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Shrinkage with Shrunken Shoulders:
Gibbs Sampling Shrinkage Model Posteriors

with Guaranteed Convergence Rates∗

Akihiko Nishimura† and Marc A. Suchard‡

Abstract. Use of continuous shrinkage priors — with a “spike” near zero and
heavy-tails towards infinity — is an increasingly popular approach to induce spar-
sity in parameter estimates. When the parameters are only weakly identified by
the likelihood, however, the posterior may end up with tails as heavy as the prior,
jeopardizing robustness of inference. A natural solution is to “shrink the shoulders”
of a shrinkage prior by lightening up its tails beyond a reasonable parameter range,
yielding a regularized version of the prior. We develop a regularization approach
which, unlike previous proposals, preserves computationally attractive structures
of original shrinkage priors. We study theoretical properties of the Gibbs sam-
pler on resulting posterior distributions, with emphasis on convergence rates of
the Pólya-Gamma Gibbs sampler for sparse logistic regression. Our analysis shows
that the proposed regularization leads to geometric ergodicity under a broad range
of global-local shrinkage priors. Essentially, the only requirement is for the prior
πlocal(·) on the local scale λ to satisfy πlocal(0) < ∞. If πlocal(·) further satisfies
limλ→0 πlocal(λ)/λ

a < ∞ for a > 0, as in the case of Bayesian bridge priors, we
show the sampler to be uniformly ergodic.

Keywords: Bayesian inference, sparsity, generalized linear model, Markov chain
Monte Carlo, ergodicity.
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1 Introduction

Bayesian modelers are increasingly adopting continuous shrinkage priors to control the
effective number of parameters and model complexity in a data-driven manner. These
priors are designed to shrink most of the parameters towards zero while allowing for
the likelihood to pull a small fraction of them away from zero. To achieve such ef-
fects, a shrinkage prior1 has a density with a “spike” near zero and heavy-tails towards
infinity, encoding information that parameter values are likely close to zero but oth-
erwise could be anywhere. Originally developed for the purpose of sparse regression
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1We drop the word “continuous” since “shrinkage priors” are commonly understood in the literature
as continuous ones, which exclude traditional discrete spike-slab mixtures.
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(Carvalho et al., 2009), shrinkage priors have found applications in trend filtering of
time series data (Kowal et al., 2019), (dynamic) factor models (Kastner, 2019), graphi-
cal models (Li et al., 2019), compression of deep neural networks (Louizos et al., 2017),
among others.

Of particular interest in this paper is an application of Bayesian shrinkage to a logis-
tic regression model yi |xi,β ∼ Bernoulli(logit−1(x

ᵀ
i β)) and computational properties

of the corresponding posterior inference via Gibbs sampling. Due to the possibility of
β being only weakly identifiable, use of a shrinkage prior on β here warrants proper
modification of the prior’s tail in order to ensure reasonable computational and statis-
tical behaviors. Under our tail regularization strategy, we show that the Gibbs sampler
achieves geometric ergodicity under a broad range of shrinkage priors. Notably, our
proof technique unifies analyses of the Gibbs samplers under various shrinkage priors,
providing an easily verifiable condition for geometric and uniform ergodicity.

Shrinkage priors are often expressed as a scale mixture of Gaussians on the unknown
parameter β = (β1, . . . , βp) (Polson and Scott, 2010):

π(βj | τ, λj) ∼ N (0, τ2λ2
j ), λj ∼ πloc(·). (1.1)

This global-local representation simplifies the posterior conditionals and leads to straight-
forward inference via Gibbs sampling. The global scale τ controls the average magnitude
of βj ’s and hence overall sparsity level. The local scale λj is specific to individual βj and
its density πloc(·) controls the size of the spike and tail behavior of the marginal βj | τ . For
instance, the popular horseshoe prior of Carvalho et al. (2010) uses πloc(λ) ∝ (1+λ2)−1,
inducing a marginal π(βj | τ) with the spike proportional to − log(|βj/τ |) as |βj/τ | → 0
and the tail proportional to (βj/τ)

−2 as |βj/τ | → ∞. Another notable example is the
Bayesian bridge prior of Polson et al. (2014), which generalizes the Bayesian lasso of
Park and Casella (2008) with π(βj | τ) having a larger spike as |βj/τ | → 0 and heavier
tails as |βj/τ | → ∞. Most importantly from the computational efficiency perspective,
the bridge prior possesses a closed-form expression π(βj | τ) ∝ τ−1 exp(−|βj/τ |a) for
a ∈ (0, 1) and thus allows for a collapsed Gibbs update from τ |β with λj ’s marginal-
ized out.

For a simple purpose such as estimating the unknown means of independent Gaussian
observations, a broad class of shrinkage priors achieve theoretically optimal performance
(van der Pas et al., 2016; Ghosh and Chakrabarti, 2017). The lack of prior information
in the tail of the distribution is problematic, however, in more complex models where
parameters are only weakly identified. In such models, the posterior may have a tail as
heavy as the prior, resulting in unreliable parameter estimates (Ghosh et al., 2018).

To address the above shortcoming of shrinkage priors, we build on the work of Pi-
ironen and Vehtari (2017) and propose a computationally convenient way to regularize
shrinkage priors. The basic idea is to modify the prior so that the marginal distribu-
tion of |βj | has light-tails beyond a reasonable range. Our formulation has computa-
tional advantages over that of Piironen and Vehtari (2017) due to a subtle yet impor-
tant difference. By preserving the global-local structure (1.1), our regularized shrinkage
priors can benefit from partial marginalization approaches that substantially improve
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mixing of Gibbs samplers (Polson et al. 2014; Johndrow et al. 2020; Nishimura and
Suchard 2022, Appendix E). In addition, our regularization leaves the posterior con-
ditionals of λj ’s unchanged, allowing their conditional updates via existing specialized
samplers (Griffin and Brown 2010; Polson et al. 2014; Nishimura and Suchard 2022,
Appendix F).2

Our regularized shrinkage priors allow for posterior inference via Gibbs sampler
whose convergence rates often are provably fast. As an illustrative example, we consider
Bayesian sparse logistic regression models, whose need for regularization motivated the
work of Piironen and Vehtari (2017). Gibbs sampling via the Pólya-Gamma data aug-
mentation of Polson et al. (2013) is a state-of-the-art approach to posterior computation
under logistic model. When combined with advanced numerical linear algebra tech-
niques, this Gibbs sampler is highly scalable to large data sets (Nishimura and Suchard,
2022), but its theoretical convergence rate has not been investigated. Assuming that the
prior density πloc(λ) is continuous and bounded except possibly at λ = 0, we establish
that the Gibbs sampler is geometrically ergodic whenever πloc(0) < ∞. Stronger uni-
form convergence is achieved when

∫
λ−1πloc(λ) dλ < ∞. The integrability condition

holds in particular when πloc(λ) = O(λa) for a > 0 as λ → 0, which is the case for
normal-gamma priors with shape parameter larger than 1/2 (Griffin and Brown, 2010)
and for Bayesian bridge priors (Polson et al. 2014 and Nishimura and Suchard 2022,
Appendix E).

