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Bayesian Experimental Design Without
Posterior Calculations: An Adversarial Approach

Dennis Prangle*, Sophie Harbisher!, and Colin S. Gillespie?

Abstract. Most computational approaches to Bayesian experimental design re-
quire making posterior calculations repeatedly for a large number of potential
designs and/or simulated datasets. This can be expensive and prohibit scaling up
these methods to models with many parameters, or designs with many unknowns
to select. We introduce an efficient alternative approach without posterior cal-
culations, based on optimising the expected trace of the Fisher information, as
discussed by Walker (2016). We illustrate drawbacks of this approach, including
lack of invariance to reparameterisation and encouraging designs in which one
parameter combination is inferred accurately but not any others. We show these
can be avoided by using an adversarial approach: the experimenter must select
their design while a critic attempts to select the least favourable parameterisation.
We present theoretical properties of this approach and show it can be used with
gradient based optimisation methods to find designs efficiently in practice.

Keywords: automatic differentiation, game theory, geostatistical regression,
Hyvaérinen score, minimax optimisation, pharmacokinetics.

1 Introduction

Selecting a good design for an experiment can be crucial to extracting useful information
and controlling costs. Applications include medical interventions (Amzal et al., 2006),
epidemic modelling (Cook et al., 2008), pharmacokinetics (Ryan et al., 2014; Overstall
and Woods, 2017) and ecology (Gillespie and Boys, 2019). In modern applications it
is increasingly feasible to take a large number of measurements — e.g. placing sensors
(Krause et al., 2009) or making observations in a numerical integration problem (Oates
et al., 2020) — or make other complex designs — e.g. selecting a time series of chemical
input levels to a synthetic biology experiment (Bandiera et al., 2018). Therefore finding
high dimensional designs is an increasingly relevant task.

We focus on the Bayesian approach to optimal experimental design, which takes
into account existing knowledge and uncertainty about the process being studied before
the experiment is undertaken. In this framework an ezperimenter must select a design.
They then receive some utility based on the outcome of the experiment. The aim is to
select the design optimising expected utility given the experimenter’s prior beliefs.
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Most utility functions in Bayesian experimental design require posterior calculations,
such as evaluating the evidence. Optimisation of the design requires these calculations
to be repeated for a large number of potential designs and simulated datasets. This can
be expensive and prohibit scaling up these methods to models with many parameters,
or designs with many unknowns to select. Some sophisticated approaches have been
developed, including converting the optimisation problem into Markov chain Monte
Carlo on the joint space of designs, parameters, and observations (Miiller, 1999), and
using variational inference to learn approximate surrogate posteriors (Foster et al., 2019,
2020), but these still effectively solve inference problems and hence remain costly. (We
comment on other related approaches in Section 1.2.)

This paper presents approaches which avoid the need for posterior inference. First
we consider a utility function based on the trace of the Fisher information, which is
often available in a simple closed form. Walker (2016) presents an information theoretic
justification for this utility. One contribution of this paper is to show that it also emerges
naturally from the decision theoretic framework of Bernardo (1979). Our derivation is
based on judging the quality of a parameter estimate through the Hyvarinen score
(Hyvérinen, 2005), rather than through the logarithmic score as in Bernardo (1979).
We demonstrate that it is straightforward to optimise the resulting expected utility
using recent developments in stochastic gradient optimisation (Kingma and Ba, 2015)
and automatic differentiation (Baydin et al., 2017). Compared to existing methods, this
approach is fast and scales easily to higher dimensional designs. However, a drawback
is that the method can converge to poor local maxima. We show how a second stage of
optimisation similar to that of Overstall and Woods (2017) can often be used to find
the overall optimal design.

A more fundamental limitation of the above approach is that it sometimes produces
poor designs in practice e.g. requiring all observations to occur at a single time point.
We provide an explanation: optimising this expected utility encourages designs giving
accurate inference of one linear combination of the parameters but not necessarily oth-
ers. Furthermore this utility is not invariant to reparameterisation: this can alter which
parameter combinations are most rewarding to infer accurately.

We address both these issues by introducing an adversarial approach. We propose
a game theoretic framework in which, as before, the experimenter chooses a design to
optimise their expected utility. Now there is also a critic who selects a linear transfor-
mation of the parameters. We investigate the optimal designs in this framework under
the game theoretic solution concept of subgame perfect equilibrium, and prove they are
invariant to reparameterisation. The presence of the critic also encourages designs not
to neglect the posterior accuracy of any parameter combination: if one did then the
critic could choose a parameterisation concentrating on this weakness. We show it is
possible to find optimal designs in this game theoretic framework using generic gradient
descent ascent methods, which have been much studied recently in the machine learning
literature (e.g. Heusel et al., 2017; Jin et al., 2020).

Below, we summarise our contributions in Section 1.1 and related work in Sec-
tion 1.2. In the remainder of the paper, Section 2 presents background on Bayesian
experimental design. Section 3 presents results on the decision theoretic framework of
Bernardo (1979), and Section 4, on our proposed game theoretic extension. Proofs and
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other technical material are presented in the supplementary material (Prangle et al.,
2022). Section 5 discusses details of gradient based optimisation for both approaches.

We illustrate our methods on a simple Poisson model where optimal designs can be
derived analytically (Section 6). We provide a detailed simulation study on a pharma-
cokinetic model (Section 7), showing our adversarial approach produces a sensible design
and is at least 10 times faster than competing methods. We also present a geostatistical
regression example, where hundreds of design choices can be optimised in under a minute
(Section 8). Code for these examples is available at https://github.com/dennisprangle/
AdversarialDesignCode. All examples were run on a desktop PC with 12 CPU cores.
Our conclusion, Section 9, summarises our findings and recommendations to implement
our methods. It also discusses limitations of our work, and future research directions to
address these, including a discussion of the intractable Fisher information case (detailed
further in supplementary material).

1.1 Contributions

Our main contribution is a faster approach to Bayesian experimental design using the
Fisher information. Where the Fisher information is available in closed form, our ap-
proach outperforms existing methods (Section 7) and scales easily to designs with hun-
dreds of design choices (Section 8).

In addition, we contribute by extending the decision theoretic framework for Bayesian
experimental design of Bernardo (1979) to allow other proper scoring rules in addition
to logarithmic score (Section 3.1). We also show that using the Hyvérinen score in the
decision theoretic framework results in a utility based on the trace of the Fisher infor-
mation, referred to as Fisher information gain or FIG in the paper (Section 3.3). This
provides a decision-theoretic justification to a measure that was previously suggested
by Walker (2016) based on information theoretic arguments. We explore the limitations
of FIG (Section 3.4) and address them by extending the decision theoretic approach
to a game theoretic approach, and show the relevant solution concept gives more intu-
itively informative designs (Section 4). We also show that the game theoretic solution
can easily be obtained in practice using gradient-based minimax optimisation.

Finally, we provide new insight into two long-standing questions in Bayesian exper-
imental design. Firstly: what counts as a Bayesian utility function? (See Sections 3.4
and 4.4 under the heading “Bayesian justification”.) Secondly: which of several possible
Bayesian generalisations of D-optimality should be preferred? (See Section 4.4 under
the heading “Link to D-optimality”.)

