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Bayesian Approximations to Hidden
Semi-Markov Models for Telemetric Monitoring

of Physical Activity

Beniamino Hadj-Amar∗, Jack Jewson†, and Mark Fiecas‡

Abstract. We propose a Bayesian hidden Markov model for analyzing time se-
ries and sequential data where a special structure of the transition probability
matrix is embedded to model explicit-duration semi-Markovian dynamics. Our
formulation allows for the development of highly flexible and interpretable models
that can integrate available prior information on state durations while keeping a
moderate computational cost to perform efficient posterior inference. We show the
benefits of choosing a Bayesian approach for HSMM estimation over its frequen-
tist counterpart, in terms of model selection and out-of-sample forecasting, also
highlighting the computational feasibility of our inference procedure whilst incur-
ring negligible statistical error. The use of our methodology is illustrated in an
application relevant to e-Health, where we investigate rest-activity rhythms using
telemetric activity data collected via a wearable sensing device. This analysis con-
siders for the first time Bayesian model selection for the form of the explicit state
dwell distribution. We further investigate the inclusion of a circadian covariate
into the emission density and estimate this in a data-driven manner.

Keywords: Markov switching process, Hamiltonian Monte Carlo, Bayes factor,
telemetric activity data, circadian rhythm.

1 Introduction

Recent developments in portable computing technology and the increased popularity of
wearable and non-intrusive devices, e.g. smartwatches, bracelets, and smartphones, have
provided exciting opportunities to measure and quantify physiological time series that
are of interest in many applications, including mobile health monitoring, chronother-
apeutic healthcare and cognitive-behavioral treatment of insomnia (Williams et al.,
2013; Kaur et al., 2013; Silva et al., 2015; Aung et al., 2017; Huang et al., 2018). The
behavioral pattern of alternating sleep and wakefulness in humans can be investigated
by measuring gross motor activity. Over the last twenty years, activity-based sleep-
wake monitoring has become an important assessment tool for quantifying the quality
of sleep (Ancoli-Israel et al., 2003; Sadeh, 2011). Though polysomnography (Douglas
et al., 1992), usually carried out within a hospital or at a sleep center, continues to
remain the gold standard for diagnosing sleeping disorders, accelerometers have become
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a practical and inexpensive way to collect non-obtrusive and continuous measurements
of rest-activity rhythms over a multitude of days in the individual’s home sleep envi-
ronment (Ancoli-Israel et al., 2015).

Our study investigates the physical activity (PA) time-series first considered by
Huang et al. (2018) and Hadj-Amar et al. (2019), where a wearable sensing device
is fixed to the chest of a user to measure its movement via a triaxial accelerometer
(ADXL345, Analog Devices). The tool produces PA counts, defined as the number of
times an accelerometer undulation exceeds zero over a specified time interval. Figure 1
displays an example of 4 days of 5-min averaged PA recordings for a healthy subject,
providing a total of 1150 data points. Transcribing information from such complex, high-
frequency data into interpretable and meaningful statistics is a non-trivial challenge, and
there is a need for a data-driven procedure to automate the analysis of these types of
measurements. While Huang et al. (2018) addressed this task by proposing a hidden
Markov model (HMM) within a frequentist framework, we formulate a more flexible
approximate hidden semi-Markov model (HSMM) approach that enables us to explicitly
model the dwell time spent in each state. Our proposed modeling approach uses a
Bayesian inference paradigm, allowing us to incorporate available prior information for
different activity patterns and facilitate consistent and efficient model selection between
dwell distribution.

Figure 1: PA time series for a healthy individual. Rectangles on the time axis correspond
to periods from 20.00 to 8.00.

We conduct Bayesian inference using a HMM likelihood model that is a reformula-
tion of any given HSMM. We utilize the method of Langrock and Zucchini (2011) to em-
bed the generic state duration distribution within a special transition matrix structure
that can approximate the underlying HSMM with arbitrary accuracy. This framework is
able to incorporate the extra flexibility of explicitly modeling the state dwell distribution
provided by a HSMM, without renouncing the computational tractability, theoretical
understanding, and the multitudes of methodological advancements that are available
when using an HMM. To the best of our knowledge, such a modeling approach has
only previously been treated from a non-Bayesian perspective in the literature, where
parameters are estimated either by direct numerical likelihood maximization (MLE) or
applying the expectation-maximization (EM) algorithm.
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The main practical advantages of a fully Bayesian framework for HSMM inference
are that the regularization and uncertainty quantification provided by the prior and
posterior distributions can be readily incorporated into improved mechanisms for pre-
diction and model selection. In particular, selecting the HSMM dwell distribution in a
data-driven manner and performing predictive inference for future state dwell times.

However, the posterior distribution is rarely available in closed form and the com-
putational burden of approximating the posterior, often by sampling (see e.g. Gelfand
and Smith, 1990), is considered a major drawback of the Bayesian approach. In par-
ticular, evaluating the likelihood in HSMMs is already computationally burdensome
(Guédon, 2003), yielding implementations that are often prohibitively slow. This fur-
ther motivates the use of the likelihood approximation of Langrock and Zucchini (2011)
within a Bayesian framework. Here, we combine their approach with the stan probabilis-
tic programming language (Carpenter et al., 2016), further accelerating the likelihood
evaluations by proposing a sparse matrix implementation and leveraging stan’s compat-
ibility with bridge sampling (Meng and Wong, 1996; Meng and Schilling, 2002; Gronau
et al., 2020) to facilitate Bayesian model selection. We provide examples to illustrate
the statistical advantages of our Bayesian implementation in terms of prior regulariza-
tion, forecasting, and model selection and further illustrate that the combination of our
approaches can make such inferences computationally feasible (for example, by reduc-
ing the time for inference from more than three days to less than two hours), whilst
incurring negligible statistical error.

The rest of this article is organized as follows. In Section 2.1, we provide a brief
introduction to HMMs and HSMMs. Section 2.2 reviews the HSMM likelihood ap-
proximation of Langrock and Zucchini (2011). Section 3 presents our Bayesian frame-
work and inference approach. Using several simulation studies, Section 4 investigates
the performance of our proposed procedure when compared with the implementation of
Langrock and Zucchini (2011). Section 5 evaluates the trade-off between computational
efficiency and statistical accuracy of our method and proposes an approach to inves-
tigate the quality of the likelihood approximation for given data. Section 6 illustrates
the use of our method to analyze telemetric activity data, and we further investigate
the inclusion of spectral information within the emission density in Section 6.1. The
stan files (and R utilities) that were used to implement our experiments are available at
https://github.com/Beniamino92/BayesianApproxHSMM. The probabilistic program-
ming framework associated with stan makes it easy for practitioners to consider further
dwell/emission distributions to the ones considered in this paper. Users need only change
the corresponding function in our stan files.

2 Modeling Approach

2.1 Overview of Hidden Markov and Semi-Markov Models

We now provide a brief introduction to the standard HMM and HSMM approaches be-
fore considering the special structure of the transition matrix presented by Zucchini et al.
(2017), which allows the state dwell distribution to be generalized with arbitrary accu-
racy. HMMs, or Markov switching processes, have been shown to be appealing models

https://github.com/Beniamino92/BayesianApproxHSMM
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in addressing learning challenges in time series data and have been successfully applied
in fields such as speech recognition (Rabiner, 1989; Jelinek, 1997), digit recognition (Ra-
viv, 1967; Rabiner et al., 1989) as well as biological and physiological data (Langrock
et al., 2013; Huang et al., 2018; Hadj-Amar et al., 2021). An HMM is a stochastic pro-
cess model based on an unobserved (hidden) state sequence s = (s1, . . . , sT ) that takes
discrete values in the set {1, . . . ,K} and whose transition probabilities follow a Marko-
vian structure. Conditioned on this state sequence, the observations y = (y1, . . . , yT )
are assumed to be conditionally independent and generated from a parametric family
of probability distributions f(θj), which are often called emission distributions. This
generative process can be outlined as

s t | s t−1 ∼ γs t−1 ,

yt | s t ∼ f (θs t), t = 1, . . . , T,
(2.1)

where γ j = (γj1, . . . , γjK) denotes the state-specific vector of transition probabilities,
γjk = p ( st = k | st−1 = j) with

∑
k γjk = 1, and p (·) is a generic notation for probabil-

ity density or mass function, whichever appropriate. The initial state s0 has distribution
γ0 = (γ01, . . . , γ0K) and θj represents the vector of emission parameters modeling state
j. HMMs provide a simple and flexible mathematical framework that can be natu-
rally used for many inference tasks, such as signal extraction, smoothing, filtering and
forecasting (see e.g. Zucchini et al. 2017). These appealing features are a result of an
extensive theoretical and methodological literature that includes several dynamic pro-
gramming algorithms for computing the likelihood in a straightforward and inexpensive
manner (e.g. forward messages scheme, Rabiner 1989). HMMs are also naturally suited
for local and global decoding (e.g. Viterbi algorithm, Forney 1973), and the incorpora-
tion of trend, seasonality and covariate information in both the observed process and
the latent sequence. Although computationally convenient, the Markovian structure of
HMMs limits their flexibility. In particular, the dwell duration in any state, namely
the number of consecutive time points that the Markov chain spends in that state,
is implicitly forced to follow a geometric distribution with probability mass function
pj(d) = (1− γjj) γ

d−1
jj .

