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Abstract. In this manuscript, we provide a non-asymptotic process level control between the telegraph process and the Brownian
motion with suitable diffusivity constant via a Wasserstein distance with quadratic average cost. In addition, we derive non-asymptotic
estimates for the corresponding time average p-th moments. The proof relies on coupling techniques such as coin-flip coupling,
synchronous coupling and the Komlós–Major–Tusnády coupling.

Résumé. Dans cet article, nous fournissons un contrôle au niveau de processus et non asymptotique entre le processus télégraphique
et le mouvement brownien avec une constante de diffusivité appropriée par rapport à la distance de Wasserstein et avec un coût moyen
quadratique. De plus, nous dérivons des estimations non asymptotiques pour les p-ièmes moments moyens correspondants. La preuve
repose sur des techniques de couplage telles que le couplage pile ou face, le couplage synchrone et le couplage Komlós–Major–Tusnády.
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1. Introduction

The so-called (Goldstein–Kac) telegraph process is perhaps the simplest example of a random evolution, see [21] and [24].
It describes the movement of a particle which starts at time zero from the origin and moves with a finite constant speed
v0 on the line. The initial direction of the motion, positive or negative, is chosen at random with the same probability.
The changes of direction are driven by a homogeneous Poisson process of a positive constant intensity λ. In other words,
when a jump occurs in the Poisson process, the particle instantaneously takes the opposite direction and keeps moving
with the same speed (it just flips the sign of its velocity) until the next jump in the Poisson process happens, then it takes
the opposite direction again, and so on. This is in fact an example of a zigzag process considered in [3]. Later on, we
provide a precise mathematical definition in (2.5). In [21] and [24], it is shown that the family of probability densities of
the particle position (f (x, t) : x ∈R, t ≥ 0) solves the hyperbolic partial differential equation of the type

(1.1)
∂2

∂t2
f (x, t) + 2λ

∂

∂t
f (x, t) = v2

0
∂2

∂x2
f (x, t).

Since (1.1) appears in electrical wave propagation models, it is known as the telegraph equation or the hyperbolic heat
equation. An explicit solution of (1.1) can be carried out in terms of special functions, see for instance Chapter 2 in [29].

The telegraph process has been proposed as an alternative to diffusion models and, as such, extensively studied by the
probability and physics communities. Its generalisations are ubiquitous in applications, including transport phenomena in
physical and biological systems, and it has produced a vast mathematics literature; standard references include [5,12,14,
15,19–24,26–30,37,40,46] and further references may be found from therein. It is also used in the context of risk theory
and to model financial markets, see [16,29] and [38]. Statistics for the telegraph process are done in [22]. More recently,
in [10] the authors compute the distribution of the maximum of the asymmetric telegraph process.

Despite its simplicity and the already existing results about the agreement with Brownian motion using the above
marginals, it is not easy to connect these two processes on the level of realisations, i.e., on the process level. The present
work is motivated by the need to understand a similar connection to diffusion in an extension of the telegraph process
where the stochastic process is augmented into an interacting particle system, ordered along a circle, and each particle
follows an independent telegraph process but there additionally is an interaction potential acting between the nearest
neighbour particles. The resulting system is called a velocity flip model: the connection between them and suitably chosen
diffusion processes have been explored, for instance, in [2,34,36,45] but process level understanding of the connection is
still lacking, even in the simplest case of a harmonic interaction potential.

Our aim is to provide a process level control between the telegraph process and the Brownian motion with suitable
diffusivity constant via a Wasserstein distance with quadratic average cost. Often, one can rely on generators to see if
a Markov process converges to another process, see for instance [18] and [42]. There are several ways to quantify the
preceding convergence, for instance, by the Wasserstein distance (Kantorovich distance). For the setting of two pure jump
Markov Rd -valued processes with bounded intensity of jumps, the time evolution of the Wasserstein distance between
them can be written as an integro-differential equation in terms of their generators and Kantorovich potentials, see for
instance Theorem 3.1 in [1]. In dimension one, the latter remains true for piecewise deterministic Markov processes, see
Theorem 6.4 in [1]. However, we do not follow this approach since the relevant Kantorovich potentials are hard to compute
and also the process level control, in which we are interested, is with respect to an average quadratic cost function given
in (2.10) below. This is in fact a natural distance between process; we refer to [4] for further details. For diffusions, under
regular assumptions on their coefficients, by analytical approach the Wasserstein distance and total variation distance
can be estimated, see Theorem 1.1 in [6]. By coupling approach, in [17] the authors obtain bounds of the total variation
distance between two multidimensional Itô processes with different drifts. We point out that in general, it is difficult to
obtain rates of convergence by the generator approach or for functional limit theorems. One possible approach is offered
by the so-called Stein’s method, see [9,11], although also this tool is difficult to implement in the present case.

In this manuscript we present non-asymptotic estimates between the telegraph process and the Brownian motion with
suitable diffusivity constant. The main mathematical tools for the rigorous control of the estimates are coupling tech-
niques. We do not require explicit knowledge of the marginals of the corresponding processes. Roughly speaking, the
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idea is to compare the telegraph process with a decoupled process (perturbed random walk) via the coin-flip coupling (see
[33] or Appendix A in [44]). Then we compare the decoupled process and the Brownian motion with suitable diffusivity
constant. Since the decoupled process has zero mean at even jumps, the latter is done in two steps via the synchronous
coupling and the celebrated Komlós–Major–Tusnády coupling (see [31] and [32]). The argument is detailed in Section 3.
As a consequence of our main result, Theorem 2.1, we obtain non-asymptotic estimates for the time average of p-th
moments.

The paper is organised as follows: Section 2 lays out the setting, the main result Theorem 2.1 and its consequences
formulated as Corollary 2.7 and Corollary 2.9. Section 3 sketches the steps leading to the proof of the main result Theo-
rem 2.1, which boils down to the proofs of Proposition 3.1, Proposition 3.2 and Lemma 3.3. Proposition 3.1 is proved in
Section 4, Proposition 3.2 is shown in Section 5 and Lemma 3.3 is proved Section 6. Finally, there is an Appendix which
collects main technical results and estimates used in the main text. It is divided in four subsections: Appendix A yields
quantitative estimates of moments, Appendix B establishes coupling estimates between the free velocity flip model and
a suitable Brownian motion, Appendix C gives integration formulas for the Dirac δ-constrain probability measure, and
Appendix D provides basic auxiliary results.

2. The setting and the main results

This section is divided in four subsections. We start by introducing the model and the notation in Section 2.1. Then,
we discuss related works in Section 2.2. Next, we define the metric in which we compare our processes in Section 2.3.
Finally, the main result and its consequences are given in Section 2.4.

2.1. Construction of the free velocity flip model

Let N = {1,2, . . . , }, N0 = N ∪ {0} and R∗ := (0,∞). For any d ∈ RN∗ := {z = (z1, z2, . . . , ) : zj ∈ R∗ for all j ∈ N},
d= (δ1, δ2, . . . , ), we set t0(d) := 0 and

(2.1) tn(d) :=
n∑

k=1

δk for any n ∈N.

We define the set of admissible sequences �∞ by

(2.2) �∞ :=
{
d ∈ RN∗ :

∞∑
k=1

δk = ∞
}

.

In other words, d ∈ �∞ if and only if tn(d) → ∞ as n → ∞. For each d ∈ �∞ we set

N : �∞ −→ D
([0,∞),R

)
d �−→ N(·;d) : t �→ N(t;d) = sup

{
n ∈N0|tn(d) ≤ t

}
,

(2.3)

where D([0,∞),R) denote the set of Càdlàg paths defined on [0,∞) and taking values on R. We observe that the function
t �→ N(t;d) is non-decreasing.

The sequence d is taken to encode the waiting times between jumps for a certain piecewise linear path (X(t;d) : 0 ≤
t < ∞). We point out that then N(t;d) corresponds to the number of jumps which have occurred by the time t . The
process X, which can be identified with a “free velocity flip process path in one dimension”, is defined by the following
properties:

1. Instantaneous position X(t;d) ∈R,
2. starting velocity is v0 ∈ R, and
3. at each “jump” the velocity flips its sign, V (t;d) �→ −V (t;d). More precisely,

V (t;d) := v0(−1)N(t;d) for all t ≥ 0.

For simplicity, we assume that the initial position is zero, that is, X(0;d) = 0. Then we explicitly define the free velocity
flip path X as follows:

X : �∞ −→ C
([0,∞)

,R)

d �−→ X(·;d) : t �→ X(t;d) :=
∫ t

0
dsV (s;d),

(2.4)
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where C([0,∞),R) denotes the set of continuous paths defined on [0,∞) and taking values on R. It is not hard to see
that for any d ∈ �∞ and t ≥ 0,

(2.5) X(t;d) = v0

M∑
k=1

(−1)k−1δk + v0(−1)M
(
t − tM(d)

)
, M = N(t;d),

with the convention that
∑b

k=a(· · · ) = 0 whenever a > b, a, b ∈ Z. In particular, for t ∈ [0, δ1), we have X(t;d) = v0t .
Also, by definition of N , we have

|v0(−1)M
(
t − tM(d)

)| ≤ |v0|
(
tM+1(d) − tM(d)

)= |v0|δM+1.

Notation. When the sequence d = (δk : k ∈ N) is distributed according to the infinite product measure of exponential
distributions with parameter λ > 0, from here on we always write s= (s1, s2 . . . , ) instead of d.

We note that s ∈ �∞ almost surely and also N(t; s) < ∞ for any t ≥ 0 almost surely. In fact, N(t; s) is the unique
(random) value n ∈N0 for which tn(s) ≤ t < tn+1(s) and the process

(2.6)
(
N(t; s) : t ≥ 0

)
is called a Poisson process of intensity λ.

For further details about Poisson processes we recommend the monographies [8] and [39]. We denote by (�,F,P) the
complete probability space where Xs := (X(t; s) : t ≥ 0) is defined and by E the expectation with respect to P. The vector
process ((X(t; s),V (t; s)) : t ≥ 0) is Markovian on the state space R× {−v0, v0}, see for instance Section 12.1, p. 469 in
[18]. However, the marginal process Xs is not itself Markovian for any non-zero initial velocity v0.

Note that for v0 = 0 we have X(t; s) = 0 for all t ≥ 0. In the rest of the manuscript we always assume that v0 ∈
R \ {0}. We point out that the free velocity flip model corresponds to the so-called Goldstein–Kac telegraph process
when the initial velocity v0 is chosen at random from the uniform distribution on {−1,1} (Rademacher distribution) and
independent from the Poisson process (N(t; s) : t ≥ 0). In this scenario, a straightforward computation yields

E
[
e−zV (t)

]= cosh(z) for any z ∈R and t ≥ 0,

where cosh denotes the hyperbolic cosine function, and hence the velocity process (V (t) : t ≥ 0) is stationary.
In what follows we do not assume that v0 is random. Nevertheless, our main result and its consequences hold true as

soon as we assume that v0 is a random variable with finite inverse second moment and independent of the Poisson process
(N(t; s) : t ≥ 0). Hence, it covers the Goldstein–Kac telegraph process. The variance of X(t; s), Var(X(t; s)), is given by

(2.7) Var
[
X(t; s)]= v2

0

λ2

(
λt + e−2λt − e−4λt

4
− 3

4

)
for all t ≥ 0.

For details, see Item 2 of Lemma B.1 in Appendix B.
We also choose a target spatial scale, L > 0, and time scale, T > 0, in which we wish to control the position of the

process X. The evolution of the process X will then be most conveniently described in terms of the following scaling
parameters:

(2.8) T∗ := λT and L∗ = |v0|−1λL.

By formula (2.7) we have

Var
[
L−1X(T ; s)]= T∗

L2∗
+ 1

L2∗

(
e−2T∗ − e−4T∗

4
− 3

4

)
.

The latter suggests that for T∗ → ∞, L∗ → ∞, T∗/L2∗ → ζ for some ζ > 0, the scaling process (L−1X(t; s) : 0 ≤ t ≤ T )

should behave as the Brownian motion with suitable diffusivity coefficient.

2.2. Related works

It is well-known that, under a suitable scaling, the telegraph process satisfies a functional central limit theorem. To be
more precise, if λ → ∞ and v0 → ∞ such that v2

0/λ → 1, then the telegraph process (X(t; s) : 0 ≤ t < ∞) converges
weakly in C([0,∞),R) to a standard Brownian motion W = (W(t) : t ≥ 0), see for instance Theorem 1.1 in [5] and the
references therein. Using the fact that the evolution equation associated to (X(t; s) : 0 ≤ t < ∞) is given by the telegraph
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partial differential equation (1.1), asymptotics for the transition probability can be carried out in terms of Bessel functions,
see [40]. However, up to our knowledge, the unique reference discussing about rate of convergence of the fixed rescaled
time marginal to the corresponding Gaussian distribution is [23], in which an expansion of length two is carried out for
the marginal X(t; s) based on the marginal W(t)/

√
λ. The error term is of order O(t) as t → ∞.

We emphasize that the main Theorem 2.1 of this paper states a non-asymptotic estimate in the average quadratic
Wasserstein metric between the processes (L−1X(t; s) : t ≥ 0) and a Brownian motion (not necessarily standard). This,
in particular, implies Theorem 1.1 in [5] when λ → ∞ and v0 → ∞ in such a way that v2

0/λ → 1. The latter is referred
as a singular perturbation scale in [23].

2.3. Comparing two stochastic processes

2.3.1. Coupling and Wasserstein metric
The Wasserstein metric is used to measure the distance between two probability measures on a Radon space. Polish spaces
are standard examples of Radon spaces. Let d ∈N and consider two stochastic processes (X(t) : t ≥ 0) and (Y (t) : t ≥ 0)

defined on the probability space (�,F,P) and taking values in Rd . The Skorokhod space (Radon space) consisting of
the set of right-continuous with left limits functions taking values in Rd is denoted by D([0,∞),Rd) and assume that
the trajectories of the processes (X(t) : t ≥ 0) and (Y (t) : t ≥ 0) belong to D([0,∞),Rd). Let T > 0 be a target time
scale, and denote by μ1(dX) and μ2(dY) the probability measures of the processes (X(t) : t ≥ 0) and (Y (t) : t ≥ 0),
respectively, restricted to times t with 0 ≤ t ≤ T . Then we define the average quadratic cost function

(2.9) c2(X,Y ) := 1

T

∫ T

0
ds
∥∥X(s) − Y(s)

∥∥2
,

where ‖ · ‖ denotes the Euclidean norm on Rd . The corresponding Wasserstein distance of order 2 with cost function c2
between μ1 and μ2, W2(μ1,μ2), is defined by

W2(μ1,μ2) :=
(

inf
γ

∫
γ (dX, dY)c2(X,Y )

)1/2

=
(

inf
γ

∫
γ (dX, dY)

1

T

∫ T

0
ds
∥∥X(s) − Y(s)

∥∥2
)1/2

,(2.10)

where the infimum is taken over all couplings γ between the probability measures μ1 and μ2. In other words, for all
continuous and bounded observables h :D([0, T ],Rd) → C it follows∫

γ (dX, dY)h(X) =
∫

μ1(dX)h(X) and
∫

γ (dX, dY)h(Y ) =
∫

μ2(dY)h(Y ).

For shorthand, we write W2(X,Y ) in place of W2(μ1,μ2). We point out that (2.10) defines a natural distance between
stochastic processes, see for instance [4]. Indeed, W2 defines a metric that metrizes the weak topology on the set of
probability measures η on L2([0, T ],Rd) such that∫

L2([0,T ],Rd )

η(dX)

∫ T

0
ds
∥∥X(s)

∥∥2
< ∞.

Unfortunately, the numerical computation of W2 or any other Wasserstein metric on an infinite dimensional space is very
difficult. For basic definitions, properties and notions related to couplings and Wasserstein metrics, we refer to [41] and
[47].

2.3.2. Global estimate for moments
Let w : Rd → [0,∞) be a weight function which yields an L2-integrable observable with respect to μ1 and μ2. To be
more precise, we require that

C2
1 :=

∫
μ1(dX)

1

T

∫ T

0
ds
(
w
(
X(s)

))2
< ∞ and C2

2 :=
∫

μ2(dY)
1

T

∫ T

0
ds
(
w
(
Y(s)

))2
< ∞.(2.11)

Consider then any measurable function f : Rd → C which is “w-Lipschitz”, in the following precise sense: there is a
Lipschitz constant K ≥ 0 such that

(2.12)
∣∣f (x) − f (y)

∣∣≤ K
w(x) + w(y)

2
‖x − y‖ for all x, y ∈ Rd,
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where | · | denotes the modulus of a complex number. The preceding condition (2.12) is chosen to obtain upper bounds
for the error as we see in (2.14). The preceding definition (2.12) is motivated by the following observation: for any p > 0
it follows that

(2.13)
∣∣|x|p − |y|p∣∣≤ K

w(x) + w(y)

2
|x − y| for all x, y ∈R,

where K = 2p and w : R → [0,∞) is given by w(z) = |z|p−1 for all z ∈ R. For details see Lemma B.2 in Appendix B.
Inequality (2.13) implies that for the p-th moment observables, the estimation of the corresponding C1 and C2 needs
implicitly good estimates of the 2(p − 1)-th moments.

For short, we use the following standard notation 〈h〉μ to denote
∫

μ(dX)h(X) for any h : D([0, T ],C) → C. Then,
in particular, for any coupling γ between μ1 and μ2 we have∣∣∣∣〈 1

T

∫ T

0
dsf

(
X(s)

)〉
μ1

−
〈

1

T

∫ T

0
dsf

(
Y(s)

)〉
μ2

∣∣∣∣
=
∣∣∣∣∫ γ (dX, dY)

1

T

∫ T

0
ds
(
f
(
X(s)

)− f
(
Y(s)

))∣∣∣∣
≤
∫

γ (dX, dY)
1

T

∫ T

0
ds

K

2

(
w
(
X(s)

)+ w
(
Y(s)

))∥∥X(s) − Y(s)
∥∥

≤ K

2

[∫
γ (dX, dY)

1

T

∫ T

0
ds
(
w
(
X(s)

)+ w
(
Y(s)

))2
]1/2[∫

γ (dX, dY)
1

T

∫ T

0
ds
∥∥X(s) − Y(s)

∥∥2
]1/2

≤ K√
2

[
C2

1 + C2
2

]1/2
[∫

γ (dX, dY)c2(X,Y )

]1/2

,

where we have used Hölder’s inequality twice. Since this is true for any coupling γ , we obtain an explicit estimate for
time-averages using the Wasserstein distance W2 defined in (2.10). In other words, for any f satisfying (2.12) we have
the global estimate

(2.14)

∣∣∣∣〈 1

T

∫ T

0
dsf

(
X(s)

)〉
μ1

−
〈

1

T

∫ T

0
dsf

(
Y(s)

)〉
μ2

∣∣∣∣≤ Kmax{C1,C2}W2(X,Y ).

Moments of random variables are one of the most interesting and useful observables both from theoretical and practical
points of view. Hence, the right-hand side of (2.14) can be read as follows: good approximations in terms of the above
W2-distance imply similar approximations for a large class of physically relevant time-averages.

2.4. Main result and consequences

Given any stochastic process S = (S(t) : t ≥ 0) and a target time T > 0, for convenience we define the projection process
up to time T as follows:

S[0,T ] := (
S(t) : 0 ≤ t ≤ T

)
.

Recall that Xs = (X(t; s) : t ≥ 0) denotes the velocity flip model defined in (2.5), where s is sampled from an infinite
product of exponential distribution of parameter λ. For any L > 0 and T > 0 we consider the corresponding projec-
tion process L−1Xs[0,T ] and we compare it with the projection process B[0,T ] of a Brownian motion B = (B(t) : t ≥ 0)

with diffusivity constant given by σ 2 = L−2v2
0λ−1. The independent coupling between L−1Xs[0,T ] and B[0,T ] yields the

following crude estimate: for any L > 0, T > 0, λ > 0 and v0 ∈R \ {0} it follows that

(2.15) W2
(
L−1Xs[0,T ],B[0,T ]

)≤
(

1

4T∗L2∗

(
1 − e−2T∗)− 1

2L2∗
+ T∗

L2∗

)1/2

,

where the scaling parameters are given by T∗ = λT and L∗ = |v0|−1λL. For details for we refer to Lemma B.4 in
Appendix B. If we do not use the independent coupling and we just apply Hölder’s inequality for the cross term
E[L−1X(s; s)B(s)], we pay the price of a factor

√
2 in the right-hand side of the preceding estimate. Nevertheless,

for T∗ → ∞ and L∗ → ∞ in such way that T∗/L2∗ → ζ > 0 for some ζ > 0, the right-hand side of (2.15) tends to ζ 1/2

and hence it is not informative.
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The main result of this manuscript is the following.

Theorem 2.1 (Brownian motion approximation of the free velocity flip model). There exists a (pure) positive constant
C such that for any L > 0, T > 0, λ > 0 and v0 ∈R \ {0} it follows that

(2.16) W2
(
L−1Xs[0,T ],B[0,T ]

)≤ C

√
T∗L−2∗ T

−1/4∗
(√

ln(T∗ + 3) + T
−3/4∗

)+ CL−1∗ ,

where the constants T∗ and L∗ are given by

(2.17) T∗ := λT , L∗ = |v0|−1λL,

and the diffusivity constant of the Brownian motion B := (B(t) : t ≥ 0) is defined by

(2.18) σ 2 := L−2 v2
0

λ
.

We continue to rely on the notations and assumptions in Theorem 2.1. We point out that the average cost and the
time-one cost are linked by a deterministic time-change of the processes.