1.2 Related work

As discussed above, our theoretical contribution builds on Bernardo (1979)’s decision
theoretic framework for Bayesian experimental design, and also on Walker (2016)’s
justification for the use of a utility based on the trace of the Fisher information. We
also discuss Overstall (2022)’s comments on this utility later.
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Gradient-based optimisation methods for experimental design have been explored
previously. Pronzato and Walter (1985) optimise the expected determinant of the Fisher
information using analytically derived gradients. Huan and Marzouk (2013, 2014) opti-
mise expected Shannon information using gradients (either derived analytically or based
on finite differences) for a biased numerical approximation to the utility. Foster et al.
(2019) use a first stage of variational inference to learn an approximate posterior, and
then use this to produce a surrogate expected utility function which is optimised by
gradient-based methods in a second stage.

Foster et al. (2020) and Kleinegesse and Gutmann (2020) propose jointly optimising
a design and some tuning parameters defining a lower bound on the expected Shannon
information gain utility (this utility is discussed in Section 2.4). This can be framed as a
single optimisation problem, allowing for easy implementation using stochastic gradient
or Bayesian optimisation methods. Producing a tight lower bound is equivalent to, or
closely related to, being able to perform exact Bayesian inference for the optimal design.

Overstall and Woods (2017) propose an alternative coordinate ascent approach which
loops over the components of the design, updating each in turn. To perform an update,
designs are selected from the one dimensional search space (in which only the current
component is updated) and Monte Carlo estimates of expected utility calculated. A
Gaussian process is fitted to the expected utility estimates and used to propose an im-
proved value for the design component under consideration. This is accepted or rejected
based on a Bayesian test of whether it improves expected utility, using a large number
of simulations under the current and proposed designs.

Many other algorithms have been proposed for Bayesian experimental design. An
influential method of Miiller (1999) performs optimal design using Markov chain Monte
Carlo. Amzal et al., 2006 and Kiick et al., 2006 extend this approach to use sequential
Monte Carlo. In other approaches, Ryan et al. (2014) look at high dimensional designs
with a low dimensional parametric form, Price et al. (2018) use evolutionary algorithms,
and Gillespie and Boys (2019) search a discrete grid of designs.

2 Background

Optimal experimental design concerns the following problem. An experimenter must
select a design 7. The experiment produces data y with likelihood f(y|6;7), where 0 is
a vector of parameters. The goal is to select the design which optimises some notion of
the quality of the experiment, typically based on its informativeness and its cost. We
mostly, but not exclusively, concentrate on the case where 7 € T C R and # € ©® CRP
for some closed sets (under the Euclidean metric) 7 and ©, and where y is a vector of n
observations. Designs 7 of this form often represent times or locations for measurements
to be taken. In this case 7 can be seen as a set of design points, 71, Ta, ..., Tq.

This section reviews relevant details of the statistical background. First Sections 2.1
and 2.2 give some necessary definitions on Bayesian statistics and Fisher information.
Section 2.3 describes Bayesian experimental design, which is based on maximising ex-
pected utility. Finally, Section 2.4 summarises some common utility functions.
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2.1 Bayesian framework

We work in the Bayesian framework and introduce a prior density 7 (6) for . We will
often make use of the posterior density and the prior predictive density (or evidence)
for y. In our setting both depend on the experimental design 7,

m(0ly; ) = 7(0) f(yl0; ) /7 (y; ), (1)
7(y; 7) = Egon(o)y [f (y]0; T)]. (2)

The prior and model define a joint density,"
m(0,y;7) = m(0) f(yl0; ) = 7(Oly; T)7(y; 7). 3)

2.2 Fisher information

We will make frequent use of the Fisher information matrix (FIM) for 6,

I0(9§7_) = IEwa(y|6?;'r) [U(y,Q;T)U(y,G;T)T], (4)
which is based on the score function,
u(y,0;7) = Volog f(y|0; 7). ()

The subscript in Zy denotes which variable is used for differentiation in (5). Often this
is obvious from the context so the subscript will be dropped. We will also sometimes
omit the dependence on 7 where this is not relevant. We will focus on models where u
and 7 are well defined.

Examples The FIM for exponential family models is based on the variance of the
sufficient statistics (see e.g. Lehmann and Casella, 2006) which is often available in
closed form. Two examples we use in this paper are:

e The Poisson distribution, y ~ Poisson(¢). Here Z(¢) = 1/¢.

e The multivariate normal distribution with known variance, y ~ N(u,X). Here
I(p) =x"1

Reparameterisation Consider a probability model with parameters 6, and a function

¢(0) producing an alternative vector of parameters ¢ (which may be shorter or longer

than 6). Let J(¢) be the Jacobian i.e. the matrix whose row ¢ column j entry is 29?.
J

Then it follows from (4) that

To(0) = J ()" Zp(¢)J (9). (6)
An application of this result is to the model y ~ N(z(0,7),%). Using (6),
Zo(6) = J(2) Ly (2) I (x) = J(2) TS I (). (7)

1For discrete y a density with respect to a product of Lebesgue and counting measures can be used.
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2.3 Bayesian experimental design

The Bayesian approach to experimental design involves selecting a function U =
U(t,0,y), giving the utility of choosing design 7 given observations y and true pa-
rameters 6. (As we shall see, many choices of & do not depend on all these possible
inputs.) We try to maximise the expected utility of 7 i.e. the prior predictive utility

\7(7) = E(Q,y)~7r(07y;7') [M(Ta 05 y)] (8)

See Chaloner and Verdinelli (1995), Atkinson et al. (2007) and Ryan et al. (2016) for
comprehensive surveys of Bayesian experimental design.

2.4 Utility functions

Ideally a utility function could be specified for each application, perhaps by eliciting
preferences over different (7,6,y) combinations from the experimenter (e.g. Wolfson
et al., 1996). However this is rarely feasible in practice. Instead several generic choices
of utility have been proposed.

Shannon information gain (SIG) This is a popular and well-motivated utility choice,
Usic(7,0,y) = logm(6]y; 7) — logm(0), (9)

introduced by Lindley (1956), which is particularly relevant later in this paper. Designs
maximising the expectation of Usig have an appealing information theoretic interpre-
tation: they maximise expected reduction in Shannon entropy from prior to posterior.
Furthermore, Bernardo (1979) gave a decision theoretic derivation of Usig which we
recap in Section 3. A helpful property of Usig is that it is reparameterisation invariant
i.e. unchanged under a bijective transformation of 6. Thus the resulting designs are not
affected by the choice of parameterisation.

In practice, optimising the expectation of (9) is complicated by the need to evaluate
the posterior density. However, using (1) the utility can be rewritten as

Usic(T,0,y) = log f(y|0;7) — log 7(y; 7). (10)

Optimisation now requires evaluation of a posterior summary: the log evidence
logm(y; 7). A common SIG estimate replaces m(y;7) in (10) with a Monte Carlo ap-
proximation

L
yiT) = Z Fylo“; ) (11)

e:

where 69 are independent prior samples. A typical choice of L is 1000 (Overstall and
Woods, 2017), which makes each utility evaluation somewhat computationally expen-
sive. Furthermore, a biased estimate of Usig is produced. More efficient approaches
are possible, as outlined in Section 1.2. However the need for log evidence estimation
remains a source of computational expense and approximation error.
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Other utilities and Bayesian justification Many alternative utility functions to Usig
are also used in practice e.g. posterior precision and mean squared error between the
posterior mean and true parameters. See Chaloner and Verdinelli (1995) and Ryan et al.
(2016) for detailed reviews. Like SIG, both utilities just mentioned are also based on
posterior calculations. Indeed Ryan et al. (2016) argue that for a utility to be “fully
Bayesian”, it must be a functional of the posterior, and other utilities, such as scalar
summaries of the FIM, are “pseudo-Bayesian”. (Throughout we use this definition of
“pseudo-Bayesian”, but note some authors use the term differently e.g. Overstall, 2022.)
One contribution of this paper is to instead use a decision theoretic justification for which
utilities to use in a Bayesian framework, which, surprisingly, provides support to some
apparently pseudo-Bayesian utilities (see discussion in Section 3.4), and then to further
develop this into a game theoretic approach.

