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We consider the problem of computing with many coins of unknown
bias. We are given access to samples of n coins with unknown biases
p1, . . . , pn and are asked to sample from a coin with bias f (p1, . . . , pn) for
a given function f : [0,1]n → [0,1]. We give a complete characterization of
the functions f for which this is possible. As a consequence, we show how to
extend various combinatorial sampling procedures (most notably, the classic
Sampford sampling for k-subsets) to the boundary of the hypercube.

1. Introduction. The Bernoulli factory problem was formally introduced by Keane and
O’Brien (1994), inspired by earlier work by Von Neumann (1951) and Asmussen, Glynn and
Thorisson (1992). While their initial goal was to design methods to exactly simulate cer-
tain stochastic processes, this tool later found applications in many different fields such as
mechanism design (Dughmi et al. (2017), Cai et al. (2021)), quantum physics (Dale, Jen-
nings and Rudolph (2015), Yuan et al. (2016)), Markov chain Monte Carlo (MCMC) meth-
ods (Flegal and Herbei (2012)), and exact Bayesian inference (Gonçalves, Łatuszyński and
Roberts (2017), Herbei and Berliner (2014)).

The original problem can be best described as manufacturing new (random) coins from
old ones. One is given a Bernoulli variable of unknown bias p, or for short, a p-coin. Even
though we do not know the bias, we can flip the coin as many times as we need obtaining i.i.d.
samples from it. The goal is to produce an f (p)-coin for a given function f : [0,1] → [0,1].

To give an example, consider f (p) = p2 −p3. A simple way to sample from an f (p)-coin
is to flip the p-coin three times obtaining samples X1,X2,X3 ∈ {0,1}. Now we output 1 if
X1 = X2 = 1 and X3 = 0. The probability of outputting 1 is p2(1 − p) = f (p).

Keane and O’Brien (1994) gave necessary and sufficient conditions for a function f :
[0,1] → [0,1] to be implementable. The first condition is that the function f must be contin-
uous. The second condition says that either f is the constant function f (x) = 0, the constant
function f (x) = 1, or there exists some integer m > 0 such that for all p ∈ [0,1]:
(1) min(p,1 − p)m ≤ f (p) ≤ 1 − min(p,1 − p)m.

Furthermore, their proof is algorithmic: given a function satisfying the conditions above, they
give a procedure for sampling from f (p).

1.1. Why exact sampling? An important aspect of Bernoulli factories is that they ask for
exact sampling. The original motivation for the Bernoulli factory problem was to perform
exact simulations of stochastic processes. In these simulations, small sampling errors quickly
compound, sometimes exponentially—hence the need for exact sampling. A similar situation
arises in Bayesian inference, where sampling is a sub-routine in an iterative procedure.

Finally, in mechanism design the fact that sampling is exact allows us to design black-box-
reductions that are Bayesian-incentive compatible. Before the introduction of this machinery,
the known reduction in the general case was ε-Bayesian-incentive-compatible, that is, agents
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had still a small incentive to deviate from truth-telling, which results in a much weaker game-
theoretical guarantee.

This discussion is to motivate why in certain situations approximately simulating an f (p)-
coin is not enough. Approximately sampling can be easily done by the following method: let
X1, . . . ,Xt be t draws from the p-coin and define its empirical average as X̄t = (X1 + · · · +
Xt)/t . We know by the Chernoff bound that for n = �(ε−2 log(1/δ)) we have P[|p − X̄t | >
ε] < δ. Hence if f is continuous, estimating p by X̄t and using external randomness to
sample from a f (X̄t )-coin produces a reasonable approximation of the f (p)-coin.

1.2. Multiparameter factories. In this paper we study the multiparameter version of this
problem: given a compact set K ⊆ [0,1]n and n coins with unknown biases (p1, . . . , pn) ∈ K ,
how to sample from a f (p1, . . . , pn)-coin for a multivariate function f : K → [0,1]. The
sampling procedure is represented by a possibly infinite tree with coins in the internal nodes
(either one of the n coins of unknown bias or an auxiliary coin with known bias) and outcomes
in the leaves:

DEFINITION 1.1. A Bernoulli factory F with input (p1, . . . , pn) corresponds to a (pos-
sibly infinite) rooted binary tree T where each node of T has either 2 children (an internal
node) or 0 (a leaf). While the tree is allowed to be infinite, each node has finite depth. Each
internal node is labelled either with a variable pi or with a constant c ∈ (0,1).

To execute the factory with coins (p1, . . . , pn) we start from the root and at each node
we flip the coin given the label of that node (either one of the pi-coins of unknown bias
or a c-coin of known bias). Based on the outcome, we either take the left edge (0) or the
right edge (1). If we reach a leaf, we output its label. A factory F is valid if for any input
p = (p1, . . . , pn) ∈ [0,1]n it reaches a leaf almost surely. A factory F is valid for a set
K ⊆ [0,1]n if it is valid for all inputs p ∈ K .

In Figure 1 we give an example of a Bernoulli factory that given coins with biases p1
and p2, samples from a f (p)-coin for f (p) = 1

3(1 − p1) + p1(1 − p2). We will assume
throughout the paper that we have access to auxiliary coins with known biases.1

FIG. 1. Example of a Bernoulli factory with input coins p1, p2 samples from a coin with bias
1
3 (1 − p1) + p1(1 − p2). Note that the factory uses an auxiliary coin with known bias 1/3.

1The assumption that we have access to auxiliary coins of known bias can be removed in certain cases. Keane
and O’Brien (1994) observe that given access to a p-coin of unknown bias p ∈ (0,1), we can always sample from
any c-coin for c ∈ (0,1) using the procedure by Von Neumann (1951). For example, to sample a 1/2-coin using
a p-coin with unknown bias p ∈ (0,1) we obtain two samples of the p-coin. If the samples are 01 we output 0, if
the samples are 10 we output 1. In the remaining cases (00 and 11) we re-try. It is not difficult to see this finishes
almost surely and outputs 0 and 1 with equal probabilities. This can be extended to sample to any real number
c ∈ [0,1]. This procedure does not terminate if p ∈ {0,1}. Since in our case we are particularly concerned with
the boundary of the hypercube, it is more convenient to simply assume we have access to coins of known bias.
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Here we investigate how to design factories that terminate almost surely for every p ∈
K and establish necessary and sufficient conditions for implementability. To describe our
conditions, we need a few definitions. We will use [n] to denote {1,2, . . . , n}. Given a vector
p ∈ [0,1]n and S ⊆ [n] we will denote

pS = ∏
i∈S

pi and (1 − p)S = ∏
i∈S

(1 − pi).

Given a function f : [0,1]n → [0,1], subset S ⊆ [0,1]n and a constant c ∈ [0,1] we will
write f |S ≡ c to denote that f (p) = c for all p ∈ S. If we write f ≡ c (omitting S) it means
f is the constant function on the entire hypercube.

Given a partition of [n] into three sets A, S and B , we define the open face FA,S,B of the
hypercube [0,1]n as

FA,S,B :=

⎧⎪⎪⎨
⎪⎪⎩

p ∈ [0,1]n;
pi = 0, i ∈ A

0 < pi < 1, i ∈ S

pi = 1, i ∈ B

⎫⎪⎪⎬
⎪⎪⎭

.

Now we are ready to define the notion of a polynomially bounded function:

DEFINITION 1.2 (Polynomially bounded function). A function f : [0,1]n → [0,1] is
polynomially bounded if there is an integer m ≥ 0 and a real constant c > 0 such that for
each open face FA,S,B of the hypercube the following condition holds:

(2) f |FA,S,B
�≡ 0 ⇒ f (p) ≥ c

(
(1 − p)A · pS(1 − p)S · pB)m ∀p ∈ [0,1]n.

Now we are ready to state the main theorem for the hypercube (later in Section 5 we
generalize this theorem to any compact subdomain):

THEOREM 1.3. A function f : [0,1]n → [0,1] can be implemented by a Bernoulli fac-
tory if and only if it is continuous and both f and 1 − f are polynomially bounded.

In summary, the inequality condition of Keane and O’Brien (1994) for one variable be-
come combinatorial for multiple parameters: one imposed by each open face of the hyper-
cube. If the function is nonzero at an open face, it must be lower bounded by a polynomial
associated with that face. Similarly, if the function is nonone at a face, it must be upper
bounded by a polynomial associated with that face.

