θNs from each of the
individual subposteriors p̃(θ|ys). This sampling can be achieved, for example, using stan-
dard MCMC algorithms like random walk Metropolis-Hasting (Hastings, 1970; Dunson
and Johndrow, 2019) or Hamiltonian Monte Carlo (Neal et al., 2011). The samples are
then recombined using a normal approximation to the subposteriors.

The normal approximation N (μs,Σs) ≈ p̃(θ|ys) is based on the estimated mean
μs and variance Σs from the subposterior samples, using the Laplace-Metropolis ap-
proximation (Lewis and Raftery, 1997). This approximation is asymptotically justified
through the Bernstein-von-Mises (BvM) theorem (see also Ghosh and Ramamoorthi
(2003)). The recombination of the samples from the local Markov chains is based on a
weighting according to the inverse covariances of the subposteriors (Scott et al., 2016).
Combining the sampling based approach with the normal approximation has the ad-
vantage that more features of the posterior distribution are captured compared to the
use of a plain normal approximation where the sampling step would be omitted. See
Scott et al. (2016, 2017) for more details.

4 Distributed Model Choice

We will now introduce and discuss our contributions making use of the previously in-
troduced background material.

Decomposing the model evidence Using Bayes’ Theorem and some elementary alge-
bra, it is possible to obtain an identity for the marginal likelihood that lends itself to
distributed computation.

Proposition 1. The model evidence for the full data can be decomposed as

p(y) = αS
S∏

s=1

p̃(ys)

∫
Θ

S∏
s=1

p̃(θ|ys) dθ, (5)

where p̃(θ) = p(θ)1/S

α is the normalised subprior, αΘ =
∫
p(θ)1/Sdθ is the normalising

constant of the subprior, p̃(ys) =
∫
Θ
p(ys|θ)p̃(θ)dθ is the normalising constant of the

subposterior and p̃(θ|ys) = p(ys|θ)p̃(θ)/p̃(ys) denotes the normalised subposterior.

Proof. See Appendix (Buchholz et al., 2022).

Each of the three components in the decomposition (5) has an interpretation in
terms of the generic split-apply-combine framework mentioned in the introduction. The
term αS reflects that each worker is allocated a fraction of the prior information in the
split step. The subposterior evidence for each shard p̃(ys) is computed by the workers
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in the apply stage. The evaluation of the subposterior integral
∫
Θ

∏S
s=1 p̃(θ|ys)dθ is a

necessary step for appropriate evidence synthesis in the combine stage.

Using Proposition 1 it is straightforward to show that the full posterior distribution
on models has the modified product-of-experts representation

p(mi|y) ∝
{

S∏
s=1

p̃(mi|ys)
}
αS
i

(∫
Θ

S∏
s=1

p̃(θ|ys,mi) dθ

)
, (6)

recalling that the subposterior probabilities are given by p̃(mi|ys) ∝ p̃(ys|mi)p(mi)
1/S .

Comparing (6) to (4), we see that a modified product-of-experts rule is necessary for dis-
tributed Bayesian model selection, as the subposterior model probabilities p̃(mi|ys) do
not contain enough information to recover the full posterior model probabilities p(mi|y).
Subset analyses will be under-powered relatively compared to the full data set analysis
if the shard size is small compared to the total sample size, and this may manifest in
a bias towards smaller models in the model subposteriors p̃(mi|ys). A secondary issue
is that a model may appear to fit well in each subset but be of poor fit overall. The
inclusion of the integral term over the subposteriors

∫
Θ

∏S
s=1 p̃(θ|ys,mi) dθ allows the

global goodness of fit to be reconstructed by considering the overlap in the subposterior
distributions.

We will now focus on how to use the presented decomposition in an algorithm to
approximate the marginal likelihood of the full data set. In a variety of settings α can
be computed analytically. For example, if p(θ) is a normal distribution, fragmenting the
prior amounts to an inflation of the prior variance: N (0,Σ)1/S ∝ N (0, SΣ) and α is thus
obtained easily. The same holds true for a Laplace prior, where L(0, σ)1/S ∝ L(0, Sσ).
However, care must be taken for some distributions of the exponential family. When
S is too large, the integral

∫
Θ
p(θ)1/Sdθ becomes infinite as too much mass is pushed

into the tails. We recommend checking this on a case by case basis. The local evidence
p̃(ys) can be calculated by every individual worker using one of the various techniques
described at the start of Section 3.1. The most difficult part of (5) is to evaluate the
last integral

Isub :=

∫
Θ

S∏
s=1

p̃(θ|ys) dθ. (7)

We will now discuss two different strategies to estimate the integral Isub (7), an ex-
act approach based on data augmentation and Gibbs sampling, and an approximate
approach using normal approximations.

4.1 Data augmentation to compute Isub

A data augmentation strategy can be used to construct a simulation consistent esti-
mator of the components in (5). See Ahfock (2019, Chap 2) for a detailed discussion.
In particular, the latent variables are helpful to calculate an estimator of (7) as we
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show now. We assume that the latent variables zs are independent given θ. Then, the
augmented full data set posterior is again proportional to the subposteriors, i.e.,

p(θ|y1:S , z1:S) ∝ p(θ)p(y1:S , z1:S |θ) ∝
S∏

s=1

p(ys, zs|θ)p(θ)1/S ,

∝
S∏

s=1

p(ys, zs|θ)p̃(θ) ∝
S∏

s=1

p̃(θ|ys, zs).