3 Theory: decision theory approach

This section explores a decision theoretic approach to underlie Bayesian experimen-
tal design. Section 3.1 presents the framework, which is taken from Bernardo (1979).
Section 3.2 describes some background on scoring rules. Section 3.3 presents a novel the-
oretical result showing how the framework supports maximisation of expected utility
for various classes of utility function derived from scoring rules. This includes Shan-
non information gain, as shown by Bernardo (1979), but also the trace of the FIM,
as proposed by Walker (2016). We conclude in Section 3.4 by discussing advantages
and disadvantages of the latter utility, and how these reveal limitations of the decision
theory framework, motivating our modification in Section 4.

3.1 Decision theoretic framework

Bernardo (1979) proposed the following decision theoretic framework for Bayesian ex-
perimental design. The experimenter selects a design, and then nature generates pa-
rameters 6 from the prior 7(#) and observations y from the likelihood f(y|0;7). The
experimenter only observes y and must now choose a, a density for 8, receiving reward
R(a,d). In this section and Section 4 we will assume that:

A1 The reward is the negative of a strictly proper scoring rule, as defined in Sec-
tion 3.2.

Throughout this section S(a,0) = —R(a, ) denotes the scoring rule.

3.2 Scoring rules

A scoring rule S(q, ) measures the quality of a distribution — in this paper represented
by its density ¢(6) — to model an uncertain quantity, given a realised value 6. Low
scores represent a good match. A scoring rule is strictly proper if, given any p(6),
Eg~p0)[S(g,0)] is uniquely minimised by ¢ = p. For more background on scoring rules
see for example Gneiting and Raftery (2007) and Parry et al. (2012).
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Given a scoring rule, two related quantities are
H(p(0)] = Egp(o)[S(p(0), 0)], (entropy of p)
Dp(0),q(0)] = Egp(e)[S(q(0),0) — S(p(6),0)]. (divergence from p to q)

Supplementary Section A gives details of the entropy and divergence for two strictly
proper scoring rules which will be used below: logarithmic score and Hyvérinen score
(Hyvarinen, 2005). Hyvérinen score uses only the derivatives of logq(6), so it can be
calculated from unnormalised densities.

3.3 Results

Result 1 is a general result characterising solutions of the decision theoretic framework.
It uses the following extra assumption:

A2 Both ]E9~7r(9) [ |S(7T(9)a 0)| ] anda for any 7, E(Q,y)Nw(G,y;T) [ |S(7T(0|ya 7—)7 0)| ] are fi-
nite.
Result 1. Assume A1 and A2. Then the following are equivalent, in the sense of sharing

the same set of optimal designs:

1. The experimenter acts to maximise their expected reward.

2. The experimenter selects T to mazimise the expectation, with respect to 7(0,y; 1),
of any of the following utilities:

uentropy H[W(9|y7 )]7
uentropy diff — H[’/T(e)] [ (o‘ya )]7
udwergence - D[W(9|Z/ ) ( )]

(Note that arguments of utilities are omitted in this section to simplify notation.)

The next result provides further equivalent utility choices for particular scoring rules.

Result 2. For the logarithmic scoring rule, and assuming A2, mazimising the expec-
tation with respect to w(60,y;T) of either Ugivergence 07 Usia, defined in (9), gives the
same set of optimal designs.

For the Hyvdrinen scoring rule the same is true for Ugiergence and both of
Z/{FIG = ||VT 10gf(y|9,7’)||2, utrace :trI(Q;T)u

assuming regqularity condition A5,% defined in supplementary Section A.

Here ||0|| represents the Lo norm i.e. ||z|| = VaTx.

The first part of Result 2 provides a decision theoretic derivation of the Shannon
information gain utility. The argument used is essentially the same as that of Bernardo
(1979). In an analogy to this, we refer to Upig in the second part of the result as

2A5 implies A2, and also contains some other conditions.
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Fisher information gain.> We note that Walker (2016) proved directly that Ui ace and
the corresponding Uentropy difft and Udivergence all have the same expectations up to an
additive constant, and were therefore equivalent when used in experimental design. The
second part of Result 2 shows that the same conclusion arises from a decision theoretic
approach based on the Hyvérinen score.

3.4 Fisher information gain properties

Result 2 supports maximising the expectation of U, or equivalently of Usyace,
Ir1c(7) = Egro) [tr Z(0;7)] = trZ(7), (12)

where Z(7) = Eg.r(0)[Z(0;7)]. We refer to this as the FIG approach to experimental
design, and here we discuss its properties. We will see that despite computational advan-
tages it has several undesirable properties, illustrated later in our examples. Section 4
addresses these issues by generalising the decision theoretic framework.

Bayesian justification Since the definition of Ui ace does not involve y, it is not a
functional of the posterior, and therefore is pseudo-Bayesian under the terminology
of Ryan et al. (2016) (discussed at the end of Section 2.4.) However, as pointed out
by Walker (2016), Jri¢ also results from using utilities which are functionals of the
posterior — e.g. Ugivergence il OUr notation — so it can be regarded as fully Bayesian. This
shows the divide between pseudo-Bayesian and fully Bayesian approaches can be hard
to clearly define, and motivates using a decision (/game) theoretic approach to do so.

Computational advantages The FIM is often available in a closed form which can eas-
ily be evaluated, and allows easy evaluation of gradients. Then optimisation of Jrig(7)
is straightforward using standard stochastic optimisation methods, as described in Sec-
tion 5. In particular, the objective does not involve calculating the log evidence, which
creates optimisation difficulties for Jsiq, or any other use of explicit posterior inference.
The case where evaluation of the FIM is more complicated is discussed in supplementary
Section G.

Lack of reparameterisation invariance The optimum of Jpig(7) can change under
a reparameterisation of 6: see Section 6 for a simple illustration. This property is un-
desirable as the optimal design is affected by the seemingly irrelevant choice of what
parameterisation is used. In contrast, the design optimising expected Shannon informa-
tion gain is reparameterisation invariant.

Intuitively uninformative designs By construction, optimal FIG designs maximise a
particular definition of informativeness. However these designs often have properties
which seem “uninformative” in an intuitive sense.

3Some preprints of this paper used this name for Usrace instead. Our usage here is a closer analogy
to Shannon information gain, and matches that of Overstall (2022).
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One issue is that FIG designs often result in posterior distributions which are very
diffuse for some linear combinations of parameters, although they may be concentrated
for others. This is illustrated in Figure 5, where the design results in a long narrow pos-
terior in which the marginals for two parameters are very similar to the prior marginals.
In contrast, a competing design produces posterior marginals which are concentrated
around the true values for both parameters.