Previous studies of the convergence rates under shrinkage models have focused ex-
clusively on linear regression with specific parametric families of shrinkage priors (Pal
and Khare, 2014; Johndrow et al., 2020). In contrast, our analysis requires no para-
metric assumptions on the shrinkage prior, at the same time extending the convergence
results to the logistic model and, in Appendix A (Nishimura and Suchard, 2022), to the
probit model.

To summarize, this work provides two major contributions to the Bayesian shrinkage
literature. First, we propose an effective and Gibbs-friendly approach to suitably modify
shrinkage priors for use in weakly-identifiable models (Section 2). Second, we develop
theoretical tools to study the behavior of shrinkage model Gibbs samplers near the spike
βj = 0 without any parametric assumption on πloc(·), thereby unifying convergence
analyses of the logistic regression Gibbs samplers under a range of shrinkage priors
(Section 3). We conclude the article in Section 4 by demonstrating a practical use
case of regularized shrinkage models via simulation study, which emulates increasingly
common situations where the sample sizes are large yet the signals are difficult to
detect. Our simulation results in particular highlight the dual role of the regularization;
by eliminating heavy-tails in the shrinkage model posterior, it induces both more stable
parameter estimates and faster mixing of the Gibbs sampler.

2Appendix F (Nishimura and Suchard, 2022) describes a simple and provably efficient rejection-
sampler for the conditional distributions of local scale parameter λj ’s under the horseshoe prior. Despite
the horseshoe’s popularity, we find that no existing algorithm for the conditional update comes with
theoretically guaranteed efficiency.
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2 Regularized shrinkage prior

This section explains how our regularization approach allows us to incorporate prior in-
formation on the largest possible parameter values while maintaining the computational
tractability of the original shrinkage prior.

Piironen and Vehtari (2017) proposes to control the tail behavior of a global-local
shrinkage prior by defining its regularized version with slab width ζ > 0 as

βj | τ, λj , ζ ∼ N

⎛
⎝0,

(
1

ζ2
+

1

τ2λ2
j

)−1
⎞
⎠ , (2.1)

with the prior πloc(·) on the local scale λj unmodified. This regularization ensures that
the variance of βj | τ, λj , ζ is upper bounded by ζ2 and hence βj | ζ marginally has a
density with Gaussian tails beyond |βj | > ζ. The slab width ζ can be either given a
prior distribution or fixed at a reasonable value.3

While beneficial in improving statistical properties (Piironen and Vehtari, 2017), reg-
ularization the form (2.1) compromises the posterior conditional structures of shrinkage
models. Specifically, the conditional distribution of τ,λ is altered through their depen-
dency on ζ. This structural change is at best an inconvenience and potentially a cause of
computational inefficiency, prohibiting the use of common acceleration techniques. For
instance, the global scale τ is known to mix slowly when updating from its full condi-
tional, so the state-of-the-art Gibbs samplers for Bayesian sparse regression marginalize
out a subset of parameters when updating τ (Johndrow et al., 2020; Nishimura and
Suchard, 2022). The analytical tractabilities of the integrals, which these marginaliza-
tion strategies rely on, are lost when using the regularization as in (2.1).

We propose a more computationally convenient formulation, which induces regular-
ization similar to that of (2.1) while keeping τ and λ conditionally independent of ζ
given β. Our regularized prior πreg(·) defines the distribution of βj , λj | τ, ζ as

πreg(βj , λj | τ, ζ) ∝ exp

(
−

β2
j

2ζ2

)
1

τλj
exp

(
−

β2
j

2τ2λ2
j

)
πloc(λj)

∝ N

⎛
⎝βj

∣∣∣∣∣ 0,
(

1

ζ2
+

1

τ2λ2
j

)−1
⎞
⎠(

1 +
τ2λ2

j

ζ2

)−1/2

πloc(λj),

(2.2)

where N ( · | 0, σ2) denotes the centered Gaussian density with variance σ2. In other
words, in addition to defining π(βj | τ, λj , ζ) as in (2.1), we alter the prior on λj as

π(λj | τ, ζ) ∝ πloc(λj)/
√

1 + τ2λ2
j/ζ

2. Incidentally, we see that our regularized prior is

very similar to that of Piironen and Vehtari (2017), but has a slightly lighter tail due

to the factor 1/
√
1 + τ2λ2

j/ζ
2 which, as λj → ∞, behaves like ζ/τλj .

3While an appropriate choice of ζ is application specific, by way of illustration, we suggest ζ = 2 as a
weakly informative and sensible starting point in biomedical applications with standardized predictors.
Schuemie et al. (2018) surveys 59,196 published effect estimates in the observational study literature
and finds only a small portion of them exceeds 2.
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Figure 2.1: Directed acyclic graphical model (a.k.a. Bayesian network) representation
of regularized shrinkage priors under the two alternative formulations.

Alternatively, we can achieve the equivalent regularization through fictitious data
that makes values |βj | � ζ unlikely. While it may appear unnatural to introduce an
auxiliary likelihood for the purpose of indirectly modifying a prior, this alternative for-
mulation makes the regularization mechanism and resulting posterior properties more
transparent. Figure 2.1 schematically describes this alternative construction of our regu-
larized prior as well as the corresponding posterior structure when data y and X inform
β through the likelihood L(y |X,β).

Given a global-local prior βj | τ, λj ∼ N (0, τ2λ2
j ), we introduce fictitious data zj

whose realized value and underlying distribution are assumed to be

zj = 0, zj |βj , ζ ∼ N (βj , ζ
2) (2.3)

for j = 1, . . . , p. We then define the regularized prior as the distribution of βj conditional
on zj = 0. Under this model, the distribution of βj | τ, λj , ζ, zj = 0 coincides with that
of (2.1). On the other hand, the scale parameters τ,λ are conditionally independent of

the others given β, so that the posterior full conditional τ,λ |β, ζ, z,y,X ( d
= τ,λ |β)

has the same density as in the unregularized version. Our regularization thus allows the
Gibbs sampler to update τ,λ with the exact same algorithm as the one designed for the
original shrinkage prior. We summarize our discussion as Proposition 2.1 below.

Proposition 2.1. Consider a global-local shrinkage prior βj | τ, λj ∼ N (0, τ2λ2
j ), λj ∼

πloc(·) and τ ∼ πglo(·). Introducing the fictitious data z = 0 as in (2.3) is equivalent to
using the regularized prior (2.2) on (βj , λj), yielding

βj | τ, λj , ζ, zj = 0 ∼ N

⎛
⎝0,

(
1

ζ2
+

1

τ2λ2
j

)−1
⎞
⎠ .
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Or, with λj marginalized out, we have

π(βj | τ, ζ, zj = 0) ∝ π(βj | τ) exp
(
−

β2
j

2ζ2

)
.