The conditional latent variable subposteriors on the individual workers (accessing only
ys) are given as as

p̃(zs|ys, θ) ∝ p(ys, zs|θ)p̃(θ) ∝ p(zs|ys, θ)p(ys|θ) ∝ p(zs|ys, θ),

and hence the subprior p̃(θ) is not material when conditioning on θ. This establishes
a Gibbs sampling strategy for sampling from p̃(θ, zs|ys) using the conditionals defined
above. In conditionally conjugate models, where the subpriors are chosen such that∫
Θ

∏S
s=1 p̃(θ|ys, zs)dθ has a closed form solution, we can exploit the samples generated

from the latent variable subposteriors to approximate Isub.

Proposition 2. Using a data augmentation scheme for the augmented data likelihood
p(y1:S , z1:S |θ) we have

Isub = Ep̃(z1:S |y1:S)

[∫
Θ

S∏
s=1

p̃(θ|ys, zs)dθ
]
, (8)

where p̃(z1:S |y1:S) =
∏S

s=1 p̃(zs|ys).

Proof. See Appendix (Buchholz et al., 2022).

As a a consequence, Proposition 2 suggests the following Monte Carlo estimator

Îsub =
1

N

N∑
i=1

∫
Θ

S∏
s=1

p̃(θ|ys, zis)dθ, (9)

where
∫
Θ

∏S
s=1 p̃(θ|ys, zis)dθ is calculated analytically and zis are samples obtained from,

e.g., a Gibbs sampler. See the algorithmic version of the sampler in Algorithm 1. We
provide further details on data augmentation for logistic regressions using Pólya-Gamma
data augmentation in the appendix. The variance of the proposed estimator can be
understood through a connection to importance sampling.

Proposition 3. Assume i.i.d. sampling from the latent variable posterior. The variance
of the estimator suggested in (9) is then

Var Îsub =
I2sub
N

Varp̃(z1:S |y1:S)

[
p(z1:S |y1:S)∏S
s=1 p̃(zs|ys)

]
.
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Proof. See Appendix (Buchholz et al., 2022).

This links the variance of the estimator Îsub to the relative coverage of the joint condi-
tional posterior p(z1:S |y1:S) and the product of the conditional subposteriors p̃(z1:S |y1:S).
The variance of the ratio measures the quality of the product of the conditional sub-
posterior as an importance sampling proposal distribution. If the tails of the proposal
are thinner than the target, the variance of the estimator potentially becomes infinite.
As the number of splits increases, we expect the product of the conditional subposteri-
ors to become a worse approximation of the true subposterior, and the variance of the
estimator to increase. Note that in practice the variance of Îsub will be larger than the
suggested quantity due to the autocorrelation introduced by the Gibbs sampler.

Algorithm 1 Distributed model evidence computation using data augmentation.

Input: data y, number of chunks S, likelihood p(·|θ), prior p(θ).
Split: Divide data in S chunks y1, · · · , yS .
Apply in parallel:
for s = 1 to S do

Sample (θ1s , z
1
s), · · · , (θNs , zNs ) ∼ p̃(θ, z|ys) using Gibbs sampling.

Calculate and store p̃(ys) =
∫
p(ys|θ)p̃(θ)dθ using Chib’s method.

end for
Combine:
Calculate p(y) = αS

∏S
s=1 p̃(ys)

∫
Θ

∏S
s=1 p̃(θ|ys)dθ,

using
∫
Θ

∏S
s=1 p̃(θ|ys)dθ = Ep̃(z1:S |y1:S)

(∫
Θ

∏S
s=1 p̃(θ|ys, zs)dθ

)
≈ (9).

4.2 A normal approximation to Isub

Models relying on data augmentation are a rather restricted class of models that require
tailor-made samplers. A more widely applicable approach to estimate Isub (7) is a nor-
mal approximation to each subposterior p̃(θ|ys) ≈ N (θ|μs,Σs), yielding the following
approximation of the integral:

Isub =

∫
Θ

S∏
s=1

p̃(θ|ys) dθ ≈
∫
Θ

S∏
s=1

N (θ | μs,Σs) dθ.

The mean and covariance parameters for the subposterior normal approximations, μs,Σs

can be estimated given subposterior samples generated by each worker. Using the fact
that the product of normal density functions is proportional to another normal density
we can provide the closed form expression∫

Θ

S∏
s=1

N (θ|μs,Σs) dθ = exp

(
S∑

s=1

ξs − ξ

)
, (10)

where

ηs = Σ−1
s μs,Λs = Σ−1

s ,
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Algorithm 2 Distributed model evidence computation using normal approximations.

Input: data y, number of chunks S, likelihood p(·|θ), prior p(θ).
Split: Divide data in S chunks y1, · · · , yS .
Apply in parallel:
for s = 1 to S do

Sample θ1s , · · · , θNs ∼ p̃(θ|ys).
Calculate and store p̃(ys) =

∫
p(ys|θ)p̃(θ)dθ and μs,Σs.

end for
Combine:
Calculate αS

∏S
s=1 p̃(ys)

∫ ∏S
s=1 N (θ|μs,Σs)dθ ≈ p(y).

ξs = −1

2
(p log 2π − log |Λs|+ ηtsΛ

−1
s ηs),

η =

S∑
s=1

Σ−1
s μs, Λ =

S∑
s=1

Σ−1
s ,

ξ = −1

2
(p log 2π − log |Λ|+ ηtΛ−1η).

