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Abstract: We study the problem of density estimation on [0, 1] under L
p

norm. We carry out a new piecewise polynomial estimator and prove that
it is simultaneously (near)-minimax over a very wide range of Besov classes
Bα
π,∞(R). In particular, we may deal with unbounded densities and shed

light on the minimax rates of convergence when π < p and α ∈ (1/π −
1/p, 1/π].
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1. Introduction

We consider n independent and identically distributed random variables
X1, . . . , Xn defined on an abstract probability space (Ω,E ,P ). We suppose
that Xi admits a density f with respect to the Lebesgue measure on [0, 1]
and are interested in estimating f from the observations X1, . . . , Xn.

We consider p ≥ 1, a subset F of the linear space (Lp([0, 1]), ‖·‖p), and define
the celebrated minimax risk

Rp(F) = inf
f̂

Rp(f̂) where Rp(f̂) = sup
f∈F

Ef

[
dpp(f, f̂)

]1/p
,

where dp denotes the distance in the above space, and where the infimum is

taken over all estimators f̂ with values in F . The minimax rate of convergence,
that is the rate at which Rp(F) converges to 0 (if it converges), is the best
possible for procedures based solely on assumptions modelled by F . This rate
can therefore be seen as a benchmark for statistical procedures.

In the present paper, our aim is to define a (near) minimax estimator under
smoothness constraints. We will therefore pay special attention to bounded sub-
sets F of Besov spaces Bα

π,∞. The subscript π indicates here in which (quasi)
norm the regularity α is measured. The smaller π is, the larger the class is,
and the more difficult the estimation problem is. It is sometimes said that these
Besov spaces allow taking into account spatially inhomogeneous smoothness.
The minimax results rely heavily on π, p, α as described below.

The simplest case is π ≥ p. The minimax rate of convergence is then
n−α/(1+2α), and this rate can even be achieved by a linear estimator, see
[DJKP96]. In the literature, the case π < p is often associated with the re-
striction α > 1/π. Despite this, linear estimators are no longer rate optimal
and more sophisticated procedures need to be considered. We may cite for in-
stance [DJKP96, DJ96] for wavelet thresholding estimators, [BM97] for penal-
ized minimum contrast estimators and [Bir06] for T -estimators. The results are
as follows: the previous rate n−α/(1+2α) still applies when α > (p − π)/(2π),
but becomes (log n/n)(α−1/π+1/p)/(1+2α−2/π) when α < (p − π)/(2π). At the
boundary α = (p− π)/(2π), additional logarithmic factors may appear.

The situation appears to be more complicated to deal with when π < p and
α ∈ (1/π−1/p, 1/π]. The condition α > 1/π−1/p ensures that Bα

π,∞ ⊂ L
p([0, 1])

and allows the use of a L
p loss. However, Bα

π,∞ is not included in L
∞([0, 1])

as α ≤ 1/π. A key paper for understanding the importance of the condition
‖f‖∞ < +∞ in estimation procedures is that of [Bir14]. In this paper, [Bir14]
showed a lower minimax bound. It reveals that the usual rate n−α/(1+2α) cannot
be true over the whole range (1/π− 1/p, 1/π] when p = 2. However, this rate is
the right one when the density is bounded.

This problem of determining the optimal rates when the target function is
smooth but not bounded has already been studied in the literature in other
statistical settings such as, for instance, the Gaussian white noise model and the
regression model with random design. We refer here to [Bar02, Bir04, Lep15]
and the references therein. In the latter model, the minimax rate is known (up
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to log factors) for the L
2 loss and is n−min{α/(1+2α),α−1/π+1/2} when π ∈ [1, 2)

and α ∈ (1/π − 1/2, 1/π]. We observe therefore a possible deterioration of the
rates when the target is not bounded. This is similar to density estimation but
contrasts with the white noise model where the boundedness assumption can be
removed without changing the exponent in the optimal rates: it is α/(1 + 2α)
regardless of π ∈ [1, 2), α ∈ (1/π − 1/2, 1/π] when p = 2.