A more flexible framework can be formulated using HSMMs, where the generative
process of an HMM is augmented by introducing an explicit, state specific, form for
the dwell time (Guédon, 2003; Johnson and Willsky, 2013). The state stays unchanged
until the duration terminates, at which point there is a Markov transition to a new
regime. As depicted in Figure 2, the super-states z = (z1, . . . , zS) are generated from
a Markov chain prohibiting self-transitions wherein each super-state zs is associated
with a dwell time ds and a random segment of observations ys = (yt1s , . . . , yt2s), where
t1s = 1 +

∑
r<s dr and t2s = t1s + ds − 1 represent the first and last index of segment s,

and S is the (random) number of segments. Here, ds represents the length of the dwell
duration of zs. The generative mechanism of an HSMM can be summarized as

z s | z s−1 ∼ π z s−1 ,

ds | zs ∼ g (λ zs),

ys | z s ∼ f (θz s), s = 1, . . . , S,

(2.2)
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Figure 2: Graphical models: (left) HMM where y1, . . . , yT are the observations and
s1, . . . , sT the corresponding hidden state sequence; (right) HSMM where d1, . . . , dS are
the random dwell-times associated with each super state of the Markov chain z1, . . . , zS
where no self-transitions are allowed.

where π j = (πj1, . . . , πjK) are state-specific transition probabilities in which πjk =
p ( zt = k | zt−1 = j, zt �= j) for j, k = 1, . . . ,K. Note that πjj = 0, since self transitions
are prohibited. We assume that the initial state has distribution π0 = (π01, . . . , π0K),
namely z0 ∼ π0. Here, g denotes a family of dwell distributions parameterized by
some state-specific duration parameters λj , which could be either a scalar (e.g. rate of
a Poisson distribution), or a vector (e.g. rate and dispersion parameters for negative
binomial durations). Unfortunately, this increased flexibility in modeling the state du-
ration has the cost of substantially increasing the computational burden of computing
the likelihood: the message-passing procedure for HSMMs requires O (T 2K + TK2)
basic computations for a time series of length T and number of states K, whereas the
corresponding forward-backward algorithm for HMMs requires only O (TK2).

2.2 Approximations to Hidden Semi-Markov Models

In this section we introduce the HSMM likelihood approximation of Langrock and
Zucchini (2011). Let us consider an HMM in which y� = (y�1 , . . . , y

�
T ) represents the

observed process and z� = (z�1 , . . . , z
�
T ) denotes the latent discrete-valued sequence

of a Markov chain with states {1, 2, . . . , Ā}, where Ā =
∑K

i=1 ai, and a1, . . . , aK are
arbitrarily fixed positive integers. Let us define state aggregates Aj as

Aj =

{
a :

j−1∑
i=0

ai < a ≤
j∑

i=0

ai

}
, j = 1, . . . ,K, (2.3)

where a0 = 0, and each state corresponding to Aj is associated with the same emission
distribution f(θj) in the HSMM formulation of (2.2), namely y�t

∣∣ z�t ∈ Aj ∼ f (θj).
The probabilistic rules governing the transitions between states z� are described via the
matrix Φ =

{
φil

}
, where φil = p ( z�t = l | z�t−1 = i ), for i, l = 1, . . . , Ā. This matrix has
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the following structure

Φ =

⎡
⎢⎣Φ11 . . . Φ1K

...
. . .

...
ΦK1 . . . ΦKK

⎤
⎥⎦ , (2.4)

where the sub-matrices Φjj along the main diagonal, of dimension aj × aj , are defined
for aj ≥ 2, as

Φjj =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1− hj (1) 0 . . . 0
... 0

. . .
...

... 0
0 0 . . . 0 1− hj (aj − 1)
0 0 . . . 0 1− hj (aj)

⎤
⎥⎥⎥⎥⎥⎥⎦ , (2.5)

and Φjj = 1− hj(1), for aj = 1. The aj × ak off-diagonal matrices Φjk are given by

Φjk =

⎡
⎢⎢⎢⎣
πjk hj (1) 0 . . . 0
πjk hj (2) 0 . . . 0

...
πjk hj (aj) 0 . . . 0

⎤
⎥⎥⎥⎦ , (2.6)

where in the case that aj = 1 only the first column is included. Here, πjk are the
transition probabilities of an HSMM as in (2.2), and the hazard rates hj (r) are specified
for r ∈ N>0 as

hj (r) =
p ( dj = r |λj)

p ( dj ≥ r |λj)
, if p ( dj ≥ r − 1 |λj) < 1, (2.7)

and 1 otherwise, where p ( dj = r |λj) denotes the probability mass function of the dwell
distribution g (λj) for state j. This structure for the matrix Φ implies that transitions
within state aggregate Aj are determined by diagonal matrices Φjj , while transitions
between state aggregates Aj and Ak are controlled by off-diagonal matrices Φjk. Addi-
tionally, a transition from Aj to Ak must enter Ak in min(Ak). Langrock and Zucchini
(2011) showed that this choice of Φ allows for the representation of any duration dis-
tribution, and yields an HMM that is, at least approximately, a reformulation of the
underlying HSMM. In summary, the distribution of y (generated from an underlying
HSMM) can be approximated by that of y� (modeled using Φ), and this approximation
can be designed to be arbitrarily accurate by choosing aj adequately large. In fact, the
representation of the dwell distribution through Φ differs from the true distribution,
namely the one in the HSMM formulation of (2.2), only for values larger than aj , i.e.,
in the right tail.

3 Bayesian Inference

Bayesian inference for HSMMs has long been plagued by the computational demands
of evaluating its likelihood. In this section we use the HSMM likelihood approximation
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Figure 3: A graphical model for (3.1). Transition probabilities φj are solely determined
by πj and p ( dj = r |λj), and thus they are not considered as random variables them-
selves.

of Langrock and Zucchini (2011) to facilitate efficient Bayesian inference for HSMMs

. Extending the model introduced in Section 2.2 to the Bayesian paradigm requires

placing priors on the model parameters η =
{
(πj , λj , θj)

}K

j=1
. The generative process

of our Bayesian model can be summarized by

πj ∼ Dir (α0), (θj ,λj) ∼ H ×G, j = 1, . . . ,K,

z�t | z�t−1 ∼ φ z�
t−1

,

y�
t | z�t ∈ Aj ∼ f (θj), t = 1, . . . , T,

(3.1)

where Dir(·) denotes the Dirichlet distribution over a (K−2) dimensional simplex (since
the probability of self transition is forced to be zero) and α0 is a vector of positive reals.
Here, H and G represent the priors over emission and duration parameters, respectively,
and φi denotes the ith row of the matrix Φ. A graphical model representing the proba-
bilistic structure of our approach is shown in Figure 3, where we remark that the entries
of the transition matrix Φ are entirely determined by the transition probabilities of the
Markov chain πj and the values of the durations p ( dj = r |λj).