The normal approximations to the subposterior p̃(θ|ys) ≈ N (θ|μs,Σs) can be justified
under the usual conditions for a Bernstein-von-Mises theorem to hold, see e.g. Ghosh and
Ramamoorthi (2003). Due to the involved matrix inversions and calculation of deter-
minants the complexity of calculating (10) is O(Sp3). We approximate the normalising
constants p̃(ys) using any of the techniques discussed at the beginning of Section 3.1.
Note that the normal approximation is only required for estimating Isub, and does not
influence the estimation of p̃(ys). We hence suggest Algorithm 2 for the estimation of
the marginal likelihood.

Using mixtures of normals If the posterior distribution is multimodal, a simple normal
approximation will result in a poor approximation of the integral of the product of the
subposteriors. As noted by Neiswanger et al. (2013); Scott et al. (2017), a mixture of
normals or kernel density estimators can be used to approximate the posterior. These
approaches have been shown to work well in practice. However, if the number of mixture
components or the number of splits S gets large this approach may become prohibitive.
As we have to calculate the product of S mixtures, the resulting calculation of the
product of distributions has a complexity of O(Sk), where k denotes the number of
mixture components. We therefore refrain from this approach.

Error of the approximation Proposition 4 gives an exact representation of the relative
error when using the normal approximation to the subposterior integral Isub (10).

Proposition 4. Suppose {μs,Σs}Ss=1 are the selected parameters for the subposterior

normal approximations p̃(θ|ys) ≈ N (θ|μs,Σs), and that N (θ|μ,Σ) ∝
∏S

s=1 N (θ|μs,Σs)
is the resulting normal approximation to the full posterior p(θ|y). Then the proposed
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normal approximation to Isub satisfies:∫
Θ

S∏
s=1

p̃(θ | ys) dθ =

{∫
Θ

S∏
s=1

N (θ | μs,Σs) dθ

}
EN (θ;μ,Σ)

[
S∏

s=1

p̃(θ | ys)
N (θ|μs,Σs)

]
.

Proof. See Appendix (Buchholz et al., 2022).

Proposition 5 provides an error bound for the proposed approximation to the marginal
likelihood under assumptions on the quality of the subposterior normal approximations.

Proposition 5. Suppose {μs,Σs}Ss=1 are the selected parameters for the subposterior

normal approximations p̃(θ|ys) ≈ N (θ|μs,Σs), and that N (θ|μ,Σ) ∝
∏S

s=1 N (θ|μs,Σs)
is the resulting normal approximation to the full posterior p(θ|y). The exact marginal
likelihood p(y) and the proposed approximation to the marginal likelihood p̂(y) are re-
spectively,

p(y) = αS

(
S∏

s=1

p̃(ys)

)∫
Θ

S∏
s=1

p̃(θ | ys) dθ,

p̂(y) = αS

(
S∏

s=1

p̃(ys)

)∫
Θ

S∏
s=1

N (θ | μs,Σs) dθ.

Suppose that the subposterior normal approximations satisfy the density ratio bounds

max
s=1,...,S

sup
θ∈Θ

p̃(θ | ys)
N (θ;μs,Σs)

≤ A, max
s=1,...,S

sup
θ∈Θ

N (θ;μs,Σs)

p̃(θ | ys)
≤ B.

Then the relative error of the proposed approximation to the marginal likelihood satisfies

−S logB + logEN (θ;μ,Σ)[1(θ ∈ Θ)] ≤ log
p(y)

p̂(y)
≤ S logA.

Proof. See Appendix (Buchholz et al., 2022).

If the parameter space is unconstrained, so Θ = R
dim(θ), then EN (θ;μ,Σ)[1(θ ∈ Θ)] =

1 and the bound can be simplified to −S logB ≤ log p(y)/p̂(y) ≤ S logA. The supremum
of the density ratio is an interesting divergence measure for two probability distribu-
tions, with important connections to the total variation distance (Dümbgen et al., 2021).
Under the conditions of the Bernstein-von-Mises theorem, the quality of each subpos-
terior normal approximation is expected to improve as the shard size increases. With a
fixed number of shards S, A and B will tend to 1 as n increases if {μs,Σs}Ss=1 are taken
to be the true subposterior means and variances. Corollary 1 provides an error bound
under an assumption about the average accuracy of the subposterior normal approxi-
mations over the subsets S, rather than the worst case accuracy over the subsets S, as
in Proposition 5.
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Corollary 1. Fix the shard size ns, and let the total sample size be given by n = Sns. Let
p(y) represent the true marginal likelihood and p̂(y) denote the proposed approximation
as in Proposition 5. Assume that

sup
θ∈Θ

∣∣∣∣∣ 1S
S∑

s=1

log
p̃(θ|ys)

N (θ|μs,Σs)

∣∣∣∣∣ = Op(1)

as the number of shards S increases, where {ys, μs,Σs}Ss=1 are treated as random vari-
ables. Then the relative error satisfies

log
p(y)

p̂(y)
= Op(S).

Proof. See Appendix (Buchholz et al., 2022).

Proposition 5 and Corollary 1 suggest a trade-off between the computational gains
from the proposed distributed strategy via the number of splits S and the resulting
approximation error.

In practice we transform (5) to the log domain and get

log p̂(y) = S logα+

S∑
s=1

log p̃(ys) + log

∫ S∏
s=1

N (θ | μs,Σs)dθ.

The corresponding estimator is a sum of S + 2 terms so the variance of this quantity
grows linearly in S. Moreover, when estimating log p̃(ys) by N samples from a Markov
chain the MSE is typically of order O(1/N). Thus, more simulations can reduce this
error. In summary, our results suggest that if the error that comes from MCMC sampling
is relatively small and that the shard sizes are large enough so that the quality of the
subposterior normal approximation is reasonable, our suggested approach will result in
good approximations of the full data set marginal likelihood.

