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We develop a general approach to Stein’s method for approximating a
random process in the path space D([0,T] →R

d) by a real continuous Gaus-
sian process. We then use the approach in the context of processes that have
a representation as integrals with respect to an underlying point process, de-
riving a general quantitative Gaussian approximation. The error bound is ex-
pressed in terms of couplings of the original process to processes generated
from the reduced Palm measures associated with the point process. As appli-
cations, we study certain GI/GI/∞ queues in the “heavy traffic” regime.

1. Introduction. Gaussian processes arise as approximations to real processes in a wide
variety of applications. Often, the approximation is taken as read, and Gaussian processes
become part of the model, as in stochastic integrals in finance. In other circumstances, as in
queuing systems, they arise as approximations in the limit; see, for example, Robert (2003)
and Pang, Talreja and Whitt (2007). The fundamental example, which forms the basis of
many other limiting results, is Donsker’s theorem, which states that random walk, after proper
normalization, converges weakly in path space to Brownian motion. Then probabilities for
systems that converge to a Gaussian process may be approximated by the analogous limiting
probabilities, which are typically more tractable, due to the many beautiful and useful proper-
ties of Gaussians. A key task in this setting is to estimate the error made in the approximation.
For Donsker’s theorem, this is well understood, but for more general processes there are few
results.

In this paper, we establish a Stein equation, together with properties of its solutions, suit-
able for use in quantifying the error in approximating a multi-dimensional càdlàg process by
a general Gaussian process. The approach generalizes and improves the theory for approxi-
mation by Brownian motion presented in Barbour (1990), and dovetails with the companion
paper Barbour, Ross and Zheng (2021) to give bounds on the error in terms of the Lévy–
Prokhorov distance, which metrizes weak convergence with respect to the Skorokhod topol-
ogy. As a concrete application of the method, we prove a general result, Theorem 1.4, that
gives such bounds when the process being approximated can be expressed as an integral with
respect to a point process. Theorem 1.4 is then applied to M/GI/∞ and GI/GI/∞ queues
in the heavy traffic regime, obtaining the first rates of convergence in some settings that are
closely related to limiting approximations given in Iglehart (1965), Borovkov (1967), Whitt
(1982), Krichagina and Puhalskii (1997) and Puhalskii and Reed (2010), where the limiting
processes are typically not Brownian motion.

To give a flavour of the Stein approach, set out in detail in Proposition 2.1 and Theorem 2.2,
suppose that Z is a real centered Gaussian process on the interval [0, T ], whose covariance
function K can be represented in the form

K(s, t) := E
{
Z(s)Z(t)

}=
∫ T

0
Ĵu(s)Ĵu(t)�(du),
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for a measure � on [0, T ] and a collection of real functions (Ĵu, u ∈ [0, T ]) on [0, T ]. For
instance, if Z is standard Brownian motion, we can take Ĵu(t) := I[u ≤ t], and if Z is the
Brownian bridge on [0, T ], we can take Ĵu(t) := I[u ≤ t] − t/T , in either case with � being
Lebesgue measure. Let W be a random element of D[0, T ]. Then, for any g in a particular
class of smooth test functionals on D[0, T ], we show that∣∣E{g(W)

}−E
{
g(Z)

}∣∣≤ ∣∣∣∣E{∫ T

0
D2fg(W)[Ĵu, Ĵu]�(du) − Dfg(W)[W ]

}∣∣∣∣,
where D denotes the Fréchet derivative, and where the functional fg can be explicitly rep-
resented in terms of g. The expression on the right hand side is reminiscient of those that
have been exploited in many variants of Stein’s method, and is amenable to a number of the
techniques that have previously been developed to bound them. Note that the choices of �

and Ĵu that are appropriate in particular applications may only become clear in the course
of evaluating the term E{Dfg(W)[W ]}. For instance, in Theorem 1.2, W is an integral with
respect to a point measure, the expectation E{Dfg(W)[W ]} is evaluated using Palm theory,
and � and the functions Ĵu emerge naturally in the resulting calculations.

1.1. Setup. Let N be a simple point process on R
d with mean measure λ. Let the collec-

tion of functions {
Ju : [0,T] → R

p}
u∈Rd ,

be such that J•(s) ∈ L2(Rd→R
p,λ) for all s ∈ [0,T], and (u, s) �−→ Ju(s) is jointly mea-

surable on R
d × [0,T]. In this paper, we focus on Gaussian process approximation for the

random process X : [0,T] → R
p of the form

X(s) :=
∫
Rd

Ju(s)N(du).

As we see shortly in Sections 1.3 and 1.4, many queueing processes can be written in this
form. Before going into specific detail, let us establish the general framework.

Define the centered and scaled random measure Ñ := σ−1(N − λ), where σ > 0 is a
scaling parameter, and define the process X̃ by

X̃(s) :=
∫
Rd

Ju(s)Ñ(du).(1.1)

We are interested in the distribution of X̃ when λ is at “high intensity” (i.e., the mass of λ

is large), and the choice of σ stabilizes Ñ ; and, in particular, we want to approximate the
distribution of X̃ by that of a Gaussian process (Z(t), t ∈ [0,T]). Informally, we think of
Ñ as close in distribution to a centered Gaussian random measure N with intensity measure
� ≈ σ−2λ, and then in turn Z(s) = ∫

Rd Ĵu(s)N(du), for some possibly different family of
functions {Ĵu}u∈Rd . Formally, Z is a centered Gaussian process with covariance function

E
[
Z(s)Z(t)�

]= ∫
Rd

Ĵu(s)Ĵu(t)
��(du), t, s ∈ [0,T],

where Z and Ĵ are column vectors, and � denotes transpose. If N is a Poisson process,
then the natural approximating Gaussian process has � = σ−2λ and Ĵu = Ju, but this is not
necessarily the case for other point processes.

The corresponding approximation result, Theorem 1.4 below, gives a bound on∣∣E[g(X̃)
]−E

[
g(Z)

]∣∣
for a certain set M of “test” functions g. The bound in the approximation result is com-
pletely general for X of the form above, but requires the construction of close couplings
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(N,N(u))u∈Rd of N with its “reduced Palm measures” at u ∈ R
d . In the case where N is

a Poisson process, we can set N(u) = N , and our bound becomes very simple; see (1.20).
The test functions are described in detail in Section 1.2, but are essentially those intro-
duced in Barbour (1990), and include smooth functions of the process at a fixed number
of times. Such test functions are now commonly used for Gaussian process approximation
in the Stein’s method literature; see, for example Döbler and Kasprzak (2021) and Kasprzak
(2017, 2020b). For a sequence of processes (X̃n)n≥1, the fact that |E[g(X̃n)] −E[g(Z)]| → 0
for all test functions g in M does not alone imply weak convergence of the processes with
respect to either the supremum or the Skorokhod topologies, but with the results of Barbour,
Ross and Zheng (2021) and a little extra work, it is not too difficult in our applications to
obtain bounds on the Lévy–Prokhorov distance (with respect to the Skorokhod topology)
that tend to zero, and hence imply weak convergence. Such bounds can also be used to derive
rates of convergence for statistics that are continuous with respect to the Skorokhod topology.

We next discuss the test functions in detail.

1.2. Test functions. Let Dp := D([0,T] → R
p) be the set of functions from [0,T] to R

p

that are right continuous with left limits. Endowed with the sup norm, Dp is a Banach space
(though not separable), and so for a function g : Dp → R, we denote by Dkg its kth Fréchet
derivative, k ∈ N, whenever it exists. Following Barbour (1990) (see also Kasprzak, Duncan
and Vollmer (2017)), for g : Dp →R, we define

‖g‖L := sup
w∈Dp

|g(w)|
1 + ‖w‖3 ,

where ‖w‖ = sup0≤t≤T |w(t)| denotes the sup-norm, and then define the Banach space

L := {
g : Dp →R : g is continuous and ‖g‖L < ∞}

.

For g twice Fréchet differentiable, we define

‖g‖M := ‖g‖L + sup
w∈Dp

‖Dg(w)‖
1 + ‖w‖2 + sup

w∈Dp

‖D2g(w)‖
1 + ‖w‖

+ sup
w,h∈Dp

‖D2g(w + h) − D2g(w)‖
‖h‖ ,

where ‖A‖ := supw:‖w‖=1 |A[w[k]]| for A a k-linear form, and A[w[k]] := A[w,w, . . . ,w].
This leads to the space

M := {
g : Dp →R : g is twice Fréchet differentiable and ‖g‖M < ∞}

.

We also work on its subspace

M ′ :=
{
g ∈ M : sup

w∈Dp

∥∥D2g(w)
∥∥< ∞

}
,

and for g ∈ M ′, we define the norm

‖g‖M ′ := sup
w∈Dp

|g(w)|
1 + ‖w‖2 + sup

w∈Dp

‖Dg(w)‖
1 + ‖w‖ + sup

w∈Dp

∥∥D2g(w)
∥∥

+ sup
w,h∈Dp

‖D2g(w + h) − D2f (w)‖
‖h‖ .

Note that for g ∈ M ′, ‖g‖M ≤ ‖g‖M ′ . Defining It (s) := 1[s ≥ t], we also typically assume
that a test function g satisfies the smoothness condition that, for any r , s, t in [0,T] and
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x1, x2 ∈ R
p ,

(1.2) sup
w∈Dp

∣∣D2g(w)
[
x1Ir , x2(Is − It )

]∣∣≤ Sg|x1||x2||s − t |1/2,

where Sg is some constant depending on g, and | · | denotes Euclidean norm.

1.3. M/GI/∞ queue. Let Mn be a Poisson process on S := [0,T] × R+ with intensity
measure

�n(dt, dy) := nα(dt)G(dy),

where α is a finite measure on [0,T], and G is a distribution supported on a subset of R+. We
can view Mn as a measure. Let (Yi, i ≥ 1) be i.i.d. with distribution G̃ supported on a subset
of R+. We set

Nn := Mn +
xn∑
i=1

δ(0,Yi),

where xn ≥ 0 is an integer. Then, Nn is a point process with mean measure

λn := �n + xn(δ0 × G̃).

For (t, y) ∈ S , we define

Jt,y(s) := 1{t ≤ s < t + y}
and the process Xn : [0,T] → R+ by

Xn(s) :=
∫
S

Jt,y(s)Nn(dt, dy).

The process Xn can be regarded as the number of customers in an M/GI/∞ queue: A point
(t, y) ∈ Nn represents a customer arriving at time t with service time y, and such a customer
will be in the system at any instant s satisfying t ≤ s < t +y. We allow the customers initially
in the system to have a different service distribution, to model the situation where the process
is first observed at a typical time; in such a case, the residual service times would have a
distribution derived from G, but not necessarily the same as G. We consider the “heavy
traffic” regime, in which n is large, so that the total rate of arrivals nα(dt) is large.

Define the centered and scaled random measure

Ñn := σ−1
n (Nn − λn) with σ 2

n = n,

and the process X̃n by

(1.3) X̃n(s) :=
∫
S

Jt,y(s)Ñn(dt, dy).

Before we state our main result in this setting, let us fix some notation.

NOTATION.

(i) Given the distribution G and the finite measure α on [0, T ] as above, we define the
convolution G ∗ α by

(G ∗ α)(s) :=
∫ s

0
G(s − u)α(du),(1.4)

(where, for brevity, we also use G to denote the cumulative distribution function of the dis-
tribution G), and the cumulative intensity A by

A(s) = α
([0, s]).(1.5)
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(ii) Define

(1.6) �n(x, xn,α,T) := 3

√
πxn/2 + |xn − nx|

2n
+ α([0,T]) + n−1xn

2
√

n
.

THEOREM 1.1. Assume that the convolution G ∗ α defined in (1.4), the cumulative in-
tensity A from (1.5), and the distribution function G̃ are all β-Hölder continuous for some
β ∈ (1/2,1]. Define a measure � on S := [0,T] ×R+ by

� := (α × G) + x(δ0 × G̃),

where x ≥ 0 is fixed. Now set Ĵ(t,y) := Jt,y for t > 0 and Ĵ(0,y) := J0,y − (1 − G̃). Let Z be a
real centered Gaussian process with covariance function K given, for 0 ≤ s1 ≤ s2 ≤ T, by

(1.7)
K(s1, s2) = E

[
Z(s1)Z(s2)

]= ∫
S

Ĵ(t,y)(s1)Ĵ(t,y)(s2)�(dt, dy)

=
∫ s1

0

(
1 − G(s2 − t)

)
α(dt) + xG̃(s1)

(
1 − G̃(s2)

)
.

Let X̃n be defined as in (1.3). Then, for any g ∈ M ′ either satisfying (1.2), or of the form
g(w) = F(w(t1), . . . ,w(tk)) for some (twice differentiable) F : Rk →R and distinct instants
t1, . . . , tk ∈ [0,T], we have

(1.8)
∣∣E[g(X̃n)

]−E
[
g(Z)

]∣∣≤ 23/2‖g‖M ′�n(x, xn,α,T),

where �n(x, xn,α,T ) is defined in (1.6).
If β = 1 ≤ α([0,T]) ≤ α∗T for some α∗ < ∞, and if T ≥ n1/2|xnn

−1 − x|, then, for any
χ > 0, there is a constant Kχ such that

dLP
(
L(X̃n),L(Z)

)≤ KχnχT2/5n−1/20,

where dLP denotes the Lévy–Prokhorov distance (with respect to Skorokhod topology).

REMARK 1.

(i) The constant Sg from the smoothness condition (1.2) does not appear in the bound
(1.8), since the condition (1.2) is only used to apply a technical result; see Lemma 5.3 below.

(ii) As we only consider time intervals [0,T], we only require the Hölder continuity on
[0,T].