We show that these conditions also turn out to be sufficient and exhibit an algorithm to
sample from it. The difficulty of designing such algorithm is to make sure it works near the
faces of the hypercube and dealing with the interaction of multiple combinatorial constraints
when the faces meet. The heart of the proof is a new concentration argument in Section 4.3.
We study a random vector X̄t where each coordinate is an average of Bernoulli variables
drawn from the coins of unknown bias p = (p1, . . . , pn). We relate the probability of a large
deviation in a subset T of the coordinates to the combinatorial structure of the hypercube, in
particular to the polynomials associated with the faces where coordinates in T are free. By
doing so, we can bound the probability that f (X̄t ) ≥ 1/2 in terms of f (p) in a way which
holds uniformly everywhere within the hypercube (even on the boundary).

1.3. The case of Sampford sampling. A particularly curious Bernoulli factory is the
procedure due to Sampford (1967). Sampford sampling actually predates the notion of a
Bernoulli factory by 25 years and is commonly used throughout the statistics literature for
sampling k-subsets with “unequal probabilities of selection.” Formally, the problem is the
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following: given probabilities (p1, . . . , pn) such that
∑

i pi = k, sample a subset S of size k

such that P[i ∈ S] = pi . Sampford’s solution just requires sample access to the coins.
A natural but incorrect solution is the following: sample each coin i once and let Xi ∈

{0,1} be the outcome. Output S = {i ∈ [n];Xi = 1} if |S| = k. If not, retry. To see that this
does not work, execute this procedure with coins with biases (1 − ε,1 − ε,2ε) and observe
that the last element is chosen with O(ε2) probability. There is a simple (but ingenious) fix
to this algorithm: first we obtain S as before (retrying until |S| = k). We then choose a coin
in [n] \ S uniformly at random and flip it again. If this coin comes up 1, we output S. If not,
we resample S and try again.

For the previous procedure to terminate, we need at least one coin with 0 < pi < 1, since
one of the coins that came up 0 initially must be re-flipped and needs to come up 1. If all the
coins are deterministic, for example, p = (1,1,0), the above procedure never terminates.

A natural open question is whether there exists an alternative Bernoulli factory for this
problem that terminates for every input in p ∈ K := {p ∈ [0,1]n;∑

i pi = k}. Niazadeh, Paes
Leme and Schneider (2021) show the following negative result: there is no exponentially con-
verging factory for k-subset that terminates for all p ∈ K . A factory is said to be exponentially
converging if for every p, there is a rate r(p) such that the probability that the procedure has
not terminated after flipping t coins is at most r(p)t . Note that Sampford sampling is expo-
nentially converging for every p ∈ K ∩ (0,1)n.

The negative result by Niazadeh, Paes Leme and Schneider (2021) excludes techniques
based on Bernstein-rational functions, which are the only known ideas for designing factories
that terminate a.s. at the boundary but all lead to exponentially converging factories.

Despite this negative evidence, our new algorithm produces a factory for k-subset that
terminates a.s. for every p ∈ K . More generally, it solves a wider class of problems introduced
in Niazadeh, Paes Leme and Schneider (2021): given a polytope P ⊆ [0,1]n and n coins with
biases p = (p1, . . . , pn) ∈ P , sample a random vertex v of P such that E[v] = p. Niazadeh,
Paes Leme and Schneider (2021) show that is is possible to construct factories for P ∩ (0,1)n

only when P is the intersection of the hypercube [0,1]n and an affine subspace.
These factories, however, suffer from the same problem as Sampford sampling: they di-

verge for certain points in the boundary of the hypercube. Using the techniques developed
in this paper, we exhibit alternative factories that terminate a.s. for all points in P . For ex-
ample, consider the matching polytope: we are given coins pij forming a doubly stochas-
tic matrix and asked to sample a matching M in the complete bipartite graph such that
P[(i, j) ∈ M] = pij . The previous factory required pij > 0 for all edges (i, j). The alter-
native factories constructed in this paper no longer have this restriction.

1.4. Previous results on multiparameter factories. Previous approaches to this problem
either are restricted to rational functions (Mossel and Peres (2005), Morina et al. (2022) and
Niazadeh, Paes Leme and Schneider (2021)) or assume that the vector of coins (p1, . . . , pn)

lies away from the boundary of the hypercube (Nacu and Peres (2005) and Morina (2021)).
Mossel and Peres (2005) and Morina et al. (2022) show how to design factories for Bernstein-
rational functions, that is, rational functions of the type f (p) = a(p)/[a(p) + b(p)] where
a(p) and b(p) are of the form

∑
i ci

∏
j∈[n] p

aij

i (1 − pi)
bij with ci > 0. Recently, Niazadeh,

Paes Leme and Schneider (2021) showed how to design factories for certain combinatorial
objects (such as matchings and flows) using Bernstein-rational functions.

Beyond rational functions, Nacu and Peres (2005) give a procedure for sampling from any
continuous function f : [ε,1 − ε]n → (0,1). Their procedure is based on Bernstein’s proof
the Weierstrass approximation theorem. Their result is originally written for n = 1 but there
is nothing particular about one dimension in their construction.

Using a very clever idea, Morina (2021) shows in Chapter 3 of his PhD thesis how to com-
bine factories defined in [ε,1 − ε]n for decreasing values of ε into a single factory defined
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on the interior of the hypercube (0,1)n. The condition required for the factories to be com-
bined is a single inequality which is a generalization of the condition of Keane and O’Brien
(1994). The result is stated for the open simplex �0

n = {p ∈ (0,1)n;∑n
i=1 pi = 1}. It shows

that a function f : �0
n → (0,1) is implementable by a Bernoulli factory if and only if it is

continuous and for some integer m it holds that
(∏

i

pi

)m

< f (p) < 1 −
(∏

i

pi

)m

∀p ∈ �0
n.

A restriction of Morina’s factory is that it diverges by construction at the boundary and its
running time blows up when we get close to it. The first step in its construction (Lemma 3.13
in Morina (2021)) is to keep sampling all of the coins until each coin comes up 1 at least
�(mn) times and 0 at least �(mn) times. At a high level, it uses the coin outcomes to pick a
value of ε and then it uses a factory for [ε,1 − ε]n domain. The process never terminates if
the input has coins with pi ∈ {0,1}.

2. Preliminaries.

2.1. Multiparameter factory. A multiparameter Bernoulli factory (following the model
of Niazadeh, Paes Leme and Schneider (2021)) is defined in the introduction (Definition 1.1).
From that definition, a valid factory can be seen as a random variable F taking values in
{0,1}. The distribution of F will naturally depend on the input coins p. For that reason
it is convenient to use the notation Pp[·] and Ep[·] to denote the probability measure and
expectation of random variables when (p1, . . . , pn) coins are used.

We will say that a factory is finite if the tree T contains finitely many nodes (and thus, the
factory is guaranteed to terminate after a finite number of coin flips).

2.2. Concentration bounds. We will use Xt ∈ {0,1}n to denote a random vector dis-
tributed according to the product Bernoulli distribution Ber(p1)× · · ·× Ber(pn) correspond-
ing to the input coin flips. For each t = 1,2, . . . and i ∈ [n], the variable Xt,i is an independent
Bernoulli variable with bias pi . We will also let X̄t be a random variable equal to the average
of the first t flips of all n coins:

(3) X̄t := X1 + · · · + Xt

t
∈ [0,1]n.

We will write X̄t,i to denote the ith component of X̄t . Next, we state two well-known
concentration bounds. The first is the Hoeffding bound:

(4) Pp

[|X̄t,i − pi | > δ
] ≤ 2 exp

(−2δ2t
)
.

The second is the sharper Chernoff bound:

(5) Pp[X̄t,i − pi > δ] ≤
((

pi

pi + δ

)pi+δ( 1 − pi

1 − pi − δ

)1−pi+δ)t

.

For values of pi that are closer to zero (say pi < 1/2 and δ < 1/4) we can bound the second
term by a constant. Hence for such pi we can write

(6) Pp[X̄t,i − pi > δ] ≤ (
cδ · pδ

i

)t
,

where cδ is some constant depending on δ.
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2.3. Real topology. Here we recall some elementary facts and definitions from real topol-
ogy. For p ∈ R

n and a real r > 0, we denote the �∞-ball around p of radius r by

B∞(p; r) := {
x ∈R

n; ‖x − p‖∞ < r
}
.

Given any set S ⊆ R
n we denote

B∞(S; r) := ⋃
p∈S

B∞(p; r) = {
x ∈ R

n; ∃p ∈ S s.t. ‖x − p‖∞ < r
}
.