Remark 2.2 (The average cost vs. the time-one cost). The cost function c2 defined in (2.9) depends on the target time
T and hence the corresponding Wasserstein distance W2 defined in (2.10) also depends on T . For any t ≥ 0 we set

X̃(t; s) := L−1X(T t; s) and B̃(t) := B(T t).

Then we have

W2
(
L−1Xs[0,T ],B[0,T ]

)= W̃2
(
X̃s[0,1], B̃[0,1]

)
,

where the cost function c̃2 of W̃2 is given by

c̃2(X̃, B̃) =
∫ 1

0

∣∣X̃(t; s) − B̃(t)
∣∣2 dt.

We point out that the cost function c̃2 does not depend on the target time T and hence the distance W̃2 also does not
depend on T .

Using the scale invariance property of the Brownian motion, we stress the dependence of (2.18) in (2.16).

Remark 2.3 (The diffusivity constant σ 2). We note that (2.16) can be rewritten as

W2
(
L−1Xs[0,T ], σW[0,T ]

)≤ C

√
T∗L−2∗ T

−1/4∗
(√

ln(T∗ + 3) + T
−3/4∗

)+ CL−1∗ ,

where (W(t) : t ≥ 0) is a standard Brownian motion.

We point out that the diffusive scaling limit is deduced from (2.16).

Remark 2.4 (Diffusive scaling limit). For T∗ → ∞ and L∗ → ∞ in such way that T∗/L2∗ → ζ > 0 for some ζ > 0,

the right-hand side of (2.16) is O(T
−1/4∗

√
ln(T∗ + 3)) and therefore tends to zero. For instance, choosing the diffusive

scaling L =
√

T v2
0

λζ
and taking T → ∞ produces such a limit.

Now, we describe the meaning of the parameters (2.17).

Remark 2.5 (The meaning of the parameters). Note that T∗ is the mean of the number of jumps at time T and that
L∗ = 1

|v0|λ−1 L where |v0|λ−1 is the mean free path of the unscaled process Xs . In other words, 〈|X(t1(s); s)|〉s = |v0|λ−1,
where t1(s) = s1.

Remark 2.6 (A word about the constant C). The pure constant C of Theorem 2.1 can be estimated explicitly from the
proof. However, the estimates given in the proof are not optimal and the most likely lead to overestimation.
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Next corollary yields a Brownian motion approximation of the telegraph process.

Corollary 2.7 (Brownian motion approximation of the telegraph process). Suppose that all assumptions made in
Theorem 2.1 hold. Let L > 0, T > 0 and λ > 0. In addition, assume that the initial velocity v0 is chosen with the uniform
distribution on the set {−c, c} for some c > 0 and independent of the Poisson process (N(t; s) : t ≥ 0) given in (2.6). Then
there exists a positive constant C such that for any L > 0, T > 0 and λ > 0 it follows that

W2
(
L−1Xs[0,T ],B[0,T ]

)≤ C

√
T∗L−2∗ T

−1/4∗
(√

ln(T∗ + 3) + T
−3/4∗

)+ CL−1∗ .

We emphasize that the large flip rate limit is implied from (2.16).

Remark 2.8 (Large flip rate limit). If we choose L = 1 and T arbitrary but fixed, λ → ∞ and |v0| = c → ∞ in such a
way that c2/λ → 1 we reproduce the limit used in Theorem 1.1 of [5]. On the other hand, then we have

C

√
T∗L−2∗ T

−1/4∗
(√

ln(T∗ + 3) + T
−3/4∗

)+ CL−1∗ =O
(
λ−1/4

√
ln(λ)

)
.

Therefore, Corollary 2.7 with the help of Remark 2.3 implies that the process Xs[0,T ] converges weakly in C[0, T ] to the
distribution of a standard Brownian motion W[0,T ].

In addition, Theorem 2.1 allows us to derive estimates for the time average of the p-th moments as follows.

Corollary 2.9 (Time average of p-th moments). Suppose that all assumptions made in Theorem 2.1 hold. Let p > 0
and consider the observable f (x) = |x|p for any x ∈R. Then for any L > 0, T > 0, λ > 0 and v0 ∈ R \ {0} it follows that∣∣∣∣〈 1

T

∫ T

0
dsf

(
L−1X(s; s))〉

μ1

−
〈

1

T

∫ T

0
dsf

(
B(s)

)〉
μ2

∣∣∣∣≤ 2p max{C1,C2}W2
(
L−1Xs[0,T ],B[0,T ]

)
,

where C2
1 = C2

2 = 1 if p = 1, whereas if p �= 1 we have

C2
1 ≤ C̃T

p−1∗
pL

2(p−1)∗
+ C′T p−2∗

(p − 1)L
2(p−1)∗

, C2
2 = 2p−1�(

2p−1
2 )

p
√

π

T
p−1∗

L
2(p−1)∗

,

the constants T∗ and L∗ are the scaling parameters that appear in (2.17), C̃ and C′ are the constants that appear for
r = 2(p − 1) in Item 2, (B.1), of Lemma B.1 in Appendix B and � denotes the Gamma function.

In addition, if p ∈ N and g(x) = xp for x ∈R, then∣∣∣∣〈 1

T

∫ T

0
dsg

(
L−1X(s; s))〉

μ1

−
〈

1

T

∫ T

0
dsg

(
B(s)

)〉
μ2

∣∣∣∣≤ 2p max{C1,C2}W2
(
L−1Xs[0,T ],B[0,T ]

)
.

Proof. The proof follows directly from inequality (2.14), Lemma B.2 in Appendix B and Lemma B.3 in Appendix B. �

Additionally, Theorem 2.1 holds true in Wp for p ∈ [1,2].

Remark 2.10 (Convergence in Wp , p ∈ [1,2]). Analogously to (2.10), for any p ≥ 1 we define the p-th average distance
Wp distance by

Wp(μ1,μ2) : =
(

inf
γ

∫
γ (dX, dY)

(
c2(X,Y )

)p/2
)1/p

.

By Hölder’s inequality we obtain that Theorem 2.1, Corollary 2.7 and Corollary 2.9 are valid for the Wp for p ∈ [1,2].

3. Outline of the proof of Theorem 2.1

The idea of the proof is to compare a suitable rescaled free velocity flip process L−1X = (L−1X(t; s) : t ≥ 0) with
a simplified process (decoupled process) Y := (Y (t) : t ≥ 0) in which computations can be carried out. However, the
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process Y only possesses zero mean at even jump times. Hence, it is reasonable to compare the simplified process Y at
even jump times with a Brownian motion B = (B(t) : t ≥ 0) with a suitable diffusivity constant.

By the triangle inequality, the estimation of the left-hand side of (2.16) is divided in three main components as follows:

W2
(
L−1Xs[0,T ],B[0,T ]

)≤W2
(
L−1Xs[0,T ],Y[0,T ]

)+W2(Y[0,T ],Z[0,T ]) +W2(Z[0,T ],B[0,T ]).(3.1)

where the process Z = (Z(t) : t ≥ 0) is the Càdlàg process obtained from the process Y at even jumps by a constant
piecewise interpolation between even jump times. The explicit construction will be given below.

3.1. Definition of the process Y

Decoupling techniques are very useful in the theory and applications of Probability and Statistics to replace (or reduce)
the dependence of the system. For further discussion we recommend the monograph [13]. We note that (2.5) can be seen
as a perturbed random walk. However, we point out that n = N(t; s) and X(t; s) are highly dependent. To overcome this
difficulty, we define a suitable decoupled process (Y (t) : t ≥ 0) which is indeed, a perturbed random walk. Then using
the cost function (2.9) and the metric (2.10) we quantify the error term between L−1Xs[0,T ] and Y[0,T ].

Let u = (uj : j ∈ N) be sequence of independent and identically distributed (i.i.d. for short) random variables with
exponential distribution of parameter one defined in the probability space (�1,F1,P1). For each (deterministic) n ∈ N,
we define u(n) := (u

(n)
k : k ∈ N) as follows

(3.2) u
(n)
k := uk for k ∈ {1, . . . , n} and u

(n)
k := 2βn for k ∈ {n + 1, n + 2, . . . , }.

where βn = n (the value of βn will later be fixed by an optimisation argument, hence the somewhat peculiar notation
here). Then we also define

(3.3) δ
(n)
k := T

βn

u
(n)
k for k ∈N.

Note that then δ
(n)
k = 2T if k ≥ n + 1. We consider the corresponding “jump-times”

(3.4) t (n)
m :=

m∑
k=1

δ
(n)
k for all m ∈N and t

(n)
0 = 0,

and collect its increments as d(n) = (δ
(n)
1 , δ

(n)
2 , . . . , ). Since d(n) ∈ �∞, where �∞ is defined in (2.2), using the map (2.5)

we can define the stochastic process (Y (t;n,d(n)) : t ≥ 0) by the following rule: for any t ≥ 0

Y
(
t;n,d(n)

) := L−1X
(
t;d(n)

)= L−1v0

M∑
k=1

(−1)k−1δ
(n)
k + L−1v0(−1)M

(
t − tM

(
d(n)

))
, M = N

(
t;d(n)

)
,(3.5)

where (N(t;d(n)) : t ≥ 0) is given in (2.3). In addition, we take a random variable K with Poisson distribution with
parameter T∗ = λT defined in the probability space (�2,F2,P2) and independent of u. For short, for any λ > 0, (pn(λ) :
n ∈ N0) denotes the Poisson distribution Po(λ), that is,

pn(λ) := 1

n!λ
ne−λ for any n ∈ N0.

From now on, we will use a convenient generic indicator function notation 1{P } where P is some condition; more
precisely, given a condition P(x) which depends on the variable x, the corresponding indicator function is defined as
the map x �→ 1{P }(x) ∈ {0,1} where 1{P }(x) = 1, if P(x) is true, and 1{P }(x) = 0 otherwise. We will also often use the
alternative notation 1{P(x)} to denote 1{P }(x).

Let (�,F,Q) := (�1 ×�2,F1 ⊗F2,P1 ⊗P2) be the product probability space of (�1,F1,P1) and (�2,F2,P2) and
denote by EQ the expectation with respect to Q. On (�,F,Q) we define the stochastic process (Y (t;K,u) : t ≥ 0) as
follows: for each ω = (ω1,ω2) ∈ � we set

(3.6) Y(t;K,u)(ω) :=
∞∑

n=0

Y
(
t;n,d(n)

)
(ω1)1{K=n}(ω2) for any t ≥ 0,
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where for each (not random) n ∈ N, (Y (t;n,d(n)) : t ≥ 0) is defined in (3.5) and for n = 0 we define Y(t;0,d(0)) :=
L−1v0t for all t ≥ 0. Let F : C([0, T ],R) → R be a bounded measurable function. In particular, it only depends on the
values of the process up to time T such as c1(X) and c2(X) given in (2.11). By Fubini’s theorem we have

EQ

[
F
(
Y(·;K,u)

)]=
∞∑

n=0

EQ

[
F
(
Y(·;K,u)

)
1{K=n}

]
,

where

EQ

[
F
(
Y(·;K,u)

)
1{K=n}

]= EQ

[
F
(
Y(·;n,u)

)
1{K=n}

]
= pn(T∗)EQ

[
F
(
Y(·;n,u)

)]
= pn(T∗)

∫
Rn∗

dnue−∑n
k=1 ukF

(
L−1X

(·;Tβ−1
n u(n)

))
,

(3.7)

u(n) is given in (3.2), and the map X is defined in (2.4). As evident in the last equality, the function u �→ F(Y (·;n,u))

only depends on the components u1, . . . , un.
Bearing all this in mind, we compare L−1Xs[0,T ] with the decoupled process Y[0,T ].

Proposition 3.1 (Coin-flip coupling). There exists a (pure) constant κ1 > 0 such that for any L > 0, T > 0, λ > 0 and
v0 ∈R \ {0} it follows that

(3.8) W2
(
L−1Xs[0,T ],Y[0,T ]

)≤ κ1

√
T∗L−2∗ T

−1/4∗
√

ln(T∗ + 3) + κ1L
−1∗ ,

where the constants T∗ and L∗ are given in (2.17).

The complete proof is given in Section 4 and it is based on the coin-flip coupling (see [33] or Appendix A in [44]).

3.2. Definition of the process Z

In the sequel, we define the process Z. We note that (2.1) and (2.3) implies N(tn; s) = n for all n ∈N0. Then (2.5) yields
for all n ∈N

L−1X
(
t2n(s); s

)− L−1X
(
t2(n−1)(s); s

)= −L−1v0(s2n − s2n−1).

That is, at even jumps, the increments of the process L−1X are i.i.d. random variables which can be described explicitly.
Recall the notations (3.2), (3.3) and (3.4) used to define the process Y . In what follows, we define the stochastic process
Z as the constant Càdlàg interpolation between the values of Y at even jumps.

We recall that �·� denotes the so-called floor function, that is, for any x ∈ R, �x� gives the largest integer less than or
equal than x. For n ∈N \ {0,1} we define the Càdlàg version of the random walk (η∗

k (s) : k ∈N0) given by

Z(t;n, s) =
ñ∑

k=1

1{t≥t2k(s)}η∗
k (s) for any t ≥ 0,

where ñ = �n/2�,

(3.9) η∗
k (s) = −L−1v0(s2k − s2k−1), k ∈N, η∗

0(s) = 0,

and s = (s1, s2, . . . , ) = λ−1u = λ−1(u1, u2, . . .) is distributed according to the infinitely product measure of exponential
distributions with parameter λ > 0. For n ∈ {0,1} we set Z(t;n, s) = 0 for all t ≥ 0. Analogously to (3.6) we define on
(�,F,Q) the stochastic process (Z(t;K,u) : t ≥ 0) as follows: for each ω = (ω1,ω2) ∈ � it is given by

(3.10) Z(t;K, s)(ω) :=
∞∑

n=0

Z(t;n, s)(ω1)1{K=n}(ω2) for any t ≥ 0.

We remark that the process Y and the process Z are constructed in the same probability space (�,F,Q).
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Proposition 3.2 (Synchronous coupling). There exists a (pure) constant κ2 > 0 such that for any L > 0, T > 0, λ > 0
and v0 ∈ R \ {0} it follows that

(3.11) W2(Y[0,T ],Z[0,T ]) ≤ κ2

√
T∗L−2∗ T

−1/4∗
(
1 + T

−3/4∗
)
,

where the constants T∗ and L∗ are given in (2.17).

The complete proof can be found in Section 5 and it is based on the synchronous coupling of the processes Y and Z

which are constructed with the same sequence of random variables as an input.

Lemma 3.3 (Komlós–Major–Tusnády coupling). There exists a (pure) constant κ3 > 0 such that for any L > 0, T > 0,
λ > 0 and v0 ∈R \ {0} it follows that

W2(Z[0,T ],B[0,T ]) ≤ κ3

√
T∗L−2∗ T

−1/4∗
(
1 + T

−3/4∗
)
,

where the constants T∗ and L∗ are given in (2.17) and the diffusivity constant of the Brownian motion B := (B(t) : t ≥ 0)

is defined in (2.18).

The proof is given in Section 6 and it relies on the Komlós–Major–Tusnády coupling (see [31] and [32]).
We stress the fact that Theorem 2.1 is just a consequence of what we have already stated up to here.

Proof of Theorem 2.1. It follows directly from inequality (3.1) with the help of Proposition 3.1, Proposition 3.2 and
Lemma 3.3. �

4. Proof of Proposition 3.1: Coin-flip coupling

In this section we prove Proposition 3.1. We start with some preliminaries.

4.1. Expectation for continuous observables of the free velocity flip model

Since then N(t; s) < ∞ almost surely, for any (regular enough, e.g., positive and measurable) observable F(Xs[0,T ]) which
depends only on the path up to times T > 0, such as c1 and c2 defined in (2.11), we can decompose the events depending
on the realisation of N(T ; s). We recall the generic indicator function notation 1{P } from Section 3.1, and obtain

E
[
F
(
Xs[0,T ]

)]=
∞∑

n=0

E
[
F
(
Xs[0,T ]

)
1{N(T ;s)=n}

]
.

This partition helps, since for any n the path up to time T and thus also the value of F(Xs[0,T ]), only depends on sk , for
0 ≤ k ≤ n + 1 which is crucial in our argument. First, for n = 0, we can directly evaluate

E
[
F
(
Xs[0,T ]

)
1{N(T ;s)=0}

]= F(I)e−λT , where I (t) = v0t for all t ≥ 0.

Therefore, in the following computation we only need to consider values n ∈ N.
For such n, we have the following explicit integral representation

E
[
F
(
Xs[0,T ]

)
1{N(T ;s)=n}

]= λn+1
∫
Rn+1∗

dn+1s

n+1∏
k=1

e−λskF
(
Xs[0,T ]

)
1{tn(s)≤T }1{sn+1>T −tn(s)},

where (tn(s) : n ∈ N0) are the jump times defined in (2.1). The notation is somewhat formal, since the full path Xs

depends on the full sequence s. However, whenever both indicator functions are non-zero in the above integrand, we note
that Xs[0,T ] only depends on the values sk , k = 1,2, . . . , n. Explicitly, defining vk := sk/T , k = 1,2, . . . , n, and setting
somewhat arbitrarily vk = 2 for k > n, we find that then Xs[0,T ] = X(·;T v)[0,T ] since the conditions in the integrand
guarantee that the jump n + 1 occurs after T which is also ensured by the above choice T vn+1 = 2T . In this case,
for simplicity, we also drop the restriction to the time-interval [0, T ] from the notation, and simply write F(Xs[0,T ]) =
F(X(·;T v)) in the above integral.
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Performing the implied change of variables, setting r̃ = sn+1/T , and using Fubini’s theorem to reorder the integrals,
we obtain

E
[
F
(
Xs[0,T ]

)
1{N(T ;s)=n}

]= T n+1∗
∫
Rn∗

dnv

(∫
R∗

dr̃e−T∗(r̃+tn(v))F
(
X(·;T v)

)
1{tn(v)≤1}1{r̃>1−tn(v)}

)
,

where T∗ = λT , and we have used the obvious scaling property tn(T v) = T tn(v). The r̃-integral can then be evaluated
explicitly using

∫∞
1−tn(v)

dr̃e−T∗(r̃+tn(v)) = T −1∗ e−T∗ . The resulting integral representation can be further simplified by
relying on Dirac δ-functions whose precise construction as non-negative Radon measures is explained in Appendix C. In
particular, applying item iv) of Lemma C.2 justifies the result from the following formal computation:

E
[
F
(
Xs[0,T ]

)
1{N(T ;s)=n}

]= T n∗ e−T∗
∫
Rn∗

dnvF
(
X(·;T v)

)
1{tn(v)≤1}

= T n∗ e−T∗
∫
Rn∗

dnvF
(
X(·;T v)

)
1{tn(v)≤1}

∫
R∗

drδ
(
tn(v) − r

)
= T n∗ e−T∗

∫
R∗

dr1{r≤1}
(∫

Rn∗
dnvF

(
X(·;T v)

)
δ
(
tn(v) − r

))

= 1

n!T
n∗ e−T∗

∫ 1

0
drnrn−1(n − 1)!

∫
Rn∗

dnuδ
(
tn(u) − 1

)
F
(
X(·;T ru)

)
,

(4.1)

with a slight abuse of notation since the values of the sequence “Tru” for k > n are not rescaled by r , i.e., they are still
equal to 2T .

Since
∫
Rn∗ dnuδ(un(u) − 1) = 1

(n−1)! , the remaining integrals form a product of two probability measures for r and u,
i.e.,

(4.2) dr · nrn−11{r∈(0,1]}

and

(4.3) dnu · (n − 1)!δ(tn(u) − 1
)
.

By straightforward computations we have

〈r〉 = 1 − 1

n + 1
,

〈
r2〉− 〈r〉2 = n

n + 2
− n2

(n + 1)2
= n

(n + 1)2(n + 2)
≤ 1

(n + 1)2
,

where the expectations are computed with respect to the probability measure (4.2). Hence, r is distributed close to 1 with
standard deviation O(1/n) as n → ∞. Using the permutation invariance of (4.3), we also find the following statistics for
components of u,

〈ui〉 = 1

n
,

〈
u2

i

〉= 2

n(n + 1)
,

〈
u3

i

〉= 6

n(n + 1)(n + 2)
, 〈uiuj 〉 = 1

n(n + 1)
, i �= j,

where the expectations are computed with respect to the probability measure (4.3). For details see Lemma A.3 in Ap-
pendix A. In particular, the standard deviation of each component ui is also O(1/n).

We now rescale the jumps for the process (Y (t;n, s) : 0 ≤ t ≤ T ) so that a good coupling can be formed between it and
(L−1X(t;n, s) : 0 ≤ t ≤ T ). Assume that n ∈ N is deterministic, and for shorthand we set f (T v) := F(L−1X(·;T v)).
Then (3.7) implies

EQ

[
F
(
Y(·;n,u)

)]= βn
n

∫
Rn∗

dnve−βn

∑n
k=1 vkf (T v) = βn

n

∫
R∗

dre−βnr

∫
Rn∗

dnvδ

(
n∑

k=1

vk − r

)
f (T v)

= βn
n

∫
R∗

drrn−1e−βnr

∫
Rn∗

dnuδ

(
n∑

k=1

uk − 1

)
f (T ru)

= 1

(n − 1)!β
n
n

∫
R∗

drrn−1e−βnr (n − 1)!
∫
Rn∗

dnuδ

(
n∑

k=1

uk − 1

)
f (T ru).