(iii) Bounds can also be derived under more general assumptions on α and β . These can
be deduced from the proof of the theorem.

REMARK 2.

(i) That L(X̃n) → L(Z) with respect to Skorokhod topology for xn = 0 is due to
Borovkov (1967)—see the discussion in Whitt (1982)—and, for general xn, follows from
the results of Krichagina and Puhalskii (1997). The only rates of convergence we are aware
of are those of Besançon, Decreusefond and Moyal (2020) and Besançon et al. (2021), which
give Wasserstein bounds (with respect to the supremum metric) in the special case of the
M/M/∞ queue. Using Barbour, Ross and Zheng ((2021), Theorem 1.1) with the bounds of
this paper would lead to rates in the Wasserstein distance that would be worse than those
derived in Besançon et al. (2021) in this case. However, our results apply more generally to
M/GI/∞ queues, which do not appear to be within the scope of their methods.



3840 A. D. BARBOUR, N. ROSS AND G. ZHENG

(ii) In the best possible case, where β = 1, our rate of convergence for the Lévy–
Prokhorov metric, of O(T2/5n−1/20+χ) for any χ > 0, is, to the best of our knowledge, the
first rate of convergence in this metric. An advantage of our bounds is that the dependence on
T is explicit, and that T could grow like a small power of n while still yielding a small bound;
this would cover transient approximation almost to stationarity.

REMARK 3. We can represent Z as a sum of three independent centered Gaussian pro-
cesses Z = Z1 + Z2 + Z3, where:

(i) Z1 represents the randomness from the services and has covariance structure

E
[
Z1(s1)Z1(s2)

]= ∫ s1

0
G(s1 − t)

(
1 − G(s2 − t)

)
α(dt),

for 0 ≤ s1 ≤ s2 ≤ T.
(ii) The second process Z2 represents the randomness from the arrival process (a kind of

weighted renewal functional CLT) and is given by the stochastic integral

Z2(s) =
∫ s

0

(
1 − G(s − t)

)
B(dt),

where B(·) is a Gaussian random measure with intensity measure α(dt), that is,

E
[
Z2(s1)Z2(s2)

]= ∫ s1

0

(
1 − G(s1 − t)

)(
1 − G(s2 − t)

)
α(dt);

for 0 ≤ s1 ≤ s2 ≤ T.
(iii) The third process Z3 is a time-changed Brownian bridge: Z3(t) = √

xBbr(G̃(t)),
where Bbr is a Brownian bridge with Bbr(0) = Bbr(1) = 0.

For x = 0, this decomposition is identified in Borovkov (1967); see also Whitt ((1982), (2.5)
and (2.6)) and the discussion there. The addition of Z3 is due to the presence of customers
initially in the system. The number of those remaining in the system at time t is just the
number with service time greater than t , the empirical complementary cumulative distribution
function at t . This, after scaling, converges as a function of t to a time-changed Brownian
bridge.

REMARK 4. If g(w) = F(w(t1), . . . ,w(tk)), and F is bounded with bounded partial
derivatives of order up to three, then ‖g‖M ≤ ck3, where c is an upper bound for F and its
first three partial derivatives. Assuming that |xn − nx| = O(n1/2), the bound (1.8) is of order
O(k3n−1/2), and standard smoothing arguments, as in Götze et al. ((2019), Section 1.1.4),
imply that for any convex K ⊆R

k and ε > 0,∣∣P((X̃n(ti)
)k
i=1 ∈ K

)− P
((

Z(ti)
)k
i=1

) ∈ K
∣∣≤ C

{
ε−3k3n−1/2 + k1/4ε

}
.

Choosing ε = k11/16n−1/8, leads to a uniform upper bound of order k15/16n−1/8 on the differ-
ence of convex set probabilities for any k-dimensional distributions of X̃n and Z. The power
of k in the bound is likely not optimal, but still leads to meaningful results for k growing like
a small power of n.

1.4. GI/GI/∞ queue. Consider a stationary renewal process Vn on [0,T], whose re-
newal distribution νn is that of R/n, where R is a positive integer valued random variable
with aperiodic support having mean m, variance v2, and E[Rr ] < ∞ for some fixed r ≥ 5.
Let G be a distribution function supported on a subset of R+, and let (Yi, i ≥ 1) be an i.i.d.
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sequence with distribution G that is also independent of the renewal process Vn. Now define
the random measure Nn on S := [0,T] ×R+ by

Nn :=
�nT�∑
i=1

Mn(i/n)δ(i/n,Yi),

where now

Mn(s) := Vn(s) − Vn(s−) := 1[a renewal occurs at time s], s ∈ [0,T],
and Yi represents the service time of a customer arriving at time i/n. Due to the stationarity,
the mean measure of Nn is

λn := 1

m

�nT�∑
i=1

(δi/n × G).

For (t, y) ∈ S , we define Jt,y(s) := 1[t ≤ s < t + y] and

Xn(s) :=
∫
S

Jt,y(s)Nn(dt, dy).

As for the M/GI/∞ queue, the process Xn can be regarded as the number of customers in
a GI/GI/∞ queue with arrival times given by a stationary renewal process driven by νn and
service times distributed according to G. Note that because νn (the law of R/n) is discrete,
the results of the previous section are not a special case of those derived here.

Define the centered and scaled random measure

Ñn := σ−1
n (Nn − λn),

where

(1.9) σ 2
n := nv2/m3,

and define the process X̃n by

(1.10) X̃n(s) :=
∫
S

Jt,y(s)Ñn(dt, dy).

Writing It (·) := 1{· ≥ t} and G := 1 − G, our main result of the section is the following.

THEOREM 1.2. Recall the notation just above. Assume that ER5 < ∞ and that, for some
β ∈ (0,1] and 0 < η < 1, the distribution function G satisfies

(1.11) G(t) − G(s) ≤ gG(s)(t − s)β, 0 < s < t ≤ T,

where gG : R+ → R+ is bounded and nonincreasing and such that
∫∞

0 g
η
G(s) ds < ∞. Now

define a measure � on S := [0,T] ×R+ by

�(dt, dy) := dtG(dy),

and set

Ĵt,y(s) := m

v
Jt,y(s) − m + v

v
G(s − t)It (s).

Let Z be a Gaussian process with covariance function K given, for 0 ≤ s1 ≤ s2 ≤ T, by

(1.12)

K(s1, s2) = E
[
Z(s1)Z(s2)

]= ∫
S

Ĵt,y(s1)Ĵt,y(s2)�(dt, dy)

= m2

v2

∫ s1

0
G(s2 − t)G(s1 − t) dt +

∫ s1

0
G(s1 − t)G(s2 − t) dt.
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Let X̃n be as defined in (1.10). Then, for any g ∈ M ′ satisfying the smoothness condition
(1.2) for some Sg , there is a constant C depending on L(R) and gG(0) such that, with β̄ :=
min{β,1/2}, we have∣∣E[g(X̃n)

]−E
[
g(Z)

]∣∣≤ CT
(
Sgn

−1/2 + ‖g‖M ′n−β̄).(1.13)

If g ∈ M ′ is of the form g(w) = F(w(t1), . . . ,w(tk)) for some (twice differentiable) F : Rk →
R and distinct instants t1, . . . , tk ∈ [0,1], then the same bound holds, but with Sgn

−1/2 re-
placed by ‖g‖M ′k3n−1.

Moreover, assuming that T ≥ 1, taking

lr := ⌈(
r − η(r − 1)

)
/2
⌉− 1, βr := β(r − 2)/(r − 1),(1.14)

we have

(1.15) dLP
(
L(X̃n),L(Z)

)≤ C
√

logn
{(

T4n−β̄)(lrβr−1)
T 3}1/(6lr+4lrβr−1)

,

where dLP denotes the Lévy–Prokhorov distance (with respect to the Skorokhod topology).
For instance, if the distribution of R has all positive moments, and if G has a finite moment
and a bounded and ultimately monotone density, and if T ≤ nψ for some ψ < 1/8, then, for
any χ > 0, there is a constant Kχ such that

dLP
(
L(X̃n),L(Z)

)≤ KχnχT2/5n−1/20.

REMARK 5. The expression (1.12) for the covariance agrees (up to scaling) with Whitt
((1982), (2.5) and (2.7)). Note also that choosing G supported on (T,∞) corresponds to the
renewal CLT, where the limiting Gaussian process is the standard Brownian motion. The
decomposition in Remark 3 still applies here with Z = (m2/v2)Z1 +Z2 and α(dt) = dt . The
addition of initial customers would contribute to the limit in the same way as in Theorem 1.1;
that is, it would add a Brownian bridge component as described in Remark 3, but we omit
this for the sake of clarity. Weak convergence with respect to the Skorokhod topology was
(essentially) shown in Borovkov (1967), and here we can view (1.15) as a rate of convergence.
We are not aware of previous results with rates of convergence. The same considerations as
in Remark 4 lead to a uniform upper bound of order k15/16n−β̄/4 on the difference of convex
set probabilities for any k-dimensional distributions of X̃n and Z. Again, we remark that an
appealing aspect of our bound is the explicit incorporation of T.

REMARK 6. For a process X′
n defined analogously to Xn, but driven by V ′

n defined to
be a delayed (rather than stationary) renewal process with inter-renewal distribution L(R/n),
it is easy to see that Xn and X′

n can be constructed on the same space so that ‖Xn − X′
n‖ is

stochastically dominated by the coupling time

Tc := inf
{
i ≥ 1 : Mn(i/n) = M ′

n(i/n) = 1
}
,

where M ′
n(s) = V ′

n(s) − V ′
n(s−) is defined in analogy with Mn (here, we view Vn and V ′

n as
renewal processes on [0,∞), and so Tc does not depend on n). Defining the scaled process

X̃′
n := X′

n − ∫
S Jt,yλn(dt, dy)

σn

,

we thus easily find that ‖X̃n − X̃′
n‖ is stochastically dominated by (m3/2Tc/v)n−1/2. Under

the hypotheses of the theorem, Pitman ((1974), Proposition (6.10)) implies that Tc is finite
with probability one, and if the delay distribution has finite (r +1)-moment, that E[T r

c ] < ∞.
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Under this moment condition, for any function g ∈ M ′ with ‖Dg(w)‖ < ∞, we then easily
have that ∣∣E[g(X̃′

n

)]−E
[
g(X̃n)

]∣∣≤ ∥∥Dg(w)
∥∥m3/2

E[Tc]
v
√

n
.

Combining this with the bounds of the theorem and the triangle inequality gives bounds on
|E[g(X̃′

n)] −E[g(Z)]| for g ∈ M ′ with ‖Dg(w)‖ < ∞, and subsequent bounds of the same
order on dLP (the restriction that ‖Dg(w)‖ < ∞ is no problem, since the key result Theo-
rem 5.1 only requires bounds on a smaller class of test functions with bounded derivatives).

1.5. General approximation theorem. Here we state the general approximation theorem
used to prove Theorems 1.1 and 1.2. We first need a definition.

DEFINITION 1.3. For a point process � ⊆R
d with mean measure κ , we say that �(u) is

distributed as the reduced Palm measure of �, if

E

[∫
g(�,u)�(du)

]
= E

[∫
g
(
�(u) + δu, u

)
κ(du)

]
for all functions g such that the integral on the left hand side exists.

For simple point processes (meaning that there is a.s. at most one point at any location),
we think of �(u) + δu as having the distribution of � conditional on there being a point at u,
which explains why we can take �(u) = � if � is a Poisson process. For rigorous background
on reduced Palm measures, see Daley and Vere-Jones ((2008), Chapter 13).

THEOREM 1.4. Recall the notation and definitions of Section 1.1 leading up to (1.1). Let
(N,N(u))u∈Rd be a collection of couplings of N with its reduced Palm measures and define

X(u)(s) :=
∫
Rd

Jv(s)N
(u)(dv), s ∈ [0,T].

Let Z be a centered Gaussian process with almost surely continuous sample paths having
covariance function

(1.16) K(s, t) = E
[
Z(s)Z(t)�

]= ∫
u∈Rd

Ĵu(s)Ĵu(t)
��(du),

where the function (u, s) �−→ Ĵu(s) ∈ R
p is measurable such that

Ĵu(·) ∈ L2([0,T]→R
p) and Ĵ·(s) ∈ L2(

R
d→R

p,�
)

for all s ∈ [0,T] and all u ∈ R
d .

Now suppose that g ∈ M , and define f := fg to be the Stein solution given in Theorem 2.2.
Then, for X̃ as defined in (1.1), we have∣∣E[g(X̃)

]−E
[
g(Z)

]∣∣
≤
∣∣∣∣E[∫

Rd
D2f (X̃)

[
Ĵ [2]

u

]
�(du)

(1.17)

−
∫
Rd

D2f (X̃)
[
Ju,E

[
X(u) − X + Ju

]](
σ−2λ(du)

)]∣∣∣∣
+
∣∣∣∣E[∫

Rd
D2f (X̃)

[
Ju,

(
X(u) − X

)−E
[
X(u) − X

]](
σ−2λ(du)

)]∣∣∣∣(1.18)

+ ‖g‖M

2σ
E

[∫
Rd

‖Ju‖
∥∥X(u) − X + Ju

∥∥2(
σ−2λ(du)

)]
.(1.19)
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If N is a Poisson point process, � = σ−2λ and Ĵu = Ju, then for any g ∈ M ,

(1.20)
∣∣E[g(X̃)

]−E
[
g(Z)

]∣∣≤ ‖g‖M

2σ

[∫
Rd

‖Ju‖3(σ−2λ(du)
)]

.

REMARK 7.

(i) Although our focus in this work is about real Gaussian process approximation, there
is no essential extra difficulty in establishing the above multivariate Gaussian approximation
result. See Section 3 for an illustration in the multivariate setting.