A set U ⊂ R
n is open if for every p ∈ U there is an r > 0 such that B∞(p; r) ⊆ U . An open

cover of a set S consists of a collection of open sets Ui for i ∈ I such that
⋃

i∈I Ui ⊇ S. The
index set I is possibly infinite and uncountable. We say that the cover

⋃
i∈I Ui ⊇ S admits a

finite subcover if there is a finite set I0 ⊂ I such that
⋃

i∈I0
Ui ⊇ S.

We will make extensive use of the following elementary fact.

LEMMA 2.1 (Heine–Borel). A set K is a compact set (i.e., every cover admits a finite
subcover) iff it is topologically closed and bounded.

2.4. Decomposing the hypercube. We recall the decomposition of the hypercube [0,1]n
into 3n disjoint regions that we will refer as open faces. Each open face will correspond to a
partition of [n] into three sets A, S and B . We define the open face FA,S,B as

FA,S,B :=

⎧⎪⎪⎨
⎪⎪⎩

p ∈ [0,1]n;
pi = 0, i ∈ A

0 < pi < 1, i ∈ S

pi = 1, i ∈ B

⎫⎪⎪⎬
⎪⎪⎭

.

For example, the square [0,1]2 is the union of nine disjoint open faces: the interior (0,1)2,
the four edges {0}× (0,1), {1}× (0,1), (0,1)×{0}, (0,1)×{1} and the four vertices {(0,0)},
{(0,1)}, {(1,0)}, {(1,1)}.

We will denote by F̄A,S,B the topological closure of FA,S,B which can be written as

F̄A,S,B = ⋃
A′⊇A,B ′⊇B

FA′,S′,B ′.

For example, the closure of the open face {0} × (0,1) of the square is: {0} × [0,1] which
is the union of three open faces: one representing that edge and two representing the vertices.

3. Main theorem. Our main result is to identify a condition called polynomially bound-
edness (Definition 1.2) which together with continuity is necessary and sufficient for the
existence of a factory. In this section we prove our main result (Theorem 1.3).

3.1. Sanity check. It is useful to check that when we set n = 1 we recover the result by
Keane and O’Brien. For n = 1 there are three open faces: {0}, {1} and (0,1). For (0,1) the
condition that f is polynomially bounded means that

f �≡ 0 ⇒ f (p) ≥ c
(
p(1 − p)

)m
.

Observe that min(p,1 − p) ≤ 1
2 , so if we take k = �log2 c�, then cp(1 − p)m ≥ min(p,1 −

p)k+2m. Similarly the condition that 1 − f is polynomially bounded implies that

f �≡ 1 ⇒ f (p) ≤ 1 − c
(
p(1 − p)

)m
.

Hence if f �≡ 0 and f �≡ 1 then

min(p,1 − p)k+2m ≤ f (p) ≤ 1 − min(p,1 − p)k+2m,
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which is the one-dimensional condition (1). Notice that the conditions for the open faces {0}
and {1} are superfluous here. For example, for {0} our condition says that

f (0) > 0 ⇒ f (p) ≥ c(1 − p).

Note that this is implied by continuity in a neighborhood of 0 and by the condition (1) else-
where.

3.2. Necessary conditions. The next lemmas show that every function f that is imple-
mentable by a factory has f and 1 − f polynomially bounded.

LEMMA 3.1. If a function f : [0,1]n → [0,1] can be implemented by a Bernoulli factory
and for some open face FA,S,B we have f |FA,S,B

�≡ 0 then there exists an integer m and a
constant c such that f (p) ≥ c((1 − p)A · pS(1 − p)S · pB)m, ∀p ∈ [0,1]n.

PROOF. Consider a rooted binary tree (as in Definition 1.1) implementing f . Since
f (p) > 0 for some coins in p ∈ FA,S,B , there must be a path in the tree reaching a leaf la-
belled 1 that always takes the 0-edge when we flip a coin with an index in A and always takes
the 1-edge when we flip a coin with an index in B , or else this path would never be reachable
using the coins p. Since each leaf is at a finite depth, this path is finite. Each path in the tree
corresponds to a polynomial of the form c · ∏

i∈[n] p
gi

i (1 − pi)
hi (a “Bernstein monomial”),

where c is the product of the helper coins flipped along the path, gi is the number of 1-edges
(right) takes after a pi-flip and hi is the number of 0-edges (left) takes after a pi -flip. By the
observation above gi = 0 for i ∈ A and hi = 0 for i ∈ B . Taking m = maxi max(gi, hi) we
obtain the inequality in the statement of the lemma. �

LEMMA 3.2. If a function f : [0,1]n → [0,1] can be implemented by a Bernoulli factory
and for some open face FA,S,B we have f |FA,S,B

�≡ 1 then there exists an integer m and a
constant c such that 1 − f (p) ≥ c((1 − p)A · pS(1 − p)S · pB)m, ∀p ∈ [0,1]n.

PROOF. Same proof as the previous lemma swapping 0 and 1. �

Note that Lemmas 3.1 and 3.2 show constants cF , mF for each face F , while Defi-
nition 1.2 asks for constants c, m that hold uniformly over the faces. To translate from
the face-dependent constants to uniform constants, observe that the expression c((1 −
p)ApS(1 − p)SpB)m is monotone nonincreasing in c and monotone nondecreasing in m

since (1−p)ApS(1−p)SpB ∈ [0,1]. Since there are finitely many faces, it is enough to take
uniform constants c = minF cF and m = maxF mF .

The continuity condition is more intuitive: if two vectors of coins p′,p′′ ∈ [0,1]n are close,
the finite sequence of coin flips generated by them will also be close in total variation distance.
Since the output only depends on the sequence of coins flips observed, the distribution of
outputs must also be close. This intuition is formalized by the following lemma.

LEMMA 3.3. If a function f : [0,1]n → [0,1] can be implemented by a Bernoulli factory
then it is continuous.

PROOF. Consider an implementation of f by a Bernoulli factory F and fix a point a ∈
[0,1]n in the domain of f . We want to show that for every ε > 0, there is δ such that if
‖p − a‖ < δ then |f (p) − f (a)| < ε.

To show that, let T be a random variable showing the number of coins flipped before the
output if the decision tree is executed using an a-coin (this is equal to the depth of the output
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node reached in the tree). Note that all probabilities of random events depend on both the
factory F and the vector of coins used. Since we will use the same factory F throughout
the proof, we will omit it from the subscripts, but we will keep using Pa[·] to denote which
vector of coins is used.

Now fix t such that Pa[T > t] < ε/4. Represent a possible realization of the first t coin
flips of each coin by a tuple x = (x1, . . . , xt ) for xi ∈ {0,1}n we define function F(x) ∈
{0,1,∅} indicating whether the decision tree outputs 0, 1 or does not yet terminate after
seeing inputs x1, . . . , xt . Also, let X = (X1, . . . ,Xt ) ∈ {0,1}nt be the random output of the
coins. With that, we can rewrite Pa[T > t] < ε/4 as

(7)
∑

x∈{0,1}nt ;F(x)=∅

Pa[X = x] ≤ ε

4
.

Now choose δ small enough such that the total variation distance between the sequences
X = (X1, . . . ,Xt ) generated under p and a is at most ε/3 for any ‖p − a‖ < δ. More for-
mally,

(8)
∑

x∈{0,1}nt

∣∣Pa[X = x] − Pp[X = x]∣∣ <
ε

4
∀p ∈ B∞(a, δ).

Now we can bound f (a) and f (p) for ‖p − a‖ < δ as follows:
∣∣∣∣f (a) − ∑

x∈{0,1}nt ;F(x)∈{0,1}
F(x)Pa[X = x]

∣∣∣∣ ≤ ∑
x∈{0,1}nt ;F(x)=∅

Pa[X = x] <
ε

4
,

and similarly:
∣∣∣∣f (p) − ∑

x∈{0,1}nt ;F(x)∈{0,1}
F(x)Pp[X = x]

∣∣∣∣ ≤ ∑
x∈{0,1}nt ;F(x)=∅

Pp[X = x] <
ε

2
,

where the last bound follows from combining equations (7) and (8). Now, taking it all to-
gether, we have

∣∣f (a) − f (p)
∣∣ ≤

∣∣∣∣
∑

x∈{0,1}nt ;F(x)∈{0,1}
F(x)

(
Pa[X = x] − Pp[X = x])

∣∣∣∣ + 3ε

4
<

ε

4
+ 3ε

4
= ε.

�

3.3. Sufficient conditions. To prove that continuous and polynomially bounded are suffi-
cient conditions for implementability, we will use the following lemma (Lemma 3.4), which
is the main technical lemma of the paper. We will prove it in the next section. Before we do
this, however, we will assume it is true and use it to prove Theorem 1.3. Recall the definition
of X̄t in equation (3).