(4.4)
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4.2. Coin flip type coupling

Let

(4.5) ν1(dr) = nrn−11{0<r≤1} dr and ν2(dr) = 1

(n − 1)!β
nrn−1e−βr1{r>0} dr

denote probability measures on R∗. We note that ν2 is the Gamma distribution of parameters n and β . Moreover, it has
mean n/β and variance n/β2. There is a choice of β which makes the densities agree “with a high probability”, and the
following computations yield that the original choice β = βn = n suffices. By (4.1) and (4.4) we only need to generate a
good coupling between ν1 and ν2. For this case, one good choice is using a “coin-flip type” coupling. Let

(4.6) g(r) := n!1{0<r≤1}β−neβr

and define a coupling γ0 by setting the action for any observable h : R2∗ →R as follows∫
R2∗

γ0(dr1, dr2)h(r1, r2) =
∫
R∗

ν2(dr)min
{
1, g(r)

}
h(r, r)

+
∫
R∗

ν2(dr1)

∫
R∗

ν2(dr2)
1

Zβ,n

(
1 − g(r2)

)
+
(
g(r1) − 1

)
+h(r1, r2),

where (x)+ := x1{x>0} and

(4.7) Zβ,n =
∫
R∗

ν2(dr)
(
1 − g(r)

)
+ =

∫
R∗

ν2(dr)
(
g(r) − 1

)
+ > 0.

This is indeed a coupling between ν1 and ν2, see for instance relation (5.11) of [35], where it has been applied the
techniques from Appendix A in [44]. We stress that ν1, ν2, g and γ0 depend on n, however, for ease of notation we drop
its dependence.

Finally, using this γ0 we define a coupling γ between L−1Xs[0,T ] and Y[0,T ] as follows

Eγ

[
F
(
L−1Xs[0,T ],Y[0,T ]

)]
= e−T∗F

(
L−1I,L−1I

)
+

∞∑
n=1

pn(T∗)
∫
R2∗

γ0(dr1, dr2)(n − 1)!
∫
Rn∗

dnuδ

(
n∑

k=1

uk − 1

)
F
(
L−1X(·;T r1u),L

−1X(·;T r2u)
)
,

(4.8)

where I = I (t) = v0t for all t ≥ 0. One can now check that this has the right marginals. Thus for the choice F = c2 given
in (2.9), we need to control

c2
(
L−1X(·;T r1u),L

−1X(·;T r2u)
)= 1

L2T

∫ T

0
dt
∣∣X(t;T r1u) − X(t;T r2u)

∣∣2.
For r2 = r1, the value of the preceding cost is clearly zero whatever n and u are. Therefore,

Eγ

[
c2
(
L−1Xs[0,T ],Y[0,T ]

)]
=

∞∑
n=1

pn(T∗)(n − 1)!
∫
Rn∗

dnuδ

(
n∑

k=1

uk − 1

)

×
∫
R∗

ν2(dr1)

∫
R∗

ν2(dr2)
1

Zβ,n

(
1 − g(r2)

)
+
(
g(r1) − 1

)
+c2

(
L−1X(·;T r1u),L

−1X(·;T r2u)
)
.

(4.9)

Then for t ∈ [0, T ] we rewrite X(t;T r1u) − X(t;T r2u) as follows

X(t;T r1u) − X(t;T r2u) = v0D1(t,u, r1, r2, T ) + v0D2(t,u, r1, r2, T )

+ v0D
′
1(t,u, r1, r2, T ) + v0D

′
2(t,u, r1, r2, T ),

(4.10)



946 G. Barrera and J. Lukkarinen

where, writing ni = ni(t) = N(t;T riu) ≤ n, we have

D1(t,u, r1, r2, T ) := T (r1 − r2)

n1∑
k=1

(−1)k−1uk,(4.11)

∣∣D2(t,u, r1, r2, T )
∣∣ := T r2

∣∣∣∣ ∑
min{n1,n2}<k≤max{n1,n2}

(−1)k−1uk

∣∣∣∣,(4.12)

D′
1(t,u, r1, r2, T ) := (−1)n1

(
t − tn1(T r1u)

)
and D′

2(t,u, r1, r2, T ) := (−1)n2
(
t − tn2(T r2u)

)
.(4.13)

For short, for each j ∈ {1,2} we write Dj , D′
j instead of Dj(t,u, r1, r2, T ), D′

j (t,u, r1, r2, T ), respectively. By Hölder’s
inequality we obtain the following upper bound

∣∣X(t;T r1u) − X(t;T r2u)
∣∣2 ≤ 4v2

0

(|D1|2 + |D2|2 + ∣∣D′
1

∣∣2 + ∣∣D′
2

∣∣2) for all t ∈ [0, T ].

In what follows, we find a positive constant κ1 that does not depend on v0, λ, L and T and such that

W2
2

(
L−1Xs[0,T ],Y[0,T ]

)≤ |v0|2Eγ

[
c2
(
L−1X,Y

)]≤ κ1|v0|2
(
λ−3/2L−2T 1/2 ln(λT + 3) + λ−2L−2),(4.14)

where γ is the coupling measure defined in (4.8). By (2.8) we have that T∗ = λT and L∗ = |v0|−1λL and hence inequality
(4.14) reads as follows

W2
2

(
L−1Xs[0,T ],Y[0,T ]

)≤ κ1T∗L−2∗ T
−1/2∗ ln(T∗ + 3) + κ1L

−2∗ .

4.3. Comparison between L−1Xs[0,T ] and Y[0,T ]

By (4.9) and (4.10) we have

Eγ

[
c2
(
L−1Xs[0,T ],Y[0,T ]

)]≤ 4v2
0

∞∑
n=1

pn(T∗)(n − 1)!
∫
Rn∗

dnuδ

(
n∑

k=1

uk − 1

)

×
∫
R∗

ν2(dr1)

∫
R∗

ν2(dr2)
1

Zβ,n

(
1 − g(r2)

)
+
(
g(r1) − 1

)
+
(
L2T

)−1

×
∫ T

0
dt
(
D2

1 + D2
2 + (

D′
1

)2 + (
D′

2

)2)
.

(4.15)

We start with the apparently worst term D2.

Estimates on D2. We point out that the term D2 given in (4.12) is complicated since n, n1, n2 and u are not independent,
and the components of u satisfy the constraint u1 + · · · + un = 1.

Lemma 4.1 (Remainder D2). There is a positive constant C2 such that for all T > 0, λ > 0 and L > 0 it follows that

R2 := v2
0

∞∑
n=1

pn(T∗)
(
L2T

)−1
∫
Rn∗

(n − 1)!dnuδ

(
n∑

k=1

uk − 1

)∫
R∗

ν2(dr1)

∫
R∗

ν2(dr2)

∫ T

0
dt

× |D2|2 1

Zβ,n

(
1 − g(r2)

)
+
(
g(r1) − 1

)
+ ≤ C2T∗L−2∗ T

−1/2∗ ln(T∗ + 3),

(4.16)

where the probability measure ν2 is given in (4.4), the function g is given in (4.6) and the normalisation constant Zβ,n is
given in (4.7).
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Proof. By Fubini’s theorem the left hand-side of (4.16) can be written as

R2 = v2
0

∞∑
n=1

pn(T∗)
L−2T

Zβ,n

∫ T

0
dt

∫
R∗

ν2(dr1)
(
g(r1) − 1

)
+
∫
R∗

ν2(dr2)r
2
2

(
1 − g(r2)

)
+

×
∫
Rn∗

(n − 1)!dnuδ

(
n∑

k=1

uk − 1

)∣∣∣∣ ∑
min{n1,n2}<k≤max{n1,n2}

(−1)k−1uk

∣∣∣∣2.
(4.17)

For each i ∈ {1,2} recall that ni = ni(t) = N(t;T riu) ≤ n and note that if n1 = n2, then D2 = 0. By definition of n1 and
n2 we have

tni
(Tri u) ≤ t < tni+1(Tri u) for each i ∈ {1,2},

which reads as

Tri

ni∑
k=1

uk ≤ t < Tri

ni+1∑
k=1

uk for each i ∈ {1,2}.

Since the integration with respect to the measures ν2(dr1) and ν2(dr2) are on the set R∗, we assume that r1 > 0 and r2 > 0
and then we have

(4.18)
ni∑

k=1

uk ≤ t

Tri
<

ni+1∑
k=1

uk for each i ∈ {1,2}.

Without loss of generality we may assume that n1 < n2. We rewrite the preceding inequalities as follows

(4.19)
n1+1∑
k=1

uk +
n2∑

k=n1+2

uk ≤ t

Tr2
<

n1+1∑
k=1

uk +
n2∑

k=n1+2

uk + un2+1.

The idea is to do a change of variables for suitable indexes as follows. For the indexes {1,2, . . . , n1, n1 + 1} ∪ {n2 +
1, n2 + 2, . . .} we do not do a change of variables. Also, in the case that n2 −n1 is an even number, we do not do a change
of variable for the index k = n2. To be more precise, let I := {n1 + 2, n1 + 3, . . . , n2} be a set of indexes and define
K(n1, n2) = �n2−n1−1

2 �. For K ≥ 1 we set

(4.20) ûk := u2k+n1 + u2k+n1+1 and ωk := u2k+n1 − u2k+n1+1

ûk

for each k ∈ {1, . . . ,K}. Observe that

(4.21)
∑
k∈I

uk =
K∑

k=1

ûk + un21{n2−n1−1 is odd}.

In fact, the preceding equality holds even if K = 0 recalling the convention about empty sums. We point out that right-
hand side of (4.21) does not depend on (ωk : 1 ≤ k ≤ K).

In the sequel, for j1 < j2 we show that〈(
K∑

k=1

ûkωk

)2

1{n1=j1,n2=j2}

〉
ν(dnu)

= 1

3

∫
Rn∗

(n − 1)!dnuδ

(
n∑

k=1

uk − 1

)
K∑

k=1

û2
k1{n1=j1,n2=j2},(4.22)

where ν(dnu) = dnu · (n − 1)!δ(tn(u) − 1). We stress that ni = N(t;T riu). It is clear that the restriction n1 = j1 does not
depend on ω1, . . . ,ωK since we do not do any change of variables for k ≤ j1 + 1. However, a priori the condition n2 = j2

could depend on ω1, . . . ,ωK . By (4.19) and (4.21) we find that it is not the case. Using the symmetry, in the case n2 < n1

we set I := {n2 + 2, n2 + 3, . . . , n1} be a set of indexes and define K(n1, n2) = �n1−n2−1
2 �.

On both sides of (4.22) we can replace the random variable K(n1, n2) by the fixed value K(j1, j2). For convenience,
we denote K(j1, j2) by K in the following. We note that (4.22) is trivially true for K = 0. Hence, we only need to prove
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for K ≥ 1. We start by observing〈(
K∑

k=1

ûkωk

)2

1{n1=j1,n2=j2}

〉
ν(dnu)

=
∫
Rn∗

(n − 1)!dnuδ

(
K∑

k=1

ûk +
∑
k∈J

uk − 1

)(
K∑

k=1

ûkωk

)2

1{n1=j1,n2=j2},

where

J :=
{({1,2, . . . , n} \ I)∪ {n2} if n2 − n1 is an even number,

{1,2, . . . , n} \ I if n2 − n1 is an odd number.

The following computations are based on properties of the δ-constraint measures whose construction and main prop-
erties are discussed in detail in Appendix C. We apply Lemma C.1, in particular, we wish to approximate the measure
by ordinary Lebesgue integrals using the mollifier functions �ε(·;1) defined there. To do this rigorously, it is neces-
sary that the rest of the integrand is continuous: for this reason, we first need to approximate the indicator function
1{n1(u)=j1,n2(u)=j2} by a sequence of continuous functions (for fixed t , r1, and r2). This can be done even monotonously
using non-negative functions and without introducing a dependence on the variables ω1, . . . ,ωK , and thus the limits of
the sequence can be taken in the integrands, in the beginning and at the end of the computation, using monotone conver-
gence theorem. To simplify the notation, we make the computations using the notation 1{n1(u)=j1,n2(u)=j2} for one of its
continuous approximants.

Replacing the δ-function by the mollifier �ε and after using the above continuous approximant for the integrand, we
may perform the change of variables (4.20) using standard rules of Lebesgue measures. This yields

∫
Rn∗

dnu�ε

(
K∑

k=1

ûk +
∑
k∈J

uk − 1

)(
K∑

k=1

ûkωk

)2

1{n1=j1,n2=j2}

=
∫
Rn

dû1 dω1 · · · dûK dωK

∏
k∈J

duk�ε

(
K∑

k=1

ûk +
∑
k∈J

uk − 1

)

×
K∏

k=1

(
1{ûk>0}1{|ωk |<1}

ûk

2

) ∏
k∈J

1{uk>0}

(
K∑

k=1

ûkωk

)2

1{n1=j1,n2=j2}

= 1

3

∫
RK∗ ×R

|J |∗
dû1 · · · dûK

∏
k∈J

duk�ε

(
K∑

k=1

ûk +
∑
k∈J

uk − 1

)

×
K∏

k=1

(1{ûk>0}ûk)
∏
k∈J

1{uk>0}
K∑

k=1

û2
k1{n1=j1,n2=j2},

where the last equality holds by Fubini’s theorem, the fact that the variables û1, . . . , ûK and ω1, . . . ,ωK are independent,
and that the argument in the function �ε does not depend on ω1, . . . ,ωK (see (4.21)). Also, |J | denotes the cardinality
of J . Now, we reintroduce the variables ω1, . . . ,ωK yielding that final integral is equal to

1

3

∫
Rn

dû1 dω1 · · · dûK dωK

∏
k∈J

duk�ε

(
K∑

k=1

ûk +
∑
k∈J

uk − 1

)

×
K∏

k=1

(1{ûk>0}ûk)

K∏
k=1

(
1{|ωk |<1}

1

2

) ∏
k∈J

1{uk>0}
K∑

k=1

û2
k1{n1=j1,n2=j2}.

Inverting the change of variables and taking ε → 0 followed by the limit for the continuous approximants, we deduce
(4.22).
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For notational convenience we set K = 0 when n1 = n2. By the Law of total probability we have〈(
K∑

k=1

ûkωk

)2〉
ν(dnu)

=
n∑

j1=1,j2=1

〈(
K∑

k=1

ûkωk

)2

1{n1=j1,n2=j2}

〉
ν(dnu)

= 1

3

n∑
j1=1,j2=1

∫
Rn∗

ν
(
dnu

)( K∑
k=1

û2
k

)
1{n1=j1,n2=j2}

≤ 1

3

n∑
j1=1,j2=1

∫
Rn∗

ν
(
dnu

)
max

1≤k≤K
ûk

(
K∑

k=1

ûk

)
1{n1=j1,n2=j2}

≤ 2

3

n∑
j1=1,j2=1

∫
Rn∗

ν
(
dnu

)
max

1≤k≤n
uk

(
K∑

k=1

ûk

)
1{n1=j1,n2=j2}.

(4.23)

Recall that r1 > 0 and r2 > 0. For n1 < n2, (4.18) reads

tn1(u) ≤ t

T r1
< tn1+1(u) and tn2(u) ≤ t

T r2
< tn2+1(u).

which with the help of (4.21) implies

K∑
k=1

ûk + un21{n2−n1−1 is odd} =
∑
k∈I

uk = tn2(u) − tn1+1(u) ≤ t

T r2
− t

T r1
.

Analogously, for n2 < n1 we obtain ∑
k∈I

uk = tn1(u) − tn2+1(u) ≤ t

T r1
− t

T r2
.

Combining the preceding inequality with (4.23) and Fubini’s theorem yields〈(
K∑

k=1

ûkωk

)2〉
ν(dnu)

≤ 2

3

n∑
j1=1,j2=1

∫
Rn∗

ν
(
dnu

)
max

1≤k≤n
uk

∣∣∣∣ t

T r2
− t

T r1

∣∣∣∣1{n1=j1,n2=j2}

= 2t

3T

∣∣∣∣ 1

r2
− 1

r1

∣∣∣∣ n∑
j1=1,j2=1

∫
Rn∗

ν
(

dnu
)(

max
1≤k≤n

uk

)
1{n1=j1,n2=j2}

= 2t

3T

∣∣∣∣ 1

r2
− 1

r1

∣∣∣∣〈 max
1≤k≤n

uk

〉
ν(dnu)

.

(4.24)

By Lemma A.5 there exists a positive constant C such that〈
max

1≤k≤n
uk

〉
ν(dnu)

≤ C ln(n + 1)

n
for all n ∈N.

Combining the preceding inequalities in (4.24) we obtain

(4.25)

〈(
K∑

k=1

ûkωk

)2〉
ν(dnu)

≤ 2Ct

3T

∣∣∣∣ 1

r2
− 1

r1

∣∣∣∣ ln(n + 1)

n
.

Inserting (4.25) in (4.17) we have

R2 ≤ Cv2
0L−2T 2

3

∞∑
n=1

pn(T∗)
ln(n + 1)

n

1

Zβ,n

∫
R∗

ν2(dr1)
(
g(r1) − 1

)
+
∫
R∗

ν2(dr2)r
2
2

(
1 − g(r2)

)
+

∣∣∣∣ 1

r2
− 1

r1

∣∣∣∣.(4.26)
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Note that

(4.27)
∫
R∗

ν2(dr2)r
2
2

(
1 − g(r2)

)
+ ≤ 〈

r2〉
ν2

= 1

n
+ 1 ≤ 2.

We need to estimate

1

Zβ,n

∫
R∗

ν2(dr1)

∫
R∗

ν2(dr2)
(
1 − g(r2)

)
+
(
g(r1) − 1

)
+r2

∣∣∣∣1 − r2

r1

∣∣∣∣.
Here, it is important that β = n. Since r �→ g(r) is strictly monotone increasing from g(0) < 1 to g(1) > 1, there is
a unique r∗ ∈ (0,1) such that g(r∗) = 1, and then g(r) < 1 if and only if r < r∗. Since g(r) = 0 for r > 1, the above
integrand can be non-zero only if 0 < r2 < r∗ and r∗ < r1 ≤ 1. In particular, then r2 < r1, and we have

0 < 1 − r2

r1
≤ 1 − r2.

Since Zβ,n = ∫
R∗ ν2(dr)(g(r) − 1)+ > 0 and β = n, we have 〈r〉ν2 = 1 and 〈(1 − r)2〉ν2 = 1

n
. Then

1

Zβ,n

∫
R∗

ν2(dr1)

∫
R∗

ν2(dr2)
(
1 − g(r2)

)
+
(
g(r1) − 1

)
+r2

∣∣∣∣1 − r2

r1

∣∣∣∣
≤
∫
R∗

ν2(dr2)
(
1 − g(r2)

)
+r2|1 − r2| ≤

〈
r2〉1/2

ν2

〈
(1 − r)2〉1/2

ν2
≤

√
2√
n
.

(4.28)

Combining (4.27) and (4.28) in (4.26) we deduce

R2 ≤
√

2Cv2
0L−2T 2

3

∞∑
n=1

pn(T∗)
ln(n + 1)

n3/2
.

By Lemma A.1 in Appendix A and the fact that T∗ = λT and L∗ = |v0|−1λL yields the existence of a constant C̃ such
that

R2 ≤
√

2Cv2
0L−2T 2

3

C̃ ln(λT + 3)

(λT )3/2
= 3−1C2L

−2∗ T
1/2∗ ln(T∗ + 3),

where C2 = √
2CC̃. This finishes the proof of Lemma 4.1. �

Estimates on D′
1 and D′

2. In this subsection we estimate the contribution of the incomplete jumps given in (4.13).

Lemma 4.2 (Incomplete jumps). There is a positive constant C1,2 such that for all T > 0, λ > 0 and L > 0 it follows
that

R1,2 := v2
0

∞∑
n=1

pn(T∗)
(
L2T

)−1
∫
Rn∗

(n − 1)!dnuδ

(
n∑

k=1

uk − 1

)∫
R∗

ν2(dr1)

∫
R∗

ν2(dr2)

∫ T

0
dt

× (∣∣D′
1

∣∣2 + ∣∣D′
2

∣∣2) 1

Zβ,n

(
1 − g(r2)

)
+
(
g(r1) − 1

)
+ ≤ C1,2T∗L−2∗ T

−1/2∗ ,

(4.29)

where the probability measure ν2 is given in (4.4), the function g is given in (4.6) and the normalisation constant Zβ,n is
given in (4.7).

Proof. We start by noticing that (4.8) and (4.5) yield 0 < r1 ≤ 1 and r2 > 0. If n1, n2 < n, the remaining “incomplete
jumps” can be estimated by ∣∣D′

1

∣∣≤ T r1un1+1,
∣∣D′

2

∣∣≤ T r2un2+1.

By (2.6) and the fact that we are integrating over the measure δ(
∑n

k=1 uk − 1), we observe that ni(t) = n occurs if
and only if t ≥ tn(T riu) = T ri

∑n
k=1 uk = T ri . Then 0 ≤ t − tn(T riu) = t − T ri ≤ T (1 − ri). Therefore, in this case
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|D′
i | ≤ T (1 − ri) which yields 0 < r2 ≤ 1. Hence, for n1(t) = n we have

1

L2T

∫ T

T r1

dt
∣∣D′

1

∣∣2 ≤ T 2

L2
(1 − r1)

3.

Similarly, for n2(t) = n we obtain

1{r2≤1}
1

L2T

∫ T

T r2

dt
∣∣D′

2

∣∣2 ≤ 1{r2≤1}
T 2

L2
(1 − r2)

3.