4.3 Model choice using reversible jump

Calculation of the marginal likelihood for every model in the candidate set is only
feasible when there are a small number of models under consideration. In many practical
settings, the aim is often to choose among a large number of models, that potentially
have different support. An important example is variable selection, where a particular
model consists of a specific combination of selected variables.

The reversible jump approach (Green, 1995) allows the construction of a Markov
Chain that jointly traverses models and the associated parameter spaces. The posterior
probability of a model given the data p(mi|y), see (1), is obtained by the relative time
the sampler spends exploring that model.
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Distributed reversible jump Markov chain Monte Carlo (RJMCMC) The modified
product-of-experts belief aggregation rule for models (6)

p(mi|y) ∝
{

S∏
s=1

p̃(mi|ys)
}
αS
i

(∫
Θ

S∏
s=1

p̃(θ|ys,mi) dθ

)

illuminates how one may conduct distributed Bayesian model selection using reversible
jump methodology. During the apply stage, it is sufficient for workers to compute sub-
posterior model probabilities p̃(mi|ys) ∝ p̃(ys|mi)p(mi)

1/S , and model subposteriors

p̃(θ|ys,mi) ∝ p(ys|θ,mi)p(θ|mi)
1/S . The subposterior integral

∫
Θ

∏S
s=1 p̃(θ|ys,mi) dθ

can be evaluated in the combine stage, and the term αS
i can be determined in the split

stage. The belief aggregation rule (6) can then be used to reconstruct the full pos-
terior model probabilities. Once again, a normal approximation to each subposterior
p̃(θ|ys,mi) ≈ N (θ|μi

s,Σ
i
s) can be used to approximate the integral∫

Θ

S∏
s=1

p̃(θ|ys,mi) dθ ≈
∫
Θ

S∏
s=1

N (θ|μi
s,Σ

i
s)dθ.

Reversible jump is particularly well suited to to the decomposition (6) as the sam-
pler simultaneously explores models and the associated parameter spaces. As such,
estimates of p̃(mi|ys), μi

s and Σi
s will be readily available from the RJMCMC output of

each worker. Consequently, the splitting approach can effectively be combined with a re-
versible jump algorithm as we suggest in Algorithm 3. See also the appendix (Buchholz
et al., 2022) for more details.

Algorithm 3 RJMCMC distributed model choice.

Input: data y, number of chunks S, set of models mk for k = 1, · · · ,K, likelihoods
p(·|θ,mk), priors p(θ|mk), p(mk).
Split: Divide data in S chunks y1, · · · , yS .
Apply in parallel:
for s = 1 to S do

Sample θ1s , · · · , θNs |mk ∼ p̃(θ|ys,mk) using RJMCMC over all k.
Calculate and store p̃(mk|ys), μk

s ,Σ
k
s for models k = 1, . . . ,K.

end for
Combine:
Calculate p̂(mk|y) ∝

{∏S
s=1 p̃(mk|ys)

}
αS
k

(∫
Θ

∏S
s=1 N (θ|μk

s ,Σ
k
s) dθ

)
.

Bayes factors can be estimated as p̂(mk|y)p(mk′)/{p̂(mk′ |y)p(mk)} for any two mod-
els (k, k′).

There are a number of known issues with RJMCMC that may limit its effectiveness
within a divide-and-conquer approach. Reversible jump samplers are known to be hard
to tune and often slow to converge. The construction of suitable proposal distributions
can also be very challenging when models are not nested. Moreover, the models of
interest have to have been visited a sufficient number of times to get reliable estimates.
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All these combined make the use of RJMCMC burdensome. With regards to distributed
computation, an issue is that if the space of potential models is large, not all models of
interest might have been explored on every data shard.

5 Experiments

In our experiment section we investigate the following questions. (a) Are naive voting
strategies, upsampled likelihoods and CMC based importance sampling an alternative to
our approach? (b) How does the approach based on data augmentation and the approach
based on normal approximations perform relatively? (c) What is the magnitude of
the error introduced from approximating Isub compared to the overall scale of the log
marginal likelihood? (d) How does the error of Isub behave with respect to the number
of splits? (e) What are practical gains from using the distributed approach on very large
data sets? (f) How reliable is the distributed approach for RJMCMC? We answer these
questions by assessing our approach with a Bayesian logistic regression, a normal linear
regression and a linear regression with Laplace priors.

Our overall experimental set up is the following: prior variances on the model pa-
rameters are set to 1 and their means to 0. We use a randomised splitting procedure.
This means for S splits we will have roughly n/S samples per split, where we use a
uniform sampling scheme without replacement, if not otherwise stated. We run every
sampler 20 times where at every iteration the splitting and the Monte Carlo sampler
are initialised with a different seed. Thus, the observed variation in the outcome is a
combination of the variation through splitting (i.e. different partitions) and Monte Carlo
sampling. The number of generated MCMC samples per chain is 10, 000 where the first
2, 000 samples are discarded as burn-in. We assess the error of the estimation of the log
marginal likelihood by comparing it to the result of the estimation on the whole data
set, if this is computationally feasible in a reasonable amount of time.

We use the RMSE (root mean squared error), defined as
√
MSE =

√
E‖ log p(y)− log p̂(y)‖2,

where p̂(y) is approximated using our suggested decomposition. The relative RMSE

is defined as %
√
MSE =

√
E‖ log p(y)−log p̂(y)‖2

log p(y) × 100. The use of the relative RMSE is

justified through the scale of the actual quantity we are trying to estimate.