LEMMA 3.4. Let f be a continuous and polynomially bounded function. Then there is
an integer t0 such that for t ≥ t0 it holds that

(9) f (p) − 1

4
· Pp

[
f (X̄t ) ≥ 1

2

]
≥ 1

8
f (p) ∀p ∈ [0,1]n.

Lemma 3.4 will allow us to decompose f (p) into two smaller functions: one which we
can simulate with a finite Bernoulli factory (this will be Pp[f (X̄t ) ≥ 1

2 ]), and a remaining
piece with probability mass at most 3/4 that we can decompose recursively.
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LEMMA 3.5. Let f : [0,1]n → [0,1] be a continuous function such that f and 1−f are
polynomially bounded. Then there exists a function g : [0,1]n → [0,1] that is implementable
by a finite Bernoulli factory such that f̃ defined as follows:

f̃ (p) = 4

3

(
f (p) − 1

4
g(p)

)

is such that f̃ ([0,1]n) ⊆ [0,1], f̃ is continuous and f̃ and 1 − f̃ are polynomially bounded.

PROOF. We start by applying Lemma 3.4 to both f and 1 − f . We know that there are
integers t0 and t1 such that

f (p) − 1

4
· Pp

[
f (X̄t ) ≥ 1

2

]
≥ 1

8
f (p) ∀t ≥ t0,p ∈ [0,1]n,

1 − f (p) − 1

4
· Pp

[
1 − f (X̄t ) ≥ 1

2

]
≥ 1

8

[
1 − f (p)

] ∀t ≥ t1,p ∈ [0,1]n.
Note that we can rewrite

Pp

[
1 − f (X̄t ) ≥ 1

2

]
= Pp

[
f (X̄t ) ≤ 1

2

]
= 1 − Pp

[
f (X̄t ) >

1

2

]
≥ 1 − Pp

[
f (X̄t ) ≥ 1

2

]
.

Replacing it in the previous expression we obtain:

f (p) − 1

4
Pp

[
f (X̄t ) ≥ 1

2

]
≤ 3

4
− 1

8

[
1 − f (p)

] ∀t ≥ t1,p ∈ [0,1]n.
Now if we set t = max(t0, t1) and define a function g : [0,1]n → [0,1] as

g(p) = Pp

[
f (X̄t ) ≥ 1

2

]

then we have that

(10)
1

6
f (p) ≤ 4

3

(
f (p) − 1

4
g(p)

)
≤ 1 − 1

6

[
1 − f (p)

]
.

First observe that (10) implies that f̃ (p) ∈ [0,1].
Now let’s argue that f̃ is polynomially bounded. First observe that if f (p) = 0 at some

point p then we must have f̃ (p) = 0 since the first inequality implies that 0 ≤ −1
4g(p). Since

g(p) ≥ 0 we must have g(p) = 0 and hence f̃ (p) = 4
3f (p) = 0. Conversely, if f̃ (p) = 0,

then by the first inequality of equation (10) it also holds that f (p) = 0.
Therefore, for any open face FA,S,B we have f |FA,S,B

≡ 0 iff f̃ |FA,S,B
≡ 0. If f̃ |FA,S,B

�≡ 0
then by the first inequality in (10) and the fact that f is polynomially bounded, we have

f̃ (p) ≥ 1

6
f (p) ≥ c

6

(
(1 − p)ApS(1 − p)SpB)m

.

The same argument can be repeated with 1 − f instead of f to argue this function is
also polynomially bounded. First observe that if f (p) = 1 at some point p we must have
f̃ (p) = 1 since the last inequality would imply that 1 − 1

4g(p) ≤ 3
4 . Since g(p) ≤ 1 this must

imply that g(p) = 1 and hence f̃ (p) = 4
3(1− 1

4) = 1. Therefore f |FA,S,B
≡ 1 iff f̃ |FA,S,B

≡ 1.
Conversely, if f̃ (p) = 1, then by the second inequality of equation (10) it also holds that
f (p) = 1.

If f̃ |FA,S,B
�≡ 1 then by the second inequality in (10) and the fact that 1−f is polynomially

bounded, we have

1 − f̃ (p) ≥ 1

6

[
1 − f (p)

] ≥ c

6

(
(1 − p)ApS(1 − p)SpB)m

.
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The only part left to argue is that g is implementable by a finite Bernoulli factory, but this
follows by the definition of g: one can implement it by taking t samples of each coin, building
X̄t and checking whether f (X̄t ) ≥ 1

2 . Note that after sampling each of the coins of unknown
bias t times, the vector X̄t is constructing by summing the outcomes and dividing by t .
No extra sampling is involved. Also checking the functional value of f at X̄t requires no
additional sampling. �

We now can derive the proof of Theorem 1.3 by recursively applying the previous lemma.

PROOF OF THEOREM 1.3. We will define a sequence of functions f1(p), f2(p), . . . as
follows. First we define f1(p) = f (p). Then for every k ≥ 1 let gk correspond to the g func-
tion in Lemma 3.5 obtained from fk . Then define fk+1(p) = 4

3(fk(p) − 1
4gk(p)). Unrolling

the recursion we get

f (p) =
(

3

4

)k

fk+1(p) +
k∑

s=1

1

4

(
3

4

)s−1
gs(p).

Since fk+1(p) ∈ [0,1], it means that 0 ≤ f (p) − ∑k
s=1

1
4(3

4)s−1gs(p) ≤ (3
4)k , ∀p ∈ [0,1]n

or in other words, the series
∑∞

k=1
1
4(3

4)k−1gk(p) converges uniformly to f (p). This obser-
vation gives a natural algorithm for sampling from f (p): first sample an index k ∈ Z>0 with
probability 1

4(3
4)k−1. Then use the Bernoulli factory for gk(p) constructed in Lemma 3.5 to

sample 1 with that probability. �

4. Proof of Lemma 3.4. The heart of the argument is establishing Lemma 3.4. Note that
as t → ∞ we know that

Pp

[
f (X̄t ) ≥ 1

2

]
→ 1

{
f (p) >

1

2

}

if f (p) �= 1
2 , so clearly it holds that for each p ∈ [0,1]n there is a large enough t such that

the inequality in the lemma holds. The difficulty in the argument is to show a single t holds
for all points p simultaneously.

The argument will proceed as follows: first let us define the region where the values of f

are small:

L =
{
p ∈ [0,1]n;f (p) ≤ 3

8

}
.

It is simple to see that if p /∈ L then for any value of t it holds that

f (p) − 1

4
Pp

[
f (X̄t ) ≥ 1

2

]
≥ 3

8
− 1

4
= 1

8
≥ 1

8
f (p).

Our proof strategy will be to argue that there exists some t such that equation (9) holds for
all q ∈ L, we will prove the following claim.

CLAIM 4.1. For every q ∈ L there is a radius rq > 0 and an integer tq such that equation
(9) in the statement of Lemma 3.4 holds for all p ∈ L ∩ B∞(q; rq) and t ≥ tq .

If Claim 4.1 is true, then it provides us with an open cover
⋃

q∈L B∞(q; rq) of L. Hence
we can use Lemma 2.1 to argue it must have a finite subcover, that is, there is a finite set of
points Q ⊂ L, |Q| < ∞ such that L ⊂ ⋃

q∈Q B∞(q; rq). Hence if we take t0 = maxq∈Q tq ,
then equation (9) in Lemma 3.4 holds for all t ≥ t0 and p ∈ L.
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4.1. A safe distance from the boundary. We will start by making two observations about
the geometry of set L.

CLAIM 4.2. There is some positive constant δ > 0 such that

f (q) <
1

2
∀q ∈ B∞(p, δ) and p ∈ L.

PROOF. Define H = {p ∈ [0,1]n;f (p) ≥ 1
2}. By the continuity of f , the sets H and

L are compact. Since H and L are disjoint compact sets there is a constant δ such that
‖p − q‖∞ > δ, ∀p ∈ H , q ∈ L. �

With that observation, for any p ∈ L we will bound Pp[f (X̄t ) ≥ 1
2 ] ≤ Pp[‖X̄t − p‖∞ >

δ], which allows us to apply concentration bounds. This will give us a good enough argument
whenever f (p) > 0. For the case f (p) = 0, however, we need a more detailed understanding
of how f behaves close to the boundary. For that, we will use the following two claims.

CLAIM 4.3. If p ∈ FA,S,B and f (p) = 0 then f |FA,S,B
≡ 0.