Also, FIG designs can have an excessive amount of replication: repeated observations
at the same time or location. For example, supplementary Section 1.5 shows a FIG design
with all observations at the same time. Such repeated observations provide increasingly
accurate inference on one parameter (or parameter combination) at the expense of the
others.

An informal explanation for this behaviour is as follows. The optimal FIG design
maximises the trace of Z(7), which equals the sum of its eigenvalues. Often this sum
is maximised when one eigenvalue is large and the others are small: we provide an
example in Section 6, and also Overstall (2022) describes a linear model where this
occurs. In a Bayesian setting, Z(6; 7) is an approximation to posterior precision (see e.g.
Van der Vaart, 2000), so this corresponds to the typical posterior having one parameter
combination which is accurately inferred at the expense of the others. Overstall (2022)
also points out that the optimal 7 can produce a singular Z(7) matrix, causing some
statistical methods to break down, and a reason for this is that Jgrig only uses terms
on the diagonal of Z(7), allowing off-diagonal terms to make it singular.

4 Theory: game theory approach

The previous section provided a theoretical framework supporting the use of U ace, but
found it produced designs with several undesirable features, including dependence on
the choice of parameterisation and a diffuse marginal posterior for some linear combina-
tions of parameters. Here we modify the framework to produce a design which is robust
to linear reparameterisation, which, as we shall see, encourages marginal posterior con-
centration for all parameter combinations.

Below, Section 4.1 outlines our framework. Section 4.2 reviews some game theory
definitions, which are used in Section 4.3 to characterise optimal designs supported by
the framework, including an adversarial variation on FIG which we refer to as ADV.
Section 4.4 describes the properties of ADV and its advantages over FIG.

4.1 Game theoretic framework

We propose the following game theoretic framework. Initially, the experimenter selects
a design 7. We introduce a critic who now selects the parameterisation by choosing an
invertible matrix A defining parameters ¢ = A~1'0. The experimenter must then select
a, a density for ¢, receiving a reward R(a,¢). The critic’s reward is —R(a, ¢): they
aim to find the parameterisation for which the design does worst. This completes the
specification of a game, as discussed further in Section 4.2.
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We continue to use assumption Al, which now gives a scoring rule of S(a,¢) =
—R(a, ¢). We also introduce another assumption, which is discussed in supplementary
Section D:

A3 The critic is restricted to selecting A with det A = 1.

Table 2 in the supplementary material summarises and contrasts both the decision-
theoretic and game-theoretic frameworks.

4.2 Game theory definitions

We refer to 7, A,0,y,a as actions of our game. The game specifies a mapping from
7,A,0,y,a to real-valued rewards for the players: the experimenter and critic. The
actions @,y are random samples from specified distributions. The remaining actions are
chosen by the players according to decision rules, 7, A(1), a(t, A, y).

In the remainder of this section we explore the set of subgame perfect equilibria
(SPEs): players act to optimise their expected reward under the assumption that later
decisions will also do so. In our setting, SPE is a condition on decision rules. The
first condition is that a(7, A,y) must output some a maximising the experimenter’s
expected reward given (7, A,y). The second condition is that A(7) must output A
maximising the critic’s expected reward given 7 and a(7, A, y). Finally 7 must maximise
the experimenter’s expected reward given A(7) and a(7, 4, y). Note that existence and
uniqueness of decision rules meeting these conditions is not automatic.

SPEs are often argued (see e.g. Jin et al., 2020) to be an appropriate solution concept
for games in which players act sequentially. The alternative solution concept of Nash
equilibria is more appropriate for games with simultaneous actions. For more background
on game theory and solution concepts see e.g. Osborne and Rubinstein (1994).

4.3 Results

Our first result is that under logarithmic score, the game theoretic framework is essen-
tially equivalent to the decision theoretic framework.

Result 3. The following sets are equal:

e Designs which are selected in SPEs of the game theoretic framework with logarith-
mic score and assumptions A1, AS3.

e Optimal designs in the decision theoretic framework with assumption A1 and log-
arithmic score.

The next result shows that for Hyvéarinen score, the game theoretic framework ad-
dresses the issue of sensitivity to reparameterisation which occurred for the decision
theoretic framework. The result focuses on the case of a linear reparameterisation which
we define as reparameterising 6 to B6 for some invertible B.
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Result 4. The set of designs which are selected in SPFEs of the game theoretic framework
with Hyvdrinen score and assumptions A1, A3 is unchanged by a linear reparameteri-
sation.

Finally, our main result characterises which designs are selected in SPEs under
Hyvarinen score. It uses the following technical assumption:

A4 There exists some 7 such that Eg.,@)[det Z(0;7)] > 0.

Informally this means there is a design under which the model is guaranteed to provide
some information on every parameter, or linear combination of parameters. We also use
a regularity condition A5 (see supplementary Section A).

Result 5. Consider the game theoretic framework with Hyvarinen score under assump-
tions A1, A3-A5. Then the set of T, A pairs which are selected in SPEs are those which
solve min, maxy (7, A) where

K(r,A) = — Egr(6) tr[ATI(G; T)A]. (13)
Also, the set of designs which are selected in SPEs are those mazimising
JTapy(T) = det Z(7), (14)

where () = Egr(0)[Z(0;7)].

4.4 Adversarial objective properties

Using the decision theoretic framework with Hyvarinen score produced the objective
Jric(T) = tr Z(7). Result 5 shows that the game theoretic framework instead produces
the objective Japv(7) = det Z(7). This has improved properties, as we discuss in this
subsection.

Result 5 also shows that maximisation of Japv(7) is equivalent to minimax opti-
misation of K(7, A), as defined in (13). This is helpful in discussing the properties of
Japv (7), and particularly useful in defining a practical optimisation scheme, as detailed
below and in Section 5.

Linear reparameterisation invariance By Result 4, the set of optimal designs from
Japv(7) is invariant to linear reparameterisation, unlike Jric (7). This is also easy to
show directly. Consider a linear reparameterisation ¢ = Bf with det B # 0. From (6),
the FIM is Z,(¢; 7) = B~ TZy(0; 7)B~!. Thus Zy(7) = B-TZy(7)B~! and the reparame-
terised objective Js apv (7) equals Jp apv(7)(det B)~2: the original objective multiplied
by a positive constant. Hence the set of optimal designs is unchanged.

Equivalent A matrices From the cyclic property of trace,

K(r,A) = — Egn(p) tr[AATZ(6; 7)].



D. Prangle, S. Harbisher, and C. S. Gillespie 145

Hence any two A matrices producing the same AA” are equivalent in that they give the
same K (-, A) function. In particular, given any A, a Cholesky factor of AA” is equivalent.
So when we perform minimax optimisation, we can restrict A to be a Cholesky matrix
(i.e. lower triangular with positive diagonal entries) with determinant 1. This will help
set up our optimisation algorithm later — see Section 5.2.

Intuitively informative designs As discussed in Section 3.4, Jrig(7) sometimes pro-
duces designs in which one parameter combination is inferred accurately but others are
not. The objective Japy(7) penalises such designs. This is because it is the product of
the eigenvalues of Z(7). Thus, compared to Jrig(7), it is much less advantageous to
make one eigenvalue large and the others small. See Figure 5 for an illustration — the
posterior under the ADV design is concentrated with respect to both parameters shown
in this plot, unlike that under the FIG design.