When the likelihood depends only on β, the posterior full conditional of τ,λ has density

π(τ,λ |β) ∝ πglo(τ)
∏
j

1

τλj
exp

(
−

β2
j

2τ2λ2
j

)
πloc(λj). (2.4)

3 Geometric and uniform ergodicity under regularized
sparse logistic regression

Shrinkage priors’ popularity stems from, to a considerable extent, the ease of posterior
computation via Gibbs sampling (Bhadra et al., 2019). As we have shown in Section 2,
shrinkage models can incorporate regularization without affecting its computational
tractability. We now investigate how fast such Gibbs samplers converge. While regular-
ization was originally motivated to remedy statistically problematic behavior of heavy-
tailed shrinkage priors, our results show that it can also improve the Gibbs samplers’
convergence rates. The simulation results of Section 4 further corroborate the theory.

As a representative example where regularization is essential, we focus on Bayesian
sparse logistic regression (Piironen and Vehtari, 2017; Nishimura and Suchard, 2022).
To be explicit, we consider the model

yi |xi,β ∼ Bernoulli
(
logit−1(x

ᵀ
i β)

)
,

zj = 0 for zj |βj ∼ N (βj , ζ
2),

βj | τ, λj ∼ N (0, τ2λ2
j ), τ ∼ πglo(·), λj ∼ πloc(·).

(3.1)

The Pólya-Gamma data-augmentation of Polson et al. (2013) is a widely-used ap-
proach to carry out the posterior computation under the logistic model. By introducing
an auxiliary parameter ω = (ω1, . . . , ωn) having a Pólya-Gamma distribution, the Gibbs
sampler induces a transition kernel: (ω∗,β∗,λ∗, τ∗) → (ω,β,λ, τ) through the following
cycle of conditional updates:

1. Draw τ |β∗,λ∗ from the density proportional to (2.4). When using Bayesian bridge
priors, draw from the collapsed distribution τ |β∗ (Nishimura and Suchard 2022,
Appendix E).

2. Draw λ |β∗, τ from the density proportional to (2.4).

3. Draw ωi |β∗,X ∼ PolyaGamma(shape = 1, tilting = x
ᵀ
i β

∗) for i = 1, . . . , n.

4. Draw β |ω, τ,λ,y,X, z = 0 from the multivariate-Gaussian

β |ω, τ,λ,y,X, z = 0 ∼ N
(
Φ−1X

ᵀ (
y − 1

2

)
,Φ−1

)
for Φ = X

ᵀ
ΩX + ζ−2I + τ−2Λ−2,

(3.2)

where Ω = diag(ω) and Λ = diag(λ).
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Note that the transition kernel actually depends neither on ω∗ nor τ∗ (nor λ∗ in the
Bayesian bridge case) because of conditional independence. We refer readers to Polson
et al. (2013) for more details on this data augmentation scheme. In our analysis, we do
not use any specific properties of the Pólya-Gamma distribution aside from a couple of
results from Choi and Hobert (2013) and Wang and Roy (2018).

The Pólya-Gamma Gibbs sampler for the logistic model has previously been analyzed
under a Gaussian or flat prior on β (Choi and Hobert, 2013; Wang and Roy, 2018), but
not under shrinkage priors. We establish geometric and uniform ergodicity — critical
properties for any practical Markov chain Monte Carlo algorithms (Jones and Hobert,
2001). These properties imply the Markov chain central limit theorem and enables
consistent estimation of Monte Carlo errors, ensuring that the Gibbs sampler reliably
estimates quantities of interest (Flegal and Jones, 2011). To avoid cluttering notations
and obscuring the main ideas, our analysis below assumes the slab width ζ to be fixed;
however, the same conclusions hold if we only assume a prior constraint of the form
ζ ≤ ζmax < ∞ (Remark 3.9).

Below are the main ergodicity results we will establish in this section, the uniform
rate under Bayesian bridge and geometric rate under more general shrinkage priors:

Theorem 3.1 (Uniform ergodicity in the Bayesian bridge case). If the prior πglo(·) is
supported on [τmin,∞) for τmin > 0, then the Pólya-Gamma Gibbs sampler for regular-
ized Bayesian bridge logistic regression is uniformly ergodic.

Theorem 3.2 (Geometric ergodicity). Suppose that the local scale prior satisfies
‖πloc‖∞ < ∞ and that the global scale prior πglo(·) is supported on [τmin, τmax] for
0 < τmin ≤ τmax < ∞. Then the Pólya-Gamma Gibbs sampler for regularized sparse
logistic regression is geometrically ergodic.

Remark. Uniform/geometric ergodicity is an essential requirement for, yet not a guar-
antee of, practically efficient Markov chains (Roberts and Rosenthal, 2004). In fact, the
simulation results of Section 4 show that the benefit of regularization is greatest when
ζ is chosen small enough to impose a reasonable prior constraint on the value of βj ’s.

3.1 Proof approach: minorization and drift conditions

To establish Theorem 3.1 and 3.2, we verify that each Gibbs sampler satisfies the mi-
norization and drift conditions, upon on which geometric and uniform ergodicity are
immediately implied by the well-known theory of Markov chains (Meyn and Tweedie,
2009; Roberts and Rosenthal, 2004). Here we introduce the relevant notions in terms of
a generic transition kernel P (θ∗, dθ).

In the statements to follow, we assume that P (θ∗, dθ) has a corresponding density
function which, with slight abuse of notation, we denote by P (θ |θ∗); in other words,
the two satisfy the relation P (θ∗, A) =

∫
A
P (θ |θ∗) dθ. A chain on the space θ ∈ Θ

with transition kernel P (θ∗, dθ) is said to satisfy a minorization condition with a small
set S if there are δ > 0 and a probability density π(·) such that

P (θ |θ∗) ≥ δ π(θ) for all θ∗ ∈ S.
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The chain is uniformly ergodic when S = Θ. Otherwise, the chain is geometrically
ergodic if it additionally satisfies a drift condition i.e. there is a Lyapunov function
V (θ) ≥ 0 such that, for γ < 1 and b < ∞,

PV (θ∗) :=
∫
V (θ)P (θ |θ∗) dθ ≤ γV (θ∗) + b

and S = {θ : V (θ) ≤ d} is a small set for some d > 2b/(1− γ) (Rosenthal, 1995).

For a two-block Gibbs sampler on the space (θ,φ) that alternately samples θ ∼
π( · |φ) and φ ∼ π( · |θ), geometric and uniform ergodicity of the joint chain follows
from that of the marginal chain with transition kernel P (θ |θ∗) =

∫
π(θ |φ)π(φ |θ∗) dφ

(Roberts and Rosenthal, 2001). In establishing the uniform ergodicity under the Bayesian
bridge (Theorem 3.1), we decompose the collapsed Gibbs sampler into components β
and (ω, τ,λ) and study the marginal chain in β. In the subsequent analysis establish-
ing the geometric ergodicity under a more general class of regularized shrinkage priors
(Theorem 3.2), we decompose the Gibbs sampler into components (β,λ) and (ω, τ) and
study the marginal chain in (β,λ).