PROOF. If f |FA,S,B
�≡ 0 then f (q) ≥ c · ((1 − q)AqS(1 − q)SqB)m which contradicts the

fact that f (p) = 0 since (1 − p)A = 1, pB = 1 and pS(1 − p)S > 0. �

The second claim establishes that if a function is zero on an open face, then there exists a
safe distance δ such that any point q within distance δ of this open face satisfies f (q) < 1/2.

CLAIM 4.4. If f |FA,S,B
≡ 0 then f (q) < 1/2 for all q ∈ [0,1]n ∩ B∞(FA,S,B, δ) for the

constant δ in Claim 4.2.

PROOF. Follows directly from Claim 4.2 and the fact that FA,S,B ⊂ L. �

4.2. Proof of Claim 4.1 for f (q) > 0. By continuity, there is a radius r small enough
such that

2f (q) ≥ f (p) ≥ 1

2
f (q) ∀p ∈ L ∩ B∞(q, r).

By Claim 4.2 and the Hoeffding bound (equation (4)) we know that

Pp

[
f (X̄t ) ≥ 1

2

]
≤ Pp

[‖X̄t − p‖∞ > δ
] ≤ 2n exp

(−2δ2t
) ≤ 1

4
f (q)

for t ≥ tq := �− 1
2δ2 log( 1

8n
f (q))� and p ∈ L. Therefore, we have

f (p) − 1

4
Pp

[
f (X̄t ) ≥ 1

2

]
≥ 1

2
f (q) − 1

4
f (q) = 1

4
f (q) ≥ 1

8
f (p),

therefore establishing equation (9) for p ∈ L ∩ B∞(q, r) and t ≥ tq .

4.3. Proof of Claim 4.1 for f (q) = 0. Let FA,S,B be the open face containing q . By
Claim 4.3 we know that f |FA,S,B

≡ 0. We start by taking a small radius r such that r < δ/2
and qi − r > r > 0 and 1 − qi − r > r > 0 for all i ∈ S. Through the course of the proof, we
may decrease r further if necessary.
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Our goal is to bound the probability Pp[f (X̄t ) ≥ 1/2] for p ∈ B∞(q, r) ∩ L. We will
decompose this probability by looking at the coordinates (specifically, the coordinates in
A ∪ B) on which X̄t significantly deviates from p:

Pp

[
f (X̄t ) ≥ 1

2

]
= ∑

T ⊆A∪B

Pp

[
f (X̄t ) ≥ 1

2
and T =

{
i ∈ A ∪ B; |X̄t,i − pi | > δ

2

}]
.

We will show that for each T ⊆ A ∪ B there is r small enough such that

(11) Pp

[
f (X̄t ) ≥ 1

2
and T =

{
i ∈ A ∪ B; |X̄t,i − pi | > δ

2

}]
≤ 1

2n+2 f (p).

If we can establish this, then it would imply that Pp[f (X̄t ) ≥ 1
2 ] ≤ 1

4f (p) which directly
implies equation (9). We will consider two cases depending on the value of f in the open
face FA\T ,S∪T ,B\T .

Case 1: fFA\T ,S∪T ,B\T ≡ 0. In this case, by Claim 4.4 we have that all points p at a �∞ distance
at most δ from FA\T ,S∪T ,B\T have f (p) < 1/2. Now observe that all the coordinates in which
p differs from X̄t by at least δ/2 belong to S ∪ T . Hence, the �∞ distance between X̄t and
FA\T ,S∪T ,B\T is at most δ/2, and hence X̄t ∈ L, which in turn means that f (X̄t ) < 1

2 . So the
left-hand side of equation (11) is zero.

Case 2: fFA\T ,S∪T ,B\T �≡ 0. In this case, by the fact that f is polynomially bounded we have

f (p) ≥ c · (
(1 − p)A\T · pS∪T (1 − p)S∪T · pB\T )m

.

For p ∈ B∞(q, r) we have 1 −pi > r for i ∈ A∪S and pi > r for i ∈ S ∪B by the definition
of r . Since r is a constant we can write

f (p) ≥ C · (
pT ∩A · (1 − p)T ∩B)m

.

Now note that the left-hand side of equation (11) is at most

Pp

[
X̄t,i − pi >

δ

2
,∀i ∈ T ∩ A and pi − X̄t,i >

δ

2
,∀i ∈ T ∩ B

]

since for i ∈ A we have pi − X̄t,i ≤ pi < r < δ/2 and for i ∈ B we have X̄t,i −pi ≤ 1−pi ≤
r < δ/2. By the Chernoff bound (equation (5)) this can be bounded by

∏
i∈A∩T

(
C′pδ/2

i

)t · ∏
i∈B∩T

(
C′(1 − pi)

δ/2)t = (
C′)|T |t · (

pA∩T (1 − p)B∩T )δt/2

for some constant C′. Choose t = �4m/δ�. Then for a constant C′′ we can bound the expres-
sion above by

C′′ · (
pA∩T (1 − p)B∩T )2m

.

We know that |T | ≥ 1 since f |A,S,B ≡ 0, so pA∩T (1 − p)B∩T ≤ r . It follows that, for suffi-
ciency small values of r ,

r ≤
(

C

2nC′′
)1/m

and therefore equation (11) holds for all p ∈ L ∩ B∞(q, r).
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5. Factories on subdomains of the hypercube. Next we characterize which functions
defined on a compact subdomain of the hypercube are implementable. Given a compact set
K ⊆ [0,1]n and a continuous function f : K → [0,1], our first instinct is to check whether we
can extend f to the entire hypercube satisfying the properties in Theorem 1.3. The problem
with this approach is that it is possible to construct functions that are implementable on a
subset K but cannot be extended to an implementable function on the entire hypercube. Here
is an example:

EXAMPLE 5.1. Let K be the convex hull of {(1
2 ,0), (0, 1

2)} and define f : K → [0,1] as
f (p) = p1/(p1 + p2). We first observe that f is implementable by the following procedure:
choose a coin i ∈ {1,2} uniformly at random and flip it. If the coin comes up 1, then output 1
if i = 1 and 0 if i = 2. If the flipped coin comes up 0 we retry. Each time we do it, we output
1 with probability p1

2 , we output 0 with probability p2
2 and retry with probability 1 − p1+p2

2 .
The total probability of outputting one is therefore

∑∞
k=0(1 − p1+p2

2 )k
p1
2 = p1

p1+p2
.

However, f does not have a continuous and polynomially bounded extension to the hyper-
cube. To see that observe that since f (1

2 ,0) = 1, then it must be 1 on the open face (0,1)×{0}
by the fact it is polynomially bounded. Similarly, since f (0, 1

2) = 0 then it must be 0 on the
open face {0} × (0,1). Such a function cannot be continuous on [0,1]2 since there are se-
quences approaching (0,0) with different limits.

Instead of trying to extend the function we will adapt the proof in the previous section to
deal with any domain K . First we say that a function f : K → [0,1] is polynomially bounded
on K if there is an integer m and a real constant c > 0 such that for every open face FA,S,B

of the hypercube, it holds that

∃q ∈ K ∩ FA,S,B, f (q) > 0 ⇒ f (p) ≥ c
(
(1 − p)A · pS · (1 − p)S · pB)m ∀p ∈ K.

With this extended definition we state the following.

THEOREM 5.2 (Extension of Theorem 1.3 to subdomains). For a compact K ⊆ [0,1]n, a
function f : K → [0,1] is implementable by a Bernoulli factory if and only if it is continuous
and f and 1 − f are polynomially bounded on K .

The necessary conditions follow from the exact same arguments as in Lemmas 3.1, 3.2
and 3.3. To prove it is sufficient, we need to deal with the following difficulty in extending
the proof: the sampled average X̄t may not be in the domain K so f (X̄t ) is not well defined.
Therefore we cannot use Lemma 3.4 directly.

To address this, we need two new ideas. The first new idea is to project the sampled point
X̄t to the domain K . One difficulty in simply projecting the sampled average is that if Y is
the projection of X̄t to K then a large deviation in one coordinate (say |X̄t,i − pi | is large)
can cause a large deviation for possibly many other coordinates |Yj − pj | in the projection.
This makes it hard to apply the argument in Section 4.3 since we need to reason about large
deviations of subsets of coordinates.

The second new idea seeks to address this point: we will only project if the sampled aver-
age X̄t is close enough to the domain K . If not, we will resample X̄t . By doing this, we can
guarantee that the coordinates will not move too much.

5.1. Project if close enough. The previous discussion motivates the definition a new ran-
dom variable Zt,ε . First, we will define the projection operator �K : [0,1]n → K which is a
function such that ∥∥�K(p) − p

∥∥∞ ≤ ‖q − p‖∞ ∀p ∈ [0,1]n, q ∈ K.
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Note that there may be many choices for �K , in which case we may choose arbitrarily. Also
observe that �K is not necessarily continuous.