A related property of the objective Jric(7) is that it sometimes produces singular or
near-singular Z(7) matrices. The objective Japv(7) avoids this by directly penalising
matrices with low determinants. One reason this is possible is that the determinant
operation is affected by off-diagonal elements of Z(7), unlike the trace.

Bayesian justification Unlike Jr1c(7), Japv(7) is not defined as the expectation of
a utility function. Therefore the “pseudo-Bayesian” or “fully Bayesian” definitions of
Ryan et al. (2016) discussed in Section 2.4 cannot be directly applied. However, Japv(7)
meets the spirit of the pseudo-Bayesian definition as it depends on FIMs rather than
posteriors. Nonetheless, we have shown it emerges from a game theoretic framework
based on enabling an experimenter to estimate the posterior well.

Link to D-optimality Classical optimal design using D-optimality requires a design
to maximise det Z(#;7) at a reference 6 value. This can be generalised to a Bayesian
setting incorporating parameter uncertainty in several ways. See Atkinson et al. (2007),
Table 18.1, for a list of 5 possible objectives, including Japv(7) (and the objective of
Pronzato and Walter (1985), mentioned in Section 1.2, which differs from Japv(7) by
swapping the order of determinant and expectation.) One contribution of our work is
to provide theoretical support and an optimisation method for this particular choice.

Computational tractability It is hard to optimise Japy(7) directly for continuous 7,
as it is not easy to obtain an unbiased gradient estimate due to the non-linearity of the
determinant operator. However optimisation based on (13) is tractable, as described in
the next section.

5 Optimisation

Result 5 of the previous section motivates performing optimal design by finding minimax
solutions of IC(7, A) = —Egr() tr[ATZ(0; 7)A]. Since this is an expectation, computa-
tion of unbiased gradient estimates is straightforward when Z(6;7) can be evaluated.
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(See supplementary Section G for discussion of the case where this is not possible.)
This section describes how as a consequence it is possible to find candidate minimax
solutions using generic gradient based optimisation methods. Throughout we assume
V.Z(0;7) and V; Egr9) Z(0;7) exist.

Section 5.1 gives background on gradient based optimisation methods for minimax
problems. Section 5.2 discusses how to deal with the constraint det A = 1. Section 5.3
describes calculation of unbiased gradient estimates. Section 5.4 presents our optimisa-
tion algorithm, and describes various implementation details.

5.1 Gradient descent ascent

Algorithm 1, gradient descent ascent, attempts to solve min, max, f(z,y). It iteratively
updates (¢, y;) based on g, ; and g, +, unbiased gradient estimates of —V, f(z, ;) and
Vy f(x¢,y:). For an overview and history of GDA see Lin et al. (2020). GDA generalises
stochastic gradient descent (SGD), which is the special case where f is a function of z
alone, and only x; updates are needed.

Algorithm 1 Gradient descent ascent (GDA)
: Input: Initial values x1, ¥, update subroutines hg, hy.
:fort=1,2,...do
Compute gy 1, gy, unbiased estimates of =V, f(zy,y:) and V,, f(ze, yi).
Update estimates using xi11 = ¢ + Ao (ga,t)s Yir1 = Yt + Ry (gy.t)-
end for

AN AR

A simple update rule for GDA, which we will refer to as the default update rule, is
Zip1 = 2t + @z 192 ¢ (for z € {x,y}), given predefined learning rate sequences ag ¢, oy +.
Stochastic approximation theory (see e.g. Kushner and Yin, 2003) suggests using learn-
ing rates such that »,° a., = o0, Y2 a2, < oo (for z € {x,y}). This ensures
that SGD using this update rule and unbiased gradient estimates converges to a local

minimum, under appropriate regularity conditions.

More sophisticated update rules have been developed, effectively tuning the learning
rates adaptively and using different learning rates for each component of the x and y
vectors. We use the popular Adam update rule (Kingma and Ba, 2015). (We use the
default Adam tuning parameters, which typically produce good empirical performance
but not asymptotic convergence. Convergence guarantees are possible by setting some
parameters to decay: see Kingma and Ba, 2015.)

Convergence of GDA under any update rule is more complicated than SGD, and is
an area of active research. One issue is that the dynamics can produce limit cycles as
well as limit points. Algorithms to avoid this have been suggested, including a two time-
scale update rule (Borkar, 1997; Heusel et al., 2017) in which lim;_, o0 ary 1 /0ty ¢ = 00 (oOr
a similar condition under the Adam learning rule.) Another issue is to characterise the
limit points of GDA as an appropriate local generalisation of minimax solutions (Heusel
et al., 2017; Jin et al., 2020; Lin et al., 2020).
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However, for our experimental design application, we find empirically that standard
GDA methods with the Adam update rule suffice to produce sensible designs. Therefore
we recommend using GDA with this update rule, and checking for convergence using
diagnostics, multiple runs from different initial values, and post-processing. Details of
these are contained in the following subsections.

5.2 Representation of A

We wish to solve min, max4 K(7, A) under the constraint that det A = 1. As discussed
in Section 4.4, it is sufficient to search for A over Cholesky matrices (i.e. lower triangular
with positive diagonal entries) with determinant 1. Such matrices can be represented as

exp(711) 0 .. 0
M21 exp(ne2) ... 0
An) = : : . : : (15)
Np1 Np2 . exp(— X i)

This maps an unconstrained real vector 7 of n;; variables to the space of matrices of
interest. We can now solve min, max, K(7, A(n)) using GDA. We initialise n = 0 so
that initially A = I, corresponding to the critic making no reparameterisation.

5.3 Gradient estimation

In this section we will consider estimating VK (7, A(n)) for z € {7,n} in the common
case where it is easy to evaluate the FIM and related gradients. See supplementary
Section G for discussion of cases where these are intractable.

In a few cases it is possible to directly evaluate Z(7) = Egr(0)[Z(0;T)]. See Sections 6
and 8 for example. Then, using (13), we have K(1, A) = — tr[ATZ(7)A], and gradients
can be evaluated using automatic differentiation (Baydin et al., 2017) or derivation
of direct expressions for them. Our code performs automatic differentiation using the
PyTorch library (Paszke et al., 2019).

More commonly it is necessary to derive unbiased gradient estimates. From the
definition of (7, A), (13), an unbiased estimate is

. 1 &
K(r,A) = —tr AT{E;I(G(’“);T)}A . (16)

We also have the following result.

Result 6. Under appropriate regularity conditions on tr[ATZ(0;7)A] (see supplemen-
tary Section F), then V,K(1,A(n)) is an unbiased estimate of V. K(1,A(n)) for z €

{r.,n}.

We calculate gradients of IC(T, A) using automatic differentiation in PyTorch. Note
that using a larger K in (16) reduces the variance but increases computational cost. We
explore this trade-off in Section 7.
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5.4 Main algorithm

Algorithm 2 applies GDA to our experimental design setting. Note that we perform
R replications of GDA in parallel from different initial conditions. This is typically
more efficient than repeating the algorithm R times in serial. One reason is that the
calculations in step 3 and 4 are amenable to parallelisation. (We ran our experiments
on a CPU, but our PyTorch code can easily exploit GPU parallelisation, allowing for
further speed improvements.) Another reason is that the same simulations in step 3 can
be reused for all replications. Algorithm 2 can also be used for SGD to optimise the
FIG objective by keeping 7 = 0 and only updating 7.