The posterior distribution for η has the following factorization.

p (η |y) ∝ L (y |η) ×
[ K∏

j=1

p (πj) × p (λj) × p (θj)

]
, (3.2)

where L ( · ) denotes the likelihood of the model, p (πj) is the density of the Dirichlet
prior for transitions probabilities (Eq. 2.2), and p (λj) and p (θj) represent the prior
densities for dwell and emission parameters, respectively. Since we have formulated
an HMM, we can employ well-known techniques that are available to compute the
likelihood, and in particular we can express it using the following matrix multiplication
(see e.g. Zucchini et al. 2017)

L (y |η) = π � ′

0 P (y1)ΦP (y2)Φ · · · ΦP (yT−1)ΦP (yT )1, (3.3)
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where the diagonal matrix P ( y ) of dimension Ā× Ā is defined as

P ( y ) = diag
{
p (y |θ1), . . . , p (y |θ1)︸ ︷︷ ︸

a1 times

, . . . , p (y |θK) . . . p (y |θK)︸ ︷︷ ︸
aK times

}
, (3.4)

and p (y |θj) is the probability density of the emission distribution f (θj). Here, 1 de-
notes an Ā-dimensional column vector with all entries equal to one and π �

0 represents
the initial distribution for the state aggregates. Note that if we assume that the under-
lying Markov chain is stationary, π �

0 is solely determined by the transition probabilities
Φ, i.e. π �

0 = (I −Φ+U)−1 1, where I is the identity matrix and U is a square matrix
of ones. Alternatively, it is possible to start from a specified state, namely assuming
that π �

0 is an appropriate unit vector, e.g. (1, 0, . . . , 0), as suggested by Leroux and
Puterman (1992). We finally note that computation of the likelihood in (3.3) is often
subject to numerical underflow and hence its practical implementation usually require
appropriate scaling (Zucchini et al., 2017).

While a fully Bayesian framework is desirable for its ability to provide coherent
uncertainty quantification for parameter values, a perceived drawback of this approach
compared with a frequentist analogue is the increased computation required for esti-
mation. Bayesian posterior distributions are only available in closed form under the
very restrictive setting when the likelihood and prior are conjugate. Unfortunately, the
model outlined in Section 2.2 does not admit such a conjugate prior form and as a
result the corresponding posterior (3.2) is not analytically tractable. However, numeri-
cal methods such as Markov Chain Monte Carlo (MCMC) can be employed to sample
from this intractable posterior. The last twenty years have seen an explosion of research
into MCMC methods and more recently approaches scaling them to high dimensional
parameter spaces. The next section outlines one such black box implementation that is
used to sample from the posterior in (3.2).

3.1 Hamiltonian Monte Carlo, No-U-Turn Sampler and Stan
Modeling Language

One particularly successful posterior sampling algorithm is Hamiltonian Monte Carlo
(HMC, Duane et al. 1987), where we refer the reader to Neal et al. (2011) for an ex-
cellent introduction. HMC augments the parameter space with a ‘momentum variable’
and uses Hamiltonian dynamics to propose new samples. The gradient information con-
tained within the Hamiltonian dynamics allows HMC to produce proposals that can
traverse high dimensional spaces more efficiently than standard random walk MCMC

algorithms. However, the performance of HMC samplers is dependent on the tuning
of the leapfrog discretization of the Hamiltonian dynamics. The No-U-Turn Sampler
(NUTS) (Hoffman and Gelman, 2014) circumvents this burden. NUTS uses the Hamil-
tonian dynamics to construct trajectories that move away from the current value of the
sampler until they make a ‘U-Turn’ and start coming back, thus maximizing the tra-
jectory distance. An iterative algorithm allows the trajectories to be constructed both
forwards and backwards in time, preserving time reversibility. Combined with a stochas-
tic optimization of the step size, NUTS is able to conduct efficient sampling without
any hand-tuning.
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The stan modeling language (Carpenter et al., 2016) provides a probabilistic pro-
gramming environment facilitating the easy implementation of NUTS. The user needs
only define the three components of their model: (i) the inputs to their sampler, e.g.
data and prior hyperparameters; (ii) the outputs, e.g. parameters of interest; (iii) the
computation required to calculate the unnormalized posterior. Following this, stan uses
automatic differentiation (Griewank and Walther, 2008) to produce fast and accurate
samples from the target posterior. stan’s easy-to-use interface and lack of required tun-
ing have seen it implemented in many areas of statistical science. As well as using
NUTS to automatically tune the sampler, stan is equipped with a variety of warnings
and tools to help users diagnose the performance of their sampler. For example, conver-
gence of all quantities of interest is monitored in an automated fashion by comparing
variation between and within simulated samples initialized at over-dispersed starting
values (Gelman et al., 2017). Additionally, the structure of the transition matrix Φ
allows us to take advantage of stan’s sparse matrix implementation to achieve vast
computational improvements. Although Φ has dimension Ā× Ā, each row has at most
K non-zero terms (representing within state transitions to the next state aggregate or
between state transitions), and as a result only a proportion (K/Ā) of the elements of Φ
is non-zero. Hence, for large values of the dwell approximation thresholds a, the matrix
Φ exhibits considerable sparsity. The stan modeling language implements compressed
row storage sparse matrix representation and multiplication, which provides consider-
able speed up when the sparsity is greater than 90% (Stan Development Team, 2018,
Ch. 6). In our applied scenario we consider dwell-approximation thresholds as big as
a = (250, 50, 50) with sparsity of greater than 99% allowing us to take considerable
advantage of this formulation. Finally, we note that our proposed Bayesian approach
may suffer from label switching (Stephens, 2000) since the likelihood is invariant under
permutations of the labels of the hidden states. However, this issue is easily addressed
using order constraints provided by stan. This strategy worked well in the simulations
and applications presented in the paper, without introducing any noticeable bias in the
results.

3.2 Bridge Sampling Estimation of the Marginal Likelihood

The Bayesian paradigm provides a natural framework for selecting between competing
models by means of the marginal likelihood, i.e.

p (y) =

∫
L (y |η) p (η) dη. (3.5)

The ratio of marginal likelihoods from two different models, often called the Bayes fac-
tor (Kass and Raftery, 1995), can be thought of as the weight of evidence in favor of
a model against a competing one. The marginal likelihood in (3.5) corresponds to the
normalizer of the posterior p (η |y) (3.2) and is generally the component that makes the
posterior analytically intractable. MCMC algorithms, such as the stan’s implementa-
tion of NUTS introduced above, allow for sampling from the unnormalized posterior,
but further work is required to estimate the normalizing constant. Bridge sampling
(Meng and Wong, 1996; Meng and Schilling, 2002) provides a general procedure for
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estimating these marginal likelihoods reliably. While standard Monte Carlo (MC) esti-
mates draw samples from a single distribution, bridge sampling formulates an estimate
of the marginal likelihood using the ratio of two MC estimates drawn from different
distributions: one being the posterior (which has already been sampled from) and the
other being an appropriately chosen proposal distribution q (η). The bridge sampling
estimate of the marginal likelihood is then given by

p (y) =
E q(η) [h(η)L (y |η) p (η) ]

E p(η|y) [h(η) q(η)]
≈

1
n2

∑n2

j=1 h(η̃
(j))L (y | η̃ (j)) p (η̃ (j))

1
n1

∑n1

i=1 h (η
(i)) q(η (i))

,

where h(η) is an appropriately selected bridge function and p(η) denotes the joint prior
distribution. Here, {η (1), . . . ,η (n1)} and {η̃ (1), . . . , η̃ (n2)} represent n1 and n2 sam-
ples drawn from the posterior p (η |y) and the proposal distribution q(η), respectively.
This estimator can be implemented in R using the package bridgesampling (Gronau
et al., 2020), whose compatibility with stan makes it particularly straightforward to
estimate the marginal likelihood directly from a stan output. This package implements
the method of Meng and Wong (1996) to choose the optimal bridge function minimiz-
ing the estimator mean-squared error and constructs a multivariate normal proposal
distribution whose mean and variance match those of the sample from the posterior.