Now define Yt,ε as a random variable taking values in [0,1]n distributed according to the
conditional distribution of X̄t given that X̄t ∈ B∞(K, ε):

Pp[Yt,ε ∈ A] = Pp

[
X̄t ∈ A | X̄t ∈ B∞(K, ε)

] ∀ measurable A ⊆ [0,1]n.
This variable can be sampled as follows: first sample X̄t . If X̄t ∈ B∞(K, ε) then set Yt,ε = X̄t .
If not, resample X̄t and try again until X̄t ∈ B∞(K, ε). Now define

Zt,ε = �K(Yt,ε).

LEMMA 5.3. If t ≥ log(8n)/(2ε2) then for any p ∈ K and any measurable set A it holds
that

Pp[Yt,ε ∈ A] ≤ 2 · Pp[X̄t,ε ∈ A].

PROOF. By the definition of Yt,ε we can write

Pp[Yt,ε ∈ A] = Pp

[
X̄t,ε ∈ A | X̄t ∈ B∞(K, ε)

] = Pp[X̄t,ε ∈ A and X̄t ∈ B∞(K, ε)]
Pp[X̄t ∈ B∞(K, ε)] .

The numerator of the last expression is clearly bounded above by Pp[X̄t,ε ∈ A]. For the
denominator, notice that for p ∈ K we have B∞(p, ε) ⊆ B∞(K, ε) hence

Pp

[
X̄t ∈ B∞(K, ε)

] ≥ Pp

[
X̄t ∈ B∞(p, ε)

] = 1 − Pp

[‖X̄t − p‖∞ ≥ ε
]
.

By the Hoeffding bound, we have Pp[‖X̄t − p‖∞ ≥ ε] ≤ 2n exp(−2ε2t) ≤ 1
2 for t ≥

log(8n)/(2ε2). Putting it all together, we obtain the result in the statement. �

5.2. Extension of Lemma 3.4 to subdomains.

LEMMA 5.4. Let f : K → [0,1] be a continuous and polynomially bounded function on
K . Then there is some ε > 0 and an integer t0 such that for t ≥ t0 it holds that

(12) f (p) − 1

4
· Pp

[
f (Zt,ε) ≥ 1

2

]
≥ 1

8
f (p) ∀p ∈ [0,1]n.

With this lemma, the proof of Theorem 5.2 follows from exact the same arguments used
in Section 3.3 to prove Theorem 1.3. The only new thing to note is that for any fixed t and
ε the function gt,ε(p) = Pp[f (Zt,ε) ≥ 1

2 ] can be implemented by a Bernoulli factory since
Zt,ε can be sampled with only sample access to the pi -coins.

5.3. Proof of Lemma 5.4. We are now left to prove Lemma 5.4, for which we will need
a slight modification in the arguments. As before we can define

L =
{
p ∈ K;f (p) ≤ 3

8

}
.

For p /∈ L, the statement of the lemma is once again trivial. For p ∈ L we will follow the
strategy in Claim 4.1. First, observe that Claim 4.2 still holds since L and {p ∈ K;f (p) ≥ 1

2}
are disjoint compact sets. Next we strengthen Claims 4.3 and 4.4.

CLAIM 5.5. Let F̄A,S,B be the closure of FA,S,B . If p ∈ FA,S,B and f (p) = 0 then
f |K∩F̄A,S,B

≡ 0.
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PROOF. The closure of FA,S,B is the union of all open faces FA′,S′,B ′ where A ⊆ A′
and B ⊆ B ′. Now there is some point q ∈ K ∩ FA′,S′,B ′ such that f (q) > 0 then f (q) ≥
c · ((1 − q)A

′
qS′

(1 − q)S
′
qB ′

)m which contradicts the fact that f (p) = 0 since pi < 1 for
i ∈ A′ since A′ ⊆ A ∪ S, pi > 0 for i ∈ B ′ since B ′ ⊆ B ∪ S and 0 < pi < 1 for i ∈ S′ ⊆ S.

�

CLAIM 5.6. Let F̄A,S,B be the closure of FA,S,B . If f |K∩F̄A,S,B
≡ 0, there is some δ such

that if f (q) < 1
2 for all q ∈ K ∩ B∞(F̄A,S,B, δ).

PROOF. For the second part, if no such δ exists, then there must be a sequence of points
qt with qt ∈ K ∩ B∞(F̄A,S,B, 1

t
) such that f (qt ) ≥ 1

2 . Since K is compact, there must be a
subsequence of qt that converges to a point q∗ ∈ K ∩ F̄A,S,B . Since f (qt ) ≥ 1

2 we have also
f (q∗) ≥ 1

2 . But this contradicts the previous paragraph, which shows that f (q∗) = 0. �

Now fix δ > 0 small enough such that δ satisfies Claims 4.2 and Claim 5.6. We will mirror
Sections 4.2 and 4.3 and prove Claim 4.1 first for f (q) > 0 and then for f (q) = 0.

5.3.1. Claim for f (q) > 0. We will set ε = δ/2. Observe that ‖Zt,ε − Yt,ε‖∞ ≤ ε so
‖Yt,ε − p‖∞ ≤ ‖Yt,ε − Zt,ε‖∞ + ‖Zt,ε − p‖∞ ≤ ε + ‖Zt,ε − p‖∞, hence

Pp

[
f (Zt,ε) ≥ 1

2

]
≤ Pp

[‖Zt,ε − p‖∞ > δ
] ≤ Pp

[
‖Yt,ε − p‖∞ >

δ

2

]
.

By Lemma 5.3, the last probability is at most 2 · Pp[‖X̄t − p‖∞ > δ
2 ] for large enough t .

From this point on, the proof is exactly the same as in Section 4.2.

5.3.2. Claim for f (q) = 0. We set ε = δ/4 and as in Section 4.3 we split the probability
of Pp[f (Zt,ε) ≥ 1

2 ] depending on which components have a large deviation in Yt,ε :

Pp

[
f (Zt,ε) ≥ 1

2

]
= ∑

T ⊆A∪B

Pp

[
f (Zt,ε) ≥ 1

2
and T =

{
i ∈ A ∪ B; ∣∣(Yt,ε)i − pi

∣∣ >
δ

2

}]
.

As before, we argue that for all points p in a small enough ball around q we have

(13) Pp

[
f (Zt,ε) ≥ 1

2
and T =

{
i ∈ A ∪ B; ∣∣(Yt,ε)i − pi

∣∣ >
δ

2

}]
≤ 1

2n+2 f (p).

For each T ⊆ A ∪ B we will consider two cases depending on the value of f on K ∩
F̄A\T ,S∪T ,B\T . A first observation is that the closure FA\T ,S∪T ,B\T contains FA,S,B and hence
K ∩ F̄A\T ,S∪T ,B\T �=∅.

Case 1: f |K∩F̄A\T ,S∪T ,B\T ≡ 0. By Claim 5.6 we have f (q) < 1/2 for all q ∈
B∞(F̄A\T ,S∪T ,B\T , δ). Since the distance between Zt,ε and that face is at most
maxi∈A∪B\T |(Zt,ε)i − (Yt,ε)i | + |(Yt,ε)i − pi | + r ≤ 3δ

4 + r < δ for a radius r < δ
4 . Hence

the probability in equation (13) is zero.

Case 2: f |K∩F̄A\T ,S∪T ,B\T �≡ 0. In that case, there is an open face FA′,S′,B ′ in the closure

F̄A\T ,S∪T ,B\T such that K ∩ FA′,S′,B ′ �= ∅ and f |FA′,S′,B′ �≡ 0. Since f is polynomially
bounded on K , we have

f (p) ≥ c · (
(1 − p)A

′
pS′

(1 − p)S
′
pB ′)m ≥ c · (

(1 − p)A\T pS∪T (1 − p)S
′
pB\T )m

,

where the inequality follows from the fact that A \ T ⊆ A′ and B \ T ⊆ B ′ since FA′,S′,B ′ ⊆
F̄A\T ,S∪T ,B\T . From this point on, the proof is exactly the same as in Section 4.2, using
Lemma 5.3 to translate statements about Yt,ε to X̄t .
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6. Extending Sampford sampling to the boundary. Given probabilities (p1,p2, . . . ,

pn) with
∑

i pi = k (for some integer 1 ≤ k < n), we wish to sample a k-element sized subset
U of {1,2, . . . , n} with the property that P[i ∈ U ] = pi . Sampford sampling is a method
for accomplishing this given only sample access to coins with these probabilities. Sampford
sampling proceeds as follows:

• Sample each coin i (with probability pi ) once and let Xi ∈ {0,1} be the outcome.
• Let U = {i;Xi = 1} be the set of coins that came up heads. If |U | �= k, go back to step 1.
• Choose a uniform random coin in [n] \ U , and flip it. If it comes up heads, output U .