(ii) To check the hypothesis that Z has continuous sample paths, it is enough to establish
that, for some positive constants C, b, we have

(1.21) E
[∣∣Z(s) − Z(t)

∣∣2]≤ C|s − t |b,
which, using Gaussianity, implies the Kolmogorov continuity criterion.

(iii) In general, the terms in (1.19) and (1.20) are not automatically finite. In our appli-
cations, the integrand Ju is uniformly bounded, E[‖X‖2] is finite, and N is a simple point
process over a subset S of Rd with finite intensity measure such that N(S) has finite second
moment. Under these extra assumptions, the aforementioned terms are finite.

REMARK 8. In practice, the choice of � and {Ĵu}u∈Rd arises from computing the quan-
tity E[X(u) −X+Ju], plugging the resulting expression into the second term of the difference
of (1.17), and then discarding the asymptotically negligible terms. This is an appealing aspect
of the theorem, as it suggests a candidate limit, while also providing an intuitive expression
for the covariance of the limit in the form (1.16).

REMARK 9. Bounding (1.17) and (1.18) in applications requires using the structure of
(X(u) − X) and its mean, along with the bounds and “smoothness” properties of f given
in Theorem 2.2 below. Bounding (1.18) is the main difficulty in applying the theorem, and
typically requires constructing intermediate couplings that exploit local or weak global de-
pendence.

To apply the theorem for the M/GI/∞ queue, we need to define the reduced Palm cou-
plings of the arrival/service point process. Away from time zero, the arrivals/services are
a Poisson point process, and so we can take the reduced Palm measure to be the original
process. For the customers in the system at time zero, the Palm measure corresponds to re-
moving a point at random, which is only a small perturbation of the original process. For
the GI/GI/∞ queue, the arrival/service point process is no longer Poisson. However, be-
cause the service times are i.i.d., constructing the reduced Palm measure coupling at a point
(s, y) comes down to constructing a close coupling of a stationary renewal process to one
conditioned to have a renewal at s, which in turn is similar to coupling a stationary renewal
sequence to a zero-delayed renewal process, and this is well understood. The details are in
Sections 3 and 4.

Theorem 1.4 follows from a new development of Stein’s method (Stein (1972, 1986)),
formulated as Theorem 2.2. Stein’s method provides a general framework for bounding the
error when approximating a complicated distribution of interest by a well-understood target
distribution; see Ross (2011) for a basic introduction. By now, Stein’s method has been de-
veloped for a large number of univariate distributions, as in the monographs Chen, Goldstein
and Shao (2011) for the normal and Barbour, Holst and Janson (1992) for the Poisson. Stein’s
method for multivariate distributions other than the normal is not so well developed, and even
less is known for random processes. Poisson process approximation is a notable exception,
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with a succession of papers going back to Barbour (1988) and Arratia, Goldstein and Gordon
(1989). There is also work on approximation by Brownian motion, which began with Barbour
(1990), and on some closely related Gaussian processes, such as time changes of Brownian
motion (Kasprzak (2017, 2020b)) and multivariate correlated Brownian motions (Kasprzak
(2020a), Döbler and Kasprzak (2021)); there has also been recent work for Dirichlet process
approximation (Gan and Ross (2021)).

All of the Gaussian process approximation results just cited are derived using Barbour’s
generator approach (Barbour (1990)), which identifies a “characterizing” operator of a Gaus-
sian process as the generator of the Ornstein–Uhlenbeck semigroup. To avoid working with
the generator in the continuum, these papers first approximate the process of interest by a
discretized version of the Gaussian process, which has an Ornstein–Uhlenbeck generator of
a simple form. After this is achieved, the problem is reduced to showing that the discretized
Gaussian process is close to the true Gaussian process. Here we avoid this two step proce-
dure, by developing the relevant properties of the “Stein solution” for any Gaussian process
with continuous sample paths; see Theorem 2.2 below. Thus, the development of Stein’s
method here is technically different from that in the finite-dimensional setting; in particular,
our results rely on the Karhunen–Loève expansion of the Gaussian process. Theorem 2.2 can
be used to prove approximation bounds in quite general settings, in which the dependency
structures are amenable to Stein’s method, such as those exhibiting an exchangeable pair. The
formulation is particularly useful in our applications, where the jumps of the processes that
we study occur at random times. Note that, in the context of Theorem 1.4, any discretization
error between the process and the target Gaussian process is captured by (1.17), and bounding
this term typically relies on the smoothness property (1.2).

To compare our approach to others developing Stein’s method for Gaussian processes, first
note that the smooth function metric used here is not simply related to weak convergence with
respect to Skorokhod topology, and that the test functions that we use do not yield natural
statistics of the process. However, the companion paper Barbour, Ross and Zheng (2021)
develops infinite-dimensional Gaussian smoothing inequalities that can be used to convert
bounds on the smooth function metric to those on the Lévy–Prokhorov metric (with respect
to Skorokhod topology), as is done here. The paradigm of using a smooth function metric
that is natural for Stein’s method, and then applying a smoothing inequality to obtain bounds
in a more useful metric (here, the Lévy–Prokhorov metric), is frequently useful.

The recent papers Coutin and Decreusefond (2020) and Besançon et al. (2021) use Stein’s
method to obtain bounds in the bounded Wasserstein distance for Donsker’s theorem, and for
Lipschitz functionals of Poisson measures. They obtain rates of convergence in this restricted
setting of better order than those that our method typically yields, though less good than
those obtainable using strong approximation. However, in their approach, they make use of
the independence structure within the process being approximated, and of the fact that the
limiting process is Brownian motion; we need neither of these simplifications.

There is also an approach to Stein’s method on Hilbert and abstract Wiener spaces, ini-
tiated in Shih (2011) and developed further in Coutin and Decreusefond (2013), Besançon,
Decreusefond and Moyal (2020), Bourguin and Campese (2020), and Bourguin, Campese
and Dang (2021). These papers view the Gaussian process as an element of a functional
space equipped with an integral metric. Thus the probability metrics that they work with
are not strong enough to imply weak convergence with respect to the Skorokhod topology,
and hence do not imply rates for such convergence, either. In particular, convergence in the
metrics used in these papers does not imply convergence of finite-dimensional distributions.
See also the discussions of these different approaches in Döbler and Kasprzak ((2021), Sec-
tion 1.5) and Barbour, Ross and Zheng ((2021), Section 1.1).

The remainder of the paper is organized as follows. In Section 2, we develop Stein’s
method in the general context of Gaussian process approximation, establishing Theorem 2.2,
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together with some ancillary results. We then prove Theorem 1.4. In Sections 3 and 4, we
apply Theorem 1.4 to the M/GI/∞ and GI/GI/∞ queue examples given above, proving
Theorems 1.1 and 1.2.

2. Stein’s method for Gaussian processes. Our first step in developing Stein’s method
for Gaussian processes is to establish a useful form for the characterizing operator.

PROPOSITION 2.1. Let Z be a centered continuous R
p-valued Gaussian process on

[0,T] with

(2.1) K(s1, s2) := E
[
Z(s1)Z(s2)

�]= ∫
Rd

Ju(s1)Ju(s2)
��(du),

where � is a measure on R
d and the function (u, s) �−→ Ju(s) ∈R

p is measurable such that

Ju(•) ∈ L2([0,T] → R
p) and J•(s) ∈ L2(

R
d →R

p,�
)

for all (s, u) ∈ [0,T] ×R
d .

Then for any function f ∈ M ,

(2.2) E
(
D2f (w)

[
Z[2]])= ∫

Rd
D2f (w)

[
J [2]

u

]
�(du),

and

(2.3) E

(∫
Rd

D2f (Z)
[
J [2]

u

]
�(du) − Df (Z)[Z]

)
= 0.

PROOF. First we show that all the expectations exist. Since f ∈ M , we have∣∣D2f (w)
[
Z[2]]∣∣≤ ∥∥D2f

∥∥(1 + ‖w‖)‖Z‖2 and
∣∣Df (Z)[Z]∣∣≤ ‖Df ‖(1 + ‖Z‖2)‖Z‖,

so that we need to show that ‖Z‖ has finite third moment, which is guaranteed by Fernique’s
theorem. To establish the expressions for the moments, we use the multivariate Karhunen–
Loève expansion of Z; see Happ and Greven ((2018), Section 2.2). Define the linear operator
T on the Hilbert space L2([0,T]→R

p) by setting

(Tf )(s) :=
∫ T

0
K(s, t)f (t) dt.

It is easy to see that T is a positive and compact self-adjoint operator on L2([0,T]→R
p),

so that by the spectral theorem, we can find {hk, k ∈ N} that is, an orthonormal basis of
L2([0,T]→R

p) formed by the eigenvectors of T with respective eigenvalues {�k, k ∈ N} ⊂
R+. As a result, Z(t) admits the following representation:

Z(t) = ∑
k∈N

Xkhk(t),(2.4)

where

Xk :=
∫ T

0
Z(t)�hk(t) dt =

∫ T

0
hk(t)

�Z(t) dt,

and the convergence in (2.4) can be taken in L2(�), uniformly in t ∈ [0,T], and, because of
the assumption of continuity of sample paths, can also be taken with respect to sup norm; see
Adler and Taylor ((2007), Theorem 3.1.2).
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For k, j ∈ N, we have

E[XkXj ] = E

[∫ T

0

∫ T

0
hj (s)

�Z(s)Z(t)�hk(t) dt ds

]

=
∫ T

0

∫ T

0
hj (s)

�K(s, t)hk(t) dt ds

=
∫ T

0
hj (s)

�(T hk)(s) ds = �k1[k = j ],

and so the variables {Xk}k∈N are independent centered Gaussian random variables.
Using the representation (2.4), we have, for the symmetric bilinear form A = D2f (w),

A[Z,Z] = A

[∑
k∈N

Xkhk,
∑
j∈N

Xjhj

]
= ∑

k,j∈N
XkXjA[hk,hj ],

so that

(2.5) E
[
A[Z,Z]]= E

[ ∑
k,j∈N

XkXjA[hk,hj ]
]

= ∑
k∈N

�kA[hk,hk].

On the other hand, expanding Ju in the orthonormal basis {hk} implies

Ju = ∑
k∈N

hkJ
(k)
u ,

where J
(k)
u := ∫ T

0 Ju(s)
�hk(s) ds ∈ R for each k ∈ N. It follows that

(2.6)

∫
Rd

A[Ju, Ju]�(du) =
∫
Rd

A

[∑
k∈N

hkJ
(k)
u ,

∑
j∈N

hjJ
(j)
u

]
�(du)

= ∑
k,j∈N

A[hk,hj ]
∫
Rd

J (k)
u J (j)

u �(du).

Continuing with straightforward calculations, we have∫
Rd

J (k)
u J (j)

u �(du) =
∫
Rd

(∫ T

0
hk(s)

�Ju(s) ds

)(∫ T

0
Ju(t)

�hj (t) dt

)
�(du)

=
∫ T

0

∫ T

0
hk(s)

�
{∫

Rd
Ju(s)Ju(t)

��(du)

}
hj (t) ds dt

=
∫ T

0

∫ T

0
hk(s)

�K(s, t)hj (t) ds dt =
∫ T

0
hk(s)

�(T hj )(s) ds

= �j

∫ T

0
hk(s)

�hj (s) ds = �j 1[k = j ].

Plugging this into (2.6), and noting (2.5) gives (2.2):∫
Rd

A[Ju, Ju]�(du) = ∑
k∈N

�kA[hk,hk] = E
[
A[Z,Z]].(2.7)

For (2.3), the first equality in (2.7) implies that it is enough to establish that

(2.8) E
[
Df (Z)[Z]]= ∑

k∈N
�kE

[
D2f (Z)[hk,hk]].
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Writing Zk := Z − Xkhk , we have

E
[
Df (Z)[Z]]= ∑

k∈N
E
[
XkDf (Zk + Xkhk)[hk]]

= ∑
k∈N

E
[
E
(
XkDf (Zk + Xkhk)[hk]|Zk

)]
.

Since Zk is independent of Xk , we can apply the one-dimensional Stein identity

E
[
Xkg(Xk)|Zk

]= �kE
[
g′(Xk)|Zk

]
with g(x) = Df (Zk + xhk)[hk] to each term in this sum. Then (2.8) easily follows by noting
that g′(x) = D2f (Zk + xhk)[hk,hk] and thus g′(Xk) = D2f (Z)[hk,hk]. �

The next result represents the foundation of Stein’s method for continuous Gaussian pro-
cesses.

THEOREM 2.2. Let Z be a centered continuous Gaussian process with covariance func-
tion given by (2.1). Given g ∈ M , we define fg :Dp →R by

(2.9) fg(w) := −
∫ ∞

0

(
E
[
g
(
we−s +

√
1 − e−2sZ

)]−E
[
g(Z)

])
ds.

Then fg ∈ M and for k ∈ {1,2},
(2.10) Dkfg(w) = −E

∫ ∞
0

e−ksDkg
(
we−s +

√
1 − e−2sZ

)
ds.

Furthermore, for w,w′,w1,w2 ∈ D
p , we have∣∣D2fg

(
w + w′)[w1,w2] − D2fg(w)[w1,w2]

∣∣≤ ‖g‖M‖w1‖‖w2‖
∥∥w′∥∥,(2.11)

and if g ∈ M ′, then ∣∣D2fg(w)[w1,w2]
∣∣≤ (3/2)‖g‖M ′‖w1‖‖w2‖.(2.12)

Finally, fg satisfies the Stein’s equation

(2.13) Afg(w) :=
∫
Rd

D2fg(w)
[
J [2]

u

]
�(du) − Dfg(w)[w] = g(w) −E

[
g(Z)

]
.