3.3 Comparable Dwell Priors

Model selection based on marginal likelihoods can be very sensitive to prior specifica-
tions. In fact, Bayes factors are only defined when the marginal likelihood under each
competing model is proper (Robert, 2007; Gelman et al., 2013). As a result, it is impor-
tant to include any available prior information into the Bayesian modeling in order to
use these quantities in a credible manner. Reliably characterizing the prior for the dwell
distributions is particularly important for the experiments considered in Section 6, since
we use Bayesian marginal likelihoods to select between the dwell distributions associ-
ated with HSMMs and HMMs. For instance, if we believe that the length of sleep for
an average person is between 7 and 8 hours we would choose a prior that reflects those
beliefs in all competing models. However, we need to ensure that we encode this infor-
mation in comparable priors in order to perform ‘fair’ Bayes factor selection amongst a
set of dwell-distributions. Our aim is to infer which dwell distribution, and not which
prior specification, is most appropriate for the data at hand.

For example, suppose we consider selecting between geometric (i.e. an HMM), nega-
tive binomial or Poisson distributions (i.e. an HSMM), to model the dwell durations of
our data. While a Poisson random variable, shifted away from zero to consider strictly
positive dwells, has its mean λj + 1 and variance λj described by the same parame-
ter λj , the negative binomial allows for further modeling of the precision through an
additional factor ρj . In both negative binomial and Poisson HSMMs, the parameters
λj are usually assigned a prior λj ∼ Gamma (a0j , b0j) with mean E [λj ] = a0j/b0j and
variance Var [λj ] = a0j/b

2
0j . In order to develop an interpretable comparison of all com-

peting models, we parameterize the geometric dwell distribution associated with state
j in the standard HMM (2.1) as also being characterized by the mean dwell length
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τj = 1/(1 − γjj), where the geometric is also shifted to only consider strictly positive
support and γjj represents the probability of self-transition. Under a Dirichlet prior for
the state-specific vector of transition probabilities γj = (γj1, . . . , γjK) ∼ Dirichlet(vj),
with vj = (vj1, . . . , vjK) and βj =

∑
i �=j vji, the mean and variance of the prior mean

dwell under an HMM are given by

E [τj ] =
vjj + βj − 1

βj − 1
and Var [τj ] =

(vjj + βj − 1)(vjj + βj − 2)

(βj − 1)(βj − 2)
−
(
vjj + βj − 1

βj − 1

)2

for βj > 2 (the derivation of this result is provided in the Supplementary Material
(Hadj-Amar et al., 2022)).

We therefore argue that a comparable prior specification requires hyper-parameters
{a0j , b0j}Kj=1 and {vj}Kj=1 be chosen in a way that satisfy E [τj ] = E[λj+1] and Var [τj ] =
Var [λj + 1], ensuring the dwell distribution in each state has the same prior mean and
variance across models. The prior mean can be interpreted as a best a priori guess for
the average dwell time in each state, and the variance reflects the confidence in this prior
belief. In addition, since the negative binomial distribution is further parameterized by
a dispersion parameter ρj , we center our prior belief at ρj = 1, which is the value that
recovers geometric dwell durations (namely an HMM) when λj = γjj/(1−γjj). Between
state transition probabilities, i.e. the non-diagonal entries of the transition matrix, as
well as the emission parameters, are shared between the HMM and HSMM, and thus
we may place a prior specification on these parameters that is common across all models.

4 A Comparison with Langrock and Zucchini (2011)

This section presents several simulation studies. Firstly, we show that our Bayesian
implementation provides similar point estimates as the methodology of Langrock and
Zucchini (2011), serving as a “sanity check”. We then proceed to illustrate the benefits
adopting a Bayesian paradigm can bring to HSMM modeling.

4.1 Parameter Estimation

For our first example, we simulated T = 200 data points from a three-stateHSMM (2.2).
Conditional on each state j, the observations are generated from a Normal

(
μj , σ

2
j

)
, and

the dwell durations are Poisson(λj) distributed. We consider relatively large values for λj

in order to evaluate the quality of the HSMM approximation provided by (3.1). The full
specification is provided in Table 1 and a realization of this model is shown in Figure 4
(a, top). The dwell approximation thresholds a are set equal to (30, 30, 30) and we
placed a Gamma(0.01, 0.01) prior on the Poisson rates λj . The transition probabilities
πj are distributed as Dirichlet(1, 1) and the priors for the Gaussian emissions are given
as Normal(0, 102) and Inverse-Gamma(2, 0.5) for locations μj and scale σ 2

j , respectively.
Overall, this prior specification is considered weakly informative (Gelman et al., 2013,
2017).

Table 1 shows estimation results for our proposed Bayesian methodology as well as
the analogous frequentist approach (EM) of Langrock and Zucchini (2011), which will



558 Bayesian Approximations to Hidden Semi-Markov Models

be referred to as LZ-2011. Figure 4 (a) displays: (top) a graphical posterior predictive
check consisting of the observations alongside 100 draws from the estimated posterior
predictive (Gelman et al., 2013); (bottom) the most likely hidden state sequence, i.e.
argmaxz p ( z |y, η ), which is estimated via the Viterbi algorithm (see e.g. Zucchini
et al. 2017) using plug-in Bayes estimates of the model parameters; In order to assess
the goodness of fit of the model, we also verified normality of the pseudo-residual (see
Supplementary Material).

True LZ-2011 Proposed True LZ-2011 Proposed True LZ-2011 Proposed

μ1 5 4.96
4.95

(4.66–5.24)
σ3 1 1.01

1.08
(0.90–1.20)

π13 0.70 0.50
0.5

(0.13–0.87)

μ2 14 14.02
14.02

(13.67–14.37)
λ1 20 23.47

23.36
(17.03–30.57)

π21 0.20 0.00
0.20

(0.01–0.53)

μ3 30 30.19
30.18

(29.98–30.38)
λ2 30 27.22

27.05
(22.43–32.19)

π23 0.80 1.00
0.80

(0.47–0.99)

σ1 1 1.09
1.15

(0.95–1.40)
λ3 20 19.98

20.00
(15.93–24.46)

π31 0.10 0.33
0.40

(0.10–0.76)

σ2 2 1.90
1.95

(1.73–2.22)
π12 0.30 0.50

0.50
(0.13–0.87)

π32 0.90 0.67
0.60

(0.24–0.90)

Table 1: Illustrative Example. True model parameterization and corresponding estimates
obtained via the EM algorithm and our proposed Bayesian approach. For the latter, we
also report 95% credible intervals estimated from the posterior sample.

In general, both methods satisfactorily retrieve the correct pre-fixed duration and
emission parameters and the posterior predictive checks indicate that our posterior
sampler is performing adequately. The implementation of Langrock and Zucchini (2011)
suffers from a lack of regularization, for example in the estimation of π21 as 0, and is not
currently available with an automatic method to quantify parameter uncertainty. While
augmenting the approach of Langrock and Zucchini (2011) by adding regularization
penalties to parameters and producing confidence measures such as standard errors and
bootstrap estimates is possible, such features are automatic to our Bayesian adaptation.
Further, such an approach allows this uncertainty to be incorporated into methods for
prediction and model selection making the Bayesian paradigm appealing for HSMM

modeling.

4.2 Forecasting

A key feature of HSMMs is their ability to be able to capture and forecast when and
for how long the model will be in a given state. We compare the forecasting prop-
erties of the method presented by Langrock and Zucchini (2011) and our proposed
Bayesian approach. We simulated 20 ‘un-seen’ time series, ỹ = (ỹ 1, . . . , ỹH), where
ỹh = yT+h, h = 1, . . . , H and H = 100, 300, 500 denotes the forecast horizon, from the
model as in Table 1. We used the logarithmic score (log-score) to measure predictive
performances. Let η̂ be the frequentist (MLE/EM) parameter estimate and define the
log-score

L freq(ỹ) =

H∑
h=1

− log p (ỹh | η̂),
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Figure 4: (a, top) a realization (dots) of a three-state HSMM with Gaussian emissions
and Poisson durations, where different colors correspond to (true) different latent states.
Grey lines represent 100 samples drawn from the estimated posterior predictive distribu-
tion. (a, bottom) Most likely hidden state sequence estimated via the Viterbi algorithm;
(b) estimated posterior distribution of the transition probabilities πjk, where vertical
solid red and blue dotted lines represent true values and EM estimates, respectively.

where p (ỹh | η̂) denotes the forecast density function (see Supplementary Material for
an explicit expression). Our Bayesian framework does not assume a point estimate
η̂ but considers instead a posterior distribution p (η |y), which is integrated over to
produce a predictive density. Given M MCMC samples drawn from the posterior,{
η(i)

}M
i=1

∼ π (η |y), the log-score of the predictive density can be approximated as

LBayes(ỹ) =

H∑
h=1

− log p (ỹh |y) =
H∑

h=1

− log

∫
p (ỹh |η) p (η |y) dη

≈
H∑

h=1

− log

(
1

M

M∑
i=1

p (ỹh |η(i))

)
.