3.2 Behavior of shrinkage model Gibbs samplers near βj = 0

In many models, establishing minorization and drift condition amounts to quantify-
ing the chain’s behavior in the tail of the target. In studying convergence rates under
shrinkage models, however, we are faced with an additional and distinctive challenge:
the need to establish that the chain does not get “stuck” near the spike at βj = 0
(Pal and Khare, 2014; Johndrow et al., 2020). Regularization effectively eliminates the
possibility of the chain meandering to infinity, making it relatively routine to analyze
its behavior as βj → ∞. On the other hands, the existing results provide no general
insights into the behavior near βj = 0. In fact, a careful examination of the proofs by Pal
and Khare (2014) and Johndrow et al. (2020) reveals that the analyses under various
shrinkage priors could have been unified if we had a more general characterization of
shrinkage model Gibbs samplers’ behavior near βj = 0.

To fill in this theoretical gap, we start our analysis by abstracting key model-agnostic
results from our proofs of minorization and drift condition for the sparse logistic re-
gression Gibbs sampler. Our Propositions 3.3 and 3.4 below characterize properties
of the distribution of λj |βj , τ — this distribution, due to conditional independence,
typically coincides with the full posterior conditional of λj and critically informs be-
havior of the subsequent update of βj in a shrinkage model Gibbs sampler. Our proof
techniques apply to a broad range of shrinkage priors, essentially requiring only that
‖πloc‖∞ := maxλ πloc(λ) < ∞.4

Proposition 3.3 below plays a critical role in our proof of minorization condition. The
proposition tells us that a sample from λj |β∗

j , τ has a uniformly lower-bounded proba-
bility of λj ≥ a as long as |β∗

j /τ | is bounded away from zero. In turn, the subsequent up-

4The results presented in this article, specifically those that depend on Proposition B.2 and
Lemma B.3, implicitly assume that πloc(λ) is absolutely continuous at λmin = inf {λ : πloc(λ) > 0}.
This is a purely technical assumption as any shrinkage prior in practice should satisfy πloc(λ) > 0 for
λ > 0 and be a differentiable function of λ.
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date of βj conditional on λj should also have a guaranteed chance of landing away from
zero. Intuitively, we can thus interpret the proposition as suggesting that a shrinkage
model Gibbs sampler should not get “absorbed” to the spike at βj = 0. The difference
in the limiting behavior as |β∗

j /τ | → 0, depending on whether
∫
λ−1πloc(λ) dλ < ∞, is

also significant and leads to the difference between geometric and uniform convergence
under the sparse logistic regression example through Theorem 3.6.

Proposition 3.3. For any a > 0, the tail probability P(λj ≥ a |β∗
j , τ) is a decreasing

function of |β∗
j /τ |. If

∫
λ−1πloc(λ) dλ = ∞, then as |β∗

j /τ | → 0 the tail probability
converges to 0, i.e. the conditional λj |β∗

j , τ converges in distribution to a delta measure

at 0. If
∫
λ−1πloc(λ) dλ < ∞, then the conditional λj |β∗

j , τ converges in distribution to

π(λj) ∝ λ−1
j πloc(λj) as |β∗

j /τ | → 0.

Another key property of λj |βj , τ , featured prominently in our proof of the drift
condition (Theorem 3.8), is provided by Proposition 3.4 below. To briefly provide a
context, a Lyapunov function of the form V (β) =

∑
j |βj |−α has proven effective in

analyzing a shrinkage model Gibbs sampler (Pal and Khare 2014, Johndrow et al. 2020,
Section 3.4). And bounding the conditional expectation of τ−αλ−α

j as below often con-
stitutes a critical step in establishing the drift condition.

Proposition 3.4. Let R > 0 and α ∈ [0, 1). If ‖πloc‖∞ < ∞, then there is an increas-
ing function γ(r) > 0 with limr→0 γ(r) = 0, for which the expectation with respect to
λj |β∗

j , τ satisfies

E
[
τ−αλ−α

j | τ, β∗
j

]
≤ γ(R/τ)

( ∣∣β∗
j

∣∣−α
+ |R|−α

)
. (3.3)

Proposition 3.3 and 3.4 are substantial theoretical contributions on their own, but
we defer their proofs to Appendix B (Nishimura and Suchard, 2022) so that we can
without interruption proceed to establish ergodicity results in the regularized sparse
logisitic regression case.

Remark. The assumption ‖πloc‖∞ < ∞ is sufficient but not necessary one for the
conclusion of Proposition 3.4 and later of Theorem 3.8. Following the analysis by Pal and
Khare (2014), we can show that the conclusions also hold under normal-gamma priors
with any shape parameter a > 0. These priors have the property πloc(λ) ∼ O(λ2a−1)
as λ → 0 and hence limλ→0 π(λ) = ∞ for a < 1/2. We leave it as future work to
characterize the behavior of general shrinkage priors with ‖πloc‖∞ = ∞.

Remark. In Appendix A (Nishimura and Suchard, 2022), we show that Proposition 3.3
and 3.4 can also be applied to establish uniform/geometric ergodicity of a Gibbs sampler
for Bayesian sparse probit regression, demonstrating their relevance beyond the sparse
logistic regression example.

3.3 Minorization — with uniform ergodicity in special cases

Having described the noteworthy model-agnostic results within our proofs, from now on
we focus exclusively on the regularized sparse logistic regression case. We first consider
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the Gibbs sampler with fixed τ in Lemma 3.5 and Theorem 3.6. While fixing the global
scale parameter is a common assumption in the ergodicity proofs for shrinkage models
(Pal and Khare, 2014), we subsequently show that this assumption can be replaced
with much weaker ones; we only require τ ∼ πglo(·) to be supported away from 0 in
Theorem 3.1 and additionally away from +∞ in Theorem 3.7.

Let P (β |β∗, τ,λ) denote the transition kernel corresponding to Step 3 and 4 of the
Gibbs sampler as described in Page 372 and P (β |β∗, τ) corresponding to Step 2 – 4.
In other words, we define

P (β |β∗, τ,λ) =

∫
π(β |ω, τ,λ,y,X, z = 0)π(ω |β∗,X) dω,

P (β |β∗, τ) =

∫
P (β |β∗, τ,λ)π(λ |β∗) dλ.

The following lemma builds on a result of Choi and Hobert (2013) and plays a prominent
role, along with Proposition 3.3, in our proofs of minorization conditions.

Lemma 3.5. Whenever minj τλj ≥ R > 0, there is δ′ > 0 — independent of τ and λ
except through R — such that the following minorization condition holds:

P (β |β∗, τ,λ) ≥ δ′ N (β;μR,Φ
−1
R ),

where ΦR = 1
2X

ᵀ
X + ζ−2I +R−2I and μR = Φ−1

R X
ᵀ
(y − 1/2).

We defer the proof to Appendix C (Nishimura and Suchard, 2022).

We now establish a minorization condition for the Gibbs sampler with fixed τ .