Algorithm 2 Gradient descent ascent for Bayesian experimental design

1: Input: Number of samples to use in (16) K, number of parallel replications to
perform R, initial values 7§, ni (for i = 1,2,..., R), update subroutines h., hoy.

2: fort=1,2,...do

3. Sample %) from the prior for k =1,2,..., K.

4: Compute g ,,g; ;, unbiased estimates of —V,K(7{, A(n})) and V,K(7{, A(n}))

using automatic differentiation“of (16) for all 4.
5 Update estimates using 7/, = 7/ + hr(g%,), ni1 = 1 + hy (gl ;) for all .
6: end for

In the remainder of this section various implementation details are discussed.

Diagnostics

Step 4 of Algorithm 2 involves calculating I@(T, A) from (16), whose gradients are then
found using automatic differentiation. This Monte Carlo estimate of I can be used as a
diagnostic of the algorithm’s performance. As we are performing minimax optimisation,
it will typically rise and fall before reaching an equilibrium. Also the values of K from
different parallel runs can be highly correlated since they are based on the same %)
samples. Both phenomena can be seen in the bottom left graph of Figure 2. (The
presence of correlation is illustrated by the fact that the right hand side of the graph
seems to show a single thick line. In fact there are multiple lines with different values
which are highly correlated with each other.)

An alternative diagnostic is to estimate Japy as defined in (14) by
R 1< -
Tapv(r) = det | — ;z(em; 7. (17)

Our code can optionally calculate Japv for designs produced during its execution. To do
so we initially sample 6\9) values from the prior for j =1,2,...,J (we take J = 1000).
Then Japv is calculated for each design 77 produced during the algorithm. Unlike £,

4In practice we implement this by differentiating Zf: 1 K (i, A(n})) with respect to all 7, 7 variables.
This is more efficient in backwards mode automatic differentiation, as implemented in PyTorch.
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this adds an extra computational cost. However this diagnostic has the advantage that it
directly estimates the objective Japy so larger values correspond to better performing
designs. For example, the bottom right graph of Figure 2 directly traces the performance
of designs during optimisation.

For SGD optimisation we can return I@(T, I) as a diagnostic. This directly estimates
—Jr1c(7) but does so using a different 6 sample each time, which adds some variability
to the diagnostic. To remedy this we can also calculate

J
~ 1 -
Jric (1) = tr 7 ;I(G(J); T)

for a fixed sample of 1) values, as above.

Termination

We run Algorithm 2 for a fixed number of iterations or fixed runtime. Alternatively it
could be run until a convergence condition is met for one of the diagnostics above, or
for the size of the increments to 7 or A.

Optimisation under constraints

We often wish to find the optimal design under a constraint: 7 € 7 C R?. In our appli-
cations we achieved this using simple pragmatic approaches. In Section 6 we represent
(scalar) 7 as the transformation of an unconstrained variable. For most examples in
Section 7 the designs remain in 7 under unconstrained optimisation, so no modification
to this is needed. We address constraints for analyses that require a minimum time be-
tween observations in Section 7 or in Section 8 by adding a large penalty to K for 7 & T,
whose gradient moves designs towards 7. In more complex settings these methods may
not suffice. A more sophisticated alternative would be to compose each GDA update
with a projection operation into 7 (Kushner and Yin, 2003).

Local optima

GDA can often converge to multiple possible locally optimal designs. To attempt to
find the global optimum we run GDA multiple times from different initial values of 7
(keeping 7 initialised as a zero vector), and compare their J diagnostics.

In some settings we can also use a point exchange algorithm. Suppose we must select
multiple design points from some region. Optimal designs often have a high degree of
replication: they consist of a small number of clusters of repeated observations (Got-
walt et al., 2009; Overstall and Woods, 2017; Binois et al., 2019). While gradient based
optimisation can find the optimal cluster locations well, there may be a large number
of local optima, differing by the number of points in each cluster. See Figure 3 for an
example. A point exchange algorithm takes cluster locations as input and uses discrete
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optimisation to find optimal cluster sizes. We use a simple approach detailed in sup-
plementary Section E. There is scope for developing more sophisticated approaches in
future work.

6 Poisson model illustration

This section provides a simple illustrative example of the properties of the SIG, FIG
and ADV approaches to experimental design. The setting is that an experimenter must
divide a unit of time between two experiments making Poisson observations with differ-
ent rates. More precisely, the design is 7 € [0, 1]. There are 2 independent observations
y1 ~ Poisson(t0iw),y2 ~ Poisson([l — 7]0aws2). We assume w; > wy > 0 and that
61, 02 have independent Gamma(2, 1) priors.

Analytic results Optimal designs for this example can be derived analytically. We
summarise the results here: see supplementary Section H for derivations. The optimal
design is 7 = 1 under FIG and 7 = 1/2 under SIG or ADV. Under the FIG design,
Yo is always zero, so this design produces no information on 65 i.e. the posterior al-
ways equals the prior. The SIG/ADV design avoids this undesirable property. Also,
the SIG/ADV design is invariant to linear reparameterisations. However for FIG, linear
reparameterisation can change the optimal design to 7 = 0, or make all values of 7
optimal.

Numerical optimisation We perform a numerical analysis of this example with w; =
2,ws = 1. Since the design 7 € [0,1] is bounded we optimise a transformation, A =
logit(7), to allow the use of unconstrained optimisation. Following (15) we take the

critic’s action to be ()
exp(n1 0
A(n) = .
(n) ( 721 eXP(—ﬁu))

Figure 1 shows a GDA vector field using default update rules with a particular
choice of learning rates. The figure shows A and 711 for 1 fixed at zero. (In practice
other 791 values quickly converge to zero.) The vector field illustrates spiral trajectories
converging to a limit point. Additionally, it shows that for any fixed value of 71, g—§ has
a fixed sign. This illustrates that for fixed A (i.e. the FIG setting), SGD optimisation
produces a design converging to either 7 =0 or 1.

The figure also shows GDA trajectories as the critic learning rate is varied. In all
cases, the trajectories converge on the limit point. However, convergence is much faster
as the critic’s learning rate is increased.

7 Pharmacokinetic example

This section contains simulations studies on a pharmacokinetic model. The main goal
is to investigate the performance of our FIG and ADV approaches and compare them
with existing methods for SIG.
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Figure 1: GDA vector field and trajectories for the Poisson example. Paths are shown
for experimenter learning rate 10~2 and critic learning rate 10~ (blue), 10~* (green),
10~° (red). Points indicate every 500 steps of optimisation. The vector field corresponds
to the 10~° critic learning rate.

7.1 Model

Pharmacokinetics studies the time course of drug absorption, distribution, metabolism,
and excretion. Concentration level is observed via samples of fluid — such as blood,
plasma or urine — from the subject taken at preplanned time points. The number of
observations is constrained by budget and resources, as well as patient comfort and
wellbeing. We assume observed concentration, y;, at time 7; (in hours) is distributed as

DOy (exp[—0:17;] — exp[—b027;]),
03(62 — 61) ’

yi ~ N(xz(0,7;), a?), where z(0, ;) =

and D = 400. Concentrations at different times are assumed to be independent. We
assume independent log normal priors

61 ~ LN(log0.1,0.05),02 ~ LN(log1,0.05), 03 ~ LN (log 20, 0.05),

and aim to find 15 observation times in [0, 24]. Also we treat 02 = 0.1 as known.