Figure 5 presents box-plots of log-scores for LZ-2011 and our proposed Bayesian ap-
proach. It is clear that our Bayesian methodology typically produces a much lower
predictive log-score than the frequentist procedure. The approach by Langrock and Zuc-
chini (2011) which uses plug-in estimates for parameters, is known to ‘under-estimate’
the true predictive variance thus yielding large values of the log-score (Jewson et al.,
2018). On the other hand, our Bayesian paradigm integrates over the parameters and
hence is more accurately able to capture the true forecast distribution. As a result, it
produces significantly smaller log-score estimates.
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Figure 5: Boxplots of log-scores for LZ-2011 (via EM) and our Bayesian methodology,
with three different forecast horizons H = 100, 300, 500.

4.3 Dwell Distribution Selection

An important consideration is whether to formulate an HMM or to extend the dwell
distribution beyond a geometric one (i.e., an HSMM). Ideally, the data should be used
to drive such a decision. In this section, we compare the frequentist methods for doing
so, namely Akaike’s information criterion (AIC, Akaike 1973) and Bayesian informa-
tion criterion (BIC, Schwarz et al. 1978), with their Bayesian counterpart, namely the
marginal likelihood. We choose not to consider other Bayesian inspired information cri-
teria (e.g. Spiegelhalter et al., 2002; Watanabe, 2010; Gelman et al., 2014) as our goal
here is to compare standard frequentist methods used previously in the literature to
conduct model selection for HMMs and HSMMs (e.g. Langrock and Zucchini, 2011;
Huang et al., 2018) with the canonical Bayesian analog. Although the performance of
Bayesian model selection can be sensitive to the specification of the prior, we gave
specific consideration to specifying this with model selection in mind in Section 3.3.

Consistency for Nested Models

A special feature of the negative binomial dwell distribution is that the geometric
dwell distribution associated with HMMs is nested within it. Taking ρ = 1 for the
negative binomial exactly corresponds to the geometric distribution. An important con-
sideration when selecting between nested models is complexity penalization. For the
same data set, the more complicated of two nested models will always achieve a higher
in-sample likelihood score than the simpler model. Therefore, in order to achieve consis-
tent model selection among nested models, the extra parameters of the more complex
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models must be penalized. In this scenario, theAIC :=−2L (y |η)+2p where p denotes
the number of parameters included in the model, is known not to provide consistent
model selection when the data is generated from the simpler model (see e.g. Fujikoshi,
1985). On the other hand, performing model selection using the marginal likelihood can
be shown to be consistent (see e.g. O’Hagan and Forster 2004), provided some weak
conditions on the prior are satisfied. Therefore, when following a Bayesian paradigm,
the correct data generating model is selected with probability one as T tends to infinity.
Here we show that under the approximate HSMM likelihood model, Bayesian model
selection appears to maintain its desirable properties.

We simulated 20 time series from a two-state HMM with Gaussian emission param-
eters μ = (1, 4) and σ2 = (1, 1.5), and diagonal entries of the transition matrix set to
(γ11, γ22) = (0.7, 0.6). To model this data we considered the HMM and a HSMM with
negative binomial durations. For the HSMM approximation, we considered a = (3, 3),
(5, 5) and (10, 10) in order to investigate how the dwell approximation affects the model
selection performance. We use prior distributions that are comparable as explained in
Section 3.3, the exact prior specifications are presented in the Supplementary Material.
Figure 6 (top) displays box-plots of the difference between the model selection crite-
ria (namely marginal likelihood and AIC) achieved by the HMM and the HSMM,
for increasing sample size T = 500, 5000, 10000 and values for a. We negate the AIC

such that maximizing both criteria is desirable. Thus, positive values for the difference
correspond to correctly selecting the simpler data generating model, i.e. the HMM. As
the sample size T increases, the marginal likelihood appears to converge to a positive
value, and the variance across repeats decreases, indicating consistent selection of the
correct model. On the other hand, even for large T there are still occasions when the
AIC strongly favors the incorrect, more complicated model. Further, such performance
appears consistent across values of a.

Complexity Penalization

Unlike the AIC, the BIC := −2L (y |η)+p log T penalizes complexity in a manner
that depends on the sample size T . This is termed ‘Bayesian’ because it corresponds to
the Laplace approximation of the marginal likelihood of the data (Konishi and Kitagawa,
2008), often interpreted as considering a uniform prior for the model parameters (Bhat
and Kumar, 2010; Sodhi and Ehrlich, 2010). Though the uniform distribution may be
viewed as naturally uninformative, it is well known that using the marginal likelihood
assuming an uninformative prior specification can lead to the selection of the simplest
model independently of the data (see e.g. Lindley, 1957; Jeffreys, 1998; Jennison, 1997).
As a result, while BIC can provide consistent selection of nested models, it can punish
extra complexity in an excessive manner.

To investigate how the approximate HSMM likelihood model affects this model se-
lection behavior, we consider data generated from an HSMM with the same formulation
as above except that in this scenario the dwell distribution is a negative binomial pa-
rameterized by state-specific parameters λ = (3.33, 2.50) and ρ = (2, 0.5). Note that
the data generating HSMM has two more parameters than the HMM. For the HSMM
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Figure 6: AIC, BIC and the marginal likelihood for nested models. (Top) model score
differences between a negative binomial duration HSMM with a = (3, 3), (5, 5) and
(10, 10) and an HMM when the data is generated from the HMM. Positive values of
the model score difference correspond to correctly selecting the simpler model. (Bottom)
model score differences between a negative binomial duration HSMM approximated by
a threshold a = (3, 3), (5, 5) and (10, 10) and an HMM when the data is generated from
the HSMM. Negative values of the model score difference correspond to correctly se-
lecting the more complicated model. Note that here we interpret the difference between
the AIC/BIC and the log-marginal likelihood values of two models as quantitatively
comparable for model selection decisions, with being greater than or less than 0 corre-
sponding to the selection decision.
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approximation, we consider a = (3, 3), (5, 5) and (10, 10), where the largest of these
provides negligible truncation of the right tail of the dwell distribution given the data
generating parameters. Figure 6 (bottom) shows box-plots of the difference between the
model scores (marginal-likelihood and BIC) across 20 simulated time series when fitting
the HMM and HSMM, for increasing sample size T = 200, 1000, 5000 and values for
a. We negate the BIC so that the preferred model maximizes both criteria. Unlike the
experiments described above, the data is now from the less parsimonious HSMM ap-
proach and therefore negative values for the difference in score correspond to correctly
selecting the more complicated model. For small sample sizes, e.g. T = 200, 1000, the
complexity penalty of the BIC appears to be too large, so that in almost all of the 20
repeat experiments the simple model is incorrectly favored over the correct data gen-
erating model, i.e. the HSMM. On the other hand, the marginal likelihood is able to
correctly select the more complicated model across almost all simulations and sample
sizes. Although for smaller a the HSMM approximation is ‘closer’ to a HMM, we still
see that the model selection performance is consistent across the different values of a.

5 Approximation Accuracy and Computational Time

The previous section motivated why the Bayesian paradigm can improve statistical
inferences for HSMMs. Next, we investigate the computational feasibility of such an
approach and the trade-off between computational efficiency and statistical accuracy
achieved by our Bayesian approximate HSMM implementation. In particular, we com-
pare our Bayesian approximate HSMM method for different values of the threshold a
with a Bayesian implementation of the exact HSMM, while also illustrating the com-
putational savings made by our sparse matrix implementation. For the exact HSMM,
the full-forward recursion is used to evaluate the likelihood (see e.g. Guédon 2003 or
Economou et al. 2014). In order to provide a fair comparison, we coded the forward
recursion outlined in Economou et al. (2014) in stan also. We then compare the compu-
tational resources required to sample from the approximate and exactHSMM posteriors
with the accuracy of the posterior mean parameter estimates with respect to their data
generating values.