Theorem 3.6 (Minorization). Let ε, R > 0. On a small set {β∗ : minj |β∗
j /τ | ≥ ε}, the

marginal transition kernel satisfies a minorization condition

P (β |β∗, τ) ≥ δ(τ)N (β;μR,Φ
−1
R ),

where μR and ΦR are defined as in Lemma 3.5, and δ(τ) > 0 is increasing in τ and
otherwise depends only on ε, R, and πloc. Moreover, the minorization holds uniformly
on β∗ ∈ R

p in case the prior satisfies
∫∞
0

λ−1πloc(λ) dλ < ∞.

Proof. Using Lemma 3.5, we have

P (β |β∗, τ) =

∫
P (β |β∗, τ,λ)π(λ |β∗, τ) dλ

≥
∫
{minj τλj≥R}

P (β |β∗, τ,λ)π(λ |β∗, τ) dλ

≥ δ′ N (β;μR,Φ
−1
R )

∏
j

∫ ∞

R/τ

π(λj |β∗
j , τ) dλj ,

for δ′ > 0 depending only on R. Also, Proposition 3.3 implies that whenever |β∗
j /τ | ≥ ε∫ ∞

R/τ

π(λj |β∗
j , τ) dλj ≥

∫ ∞

R/τ

π
(
λ
∣∣ |β∗/τ | = ε

)
dλ > 0.



A. Nishimura and M. A. Suchard 377

Hence,
∏

j

∫∞
R/τ

π(λj |β∗
j , τ) dλj is lower bounded by a positive constant depending

only on ε and R/τ . In case C =
∫∞
0

λ−1πloc(λ) dλ < ∞, we can forgo the assumption
|β∗

j /τ | ≥ ε and obtain a uniform lower bound since∫ ∞

R

π(λj |β∗
j , τ) dλj ≥

1

C

∫ ∞

R

λ−1πloc(λ) dλ > 0.

We now relax the assumption of fixed τ . The results of van der Pas et al. (2017)
suggest that a constraint of the form 0 < τmin ≤ τ ≤ τmax < ∞ can improve the
statistical property of shrinkage priors. As it turns out, such a constraint also enables
us to establish minorization conditions for the full Gibbs sampler under sparse logistic
regression with τ update incorporated. We can in fact take τmax = ∞ in case of the
Bayesian bridge prior, whose unique structure allows us to marginalize out λj ’s when
updating τ (Polson et al. 2014; Nishimura and Suchard 2022, Appendix E). This col-
lapsed update of τ from τ |β makes it possible to deduce the uniform ergodicity result
of Theorem 3.1 as an immediate consequence of Theorem 3.6 by studying the marginal
transition β∗ → β with kernel

P (β |β∗) =

∫ ∞

τmin

P (β |β∗, τ)π(τ |β∗) dτ. (3.4)

Proof of Theorem 3.1. It suffices to establish uniform minorization for the marginal
transition kernel (3.4). Under the Bayesian bridge prior, we have πloc(λ) ∝ O(λ2a) as
λ → 0 (Nishimura and Suchard 2022, Appendix E) and hence

∫
λ−1πloc(λ) < ∞. The

minorization condition of Theorem 3.6 thus holds uniformly in β∗, yielding∫ ∞

τmin

P (β |β∗, τ)π(τ |β∗) dτ ≥ N (β;μR,Φ
−1
R )

∫ ∞

τmin

δ(τ)π(τ |β∗) dτ, (3.5)

for R > 0. Theorem 3.6 further tells us that δ(τ) > 0 is increasing in τ , so we have∫ ∞

τmin

δ(τ)π(τ |β∗) dτ ≥ δ(τmin) > 0. (3.6)

The inequalities (3.5) and (3.6) together establish uniform minorization.

For more general shrinkage priors, the global scale τ must be updated from the full
conditional τ |β,λ. This makes it necessary to study the marginal transition (β∗,λ∗) →
(β,λ), jointly in regression coefficients and local scales, with kernel

P (β,λ |β∗,λ∗) =

∫ τmax

τmin

P (β |β∗, τ,λ)
∏

j π(λj |β∗
j , τ)π(τ |β∗,λ∗) dτ. (3.7)

We establish a minorization condition for this general case in Theorem 3.7.

Theorem 3.7. If the prior πglo(·) is supported on [τmin, τmax] for 0 < τmin ≤ τmax < ∞,
then the marginal transition kernel P (β,λ |β∗,λ∗) of the Pólya-Gamma Gibbs sampler
for regularized sparse logistic regression satisfies a minorization condition on a small
set

{
(β∗,λ∗) : 0 < ε ≤ |β∗

j | ≤ E < ∞ for all j
}
.
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Proof. By Lemma 3.5 and the fact τλj ≥ τminλj , we know that for R > 0

P (β |β∗, τ,λ) ≥ 1{minj τminλj ≥ R} δ′ N (β;μR,Φ
−1
R ). (3.8)

To lower bound the term
∏

j π(λj |β∗
j , τ) in (3.7), we first recall that

π(λj |β∗
j , τ) =

λ−1
j exp

(
−β∗2

j /2τ2λ2
j

)
πloc(λj)∫∞

0
λ−1 exp

(
−β∗2

j /2τ2λ2
)
πloc(λ) dλ

.

When τmin ≤ τ ≤ τmax and ε ≤ |β∗
j | ≤ E, we have

exp
(
−E2/2τ2minλ

2
)
≤ exp

(
−β2

j /2τ
2λ2

)
≤ exp

(
−ε2/2τ2maxλ

2
)
.

It follows from the above inequalities that

π(λj |β∗
j , τ) ≥

λ−1
j exp

(
−E2/2τ2minλ

2
j

)
πloc(λj)∫∞

0
λ−1 exp(−ε2/2τ2maxλ

2)πloc(λ) dλ
:= η πlower(λj) (3.9)

for η > 0 and density πlower(·) independent of β∗
j and τ . Combining (3.8) and (3.9), we

can lower bound the transition kernel (3.7) as

P (β,λ |β∗,λ∗)

≥ δ′η 1

{
min
j

λj ≥
R

τmin

}
N (β;μR,Φ

−1
R )

∏
j

πlower(λj)

∫ τmax

τmin

π(τ |β∗,λ) dτ

= δ′η N (β;μR,Φ
−1
R )

∏
j

1

{
λj ≥

R

τmin

}
πlower(λj).

3.4 Drift condition and geometric ergodicity

Here we establish a drift condition for geometric ergodicity under sparse logistic regres-
sion. As discussed in Section 3.2, the regularization prevents the Markov chain from
meandering to infinity, so the main question is whether the chain can get “stuck” for a
long time near β∗

j = 0. The following result shows that this does not happen as long as
the global scale τ is bounded away from zero.

Theorem 3.8. Suppose that the local scale prior satisfies ‖πloc‖∞ < ∞ and that the
global scale prior πglo(·) is supported on [τmin,∞) for τmin > 0. Then the marginal
transition kernel P (β,λ |β∗,λ∗) satisfies a drift condition with a Lyapunov function
V (β) =

∑
j |βj |−α for any 0 ≤ α < 1.