Otherwise, go back to step 1.

For each U ⊂ [n] with |U | = k, define

gU(x) = 1

n − k

(∏
i∈U

xi

)
·
(∏

i /∈U

(1 − xi)

)
·
(∑

i /∈U

xi

)
.

Note that gU(p) is exactly the probability that we output a specific set U for one individual
trial of the above procedure (i.e., without restarting the procedure). It follows that the above
procedure samples a subset U with probability

fU(x) = gU(x)∑
V ⊂[n],|V |=k gU(x)

.

Although fU(x) is defined on the interior [0,1]n, fU(x) is undefined for some points on
the boundary of [0,1]n (and even for some points within the subset K = {p ∈ [0,1]n;∑

pi =
k}). For example, consider the point p with pi = 1 for 1 ≤ i ≤ k and pi = 0 for k +1 ≤ i ≤ n.
Although this value of p satisfies

∑
i pi = k, fU(p) is undefined at this point; in particular,

gU(p) = 0 for every single subset U . Indeed, for this set of probabilities, it’s easy to verify
that the procedure described above can never terminate: every round we will sample the set
U = {1,2, . . . , k}, and then immediately fail the subsequent check in step 3.

In this section we will show that it is indeed possible to construct a multiparameter
Bernoulli factory for this problem that terminates almost surely for all valid sets of coins:

THEOREM 6.1. There exists a multiparameter factory for Sampford sampling that ter-
minates everywhere in the set K = {p ∈ [0,1]n;∑

pi = k}.
To prove this theorem we will show that there exists a continuous completion of fU(x) that

satisfies the constraints of Theorem 5.2. Then we will apply the Bernoulli race construction
by Dughmi et al. (2017).

LEMMA 6.2 (Bernoulli race (Dughmi et al. (2017))). If functions f1, . . . , fk : K → [0,1]
can be implemented by a Bernoulli factory and

∑k
j=1 fj (p) > 0 for all p ∈ K , then there

exists a sampling algorithm that for each p ∈ K samples an index i ∈ [k] with probability
proportional to fi(p)/(

∑k
j=1 fj (p)).

PROOF. We sample an index i ∈ [k] uniformly at random and then sample from the
fi(p)-coin. If it comes up 1 we return index i. Otherwise we retry. The procedure terminates
a.s. since it has a positive probability of outputting for each retry. Since each trial outputs
index i with probability proportional to fi(p)/k, the overall procedure outputs index i with
probability fi(p)/(

∑k
j=1 fj (p)). �

Given a set U ⊂ [n], let eU ∈ [0,1]n be the point such that (eU )i = 1 if i ∈ U and (eU )i = 0
otherwise. Note that each eU with |U | = k lies in K . We show that these are the only points
of discontinuity of fU(x) within K , and that these discontinuities can be resolved.
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LEMMA 6.3. Define f U(x) : K → [0,1] as

f U(x) =

⎧⎪⎪⎨
⎪⎪⎩

fU(x) for x ∈ K,x �= eU ,

1 for x = eU ,

0 for x = eV ,V �= U.

Then f U(x) is a continuous function defined on all of K .

PROOF. We first show that fU(x) is defined for all points in K not of the form eU (for
any subset U ⊂ [n] of size k). To see this, fix an x ∈ K and let I (x) = {i ∈ [n];xi > 0} be the
set of nonzero coordinates of x. Since x ∈ K ,

∑
xi = k and therefore |I (x)| ≥ k – moreover,

if |I (x)| = k, then we must have xi = eI (x). It follows that if x is not of the form eU , then
|I (x)| ≥ k + 1.

Now choose any subset U ′ of I (x) of size k that contains all indices i such that xi = 1
(since

∑
xi = k, there are at most k such indices, and they all must belong to I (x)). Note that

each of the three terms of gU ′(x) are positive, so gU ′(x) > 0. It follows that the denominator
of fU(x) is positive, and therefore fU(x) is well-defined for all such points (and therefore
f U is well-defined for all points in K).

It remains to show f U is continuous on K . It suffices to check continuity at the points eU ′ .
To see this, observe that fU(p) satisfies

∑
U ;|U |=k fU (p)eU = p for all p ∈ K \ {eU ; |U | =

k}. Now fix a sequence pt → eU ′ and some subset U ′′ �= U ′. There is some coordinate i ∈
U ′′ \ U ′. Then looking at the ith coordinate we have that fU ′′(pt ) ≤ (pt )i → (eU ′)i = 0.
Since fU ′′ ≥ 0 we must have fU ′′(pt ) → 0. Hence f U ′′ is continuous at all points eU ′ with
U ′ �= U ′′. To check continuity when U ′ = U ′′ take any coordinate i ∈ U ′ and pt → eU ′ . Then
fU ′(pt ) = (pt )i − ∑

U ′′ �=U ′ fU ′′(pt )(eU ′′)i → 1 by the previous observation. Hence f U ′ is
also continuous at eU ′ . �

We will now show that this function f U satisfies the constraints of Theorem 5.2 on the
set K (and hence we can construct a multivariate Bernoulli factory for the function f U that
terminates a.s. for all points in K).

LEMMA 6.4. The function f U is polynomially bounded on K .

PROOF. Let us begin by characterizing the faces FA,S,B where there exists a point p ∈
FA,S,B ∩ K such that f U(p) > 0. In particular, we claim that if this happens, then B ⊆ U ⊆
(S ∪ B). To see why, note that if i ∈ B then pi = 1 for p ∈ FA,S,B , so if we have a positive
probability of outputting subset U , U must contain element i. Similarly, if i ∈ A, then pi = 0
for p ∈ FA,S,B , so if we have a positive probability of outputting subset U , U cannot contain
element i (and thus must be contained in S ∪ B).

We will now show that for all p ∈ K and faces FA,S,B satisfying B ⊆ U ⊆ (S ∪ B), there
exist constants c,m > 0 such that

(14) f U(p) ≥ c · (
(1 − p)A · (1 − p)SpS · pB)m

.

Let U = [n] \ U . Note that since p,1 − p ≤ 1, U ⊆ (S ∪ B), and U ⊆ (S ∪ A), (14) is
implied by the following inequality:

(15) f U(p) ≥ c
(
(1 − p)U · pU )m

.

We will prove (15). First, note that this holds for all p of the form eV with |V | = k (in
particular, whenever f U(eV ) = 0, the RHS of (15) is also 0). It suffices to prove (15) on all
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other points of K . On these points f U(p) = fU(p), so by substituting in the definition of
fU(p), it suffices to prove that

(16) gU(p) ≥ c
(
(1 − p)U · pU )m ∑

|V |=k

gV (p).

Note that

gU(p) = 1

n − k
pU(1 − p)U

∑
i∈U

pi.

Inequality (16) thus reduces to

(17)
∑
i /∈U

pi ≥ c(n − k)
(
(1 − p)U · pU )m−1 ∑

|V |=k

gV (p).

We will now prove the following: for any ε > 0, if
∑

i /∈U pi = ε, then gV (p) ≤ kε for
each V ⊆ [n] with |V | = k. Note that this implies (17) (in particular, it suffices to set c =
1/((n − k)k

(n
k

)
) and m = 1).

To show the above claim, note that if
∑

i /∈U pi = ε, then pi ≤ ε for all i /∈ U . Now note
that for any V �= U with |V | = |U | = k, there must exist an index i∗ belonging to V that does
not belong to U . It follows that for V �= U .

gV (p) = 1

n − k
pV (1 − p)V

(∑
i∈V

pi

)
≤ kpi∗ ≤ kε.

For V = U , it immediately follows that gU(p) ≤ ∑
i∈U pi = ε, concluding our proof. �

LEMMA 6.5. If functions f1, . . . , fk : K → [0,1] are polynomially bounded, then so is
their sum f := f1 + · · · + fk .

PROOF. If for a certain open face FA,S,B we have f |K∩FA,S,B
�≡ 0 then there must be one

index i such that fi |K∩FA,S,B
�≡ 0 and since fi is polynomially bounded, we have f (p) ≥

fi(p) ≥ c((1 − p)ApS(1 − p)SpB)m for some constant c > 0 and integer m ≥ 0. �

Putting it all together we obtain a proof of Theorem 6.1.