We generate T = 5000 observations from two different HSMMs with Poisson du-
rations (both with K = 5 states and the same Gaussian emission distributions). For
the two different datasets, we consider the following dwell parameters: (i) short dwells,
i.e. λ = (2, 5, 8, 1, 4), where the average time spent in each state is fairly small and (ii)
one long dwell, i.e. λ = (2, 5, 25, 1, 4), where four states have short average dwell time
and one where the average dwell time is much longer. We also consider two approxi-
mation thresholds: a1 = (10, 10, 10, 10, 10), namely a fixed approximation threshold for
all five states, and a2 = (10, 10, 30, 10, 10), a ‘hybrid’ model where four of the states
have short dwell thresholds and one has a longer threshold. The emission parameters
were set to μ = (1, 2, 3.5, 6, 10) and σ2 = (12, 0.52, 0.752, 1.52, 2.52), and we specify
priors μj ∼ N (0, 102), σ2

j ∼ IG(2, 0.5), λj ∼ G(0.01, 0.01) and γj ∼ D(1, . . . , 1) for
j = 1, . . . , 5.

The results are presented in Table 2. Across both datasets and approximation thresh-
olds, the sparse implementation takes less than half the time of the non-sparse imple-
mentation, with the saving greater when the dwell thresholds are larger (and the matrix
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Short dwells Time (hours) ESS MSE

μ σ2 λ
Approx: a1 2.62 986.50 3.72 ×10−2 2.88 ×10−3 0.25
Approx (SPARSE): a1 1.30 975.20 3.84 ×10−2 3.06 ×10−3 0.26
Approx: a2 3.94 961.76 3.84 ×10−2 3.05 ×10−3 0.17
Approx: (SPARSE): a2 1.78 978.82 3.96 ×10−2 3.01 ×10−3 0.18
Exact 81.15 933.28 4.02 ×10−2 3.24 ×10−3 0.19

One long dwell
Approx: a1 3.33 984.51 1.76 ×10−2 4.68 ×10−2 128.50
Approx: (SPARSE): a1 1.78 981.90 1.73 ×10−2 4.84 ×10−2 128.51
Approx: a2 5.08 993.89 1.50 ×10−2 4.84 ×10−2 1.25
Approx: (SPARSE): a2 2.21 983.47 1.51 ×10−2 4.82 ×10−2 1.25
Exact 101.35 980.59 1.65 ×10−2 4.66 ×10−2 1.12

Table 2: Computational time (hours), effective sample size (ESS) and mean squared
error (MSE) of posterior mean parameters. The results are reported using the ap-
proximate HSMM for different dwell approximations a (with the corresponding sparse
implementation), and the exact HSMM implementation.

Φ, (3.4), is sparser). Furthermore, the HSMM approximations are considerably faster

than the full HSMM implementation. For the short dwell dataset the full HSMM takes

close to 3.5 days while the sparse implementations of the HSMM approximation both

require less than 2 hours. Similarly, for the one long dwell dataset, the full HSMM

takes over 4 days to run while again the sparse HSMM approximations require around

2 hours. The quoted Effective Sample Size (ESS, e.g. Gelman et al. 2013) values are

calculated using the LaplaceDemons package in R and are averaged across parameters.

These show that the ESS of all the generated samples is close to 1000 and thus the time

comparisons are indeed fair. Further, we expect the difference to become starker as the

number of observations T increases. While, the approximate HSMM scales linearly in

T and quadratically in
∑K

j=1 aj , the full HSMM in the worst case is quadratic in T

(Langrock and Zucchini, 2011).

Lastly, we see that the savings in computation time come at very little cost in sta-

tistical accuracy. We measure the statistical accuracy of the vector-valued parameter

θ̂ to estimate θ∗ using its mean squared error (MSE =
∑K

j=1(θ̂j − θ∗j )
2). All methods

achieve almost identically MSE values for the emission parameters μ and σ2. For the

short dwell data, the a1 approximation has slightly higher MSE for λ while the a2

approximation performed comparably to the HSMM. Clearly, increasing the approxi-

mation threshold improves statistical accuracy. On the other hand, the one long dwell

shows that if the dwell threshold is set too low, as is the case with a1, large errors in the

dwell estimation can be made. However, in this example the higher dwell approximation

a2 once again performs comparably with the full HSMM, whilst requiring only 2% of

the computational time.
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5.1 Setting the Dwell Threshold

The results of Section 5 indicate that while vast computational savings are possible using
the approximate HSMM likelihood, care must be taken not to set the dwell approxi-
mation threshold a too low. We propose initializing a based on the prior distribution
for the dwell times dj , π(dj) =

∫
π(dj ;λ)π(λ)dλ. Noting that any dwell time dj < aj is

not approximated, we recommend initializing ã such that dj ≤ ãj with high probability
for all j = 1, . . . ,K.

Such an initialization however does not guarantee the accuracy of the HSMM mod-
eling, particularly in the absence of informative prior beliefs. We therefore, propose a
diagnostic method to check that ã is not too small.

1. Initialize ã and conduct inference on the observed data. Record posterior mean
parameter estimates η̂obs(ã)

2. Generate data ỹgen from an exact HSMM with generating parameters η̂obs(ã).
Note that generation from an exact HSMM is easier than inference on its param-
eters

3. Continuing with ã, conduct inference on the generated data and record posterior
mean parameter estimates η̂gen(ã)

4. Compare dwell distribution parameters λ̂obs(ã) and λ̂gen(ã)

The estimates λ̂obs(ã) provide the best guess estimate of the parameters of the HSMM

underlying the data for fixed ã. Generating from this exact HSMM given by these
estimates allows us to verify the accuracy of the proposed model. If the estimates are
not accurate then little confidence can be had that λ̂obs(ã) accurately represents the

dwell distribution of the underlying HSMM. If λ̂gen(ã)j is not considered a satisfactory

estimate of λ̂obs(ã)j , then ãj must be increased. Conveniently, this can be done for each

state j independently. Further, if λ̂gen(ã)j is considered accurate enough, then there is
also the possibility to decrease ãj based on the inferred dwell distribution. Although
the above procedure requires the fitting of the model several times, we believe the
computational savings of our model when compared with the exact HSMM inference
demonstrated in Table 2 render this worthwhile. This procedure is implemented to set
the dwell-approximation threshold for the physical activity time series analyzed in the
next section.

6 Telemetric Activity Data

In this section, we return to the physical activity (PA) time series that Huang et al.
(2018) analyzed using a frequentist HMM. We seek to conduct a similar study but
within a Bayesian framework and consider the extra flexibility afforded by our pro-
posed methodology to investigate departures from the HMM. Further, in Section 6.1
we consider the inclusion of spectral information within the HMM and HSMM emission
densities.
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We consider three-state HSMMs with Poisson (λj) and Neg-Binomial (λj , ρj) dwell
durations, shifted to have strictly non-negative support and approximated via thresh-
olds aP = (160, 40, 25) and aNB = (250, 50, 50) respectively. These are fitted to the
square root of the PA time series shown in Figure 1, wherein we assume that trans-
formed observations are generated from Normal(μj , σ

2
j ) distributions, as in Huang et al.

(2018). We specified K = 3 states, in agreement with findings of Migueles et al. (2017)
and Huang et al. (2018), where they collected results from more than forty experiments
on PA time series. In their studies, for each individual the lowest level of activity corre-
sponds to the sleeping period, which usually happens during the night, while the other
two phases are mostly associated with movements happening in the daytime. Hence-
forth, these different telemetric activities are represented as inactive (IA), moderately
active (MA) and highly active (HA) states. The setting of a followed the iterative pro-
cess outlined in Section 5.1, initializing ãj giving prior probability of 0.9 that dj < aj .
This choice also reflects a trade-off between accurately capturing the states with which
we have considerable prior information, i.e. IA, whilst improving the computational
efficiency of the other states over a standard HSMM formulation.