For all other times, we estimate by splitting the integral at the points 0 = t0(T r1u) < t1(T r1u) < · · · < tn(T r1u) = Tr1,

1

L2T

∫ T r1

0
dt
∣∣D′

1

∣∣2 = 1

L2T

n−1∑
k=0

∫ tk+1(T r1u)

tk(T r1u)

dt
∣∣D′

1

∣∣2 ≤ 1

L2T

n−1∑
k=0

T 3r3
1u3

k+1 ≤ T 2

L2

n∑
k=1

u3
k.

Analogously, for r2 ≤ 1 we have

1

L2T

∫ T r2

0
dt
∣∣D′

2

∣∣2 ≤ 1

L2T

n−1∑
k=0

T 3r3
2 u3

k+1 ≤ T 2

L2
r3

2

n∑
k=1

u3
k.

Finally, if r2 > 1 and denoting n′ := N(T ;T r2u) < n, we estimate

1

L2T

∫ T

0
dt
∣∣D′

2

∣∣2 ≤ 1

L2T

(
n′−1∑
k=0

∫ tk+1(Tr2 u)

tk(Tr2 u)

dtT 2r3
2u2

k+1 +
∫ tn′+1(Tr2 u)

tn′ (Tr2 u)

dtT 2r2
2 u2

n′+1

)
≤ T 2

L2
r3

2

n∑
k=1

u3
k.

Collecting all pieces together we obtain

1

L2T

∫ T

0
dt
(∣∣D′

1

∣∣2 + ∣∣D′
2

∣∣2)≤ T 2

L2

n∑
k=1

u3
k

(
1 + r3

2

)+ T 2

L2

(
(1 − r1)

3 + (1 − r2)
3+
)
.

This needs to be integrated over the measure for dnu, ν2(dr1), ν2(dr2) in (4.29). Since each term is non-negative and
depends only on either r1 or r2, we use their known simple marginal distributions. By Lemma A.3 in Appendix A we
have 〈

u3
k

〉= 6

n(n + 1)(n + 2)
for all k ∈ {1, . . . , n}.

Moreover, since ν2 has Gamma distribution with parameters n and β , straightforward computations yields〈
(1 − r1)

3〉
ν1

= 6

(n + 1)(n + 2)(n + 3)
and

〈
r3

2

〉
ν2

= n(n + 1)(n + 2)

β3
.

By the Cauchy–Schwarz inequality we have 〈(1 − r2)
3+〉2

ν2
≤ 〈(1 − r2)

6+〉ν2 ≤ 〈(1 − r2)
6〉ν2 . Since ν2 is the Gamma

distribution with parameters n and β , we point out that 〈(1 − r2)
6〉ν2 can be evaluated explicitly, and is O(n−3) for the

choice β = n which localises the mean 〈r〉ν2 = 1, see Item 5 of Lemma D.2 in Appendix D. That is, there exists a constant
C > 0 such that 〈

(1 − r2)
3+
〉
ν2

=
∫ 1

0
dr

1

(n − 1)! (1 − r)3nnrn−1e−nr ≤ C

n3/2
.

Hence,

(
L2T

)−1
∫
Rn∗

(n − 1)!dnuδ

(
n∑

k=1

uk − 1

)∫
R∗

ν2(dr1)

∫
R∗

ν2(dr2)

∫ T

0
dt

× (∣∣D′
1

∣∣2 + ∣∣D′
2

∣∣2) 1

Zβ,n

(
1 − g(r2)

)
+
(
g(r1) − 1

)
+

≤ T 2

L2

6

(n + 1)(n + 2)

(
1 + n−3(n + 2)(n + 1)n

)+ T 2

L2

(
6

(n + 1)(n + 2)(n + 3)
+ C

n3/2

)
.



952 G. Barrera and J. Lukkarinen

We stress that we have already set β = n. Finally, we take the final missing expectation over the Poisson distribution of
n with parameter T∗ and with the help of Lemma A.1 in Appendix A we obtain the existence of a positive constant C1,2

such that

R1,2 ≤ C1,2T∗L−2∗ T
−1/2∗ .

This finishes the proof of Lemma 4.2. �

Estimates on D1. In this subsection we estimate the contribution of the term D1 given in (4.11).

Lemma 4.3 (Complete jumps). There is a positive constant C1 such that for all T > 0, λ > 0 and L > 0 it follows that

R1 := v2
0

∞∑
n=1

pn(T∗)
(
L2T

)−1
∫
Rn∗

(n − 1)!dnuδ

(
n∑

k=1

uk − 1

)∫
R∗

ν2(dr1)

∫
R∗

ν2(dr2)

∫ T

0
dt

× |D1|2 1

Zβ,n

(
1 − g(r2)

)
+
(
g(r1) − 1

)
+ ≤ C1L

−2∗ ,

where the probability measure ν2 is given in (4.4), the function g is given in (4.6) and the normalisation constant Zβ,n is
given in (4.7).

Proof. By (4.11) we have

D2
1 = (r1 − r2)

2T 2
n∑

k,k′=1

1{k,k′≤N(t;T r1u)}(−1)k+k′
ukuk′ .

Note that

1

T

∫ T

0
dt1{k,k′≤N(t;T r1u)} =

n∑
m=1

1{k,k′≤m}
1

T

∫ T

0
dt1{N(t;T r1u)=m}

=
n−1∑
m=1

1{k,k′≤m}r1um+1 + 1 − r1 = 1 − r1 +
n∑

m=2

1{k,k′≤m−1}r1um.

Therefore,

1

T

∫ T

0
dtD2

1 = (r1 − r2)
2T 2r1

n∑
m=2

um

m−1∑
k,k′=1

(−1)k+k′
ukuk′ + (r1 − r2)

2T 2(1 − r1)

n∑
k,k′=1

(−1)k+k′
ukuk′ .

Taking an expectation over (n − 1)!dnuδ(
∑n

k=1 uk − 1) and using Lemma A.3 in Appendix A we obtain

J1 :=
∫
Rn∗

(n − 1)!dnuδ

(
n∑

k=1

uk − 1

)
1

L2T

∫ T

0
dtD2

1

= (r1 − r2)
2T 2L−2r1

n∑
m=2

m−1∑
k,k′=1

(−1)k+k′ 1{k′=k} + 1

n(n + 1)(n + 2)

+ (r1 − r2)
2T 2L−2(1 − r1)

n∑
k,k′=1

(−1)k+k′ 1{k′=k} + 1

n(n + 1)
.

Note that for any m we have
∑m−1

k=1 (−1)k = ±1. Thus,

J1 ≤ (r1 − r2)
2T 2L−2r1

2

n + 2
+ (r1 − r2)

2T 2L−2(1 − r1)
2

n + 1
≤ 2

n + 1
(r1 − r2)

2T 2L−2.
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Since

(r1 − r2)
2 ≤ 2

(
(1 − r2)

2 + (1 − r1)
2),〈

(1 − r1)
2〉

ν1
= 2

(n + 1)(n + 2)
and

〈
(1 − r2)

2〉
ν2

= 1

n
,

we obtain the existence of a positive constant C such that∫
R∗

ν2(dr1)

∫
R∗

ν2(dr2)
1

Zβ,n

(
1 − g(r2)

)
+
(
g(r1) − 1

)
+J1 ≤ C

T 2L−2

n2
.

Finally, we take the final missing expectation over the Poisson distribution of n with parameter T∗ and with the help of
Lemma A.1 in Appendix A we obtain the existence of a positive constant C1 such that

R1 ≤ C1L
−2∗ .

This finishes the proof of Lemma 4.3. �

In the sequel, we stress the fact that Proposition 3.1 is just a consequence of what we have already proved up to here.

Proof of Proposition 3.1. Combining Lemma 4.1, Lemma 4.2 and Lemma 4.3 in (4.15) implies (3.8). This finishes the
proof of Proposition 3.1. �

5. Proof of Proposition 3.2: Synchronous coupling

In this section we prove of Proposition 3.2. Recall that u = (uj : j ∈ N) is a sequence of i.i.d. random variables with
exponential distribution of parameter one defined in the probability space (�1,F1,P1). For each (deterministic) n ∈ N,
(3.5) defines

Y
(
t;n,d(n)

)= L−1v0

M∑
k=1

(−1)k−1δ
(n)
k + L−1v0(−1)M

(
t − tM

(
d(n)

))
, with M := N

(
t;d(n)

)
for any t ≥ 0, where u(n) := (u

(n)
k : k ∈ N), δ(n) := (δ

(n)
k : k ∈ N) and tM(d(n)) are defined in (3.2), (3.3) and (3.4),

respectively. Moreover, for n ∈ N \ {1} we define the Càdlàg version of the random walk (η∗
k (s) : k ∈ N0) given in (3.9).

That is,

Z(t;n, s) =
ñ∑

k=1

1{t≥t2k(s)}η∗
k (s) for any t ≥ 0,

where ñ = �n/2� and s= (s1, s2, . . . , ) = (1/λ)(u1, u2, . . . , ) is distributed according to the infinitely product measure of
exponential distributions with parameter λ > 0.

We define the auxiliary process

Z̃(t;n, s) = T∗
n

ñ∑
k=1

1{t≥t2k(w
(n)(s))}η∗

k (s) for any t ≥ 0,

where the sequence (w
(n)
j (s) : j ∈ N) is defined by setting

w
(n)
j (s) = T

n
u

(n)
j = T∗

n
s
(n)
j for any j ∈ N.

For notational convenience we write (w
(n)
j : j ∈ N) instead of (w

(n)
j (s) : j ∈ N). For n ∈ {0,1} we set Z(t;n, s) =

Z̃(t;n, s) = 0 for all t ≥ 0. Analogously to (3.6) and (3.10) we define Z̃ := (Z̃(t;K, s) : t ≥ 0), where K is a random
variable with Poisson distribution with parameter T∗ = λT defined in the probability space (�2,F2,P2) and indepen-
dent of u. Then we let (�,F,Q) := (�1 × �2,F1 ⊗F2,P1 ⊗ P2) be the product probability space of (�1,F1,P1) and
(�2,F2,P2).
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We compare the processes Y , Z and Z̃ as follows:

(5.1) W2(Y[0,T ],Z[0,T ]) ≤ W2(Y[0,T ], Z̃[0,T ]) +W2(Z̃[0,T ],Z[0,T ]).

The following lemma provides an estimate for the second term of the right-hand side of (5.1).

Lemma 5.1. For any L > 0, T > 0, λ > 0 and v0 ∈R \ {0} it follows that

W2
2 (Z̃[0,T ],Z[0,T ]) ≤ 28T∗L−2∗ T

−1/2∗
(
1 + T

−1/2∗
)
.

In particular, for T∗ ≥ 1 it follows that

W2
2 (Z̃[0,T ],Z[0,T ]) ≤ 56T∗L−2∗ T

−1/2∗ .

Proof. By definition (2.10), the tower property (Item (iv)) of Theorem 8.14 in [25]) and Fubini’s theorem we have

W2
2 (Z[0,T ], Z̃[0,T ]) ≤ 1

T

∞∑
n=2

pn(T∗)
∫ T

0
EQ

[∣∣Z(t;n, s) − Z̃
(
t;n,w(n)

)∣∣2|K = n
]

dt

= 1

T

∞∑
n=2

pn(T∗)
∫ T

0
EP1

[∣∣Z(t;n, s) − Z̃
(
t;n,w(n)

)∣∣2]dt

= 1

T

∞∑
n=2

pn(T∗)EP1

[∫ T

0

∣∣Z(t;n, s) − Z̃
(
t;n,w(n)

)∣∣2 dt

]
.

(5.2)

In the sequel, we estimate

1

T

∫ T

0
dt
∣∣Z(t;n, s) − Z̃

(
t;n,w(n)

)∣∣2.
Since |x + y|2 ≤ 2x2 + 2y2 for any x, y ∈ R, we have

∣∣Z(t;n, s) − Z̃
(
t;n,w(n)

)∣∣2 ≤ 2

∣∣∣∣∣
ñ∑

k=1

η∗
k (s)(1{t≥t2k(s)} − 1{t≥t2k(w

(n))})
∣∣∣∣∣
2

+ 2

(
1 − T∗

n

)2
∣∣∣∣∣

ñ∑
k=1

η∗
k (s)1{t≥t2k(w

(n))}

∣∣∣∣∣
2

.

(5.3)

We start with the estimate of second term of the right-hand side of the preceding inequality. For any � ∈ {1, . . . , ñ} set

(5.4) ŝ� := s2� + s2�−1 and ω� := s2� − s2�−1

ŝ�

and observe that

(5.5) η∗
� (s) = −v0

L
ŝ�ω� for any � ∈ {1, . . . , ñ}.

We stress that for any k ∈ N, 2k is an even number and, therefore, it is possible to apply pairwise Lemma D.1 in Ap-
pendix D. We find that t2k(w

(n)) is independent of all ω�, � ∈ {1, . . . , ñ}. Since

|
ñ∑

k=1

η∗
k (s)1{t≥t2k(w

(n))}|2 =
ñ∑

k=1

ñ∑
k′=1

η∗
k (s)η

∗
k′(s)1{t≥t2k(w

(n))}1{t≥t2k′ (w(n))},

Item (i) and Item (iii) of Lemma D.1 in Appendix D imply

(
1 − T∗

n

)2
〈∣∣∣∣∣

ñ∑
k=1

η∗
k (s)1{t≥t2k(w

(n))}

∣∣∣∣∣
2〉

ω

=
(

1 − T∗
n

)2 ñ∑
k=1

ñ∑
k′=1

〈
η∗

k (s)η
∗
k′(s)

〉
ω
1{t≥t2k(w

(n))}1{t≥t2k′ (w(n))}
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=
(

1 − T∗
n

)2 ñ∑
k=1

〈|η∗
k (s)|2

〉
ω
1{t≥t2k(w

(n))}

≤
(

1 − T∗
n

)2〈|η∗
1(s)|2〉

ω
ñ,

where ω denotes the product measure given by the law of the random vector (ω1, . . . ,ωñ). Combining the above inequality
with Fubini’s theorem, (5.5), Lemma D.1 in Appendix D, and Item 4 of Lemma D.2 in Appendix D we obtain

(
1 − T∗

n

)2 1

T

∫ T

0
dt

〈∣∣∣∣∣
ñ∑

k=1

η∗
k (s)1{t≥t2k(w

(n))}

∣∣∣∣∣
2〉

ŝ,ω

≤
(

1 − T∗
n

)2〈∣∣η∗
1(s)

∣∣2〉
ŝ,ω

ñ

≤
(

1 − T∗
n

)2 v2
0

L2λ2
n = T∗

L2∗

(
1 − T∗

n

)2
n

T∗
,

where ŝ denote the product measure given by the law of the random vector (ŝ1, . . . , ŝ̃n). We observe that(
1 − T∗

n

)2
n

T∗
=
(

n

T∗
− 1

)
+
(

T∗
n

− 1

)
≤ 1

T∗
|n − T∗| + 1

n
|T∗ − n|.

Then by the Cauchy Schwarz inequality, Lemma A.1 in Appendix A and Lemma D.3 in Appendix D we deduce〈(
1 − T∗

n

)2
n

T∗
1{n≥2}

〉
Po(T∗)

≤ 1

T∗
〈|n − T∗|1{n≥2}

〉
Po(T∗) +

〈
|n − T∗|1

n
1{n≥2}

〉
Po(T∗)

≤ 1

T∗
〈
(n − T∗)2〉1/2

Po(T∗) + 〈
(n − T∗)2〉1/2

Po(T∗)
〈
n−21{n≥1}

〉1/2
Po(T∗)

≤ T
1/2∗
T∗

+ T
1/2∗

√
16

T 2∗
= 5T

−1/2∗ .

Collecting all pieces together we obtain

(5.6)

〈(
1 − T∗

n

)2 1

T

∫ T

0
dt

〈
|

ñ∑
k=1

η∗
k (s)1{t≥t2k(w

(n))}|2
〉

ŝ,ω

1{n≥2}

〉
Po(T∗)

≤ 5
T∗
L2∗

T
−1/2∗ .

We continue with the estimate of

1

T

∫ T

0
dt

∣∣∣∣∣
ñ∑

k=1

η∗
k (s)(1{t≥t2k(s)} − 1{t≥t2k(w

n)})
∣∣∣∣∣
2

.

By (5.4), (5.5), Item (i) and Item (iii) of Lemma D.1 in Appendix D we have〈
1

T

∫ T

0
dt

∣∣∣∣∣
ñ∑

k=1

η∗
k (s)(1{t≥t2k(s)} − 1{t≥t2k(w

(n))})
∣∣∣∣∣
2〉

ω

=
(

v0

L

)2 ñ∑
�=1

ñ∑
�′=1

ŝ�ŝ�′ 〈ω�ω�′ 〉ω 1

T

∫ T

0
dt (1{t>t2�(s)} − 1{t>t2�(w

(n))})(1{t>t2�′ (s)} − 1{t>t2�′ (w(n))})

= 1

3

(
v0

L

)2 ñ∑
�=1

ŝ2
�

1

T

∫ T

0
dt (1{t>t2�(s)} − 1{t>t2�(w

(n))})2

(5.7)

= 1

3

(
v0

L

)2 ñ∑
�=1

ŝ2
�

1

T

∫ T

0
dt1{min{t2�(s),t2�(w

(n))}<t<max{t2�(s),t2�(w
(n))}}
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≤ 1

3

(
v0

L

)2 ñ∑
�=1

ŝ2
�

1

T

(
max

{
t2�(s), t2�

(
w(n)

)}− min
{
t2�(s), t2�

(
w(n)

)})

≤
(

v0

L

)2 ñ∑
�=1

ŝ2
�

1

T

∣∣t2�(s) − t2�

(
w(n)

)∣∣.
We note that ŝ1 has Gamma distribution with parameters 2 and λ and then Lemma D.2 in Appendix D yields 〈ŝ4

1〉ŝ = 5!/λ4.
Then we integrate with respect to ŝ and using the Cauchy Schwarz inequality we obtain〈(

v0

L

)2 ñ∑
�=1

ŝ2
�

1

T

∣∣t2�(s) − t2�

(
w(n)

)∣∣〉
ŝ

≤ v2
0

L2T

ñ∑
�=1

〈
ŝ4
�

〉1/2
ŝ

〈∣∣t2�(s) − t2�

(
w(n)

)∣∣2〉1/2
ŝ

= v2
0

L2T

〈
ŝ4

1

〉1/2
ŝ

ñ∑
�=1

〈∣∣t2�(s) − t2�

(
w(n)

)∣∣2〉1/2
ŝ

= v2
0

L2T

√
120

λ2

ñ∑
�=1

〈∣∣t2�(s) − t2�

(
w(n)

)∣∣2〉1/2
ŝ

=
√

120

L2∗
1

T

ñ∑
�=1

〈∣∣t2�(s) − t2�

(
w(n)

)∣∣2〉1/2
ŝ

.

By Item (ii) of Lemma D.1 in Appendix D we have that each ŝj has Gamma distribution with parameters 2 and λ. Since
ŝ1, . . . , ŝ̃n are i.i.d. random variables, we obtain that

∑�
j=1 ŝj =∑2�

j=1 sj has Gamma distribution with parameters 2� and
λ. Hence, Item 5 of Lemma D.2 in Appendix D yields〈∣∣∣∣∣

2�∑
j=1

sj

∣∣∣∣∣
2〉

ŝ

= (2� + 1)(2�)/λ2.

We then obtain

〈|t2�(s) − t2�

(
w(n)

)|2〉
ŝ
=
(

1 − T∗
n

)2
〈∣∣∣∣∣

2�∑
j=1

sj

∣∣∣∣∣
2〉

ŝ

=
(

1 − T∗
n

)2
(2� + 1)(2�)

λ2
.

Therefore, 〈(
v0

L

)2 ñ∑
�=1

ŝ2
�

1

T
|t2�(s) − t2�

(
w(n)

)|〉
ŝ

≤
√

120

L2∗
1

T

∣∣∣∣1 − T∗
n

∣∣∣∣ ñ∑
�=1

√
6�

λ
≤ T∗

L2∗

∣∣∣∣1 − T∗
n

∣∣∣∣ n2

T 2∗
.

Now, we integrate the right-hand side of the preceding inequality over n for n ≥ 2. With the help of the Cauchy–Schwarz
inequality and Lemma D.3 in Appendix D, we obtain〈

9
T∗
L2∗

∣∣∣∣1 − T∗
n

∣∣∣∣ n2

T 2∗
1{n≥2}

〉
Po(T∗)

≤ 9
T∗
L2∗

1

T 2∗

〈|n − T∗|2
〉1/2
Po(T∗)

〈
n21{n≥2}

〉1/2
Po(T∗)

≤ 9
T∗
L2∗

1

T 2∗
T

1/2∗
(
T 2∗ + T∗

)1/2 ≤ 9
T∗
L2∗

T
−1/2∗

(
1 + T

−1/2∗
)
,

where in the last step we used subadditivity inequality for x �→ x1/2. Combining all pieces together we deduce

(5.8)
∑
n≥2

pn(T∗)
〈

1

T

∫ T

0
dt |

ñ∑
k=1

η∗
k (s)(1{t≥t2k(s)} − 1{t≥t2k(w

(n))})|2
〉

ŝ,ω

≤ 9
T∗
L2∗

T
−1/2∗

(
1 + T

−1/2∗
)
.
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Now, by (5.3), (5.6) and (5.8) we obtain

∑
n≥2

pn(T∗)
1

T

∫ T

0
EP1

[∣∣Z(t;n, s) − Z̃
(
t;n,w(n)

)∣∣2]dt ≤ 28
T∗
L2∗

T
−1/2∗

(
1 + T

−1/2∗
)
.

This concludes the proof of Lemma 5.1. �

The following lemma provides an estimate for the first term of the right-hand side of (5.1).