Proof. Note that PV (β∗) can be expressed as a series of iterated expectations with
respect to (1) β |ω, τ,λ,y,X, z = 0, (2) ω |β∗, (3) λ |β∗, τ , and (4) τ |β∗,λ∗. We will
bound the iterated expectations of |βj |−α one by one.
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Since β |ω, τ,λ,y,X, z = 0 is distributed as Gaussian, denoting by μj and σ2
j the

conditional mean and variance of βj , Proposition 3.10 below tells us that

E
[
|βj |−α |ω, τ,λ,y,X, z = 0

]
≤ Cα(μj/σj)σ

−α
j ,

where sup
t

Cα(t) ≤
Γ
(
1−α
2

)
2α/2

√
π

and Cα(t) = O(|t|−α) as |t| → ∞.

For the purpose of this proof, we can simply set Cα to be its global upper bound;
however, a tighter bound may be obtained when the posterior concentrates away from
zero and thereby resulting in |μj/σj | → ∞ and Cα(μj/σj) → 0 as the sample size
increases. Combined with Proposition 3.11 below, the above inequality implies

1

Cα
E
[
|βj |−α |ω, τ,λ,y,X, z = 0

]
≤ τ−αλ−α

j + ζ−α + 1− α

2
+

α

2

n∑
i=1

ωix
2
ij . (3.10)

In taking the expectation of (3.10) with respect to ω |β∗, we use the result E[ωj |β∗] ≤
1/4 of Wang and Roy (2018) to obtain

1

Cα
E
[
|βj |−α | τ,λ

]
≤ τ−αλ−α

j + ζ−α + 1− α

2
+

α

8

n∑
i=1

x2
ij . (3.11)

Taking the expectation of (3.11) with respect to λ | τ,β∗, we have

1

Cα
E
[
|βj |−α | τ,β∗] ≤ E

[
τ−αλ−α

j | τ, β∗
j

]
+ C ′(α,X),

where C ′(α,X) = ζ−α + 1− α

2
+

α

8

n∑
i=1

x2
ij .

(3.12)

Now choose R > 0 small enough that γ(R/τ) ≤ γ(R/τmin) < C−1
α in Proposition 3.4.

Then we have the following inequality for γ′ := Cαγ(R/τmin) < 1:

Cα E
[
τ−αλ−α

j | τ, β∗
j

]
≤ γ′ (|β∗

j |−α + |R|−α
)

for all τ ≥ τmin. Incorporating the above inequality into (3.12), we obtain

E
[
|βj |−α | τ,β∗] ≤ γ′ |β∗

j |−α + γ′ |R|−α + CαC
′(α,X).

Since π(τ |β∗,λ∗) is supported on τ ≥ τmin by our assumption, taking the expectation
with respect to τ |β∗,λ∗ yield

E
[
|βj |−α |β∗,λ∗] ≤ γ′ |β∗

j |−α + γ′ |R|−α + CαC
′(α,X).

Theorem 3.7 and 3.8 together imply the geometric ergodicity result of Theorem 3.2:

Proof of Theorem 3.2. We show that V (β) =
∑

j |βj |−α+ ‖β‖2 is a Lyapunov function
for the marginal transition kernel P (β,λ |β∗,λ∗). Note that

E
[
‖β‖2 |ω, τ,λ,y,X, z = 0

]
=

∥∥E[β |ω, τ,λ,y,X, z = 0]
∥∥2 +∑

j var
(
β2
j |ω, τ,λ,y,X, z = 0

)
=

∥∥ΣX
ᵀ(
y − 1

2

) ∥∥2 +∑
j e

ᵀ
jΣej
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for Σ =
(
X

ᵀ
ΩX + ζ−2I + τ−2Λ−2

)−1
. Since Σ ≺ ζ2I, we have e

ᵀ
jΣej ≤ ζ2 and

‖ΣX
ᵀ
(y − 1

2 )‖2 ≤ ζ2‖Xᵀ
(y − 1

2 )‖2. Thus we have

E
[
‖β‖2 |ω, τ,λ,y,X, z = 0

]
≤ ζ2

∥∥ΣX
ᵀ(
y − 1

2

) ∥∥2 + nζ2. (3.13)

Since the right-hand side does not depend on ω, τ,λ, the expectation with respect to
P (β,λ |β∗,λ∗) satisfies the same bound:

E
[
‖β‖2 |β∗,λ∗] ≤ ζ2

∥∥ΣX
ᵀ(
y − 1

2

) ∥∥2 + nζ2.

In addition to the above bound, we know that
∑

j |βj |−α is a Lyapunov function by

Theorem 3.8. Hence, V (β) =
∑

j |βj |−α+‖β‖2 is again a Lyapunov function. Moreover,
by Theorem 3.7, we know that the Gibbs sampler satisfies a minorization condition on
the set

{
β∗ : 0 < ε ≤ |β∗

j | ≤ E < ∞ for all j
}
for ε > 0 and E < ∞. Thus the sampler

is geometrically ergodic.

Remark 3.9. As mentioned earlier, the geometric and uniform ergodicity as well as
analogues of the intermediate results continue to hold when we relax the assumption of
fixed ζ to a prior constraint of the form ζ ≤ ζmax < ∞. The proof goes as follows. Due
to the conditional independence, the Gibbs sampler on the joint space draws alternately
from ζ |β, z = 0 and β,ω, τ,λ |y,X, z = 0, ζ. By repeating all the previous arguments
with ζmax in place of ζ, we obtain essentially the identical minorization and drift bounds
that hold for all ζ ≤ ζmax. Since the bounds hold uniformly on the support ζ ≤ ζmax,
the identical bounds again hold when taking the expectation over ζ |β, z = 0.

Auxiliary results for proof of geometric ergodicity

Proposition 3.10 and 3.11 below are used in the proof of Theorem 3.8 and are proved
in Appendix D (Nishimura and Suchard, 2022). Proposition 3.10 is a refinement of
Proposition A1 in Pal and Khare (2014) and of Equation (41) in Johndrow et al. (2020),
neither of which have the D(μ/σ) term.