We assume that the night rest period of a healthy individual is generally between 7
and 8 hours. The parameter of the dwell duration of the IA state, λ IA, is hence assigned
a Gamma prior with hyperparameters that reflect mean 90 (i.e. 7.5× 12) and variance
36 (i.e. [0.5×12]2), the latter was chosen to account for some variability amongst people.
Since we do not have significant prior knowledge on how long people spend in the MA

and HA states, we assigned λMA and λHA Gamma priors with mean 24 (i.e. 2 hours)
and variance 324 (i.e. [1.5 × 12]2) to reflect a higher degree of uncertainty. Transition
probabilities from state IA, πIA, are specified as Dirichlet with equal prior probability
of switching to any of the active states MA or HA. On the other hand, active states
usually alternate between each other more frequently than with IA (Huang et al., 2018),
and therefore we set the prior for πMA so that transitions from MA to HA are four
times more likely than switching from MA to IA (a similar argument can be made for
πHA). Finally, the inverse of dispersion parameters ρ−1

j were given Gamma (2, 2) priors,
and the parameters of the Gaussian emissions were assigned μj ∼ Normal (ȳ, 4) and
σ 2
j ∼ Inverse-Gamma (2, 0.5), where ȳ denotes the sample mean.

For each proposed model our Bayesian procedure is run for 6,000 iterations, 1,000
of which are discarded as burn-in. Firstly, we consider selecting which of the competing
dwell distributions, i.e. the geometric dwell characterizing the HMM and the Poisson
and negative binomial HSMM extensions, is most supported by the observed data.
As explained in Section 3.3, we specified hyperparameters for these competing mod-
els so that the corresponding priors match the means and variances of the informative
prior specification given above. In order to measure the gain of including available prior
knowledge into the model, we also investigated a weakly informative prior setting (as in
Section 4.1). Table 3 displays the bridge sampling estimates of the marginal likelihood
for the different models and posterior means of the corresponding dwell parameters.
It is clear that integrating into the model available prior information improves per-
formance greatly. In addition, modeling dwell durations as either negative binomial or
geometric provides a better approximation to the data compared to a Poisson model.
Furthermore, the Bayes factor 18.36 (i.e. exp{−1632.42+1635.33}) suggests that there is



B. Hadj-Amar, J. Jewson, and M. Fiecas 567

log-marg lik λ IA λMA λ HA ρ IA ρMA ρ HA

Poisson† −1751.02
88.32

(86.28–89.28)
34.79

(29.08–43.02)
18.55

(14.45–22.47)
– – –

Geometric† −1653.67
45.57

(26.97–74.42)
10.53

(7.49–14.53)
8.60

(6.13–11.94)
– – –

Neg-Binom† −1649.00
46.25

(21.12–88.14
10.46

(6.22–16.94)
8.37

(5.44–12.31)
0.61

(0.29–1.08)
0.61

(0.33–0.98)
1.22

(0.60–2.26)

Poisson −1732.16
88.39

(86.65–89.27)
33.61

(28.76–40.55)
17.98

(14.35–22.04)
– – –

Geometric −1635.33
88.72

(79.63–98.70)
13.42

(9.49–18.68)
10.97

(7.91–15.05)
– – –

Neg-Binom −1632.42
87.97

(78.40–97.75)
12.07

(7.33–18.84)
9.12

(5.99–13.19)
0.67

(0.33–1.19)
0.71

(0.36–1.15)
1.25

(0.60–2.22)

Table 3: Telemetric activity data. Log-marginal likelihood for different dwell distribu-
tions (Poisson, geometric and negative binomial), where the superscript † denotes a
weakly informative prior specification. Geometric durations are characterized by their
mean dwell length λj = 1/(1−γjj) where γjj represents the probability of self-transition.
Estimated posterior means of the dwell parameters are reported with a 90% credible
intervals estimated from the posterior sample.

strong evidence (Kass and Raftery, 1995) in favor of the HSMM with negative binomial
durations in comparison to a standard HMM. This is also reflected by the estimated
posterior means of the parameters ρj which differ from one, hence showing some de-
parture from geometric dwell durations. These ‘dispersion’ parameters are smaller than
one for the IA and MA states indicating a larger fitted variance of the dwell times
under the negative binomial HSMM than the geometric HMM. Combined with their
estimated means, this may explain the improved performance of the negative binomial
dwell model over the HMM. The increased variance allows the time series to better
capture the short transitions to IA states seen in the fitted model (Figure 7). This also
explains why the Poisson HSMM performs poorly for this dataset; the fitted Poisson
dwell distribution for the IA state can be seen to have a much smaller variance than the
geometric and negative binomial alternatives. Plots comparing the posterior predictive
dwell time for the IA, MA, and HA states estimated under the three proposed dwell
distributions are provided in the Supplementary Material. Future work could consider
more complex dwell distributions to reflect the different patterns of human sleep. For
example, a natural extension to the results presented here could be to look at whether a
two-component mixture distribution (e.g. Poisson) can aid in better capturing the short
excursions to the IA seen in Figure 7. In the Supplementary Material, we have further
investigated the different state classifications provided by the optimal proposed model
(using negative binomial durations) with respect to Poisson and geometric dwells.

Posterior means of the emission parameters were yt|IA ∼ Normal(0.93, 0.47), yt|MA ∼
Normal(3.17, 1.28) and yt|HA ∼ Normal(5.38, 0.54). The IA state naturally corresponds
to the state with the lowest mean activity and the MA state appears to have largest
variance in activity levels. Posterior means of the dwell parameters in Table 3 show that
this individual sleeps an average of 7 and a half hours per night. In Figure 8, we display
posterior histograms of the transition probabilities between different states. There ap-
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Figure 7: Square root of the PA time series along with simulated observations from the
fitted model with negative binomial dwell-time. The piecewise horizontal line represents
the estimated state sequence. Rectangles on the time axis correspond to periods from
20.00 to 8.00. IA state happens during night, whereas days are characterized by many
switches between MA and HA states. This picture is best viewed in color.

Figure 8: Estimated posterior density histograms of the transition probabilities between
IA, MA, and HA states from the proposed HSMM with negative binomial dwell-times.

pears to be high chances of switching between active states, since the posterior means
for πHA→MA and πMA→HA are close to one, though the latter exhibits larger variance.
Additionally, the posterior probability of transitioning from HA to IA is very close to
zero, which is reasonable considering that it is very unlikely that an individual would
go to sleep straight after having performed intense physical activity. Figure 7 shows the
transformed time series as well as simulated data from the predictive distribution, and
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the estimated hidden state sequence using the Viterbi algorithm. It can be seen that
the IA state occurs during the night whereas days are characterized by many switches
between the MA and HA states. Our results are in agreement with Huang et al. (2018).

6.1 Harmonic Emissions

Huang et al. (2018) further extended the standard GaussianHMM for the PA recordings
by allowing the state transition dynamics to depend on body’s circadian periodicity (24
hours). In a similar vein, we investigate the inclusion of spectral information within the
emission density, and study how this affects the HMM and HSMM models considered
in the previous section. Specifically, we consider that the observations are generated
from state-specific harmonic emissions of the form yt | z t = j ∼ N (μj(t), σ

2
j ), with

oscillatory mean defined as

μj(t) = β
(0)
j + β

(1)
j cos(2πω̂t) + β

(2)
j sin(2πω̂t). (6.1)

This emission density is hence expressed as a sum of a sine and a cosine (weighted by the

linear coefficients β
(1)
j and β

(2)
j ) oscillating at frequency ω̂, plus a state-specific intercept

β
(0)
j . While Huang et al. (2018) choose a priori the 24-hour periodicity included in the

basis function, in our study we estimate this directly from the data. The next section
describes our approach for identifying the frequency ω̂ driving the overall variation in
the PA time series.