PROOF. That fg ∈ M and that (2.10) holds follow from the arguments of Kasprzak,
Duncan and Vollmer ((2017), Lemma 4.1) (see also Barbour (1990)) for the special case
of Brownian motion. Their argument only relies on the supremum of the Gaussian process
having finite third moment, which is also valid in our setting.

The bounds on the derivatives also more or less follow along the same lines as existing
work, see Kasprzak ((2020b), Proposition 3.2) or Kasprzak ((2020a), Proposition 5.5), but
our setting is different enough that we include a proof. To show (2.12), we use equation
(2.10) and Lemma 2.3 below, which relates the absolute value of a bilinear form at a given
argument to its norm, to find that∣∣D2fg(w)[w1,w2]

∣∣≤ ∫ ∞
0

e−2s
E
[∣∣D2g

(
we−s +

√
1 − e−2sZ

)[w1,w2]
∣∣]ds

≤ 3‖w1‖‖w2‖
∫ ∞

0
e−2s

E
[∥∥D2g

(
we−s +

√
1 − e−2sZ

)∥∥]ds

≤ 3‖g‖M ′‖w1‖‖w2‖
∫ ∞

0
e−2s ds = (3/2)‖g‖M ′‖w1‖‖w2‖,
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where the third inequality uses that g ∈ M ′. The proof of (2.11) follows from similar argu-
ments using equation (2.10), Lemma 2.3, and the Lipschitz continuity of D2g.

The usual path to show (2.13) is to view the family of operators Ps : g �→ g(we−s +√
1 − e−2sZ) as an Ornstein–Uhlenbeck semigroup with generator equal to the character-

izing operator A, and then the result follows essentially from strong continuity of the semi-
group. However, the semigroup is not strongly continuous, even for Z a Brownian motion,
and so an alternative approach is to follow the proof of the relevant result for strongly con-
tinuous semigroups; see Kasprzak, Duncan and Vollmer (2017). While such a strategy could
work in our setting, we provide a direct proof that is simpler than existing approaches, using
Gaussian calculations and (2.10).

Putting Ws = we−s + √
1 − e−2sZ and using (2.2), (2.10), we can rewrite the left hand

side of (2.13) as

E

∫ ∞
0

e−sDg(Ws)[w]ds −E

∫ ∞
0

e−2sD2g(Ws)
[
Z′,Z′]ds,(2.14)

where Z′ is an independent copy of Z. The right hand side of (2.13) can be written as

E
[
g(w) − g(Z)

]= −E

∫ ∞
0

d

ds
g(Ws) ds,

and, since g ∈ M ,

d

ds
g(Ws) = Dg(Ws)

[
−e−sw + e−2s

√
1 − e−2s

Z

]
.

Thus, using linearity of the derivative,

g(w) −E
[
g(Z)

]= −E

∫ ∞
0

Dg(Ws)

[
−e−sw + e−2s

√
1 − e−2s

Z

]
ds

= E

∫ ∞
0

e−sDg(Ws)[w]ds −E

∫ ∞
0

e−2s

√
1 − e−2s

Dg(Ws)[Z]ds.

Comparing with (2.14), it only remains to show

E

∫ ∞
0

e−2s

√
1 − e−2s

Dg(Ws)[Z]ds = E

∫ ∞
0

e−2sD2g(Ws)
[
Z′,Z′]ds.(2.15)

We claim that, after swapping the order of integration, the integrands are equal. To see this,
for fixed w ∈ D

p , and s ∈ [0,∞), we write

h(ŵ) = g
(
e−sw +

√
1 − e−2sŵ

)
.

Then for any x, y ∈ D
p ,

Dh(ŵ)[x] =
√

1 − e−2sDg
(
e−sw +

√
1 − e−2sŵ

)[x],
D2h(ŵ)[x, y] = (

1 − e−2s)D2g
(
e−sw +

√
1 − e−2sŵ

)[x, y].
Now, the Stein equation (2.3) with (2.2) implies

E
[
Dh(Z)[Z]]= E

[
D2h(Z)

[
Z′,Z′]],

which, using the definition of h, is the same as

E
[
Dg(Ws)[Z]]=√

1 − e−2sE
[
D2g(Ws)

[
Z′,Z′]].

This implies (2.15), and thus (2.13). �
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REMARK 10. Theorem 2.2 can be used to establish quantitative approximation of a pro-
cess W ∈ D

p by a continuous Gaussian process Z in ways typical of Stein’s method. Taking
any test function g ∈ M , the difference E[g(W)] −E[g(Z)] can be bounded by∣∣∣∣E{∫

Rd
D2fg(W)

[
J [2]

u

]
�(du) − Dfg(W)[W ]

}∣∣∣∣,
where the functions Ju and the measure � are as in the representation (2.1) of the covariance
function of Z. The quantity E{Dfg(W)[W ]} can then be treated in one of a number of stan-
dard ways, depending on the context. In applying Theorem 1.4, in which W is a centered and
normalized version of an integral X(·) := ∫

Rd J
(X)
u (·)N(du) with respect to a point process

N , the expectation E{Dfg(W)[W ]} is evaluated using Palm theory, and � and the functions
Ju emerge from the resulting calculations. In particular, the functions Ju are not in general
the same as the functions J

(X)
u .

For making estimates when exploiting the above approach, the following two lemmas are
often useful. They are needed, for example, in proving Theorem 1.4.

LEMMA 2.3. If f ∈ M and w,w′,w1,w2 ∈ D
p , then∣∣D2f (w)[w1,w2]

∣∣≤ 3‖w1‖‖w2‖
∥∥D2f (w)

∥∥,
and∣∣D2f

(
w + w′)[w1,w2] − D2f (w)[w1,w2]

∣∣≤ 3‖w1‖‖w2‖
∥∥D2f

(
w + w′)− D2f (w)

∥∥
PROOF. Using bilinearity, we have

D2f (w)[w1,w2] = 1

2

(
D2f (w)[w1 + w2,w1 + w2]

− D2f (w)[w1,w1] − D2f (w)[w2,w2]).
Taking the absolute value and using the triangle inequality implies∣∣D2f (w)[w1,w2]

∣∣≤ 1

2

∥∥D2f (w)
∥∥(‖w1‖2 + ‖w2‖2 + ‖w1 + w2‖2)

≤ 3

2

∥∥D2f (w)
∥∥(‖w1‖2 + ‖w2‖2),

and we deduce from the bilinearity that for any t > 0∣∣D2f (w)[w1,w2]
∣∣= ∣∣D2f (w)

[
tw1, t

−1w2
]∣∣≤ 3

2

∥∥D2f (w)
∥∥(t2‖w1‖2 + t−2‖w2‖2).

Taking t2 = ‖w2‖/‖w1‖ yields the first inequality. The second inequality follows from the
same arguments, with D2f (w) replaced by D2f (w + w′) − D2f (w). �

LEMMA 2.4. If f ∈ M and w1,w2, J ∈ D
p , then

Df (w2)[J ] − Df (w1)[J ]
= D2f (w1)[J,w2 − w1]

+
∫ 1

0

(
D2f

(
w1 + t (w2 − w1)

)[J,w2 − w1] − D2f (w1)[J,w2 − w1])dt.
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PROOF. Set h(t) = Df (w1 + t (w2 − w1))[J ], and note that

h′(t) = D2f
(
w1 + t (w2 − w1)

)[J,w2 − w1]
is continuous on [0,1]. Therefore,

h(1) − h(0) = h′(0) +
∫ 1

0

(
h′(t) − h′(0)

)
dt,

which is the lemma. �

We now turn to proving our second main result.

PROOF OF THEOREM 1.4. Recall that

X̃(s) =
∫
Rd

Jv(s)
(N − λ)(dv)

σ
,

and let f = fg be the Stein solution in Theorem 2.2. In view of (2.13), it suffices to show the
bound for

(2.16)
∣∣EAf (X̃)

∣∣= ∣∣∣∣E∫
Rd

D2f (X̃)
[
Ĵ [2]

u

]
�(du) −E

[
Df (X̃)[X̃]]∣∣∣∣.

Using the definition of X̃, we first write

(2.17)

EDf (X̃)[X̃] = E

∫
Rd

Df (X̃)[Ju]Ñ(du)

= σ−1
E

[∫
Rd

Df (X̃)[Ju]N(du) −
∫
Rd

Df (X̃)[Ju]λ(du)

]
.

Now, with g(N,u) := Df (X̃)[Ju], we can write

E

∫
Rd

g(N,u)N(du) = E

∫
Rd

g
(
N(u) + δu, u

)
λ(du)

= E

∫
Rd

Df
(
σ−1(X(u) + Ju −E[X]))[Ju]λ(du).

Combining this with (2.17), we find that

E
[
Df (X̃)[X̃]]= σ−1

E

[∫
Rd

(
Df

(
σ−1(X(u) + Ju −E[X]))[Ju] − Df (X̃)[Ju])λ(du)

]
.

Applying Lemma 2.4 with w1 = X̃, w2 = σ−1(X(u) + Ju −E[X]) and J = Ju yields

(2.18)

EDf (X̃)[X̃]

= 1

σ 2E

[∫
Rd

D2f (X̃)
[
Ju,X

(u) − X + Ju

]
λ(du)

]

+ 1

σ 2E

[∫
Rd

∫ 1

0

(
D2f

(
X̃ + tσ−1(X(u) + Ju − X

))[
Ju,X

(u) + Ju − X
]

− D2f (X̃)
[
Ju,X

(u) + Ju − X
])

dtλ(du)

]
.

Now the first bound of the theorem easily follows by adding and subtracting

1

σ 2E

[∫
Rd

D2f (X̃)
(
Ju,E

[
X(u) − X + Ju

])
λ(du)

]
to the right hand side of (2.18), plugging the resulting expression for EDf (X̃)[X̃] into (2.16),
and then applying (2.11) to arrive at (1.19).

The second assertion (1.20) follows from the first, after observing that we can set N(u) =
N , and hence X(u) = X. �
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3. M/GI/∞ queue: Proof of Theorem 1.1. Let us first recall some notation: S :=
[0,T] × R+, α is a finite measure on [0,T] with α([0,T]) ≥ 1, and G and G̃ are distribu-
tion functions on R+. The point process Nn that we consider has the following form:

Nn = M(1)
n + M(2)

n where M(2)
n :=

xn∑
k=1

δ(0,Yi),

where xn ≥ 1 is an integer, (Yi, i ≥ 1) is a sequence of i.i.d. random variables with dis-
tribution G̃, and M

(1)
n is a Poisson point process on S with intensity measure �n(dt, dy) :=

nα(dt)G(dy) that is independent of (Yi, i ≥ 1). � denotes the measure (α ×G)+x(δ0 × G̃).
In order to illustrate the use of Theorem 1.4 in a multivariate context, we define

Jt,y(s) :=
{

1[t ≤ s < t + y]e(1) if t > 0;
1[0 ≤ s < y]e(2) if t = 0,

where e(i), i = 1,2, denotes the coordinate vectors in R
2, and then define

U(i)
n (s) :=

∫
S

Jt,y(s)M
(i)
n (dt, dy), i = 1,2; Un := U(1)

n + U(2)
n .

Then Xn := (1,1)�Un models the number of customers in an M/G/∞ queue, and Un distin-
guishes those who were in the queue at time 0 and those who arrived afterwards. We quantify
the convergence of Ũn := n−1/2(Un − EUn) to the bivariate centered Gaussian process Ẑ

with covariance matrix

E
{
Ẑ(s1)Ẑ(s2)

�}
:=

∫ s1

0

(
1 − G(s2 − t)

)
α(dt)e(1)(e(1))� + xG̃(s1)

(
1 − G̃(s2)

)
e(2)(e(2))�,

and use this to deduce Theorem 1.1; in particular, see (3.4).
We start with the following proposition, which states the well-known families of reduced

Palm couplings (M
(1,t,y)
n ,M

(1)
n )(t,y)∈S and (M

(2,y)
n ,M

(2)
n )y∈R+ .

PROPOSITION 3.1. Let M
(i)
n , i = 1,2, be defined as above. For (t, y) ∈ S , and given

M
(1)
n , let M

(1,t,y)
n := M

(1)
n , t > 0. Then M

(1,t,y)
n has the reduced Palm distribution of M

(1)
n

at (t, y). Similarly, given M
(2)
n , let Y be a point uniformly and independently chosen from

{Y1, . . . , Yxn}. Then M
(2,y)
n := M

(2)
n − δ(0,Y ) has the reduced Palm distribution of M

(2)
n at

(0, y).

Because M
(1)
n and M

(2)
n are independent, it follows that the reduced Palm distributions of

Nn are given by N
(t,y)
n = Nn − δ(0,Y )1{t = 0}, and hence that U

(t,y)
n := ∫

S Jt,yN
(t,y)
n (dt, dy)

satisfies

(3.1) U(t,y)
n − Un = −J0,Y 1{t = 0}.

PROOF OF THEOREM 1.1. Suppose that G ∗ α, A, and G̃ are β-Hölder continuous with
constants cG,α , cα , and cG̃, respectively. We start by computing the bounds in Theorem 1.4
on the difference |Eg(Ũn)−Eg(Ẑ)|. We first show that the process Ẑ has a continuous mod-
ification. Since, by assumption, neither G∗α nor G̃ have atoms in [0,T], it is clear from (1.7)
that the covariance function is continuous. Moreover, for any s ≥ 0 and 0 ≤ h ≤ (T − s) ∧ 1,
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(1.7) and the Hölder continuity of G ∗ α easily imply that∣∣E[Ẑ(s + h)�Ẑ(s + h) − Ẑ(s)�Ẑ(s + h)
]∣∣

=
∫ s+h

s

(
1 − G(s + h − t)

)
α(dt) + x

(
1 − G̃(s + h)

)[
G̃(s + h) − G̃(s)

]
≤ (cG,α + xcG̃)hβ,

and, similarly, that ∣∣E[Ẑ(s)�Ẑ(s) − Ẑ(s)�Ẑ(s + h)
]∣∣≤ (cG,α + xcG̃)hβ,

so that (1.21) is satisfied. Therefore, in view of Remark 7, the Gaussian process Ẑ has a con-
tinuous modification. In what follows, we will work with this continuous Gaussian process,
that we still denote by Ẑ.