Lemma 5.2. For any L > 0, T > 0, λ > 0 and v0 ∈R \ {0} it follows that

W2
2 (Y[0,T ], Z̃[0,T ]) ≤ 39T∗L−2∗ T

−1/2∗ + 38T∗L−2∗ e−T∗(T∗ + T 2∗
)
.

In addition, for T∗ > 0 we obtain

W2
2 (Y[0,T ], Z̃[0,T ]) ≤ 115T∗L−2∗ T

−1/2∗ .

Proof. Analogously to (5.2) we obtain

W2
2 (Y[0,T ], Z̃[0,T ]) ≤ 1

T

∞∑
n=2

pn(T∗)EP1

[∫ T

0

∣∣Y(t;n, s) − Z̃
(
t;n,w(n)

)∣∣2 dt

]

+ 1

T
p0(T∗)

∫ T

0
L−2v2

0 t2 dt + 1

T
p1(T∗)

∫ T

0
EP1

[∣∣Y(s;1, s)
∣∣2]ds.

(5.9)

We start with the following claim:

(5.10) Y
(
t2k

(
w(n)

);n,w(n)
)= Z̃

(
t2k

(
w(n)

);n,w(n)
)

for all k ∈N and n ∈N \ {0,1}. Indeed, note that

Y
(
t2k

(
w(n)

);n,w(n)
)= L−1v0

2k∑
j=1

(−1)j−1w
(n)
j

= L−1v0

2k∑
j=1

(−1)j−1 T

n
u

(n)
j

= L−1v0

2k∑
j=1

(−1)j−1 T λ

n
sj = T∗

n

k∑
j=1

η∗
j (s)

= Z̃
(
t2k

(
w(n)

);n,w(n)
)
,

which yields the claim. Bearing the preceding claim in mind, we consider the following split that overestimate our desired
estimate: for all n ∈ N \ {0,1}

1

T

∫ T

0
EP1

[∣∣Y (t;n,w(n)
)− Z̃

(
t;n,w(n)

)∣∣2]dt

≤ EP1

[
1

T

ñ∑
�=1

∫ t2�−1(w
(n))

t2�−2(w
(n))

∣∣Y (t;n,w(n)
)− Z̃

(
t;n,w(n)

)∣∣2 dt

]

+EP1

[
1

T

ñ∑
�=1

∫ t2�(w
(n))

t2�−1(w
(n))

∣∣Y (t;n,w(n)
)− Z̃

(
t;n,w(n)

)∣∣2 dt

]

+EP1

[
1

T
1{t2̃n(w(n))≤T }

∫ T

t2̃n(w)

∣∣Y (t;n,w(n)
)− Z̃

(
t;n,w(n)

)∣∣2 dt

]
.

(5.11)



958 G. Barrera and J. Lukkarinen

where ñ = �n/2�. For each � ∈ {1, . . . , ñ} observe that

EP1

[
1

T

∫ t2�−1(w
(n))

t2�−2(w
(n))

∣∣Y (t;n,w(n)
)− Z̃

(
t;n,w(n)

)∣∣2 dt

]
= EP1

[
1

T

∫ t1(w
(n))

0

∣∣Y (t;n,w(n)
)∣∣2 dt

]

= EP1

[
1

T

∫ w
(n)
1

0
L−2v2

0 t2 dt

]
= T −1 1

3
L−2v2

0

〈(
w

(n)
1

)3〉
= T −1 1

3
L−2v2

0
T 3

n3

〈
u3

1

〉= 1

2

T∗
L2∗

T∗
n3

,

due to w
(n)
1 := T

n
u1 and u1 having an exponential distribution with parameter one. Analogously,

EP1

[
1

T

∫ t2�(w
(n))

t2�−1(w
(n))

∣∣Y (t;n,w(n)
)− Z̃(t;n,w)

∣∣2 dt

]
= EP1

[
1

T

∫ t2(w
(n))

t1(w
(n))

∣∣L−1v0w
(n)
1 + L−1v0(−1)

(
t − w

(n)
1

)∣∣2 dt

]
= EP1

[
T −1 1

3
L−2v2

0

((
w

(n)
2 − w

(n)
1

)3 + (
w

(n)
1

)3)]
= T −1 1

3
L−2v2

0

〈(
w

(n)
1

)3〉= 1

2

T∗
L2∗

T∗
n3

.

Hence, for 1{t2̃n(w(n))>T }

1

T

∫ T

0
EP1

[∣∣Y (t;n,w(n)
)− Z̃

(
t;n,w(n)

)∣∣2]dt ≤ 2̃n
1

2

T∗
L2∗

T∗
n3

≤ 1

2

T∗
L2∗

T∗
n2

.

In what follows, we estimate the possible remainder error given by the last jump, that is,

EP1

[
1

T
1{t2̃n(w(n))≤T }

∫ T

t2̃n(w(n))

∣∣Y (t;n,w(n)
)− Z̃

(
t;n,w(n)

)∣∣2 dt

]

= EP1

[
1

T
1{t2̃n(w(n))≤T }

∫ T

t2̃n(w(n))

∣∣Y (t;n,w(n)
)− Z̃

(
t2̃n

(
w(n)

);n,w(n)
)∣∣2 dt

]

= EP1

[
1

T
1{t2̃n(w(n))≤T }

∫ T

t2̃n(w(n))

∣∣Y (t;n,w(n)
)− Y

(
t2̃n

(
w(n)

);n,w(n)
)∣∣2 dt

]
,

where the last equality follows by (5.10).
First, we assume that n is an even number. We note that 2̃n = n and then

EP1

[
1

T
1{t2̃n(w(n))≤T }

∫ T

t2̃n(w(n))

∣∣Y (t;n,w(n)
)− Y

(
t2̃n

(
w(n)

);n,w(n)
)∣∣2 dt

]

= EP1

[
1

T
1{t2̃n(w(n))≤T }

∫ T

t2̃n(w(n))

L−2v2
0

∣∣t − t2̃n

(
w(n)

)∣∣2 dt

]
= EP1

[
1

T
1{t2̃n(w(n))≤T }

1

3
L−2v2

0

(
T − t2̃n

(
w(n)

))3
]

= EP1

[
1

T
1{t2̃n(w(n))≤T }

1

3
L−2v2

0

∣∣T − t2̃n

(
w(n)

)∣∣3]
≤ 1

3T
L−2v2

0

(
EP1

[∣∣T − t2̃n

(
w(n)

)∣∣4])3/4
,

(5.12)

where in the last inequality we used Hölder’s inequality. We note that

(5.13)
1

3T
L−2v2

0

(
EP1

[∣∣T − t2̃n

(
w(n)

)∣∣4])3/4 ≤ C1
T∗
L2∗

T∗
n3/2

,
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where C1 := 〈(u1 − 1)4〉3/4 = 93/4 and u1 has exponential distribution with parameter one.
Now, we assume that n is an odd number. We note that 2̃n = n − 1 and then

EP1

[
1

T
1{t2̃n(w(n))≤T }

∫ T

t2̃n(w(n))

∣∣Y(t;n,w) − Y
(
t2̃n

(
w(n)

);n,w(n)
)∣∣2 dt

]

= EP1

[
1

T
1{t2̃n(w(n))≤T }1{tn(w(n))≤T }

∫ T

t2̃n(w(n))

∣∣Y (t;n,w(n)
)− Y

(
t2̃n

(
w(n)

);n,w(n)
)∣∣2 dt

]

+EP1

[
1

T
1{t2̃n(w(n))≤T }1{tn(w(n))>T }

∫ T

t2̃n(w(n))

L−2v2
0

∣∣t − t2̃n

(
w(n)

)∣∣2 dt

]

= EP1

[
1

T
1{t2̃n(w(n))≤T }1{tn(w(n))≤T }

∫ t2̃n+1(w
(n))

t2̃n(w(n))

∣∣Y (t;n,w(n)
)− Y

(
t2̃n

(
w(n)

);n,w(n)
)∣∣2 dt

]

+EP1

[
1

T
1{t2̃n(w(n))≤T }1{tn(w(n))≤T }

∫ T

t2̃n+1(w
(n))

L−2v2
0

∣∣t − t2̃n+1
(
w(n)

)∣∣2 dt

]
+EP1

[
1

T
1{t2̃n(w(n))≤T }1{tn(w(n))>T }

1

3
L−2v2

0

(
T − t2̃n

(
w(n)

))3
]

≤ 1

2

T∗
L2∗

T∗
n3

+ 1

3T
L−2v2

0

(
EP1

[∣∣T − t2̃n+1
(
w(n)

)∣∣4])3/4

+ 4

3T
L−2v2

0T 3
∣∣∣∣1 − 2̃n

n

∣∣∣∣3 + 4

3T
L−2v2

0

(
EP1

[∣∣∣∣ 2̃nT

n
− t2̃n

(
w(n)

)∣∣∣∣4])3/4

.

We note that
1

3T
L−2v2

0

(
EP1

[∣∣T − t2̃n+1
(
w(n)

)∣∣4])3/4 ≤ C1
T∗
L2∗

T∗
n3/2

,

where C1 = 〈(u1 − 1)4〉3/4, where u1 has exponential distribution with parameter one. A straightforward computation
yields

4

3T
L−2v2

0T 3
∣∣∣∣1 − 2̃n

n

∣∣∣∣3 = 4

3

T∗
L2∗

T∗
n3

.

We also have

4

3T
L−2v2

0

(
EP1

[∣∣∣∣ 2̃nT

n
− t2̃n

(
w(n)

)∣∣∣∣4])3/4

≤ 4C1
T∗
L2∗

T∗
n3/2

,

(5.14) EP1

[
1

T
1{t2̃n(w(n))≤T }

∫ T

t2̃n(w(n))

∣∣Y (t;n,w(n)
)− Y

(
t2̃n

(
w(n)

);n,w(n)
)∣∣2 dt

]
≤ (2 + C1)

T∗
L2∗

T∗
n3

+ 5C1
T∗
L2∗

T∗
n3/2

.

Therefore (5.12), (5.13) and (5.14) yield for any n ∈N \ {0,1}

(5.15) EP1

[
1

T
1{t2̃n(w(n))≤T }

∫ T

t2̃n(w(n))

∣∣Y (t;n,w(n)
)− Y

(
t2̃n

(
w(n)

);n,w(n)
)∣∣2 dt

]
≤ (2 + C1)

T∗
L2∗

T∗
n3

+ 5C1
T∗
L2∗

T∗
n3/2

.

By (5.9), (5.11), (5.15) and Lemma A.1 in Appendix A we obtain

W2
2 (Y[0,T ], Z̃[0,T ]) ≤

∞∑
n=2

pn(T∗)
(

T∗
L2∗

T∗
n2

+ (2 + C1)
T∗
L2∗

T∗
n3

+ 5C1
T∗
L2∗

T∗
n3/2

)

+ L−2v2
0T 2

3
p0(T∗) + 1

T
p1(T∗)

∫ T

0
EP1

[∣∣Y(s;1, s)
∣∣2]ds

≤ 8C2
T∗
L2∗

T
−1/2∗ + T 2∗

3L2∗
e−T∗ + e−T∗T∗

1

T

∫ T

0
EP1

[∣∣Y(s;1, s)
∣∣2]ds.
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where C2 := 6C1 + 3. We point out that for n = 1 (5.14) implies

1

T

∫ T

0
EP1

[∣∣Y(s;1, s)
∣∣2]ds ≤ (2 + 6C1)

T∗
L2∗

T∗.

This concludes the proof of Lemma 5.2. �

In the sequel, we stress the fact that Proposition 3.2 is just a consequence of what we have already shown up to here.

Proof of Proposition 3.2. Combining Lemma 5.1 and Lemma 5.2 in (5.1) implies (3.11). This finishes the proof of
Proposition 3.2. �

6. Proof of Lemma 3.3: Komlós–Major–Tusnády coupling

In this section we apply the Komlós–Major–Tusnády (KMT) coupling to prove Lemma 3.3. That is, the existence of a
constant K satisfying

(6.1) W2
2 (Z[0,T ],B[0,T ]) ≤KT∗L−2∗ T 2∗ e−T∗ +KT∗L−2∗ T

−1/2∗
(
1 + T

−3/2∗
)
.

Recall that

W2
2 (Z[0,T ],B[0,T ]) ≤ 1

T

∫ T

0
ds Eπ

[∣∣Z(s) − B(s)
∣∣2](6.2)

for any coupling π between Z[0,T ] and B[0,T ]. Let π∗ be the so-called Komlós–Major–Tusnády coupling given in The-
orem 1 of [32] (or Lemma B.5 in Appendix B) gluing with an independent Poisson random variable K with parameter
T∗ = λT . Since K has Poisson distribution with parameter T∗, inequality (6.2), the tower property (Item (iv)) of Theo-
rem 8.14 in [25]) and Fubini’s theorem imply

W2
2 (Z[0,T ],B[0,T ]) ≤ p0(T∗)

1

T

∫ T

0
dsEπ∗

[∣∣Z(s) − B(s)
∣∣2|K = 0

]
+ p1(T∗)

1

T

∫ T

0
ds Eπ∗

[∣∣Z(s) − B(s)
∣∣2 |K = 1

]+ J0,

(6.3)

where

(6.4) J0 := 1

T

∞∑
n=2

pn(T∗)
∫ T

0
ds Eπ∗

[∣∣Z(s) − B(s)
∣∣2 |K = n

]
.

In the sequel we estimate J0. To make the proof easier to follow, we have divided it in 8 steps.

Step 1: First splitting. Let ñ = �n/2� and split J0 as follows:

J0 := 1

T

∞∑
n=2

pn(T∗)
ñ∑

j=1

∫ j
ñ
T

j−1
ñ

T

ds Eπ∗
[∣∣Z(s) − B(s)

∣∣2 |K = n
]
.

For each j ∈ {1, . . . , ñ} we write �j−1B(s) := B(s)−B((j −1)T /̃n) for any s ≥ 0 and note that B(s) = B((j −1)T /̃n)+
�j−1B(s). Since (x − y)2 ≤ 2x2 + 2y2 for any x, y ∈R, we have

(6.5) J0 ≤ J1 + J2,

where

J1 := 2

T

∞∑
n=2

pn(T∗)
ñ∑

j=1

∫ j
ñ
T

j−1
ñ

T

ds Eπ∗
[∣∣�j−1B(s)

∣∣2 |K = n
]
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and

J2 := 2

T

∞∑
n=2

pn(T∗)
ñ∑

j=1

∫ j
ñ
T

j−1
ñ

T

ds Eπ∗
[∣∣Z(s) − B

(
(j − 1)T /̃n

)∣∣2 |K = n
]
.

Step 2. We start with the estimate of J1. Since for each j ∈ {1, . . . , ñ} the random variable �j−1B(s) has Gaussian
distribution with zero mean and variance σ 2(s − (j − 1)T /̃n), with σ 2 being defined in (2.18), we deduce

J1 ≤ 2

T

∞∑
n=2

pn(T∗)
ñ∑

j=1

∫ j
ñ
T

j−1
ñ

T

ds σ 2
(

s − (j − 1)

ñ
T

)
= T σ 2 〈̃n−11{n≥2}

〉
Po(T∗).

The preceding inequality with the help of a slight shift in Lemma A.1 in Appendix A, (2.18), the fact that m̃ ≥ m/2 − 1,
m ≥ 2 and the definition of σ 2 given in (2.18) yields

J1 ≤ T σ 2 〈̃n−11{n=2}
〉
Po(T∗) + T σ 2 〈̃n−11{n≥3}

〉
Po(T∗)

≤ T σ 2p2(T∗) + 2T σ 2〈(n − 2)−11{n≥3}
〉
Po(T∗)

≤ 2−1 T∗
L2∗

T 2∗ e−T∗ + 27/2 T∗
L2∗

1

T∗
.

(6.6)

This finishes the estimate of J1.

Step 3: Second splitting. We continue with the estimate of J2. The idea is to apply the Komlós–Major–Tusnády coupling
between a suitable random walk and the Brownian motion with diffusivity constant σ 2. We define the random walk
(Sm(s) : m ∈N0) as follows:

Sm(s) :=
m∑

j=1

ηj (s) for m ∈N and S0(s) := 0,

where the sequence (ηj (s) : j ∈N) are defined by

ηj (s) = −v0(s2j − s2j−1) for any j ∈N.

Hence, the sequence (ηj (s) : j ∈N) are i.i.d. random variables with zero mean and variance 2v2
0Var[s1] = 2v2

0
1
λ2 . Set

(6.7) η∗
j (s) := ηj (s)

L
= −v0(s2j − s2j−1)

L
for any j ∈N

and note that

Sj (s)

L
:=

j∑
k=1

η∗
k (s) for any j ∈N.

Then E[η∗
j (s)] = 0 and Var[η∗

j (s)] = v2
0

L2 2Var[s1] = 2v2
0

L2λ2 = 2
L2∗

for all j ∈ N.

Similarly as (6.5) we obtain

(6.8) J2 ≤ J
(1)
2 + J

(2)
2 ,

where

J
(1)
2 := 4

T

∞∑
n=2

pn(T∗)
ñ∑

j=1

∫ j
ñ
T

j−1
ñ

T

ds Eπ∗
[|Sj−1(s)/L − B

(
(j − 1)T /̃n

)|2 |K = n
]

and

J
(2)
2 := 4

T

∞∑
n=2

pn(T∗)
ñ∑

j=1

∫ j
ñ
T

j−1
ñ

T

ds Eπ∗
[|Z(s) − Sj−1(s)/L|2 |K = n

]
.
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Step 4: Third splitting. In what follows we estimate J
(1)
2 . We start noticing that

(6.9) J
(1)
2 ≤ J

(1,1)
2 + J

(1,2)
2 ,

with

J
(1,1)
2 := 8

T

∞∑
n=2

pn(T∗)
ñ∑

j=1

∫ j
ñ
T

j−1
ñ

T

dsEπ∗

[
|Sj−1(s)/L −

j−1∑
�=1

N�

(
0,2L−2∗

)|2|K = n

]

and

J
(1,2)
2 := 8

T

∞∑
n=2

pn(T∗)
ñ∑

j=1

∫ j
ñ
T

j−1
ñ

T

ds Eπ∗

[∣∣∣∣∣
j−1∑
�=1

N�

(
0,2L−2∗

)−
j−1∑
�=1

N�

(
0, σ 2T /̃n

)∣∣∣∣∣
2

|K = n

]
,

where (N�(0, η2) : � ∈ N) are i.i.d. Gaussian random variables with zero mean and variance η2 > 0. We stress that the
preceding sequence (N�(0, η2) : � ∈ N) of random variables is the sequence used to construct the Komlós–Major–Tusnády
coupling π∗.

Step 5. Now, we estimate the simplest term J
(1,2)
2 . It is straightforward to see that

J
(1,2)
2 = 8

T

∞∑
n=2

pn(T∗)
ñ∑

j=1

∫ j
ñ
T

j−1
ñ

T

ds (j − 1)
∣∣√2L−2∗ −

√
σ 2T /̃n

∣∣2
= 8

T

∞∑
n=2

pn(T∗)
ñ∑

j=1

(j − 1)
T

ñ

∣∣√2L−2∗ −
√

σ 2T /̃n
∣∣2

= 4
∞∑

n=2

pn(T∗)(̃n − 1)
∣∣√2L−2∗ −

√
σ 2T /̃n

∣∣2.
Since σ 2 = L−2∗ λ, we have

J
(1,2)
2 ≤ 4

∞∑
n=2

pn(T∗)̃n
∣∣√2L−2∗ −

√
σ 2T /̃n

∣∣2 = 4L−2∗
∞∑

n=2

pn(T∗)̃n|√2 −√
T∗/̃n|2

= 4T∗L−2∗
∞∑

n=2

pn(T∗)
∣∣∣∣
√

2̃n

T∗
− 1

∣∣∣∣2 ≤ 4T∗L−2∗
∞∑

n=2

pn(T∗)
∣∣∣∣ 2̃n

T∗
− 1

∣∣∣∣
≤ 4T∗L−2∗

( ∞∑
n=2

pn(T∗)
∣∣∣∣ 2̃n

T∗
− 1

∣∣∣∣2
)1/2

,

where we have used the following subadditivity inequality: |√x − √
y| ≤ √|x − y| for any non-negative numbers x

and y, and in the last inequality we applied the Cauchy–Schwarz inequality. The preceding inequality with the help of
Lemma A.2 in Appendix A implies

(6.10) J
(1,2)
2 ≤ 4T∗L−2∗

( ∞∑
n=2

pn(T∗)
∣∣∣∣ 2̃n

T∗
− 1

∣∣∣∣2
)1/2

≤ 4
√

35T∗L−2∗ T
−1/2∗ .

Step 6. In the sequel we estimate J
(1,1)
2 . We note that

(6.11) J
(1,1)
2 = 8

∞∑
n=2

pn(T∗)
ñ

ñ∑
j=1

Eπ∗

[∣∣∣∣∣Sj−1(s)/L −
j−1∑
�=1

N�

(
0,2L−2∗

)∣∣∣∣∣
2

|K = n

]
.
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Let η > 0 be fixed. For any j ∈ {1, . . . , ñ} we consider the following split

Eπ∗

[∣∣∣∣∣Sj−1(s)/L −
j−1∑
�=1

N�

(
0,2L−2∗

)∣∣∣∣∣
2

|K = n

]

= Eπ∗

[∣∣∣∣∣Sj−1(s)/L −
j−1∑
�=1

N�

(
0,2L−2∗

)∣∣∣∣∣
2

1Ac
η
|K = n

]
+Eπ∗

[∣∣∣∣∣Sj−1(s)/L −
j−1∑
�=1

N�

(
0,2L−2∗

)∣∣∣∣∣
2

1Aη |K = n

]

≤ η2 +Eπ∗

[∣∣∣∣∣Sj−1(s)/L −
j−1∑
�=1

N�

(
0,2L−2∗

)∣∣∣∣∣
2

1Aη |K = n

]
,

(6.12)

where

Aη :=
{

sup
1≤j≤ñ

∣∣∣∣∣Sj−1(s)/L −
j−1∑
�=1

N�

(
0,2L−2∗

)∣∣∣∣∣
2

> η2

}
.