Identifying the Periodicity

We define ω̂ as the posterior mean of the frequency ω under the periodic model in (6.2)
defined below, i.e. ω̂ := E (ω |y,β, σ2), with β = (β(1), β(2)). In this preliminary step
to the proposed model with harmonic emissions (6.1), we first assume the data to be
generated by the following stationary periodic process

yt = β(1) cos(2πωt) + β(2) sin(2πω) + εt, εt ∼ N (0, σ2
ω), t = 1, . . . , T, (6.2)

where we have developed a Metropolis-within-Gibbs sampler to obtain samples from
the posterior distribution of the frequency

p (ω |β, σ2, y) ∝ exp

[
− 1

2σ2

∑
t

{
yt − β(1) cos(2πωt)− β(2) sin(2πω)

}2
]
1[

ω ∈ (0, φω)
],

(6.3)
where φω is a pre-specified upper bound for the frequency and may be chosen to reflect
prior information about the value of ω, for example focusing only on low frequencies (e.g.
0 < φω < 0.1). Full details of the sampling scheme and our prior choice are provided in
the Supplementary Material. This algorithm is similar to the within-model move of the
“segment model” presented in Hadj-Amar et al. (2019, 2021), but with the number of
frequencies fixed at one.

We ran the sampler for 5000 iterations using software written in Julia 1.6 which took
around 3 seconds on an Intel R© CoreTM i5 2 GHz Processor with 16 GB RAM. Figure 9
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Figure 9: Identifying the periodicity via the periodic model in (6.2). Panel (a) shows
the trace plot (after burn-in) of the posterior distribution of the frequency. Panel (b)
displays draws from the posterior predictive as well as the estimated periodic signal. In
both plots, the red represents posterior mean.

(a) shows the trace plot (after burn-in) of the posterior sample of the frequency where
the acceptance rate (28%) was roughly tuned to be optimal (Roberts et al., 2001). We
also highlight in red the posterior mean ω̂ = 0.003453. In Figure 9 (b) we display 20
draws from the posterior predictive distribution of the stationary periodic model and the
posterior mean of the oscillatory signal. This shows that the model predictions appear
to capture some of the structure of the PA time series. However, there also appears to
be temporal structure not captured by the global circadian harmonic. As a result, in
the next section we will use the global ω̂ = 0.003453 as the circadian covariate for the
emissions of the harmonic HMM and HSMM (6.1), allowing the harmonic parameters

(β
(0)
j , β

(1)
j , β

(2)
j ) to vary by state in order to better capture the temporal structure.

Results

Given the point estimate for ω̂ = 0.003453, we then applied the HMM and HSMM

approximations with Poisson and negative binomial dwells to the PA time series (using
K = 3 states). Our prior specification follows the discussion in Section 6 for σ2

j , λj ,

γj and ρj , where appropriate, while the intercept of the harmonic mean model β
(0)
j is

given the same prior as μj from the standard Gaussian emission model. The additional

parameters of the harmonic model β
(1)
j and β

(2)
j are both assumed a priori N (0, 22).

Table 4 (top) provides the log-marginal likelihoods of the different models and pos-
terior mean estimates of the parameter of their dwell-distributions, along with the 90%
credibility intervals provided by their posteriors. It is clear that the marginal likelihood
favors the negative binomial dwell distribution, with the standard HMM (geometric
dwell) being the next most favorable. Further, when comparing Table 4 with Table 3,
we see that the inclusion of harmonic emissions results in an increase of the marginal
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log-marg lik λ IA λMA λHA ρ IA ρMA ρHA

Poisson −1727.24
88.29

(86.42–89.25)
44.68

(41.80–47.57)
21.62

(18.52–25.05)
– – –

Geometric −1629.40
88.24

(79.08–98.05)
15.53

(10.19–23.08)
12.15

(8.36–17.61)
– – –

Neg-Binom −1625.61
87.54

(77.66–97.34)
14.32

(7.82–24.02)
10.67

(6.44–16.20)
0.65

(0.31–1.17)
0.64

(0.33–1.13)
1.7

(0.63–3.88)

IA MA HA

β(0) β(1) β(2) β(0) β(1) β(2) β(0) β(1) β(2)

Gaussian
0.93

(0.88–0.98)
– –

3.18
(3.03–3.33)

– –
5.38

(5.27–5.51)
– –

Harmonic
1.36

(1.26–1.46)
0.04

(−0.05–0.13)
−0.60

(−0.72–−0.47)
3.32

(2.94–3.65)
−0.11

(−0.34–0.13)
−0.24

(−0.69–0.17)
5.46

(5.32–5.60)
0.20

(0.07–0.33)
−0.23

(−0.61–0.16)

Table 4: Telemetric activity data with harmonic emissions. (Top) Log-marginal likelihood for different dwell durations (i.e.
Poisson, geometric and negative binomial). Geometric durations are characterized by their mean dwell length λj = 1/(1− γjj)
where γjj represents the probability of self-transition. (Bottom) Parameters of the mean of the Gaussian and harmonic emission
distributions under the selected negative binomial dwell distribution. Estimated posterior means of the parameters are reported
with a 90% credible intervals estimated from the posterior sample.
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likelihood by a factor ranging between 6 and 7 on the log-scale for all dwell distributions,
thus supporting its integration in our model.

Following the selection of the negative binomial dwell distribution for both the stan-
dard Gaussian and harmonic emission models, Table 4 (bottom) provides the posterior
mean values for the parameters of these emission distributions, along with the 90% cred-
ibility intervals provided by the posterior. These results show that even with a global
estimate for the periodicity, there are differences between the estimated parameters in
each state, supporting the combination of the periodic time-series model with a hidden
state model. Furthermore, there are clear differences between the estimated emissions of
the harmonic model compared with the estimated Gaussian emissions in the standard

model (where β
(0)
j = μj and β

(1)
j and β

(2)
j were both 0). In particular, the intercept

β
(0)
IA

in the IA state differs non-negligibly when using the harmonic model instead of the

standard Gaussian, as do β
(2)
IA

and β
(1)
HA

, whose 90% credibility intervals do not cover
0. This all supports the selection of the harmonic model over the standard Gaussian
emissions.

7 Concluding Summaries

We presented a Bayesian model for analyzing time series data based on an HSMM

formulation with the goal of analyzing physical activity data collected from wearable
sensing devices. We facilitate the computational feasibility of Bayesian inference for
HSMMs via the likelihood approximation introduced by Langrock and Zucchini (2011),
in which a special structure of the transition matrix is embedded to model the state
duration distributions. We utilize the stan modeling language and deploy a sparse ma-
trix formulation to further leverage the efficiency of the approximate likelihood. We
showed the advantages of choosing a Bayesian paradigm over its frequentist counter-
part in terms of incorporation of prior information, quantification of uncertainty, model
selection, and forecasting. We additionally demonstrated the ability of the HSMM ap-
proximation to drastically reduce the computational burden of the Bayesian inference
(for example reducing the time for inference on T = 5000 observations from > 3 days to
< 2 hours), whilst incurring negligible statistical error. The proposed approach allows
for the efficient implementation of highly flexible and interpretable models that incor-
porate available prior information on state durations. An avenue not explored in the
current paper is how our model compares to particle filtering methods. For example, a
referee suggested that an algorithm sampling the filtering distribution using an adapta-
tion of the sequential Monte Carlo (SMC) sampler of Yildirim et al. (2013) inside one
of the two particle MCMC algorithms of Whiteley et al. (2009) could prove competi-
tive for HSMM inference. Further work could define, implement and compare such an
approach to ours.

The analysis of physical activity data demonstrated that our model was able to learn
the probabilistic dynamics governing the transitions between different activity patterns
during the day as well as characterizing the sleep duration overnight. We were also
able to illustrate the flexibility of the proposed model by adding harmonic covariates to
the emission distribution, extending further the analysis of Huang et al. (2018). Future
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work will investigate the further inclusion of covariates into these time series models
as well as computationally and statistically efficient approaches for conducting variable
selection among these (George and McCulloch, 1993; Rossell and Telesca, 2017). We will
also consider extending our methodology to account for higher-dimensional multivariate
time series, where computational tractability is further challenging.

Supplementary Material

Supplementary Material to “Bayesian Approximations to Hidden Semi-Markov Mod-
els” (DOI: 10.1214/22-BA1318SUPP; .pdf). Supplementary materials are available and
include further details about dwell durations, forecasting functions, graphs of normal
pseudo-residuals, and further analysis of the PA time series results. Code that imple-
ments the methodology is available as online supplemental material (see also https://

github.com/Beniamino92/BayesianApproxHSMM).
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