The contributions to the integrals in (1.17)–(1.19) from {{0} ×R+} and {(0,T] ×R+} can
be separately bounded, and the results added for the overall bounds. First, on {(0,T] ×R+},
U

((t,y))
n −Un = 0, in view of (3.1), so that there is no contribution from (1.18), or from (1.17)

either, since � = α × G = n−1�n on {(0,T] ×R+}; and (1.19) contributes at most

(3.2)
‖g‖M

2
√

n

∫
S

‖Jt,y‖3α(dt)G(dy) ≤ ‖g‖Mα([0,T])
2
√

n
.

Next, on {{0} ×R+}, U
((0,y))
n − Un = −J0,Y , and so

(3.3) E
[
U(0,y)

n − Un

]= −
∫

J0,yG̃(dy) = −(1 − G̃)e(2).

Now consider the contribution to (1.17), with � = x(δ0 × G̃) and λ = xn(δ0 × G̃) on {{0} ×
R+}, taking Ĵ(0,y) := J(0,y) − (1 − G̃)e(2). The contribution can be written as

x

∫
R+

D2f (Ũn)
[(

J0,y − (1 − G̃)e(2))[2]]
G̃(dy)

− xn

n

∫
R+

D2f (Ũn)
[
J0,y, J0,y − (1 − G̃)e(2)]G̃(dy)

= nx − xn

n

∫
R+

D2f (Ũn)
[(

J0,y − (1 − G̃)e(2))[2]]
G̃(dy)

− xn

n

∫
R+

D2f (Ũn)
[
(1 − G̃)e(2), J0,y − (1 − G̃)e(2)]G̃(dy)

= nx − xn

n

∫
R+

D2f (Ũn)
[(

J0,y − (1 − G̃)e(2))[2]]
G̃(dy),

where the last line uses (3.3), as well as Lemma 5.3 below (noting in particular that J0,y(s) =
(1{s ≥ 0}−1{s ≥ y})e(2) and that f inherits from g either its smoothness property (1.2) or its
being a function of a finite number of values of its argument, using (2.10) of Theorem 2.2).
Therefore, using (2.12) of Theorem 2.2, the contribution to (1.17) on {{0} ×R+} is bounded
by

(3/2)‖g‖M ′
∣∣n−1xn − x

∣∣.
For the contribution to (1.18) on {{0} ×R+}, we use (2.12) and (3.1), giving

E

[∫
R+

∣∣D2f (Ũn)
[
J0,y,

(
U(0,y)

n − Un

)−E
[
U(0,y)

n − Un

]]∣∣n−1xnG̃(dy)

]

≤ (3/2)‖g‖M ′
∫
R+

‖J0,y‖E
[∥∥∥∥∥ 1

xn

xn∑
i=1

(
J0,Yi

−E[J0,Y ])∥∥∥∥∥
]
n−1xnG̃(dy).
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Then (3.3) implies that∫
R+

‖J0,y‖E
[∥∥∥∥∥ 1

xn

xn∑
i=1

(
J0,Yi

−E[J0,Y ])∥∥∥∥∥
]
n−1xnG̃(dy)

= xn

n

∫
R+

E

[∥∥∥∥∥ 1

xn

xn∑
i=1

J0,Yi
− (1 − G̃)e(2)

∥∥∥∥∥
]
G̃(dy)

= xn

n
E

[∥∥∥∥∥ 1

xn

xn∑
i=1

1[Yi > ·] − (1 − G̃)

∥∥∥∥∥
]

= xn

n
E

[∥∥∥∥∥ 1

xn

xn∑
i=1

1[Yi ≤ ·] − G̃

∥∥∥∥∥
]
.

Thus we must bound the mean of the sup-norm of the difference between an empirical CDF
and its limit. According to Massart ((1990), Corollary 1) (improving on Dvoretzky, Kiefer
and Wolfowitz (1956)), for any y > 0,

P

(∥∥∥∥∥ 1

xn

xn∑
i=1

1[Yi ≤ ·] − G̃

∥∥∥∥∥> y

)
≤ 2e−2xny2

,

so that

E

[∥∥∥∥∥ 1

xn

xn∑
i=1

1[Yi ≤ ·] − G̃

∥∥∥∥∥
]

≤ 2
∫ ∞

0
e−2xny2

dy =
√

π

2xn

,

giving a contribution to (1.18) on {0} ×R+ of at most (3/2)‖g‖M ′
√

π/(2xn).
For the contribution to (1.19) on {0} ×R+, we use (3.3) and (3.1) to easily find that∫
R+

‖J0,y‖
∥∥U(0,y)

n − Un + J0,y

∥∥2
n−1xnG̃(dy) =

∫
R+

‖J0,y‖‖J0,y − J0,Y ‖2n−1xnG̃(dy)

≤ n−1xn,

giving a contribution to (1.19) on {0} ×R+ of at most (1/2)‖g‖M ′n−3/2xn. Collecting these
bounds, we deduce that, for any g ∈ M ′,

(3.4)
∣∣E[g(Ũ)

]−E
[
g(Ẑ)

]∣∣≤ ‖g‖M ′�(x, xn,α,T),

where �n(x, xn,α,T) is as given in (1.6). Noting that, for g̃ : D1 → R and g : D2 → R de-
fined by g(w1,w2) := g̃(w1 + w2), we have ‖g̃‖M ′ ≤ 23/2‖g‖M ′ , the bound (1.8) in Theo-
rem 1.1 follows.

To prove the bound on the Lévy–Prokhorov distance, we use the main results of Barbour,
Ross and Zheng (2021), as stated in Theorem 5.1 below. The first hypothesis of the theorem
is satisfied with κ2 = 0, and with κ1 upper bounded by a quantity of order O(|n−1xn − x| +
α([0, T ])n−1/2), read from the bound (1.8) just established (noting that ‖g‖M ′ ≤ ‖g‖M0 ).

To bound the modulus of continuity terms, we use Lemma 5.2, treating the components
X̃

(1)
n and X̃

(2)
n of Ũn separately (so that Ũ

(i)
n = X̃

(i)
n e(i)). To verify (5.1) for X̃

(1)
n , let

(3.5)

Rs := {
(u, y) : 0 ≤ u ≤ s,0 < y < s − u

}
,

R1(s1, s2) := Rs2 \Rs1 and

R2(s1, s2) := (s1, s2] ×R+, s1 < s2.



STEIN’S METHOD FOR GAUSSIAN PROCESSES 3855

Fix 0 ≤ s < t ≤ T with 1/(2n) ≤ (t − s) ≤ 1/2. Recalling the definition of the random mea-
sure M

(1)
n , we have

X̃(1)
n (t) − X̃(1)

n (s) = Ỹn(2; s, t) − Ỹn(1; s, t),
where

Ỹn(i; s, t) := n−1/2{M(1)
n

(
Ri (s, t)

)− �n

(
Ri(s, t)

)}
, i = 1,2,(3.6)

are (dependent) centered and normalized Poisson random variables with means

(3.7) �n

(
R1(s, t)

)≤ ncG,α(t − s)β and �n

(
R2(s, t)

)≤ ncα(t − s)β,

by the Hölder continuity of G ∗ α and A. Now, for Wn a sum of n independent Bernoulli
random variables with success probability p̃ ≤ μ, it follows from Rosenthal’s inequality that,
for any l ≥ 1,

(3.8) n−l
E
∣∣Wn −E[Wn]

∣∣2l ≤ C2ln
−l max

{
(nμ)l, nμ

}≤ C2l max
{
μl, n−l+1μ

}
,

where Cr is the Rosenthal constant for exponent r . A limiting argument shows that the
inequality (3.8) holds also for Wn ∼ Po(nμ). Thus it follows that, for any l ≥ 1 and
|t − s| ≥ (1/2)n−1/β ,

(3.9)

P
[∣∣Ỹn(i; s, t)

∣∣≥ θ/2
]

≤ C2l2
2lθ−2l max

{
(cG,α ∨ cα)l|t − s|lβ, (cG,α ∨ cα)n−l+1|t − s|β}

≤ K
(1)
l θ−2l|t − s|lβ, i = 1,2,

which implies (5.1) for X̃
(1)
n with M = n1/β , K = 2K

(1)
l , a = lβ − 1, and b = 2l, for any

l ≥ 1.
To establish (5.2) for X̃

(1)
n , with M = n1/β , observe that, for all s such that (k − 1)/M ≤

s ≤ k/M , ∣∣X̃(1)
n (s) − X̃(1)

n

(
(k − 1)/M

)∣∣
≤ n−1/2

2∑
i=1

{
M(1)

n

(
Ri

(
k − 1

M
,

k

M

))
+ �n

(
Ri

(
k − 1

M
,

k

M

))}

=
2∑

i=1

Ỹn

(
i; k − 1

M
,

k

M

)
+ 2n−1/2

2∑
i=1

�n

(
Ri

(
k − 1

M
,

k

M

))
,

and that �n(Ri(
k−1
M

, k
M

)) ≤ cG,α ∨ cα , see (3.7) and (3.6). Hence, if θ ≥ 4(cG,α ∨ cα)n−1/2,
then

P

[
sup

k−1
M

≤s≤ k
M

∣∣X̃(1)
n (s) − X̃(1)

n

(
(k − 1)/M

)∣∣≥ θ
]
≤ P

( 2∑
i=1

∣∣∣∣Ỹn

(
i; k − 1

M
,

k

M

)∣∣∣∣≥ θ/2

)

≤
2∑

i=1

P

[∣∣∣∣Ỹn

(
i; k − 1

M
,

k

M

)∣∣∣∣≥ θ/4
]
,

and this probability is bounded by 22l′+1K
(1)
l′ θ−2l′n−l′ , for any l′ ≥ 1, in view of (3.9) as

established above. Hence, for θ ≥ 4(cG,α ∨ cα)n−1/2, we can take

(3.10) ϕ
(1)
M (θ) := n

1
β
−l′22l′+1K

(1)
l′ θ−2l′ ≤ 22l′+1K

(1)
l′ θ−2l′εl′β−1
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in (5.2), for any l′ ≥ 1/β and ε ≥ n−1/β , to be compared with the bound in (5.1). In particular,
taking θ ≥ 4(cG,α ∨ cα)n−1/2 and l′ = l, for any l > 1/β , and applying Lemma 5.2 with
M = n1/β , it follows that, for any ε ∈ (n−1/β,1] and for any θ > 4(cG,α ∨ cα)n−1/2, we have

(3.11) P
[
ω

X̃
(1)
n

(ε) ≥ θ/2
]≤ TCθ−2lεlβ−1,

for a suitable constant C that does not depend on (ε, n, θ). By observing that, for ε ≥ n−1/β

and θ ≤ 4(cG,α ∨ cα)n−1/2, the bound (3.11) is comparable to or larger than 1, the constant
C can be chosen in such a way that the bound is valid for all θ > 0.

Turning to X̃
(0)
n , we can first assume that xn/n ≤ 2x without loss of generality, because

T ≥ n1/2|xnn
−1 − x| and the final bound is only meaningful for T � n1/8. Note that, for

s < t ,

X̃(0)
n (t) − X̃(0)

n (s) = n−1/2
xn∑
i=1

{
1[s < Yi ≤ t] − (

G̃(t) − G̃(s)
)}

is a normalized sum of independent centered Bernoulli random variables, and that, by as-
sumption, xn(G̃(t) − G̃(s)) ≤ 2nxcG̃(t − s)β . Arguing exactly as for X̃(1) now yields (5.1)

for X̃
(0)
n , for any l ≥ 1, with 1 + a = lβ and b = 2l, and with

K = K
(0)
l = 2l+1xC2lcG̃ max{xcG̃,1}l−1.