Proposition 3.10. For α ∈ (0, 1) and β ∼ N (μ, σ2), we have

E|β|−α ≤
Γ
(
1−α
2

)
2α/2

√
π
σ−α min{1, D(μ/σ)} ,

where D(t) = O(|t|−α) → 0 as |t| → ∞ and can be chosen as

D(t) =
1

B
(
α
2 ,

1−α
2

)
[
2

5
2−α

1− α
exp

(
− t2

4

)
+ 2

1
2+αΓ

(α
2

)
|t|−α

]
. (3.14)

Proposition 3.11. The diagonals σj of Σ =
(
X

ᵀ
ΩX + ζ−2I + τ−2Λ−2

)−1
satisfy

the following inequality for 0 ≤ α < 1:

σ−α
j ≤ τ−αλ−α

j + ζ−α + 1− α

2
+

α

2

n∑
i=1

ωix
2
ij .
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4 Simulation

We run a simulation study to assess the computational and statistical properties of
the regularized sparse logistic regression model. We use the Bayesian bridge prior
π(βj | τ) ∝ τ−1 exp(−|βj/τ |a) to take advantage of the efficient global scale parame-
ter update scheme. This prior also allows us to experiment with a range of spike and
tail behavior by varying the exponent a, inducing larger spikes and heavier tails as
a → 0. For the global scale parameter, we chose the objective prior πglo(τ) ∝ τ−1

(Berger et al., 2015, Nishimura and Suchard 2022, Appendix E) with the range restric-
tion 10−6 ≤ E[ |βj | | τ ] ≤ 1 to ensure posterior propriety, though in practice we never
observe a posterior draw of τ outside this range. For the posterior computations, we use
the Pólya-Gamma Gibbs sampler provided by the bayesbridge package available from
Python Package Index (pypi.org); the source code is available at the GitHub repository
https://github.com/OHDSI/bayes-bridge.

4.1 Data generating process: “large n, but weak signal” problems

Piironen and Vehtari (2017) demonstrate the benefits of regularizing shrinkage priors
in the “p > n” case, when the number of predictors p exceeds the sample size n.
To complement their study, we consider the case of rare outcomes and infrequently
observed features, another common situation in which regularizing shrinkage priors
becomes essential. For example in healthcare data, many outcomes of interests have low
incidence rates and many treatments are prescribed to only a small fraction of patients
(Tian et al., 2018). This results in binary outcomes y and features xj filled mostly with
0’s, making the amount of information much less than otherwise expected (Greenland
et al., 2016).

To simulate under these “large n, but weak signal” settings, we generate synthetic
data with n = 2,500 and p = 500 as follows. We construct binary features with a
range of observed frequencies by first drawing 2wj ∼ Beta(1/2, 2) for j = 1, . . . , 500;
this in particular means 0 ≤ wj ≤ 0.5 and E[wj ] = 0.1. For each j, we then generate
xij ∼ Bernoulli(wj) for i = 1, . . . , n. We choose the true signal to be βj = 1 for
j = 1, . . . , 10 and βj = 0 for j = 11, . . . , 500. To simulate an outcome with low incidence
rate, we choose the intercept to be β0 = 1.5 and draw yi ∼ Bernoulli(logit(−x

ᵀ
i β)),

resulting in yi = 1 for approximately 5% of its entries.

4.2 Convergence and mixing: with and without regularization

With the above data generating process, outcome y and design matrix X barely contain
enough information to estimate all the coefficients βj ’s. In particular, sparse logistic
model without regularization can lead to a heavy-tailed posterior, for which uniform
and geometric ergodicity of the Pólya-Gamma Gibbs sampler becomes questionable.

These potential convergence and mixing issues are evidenced by the traceplot (Fig-
ure 4.1a) of the posterior samples based on bridge exponent a = 1/16. As we are
particularly concerned with the Markov chain wandering off to the tail of the target,
we examine the estimated credible intervals to identify the coefficients with potential

pypi.org
https://github.com/OHDSI/bayes-bridge
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Figure 4.1: Traceplot under the Bayesian bridge logistic regression with exponent 1/16.
Shown are the three coefficients with most potentially problematic mixing behaviors;
see the main text for the details on our criteria.

convergence and mixing issues. Plotted in Figure 4.1 are the coefficients with the widest
95% credible intervals; these coefficients also have some of the smallest estimated ef-
fective sample sizes, though the accuracy of such estimates is not guaranteed without
geometric ergodicity. When regularizing the shrinkage prior with a slab width ζ = 1,
the posterior samples indicate no such convergence or mixing issues (Figure 4.1b) and
yield more sensible posterior credible intervals (Figure 4.2).

We emphasize that there is no fundamental change in the Gibbs sampler itself when
incorporating the regularization, the only change being the addition of the ζ−2I term in
the conditional precision matrix (3.2) when updating β. It is the change in the posterior
— more specifically the guaranteed light tails of the β marginal — that induces faster
convergence and mixing.

We also assess sensitivity of convergence and mixing rates on the slab width ζ. The
regularized prior recovers the unregularized one as ζ → ∞. This means that, as seen
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Figure 4.2: Ten widest 95% posterior credible intervals under the Bayesian bridge logistic
regression with (right) and without (left) regularization. Without regularization, the
intervals are unrealistically large compared to the signal size of βj = 1 for j = 1, . . . , 10.

Figure 4.3: Traceplots under different slab widths: ζ = 2 (bottom) and ζ = 4 (top). The
settings are otherwise identical to those of Figure 4.1. As before, the three coefficients
with most problematic mixing behaviors do not always coincide across different slab
widths.

from the problematic computational behavior of the unregularized model, ζ cannot be
taken too large in this limited data setting. In other words, the choice of ζ has to reflect
some degree of prior information on βj ’s. We need not assume strong prior informa-
tion, however; Figure 4.3 demonstrates that even small amount of regularization (e.g.
ζ = 2 or 4) can noticeably improve the computational behavior over the unregularized
case.
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Figure 4.4: The 95% posterior credible intervals for the signals βj = 1 (top) and non-
signals βj = 0 (bottom) under the Bayesian bridge logistic regression with the bridge
exponent 1/16. The intervals are sorted by the posterior means. To avoid clutter, the
top plot shows only the non-zero values of the lasso estimates. The lasso estimates for
the non-signals are summarized in Figure 4.5 and are not shown in the bottom plot.

4.3 Statistical properties of shrinkage model for weak signals

To study the shrinkage model’s ability to separate out the non-zero βj from the βj = 0,
we simulate 10 replicate data sets and estimate the posterior for each of them. In total,
we obtain 5,000 marginal posterior distributions — 10 independent replications for each
of the p = 500 regression coefficients — with 100 for the signal βj = 1 and 4,900 for
the non-signal βj = 0. As all the predictors xj ’s are simulated in an exchangeable
manner, the 100 (and 4,900) posterior marginals for the signal (and non-signal) are also
exchangeable.

Figure 4.4 show the posterior credible intervals. Due to the low incidence rate and
infrequent binary features, many of the signals are too weak to be detected. We also find
that the credible intervals seemingly do not achieve their nominal frequentist coverage
for signals below detection strength. This finding is consistent with the existing theoret-
ical results on shrinkage priors and is unsurprising in light of the impossibility theorem
by Li (1989) — confidence intervals cannot be optimally tight and have nominal cover-
age at the same time. Credible intervals produced by Bayesian shrinkage models tend
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Figure 4.5: Comparison of the 4,900 Bayesian bridge posterior means and lasso estimates
for the non-signals βj = 0. Lasso with cross-validation produces a larger number of false
positives. Lasso with the empirical Bayes calibration yields the estimates more in line
with the bridge posterior.

to be optimally tight and thus require appropriate manual adjustments to achieve the
nominal coverage (van der Pas et al., 2017). No statistical procedure is immune to this
tightness-coverage trade-off; therefore, the apparent under-coverage should be seen not
as a flaw but more as a feature of Bayesian shrinkage models.