Practical considerations We implement our algorithm using two generic R packages,
namely rstan (Carpenter et al., 2017) and the bridgesampling package (Gronau et al.,
2020). rstan allows convenient sampling from the posterior distribution of a model
using HMC. The package can handle a variety of different models and the user has to
provide only a simple code that describes the model. Tuning of hyper parameters and
convergence checking is handled automatically. The bridgesampling package can use
rstan models to calculate an approximation of the model evidence. For the reversible
jump illustration we use the R2BGLiMS package.1 This package performs model choice

1https://github.com/pjnewcombe/R2BGLiMS.
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Figure 1: Voting schemes based on local marginal likelihoods. The local marginal likeli-
hoods p̃(ys) are computed on all subsets s for 6 different models. In Figure 1a the local
marginal likelihood of the correct model 6 is compared with the other local marginal
likelihoods. Based on a majority vote it is decided whether model 6 wins. We indicate
the win rate of model 6, shown on the y-axis. In Figure 1b we use a Borda voting scheme
to aggregate the order of local marginal likelihoods into a global model ordering. We
display the average Borda count and hence the correct model 6 must get the highest
average count to win. As the number of splits increase (x-axis) the correct model 6 is
not chosen anymore neither for the majority voting scheme nor for the Borda count.

using reversible jump MCMC on logistic, normal and Weibull regression models. We
explicitly run the experiment on single core architectures to illustrate the advantages of
distributing the computation over a large number of small workers. Code for reproducing
the results is available through the first author’s github repository.2

5.1 Experiment 1: Voting schemes based on local marginal
likelihoods and CMC IS

In this section we illustrate potential issues of natural alternatives to our approach based
on the decomposition in (5). Although this comparison is limited in scope, we believe it
motivates and justifies the in-depth study of Algorithm 2. This experiment is based on
six different Gaussian regression models with a log normal prior on the variance that
makes this model non-conjugate. We simulate a dataset with 10, 000 observations and
induce high correlation of the features. The correct model (6) uses the all 17 covariates
whereas the other models all omit one relevant variable (see also the appendix (Buchholz
et al., 2022) for further details).

Majority voting and Borda counts To motivate the need for a coherent way of com-
bining local evidences, we illustrate what can go wrong when using a naive approach for
combining local inference. We try to identify the best model based on the local marginal
likelihoods p̃(ys|mk) for the models mk. We compare two different voting schemes

2https://github.com/alexanderbuchholz/distbayesianmc.
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Figure 2: In Figure 2a (left) we compare the upsampled methods {mean, median} with
our approximate method (approx) based on Algorithm 2. The mean and median based
approaches become unstable with 50 splits of the data. In Figure 2b (right) CMC IS
stays competitive as the number of splits increase and seems more stable than our
approximate method (approx) based on Algorithm 2. However, an additional round of
communication between the central node and the distributed workers is required.

that aggregate local rankings. First, we use a majority voting scheme, where each
worker returns the winning model based on local marginal likelihoods, i.e., winners =
argmaxmk

p̃(ys|mk)∀s. Then, the central node aggregates the vote share of model 6

(i.e., on how many workers the correct model won): win rate =
∑S

s=1 1{winners=6}/S.
As a second voting scheme we use Borda counts (Emerson, 2013). The local mod-
els receive a score based on their ranking going from 1 to 6, i.e., Borda scores,mk

=
arg sortmk

p̃(ys|mk), and the winning model is obtained by averaging the Borda scores∑S
s=1 Borda scores,mk

/S. This voting scheme favors a consensus vote over a majority
based decision.

As illustrated in Figure 1, the voting schemes work reasonably well for a small
number of splits. But with as little as 10 splits (every worker sees 10% of the data), the
correct model is not chosen anymore, neither for the majority based voting nor for the
Borda counts. Therefore, we decide not to compare our suggested method with these
naive aggregations in the remainder of our experiments.

Mean and median of upsampled normalising constants We use the same setting
as above and compare two additional methods with our suggested approach from Al-
gorithm 2. We estimate locally the marginal likelihood of what we call an upsampled
model following the idea in Zhang et al. (2018), i.e., we replicate locally the data of each
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shard to match the full data set size. The upsampled marginal likelihood is computed
using the replicated data as

ṕ(ys) =

∫
Θ

p(ys|θ)Sp(θ)dθ.

A final estimator of the marginal likelihood is obtained by computing the mean or
median

p̂(y) =

{
mean({ṕ(y1), . . . , ṕ(yS)}),
med({ṕ(y1), . . . , ṕ(yS)}),

of the local marginal likelihoods when combining them on the central node. We illus-
trate the results of this approach in Figure 2a. Using medians or means of upsampled
local marginal likelihoods becomes unstable when reaching 50 shards compared to our
approach in Algorithm 2. We therefore do not consider this method in the rest of our
experiments.