By the Cauchy–Schwarz inequality we have

Eπ∗

[∣∣∣∣∣Sj−1(s)/L −
j−1∑
�=1

N�

(
0,2L−2∗

)∣∣∣∣∣
2

1Aη |K = n

]

≤
(
Eπ∗

[∣∣∣∣∣Sj−1(s)/L −
j−1∑
�=1

N�

(
0,2L−2∗

)∣∣∣∣∣
4

|K = n

])1/2(
π∗(Aη |K = n)

)1/2
.

(6.13)

By the KMT coupling (see Theorem 1 of [32]) there exist positive constants C
(1)
KMT, C

(2)
KMT and ϑ such that for every ñ it

follows that

π∗(Aη∗(n) |K = n) ≤ C
(2)
KMTe−ϑ ln(n) = C

(2)
KMT

nϑ
,(6.14)

where

(6.15) η∗(n) :=
√

2

L∗
(
CKMT ln(̃n) + ln(n)

)
.

We point out that the constants C
(1)
KMT, C

(2)
KMT and ϑ only depend on the law of the random variable (6.7). Later on, we

choose ϑ = 4. Combining (6.12), (6.13), (6.14) and (6.15) in (6.11) we obtain

J
(1,1)
2 ≤ 8

∞∑
n=2

pn(T∗)η2∗(n) + 8
∞∑

n=2

pn(T∗)
ñ

(
C

(2)
KMT

nϑ

)1/2 ñ∑
j=1

aj ,(6.16)

where

aj :=
(
Eπ∗

[
|Sj−1(s)/L −

j−1∑
�=1

N�

(
0,2L−2∗

)|4 |K = n

])1/2

for any j ∈ {1, . . . , ñ}.

Note that for any j ∈ {1, . . . , ñ} we have

bj :=
(
Eπ∗

[
j−1∑
�=1

N�

(
0,2L−2∗

)|4])1/2

= (
Eπ∗

[
N�

(
0,2(j − 1)L−2∗

)|4])1/2 = 2(j − 1)L−2∗

and

cj := (
Eπ∗

[∣∣Sj−1(s)/L
∣∣4])1/2

.
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Moreover, straightforward computations yields cj = 1
L2 (E[|Sj−1|4])1/2 = L−2∗

√
22j + 2j2 ≤ 5L−2∗ j . Since aj ≤ 3(bj +

cj ), (6.16) with the chose of ϑ = 4 and Lemma A.1 in Appendix A implies

J
(1,1)
2 ≤ 32 max

{
1,C2

KMT

}
L−2∗

∞∑
n=2

pn(T∗) ln2(n) + 84
√

C
(2)
KMTL−2∗

∞∑
n=2

pn(T∗)n−1

≤ 32 max
{
1,C2

KMT

}
L−2∗

∞∑
n=2

pn(T∗) ln2(n) + 252
√

C
(2)
KMTL−2∗ T −1∗ .

Let γ ∈ (0,1/2) be fixed and note that there exists a constant C(γ ) > 0 such that ln(n) ≤ C(γ )nγ for all n ∈ N. Hence,
Hölder’s inequality yields

J
(1,1)
2 ≤ 32C2(γ )max

{
1,C2

KMT

}
T∗L−2∗ T

2γ−1∗ + 252
√

C
(2)
KMTT∗L−2∗ T −2∗ .

The choice of γ = 1/4 implies the existence of a positive constant C
(1)
2 such that

J
(1,1)
2 ≤ C

(1)
2 T∗L−2∗ T

−1/2∗
(
1 + T

−3/2∗
)
.(6.17)

Combining (6.10) and (6.17) in (6.9) we obtain

(6.18) J
(1)
2 ≤ (

C
(1)
2 + 4

√
35
)
T∗L−2∗ T

−1/2∗
(
1 + T

−3/2∗
)
.

Step 7. Finally, we estimate J
(2)
2 . Let (S(t) : t ≥ 0) be the Càdlàg piecewise constant extension of the random walk

(η∗
� (s) : � ∈ N0) given in (6.7). Since

Z(t;n, s) =
ñ∑

�=1

η∗
�(s)1{t>t2�(s)} and S(t;n, s) =

ñ∑
�=1

η∗
�(s)1{t> �T

ñ
},

we have

1

T

∫ T

0
dt
∣∣Z(t;n, s) − S(t;n, s)

∣∣2
=

ñ∑
�=1

ñ∑
�′=1

η∗
� (s)η

∗
�′(s)

1

T

∫ T

0
dt (1{t>t2�(s)} − 1{t> �T

ñ
})(1{t>t2�′ (s)} − 1{t> �′T

ñ
}).

In the sequel, we recall the change of variable introduced in (5.4) and (5.5). That is, for any � ∈ {1, . . . , ñ} we set

ŝ� := s2� + s2�−1 and ω� := s2� − s2�−1

ŝ�

and observe that

η∗
� (s) = −v0

L
ŝ�ω� for any � ∈ {1, . . . , ñ}.

An analogous reasoning using in (5.7) with the help of Item (i) and Item (iii) of Lemma D.1 in Appendix D implies〈
1

T

∫ T

0
dt
∣∣Z(t;n, s) − S(t;n, s)

∣∣2〉
ω

=
(

v0

L

)2 ñ∑
�=1

ñ∑
�′=1

ŝ�ŝ�′ 〈ω�ω�′ 〉ω 1

T

∫ T

0
dt (1{t>t2�(s)} − 1{t> �T

ñ
})(1{t>t2�′ (s)} − 1{t> �′T

ñ
})

= 1

3

(
v0

L

)2 ñ∑
�=1

ŝ2
�

1

T

∫ T

0
dt (1{t>t2�(s)} − 1{t> �T

ñ
})

2(6.19)
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= 1

3

(
v0

L

)2 ñ∑
�=1

ŝ2
�

1

T

∫ T

0
dt1{min{t2�(s),

�T
ñ

}<t<max{t2�(s),
�T
ñ

}}

≤ 1

3

(
v0

L

)2 ñ∑
�=1

ŝ2
�

1

T

(
max

{
t2�(s),

�T

ñ

}
− min

{
t2�(s),

�T

ñ

})

≤
(

v0

L

)2 ñ∑
�=1

ŝ2
�

1

T

∣∣∣∣t2�(s) − �T

ñ

∣∣∣∣,
where ω denotes the product measure given by the law of the random vector (ω1, . . . ,ωñ). We note that

(6.20)
ñ∑

�=1

ŝ2
� |t2�(s) − �T

ñ
| ≤

ñ∑
�=1

ŝ2
� |t2�(s) − 2�

λ
| +

ñ∑
�=1

ŝ2
�

∣∣∣∣2�

λ
− �T

ñ

∣∣∣∣
and let ŝ denote the product measure given by the law of the random vector (ŝ1, . . . , ŝ̃n). On the one hand, Item (ii) of
Lemma D.1 in Appendix D with the help of Fubini’s theorem yields〈(

v0

L

)2 ñ∑
�=1

ŝ2
�

1

T

∣∣∣∣2�

λ
− �T

ñ

∣∣∣∣
〉

ŝ

=
(

v0

L

)2 ñ∑
�=1

〈
ŝ2
�

〉
ŝ

1

T

∣∣∣∣2�

λ
− �T

ñ

∣∣∣∣
= 2

(
v0

λL

)2 ñ∑
�=1

2�

∣∣∣∣ 1

T∗
− 1

2̃n

∣∣∣∣≤ 2

(
v0

λL

)2

ñ2
∣∣∣∣ 1

T∗
− 1

2̃n

∣∣∣∣≤ T∗
L2∗

ñ

T∗

∣∣∣∣ 2̃n

T∗
− 1

∣∣∣∣.
(6.21)

On the other hand, the Cauchy–Schwarz inequality implies〈(
v0

L

)2 ñ∑
�=1

ŝ2
�

1

T
|t2�(s) − 2�

λ
|
〉

ŝ

=
〈

1

L2∗T

ñ∑
�=1

λ2ŝ2
� |t2�(s) − 2�

λ
|
〉

ŝ

≤ 1

L2∗T

√√√√ ñ∑
�=1

λ4
〈
ŝ4
�

〉
ŝ

√√√√ ñ∑
�=1

〈∣∣∣∣t2�(s) − 2�

λ

∣∣∣∣2〉
ŝ

≤ 1

L2∗T
√

120̃n

√√√√ ñ∑
�=1

2�

λ2

≤ 1

L2∗T
√

120̃n
ñ

λ
≤ 11

T∗
L2∗

n3/2

T 2∗
.

(6.22)

Combining (6.20), (6.21) and (6.22) in (6.19) with the help of Fubini’s theorem implies〈
1

T

∫ T

0
dt
∣∣Z(t;n, s) − S(t;n, s)

∣∣2〉
ŝ,ω

≤ T∗
L2∗

ñ

T∗

∣∣∣∣ 2̃n

T∗
− 1

∣∣∣∣+ 11
T∗
L2∗

n3/2

T 2∗
.

Recall that n has Poisson distribution of parameter T∗. Then we have

∞∑
n=2

pn(T∗)
〈

1

T

∫ T

0
dt
∣∣Z(t;n, s) − S(t;n, s)

∣∣2〉
ŝ,ω

≤ T∗
L2∗

〈
ñ

T∗

∣∣∣∣ 2̃n

T∗
− 1

∣∣∣∣1{n≥2}
〉

Po(T∗)
+ 11

T∗
L2∗

〈n3/21{n≥2}〉Po(T∗)
T 2∗

.

(6.23)

Now, we estimate the first term of the right-hand side of (6.23). By the Cauchy–Schwarz inequality we obtain

T∗
L2∗

〈
ñ

T∗

∣∣∣∣ 2̃n

T∗
− 1

∣∣∣∣1{n≥2}
〉

Po(T∗)
≤ T∗

L2∗

(〈
ñ2

T 2∗
1{n≥2}

〉
Po(T∗)

)1/2(〈∣∣∣∣ 2̃n

T∗
− 1

∣∣∣∣21{n≥2}
〉

Po(T∗)

)1/2

.

We note that 〈
ñ2

T 2∗
1{n≥2}

〉
Po(T∗)

≤ 1

4T 2∗

〈
n2〉

Po(T∗) ≤ 1

4T∗
+ 1

4
.
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Also, by Lemma A.2 in Appendix A we obtain〈∣∣∣∣ 2̃n

T∗
− 1

∣∣∣∣21{n≥2}
〉

Po(T∗)
≤ 35

T∗
.

Then

T∗
L2∗

〈
ñ

T∗

∣∣∣∣ 2̃n

T∗
− 1

∣∣∣∣1{n≥2}
〉

Po(T∗)
≤ 3

T∗
L2∗

T
−1/2∗

(
T

−1/2∗ + 1
)
.(6.24)

Now, we estimate the second term of the right-hand side of (6.23). Then Hölder’s inequality yields

T∗
L2∗

〈n3/21{n≥2}〉Po(T∗)
T 2∗

≤ T∗
L2∗

〈n3/2〉Po(T∗)
T 2∗

≤ T∗
L2∗

1

T 2∗

(〈
n2〉

Po(T∗)
)3/4

= T∗
L2∗

1

T 2∗

(
T∗ + T 2∗

)3/4 ≤ T∗
L2∗

(
T

−1/2∗ + T
−5/4∗

)
.

(6.25)

Combining (6.24) and (6.25) in (6.23) we obtain

(6.26) J
(2)
2 ≤ 3

T∗
L2∗

T
−1/2∗

(
T

−1/2∗ + 1
)+ 11

T∗
L2∗

T
−1/2∗

(
1 + T

−3/4∗
)
.

Therefore, (6.8), (6.18) and (6.26) yields the existence of a constant K1 > 0 satisfying

J2 ≤ (
C

(1)
2 + 24

)
T∗L−2∗ T

−1/2∗
(
1 + T

−3/2∗
)+ 3T∗L−2∗ T

−1/2∗
(
1 + T

−1/2∗
)+ 11T∗L−2∗ T

−1/2∗
(
1 + T

−3/4∗
)

≤ K1T∗L−2∗ T
−1/2∗

(
1 + T

−1/2∗ + T
−3/4∗ + T

−3/2∗
)
.

(6.27)

Step 8: Concluding step. As a consequence of (6.5), (6.6) and (6.27) we obtain an upper bound for J0 defined in (6.4).
The latter with the help of (6.3) yields (6.1).

Appendix A: Moment estimates

This section contains derivation of the moment estimates used in the main text.

A.1. Poisson moment estimates

Lemma A.1 (Bounds for the inverse moments of Poisson r.v.). Let N be a Poisson random variable with parameter
λ > 0. Then for any p > 0 it follows that

(A.1)
〈
N−p1{N≥1}

〉
Po(λ)

≤ Cp

λp
, where Cp := 2p(p+2)/2.

In addition,

(A.2)
〈
N−p ln(N + 1)1{N≥1}

〉
Po(λ)

≤ C
1/2
2p ln(λ + 3)

λp
.

Proof. We start with the case p ∈N. By definition we have

〈
N−p1{N≥1}

〉
Po(λ)

=
∑
j≥1

1

jp
e−λ λj

j ! = e−λ

λp

∑
j≥1

λj+p

jp(j !) .(A.3)

Note that

1

j
≤ 2

j + 1
for any j ∈N.
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Hence,

(A.4)
1

jp
≤

p∏
k=1

2k

j + k
for any j ∈N.

By (A.3) and (A.4) we have

〈
N−p1{N≥1}

〉
Po(λ)

≤ Kp

e−λ

λp

∑
j≥1

λj+p

(j + p)! = Kp

e−λ

λp

(
e−λ −

p∑
j=0

λj

j !

)
≤ Kp

λp
,(A.5)

where Kp :=∏p

k=1 2k = 2p(p+1)/2 ≤ Cp .
We continue with the case p > 1 and p /∈ N. Let �p� be the least integer greater than or equal to p and set p1 = �p�/p.

We observe that p1 > 1 and let p2 be the Hölder conjugate of p1, that is, 1/p1 + 1/p2 = 1. By Hölder’s inequality we
have 〈

N−p1{N≥1}
〉1/p

Po(λ)
= 〈

N−p1{N≥1} · 1
〉1/p

Po(λ)
≤ (〈(

N−p1{N≥1}
)p1

〉1/p1
Po(λ)

〈
1p2

〉1/p2
Po(λ)

)1/p

≤ 〈(
N−p1{N≥1}

)p1
〉 1
pp1
Po(λ)

= 〈
N−�p�1{N≥1}

〉1/�p�
Po(λ)

.

(A.6)

Since �p� ∈ N \ {1}, (A.5) yields

〈
N−�p�1{N≥1}

〉1/�p�
Po(λ)

≤
(

K�p�
λ�p�

)1/�p�
= K

1/�p�
�p�
λ

,(A.7)

where K�p� = 2�p�(�p�+1)/2. By (A.6) and (A.7) we obtain

〈
N−p1{N≥1}

〉
Po(λ)

≤ K
p/�p�
�p�
λp

≤ 2p(p+2)/2

λp
= Cp

λp
.

Finally, for p ∈ (0,1), let q := 1/p > 1. By Hölder’s inequality and (A.5) (for p = 1) we obtain

〈
N−p1{N≥1}

〉
Po(λ)

≤ 〈(
N−p

)q1{N≥1}
〉1/q

Po(λ)
= 〈

N−11{N≥1}
〉1/q

Po(λ)
≤
(

K1

λ

)p

≤ Cp

λp
.

Now, we prove (A.2). Note that the Jensen inequality implies〈(
ln(N + 3)

)2〉
Po(λ)

≤ (
ln(λ + 3)

)2
.

By the Cauchy–Schwarz inequality, inequality (A.1) and the Jensen inequality we have〈
N−p ln(N + 1)1{N≥1}

〉
Po(λ)

≤(〈N−2p1{N≥1}
〉
Po(λ)

)1/2(〈(ln(N + 1)
)21{N≥1}

〉
Po(λ)

)1/2

≤ C
1/2
2p

λp

(〈(
ln(N + 1)

)2〉
Po(λ)

)1/2 ≤ C
1/2
2p ln(λ + 3)

λp
. �

Lemma A.2. Let N be a Poisson random variable with parameter λ > 0. Then

(A.8)

〈∣∣∣∣2�N/2�
λ

− 1

∣∣∣∣21{N≥2}
〉

Po(λ)

≤ e−λ(2 − λ)2

2
+ 9

λ
.

In particular, 〈∣∣∣∣2�N/2�
λ

− 1

∣∣∣∣21{N≥2}
〉

Po(λ)

≤ 35

λ
.
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Proof. We observe that〈∣∣∣∣2�N/2�
λ

− 1

∣∣∣∣21{N≥2}
〉

Po(λ)

=
∣∣∣∣2

λ
− 1

∣∣∣∣2p2(λ) +
〈∣∣∣∣2�N/2�

λ
− 1

∣∣∣∣21{N≥3}
〉

Po(λ)

.(A.9)

An straightforward computation yields〈∣∣∣∣2�N/2�
λ

− 1

∣∣∣∣21{N≥3}
〉

Po(λ)

=
〈

4�N/2�2

λ2
1{N≥3}

〉
Po(λ)

−
〈

4�N/2�
λ

1{N≥3}
〉

Po(λ)

+ 〈1{N≥3}〉Po(λ)

≤
〈
N2

λ2

〉
Po(λ)

+
〈(

4 − 2N

λ

)
1{N≥3}

〉
Po(λ)

+ 1

≤ 5

λ
+ 2 − 2

λ
〈N1{N≥3}〉Po(λ)

≤ 5

λ
+ 2 − 2

λ

(
λ − p1(λ) − 2p2(λ)

)
≤ 5

λ
+ 2

λ

(
p1(λ) + 2p2(λ)

)≤ 9

λ
.

(A.10)

Finally, (A.9) and (A.10) imply (A.8). �

A.2. δ-constraint moment estimates

Lemma A.3 (Polynomial moments and correlations for the δ-function). Let n ∈ N. For p ∈ N and any i ∈ {1, . . . , n}
it follows that 〈

u
p
i

〉= p!∏p−1
k=0 (n + k)

,

where the integration is respect to the probability measure dnu · (n − 1)!δ(tn(u) − 1). In particular,

〈ui〉 = 1

n
,

〈
u2

i

〉= 2

n(n + 1)
and

〈
u3

i

〉= 6

n(n + 1)(n + 2)
.

Moreover, for n ∈ N \ {1} and any i, j ∈ {1, . . . , n} i �= j it follows that

〈uiuj 〉 = 1

n(n + 1)
.

Proof. For n = 1 the result is obvious. We assume n ∈N \ {1}.
The estimates rely on the properties of the measure dnu · (n − 1)!δ(tn(u) − 1) proven in Appendix C. In particular, we

know that it is permutation invariant. Therefore, we have that ui , i ∈ {1, . . . , n} are identically distributed and then〈
u

p
i

〉= 〈
u

p

1

〉
for all i ∈ {1, . . . , n} and p ∈N,

〈uiuj 〉 = 〈u1u2〉 for all i, j ∈ {1, . . . , n} satisfying i �= j.
(A.11)

Let p ∈N. We next compute 〈up

1 〉. By Lemma C.2, then

〈
u

p

1

〉= (n − 1)

∫ 1

0
u

p

1 (1 − u1)
n−2 du1.

Recall that the density Beta(α,β)(dx) of the Beta distribution Beta(α,β) with parameters α > 0 and β > 0 is given by

(A.12) Beta(α,β)(dx) = �(α + β)

�(α)�(β)
xα−1(1 − x)β−11{x∈[0,1]} dx.

As a consequence,

(n − 1)

∫ 1

0
u

p

1 (1 − u1)
n−2 du1 = (n − 1)

�(p + 1)�(n − 1)

�(n + p)
= p!(n − 1)!

(n − 1)!∏p−1
k=0 (n + k)

= p!∏p−1
k=0 (n + k)

.
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Hence, 〈
u

p

1

〉= p!∏p−1
k=0 (n + k)

.

Next, we continue with the computation of 〈u1u2〉. Assume that n ≥ 3. By Lemma C.2, then

〈u1u2〉 = (n − 1)(n − 2)

∫ 1

0
u1

∫ 1−u1

0
u2(1 − u1 − u2)

n−3 du2 du1.

Let x = u2
1−u1

. Then using the fact that Beta(α,β)(dx) given in (A.12) is probability measure for any α > 0 and β > 0,
we obtain

〈u1u2〉 = (n − 1)(n − 2)

∫ 1

0
u1(1 − u1)

n−1 du1

∫ 1

0
x(1 − x)n−3 dx

= (n − 1)(n − 2)
�(2)�(n)

�(n + 2)

�(2)�(n − 2)

�(n)
= 1

n(n + 1)
.