A similar model to the above was used by Ryan et al. (2014) and Overstall and Woods
(2017). However we make two modifications to create a simple setting for comparing dif-
ferent methods. First, we omit a multiplicative noise term. Secondly, we do not enforce
a 15 minute minimum time gap between consecutive observations, as its implementa-
tion would vary between methods making it more difficult to draw fair conclusions. In
Section 7.5 we remove these modifications and show results from our approach for the
realistic model used in previous work.
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7.2 Methods

The FIM for this model is available in closed form — see supplementary Section I.1.
This allows the optimal ADV design to be found using GDA (Algorithm 2), and the
optimal FIG design using a SGD variant (only updating 7). In both cases we used
the Adam update rule. When implementing these algorithms, we found no need to use
constrained optimisation as the designs remained in the interval [0,24] in any case. We
performed 100 replications in parallel with each algorithm, based on 100 initial designs
sampled from a uniform distribution over [0, 24]'5. We considered several choices of K,
the number samples to estimate K in (16), and selected K = 1. See supplementary
Section 1.2 for details.

We compare our results to two methods of finding the optimal SIG design: the
approximate coordinate exchange (ACE) algorithm of Overstall and Woods (2017), and
the prior contrastive estimation (PCE) algorithm of Foster et al. (2020). (PCE is one of
several methods in Foster et al. 2020, and is not their overall recommendation. However
we found PCE converged more quickly than the alternatives for this example, so we
use it as lower bound on the speed of their methods.) Implementation details of these
methods are given in Appendices 1.3 and 1.4. PCE allowed 100 replications to be run in
parallel. We ran replications of ACE serially, noting that the ACE code utilises multiple
cores during its execution in any case. As ACE took much longer to run we used only
30 replications.

7.3 Results

Table 1 shows mean times for each method i.e. run time divided by number of designs
returned, demonstrating the speed advantage of GDA and SGD. Below we comment in
more detail on each algorithm’s results.

| GDA GDA+PE SGD SGD+PE ACE PCE
Mean time (seconds) 14 2.2 1.4 1.5 8012 36
Number of repetitions | 100 100 100 100 30 100

Table 1: Mean times to run optimisation methods on the pharmacokinetic example.
(n.b. PE is “point exchange”). Both ACE and PCE have not fully converged after the
time quoted, so the figures given are lower bounds on the run time.

ADV The top half of Figure 2 shows trajectories of 7 and A during a single replica-
tion of GDA optimisation. The design points eventually settle into clusters of repeated
observations at three times. The bottom half shows estimated IC and J objectives over
100 replications. Although all runs have converged after 100,000 iterations, the objective
values are not identical.

Figure 3 shows final designs for all replications. The design points typically converge
to 3 clusters, around times 1.1, 3.4 and 14.0. However the cluster sizes vary between
runs, as different local optima are found. This explains why runs converge to slightly
different objective values. Employing point exchange reduces the variation in cluster
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Figure 3: Designs output from 100 optimisation runs for the pharmacokinetic example.
The horizontal axis shows the index of each point in the sorted design i.e. observation
times are shown in increasing order from left to right. Points are plotted as semi-
transparent, so rare results are light, and common results are dark. The left plot shows
GDA output after 100,000 iterations. In the right plot point exchange is also applied.

sizes. (There is some variability in exact cluster locations. Further investigation showed
that this is mainly due to cluster locations changing slightly depending on cluster sizes.)
PE finds two candidates for an optimal design, with 6 or 7 points near time 1. (To find
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Figure 4: Performance of pharmacokinetic example designs output by various methods.
Performance is judged by estimated objective value achieved for (left) our adversarial
approach and (right) the Shannon information gain approach. Boxplots are shown for
estimates taken from 100 designs (or 30 in the case of ACE) from repeated optimisation
runs with different initialisations.

an overall optimum one could now estimate T apv for both using a larger sample size.)
However GDA runs produced a maximum of 6 points for this cluster. This highlights
the importance of PE to find global optima.

Figure 4 (left) shows Japy values achieved by the final designs from GDA and the
SIG methods, as well as for designs sampled from a uniform distribution over [0, 24]'°.
These estimated were calculated using equation (17). On average GDA outperforms the
SIG methods and further improvement is achieved by also applying point exchange.

Finally, Figure 5 illustrates a posterior found from one particular ADV design, and
shows that it is concentrated around the true parameters.

FIG Full details of SGD optimisation results are given in supplementary Section 1.5.
Briefly, SGD designs always converge to a single cluster around time 12. Intuitively this
is a poor design: the three 6 parameters of the x(6,7) function cannot all be identified
from repeated observations at a single time point 7. Figure 5 illustrates that this design
indeed performs poorly by presenting a typical posterior. The narrowness of the FIG
design posterior illustrates that the posterior is highly concentrated for some function of
0, and 03. However the posterior is diffuse for #; and 3 marginally: it stretches almost
the full length of the prior distribution, unlike the highly concentrated ADV design
posterior.

SIG Running ACE under the default tuning choices took a few hours, much slower
than GDA which took only a few minutes to run 100 repetitions. Furthermore, the
ACE results do not seem to have converged to the optimal design in the time. See
supplementary Section 1.3 for more details. (We also explored varying one tuning choice
in ACE: the number of Monte Carlo samples for utility estimates used to fit the Gaussian
process. However we found only marginal improvements over the recommended default
tuning for ACE.)



D. Prangle, S. Harbisher, and C. S. Gillespie 155

45 4

40 1

35 A

30 A

63

25 A

201

15

10 1

0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225
6,

Figure 5: Bivariate posteriors for 61,63 in the pharmacokinetic example. Samples are
plotted from: the prior (green circles), the posterior with a FIG design (red triangles),
the posterior with a ADV design (blue pluses). The ADV and FIG designs used 100,000
iterations of GDA or SGD, followed by point exchange optimisation. The true parameter
values, sampled from the prior, are #; = 0.14,603 = 12.29, consistent with the blue
pluses. Datasets for use in inference were then sampled from the model, using the same
observation noise realisations for both ADV and FIG designs. Posterior samples are
importance sampling output.

We ran PCE for roughly 10 times longer than GDA and found the results con-
centrated near 3 observation times similar to those for GDA. However this runtime
appears to only be a lower bound on the time needed for convergence, as running PCE
for longer increased the concentration of the design points. We also explored alternative
methods from Foster et al. (2020) but were not able to improve on the PCE results. See
supplementary Section 1.4 for more details.

Figure 4 (right) shows estimates of expected Shannon information gain achieved by
the final designs from all SIG methods, as well as GDA designs and designs sampled
from a uniform distribution over [0,24]'®. The calculation method is described in sup-
plementary Section I.6. On average GDA outperforms the other methods, with a slight
further improvement from using point exchange. This suggests that GDA designs pro-
duce good performance under the SIG objective, and is also further evidence that the
ACE and PCE methods have not fully converged to the overall optimum.