We benchmark the signal detection capability of the posterior against the frequen-
tist lasso, arguably the most widely-used approach to feature selection. Obtaining the
lasso point estimates requires a selection of the hyper-parameter commonly referred to
as the penalty parameter. For its choice, we first follow the standard practice of mini-
mizing the ten-fold cross-validation errors (Hastie et al., 2009). However, this approach
yields inconsistent and poor overall performance, detecting only 13 out of the 100 sig-
nals (Figure 4.4). Cross-validation likely fails here because each fold does not capture
the characteristics of the whole data when the signals are so weak. As a more stable
alternative for calibrating the penalty parameter, we try an empirical Bayes procedure
based on the Bayesian interpretation of the lasso (Park and Casella, 2008). We first
estimate the posterior marginal mean of the penalty parameter from the Bayesian lasso
Gibbs sampler. Conditionally on this value, we then find the posterior mode of β. This
procedure seems to yield more consistent performance, detecting 39 out of the 100 sig-
nals albeit with the estimates more shrunk towards null than the Bayesian posterior
means. The empirical Bayes procedure demonstrates more consistent behavior for the
non-signals as well (Figure 4.5).

We also assess how the spike size and (pre-regularization) tail behavior of the prior
influence statistical properties of the resulting posterior. For this purpose, we fit the
regularized bridge model with the exponent a−1 ∈ {2, 4, 8, 16} to the same data sets.
Figure 4.6 summarizes the credible intervals under the a = 1/4 case. The credible



386 Regularized Shrinkage and Ergodicity of Gibbs Sampler

Figure 4.6: The 95% posterior credible intervals under the Bayesian bridge logistic
regression with the bridge exponent 1/4. Compared with the 1/16 exponent case (Fig-
ure 4.4), the posterior distributions have similar means but much wider credible inter-
vals.

Figure 4.7: Average width v.s. coverage of the credible intervals. The plots are produced
by computing the equal-tailed credible intervals at a range of credible levels. The x-axis
is in the log10 scale for the non-signals.
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intervals are centered around the values similar to the a = 1/16 case (Figure 4.4),
but are much wider overall. We observe the same pattern throughout the range of the
exponent values: similar median values, but tighter intervals for the smaller exponents.
In particular, as can be seen in Figure 4.7, more “extreme” shrinkage priors with larger
spikes and heavier-tails seem to yield tighter credible intervals for the same coverage.

5 Discussion

Shrinkage priors have been adopted in a variety of Bayesian models, but the potential
issues arising from their heavy-tails are often overlooked. Our method provides a simple
and convenient way to regularize shrinkage priors, making the posterior inference more
robust. Both the theoretical and empirical results demonstrate the benefits of regular-
ization in improving the statistical and computational properties when parameters are
only weakly identified. Much of the systematic investigations into the shrinkage prior
properties has so far focused on rather simple models and situations in which signals
are reasonable strong. Our work adds to the emerging efforts to better understand the
behavior of shrinkage models in more complex settings.

Supplementary Material

Supplementary Material of “Shrinkage with Shrunken Shoulders: Gibbs Sampling
Shrinkage Model Posteriors with Guaranteed Convergence Rates”
(DOI: 10.1214/22-BA1308SUPP; .pdf).
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using Pólya–Gamma latent variables.” Journal of the American Statistical Associa-
tion, 108(504): 1339–1349. MR3174712. doi: https://doi.org/10.1080/01621459.2013.
829001. 369, 372, 373

Polson, N. G., Scott, J. G., and Windle, J. (2014). “The Bayesian bridge.” Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 76(4): 713–733.
MR3248673. doi: https://doi.org/10.1111/rssb.12042. 368, 369, 377

Roberts, G. O. and Rosenthal, J. S. (2001). “Markov chains and de-initializing pro-
cesses.” Scandinavian Journal of Statistics, 28(3): 489–504. MR1858413. doi: https://
doi.org/10.1111/1467-9469.00250. 374

Roberts, G. O. and Rosenthal, J. S. (2004). “General state space Markov chains and
MCMC algorithms.” Probability Surveys, 1: 20–71. MR2095565. doi: https://doi.org/
10.1214/154957804100000024. 373

Rosenthal, J. S. (1995). “Minorization conditions and convergence rates for Markov
chain Monte Carlo.” Journal of the American Statistical Association, 90(430): 558–
566. MR1340509. 374

Schuemie, M. J., Ryan, P. B., Hripcsak, G., Madigan, D., and Suchard, M. A. (2018).
“Improving reproducibility by using high-throughput observational studies with em-
pirical calibration.” Philosophical Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 376(2128): 20170356. 370

Tian, Y., Schuemie, M. J., and Suchard, M. A. (2018). “Evaluating large-scale propen-

https://doi.org/10.1080/01621459.2022.2057859
https://doi.org/10.1080/01621459.2022.2057859
https://doi.org/10.1214/22-BA1308SUPP
https://doi.org/10.1214/22-BA1308SUPP
https://mathscinet.ams.org/mathscinet-getitem?mr=3211026
https://doi.org/10.1214/14-EJS896
https://doi.org/10.1214/14-EJS896
https://mathscinet.ams.org/mathscinet-getitem?mr=2524001
https://doi.org/10.1198/016214508000000337
https://doi.org/10.1198/016214508000000337
https://mathscinet.ams.org/mathscinet-getitem?mr=3738204
https://doi.org/10.1214/17-EJS1337SI
https://mathscinet.ams.org/mathscinet-getitem?mr=3204017
https://doi.org/10.1093/acprof:oso/9780199694587.003.0017
https://doi.org/10.1093/acprof:oso/9780199694587.003.0017
https://mathscinet.ams.org/mathscinet-getitem?mr=3174712
https://doi.org/10.1080/01621459.2013.829001
https://doi.org/10.1080/01621459.2013.829001
https://mathscinet.ams.org/mathscinet-getitem?mr=3248673
https://doi.org/10.1111/rssb.12042
https://mathscinet.ams.org/mathscinet-getitem?mr=1858413
https://doi.org/10.1111/1467-9469.00250
https://doi.org/10.1111/1467-9469.00250
https://mathscinet.ams.org/mathscinet-getitem?mr=2095565
https://doi.org/10.1214/154957804100000024
https://doi.org/10.1214/154957804100000024
https://mathscinet.ams.org/mathscinet-getitem?mr=1340509


390 Regularized Shrinkage and Ergodicity of Gibbs Sampler

sity score performance through real-world and synthetic data experiments.” Interna-
tional Journal of Epidemiology . 381

van der Pas, S., Salomond, J.-B., and Schmidt-Hieber, J. (2016). “Conditions for poste-
rior contraction in the sparse normal means problem.” Electronic journal of statistics,
10(1): 976–1000. MR3486423. doi: https://doi.org/10.1214/16-EJS1130. 368
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