Finally, for n = 2 recall the constraint u1 + u2 = 1 and observe that

〈u1u2〉 = 〈
u1(1 − u1)

〉= 〈u1〉 − 〈
u2

1

〉= 1

n
− 2

n(n + 1)
= n − 1

n(n + 1)
= 1

6
. �

Lemma A.4 (Exponential moments formula for the δ-function). Let n ∈ N \ {1}. For all i ∈ {1, . . . , n} and θ ∈ R it
follows that 〈

eθui
〉= (n − 1)eθ

∫ 1

0
xn−2e−θx dx,

where the integration is respect to the probability measure dnu · (n − 1)!δ(tn(u) − 1). In addition,〈
e(n−1)ui

〉≤ 3
√

n − 1.

Proof. By Lemma C.2 and using (A.11), we find

〈
eθu1

〉= 〈
eθui

〉= (n − 1)

∫ 1

0
eθu1(1 − u1)

n−2 du1

for all i ∈ {1, . . . , n}. Using the change of variable to x = 1 − u1,” we obtain

〈
eθu1

〉= (n − 1)

∫ 1

0
eθ(1−x)xn−2 dx = (n − 1)eθ

∫ 1

0
e−θxxn−2 dx.

Let y = θx. Then

〈
eθu1

〉= (n − 1)eθ

θn−1

∫ θ

0
e−yyn−2 dy ≤ (n − 1)eθ

θn−1

∫ ∞

0
e−yy(n−1)−1 dy = (n − 1)eθ

θn−1
�(n − 1) = (n − 1)!eθ

θn−1
.

By [43] we have

j ! ≤ √
2πe1/12

√
j
jj

ej
for all j ∈N.

Then the choice θ = n − 1 yields

〈
eθu1

〉≤ (n − 1)!en−1

(n − 1)n−1
≤ √

2πe1/12
√

n − 1 < 3
√

n − 1. �

Lemma A.5 (Moment estimates for the maximum). For any measurable and bound observable f : Rn∗ → R, we denote
by 〈f 〉 the integral of f with respect to the probability measure dnu · (n − 1)!δ(tn(u) − 1). Then there exists a positive
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constant C such that for all n ∈ N it follows that

(A.13)
〈

max
i∈{1,...,n}

ui

〉
≤ C

ln(n + 1)

n
.

Proof. The statement for n = 1 is immediate. In the sequel, we assume n ∈ N \ {1}. We start with the proof of (A.13).
We use the so-called Chernoff’s trick explained in Section 2.5 of [7]. Recall that the random variables u1, . . . , un are
identically distributed. By the Jensen inequality for the convex function f (x) = exp(θx), x ∈R and θ > 0 yields

exp
(
θ
〈

max
i∈{1,...,n}

ui

〉)
= f

(〈
max

i∈{1,...,n}
ui

〉)
≤
〈
f
(

max
i∈{1,...,n}

ui

)〉
=
〈
exp

(
θ max

i∈{1,...,n}
ui

〉)
=
〈

max
i∈{1,...,n}

exp(θui)
〉
≤
〈

n∑
i=1

exp(θui)

〉
= n

〈
exp(θu1)

〉
.

Hence,

(A.14)
〈

max
i∈{1,...,n}

ui

〉
≤ ln(n)

θ
+ ln(〈exp(θu1)〉)

θ
for all θ > 0.

Inequality (A.14) for θ = n − 1 with the help of Lemma A.4 in Appendix A implies〈
max

i∈{1,...,n}
ui

〉
≤ ln(n)

n − 1
+ ln(3

√
n)

n − 1
≤ 3

ln(n + 1)

n
+ 2

ln(3)

n
≤ C1

ln(n + 1)

n
,

where C1 := max{6,4 ln(3)/ ln(2)}. �

Appendix B: Free velocity flip moment estimates

In this section, we estimate the moments of the free velocity flip model via Theorem 1 in [23].

Lemma B.1 (Moment estimates for the free velocity flip model). The following moment estimates are valid.

1. The first-moment of X(t; s) is given by

E
[(

X(t; s))]= v0

2λ

(
1 − e−2λt

)
for all t ≥ 0.

2. The second-moment and the variance of X(t; s) are given by

E
[(

X(t; s))2]= v2
0

2λ2

(
2λt − (

1 − e−2λt
))

and Var
[
X(t; s)]= v2

0

λ2

(
λt + e−2λt − e−4λt

4
− 3

4

)
.

for all t ≥ 0, respectively.
3. For any r > 0 there exists a constant C(r) (does not depend on λ) such that

(B.1) E
[∣∣X(t; s)∣∣r]≤ |v0|r

(
C̃(r)λ−r/2t r/2 + C(r)λ−r/2−1t r/2−1) for all t ≥ 0,

where

C̃(r) :=
∫
R

dzϕ(z)|z|r = 2r/2 �(r+1
2 )√
π

with ϕ(z) := e−z2/2

√
2π

1R(z)(B.2)

and � denotes the Gamma function. The constant C(r) can be estimated from the proof of Theorem 1 in [23]. The
following crude bound is also true

E
[∣∣X(t; s)∣∣r]≤ |v0|r t r for all t ≥ 0.

The last bound is good for times t � 1.
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Proof. We start with the proof of Item 1. By (2.4) and Fubini’s theorem we have

E
[(

X(t; s))]= v0

∫ t

0
dsE

[
(−1)N(s;s)]= v0

∫ t

0
ds

∞∑
k=0

(−1)ke−λs (λs)k

k! = v0

∫ t

0
dse−2λs = v0

2λ

(
1 − e−2λt

)
for all t ≥ 0, which yields Item 1. The proof of Item 2 follows directly from Lemma 1 in [40]. In the sequel, we prove
Item 3. To prove Item 3 we apply the estimate given in Theorem 1 in [23]. For p = 1, δ = 1, M = 1 in Theorem 1 in [23]
we have the existence of a positive constant C such that∫

R

dxe|x|
∣∣∣∣t1/2h

(
t, t1/2x,1

)− ϕ(x) − t−1/2 xϕ(x)

2

∣∣∣∣≤ C

t
for all t > 0,(B.3)

where for t > 0, λ > 0, x ∈ R the function h is given by

h(t, x, λ) := λ

2
e−λt

{
I0
(
λ
(
t2 − x2)1/2)+ (

(t + x)/(t − x)
)1/2I1

(
λ
(
t2 − x2)1/2)}1(−t,t)(x).

Here, I0 and I1 denote the modified Bessel functions of order 0 and 1, respectively. In other words,

I0(z) =
∞∑

k=0

(z2/4)k

(k!)2
and I1(z) = z

2

∞∑
k=0

(z2/4)k

k!(k + 1)! for any z ∈R.

Let r > 0 be fixed. Note that there exists a positive constant Kr such that

(B.4) |x|r ≤ Kre
|x| for all x ∈R.

Recall that

X(t; s) = v0

∫ t

0
ds(−1)N(s;s),

where the entries of s = (s1, s2, . . . , ) are i.i.d. with exponential distribution of parameter λ. Denote by
D= equality in

distribution. Note that

X(t; s) D= v0

∫ t

0
ds(−1)N(λs;u),

where the entries of u= (u1, u2, . . . , ) are i.i.d. with exponential distribution of parameter 1. Hence for any r > 0 we have

E
[∣∣X(t; s)∣∣r]= 1

λr
E

[∣∣∣∣v0

∫ λt

0
ds(−1)N(s;u)

∣∣∣∣r].
Consequently,

(B.5)
∫
R

dzh(t, z, λ)|z|r = 1

λr

∫
R

dzh(λt, z,1)|z|r .

We continue with the estimate of the r-th moment. The change of variable z = t̃1/2x with t̃ := λt yields∫
R

dzh(λt, z,1)|z|r =
∫
R

dxt̃1/2h
(̃
t, t̃1/2x,1

)∣∣̃t1/2x
∣∣r

=
∫
R

dx

(̃
t1/2h

(̃
t, t̃1/2x,1

)− ϕ(x) − t̃−1/2 xϕ(x)

2

)∣∣̃t1/2x
∣∣r

+
∫
R

dx

(
ϕ(x) + t̃−1/2 xϕ(x)

2

)∣∣̃t1/2x
∣∣r .

(B.6)

By (B.3) and (B.4) we have∣∣∣∣∫
R

dx

(̃
t1/2h

(̃
t, t̃1/2x,1

)− ϕ(x) − t̃−1/2 xϕ(x)

2

)∣∣̃t1/2x
∣∣r ∣∣∣∣≤ t̃ r/2−1KrC = t r/2−1λr/2−1KrC.(B.7)
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Since ϕ(x) = ϕ(−x) = e−x2/2√
2π

for all x ∈R, we have
∫
R

dxxϕ(x)|x|r = 0. Then we observe that

∫
R

dx

(
ϕ(x) + t̃−1/2 xϕ(x)

2

)∣∣̃t1/2x
∣∣r =

∫
R

dxϕ(x)
∣∣̃t1/2x

∣∣r = C̃(r)̃t r/2 = C̃(r)λr/2t r/2,(B.8)

where C̃(r) is defined in (B.2). Relations (B.5) and (B.6) with the help of (B.7) and (B.8) imply Item 3. �

The next lemma shows that the p-th moment and the p-th absolute moment are observables that satisfy (2.12).

Lemma B.2 (Moments and absolute moments). For any p ∈ N it follows that

(B.9)
∣∣‖x‖p − ‖y‖p

∣∣≤ K
w(x) + w(y)

2
‖x − y‖ for all x, y ∈Rd ,

where K = 2p and w : Rd → [0,∞) is given by w(z) = ‖z‖p−1 for all z ∈Rd . For d = 1 let K = 2p and w(z) = |z|p−1

for all z ∈R. The following inequalities are also valid.

(i) For any p > 0 it follows that

(B.10)
∣∣|x|p − |y|p∣∣≤ K

w(x) + w(y)

2
|x − y| for all x, y ∈ R,

(ii) For any p ∈ N it follows that

(B.11)
∣∣xp − yp

∣∣≤ K
w(x) + w(y)

2
|x − y| for all x, y ∈R,

Proof. We start with the proof of (B.9). We first note that if ‖x‖ = 0 or ‖y‖ = 0, then (B.9) holds. Hence, we assume that
‖x‖ �= 0 and ‖y‖ �= 0. By the trichotomy property we have the following cases:

(a) 0 �= ‖x‖ = ‖y‖.
(b) 0 < ‖x‖ < ‖y‖.
(c) 0 < ‖y‖ < ‖x‖.

The case a) is immediate. We start with the case b). Let r := ‖x‖/‖y‖ ∈ (0,1) and note that

∣∣‖x‖p − ‖y‖p
∣∣= ‖y‖p − ‖x‖p = ‖y‖p

(
1 − rp

)= ‖y‖p(1 − r)

p−1∑
k=0

rk ≤ p‖y‖p(1 − r) = p‖y‖p−1(‖y‖ − ‖x‖)
= pw(y)

∣∣‖x‖ − ‖y‖∣∣≤ K
w(x) + w(y)

2
‖x − y‖.

The case c) is completely analogous to the case b). The proof of (B.9) is complete.
We continue with the proof of (B.10). For p = 1 it is easy to see that (B.10) holds. In the sequel, we assume that p �= 1.

Let x, y ∈ R be fixed. For |x| = |y| it is easy to see that (B.10) holds. Without loss of generality, we assume that |x| �= |y|.
By the Fundamental Theorem of Calculus we have

∣∣|y|p − |x|p∣∣= ∣∣∣∣p ∫ |y|

|x|
dzzp−1

∣∣∣∣≤ ∣∣∣∣p ∫ |y|

|x|
dz|z|p−1

∣∣∣∣≤ p max|x|∧|y|≤z≤|x|∨|y| w(z)
∣∣|x| − |y|∣∣

≤ p
(
w(x) + w(y)

)∣∣|x| − |y|∣∣≤ K
w(x) + w(y)

2
|x − y|,

where the third inequality follows from the fact that the function (0,∞) � z �→ w(z) is increasing for p > 1 and decreas-
ing for p ∈ (0,1). The proof of (B.10) is complete.

The proof of (B.11) follows from an analogous reasoning as used in the proof of (B.10). �

Lemma B.2 in Appendix B yields that for the observables (p-th moment and the p-th absolute moment), the weighted
function w that appears in (2.12) can be chosen as w(z) = ‖z‖p−1, z ∈Rd .
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In the sequel, we estimate the constants C1 and C2 (for w(z) = |z|p−1, z ∈R) that appears in (2.11), i.e.,

C2
1 :=

∫
μ1(dX)

1

T

∫ T

0
ds
(
w
(
X(s)

))2
< ∞, C2

2 :=
∫

μ2(dY)
1

T

∫ T

0
ds
(
w
(
Y(s)

))2
< ∞,(B.12)

for the processes X and Y being replaced by the rescaled telegraph process L−1X and a Brownian motion B with a
suitable diffusivity constant σ 2, respectively. Hence the constant max{C1,C2}, which is needed in the estimate given in
the right-hand side of (2.14), is also estimated.

Lemma B.3 (Time average estimates for the w-weight). For p = 1 it follows that C2
1 = C2

2 = 1. For any p > 0 with
p �= 1, the following estimates are valid

C2
1 ≤ C̃T

p−1∗
pL

2(p−1)∗
+ CT

p−2∗
(p − 1)L

2(p−1)∗
and C2

2 = 2p−1�(
2p−1

2 )

p
√

π

T
p−1∗

L
2(p−1)∗

,

where the constants T∗ and L∗ are the scaling parameters that appears in (2.8), C̃ and C are the constants that appears
for r = 2(p − 1) in Item 3, (B.1), of Lemma B.1 in Appendix B and � denotes the Gamma function.

Proof. We observe that C2
1 = C2

2 = 1 for p = 1. We start with the estimate of C2
1 for p �= 1. In this case, the process X is

replaced by L−1X in (B.12). A direct computation yields

C2
1 =

∫
μ1(dX)

1

T

∫ T

0
ds
(
w
(
L−1X(s; s)))2 =

∫
μ1(dX)

1

T

∫ T

0
ds
∣∣L−1X(s; s)∣∣2(p−1)

= 1

L2(p−1)T

∫ T

0
dsE

[∣∣X(s; s)∣∣2(p−1)]≤ |v0|2(p−1)

L2(p−1)T

∫ T

0
ds
(
C̃λ−(p−1)sp−1 + Cλ−psp−2)

= |v0|2(p−1)C̃λ−(p−1)T p−1

pL2(p−1)
+ |v0|2(p−1)Cλ−pT p−2

(p − 1)L2(p−1)
= C̃T

p−1∗
pL

2(p−1)∗
+ CT

p−2∗
(p − 1)L

2(p−1)∗
,

where the constants C̃ and C are the constants that appears for r = 2(p−1) in Item 3, (B.1), of Lemma B.1 in Appendix B.
We continue with the estimate of C2

2 . Since the process Y in (B.12) is the Brownian motion with diffusivity constant
σ 2 = λL−2∗ given in (2.18), we have

C2
2 =

∫
μ2(dY)

1

T

∫ T

0
ds
(
w
(
B(s)

))2 =
∫

μ2(dY)
1

T

∫ T

0
ds
∣∣B(s)

∣∣2(p−1) = 1

T

∫ T

0
dsE

[∣∣B(s)
∣∣2(p−1)]

= E
[∣∣σB(1)

∣∣2(p−1)] 1

T

∫ T

0
dssp−1 = σ 2(p−1)2p−1�(

2p−1
2 )√

π

T p−1

p
= 2p−1�(

2p−1
2 )

p
√

π

T
p−1∗

L
2(p−1)∗

,

where in the last inequality we used relation (B.2) given in Item 3 of Lemma B.1 in Appendix B. �

In the following we estimate the distance between L−1Xs[0,T ] = (L−1X(t; s) : 0 ≤ t ≤ T ) and B[0,T ] = (B(t) : 0 ≤ t ≤
T ) by the independent coupling between them.

Lemma B.4 (Independent coupling bound). For any L > 0, T > 0, λ > 0 and v0 ∈ R \ {0} it follows that

W2
(
L−1Xs[0,T ],B[0,T ]

)≤
(

1

4T∗L2∗

(
1 − e−2T∗)− 1

2L2∗
+ T∗

L2∗

)1/2

,

where T∗ = λT and L∗ = |v0|−1λL.

Proof. We estimate the following expectation

Eγ

[
1

T

∫ T

0
dt
(
L−1X(t; s) − B(t)

)2
]
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for a suitable coupling γ between L−1Xs[0,T ] and B[0,T ]. We recall that the diffusivity constant of B is given by σ 2 = λL−2∗
given in (2.18). By Fubini’s theorem and Pythagoras’s theorem we obtain

Eγ

[
1

T

∫ T

0
dt
(
L−1X(t; s) − B(t)

)2
]

= 1

T

∫ T

0
dtEγ

[(
L−1X(t; s) − B(t)

)2]
= 1

T

∫ T

0
dt
(
Eγ

[(
L−1X(t; s))2]+Eγ

[(
B(t)

)2])
− 2

T

∫ T

0
dtEγ

[
L−1X(t; s)B(t)

]
.

(B.13)

By Lemma B.1 in Appendix B we have

(B.14) Eγ

[(
X(t; s))2]= v2

0

2λ2

(
2λt − (

1 − e−2λt
))

for all t ≥ 0

and for any coupling γ . Since (B(t) : t ≥ 0) is a Brownian motion with diffusivity σ 2, the second moment of its marginal
B(t) is given by

(B.15) Eγ

[(
B(t)

)2]= σ 2t for all t ≥ 0

for any coupling γ . Next, we estimate the contribution of the term Eγ [L−1X(t; s)B(t)] for a suitable coupling γ . By the
use of the independent coupling γ = π we obtain

(B.16) Eπ

[
L−1X(t; s)B(t)

]= Eπ

[
L−1X(t; s)]Eπ

[
B(t)

]= 0.

Combining (B.14), (B.15) and (B.16) in (B.13) implies

inf
γ
Eγ

[
1

T

∫ T

0
dt
(
L−1X(t; s) − B(t)

)2
]

≤ Eπ

[
1

T

∫ T

0
dt
(
L−1X(t; s) − B(t)

)2
]

= 1

T

∫ T

0
dt
(
Eπ

[(
L−1X(t; s))2]+Eπ

[(
B(t)

)2])
= 1

T

∫ T

0
dt

(
v2

0

2λ2L2

(
2λt − 1 + e−2λt

)+ σ 2t

)

= 1

T

(
v2

0

2λ2L2
λT 2 − v2

0

2λ2L2
T + v2

0

2λ2L2

1

2λ

(
1 − e−2λT

)+ σ 2T 2

2

)
= T∗

2L2∗
− 1

2L2∗
+ 1

4L2∗T∗
(
1 − e−2T∗)+ 1

2
σ 2T ,

(B.17)

where T∗ = λT and L∗ = |v0|−1λL. Since σ 2 = λL−2∗ , (B.17) yields

W2
2

(
L−1Xs[0,T ],B[0,T ]

)≤ 1

4T∗L2∗

(
1 − e−2T∗)− 1

2L2∗
+ T∗

L2∗
,

which yields the statement. �

For completeness of the presentation, we recall the Komlós–Major–Tusnády coupling (see Theorem 1 of [32]) and we
state it as a lemma.

Lemma B.5 (Komlós–Major–Tusnády Theorem). Let F : R→ [0,1] be a distribution function satisfying∫
R

erzF (dz) < ∞ for any r ∈ (−r0, r0)



Control of the telegraph process 975

for some positive number r0 > 0. In addition, we assume∫
R

zF (dz) = 0 and
∫
R

z2F(dz) = 1.

Then there exists a probability space (�∗,F∗,π∗) for which we can construct sequences X := (Xn : n ∈ N) and Y :=
(Yn : n ∈N) of random variables satisfying

(a) X is i.i.d. with common distribution function F ,
(b) Y is i.i.d. with standard Gaussian distribution

in a way that for all x > 0 and every n ∈ N the following estimate is valid

π∗
(

max
1≤m≤n

∣∣∣∣∣
m∑

j=1

Xj −
m∑

j=1

Yj

∣∣∣∣∣≥ C ln(n) + x

)
≤ Ke−ϑx.

Here, the positive constants C, K , ϑ depend only on F , and ϑ can be taken as large as desired by choosing C large
enough. Consequently, |∑n

j=1 Xj −∑n
j=1 Yj | =O(ln(n)) almost surely.

Appendix C: Definition and basic properties of the δ-constraints

In the text, we frequently integrate with respect to measures which are identified using the somewhat formal Dirac δ-
function notation. As explained in Appendix A in [35], this slightly formal notion can often be given a fully rigorous
definition as a positive Radon measure obtained via the Riesz–Markov–Kakutani representation theorem applied to a
limit of a sequence of approximations where the δ-function is replaced by a suitably chosen positive ordinary function.
The benefit of using the approximations becomes apparent when one needs to perform operations which are standard to
Lebesgue measures, such as changes of integration variables or splitting with aid of Fubini’s theorem.