PROOF OF THEOREM 6.1. We first argue that f U satisfies the constraints of Theorem 5.2
for the set K , and therefore that we can construct a multivariate Bernoulli factory for f U that
terminates a.s. for all p ∈ K .

To show this, we must show that f U is continuous on K , and that both f U and 1 −
f U are polynomially bounded on K . We have already shown that f U is continuous on K

(Lemma 6.3) and that f U is polynomially bounded on K (Lemma 6.4). To see that 1 −f U is
polynomially bounded on K , note that 1 − f U = ∑

V �=U f V . Since this is a sum of functions
of each polynomially bounded on K , it follows that 1 − f U is polynomially bounded on K

(Lemma 6.5).
Finally, we will use our factories that output a coin with probability f U(p) to construct a

factory that outputs an actual subset U using the Bernoulli race in Lemma 6.2. �

7. Combinatorial Bernoulli factories. Given a polytope P ⊆ [0,1]n (with vertices
V (P)), a combinatorial Bernoulli factory for P is an exact sampling procedure that, given
coins (p1,p2, . . . , pn) ∈ P , outputs a vertex v ∈ V (P) such that Ep[v] = p. More formally, a
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combinatorial Bernoulli factory is a collection2 of |V (P)| multiparameter Bernoulli factories
for functions fv(p) satisfying (for all p ∈ P)∑

v∈V (P)

fv(p) = 1 and
∑

v∈V (P)

vfv(p) = p.

Combinatorial Bernoulli factories capture a wide range of combinatorial sampling prob-
lems. For example, the problem of Sampford sampling is equivalent to the problem of con-
structing a combinatorial Bernoulli factory for the polytope P = [0,1]n ∩ {p ∈ R

n|∑i pi =
k}. Other problems captured by combinatorial Bernoulli factories include exact sampling of
matchings and flows.

Niazadeh, Paes Leme and Schneider (2021) show that any polytope P that admits a combi-
natorial Bernoulli factory must be of the form P = [0,1]n ∩K , where K is an affine subspace
of Rn. Moreover, they give a general method for constructing combinatorial Bernoulli facto-
ries for any such polytope; however, as with existing implementations of Sampford sampling,
the factories they generate can fail to terminate at some points on the boundary of [0,1]n. In
this section, we provide an alternate method for constructing combinatorial Bernoulli facto-
ries that works for all polytopes of the form P = [0,1]n ∩ K , everywhere in P .

We begin by presenting our new construction. Given a d-dimensional polytope P and a
vertex w of P , we say that the fan triangulation Tw of P corresponding to vertex w is the
division of P into simplices with disjoint interiors formed by connecting w to each facet of P
that does not contain w (if a facet contains more than d vertices of P , arbitrarily triangulate
it into (d − 1)-dimensional simplices first).

Note that given a simplex, there is a unique way to write a point in the simplex as a convex
combination of its vertices. This implies that any triangulation T of P gives rise to a natural
way to decompose a point p ∈ P as a convex combination of the vertices of P : namely, find
the simplex T of the triangulation that p belongs to, and write p as a convex combination of
the vertices of T . Let g

(w)
v (p) be the coefficient of vertex v in the decomposition stemming

from the fan triangulation Tw . Note that all these functions g
(w)
v : P → [0,1] are continuous

since they are continuous on each simplex of the triangulation and agree on the common
faces.

(18) fv(p) = 1

|V (P)|
∑

w∈V (P)

g(w)
v (p).

By construction, it follows that
∑

v fv(p) = 1 and
∑

v vfv(p) = p for all p ∈ P . In the
remainder of the section, we will show that if P is of the form [0,1]n ∩ K for some affine
subspace K , then each fv(p) satisfies the conditions of Theorem 5.2 (and thus can be imple-
mented by a multiparameter Bernoulli factory).

We will need the following lemma.

LEMMA 7.1. Let P be a polytope of the form [0,1]n ∩K , where K is an affine subspace
of Rn. Let v ∈ V (P) be a vertex of P , and let F be a facet of P that does not contain v. Then
there exists a coordinate i such that either vi > 0 and xi = 0 for all x ∈ F , or vi < 1 and
xi = 1 for all x ∈ F .

PROOF. Since K is an affine subspace, each facet of P can be written as the intersection
of a facet of [0,1]n with K . Each facet of [0,1]n is given by a single constraint of the form
xi = 0 or xi = 1.

2The Bernoulli race in Lemma 6.2 is used to convert this collection of factories into a procedure for sampling a
vertex with the desired probability.



4006 R. PAES LEME AND J. SCHNEIDER

Assume that the facet F is equal to {xi = 0}∩K . Then if v is not contained in F , it must be
the case that vi �= 0 (and thus vi > 0 and the first condition of the theorem holds). Similarly,
if the facet F is given by {xi = 1} ∩ K , then any vertex v not contained in F must satisfy
vi < 1, and the second condition of the theorem holds. �

Note that the previous lemma fails if P is not the intersection of the hypercube with an
affine subspace. For example, if P is the convex hull of (0,0), (1,0), (0,1), the lemma fails
for v = (0,0) and F the opposite edge. This is an important sanity check, as Niazadeh, Paes
Leme and Schneider (2021) shows that no other polytope admits a combinatorial Bernoulli
factory.

We can now show that fv(p) is polynomially bounded (and thus that we can construct
combinatorial Bernoulli factories that terminate everywhere on P).

LEMMA 7.2. If P is a polytope of the form [0,1]n ∩ K where K is an affine subspace of
R

n, then the functions fv(p) are polynomially bounded on P .

PROOF. Fix a vertex v of P . To begin, we’ll argue that g
(v)
v (p) > 0 for exactly the points

p ∈ P where fv(p) > 0. To see this, note that if g
(v)
v (p) > 0, then fv(p) > 0 (since g

(v)
v (p)

is a summand in fv(p)). But conversely, by construction g
(v)
v (p) only equals 0 on (closed)

faces of P that do not contain v. Since fv(p) also forms a convex decomposition of p into the
vertices of P , fv(p) must also equal 0 on all these closed faces and it follows that gv(p) = 0
implies that fv(p) = 0.

We will now show that g
(v)
v (p) is polynomially bounded on P ; it then follows from (18)

that fv(p) is polynomially bounded on P (since fv(p) > 0 implies g
(v)
v (p) > 0).

Recall that g
(v)
v (p) is the decomposition induced by the fan triangulation Tv . That is, to

compute the value of g
(v)
v (p), we first must identify the simplex of Tv that p belongs to, and

(uniquely) write p as a convex combination of the vertices of that simplex.
Let us assume that p belongs to the simplex T ∈ Tv . Since Tv is the fan triangulation

for vertex v, T must be the convex hull of a facet F of P (not containing v) and v. By
Lemma 7.1, there exists some coordinate i such that either vi > 0 and F ⊂ {x;xi = 0} or
vi < 1 and F ⊂ {x;xi = 1}.

In the first case, note that g
(v)
v (p) must equal pi/vi (since vi is the only vertex of T

that contains a positive ith component). We claim that given this, g
(v)
v (p) is polynomially

bounded. To see why, note that if fv(p) > 0 then g
(v)
v (p) > 0 and as a consequence pi > 0

(since vi > 0). It follows that if g
(v)
v (p) > 0 and p belongs to some open face FA,S,B of the

hypercube, then i /∈ A. But now note that if i /∈ A, then there exist constants c and m such
that

(19)
pi

vi

≥ c · (
(1 − p)A · pS(1 − p)S · pB)m

.

In particular, since i lies either in S or B , it suffices to take m = 1 and c = 1/vi .
Similarly, in the second case g

(v)
v (p) must equal (1 − pi)/(1 − vi). A similar argument

shows that g
(v)
v (p) is polynomially bounded in this case (now we must have i /∈ B , and a

factor of (1 − pi) will appear on the RHS of the analogue of (19)). �

THEOREM 7.3. If P is a polytope of the form [0,1]n ∩K , where K is an affine subspace
R

n, then there exists a combinatorial Bernoulli factory for P which terminates almost surely
everywhere on the boundary.
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PROOF. It suffices to show that the functions fv(p) defined in (18) satisfy the conditions
of Theorem 5.2. Namely, we must show that fv(p) are continuous, and that both fv(p) and
1 − fv(p) are polynomially bounded on P .

Since each g
(w)
v (p) is continuous, fv(p) is continuous. By Lemma 7.2, each fv(p) is

polynomially bounded on P . Finally, note that 1 − fv(p) = ∑
w �=v fw(p), so 1 − fv(p) is

polynomially bounded by Lemma 6.5. �
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