7.4 Conclusion of comparisons

We have shown that our optimisation method to find ADV and FIG designs is faster
than SIG optimisation methods by at least a factor of 10. The true advantage may be
greater as the SIG methods do not appear to have fully converged in the time stated.
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The FIG design can give overly diffuse marginal posteriors for some parameters.
The ADV design avoids this drawback, and appears to be similar to the SIG design,
and indeed gives competitive performance under the SIG objective. Multiple runs of
ADV produced designs with similar cluster locations but varying cluster sizes. Post-
processing these designs using point exchange further improved the ADV objective
reached, illustrating the importance of this step. To explain the improvement, note that
point exchange found two candidates for optimal cluster sizes, including one which was
different from any cluster sizes found without post-processing.

7.5 Realistic example

Here we implement our ADV approach on a more realistic version of the pharmacokinetic
example. Firstly, we now assume multiplicative noise:

yi ~ N(z(0,7;), 0’% + J%x(ﬂ, TZ-)Q)7 (18)

with 02 = 0.1,02 = 0.01. Secondly we require gaps i.e. a constraint that observation
times are at least 0.25 hours apart. These changes result in the model used by Ryan
et al. (2014) and Overstall and Woods (2017).

Results exist for the FIM of a model with multiplicative noise (e.g. see Malago and
Pistone, 2015, equation 23). However a lengthy analytic derivation is required which can
easily result in errors. Therefore we implement a method which can be used when the
FIM is intractable: Algorithm 1, described in supplementary Section G. Supplementary
Section J gives further implementation details for this example and more comments on
the results.

Figure 6 shows the resulting designs. Without the gaps constraint, there are 3 clusters
of repeated design points. The cluster locations differ depending on whether or not
multiplicative noise is used. When gaps are enforced, the clusters remain at the same
locations, but consist of spaced out, rather than repeated, design points.

No gaps |

no multiplicative noise
Gaps |

no multiplicative noise
No gaps |

multiplicative noise
Gaps |

multiplicative noise

0 5 10 15 2
Observation time

Il
0

Figure 6: Optimal ADV designs for several variations of the pharmacokinetic example.

8 Geostatistical regression example

This section considers an example requiring hundreds of design choices, to illustrate
how our method can scale up to higher dimensional applications.
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8.1 Model

Consider the following geostatistical regression model. Here a design 7 is a d X 2 matrix
whose rows specify measurement locations. We assume normal observations with a linear
trend and squared exponential covariance function with a nugget effect, giving

y ~ N(z(0,7),%(7)), x; = 01751 + 02750,
2

5 =otl +03R(7), R;j = exp l—Z(Tik—Tjk)Z/ZQ] .
k=1

For simplicity we assume that 0%, 03 (observation variance components) and ¢ (covari-
ance length scale) are known. Hence the unknown parameters are 67 and 6, (trends).

8.2 Methods

Using (7) the FIM is Z(7) = 77%(7) "7, which does not depend on 6. Hence Z(7) is
also the expected FIM and we do not need to use Monte Carlo to estimate it.

We performed simulation studies for £ = 0.01,0.02,0.04,0.08 with o7 = 1 and o9 =
3 to search for 500 design points restricted to a unit square centred at the origin.
The design was initialised as independent uniform draws. Each run used Algorithm 2
with the Adam update rule for 1000 iterations, which was enough for convergence (see
supplementary Section K). We implemented constrained optimisation by adding a L,
penalty to designs outside the unit square.

As this example aims to illustrate the time required by ADV, we did not investigate
repeated runs from different initial designs, or post-processing using point exchange.
In any case, the latter seems unlikely to help as there is little evidence of replicated
observations in the results.

8.3 Results

Optimisation took on average 19.4 seconds. Figure 7 shows the resulting designs. For
small £ values, the design points cluster in the corners. For larger values, the designs are
spread across the region with varying spatial structures. For all runs A remained very
close to the identity matrix throughout optimisation, reflecting the symmetry of 6; and
f> in the model. Hence FIG would also work well for this example.

¢=10.01 £ =10.02 ¢=10.04 ¢ =10.08

Figure 7: Geostatistical regression model designs returned for various choices of £. The
design space is a unit square centred at the origin.
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O Discussion

We have presented a gradient descent ascent algorithm Bayesian optimal design using
an objective function based on the Fisher information. This provides improvements in
speed and scalability to higher dimensional designs by avoiding the need for posterior
inference. We also provide a novel game theoretic justification for our objective, and
provide theoretical insights into the choice of utilities for Bayesian optimal design from
decision/game theoretic principles, extending the work of Bernardo (1979) and Walker
(2016).

In simulation studies our approach finds locally optimal design faster than other
state of the art methods, by a factor of at least 10. To assess whether multiple locally
optimal designs exist we recommend starting from multiple random initial designs,
which can easily be done in a parallel version of our algorithm. If locally optimal de-
signs involve clusters of repeated observations, we recommend post-processing using a
point exchange algorithm. Although we did not observe any in our examples, GDA dy-
namics can converge to limit cycles rather than the desired solutions. We recommend
checking for cyclic behaviour using trace plots of 7 values produced during optimisa-
tion.

9.1 Limitations and future research

Intractable Fisher information Our methods have assumed that the FIM, and asso-
ciated gradients, can easily be evaluated. When the FIM cannot be evaluated but the
likelihood or score function (5) can, it is possible to produce an unbiased estimate of the
FIM. Supplementary Section G describes this and how it can be used for experimental
design. Section 7.5 contained an application.

However sometimes the likelihood and score function cannot be evaluated. One com-
mon reason is the presence of latent variables, such as nuisance parameters. Supplemen-
tary Section G describes difficulties of implementing our approach in this setting, and
sketches methods to do so, which we plan to investigate in future research.

Discrete designs Gradient based optimisation is only available for a continuous space
of possible designs. It would be of interest to develop analogous methods to this paper
for discrete designs. These could be based on discrete optimisation algorithms, or involve
relaxation of the discrete problem to a continuous approximation.

Discrete parameters A limitation of our work is that it does not apply to discrete
parameters, since Hyvérinen score and FIM are only defined for continuous parameters.
Discrete analogues have been proposed (Dawid et al., 2012; Shao et al., 2019), which
would be interesting to investigate.

Variance reduction Optimisation efficiency could be increased by reducing the vari-
ance of our Monte Carlo gradient estimates. For instance, a reviewer suggests the use
of randomised quasi-Monte Carlo, as in Drovandi and Tran (2018).
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Alternative optimisers Variations on GDA with better convergence guarantees, such
as two time scaled update rules (Heusel et al., 2017), are an active topic of research
and could be used for the objective in this paper. Another possibility for future work is
modifying generic gradient based optimisation methods to avoid local optima in optimal
design problems e.g. using tempering methods, or non-local updates such as line search,
as used by Overstall and Woods (2017).

Variations to game theoretic framework Several details of our game theoretic frame-
work could be altered. One possibility is to consider alternative scoring rules. Many
alternative proper scoring rules exist beyond logarithmic and Hyvérinen (Parry et al.,
2012). Alternatively, non-proper scoring rules could be used which emphasise a partic-
ularly important aspect of inference to the task at hand e.g. the tails of the distribution
(Loaiza-Maya et al., 2021). Another variation is to allow more freedom to the critic.
This could include the ability to make more general, non-linear, reparameterisations, or
to condition their reparameterisation on the observations, y.

Supplementary Material

Bayesian experimental design without posterior calculations: an adversarial approach.
Supplementary material (DOI: 10.1214/22-BA1306SUPP; .pdf).
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