Consensus Monte Carlo based importance sampling As a final point of comparison,
we suggest a straightforward extension of CMC to the computation of the normalising
constant based on importance sampling using the consensus normal distribution. This
approach is based on the following importance sampling identity that can also be derived
from Proposition 4.

p(y) =

∫
Θ

S∏
s=1

p(ys|θ)p(θ)1/S
N (θ|μs,Σs)

S∏
s=1

N (θ|μs,Σs)dθ ≈ 1

N

N∑
i=1

S∏
s=1

p(ys|θi)p(θi)1/S
N (θi|μs,Σs)︸ ︷︷ ︸

=:ws(θi)

×γ, (11)

where we sample θi ∼ N (θ|μ,Σ) ∝
∏S

s=1 N (θi|μs,Σs) for N samples and

γ =

∫
Θ

S∏
s=1

N (θ|μs,Σs)dθ,

correctly normalizes the importance sampling estimator in (11). Thus, we construct an
approximation of the whole posterior but we only need to evaluate the ratio of the
local subposteriors and the local normal approximation ws(θi). This approach adds
an additional round of communication with the central node, as θi ∼ N (θ|μ,Σ) is
generated on the central node, the weights ws(θi) are computed locally and then send
back to the central node to compute the aggregation. This IS approximation is exact,
but can suffer from high variance if the local normal approximation N (θ|μs,Σs) and
the consensus approximation N (θ|μ,Σ) have little overlap. The product of importance

weighting factors
∏S

s=1 ws(θi) potentially introduces further variance as the number of
splits S increase (although we did not observe this empirically in Figure 2b).

We illustrate the result of this method in Figure 2b. Using an IS approximation
based on CMC with 1000 importance samples performs reasonably well in this setting.
A more detailed comparison of the CMC IS approximation for computing the marginal
likelihood is out of scope for this work.
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Figure 3: Comparison of the calculated normalising constant (y-axis) for a logistic re-
gression on the flights data. As the number of splits increase (x-axis), the estimates
become unreliable for the conditionally conjugate approach in Algorithm 1 (denoted
by random cond, middle boxes), even when using stratification (stratified cond, right
boxes) for the sampling, whilst the approximate method (random approx, left boxes,
Algorithm 2) is stable and accurate. The average number of observations per split is
indicated in parentheses. The reference value is indicated as horizontal line.

5.2 Experiment 2: Comparison of the conditional and approximate
method

In this experiment we are interested in predicting on-time arrival of air planes where
we use a Bayesian logistic regression model with 17 features (see the appendix for more
details and a comparison with another model). There are in total n = 327, 346 ob-
servations. Figure 3 shows the results of our simulations. The reference value for the
model evidence has been obtained using importance sampling using a Laplace approxi-
mation based on the maximum a posteriori. In the current setting the bias is less than
−0.5%, even for as many as 50 splits, both for the conditional approach that uses data
augmentation (Algorithm 1) and the approximate method based on normal approxima-
tions (Algorithm 2). We notice a strong downward bias for the conditional approach,
as predicted by Proposition 3. This clearly illustrates a weakness of the conditionally
conjugate approach and we observed this behaviour on different data sets (not shown
here).

A remedy for the high variance is the use of stratification to construct more ho-
mogeneous data shards to improve the performance of the conditional approach. We
performed k-means clustering of the features with 10 clusters using the full data set.
Then we stratify the observations using the outcome and the cluster membership. A
similar approach was used in Zhao and Zhang (2014) to diversify sampling for mini
batches in stochastic gradient optimisation. The motivation is to obtain representative
samples of the entire data set with every cluster being represented. Although often fea-
sible in practice, this approach goes against the idea of distributed computation as all
data has to be seen at once to construct a stratification. The improvement for the con-
ditional approach that comes from stratification is rather limited, as shown in Figure 3.
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Figure 4: log Bayes factor computed using Algorithm 2 (y-axis) of the correct model 6
against all other models. The BFs stay roughly constant even as the number of splits
increase. The average number of observations per split is indicated in parentheses (x-
axis). The value for a single split (left most column) serves as reference value. The
ordering of the Bayes factors does not change as the number of splits increase and
hence consistent model choice is possible over an increasing number of splits.

In the remaining experiments we consider only the approximate method described in
Section 4.2 and no stratification.

5.3 Experiment 3: Assessment of the approximate method in a toy
example

In this experiment we investigate the behaviour of Algorithm 2 in the same Gaussian
toy model as in the first experiment from Section 5.1. We compare the performance for
estimating the marginal likelihood over up to 50 splits of 10, 000 observations. The error
introduced via the approximation in (10) of the subposterior amounts to less than 0.02%
(see Appendix), and despite a small downward bias in estimating log p(y), the resulting
BFs stay stable over decreasing subset sizes (Figure 4), resulting in a consistent choice
of the correct model (6). See also in the appendix for the comparison of log marginal
likelihoods, that draws a similar picture.

5.4 Experiment 4: The approximate method on a very large data
set

This experiment is based on a very large data set from particle physics where a binary
classification problem consists in predicting the presence of a Higgs boson. The data
set contains 11 million observations. Our aim is to understand whether model (1) with
21 low-level features or model (2) with 7 high-level features is more likely a posteriori.
Running a full Monte Carlo simulation on the whole data set for model (1) leads to
excessive computation times: a full run would take more than 450 hours (almost 3 weeks)
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Figure 5: Comparison of the calculated normalising constant using Algorithm 2 (y-axis)
for the Higgs data set. The left plot shows the evidence for both models (model 1 left
boxes, model 2 right boxes) on the same scale. The middle plot corresponds to model
(1), the right plot corresponds to model (2), using their respective scales only. The
average number of observations per split is given in parentheses (x-axis). We observe a
small downward bias as the number of splits increase.

on a single core CPU (central processing unit). We assess how the model evidence
changes as splits get small by dividing the data set in shards of 1%, 0.2% and 0.1%.
Thereby we bring the computation time down to less than 5 hours, 1 hour and less
than 30 minutes, all running on different single core CPUs. The combination of the
results of the different workers is in the order of a few seconds as we have to perform
O(Sp3) operations to calculate Isub. (Although necessary matrix inversion can be pre-
computed locally before sending them to the central node.) We show the results of our
estimation in Figure 5. Some bias is introduced by the splitting as the number of shards
grow as illustrates the right hand side of Figure 5. However, the bias is overall small
and not visible when comparing both models on the same scale (left side of Figure 5).
Consequently, we would clearly choose model (1).