For (5.2), the argument is again as for X̃
(1)
n . We first write

sup
{∣∣X̃(0)

n (s) − X̃(0)
n

(
(k − 1)/M

)∣∣ : k − 1

M
≤ s ≤ k

M

}

≤ n−1/2
xn∑
i=1

{
1
[
k − 1

M
< Yi ≤ k

M

]
+
[
G̃

(
k

M

)
− G̃

(
k − 1

M

)]}
≤ n−1/2∣∣Wn −E[Wn]

∣∣+ 4xn1/2{G̃(k/M) − G̃
(
(k − 1)/M

)}
,

where Wn is a sum of xn i.i.d. Bernoulli random variables with success probability p̃ ≤
cG̃M−β . Therefore, with M = n1/β , it follows from (3.8) and by first considering θ >

8xcG̃n−1/2 that we can take

(3.12) ϕ
(0)
M (θ) := n

−l′+ 1
β 22l′K(0)

l′ θ−2l′

for ϕM(θ) in (5.2) for any l′ ≥ 1. Hence, from Lemma 5.2, for any ε ∈ (n−1/β,1] and any
θ > 0, we have

(3.13) P
[
ω

X̃
(0)
n

(ε) ≥ θ/2
]≤ TCθ−2lεlβ−1,

for any l ≥ 1/β , for a suitable constant C.
For the analogous inequality for Ẑ, an easy calculation shows that, for any 0 ≤ u < s ≤ T,

E
[∣∣Ẑ(s) − Ẑ(u)

∣∣2]≤ 2(1 + x)c(s − u)β,

and so Barbour, Ross and Zheng ((2021), Remark 1.6) implies there is a constant C depending
on x, c, β such that, for each component Ẑ(i) of Ẑ,

(3.14) P
[
ωẐ(i)(ε) ≥ θ

]≤ CTθ−2lεlβ−1, i = 1,2,

for any l ≥ 1.
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A bound on the Lévy–Prokhorov distance between L(Ũn) and L(Ẑ) now follows by using
(3.11), (3.13), and (3.14) in Theorem 5.1 below, with κ1 = O(|xnn

−1 − x| + α([0,T])n−1/2)

(from (3.4)) and κ2 = 0, giving a bound of order

O
(
θ + δ

√
T logn + (εδ)−3κ1T3/2 + Tθ−2lεlβ−1)(3.15)

for the Lévy–Prokhorov distance, for any δ, θ > 0 and ε ∈ (n−1/β,1). Taking δ
√

T = θ and
matching (εδ)−3κ1T3/2 = Tθ−2lεlβ−1 reduces the bound (3.15) to

O
(
θ
√

logn + κ1T
3(εθ)−3) with ε = (

κ1T
2θ2l−3) 1

2+lβ > n−1/β

and then balancing θ with κ1T
3(εθ)−3 yields the bound O(θ

√
logn) with

θ = (
κ1T3)(lβ−1)/(6l+4lβ−1)T3/(6l+4lβ−1).

That is, we have a bound of order

O
(√

logn
(
T4n−ϕ)(lβ−1)/(6l+4lβ−1)T3/(6l+4lβ−1)),

for any l ≥ 1/β , where

ϕ := min
{

1

2
+ logn

(
T

α([0,T])
)
, logn

(
T

|xnn−1 − x|
)}

.

The simplified bound given in the statement of Theorem 1.1, for β = 1 and n1/2|xn/n− x| ≤
α([0,T]) = O(T), follows, for any χ > 0, by taking l large enough. �

4. GI/GI/∞ queue: Proof of Theorem 1.2. Let us first recall some notation from Sec-
tion 1.4. The stationary renewal process Vn is driven by R/n, and the point process Nn that
we consider has the form

Nn :=
�nT�∑
i=1

Mn(i/n)δ(i/n,Yi),

where:

(i) Mn(i/n) marks the arrival of a customer at time i/n, and can be represented as

Mn(i/n) :=
∞∑

j=1

1[R0 + R1 + · · · + Rj = i],

where (Rj , j ≥ 1) are independent copies of R, and R0 has the delay distribution

P(R0 = k) = m−1
P(R ≥ k), k ∈ N;

(ii) the service times Y := (Yi, i ≥ 1) are i.i.d. with distribution G,
(iii) Mn and Y are independent.

As in the previous section, we begin with a coupling lemma.

LEMMA 4.1. With the above notation, let (Rik,1 ≤ i, k < ∞) and (R′
ik,1 ≤ i, k < ∞)

be independent i.i.d. sequences with the same distribution as R that are also independent of
Vn and Y . Define

Sij :=
j∑

k=1

Rik and S′
ij :=

j∑
k=1

R′
ik, i, j ∈ {1,2, . . .};

M̂(i/n)
n :=

∞∑
j=1

(δ(i+Sij )/n + δ(i−S′
ij )/n), i ∈ {0,1, . . . , n};
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then set

Ti := min
{�nT� − i + 1, inf

{
j ≥ 1 : Mn

(
(i + j)/n

)= M̂(i/n)
n

(
(i + j)/n

)= 1
}}

,

T ′
i := min

{
i, inf

{
j ≥ 1 : Mn

(
(i − j)/n

)= M̂(i/n)
n

(
(i − j)/n

)= 1
}};

and finally define

M(i/n)
n (j/n) :=

{
M̂(i/n)

n (j/n) i − T ′
i < j < i + Ti,

Mn(j/n) otherwise.

Then

N(i/n)
n :=

�nT�∑
j=1

M(i/n)
n (j/n)δ(j/n,Yj )

has the reduced Palm distribution of Nn at (i/n, y) ∈ S .

PROOF. It is well known that M̂
(i/n)
n has the reduced Palm measure of Mn at (i/n); see,

for example, Daley and Vere-Jones ((2008), Chapter 13). Then note that M
(i/n)
n

d= M̂
(i/n)
n ,

since Ti is the first time there is a renewal in both the zero delayed renewal process started
from i: (i + Sij )j≥1 appearing in the definition of M̂

(i/n)
n , and the analogous stationary pro-

cess induced by Mn, at which point we can continue using either process without changing
the distribution. A similar statement holds for T ′

i but now moving backwards in time. From

this observation, it is clear that N
(i/n)
n is distributed as claimed. �

REMARK 11. We write N
(i/n)
n for the reduced Palm distribution at (i/n, y), for all y.

The next result gives an expression for E[X(i/n)
n −Xn], to be used in (1.17) of Theorem 1.4.

LEMMA 4.2. With the notation above, let

X(i/n)
n :=

∫
S

Jt,y(s)N
(i/n)
n (dt, dy).

If E[Rr ] < ∞ for some r > 3, and if G satisfies the assumptions (1.11), then there is a
constant C, depending only on L(R), β and gG(0), such that

An,i(s) := E
[
X(i/n)

n (s)
]−E

[
Xn(s)

]− 1
{
s ≥ in−1}G(s − in−1)(v2 − m2

m2

)
satisfies ∣∣An,i(s)

∣∣≤ C
{
n−β + (∣∣i − �ns�∣∣+ 1

)−(r−2) + i−(r−2)}.
PROOF. First note that

X(i/n)
n (s) − Xn(s) =

�nT�∑
j=1

(
M(i/n)

n (j/n) − Mn(j/n)
)
1[j/n ≤ s < Yj + j/n],

so that, using the independence of Y and (Mn,M
(i/n)
n ), we have

E
[
X(i/n)

n (s)
]−E

[
Xn(s)

]= �ns�∑
j=1

(
E
[
M(i/n)

n (j/n)
]−E

[
Mn(j/n)

])
G
(
s − jn−1).(4.1)
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By stationarity, E[Mn(j/n)] = 1/m; and by Lemma 4.1,

E
[
M(i/n)

n (j/n)
]= u0|j−i| := u|j−i|1{j �= i},

where ul is the probability that there is a renewal at time l in a renewal process with inter-
arrival distribution L(R), started from zero. Hence we can write (4.1) in the form

(4.2)

E
[
X(i/n)

n (s)
]−E

[
Xn(s)

]
=

�ns�∑
j=1

(
u0|j−i| − m−1)G(s − jn−1)

=
�ns�∑
j=1

(
u0|j−i| − m−1)G(s − in−1)1{s ≥ in−1}

+
�ns�∑
j=1

(
u0|j−i| − m−1)(G(s − jn−1)− G

(
s − in−1)1{s ≥ in−1}).

The remainder of the proof consists of showing that the first term in (4.2) is close to
1{s ≥ in−1}G(s − in−1)(v2 − m2)/m2, and that the second term is small. The main tool
is the inequality ∣∣E[M(i/n)

n (j/n)
]− 1/m

∣∣≤ CR

(|j − i| + 1
)−(r−1)

,(4.3)

for a suitable constant CR , which follows from Pitman ((1974), Corollary (6.21)), together
with the observation that

(4.4)
∞∑

j=−∞

(
u0|j−i| − m−1)= v2 − m2

m2 .

For the first term in (4.2), using (4.3) and (4.4), for s ≥ i/n, we have

(4.5)

∣∣∣∣∣
�ns�∑
j=1

(
u0|j−i| − m−1)− v2 − m2

m2

∣∣∣∣∣≤ CR

{ 0∑
j=−∞

(|j − i| + 1
)−(r−1)

+
∞∑

j=�ns�+1

(|j − i| + 1
)−(r−1)

}

≤ CR

r − 2

{
i−(r−2) + ∣∣�ns� − i + 1

∣∣−(r−2)};
for s < i/n, the term is zero because of the factor 1{s ≥ in−1}. For the second term in (4.2),
for s ≥ i/n, using (1.11),∣∣G(s − i/n) − G(s − j/n)

∣∣≤ gG(0)
∣∣n−1(i − j)

∣∣β, 1 ≤ j ≤ �ns�,
so that

(4.6)

∣∣∣∣∣
�ns�∑
j=1

(
u0|j−i| − m−1)(G(s − jn−1)− G

(
s − in−1)1{s ≥ in−1})∣∣∣∣∣

≤
�ns�∑
j=1

CR

(|j − i| + 1
)−(r−1)

gG(0)n−β |i − j |β ≤ n−βCRgG(0)

{
2

r − 2 − β

}
.
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Finally, for s < i/n, we have

(4.7)

�ns�∑
j=1

∣∣u0|j−i| − m−1∣∣G(s − jn−1)≤ CR

�ns�∑
j=1

(|j − i| + 1
)−(r−1)

≤ CR

{
r − 1

r − 2

}∣∣�ns� − i + 1
∣∣−(r−2)

.

Combining (4.5)–(4.7) with (4.2) proves the lemma. �

We now use the coupling of Lemma 4.1 and Theorem 1.4 to prove Theorem 1.2.

PROOF OF THEOREM 1.2. Following the notation in Theorem 1.4, we set

�(dt, dy) := dtG(dy) and Ĵt,y := m

v
Jt,y − m + v

v
GtIt ,

where Gt(s) := G(s − t) and It (s) := 1{s ≥ t}.
From the assumptions (1.11) on G, it is clear from (1.12) that the covariance function is

continuous. Moreover, for any s ≥ 0 and 0 ≤ h ≤ (T − s) ∧ 1, they easily imply, with (1.12),
that there is a constant c′ such that

E
[(

Z(s + h) − Z(s)
)2]≤ c′hβ,

so that (1.21) is satisfied. Therefore, in view of Remark 7, we can assume that Z has contin-
uous sample paths.

To bound the term corresponding to (1.17), there are two issues. The first is that we need
to compare integration against the atom-less � to the atoms of λn/σ

2
n corresponding to the

renewals of Xn occurring on a discrete lattice. The second is that there are error terms in the
differences of the means of X

(i/n)
n and Xn, as given in Lemma 4.2. To handle the first issue,

we introduce �n := 1
n

∑�nT�
i=1 (δi/n × G) as a discretized version of �. Then we can compute

(4.8)

E

[∫
D2f (X̃n)

[
Ĵ

[2]
t,y

]
�(dt, dy) −

∫
D2f (X̃n)

[
Ĵ

[2]
t,y

]
�n(dt, dy)

]

=
�nT�∑
i=1

∫
R+

E

[∫ i/n

(i−1)/n

(
D2f (X̃n)

[
Ĵ

[2]
t,y

]− D2f (X̃n)
[
Ĵ

[2]
i/n,y

])
dt

]
G(dy)

=
�nT�∑
i=1

∫
R+

E

[∫ i/n

(i−1)/n

(
D2f (X̃n)[Ĵt,y − Ĵi/n,y, Ĵt,y]

+ D2f (X̃n)[Ĵi/n,y, Ĵt,y − Ĵi/n,y])dt

]
G(dy).

We work on

(4.9)
∣∣D2f (X̃n)[Ĵt,y − Ĵi/n,y, Ĵs,y]

∣∣,
where t ∈ ((i − 1)/n, i/n], and s ≥ 0. First, note that we can write

(4.10) Ĵr,y = m

v
(Ir − Ir+y) − m + v

v
(Ir − Gr),

so that

Ĵt,y − Ĵi/n,y = m

v

(
(It − Ii/n) − (It+y − Ii/n+y)

)− m + v

v

(
(It − Ii/n) − (Gt − Gi/n)

)
,
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and thus bilinearity implies that (4.9) is bounded by

(4.11)
C
{∣∣D2f (X̃n)[It − Ii/n, Ĵs,y]

∣∣
+ ∣∣D2f (X̃n)[It+y − Ii/n+y, Ĵs,y]

∣∣+ ∣∣D2f (X̃n)[Gt − Gi/n, Ĵs,y]
∣∣};

here and below we allow C to change from line to line, but only depending on L(R) and
gG(0).

To bound the last term of (4.11), equation (2.12) of Theorem 2.2 and the assumption (1.11)
on G (noting that |t − i/n| ≤ 1/n) imply that

(4.12)
∣∣D2f (X̃n)[Gt − Gi/n, Ĵs,y]

∣∣≤ C‖g‖M ′n−β.