In this appendix, we explain the definition and derive the properties used in the text related to integration with respect
to the probability measure ν(dnu) which is defined on Rn∗ , n ∈N \ {1}, by the formula

ν
(
dnu

)= dnu(n − 1)!δ(tn(u) − 1
)
,

where tn(u) =∑n
j=1 uj and dnu denotes the restriction of the Lebesgue measure to Rn∗ . These measures are obtained by

scaling from the more general family of positive measures

ν̃r

(
dnu

)= dnuδ
(
tn(u) − r

)
, r > 0,

since ν(dnu) = (n − 1)!ν̃1(dnu).
The most direct definition of the measure ν̃r is obtained by formal integration of the δ-function over the last coordinate,

un. We define a positive semidefinite linear functional �(·; r) on Cc(R
n∗) by setting for any continuous function f : Rn∗ →

C which has a compact support,

�(f ; r) :=
∫

X′(n,r)

dn−1uf

(
u, r −

n−1∑
j=1

uj

)
,(C.1)

where X′(n, r) := {u ∈ Rn−1∗ :∑n−1
j=1 uj < r} is a bounded Borel set. Since Rn∗ is a locally compact Hausdorff space, the

Riesz–Markov–Kakutani representation theorem implies that there exists a unique Radon measure ν̃r for which �(f ; r) =∫
Rn∗ ν̃r (dnu)f (u). Now Km := {u ∈ Rn∗ : 1

m
≤ uj ≤ m for all j}, m ∈N, form an increasing covering sequence of compact

subsets of Rn∗ . Thus by Urysohn’s lemma, for each m ∈ N, we can find a continuous function φm : Rn∗ → R such that
0 ≤ φm ≤ 1 and φm(u) = 1, if u ∈ Km, and φm(u) = 0, if u /∈ Km+1. Then each φm has a compact support and, by the
dominated convergence theorem, we find that �(φm; r) → ∫

X′(n,r)
dn−1u1, as m → ∞. Here, by induction in n, one can

check the well-known simplex volume result,∫
X′(n,r)

dn−1u1 =
∫
Rn−1∗

dn−1u1{∑n−1
i=1 uj <r} = rn−1

(n − 1)! ,
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which is valid for all r > 0 and n ∈ N with n ≥ 2. Since clearly also |�(f ; r)| ≤ rn−1

(n−1)! ‖f ‖∞ for any f ∈ Cc(R
n∗), we

find that
∫
Rn∗ ν̃r (dnu)1 = rn−1

(n−1)! . Therefore, each ν̃r is a bounded, positive semidefinite Radon measure, and ν(dnu) =
(n − 1)!ν̃1(dnu) is a Radon probability measure on Rn∗ .

The following technical lemma shows that the formula (C.1) indeed applies to a much larger class of functions. In
addition, it also gives a convenient approximation result by ordinary integrals for integration of continuous functions.
This can be used to derive many further properties about integrals over ν̃r (dnu), similar to what is done in Appendix A in
[35]. We derive the main properties used in the present work from these, as summarized later in Lemma C.2.

Lemma C.1. Suppose n ≥ 2 and r > 0. Denote Er := {u ∈Rn∗ : tn(u) �= r}. Then all of the statements below hold.

1. ν̃r (Er) = 0.
2. If A ⊂Rn−1∗ has Lebesgue measure zero, then ν̃r (A ×R∗) = 0.
3. Suppose f :Rn∗ → C is a Borel measurable function. If f is non-negative or f ∈ L1(ν̃r ), we have∫

Rn∗
ν̃r

(
dnu

)
f (u) =

∫
Rn−1∗

dn−1u1{tn−1(u)<r}f
(
u, r − tn−1(u)

)= rn−1

(n − 1)!
∫
Rn∗

ν
(
dnu

)
f (ru).(C.2)

4. Suppose ϕ : R → R is a continuous function with a compact support for which ϕ ≥ 0 and
∫
R

dxϕ(x) = 1. Define
�ε(u; r) := ε−1ϕ((tn(u) − r)/ε) for u ∈ Rn∗ and ε > 0. Then for any function F : [0,∞)n → C which is continuous,
we have ∫

Rn∗
ν̃r

(
dnu

)
F(u) = lim

ε→0+

∫
Rn∗

dnu�ε(u; r)F (u).

5. The measure ν̃r is permutation invariant: if P is a permutation of {1,2, . . . , n}, then for any measurable function f

the function u �→ f (uP ), (uP )j := uP(j), j = 1,2, . . . , n, has the same integral as f .

Proof. For the first item, consider the set S = Rn∗ \ Er . We choose a cutoff function η : R → R which is continuous,
0 ≤ η ≤ 1, and η(x) = 1, if |x| ≤ 1, and η(x) = 0, if |x| ≥ 2. Recall the earlier cutoff functions φm, and define Fm(u) :=
φm(u)η(m(tn(u)−r)). If u ∈ S, then Fm(u) = φm(u) → 1 as m → ∞. If u /∈ S, then η(m(tn(u)−r)) → 0 as m → ∞, and
thus also limm→∞ Fm(u) = 0. Therefore, by the dominated convergence theorem, ν̃r (S) = limm→∞

∫
Rn∗ ν̃r (dnu)Fm(u).

Since Fm ∈ Cc(R
n∗), we have

∫
Rn∗

ν̃r

(
dnu

)
Fm(u) =

∫
X′(n,r)

dn−1uφm

(
u, r −

n−1∑
j=1

uj

)
η(0) =

∫
Rn∗

ν̃r

(
dnu

)
φm(u),

which goes to ν̃r (R
n∗) < ∞ as m → ∞. Therefore, S has full measure, and thus its complement Er must have measure

zero. This implies that for any bounded measurable function f we have∫
Rn∗

ν̃r

(
dnu

)
f (u) =

∫
S

ν̃r

(
dnu

)
f (u) =

∫
S

ν̃r

(
dnu

)
f
(
u, r − tn−1(u)

)|u=Pn−1u

where Pn−1u := (u1, u2, . . . , un−1) ∈Rn−1∗ .
For the next item, let us first suppose that A ⊂Rn−1∗ is open. Then it can be written as a limit of an increasing sequence

of compact sets. Applying Urysohn’s lemma with open sets A × (0,m + 1) and an increasing sequence of compact sets
obtained by taking a product with the above sets and [1/m,m], we find a sequence of functions fm ∈ Cc(R

n∗) which
pointwise monotone increase to the indicator function of A ×R∗. Thus by using the monotone convergence theorem, we
conclude that ν̃r (A ×R∗) = ∫

A
dn−1u. If A ⊂ Rn−1∗ has zero Lebesgue measure, it can be covered with countably many

open sets so that the sum of their measures is arbitrarily small. Hence, we conclude that then ν̃r (A ×R∗) = 0.
For the third item, we construct a suitable regularisation so that the defining functional can be used to evaluate the

integral. In fact, we only need to do this assuming that f : Rn∗ → C is bounded and Borel measurable. Namely, suppose
that (C.2) holds for such f . If f is non-negative, we can then apply the result to every fN(u) := 1{f (u)≤N}f (u), N ∈ N.
This is a monotone non-decreasing sequence converging to f , and thus the monotone convergence theorem may be
applied to each of the three integrals in (C.2). This shows that (C.2) holds for all measurable, non-negative functions.
Finally, if g ∈ L1(ν̃r ), then f = |g| is a non-negative function for which the first integral in (C.2) is finite. Thus by the
previous result also the other two integrals are then finite. Therefore, f is a dominant for the function sequence gN ,
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defined by gN(u) := 1{|g(u)|≤N}g(u), N ∈ N. Since each gN is bounded and gN → g pointwise, dominated convergence
theorem, applied to each of the three integrals separately, implies that (C.2) holds also for g.

Let us thus assume that f : Rn∗ → C is bounded and Borel measurable. We then choose continuous cutoff functions
ηδ :R→ R, 0 < δ ≤ 1, which satisfy 0 ≤ ηδ ≤ 1, ηδ(x) = 0 if |x| ≥ 1 + δ, and ηδ(x) = 1 if |x| ≤ 1. For ε > 0, we define

χδ,ε(x) := ηδ

(|x|/ε), x ∈Rn−1,

and set, for all x ∈Rn−1,

h(x) :=
{

f
(
x, r − tn−1(x)

)
, if x ∈Rn−1∗ and tn−1(x) < r,

0, otherwise.

Then h is bounded, h ∈ L1(Rn−1) and∫
Rn−1

dn−1xh(x) =
∫
Rn−1∗

dn−1u1{tn−1(u)<r}f
(
u, r − tn−1(u)

)
.

The regularisation we need will be provided by the functions

hδ,ε(x) := 1

Zδ,ε

∫
Rn−1

dn−1yχδ,ε(x − y)h(y),

where

Zδ,ε :=
∫
Rn−1

dn−1yχδ,ε(y) < ∞.

By applying the Lebesgue dominated convergence theorem, we then find that each hδ,ε is continuous function on Rn−1.
Also, ‖hδ,ε‖∞ ≤ ‖f ‖∞ and the support of each hδ,ε is contained in the compact set {x ∈ [0,∞)n−1 : |x| ≤ 2 + r}.

Let X0 ⊂ Rn−1 collect all Lebesgue points of h. Since h ∈ L1(Rn−1), we know that its complement has Lebesgue
measure zero. By definition, for every x ∈ X0 we then have

lim
ε→0+

1

|Bε|
∫

Bε

dy
∣∣h(x − y) − h(x)

∣∣= 0,

where Bε denotes the closed ball with a radius ε, centred at the origin. Now, if ε > 0,

lim
δ→0+ χδ,ε(y) = 1{|y|≤ε},

and thus by applying the dominated convergence theorem twice, we find that for all x

lim
δ→0+ hδ,ε(x) = 1

|Bε|
∫

Bε

dyh(x − y).

Therefore,

lim
ε→0+

(
lim

δ→0+ hδ,ε(x)
)

= h(x), x ∈ X0.

For notational convenience, let us denote from now on the above double limit by “limε,δ”. Finally, we recall the increasing
sequence of cutoff functions φm used earlier. For m ∈N and u ∈Rn∗ we define

fm,δ,ε(u) := hδ,ε(Pn−1u)φm(u),

where the projection Pn−1 was defined above. By construction, fm,δ,ε ∈ Cc(R
n∗), and thus∫

Rn∗
ν̃r

(
dnu

)
fm,δ,ε(u) =

∫
Rn−1∗

dn−1u1{tn−1(u)<r}fm,δ,ε

(
u, r − tn−1(u)

)
(C.3)

=
∫
Rn−1∗

dn−1u1{tn−1(u)<r}hδ,ε(u)φm

(
u, r − tn−1(u)

)
.
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The dominated convergence theorem allows us to conclude that the limit of the right hand side is given by∫
Rn−1∗

dn−1u1{tn−1(u)<r}h(u) =
∫
Rn−1∗

dn−1u1{tn−1(u)<r}f
(
u, r − tn−1(u)

)
.

Again, by the dominated convergence theorem, the limit of the left-hand side of (C.3), as m → ∞, is given by∫
Rn∗ ν̃r (dnu)hδ,ε(Pn−1u). Furthermore,

lim
ε,δ

∫
X0×R∗

ν̃r

(
dnu

)
hδ,ε(Pn−1u) =

∫
X0×R∗

ν̃r

(
dnu

)
h(Pn−1u) =

∫
X0×R∗

ν̃r

(
dnu

)
f (u),

where in the last equality we used the observation that if tn(u) = r , then also tn−1(Pn−1u) < r and thus f (u) =
f (Pn−1u, r −∑n−1

j=1 uj ) = h(Pn−1u). However, by the second item, now ν̃r (X
c
0 ×R∗) = 0, and thus

lim
ε,δ

∫
X0×R∗

ν̃r

(
dnu

)
hδ,ε(Pn−1u) =

∫
Rn∗

ν̃r

(
dnu

)
f (u).

We can conclude that the first equality in (C.2) holds for bounded Borel measurable f . But then for any such function f ,
we also have

1

(n − 1)!
∫
Rn∗

ν
(
dnu

)
f (ru) =

∫
Rn∗

ν̃1
(
dnu

)
f (ru) =

∫
Rn−1∗

dn−1u1{tn−1(u)<1}f
(
ru, r − rtn−1(u)

)
.

A change of variables to v = ru in the last integral yields

r−(n−1)

∫
Rn−1∗

dn−1v1{tn−1(v)<r}f
(
v, r − tn−1(v)

)= r−(n−1)

∫
Rn∗

ν̃r

(
dnv

)
f (v).

Therefore, (C.2) holds for all bounded Borel measurable f . This completes the proof of the third item.
We next prove the fourth statement. Given 0 < ε ≤ 1, let us denote

Iε =
∫
Rn∗

dnu�ε(u)F (u).

Since ϕ has a compact support, there is R > 0 such that ϕ(x) = 0 for all |x| ≥ R. Thus �ε(u) = 0 if tn(u) ≥ r + R, using
the assumption ε ≤ 1. Denote Y := {x ∈ [0,∞)n : tn(x) ≤ r + R} and Y ′ := Y ∩ Rn∗ . Since F is continuous and Y is
compact, M := supx∈Y |F(x)| < ∞. We thus find that �ε(u)|F(u)| ≤ M�ε(u).

We can thus use Fubini’s theorem to reorder the integrals, resulting in

Iε =
∫
Rn−1∗

dn−1u

(∫ ∞

0
dunε

−1ϕ
((

un + tn−1(u) − r
)
/ε
)
F(u,un)

)
.

A change of variables from un to x := (un + tn−1(u) − r)/ε yields

Iε =
∫
Rn−1∗

dn−1u

(∫ ∞

−∞
dx1{x>(

∑n−1
j=1 uj −r)/ε}ϕ(x)F

(
u, r −

n−1∑
j=1

uj + εx

))
.

If
∑n−1

j=1 uj ≥ r + Rε, then either the indicator function or ϕ(x) is zero, implying that the integrand is then zero. On the

other hand, the measure of the set {u ∈Rn−1∗ : r ≤∑n−1
j=1 uj < r +Rε} goes to zero as ε → 0. Therefore, by the dominated

convergence theorem and the continuity of F we have

lim
ε→0

Iε =
∫
Rn−1∗

dn−1u1{∑n−1
j=1 uj <r}

(∫ ∞

−∞
dxϕ(x)F

(
u, r −

n−1∑
j=1

uj

))
=
∫
Rn∗

ν̃r

(
dnu

)
F(u),

where the last equality follows from the normalisation of ϕ and the first part of the Lemma.
The final item is a corollary of the previous one: if f ∈ Cc(R

n∗), we can apply the previous item to approximate its
expectation. However, dnu�ε(u; r) is obviously permutation invariant, and we obtain the statement for such functions f .
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By the uniqueness statement in the Riesz–Markov–Kakutani theorem, this is sufficient to conclude that the Radon measure
ν̃r itself is permutation invariant. �

Essentially as a corollary, we obtain the following technical estimates used in the paper.

Lemma C.2 (δ-integration). The following formulas are valid.

(i) Marginal moments. Suppose n ≥ 2 and f : [0,∞) → C is a continuous function. Then

(C.4)
〈
f (u1)

〉
ν(dnu)

= (n − 1)

∫ 1

0
du1f (u1)(1 − u1)

n−2.

(ii) Correlations. Suppose n ≥ 3 and g : [0,∞)2 →C is a continuous function. Then

〈
g(u1, u2)

〉
ν(dnu)

= (n − 1)(n − 2)

∫ 1

0
du1

∫ 1−u1

0
du2g(u1, u2)(1 − u1 − u2)

n−3.

(iii) Concentration. We have tn(u) = 1 almost surely under the probability measure ν(dnu).
(iv) “Fubini’s theorem”. Suppose n ≥ 2 and f : Rn∗ →C is a Borel measurable function. If f is also either non-negative,

or Lebesgue integrable, then∫
Rn∗

dnvf (v) =
∫
R∗

dr

(∫
Rn∗

ν̃r

(
dnv

)
f (v)

)
=
∫
R∗

dr
rn−1

(n − 1)!
(∫

Rn∗
ν
(

dnu
)
f (ru)

)
,(C.5)

where the integrals are either all absolutely convergent or all infinite.

Proof. The third item is a direct corollary of Item 1 of Lemma C.1. Therefore, the assumed continuity properties of f

and g imply that the observables u �→ f (u1) and u �→ g(u1, u2) are bounded on the support of the measure ν. Hence,
they are integrable, and we can apply Item 3 of Lemma C.1.

Assuming n ≥ 3, we first obtain〈
g(u1, u2)

〉
ν(dnu)

= (n − 1)!
∫
Rn−1∗

dn−1u1{tn−1(u)<1}g(u1, u2).

If n = 3, this is equal to
∫ 1

0 du1
∫ 1−u1

0 du2g(u1, u2). If n > 3, the indicator function is still zero if u1 + u2 ≥ 1, and thus
we have ∫

Rn−1∗
dn−1u1{tn−1(u)<1}g(u1, u2) =

∫ 1

0
du1

∫ 1−u1

0
du2g(u1, u2)

∫
Rn−3∗

dn−3v1{∑n−3
i=1 vi<1−u1−u2}.

Hence, by using the earlier simplex volume result, we can conclude that for all n ≥ 3,

〈
g(u1, u2)

〉
ν(dnu)

= (n − 1)(n − 2)

∫ 1

0
du1

∫ 1−u1

0
du2g(u1, u2)(1 − u1 − u2)

n−3.

Similarly, if n ≥ 2, we have 〈
f (u1)

〉
ν(dnu)

= (n − 1)!
∫
Rn−1∗

dn−1u1{tn−1(u)<1}f (u1).

If n = 2, this evaluates to
∫ 1

0 du1f (u1) = (n − 1)
∫ 1

0 du1f (u1)(1 − u1)
n−2. If n > 2, as above, we obtain

〈
f (u1)

〉
ν(dnu)

= (n − 1)!
∫ 1

0
du1f (u1)

∫
Rn−2∗

dn−2v1{∑n−2
i=1 vi<1−u1}.

and evaluating the volume of the simplex results in (C.4).
Therefore, only the fourth item remains to be proven. Let n ≥ 2 and suppose f : Rn∗ → C is Borel measurable. Let us

first consider the case where f is also non-negative. Applying Item 3 of Lemma C.1 we find that for any r > 0,∫
Rn∗

ν̃r

(
dnu

)
f (u) =

∫
Rn−1∗

dn−1u1{tn−1(u)<r}f
(
u, r − tn−1(u)

)
.
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The integrand on the right hand side is non-negative and measurable under dr × (dn−1u). Thus by Fubini’s theorem, we
find that ∫

R∗
dr

(∫
Rn∗

ν̃r

(
dnu

)
f (u)

)
=
∫
Rn−1∗

dn−1u

(∫
R∗

dr1{tn−1(u)<r}f
(
u, r − tn−1(u)

))
.

We change the integration variable r to un = r − tn−1(u), yielding∫
Rn−1∗

dn−1u

(∫ ∞

0
dunf (u,un)

)
.

By Fubini’s theorem, this is equal to
∫
Rn∗ dnuf (u). Hence we have proven the first equality in (C.5) for non-negative f

and the second equality follows then immediately from Item 3 of Lemma C.1.
Let us then assume that f ∈ L1(Rn). Then (C.5) holds for |f |, as well as for positive and negative parts of Ref and

Imf . Each of these functions is bounded by |f |, and thus all of the resulting integrals are finite. Thus by taking the
appropriate complex linear combination, we conclude that (C.5) holds also for f , with absolutely convergent integrals.
This concludes the proof of the lemma. �

Appendix D: Tools

The following section collects a few standard results, given here to facilitate following the argument in the main text.

Lemma D.1. Let U and V be independent random variables with exponential distribution of parameter λ > 0. Set
X = (U − V )/(U + V ) and Y = U + V . Then

(i) the random variable X has continuous uniform distribution in [−1,1].
(ii) the random variable Y has Gamma distribution with parameter 2 and λ.

(iii) the random variables X and Y are independent.

Proof. The proof of Item (i) and Item (ii) are straightforward. We leave the details to the interested reader. In the sequel,
we prove Item (iii). For any continuous and bounded function F :R2 → R we have

E
[
F(U,V )

]= λ2
∫ ∞

0

∫ ∞

0
dudve−λu−λvF (u, v)

= λ2

2

∫
R2

dy dze−λy1{y+z>0}1{y−z>0}F
(

y + z

2
,
y − z

2

)
= λ2

2

∫ ∞

0
dye−λy

∫ y

−y

dzF

(
y + z

2
,
y − z

2

)
,

(D.1)

where in the second equality we apply the Change of Variable theorem for y = u + v and z = u − v. Equality (D.1) with
the help of the change of variable x = z/y yields

E
[
F(U,V )

]=
∫ ∞

0
dy λ2ye−λy︸ ︷︷ ︸

density of Y

∫ 1

−1

1

2︸︷︷︸
density of X

dxF

(
y

1 + x

2
, y

1 − x

2

)
.

In particular, for continuous and bounded functions f and g the choice F(u, v) := f ((u − v)/(u + v))g(u + v), u,v ∈R

yields

E
[
F(U,V )

]= E
[
f (X)g(Y )

]=
∫ ∞

0
dyλ2ye−λyg(y)

∫ 1

−1
dx

1

2
f (x).

Hence, the proof of Item iii) is finished. �

The following lemma provides distributional properties for the sum and difference of i.i.d. exponential random vari-
ables. Since the proof is straightforward, we omit the details here.
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Lemma D.2. Let X and Y be independent random variables having exponential distribution of parameter θ > 0. Then
the following is valid.

1. X − Y has Laplace distribution with location parameter zero and scale parameter 1
θ

.
2. X + Y has Gamma distribution with parameters 2 and θ .
3. E[X − Y ] = 0 and E[X + Y ] = 2

θ
.

4. Var[X − Y ] = Var[X + Y ] = 2
θ2 .

5. In general, if Z is distributed according to a Gamma distribution of parameters m ∈ N and θ > 0, then for any k ∈ N

we have E[Zk] = θ−k (m+k−1)!
(m−1)! . In addition, for the case m = θ we have

E
[|1 − Z|6]= 15m2 + 130m + 120

m5
.

In the next lemma, we recall the exact value for the mean and the second moment of a Poisson random variable.

Lemma D.3 (First and second moment of Poisson distribution). Let X be a random variable with Poisson distribution
of parameter λ > 0. Then it follows that

〈X〉Po(λ) = λ and
〈
X2〉

Po(λ)
= λ2 + λ.
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