In essence our experiment on the Higgs data set illustrates the necessity for dis-
tributed computation in the large data regime. Running the same experiment on the
entire data set is too slow for most applications.

5.5 Experiment 5: Sparse regression on a large genetic data set

We compare the performance of a linear regression model with a Laplace prior on a real
genetic data set from the UK Biobank database. There are n = 132, 353 observations
available. We consider model 1 with 50 and model 2 with 100 genetic variants in the
human leukocyte antigen (HLA) region of chromosome 6 that are included as features in
order to predict mean red cell volume (MCV). Due to the Laplace prior the conditionally
conjugate approach is not applicable. We face again a situation where sampling the
posterior on the entire data set on a single core CPU is estimated to take more than
200 hours for model 2. Using 20, 50 and 100 splits brings this computation time down
to 10 hours, 2 hours and 1 hour.

In order to assess the bias properly we decided to run our approximate method on a
10% subset of the data where it is computationally feasible to analyse the whole subset
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Figure 6: Comparison of the calculated normalising constant using Algorithm 2 (y-axis)
for a linear regression using a sparsity enforcing prior. Model 1 (left boxes) has 50
features, model 2 (right boxes) has 100 features. Left plot: estimated model evidence
for the model run on a 10% subset. Right plot: estimated model evidence using the
full data set but starting with 20 splits. The average number of observations per split
is given in parentheses (x-axis). We observe a downward bias as the number of splits
increase. For the full data set a comparison across a different number of splits would be
meaningless.

and derive a reference value for the normalising constant. We see in Figure 6 on the
left side that a downward bias is present, but that we would choose consistently across
subsets the right model for the 10% subset of the full data set. When we use the full data
set with 20 to 100 splits the right model is still chosen correctly in a given partition
(see the right side of the same figure). We also see that model comparison becomes
meaningless if different partitions are used to compare the model evidences.

As illustrates Table 1, the error relative to the true value of the normalising constant
(%

√
MSE) stays small even when using 50 splits and thus having only 265 observations

for the estimation of 100 parameters. As the number of splits increases, the squared
bias starts to dominate the error as illustrates the ratio Bias2/Var in Table 1. The error
relative to the level of the quantity that we are trying to estimate stays rather small.

splits 5 10 20 50

Model 1 (50 features)√
MSE 0.959 2.726 4.537 14.989

%
√
MSE -0.007 -0.019 -0.032 -0.105

Bias
2

Var
0.04 1.32 3.71 5.44

Model 2 (100 features)√
MSE 1.812 4.591 11.404 30.996

%
√
MSE -0.013 -0.032 -0.079 -0.216

Bias
2

Var
3.42 6.07 2.42 11.99

Table 1: Error metrics of the approximation of the log marginal likelihood for the subset
(10%) of the HLA data set with 13, 235 observations.
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Figure 7: Left plot: error ε1,S as a function of S. Middle plot: error ε2,S as a function of
S. Right plot: error ε2,S as a function of logS. The line corresponds to a linear regression
line fitted to the data in order to illustrate the trend. We run every simulation 6 times
in order to get repeated measurements. The sampler is run over the range of splits
[1, 2, 4, 5, 8, 10, 15, 20, 25, 30, 35, 40, 45, 50]. The total number of observations is fixed to
13, 235 and varies accordingly with the number of splits.

Finally, for this experiment we assess the error of
∫
Θ

∏S
s=1 p̃(θ|ys)dθ as the number

of splits grows, but the total data set size of 13, 235 stays fixed. We define the following
two measures of the error.

ε1,S = | log
∫
Θ

S∏
s=1

p̃(θ|ys)dθ − log

∫
Θ

S∏
s=1

N (θ|μs,Σs)dθ|,

ε2,S = log |
∫
Θ

S∏
s=1

p̃(θ|ys)dθ −
∫
Θ

S∏
s=1

N (θ|μs,Σs)dθ|.

The error ε1,S (referred to as relative log error) corresponds to the log of the error
predicted by Proposition 5 and it is expected to grow linearly in S. The error ε2,S
(referred to as log error of the difference) is a measure of the absolute error. The left
most plot in Figure 7 illustrates that ε1,S seems to grows linearly with S. The error ε2,S
seems to grow more like logS, as depicted in the right-most plot in Figure 7.

5.6 Experiment 6: Distributed RJMCMC

Finally, we investigate the use of our splitting approach for a vanilla model selection in
a RJMCMC setting. Our simulation should be seen as a proof of concept as RJMCMC
faces numerous issues that make exact inference dependent on various tuning parameters
that go beyond the scope of this paper.



630 Distributed Computation for Marginal Likelihood based Model Choice

Variables 1 2 3 4 5

Model 1 � � � × �
Model 2 � × × � �
Model 3 � � × × �
Truth � � 1/2 × �

Table 2: Active variables in the RJMCMC experiment.

Figure 8: Comparison of the Bayes factor over several splits for the RJMCMC sampler
based on Algorithm 3 (y-axis). We compare the BF of model 1 vs 2 (1/2), reference log
BF 3.2, model 1 vs 3 (1/3), reference log BF 3.6 and model 2 vs 3 (2/3), reference log
BF 0.4 over a changing number of splits (x-axis).