To bound the first two terms, we apply (2.10) and, noting that Js,y = Is − Is+y , we have∣∣D2fg(w)[It − Ii/n, Js,y]
∣∣

≤
∫ ∞

0
e−2z

E
[∣∣D2g

(
we−z +

√
1 − e−2zZ

)[It − Ii/n, Js,y]
∣∣]dz

≤

⎧⎪⎪⎨⎪⎪⎩
Sgn

−1/2 if g satisfies (1.2),

k2‖g‖M ′
k∑

j=1

1
{
tj ∈ ((i − 1)/n, i/n]} if g(w) = F

(
w(t1), . . . ,w(tk)

)
,

where, in the first case, we use the smoothness condition (1.2), and in the second the explicit
expression

D2g(w)[w1,w2] =
k∑

j,�=1

Fj�

(
w(t1), . . . ,w(tk)

)
w1(tj )w2(t�),

where we write Fj� for the mixed partial derivative of F in the coordinates j and �. Similarly,
using Lemma 5.3, we can write∣∣D2f (X̃n)[It − Ii/n,Gs]

∣∣
=
∣∣∣∣∫ D2f (X̃n)[It − Ii/n, Is+y′ ]G(dy′)∣∣∣∣

≤

⎧⎪⎪⎨⎪⎪⎩
Sgn

−1/2 if g satisfies (1.2),

k2‖g‖M ′
k∑

j=1

1
{
tj ∈ ((i − 1)/n, i/n]} if g(w) = F

(
w(t1), . . . ,w(tk)

)
,

and there are analogous bounds for the last two displays, when replacing t by t + y and i/n

by i/n + y. Noting that
∑�nT�

i=1
∑k

j=1 1{tj ∈ ((i − 1)/n, i/n]} = k, we can apply these last
inequalities with the representation (4.10) for Ĵs,y to see that the absolute value of (4.8) is
bounded by

(4.13)

∣∣∣∣E[∫ D2f (X̃n)
[
Ĵ

[2]
t,y

]
�(dt, dy) −

∫
D2f (X̃n)

[
Ĵ

[2]
t,y

]
�n(dt, dy)

]∣∣∣∣
≤ CT

{‖g‖M ′n−β + Sgn
−1/2 if g satisfies (1.2),

‖g‖M ′
(
n−β + k3n−1) if g(w) = F

(
w(t1), . . . ,w(tk)

)
.
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To finish bounding (1.17), we can apply Lemma 5.3 (after rewriting Ĵ as per (4.10)) to
find

(4.14)

E

[∫
D2f (X̃n)

[
Ĵ

[2]
t,y

]
�n(dt, dy)

]
= m2

v2n

�nT�∑
i=1

∫
R+

E
[
D2f (X̃n)

[
J

[2]
i/n,y

]]
G(dy)

+ v2 − m2

v2n

�nT�∑
i=1

E
[
D2f (X̃n)

[
(Ii/nGi/n)

[2]]].
Since λn/σ

2
n = (m2/v2) 1

n

∑�nT�
i=1 (δi/n × G), we have

(4.15)

E

[∫
D2f (X̃n)

[
Jt,y,E

[
X(t,y)

n − Xn + Jt,y

]](
σ−2

n λn(dt, dy)
)]

= m2

v2n

�nT�∑
i=1

∫
R+

E
[
D2f (X̃n)

[
Ji/n,y,E

[
X(i/n)

n − Xn + Ji/n,y

]]]
G(dy).

From Lemma 4.2 (and using the notation there), we have

E
[
X(i/n)

n − Xn + Ji/n,y

]= Ji/n,y + v2 − m2

m2 Ii/nGi/n + An,i .(4.16)

Hence (4.14)–(4.16) imply that the contribution from equation (1.17) is bounded by∣∣∣∣E[∫ D2fg(X̃n)
[
Ĵ

[2]
t,y

]
�n(dt, dy)

−
∫

D2fg(X̃n)
[
Jt,y,E

[
X(t,y)

n − Xn + Jt,y

]]λn(dt, dy)

σ 2
n

]∣∣∣∣
≤ C

n

�nT �∑
i=1

∫
R+

∣∣E[D2fg(X̃n)[Ji/n,y,An,i]]∣∣G(dy)(4.17)

≤ CT

{‖g‖M ′n−β + Sgn
−1/2 if g satisfies (1.2),

‖g‖M ′
(
n−β + k3n−1) if g(w) = F

(
w(t1), . . . ,w(tk)

)
,

(4.18)

where we have used the bounds of Lemma 4.2, writing

(∣∣i − �ns�∣∣+ 1
)−(r−2) =

�nT�−1∑
j=0

1[s ∈ [j/n, (j + 1)/n)
](|i − j | + 1

)−(r−2)
,

and using the same smoothness/finite number of instants arguments leading to (4.13).
To bound (1.18), we first construct processes X̂

[i/n]
n and X

[i/n]
n such that X̂

[i/n]
n is inde-

pendent of X
(i/n)
n − Xn, the pair of processes X

[i/n]
n and X̂

[i/n]
n are close to one another, and

L(X
(i/n)
n −Xn,X

[i/n]
n ) = L(X

(i/n)
n −Xn,Xn). To do so, recalling the notation of Lemma 4.1,

let M∗
n be a copy of Mn that is independent of both Mn and M

(i/n)
n . Define

T̂i := min
{
n − i + 1, inf

{
j > Ti : Mn

(
(i + j)/n

)= M∗
n

(
(i + j)/n

)= 1
}}

,

T̂ ′
i := min

{
i, inf

{
j > T ′

i : Mn

(
(i − j)/n

)= M∗
n

(
(i − j)/n

)= 1
}}

.

Now set

M [i/n]
n (j/n) :=

{
Mn(j/n) i − T̂ ′

i < j < i + T̂i ,

M∗
n(j/n) otherwise
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and, for (Y ′
j , j ≥ 1) i.i.d. with distribution function G and independent of the previous vari-

ables, set

N [i/n]
n :=

i+T̂i∑
j=i−T̂ ′

i

M [i/n]
n (j/n)δ(j/n,Yj ) + ∑

j /∈[i−T̂ ′
i ,i+T̂i ]

M [i/n]
n (j/n)δ(j/n,Y ′

j );

N∗
n :=

�nT�∑
j=1

M∗
n(j/n)δ(j/n,Y ′

j ),

and then set

X[i/n]
n :=

∫
S

Jt,yN
[i/n]
n (dt, dy); X∗

n :=
∫
S

Jt,yN
∗
n (dt, dy).

It is clear that L(N
[i/n]
n ,N

(i/n)
n − Nn) = L(Nn,N

(i/n)
n − Nn), because Nn and N

[i/n]
n differ

only by having different choices of independent and identically distributed zero-delayed re-
newal processes defining their continuations outside the interval [i − T̂ ′

i , i + T̂i], and these are

independent of N
(i/n)
n − Nn, which is determined by events defined only on [i − T̂ ′

i , i + T̂i].
Now, defining

X̃[i/n]
n := σ−1

n

(
X[i/n]

n − λn

); X̃∗
n := σ−1

n

(
X∗

n − λn

)
,

we observe that

E

[∫
D2f

(
X̃∗

n

)[
Ji/n,y,

(
X(i/n)

n − Xn

)−E
[
X(i/n)

n − Xn

]]
G(dy)

]
= 0.(4.19)

This follows primarily because M∗
n is independent of both Mn and M

(i/n)
n , and hence X̃∗

n

and X
(i/n)
n − Xn are independent. In more detail, because M

(i/n)
n (j/n) = Mn(j/n) for j /∈

(i − T ′
i , i + T ′

i ), and because of the independence of (M
(i/n)
n − Mn), (Yj , j ≥ 1) and X̃∗

n, we
can use Lemma 5.3 to show that

E
[
D2f

(
X̃∗

n

)[
Ji/n,y,

(
X(i/n)

n − Xn

)]]
= E

[
i+Ti−1∑

j=i−T ′
i +1

(
M(i/n)

n (j/n) − Mn(j/n)
)
E
{
D2f

(
X̃∗

n

)[Ji/n,y, Ij/n − Ijn−1+Yj
]}]

= E

[
i+Ti−1∑

j=i−T ′
i +1

(
M(i/n)

n (j/n) − Mn(j/n)
) ∫

R+
D2f

(
X̃∗

n

)[Ji/n,y, Ij/n − Ijn−1+y′ ]G(dy′)]

= E

[
i+Ti−1∑

j=i−T ′
i +1

(
M(i/n)

n (j/n) − Mn(j/n)
)
D2f

(
X̃∗

n

)[Ji/n,y, Ij/nGj/n]
]

=
�nT�∑
j=1

E
[
M(i/n)

n (j/n) − Mn(j/n)
]
E
(
D2f

(
X̃∗

n

)[Ji/n,y, Ij/nGj/n])

= E

(
D2f

(
X̃∗

n

)[
Ji/n,y,

�nT�∑
j=1

E
[
M(i/n)

n (j/n) − Mn(j/n)
]
Ij/nGj/n

])

= E
(
D2f

(
X̃∗

n

)[
Ji/n,y,E

[
X(i/n)

n − Xn

]])
,
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and integrating with respect to y gives (4.19). Thus, we can bound the term corresponding to
(1.18) as follows. First observe that, because L(N

[i/n]
n ,N

(i/n)
n − Nn) = L(Nn,N

(i/n)
n − Nn),

(4.20)

∣∣∣∣∣ m2

v2n

�nT�∑
i=1

∫
R+

E
[
D2f (X̃n)

[
Ji/n,y,

(
X(i/n)

n − Xn

)−E
[
X(i/n)

n − Xn

]]]
G(dy)

∣∣∣∣∣
=
∣∣∣∣∣ m2

v2n

�nT�∑
i=1

∫
R+

E
[
D2f

(
X̃

[ i
n
]

n

)[
Ji/n,y,

(
X

( i
n
)

n − Xn

)−E
(
X

( i
n
)

n − Xn

)]]
G(dy)

∣∣∣∣∣.
Now we can use (4.19) to give

(4.21)

(4.20) ≤ m2

v2n

�nT�∑
i=1

∫
R+

∣∣E[D2f
(
X̃[i/n]

n

)[
Ji/n,y,

(
X(i/n)

n − Xn

)−E
[
X(i/n)

n − Xn

]]
− D2f

(
X̃∗

n

)[
Ji/n,y,

(
X(i/n)

n − Xn

)−E
(
X(i/n)

n − Xn

)]]∣∣G(dy)

≤ C‖g‖M

n

�nT�∑
i=1

E
[∥∥X̃[i/n]

n − X̃∗
n

∥∥∥∥(X(i/n)
n − Xn

)−E
(
X(i/n)

n − Xn

)∥∥]

≤ C‖g‖M

n3/2

�nT�∑
i=1

E
[(

1 + T̂i + T̂ ′
i

)(
1 + Ti + T ′

i

)]≤ CT‖g‖M√
n

,

where the second inequality follows from (2.11), the third is because N
[i/n]
n (j/n) = N∗

n (j/n)

for j /∈ [i − T̂ ′
i , i + T̂i] and N

(i/n)
n (j/n) = Nn(j/n) for j /∈ [i − T ′

i , i + Ti], and the final
inequality is obtained by using Cauchy–Schwarz and then noting that, by Pitman ((1974),
Proposition (6.10)), under the assumption E[R3] < ∞, Ti , T ′

i , T̂i and T̂ ′
i all have finite second

moments, whose values depend only on L(R).
Similarly, to bound (1.19), note that

E
[∥∥X(i/n)

n − Xn + Ji/n,y

∥∥2]≤ E
[(

1 + Ti + T ′
i

)2]≤ C,

again if E[R3] < ∞. Thus

(4.22)
‖g‖M

2σn

E

[∫
S

‖Jt,y‖
∥∥X(t,y)

n − Xn + Jt,y

∥∥2(
σ−2

n λn(dt, dy)
)]≤ CT‖g‖M√

n
.

Combining (4.13), (4.18), (4.21), and (4.22) yields the bound given in (1.13).
To prove the bound on the Lévy–Prokhorov distance, we follow the template for the

M/GI/∞ queue, and use the main results of Barbour, Ross and Zheng (2021), as stated in
Theorem 5.1 below. The first hypothesis of Theorem 5.1 is satisfied, with κ1 and κ2 read
from the bound (1.13) (noting that ‖g‖M ≤ ‖g‖M ′ ≤ ‖g‖M0 ).

To bound the modulus of continuity terms, we again use Lemma 5.2. To verify (5.1), for
any 0 ≤ s1 < s2 ≤ T, define the regions

R1(s1, s2) := Rs2 \Rs1 and R2(s1, s2) := (s1, s2] ×R+,

as before at (3.5), so that

X̃n(t) − X̃n(s) = Ỹn(2; s, t) − Ỹn(1; s, t),
where Ỹn(i; s1, s2) := σ

−1/2
n {Nn(Ri (s1, s2)) − λn(Ri (s1, s2))}, i = 1,2. We now use

Markov’s inequality to bound each term in

P
(∣∣X̃n(t) − X̃n(s)

∣∣≥ θ
)≤ P

(∣∣Ỹn(1; s, t)∣∣≥ θ/2
)+ P

(∣∣Ỹn(2; s, t)∣∣≥ θ/2
)
.
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First, σnỸn(2; s, t) =∑
ns<i≤nt [Mn(i/n)−m−1] is the centered number of renewals in the in-

terval (ns, nt]. By the usual renewal theory coupling arguments, as in Glynn ((1982), Propo-
sition 6.10), writing M̂i := Mn(i/n), the sequence (M̂i,1 ≤ i ≤ nT) is strong mixing as in-
troduced in Rosenblatt (1956) with coefficients αj ≤ kRj−(r−1), j = 1,2, . . ., for a constant
kR < ∞, depending only on L(R), that we can choose to be at least 1, and α0 := 1/2. Thus,
for 0 < u ≤ 1, as in Rio ((2013), (1.21)),

α−1(u) := ∑
j≥0

1{u < αj } ≤ (kR/u)1/(r−1)+1{u < 1/2} ≤ 2(kR/u)1/(r−1).

Applying Rio ((2013), Theorem 2.2), it follows that, for any l ∈ N, there is a constant Cl,R

depending only on L(R) and l such that

E
[(

Ỹn(2; s, t))2l]
≤ Cl,Rσ−2l

n

{( ∑
ns<i≤nt

∫ 1

0
α−1(u)Q2

i (u) du

)l

+ ∑
ns<i≤nt

∫ 1

0

[
α−1(u)

]2l−1
Q2l

i (u) du

}
,

where Qi := q1/m and, for w ∈ [0,1] and u ∈ (0,1],

(4.23) qw(u) =
{
w1(0,1−w](u) + (1 − w)1(1−w,1](u) w ≥ 1/2,

(1 − w)1(0,w](u) + w1(w,1](u) w < 1/2.

Straightforward computing now shows that, for l < r/2,

E
[(

Ỹn(2; s, t))2l]≤ Kl,Rσ−2l
n

[(�nt� − �ns�)l + (�nt� − �ns�)],
for a constant Kl,R < ∞. Markov’s inequality and (1.9) thus imply that, if n(t − s) ≥ 1/2
and for l < r/2,

(4.24) P
(∣∣Ỹn(2; s, t)∣∣≥ σnθ/2

)≤ Kl,R

(
m3

v2

)l

22l+1θ−2l3l(t − s)l =: C(1)
l θ−2l(t − s)l.

For Ỹn(1; s, t), we observe that

Nn

(
R1(s, t)

)− λn

(
R1(s, t)

)= ∑
1≤i≤nt

[
Mn(i/n)Bi,n − m−1pi,n

]
,

where

Bi,n := 1
[(

s − in−1)
+ < Yi ≤ t − in−1]∼ Be(pi,n);

pi,n := G(t − i/n) − G
(
(s − i/n)+

)
.

The fact that the random variables (Bi,n,1 ≤ i ≤ nT) are independent of Nn implies that
the mixing properties of the sequence (M̂i,1 ≤ i ≤ nT) are inherited by the sequence
(M̂iBi,n,1 ≤ i ≤ nT), so that Rio ((2013), Theorem 2.2) can be applied with the same func-
tion α−1, giving

E
[(

Ỹn(1; s, t))2l]≤ Cl,Rσ−2l
n

{( ∑
1≤i≤nt

∫ 1

0
α−1(u)Q2

i (u) du

)l

+ ∑
1≤i≤nt

∫ 1

0

[
α−1(u)

]2l−1
Q2l

i (u) du

}
,

(4.25)

where now Qi := qpi,n/m. Using (4.23), we have that for 1 ≤ l < r/2,

(4.26)
∫ 1

0

(
α−1(u)

)2l−1
q2l
w (u) du ≤ c1(r,R, l)w(r−2l)/(r−1).
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From the assumptions on G, by comparing sums and integrals, it follows that, for 1/(2n) ≤
(t − s) ≤ 1,

n−1
∑

1≤i≤nt

pi,n ≤
∫ t

s
G(v) dv + 2n−1 ≤ 5(t − s),(4.27)

and, using (4.26), for 1 ≤ l < r/2 such that (r − 2l)/(r − 1) ≥ η, we have

(4.28)

n−1
∑

1≤i≤nt

p
(r−2l)/(r−1)
i,n

≤ (t − s)β(r−2l)/(r−1)

{∫ ∞
0

(
gG(v)

)(r−2l)/(r−1)
dv + 2

(
gG(0)

)(r−2l)/(r−1)
}

≤ c3(r,R, l)(t − s)β(r−2l)/(r−1).

Hence, from (4.25), if r(1 −β) ≥ 1, writing βr := β(r − 2)/(r − 1), we find that, for 0 ≤ s <

t ≤ T and for n(t − s) ≥ 1/2,

E
[(

Ỹn(1; s, t))2l]≤ Cl,R

(
n/σ 2

n

)l
(t − s)lβr ,

for any l < (r − η(r − 1))/2. The assumption r(1 − β) ≥ 1 ensures the exponent lβr is
no larger than those appearing when applying (4.25), (4.26), and (4.28). It now follows, by
Markov’s inequality and (1.9), that, for such l, and if r(1 − β) ≥ 1,

(4.29) P
(∣∣Ỹn(1, s, t)

∣∣≥ θ/2
)≤ C

(1)
l θ−2l(t − s)lβr , n(t − s) ≥ 1/2.

If r(1−β) < 1, the inequality (4.29) holds only for 0 ≤ s < t ≤ T such that (t −s)n(r−1)/rβ ≥
1/2.

To verify (5.2) for X̃n, we note that, for (k − 1)/M ≤ u ≤ k/M ,∣∣Ỹn

(
i; (k − 1)/M,u

)∣∣≤ ∣∣Ỹn

(
i, (k − 1)/M,k/M

)∣∣+ 2σ−1
n λn

(
Ri

(
(k − 1)/M,k/M

))
,

i = 1,2, where λn(R2((k − 1)/M,k/M)) = m−1n/M and, because of (4.27), λn(R1((k −
1)/M,k/M)) ≤ 5m−1n/M . Writing ρ := ρ(r,β) := min{1, (r − 1)/rβ}, and taking M :=
nρ , it follows from (4.24) and (4.29) that we can take

(4.30) ϕM(θ) := M1−lβr C
(3)
l θ−2l

in (5.2), for a suitable constant C
(3)
l , if θ > 48m−1n1−ρ/σn. We can now apply Lemma 5.2

with b = 2l and a = lβr − 1, for l = lr := �(r − η(r − 1))/2� − 1, and with M := nρ , to find
that, for θ > 48(1 − 2−(lrβr−1)/4lr )−1m−1n1−ρ/σn and ε ∈ (n−ρ,1),

P
(
ωX̃n

(ε) ≥ θ/2
)≤ CTθ−2lr εlβr−1,(4.31)

for some suitable constant C.
For the modulus of continuity of Z, an easy calculation shows that for any 0 ≤ r < s ≤ T,

E
[(

Z(s) − Z(r)
)2]≤ C(s − r)β,

and so Barbour, Ross and Zheng ((2021), Remark 1.6) implies that for any l ≥ 1,

(4.32) P
[
ωZ(ε) ≥ θ

]≤ CTθ−2lεlβ−1.

From (4.13), (4.18), (4.21), and (4.22), and for T ≥ 1, we can now apply Theorem 5.1 with

κ1 = O
(
Tn−β̄) where β̄ := min{β,1/2}; κ2 = O

(
Tn−1/2).
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This, using (4.31) and (4.32), for any choice of ε, δ > 0 and θ > cn1/2−ρ(r,β), and for any
l ≥ 1, implies a bound of

C
(
δ
√

T logn + θ + T5/2n−β̄ (εδ)−3 + T3/2n−1/2(εδ)−2 + Tεlrβr−1θ−2lr + Tεlβ−1θ−2l),
for a suitable constant C, where we recall that βr := β(r − 2)/(r − 1) and that ρ(r,β) :=
min{1, (r − 1)/rβ}. Taking

θ = √
Tδ = {(

T4n−β̄)lrβr−1T3}1/(6lr+4lrβr−1)
,

ε = {(
T4n−β̄)2lr+1T−4}1/(6lr+4lrβr−1)

,

gives a bound of order

O
(√

logn
{(

T5/2n−β̄)lrβr−1T3}1/(6lr+4lrβr−1))
.

Here, we note that if ε ≤ 1, for example, if T ≤ nψ ′
for ψ ′ < β̄(2lr + 1)/(8lr ), then

the term Tεlβ−1θ−2l can be made smaller order than the others by choosing l = lr , not-
ing βr < β . A calculation also shows that this choice of θ indeed satisfies θ > 48(1 −
2−(lrβr−1)/4lr )−1m−1n1−ρ/σn for all n sufficiently large. �

5. Smoothing result. We state a specific consequence of the main results of Barbour,
Ross and Zheng (2021), which we use above to prove weak convergence. Let M0 ⊂ M ′ be
the set of functions h : Dp →R such that

‖h‖M0 := sup
w∈Dp

∣∣h(w)
∣∣+ sup

w∈Dp

∥∥Dh(w)
∥∥+ sup

w∈Dp

∥∥D2h(w)
∥∥

+ sup
w,v∈Dp

‖D2h(w + v) − D2h(w)‖
‖v‖

is finite. Note that ‖h‖M ′ ≤ ‖h‖M0 . For x ∈ D
p , let ωx(ε) := sup0≤s,t≤T:|s−t |<ε |x(t) − x(s)|

denote the modulus of continuity of x.

THEOREM 5.1 (Corollary 1.3 of Barbour, Ross and Zheng (2021)). Let Y , Z be ran-
dom elements of Dp := D([0,T],Rp), with T ≥ 1, such that Z has almost surely continuous
sample paths. Suppose that there are κ1, κ2 ≥ 0 such that for any g ∈ M0 satisfying the
smoothness condition (1.2), we have∣∣Eg(Y ) −Eg(Z)

∣∣≤ κ1‖h‖M0 + Sgκ2.

Letting dLP denote the Lévy–Prokhorov metric, we have that for any positive δ, ε, θ , γ with
ε, δ ∈ (0,1),

dLP
(
L(X),L(Z)

)
≤ Ĉ max

{
θ + γ,

κ1T3/2

(εδ)3 + κ2T1/2

(εδ)2 + P
(
ωY (ε) ≥ θ

)+ P
(
ωZ(ε) ≥ θ

)+ pe
− γ 2

8pTδ2

}
,

where Ĉ is a universal constant.

To bound the modulus of continuity terms appearing in the previous theorem, we use
the following lemma, also noted in Barbour, Ross and Zheng ((2021), Lemma 1.4 and Re-
mark 1.5(1)), applied to each component.
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LEMMA 5.2. Let X ∈ D be such that there are positive constants a, b, and K such that

P
(∣∣X(s) − X(t)

∣∣≥ θ
)≤ Kθ−b|s − t |1+a

for
1

2
M−1 ≤ |s − t | ≤ 1/2,

(5.1)

and that

MP

(
sup

(k−1)/M≤s≤k/M

∣∣X(s) − X
(
(k − 1)/M

)∣∣≥ θ
)

≤ ϕM(θ)

for 1 ≤ k ≤ �MT�.
(5.2)

Then, for any ε ∈ (M−1,1),

P
(
ωX(ε) ≥ θ

)≤ 2T
{
ϕM

(
θ
(
1 − 2−a/(2b))/18

)+ C′(K,a, b)θ−bεa},
for a constant C′(K,a, b) < ∞.

We have also used the following, technical lemma.

LEMMA 5.3. Assume f ∈ M ′ either satisfies the smoothness condition (1.2), or is a
function of the form f (w) = F(w(t1), . . . ,w(tk)) for some F : (Rp)k →R and {t1, . . . , tk} ⊆
[0,T]. Letting Ir(s) := 1{s ≥ r} and Gt(s) := G(s − t) for a distribution function G, then for
any w,x1, x2 ∈ D

p , and r, t ≥ 0, we have∫
R+

D2f (w)[x1Ir , x2It+y]G(dy) = D2f (w)

[
x1Ir ,

∫
R+

x2It+yG(dy)

]
= D2f (w)[x1Ir , x2Gt ]

and ∫
R+

D2f (w)[x1Gr,x2It+y]G(dy) = D2f (w)

[
x1Gr,

∫
R+

x2It+yG(dy)

]
= D2f (w)[x1Gr,x2Gt ].

PROOF. If f (w) = F(w(t1), . . . ,w(tk)), then a simple calculation shows that

D2f (w)[w1,w2] =
k∑

i,j=1

w1(ti)
�Fij

(
w(t1), . . . ,w(tk)

)
w2(tj ),

where we write Fij for the p × p matrix corresponding to the mixed partial of F in coordi-
nates i and j . The result now follows directly after noting that

∫
It+yG(dy) = Gt .

Now assume that f satisfies the smoothness condition (1.2). Both results are obviously
true from bilinearity if G is a discrete distribution function. By considering the atoms sep-
arately, we can without loss of generality assume G is continuous. We show the result by
approximating G by a discretised version. Let Y ∼ G and define Ym := �mY �/m, noting that
Ym converges almost surely (so in distribution) to Y , as m → ∞. For the first assertion, the
function

y �→ D2f (w)[x1Ir , x2It+y]
is continuous for y ≥ 0, since

D2f (w)[x1Ir , x2It+y+ε] − D2f (w)[x1Ir , x2It+y]
= D2f (w)

[
x1Ir , x2(It+y+ε − It+y)

]→ 0,
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by (1.2). By applying Lemma 2.3 and noting that f ∈ M ′, it is also easy to see the function
is bounded. Thus, because of weak convergence, as m → ∞,

E
[
D2f (w)[x1Ir , x2It+Ym]]→ E

[
D2f (w)[x1Ir , x2It+Y ]]

=
∫
R+

D2f (w)[x1Ir , x2It+y]G(dy).

On the other hand, because Ym is discrete, we have

E
[
D2f (w)[x1Ir , x2It+Ym]]= D2f (w)

[
x1Ir , x2E[It+Ym]],

and, again because of Lemma 2.3 and because f ∈ M ′, we have∣∣D2f (w)
[
x1Ir , x2E[It+Ym]]− D2f (w)

[
x1Ir , x2E[It+Y ]]∣∣

≤ 3‖f ‖M ′‖x1‖‖x2‖
∥∥E[It+Ym] −E[It+Y ]∥∥

which converges to zero, since∥∥E[It+Ym] −E[It+Y ]∥∥= sup
y∈[0,T]

∣∣P(Y ≤ y − t) − P(Ym ≤ y − t)
∣∣

≤ sup
y∈[0,T]

∣∣∣∣P(Y ∈
(
y,

�my� + 1

m

))∣∣∣∣→ 0,

by the continuity of G. For the second assertion, the function y �−→ D2f (w)[x1Gr,x2It+y]
is bounded continuous on R+, since, using the first assertion as well as the condition (1.2),

D2f (w)[x1Gr,x2It+y+ε] − D2f (w)[x1Gr,x2It+y]
=
∫
R+

D2f (w)
[
x1Ir+y′, x2(It+y+ε − It+y)

]
G
(
dy′) ε↓0−−→ 0.

The rest of the proof follows in exactly the same way as for the first assertion, replacing Ir

by Gr . �
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