For this purpose we simulate a toy data set of size n = 4, 000 with a binary outcome
where the five features exhibit a high correlation of 0.9.

The data is generated by mixing two data sets. Thus, we artificially generate a setting
where it is not clear whether to include the third variable. See Table 2 for more details
as well as the appendix. The comparison of the different models is shown in Figure 8.
As the number of splits increase, the estimates of the Bayes factors deteriorate. In the
current setting going beyond 3 splits may lead to misleading results due to high variance
of the estimates as show our experiment. This high variance occurs when combining back
the results and is due to several reasons. RJMCMC samplers take a long time to mix
and less likely models are potentially not explored enough. Therefore both the estimates
based on the MCMC samples of the chain as well as the sojourn times suffer from high
variance that accumulates when combining the results from several splits. There is no
guarantee that on all data shards all models of interest are explored, if the data shards
are too small. In this situation it is not possible to combine the results from several
shards back together.

For our experiments we decided to use a medium sized data set and only a small
number of features and thereby making exploration of the relevant models more likely.
Potential remedies for the evoked problems are an improved estimation of the BF using
the method presented in Bartolucci et al. (2006) or the construction of more homoge-
neous splits using stratification. In any case, whilst theoretically possible, distributed
model evidence will rely on well mixing efficient RJMCMC in each split.



A. Buchholz, D. Ahfock, and S. Richardson 631

5.7 Guidelines for practical application

When using our approach in practice we recommend at least a few thousand observations
per data shard for a normal approximation to be reasonable. At this stage we suggest
to avoid high dimensional settings where the number of parameters exceeds the number
of data points, see also Kass and Raftery (1995), where at least 5 observations per
dimension are recommended. If the number of observations per shard are too small, the
normal approximation becomes unreliable and one risks to face a large downward bias
when combining the results. For complex models the bias grows faster as we split the
data in smaller shards. It can be helpful to evaluate the variance of summary statistics
across the shards to detect if the splits are not homogeneous and run the sampler on a
different number of splits.

We recommend sufficiently long Markov chains (see our default settings for the
experiments) and the use of convergence diagnostics to make sure that the posterior
has been explored sufficiently and that estimated posterior moments are reliable. In
particular, we often face the challenge to find a balance between (a) making sure the
approximations are precise enough and (b) limiting computation time. In practice, the
bias in the estimation is often smaller than the variation in the estimators. Thus con-
sistent model choice between competing models is possible. However, care is needed if
competing models are similar.

6 Discussion and Conclusion

We have presented an approach to calculate the normalising constant in a distributed
fashion to enable Bayesian model choice with large data sets. We are able to effec-
tively divide the computation time by several orders of magnitude by splitting the data
over a large number of workers and limiting communication between workers. We have
shown overall good numerical results and explained the theoretical underpinning for our
approach. There remain open questions. Although the estimation of the subposterior
normalising constants is biased in general, this bias seems worth accepting in practice.
It would be interesting to link this bias of Isub to the way the data is split and to the
characteristics of the model such as, e.g., its dimension.

Proposition 4 suggests possible refinements of the normal approximation to Isub
(10). In principle, the correction factor∫

Θ

∏S
s=1 p̃(θ | ys) dθ∫

Θ

∏S
s=1 N (θ | μs,Σs) dθ

= EN (θ|μ,Σ)

[
S∏

s=1

p̃(θ | ys)
N (θ|μs,Σs)

]
(12)

could be estimated by first approximating the density ratio terms p̃(θ|ys)/N (θ|μs,Σs),
and then using a simple Monte Carlo average for the expectation over the global normal
approximation N (θ|μ,Σ) ∝

∏S
s=1 N (θ|μs,Σs) as we suggest for the IS CMC estimator.

Subposterior samples could be used to construct a kernel density estimate of p̃(θ|ys)
(Neiswanger et al., 2013). The density ratio could also be estimated using various non-
parametric techniques from the machine-learning literature (Kanamori et al., 2012). For
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large values of S, a Laplace approximation to the expectation could also be accurate
enough for practical purposes (Tierney and Kadane, 1986). Estimation of the correction
term (12) will introduce some additional variance, however this may be compensated
for by a reduction in the bias. A detailed investigation of the costs and benefits of these
approaches is an avenue for future research.

If we want to achieve truly parallel Bayesian computation, we must be able to both
split the data and run short Markov chains without burn-in bias (Jacob et al., 2020).
Based on this idea an unbiased estimation of the normalising constant via bridge sam-
pling (Rischard et al., 2018) could be combined with our method to improve scalability.
Another interesting avenue for future research would be the use of variational infer-
ence for distributed Bayesian model choice using the work of Rabinovich et al. (2015);
Nowozin (2018). In practical settings shotgun stochastic search (SSS) (Hans et al., 2007)
could be applicable using our decomposition as SSS relies on normal approximations to
the posterior to quickly explore different models. We also suggest to generalise our ap-
proach to settings where data subsets are not i.i.d. and of varying seize and investigate
applications to federated learning (Li et al., 2020) in combination with posterior approx-
imations for neural networks (Immer et al., 2021). We think that distributed Bayesian
computation merits further theoretical and practical investigation as an alternative to
the mini batch paradigm.

Supplementary Material

Appendix (DOI: 10.1214/22-BA1321SUPP; .pdf). In the supplementary material we
list proofs of our theoretical results, provide details on our experiments and highlight
further results.
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