Several procedures for unbounded densities have been proposed in the statis-
tical literature. We may cite for instance the wavelet thresholding procedures of
[BTWB10, RBRTM11]. They lead to nice oracle inequalities for the L2 loss with-
out condition on the supremum norm of f . Also worth mentioning are the general
procedures of [LW19, Bir06, Bir14]. The first is based on a pointwise selection
scheme. It leads to local risk bounds, which can be integrated to become global.
The other two are based on robust tests and allow for more general assump-
tions than smoothness. Despite this, the minimax rate does not seem to have
attracted much attention in the literature when α ∈ (1/π−1/p, 1/π] and π < p.
In the present paper, we define a new estimator and show that it achieves the
rate (log n)βn−min{α/(1+2α),(α−1/π+1/p)/(1+α−1/π)} for some β independent of n.
Moreover, we show that this rate is optimal, up to logarithmic factors. In par-
ticular, when π < p−2, the minimax rate is never n−α/(1+2α). When π > p−2,
there is an elbow effect, the exponent being (α− 1/π + 1/p)/(1 + α− 1/π) for
“small values of α” and α/(1 + 2α) for “large values”.

We restrict our study to the estimation of the density on the unit interval [0, 1]
but other estimation domains have also been considered in the literature. For
results concerning the estimation on the real line under smoothness constraints,
we refer to [BH78, JLL04, Efr08, RBRTM11, GL11, GL14]. However, it should
be noted that the minimax rates on Besov classes can be very different, depend-
ing on whether the estimation domain is compact or not. As far as we know, the
rates on the real line are not fully known. In higher dimension, the whole point is
to reduce the curse of dimensionality. A solution is to allow the smoothness of f
to vary with the direction. For more informations on these issues of anisotropy,
we refer to [Kle09, GL11, Aka12, GL14].

Our estimation strategy is based on projection estimators and on a new es-
timator selection rule. This procedure may be thought of as a mix between a
Lespki-type procedure [Lep92] and the one of [Sar14]. It leads to a piecewise
polynomial estimator of degree r that is (near) minimax and adaptive over the
full scale of Besov classes π ∈ (0, p) and α ∈ (1/π − 1/p, r + 1). In other terms,
it achieves the rates given above, up to logarithmic factors, without the prior
knowledge of α and π. Our estimator has also computational properties. We
may build it in polynomial time when p > 1, and more precisely in around
O(np/(p−1) log n) operations. It is also possible to make our estimator com-
putable in (nearly) linear time when the classical condition α > 1/π is met.

The paper is organized as follows. We make explicit the minimax rates of
convergence in the next section. Section 3 is devoted to the construction of our
estimator and contains intermediate results such as an oracle inequality and a
result on the approximation of the elements of Bα

π,∞ by piecewise polynomial
functions. The proofs are postponed to Section 4.
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2. Minimax results

2.1. Besov classes

We recall here the definition of Besov spaces to introduce our notations, and
refer to [DL93] for more details.

We consider α, π > 0, π′ ∈ (0,+∞] and the smallest integer r larger than α.
For any map f on [0, 1], h > 0 and t ∈ [0, 1− rh], we set

Δr
hf(t) =

r∑
k=0

(
r

k

)
(−1)r−kf(t+ kh).

Let then ωp(f, x) be the modulus of smoothness

ωπ(f, x) = sup
0<h≤x

[∫
[0,1−rh]

|Δr
hf(t)|

π
dt

]1/π
,

and

|f |Bα
π,π′ =

⎧⎨⎩
(∫∞

0
[x−αωπ(f, x)]

π′
dx
x

)1/π′

if π′ < +∞
supx>0 x

−αωπ(f, x) if π′ = +∞.

When π, π′ ≥ 1, | · |Bα
π,π′ is a semi-norm, and a quasi semi-norm otherwise.

We define the Besov space Bα
π,π′ as the set of functions f on [0, 1] with finite

(quasi) semi-norm |f |Bα
π,π′ . We investigate in the next section the problem of

minimax estimation over the class

Bα
π,π′(R) =

{
f ∈ Bα

π,π′ , |f |Bα
π,π′ ≤ R

}
.

2.2. Minimax results

We consider π ∈ (0, p),

ᾱ = 1/(2π)− 1/p+

√
1/π − 1/p+ (1/(2π)− 1/p)

2
, (1)

and set for α ∈ (1/π − 1/p, 1/π],

ψ = min {(α− 1/π + 1/p)/(1 + α− 1/π), α/(1 + 2α)} ,

=

{
(α− 1/π + 1/p)/(1 + α− 1/π) if α ∈ (1/π − 1/p, ᾱ],

α/(1 + 2α) if α ∈ (ᾱ, 1/π].

Note that ᾱ may be larger than 1/π, in which case (ᾱ, 1/π] = ∅. In Section 3,
we carry out an (adaptive) estimation procedure leading to the following result:
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Theorem 1. Let p ∈ [1,+∞), π ∈ (0, p), α ∈ (1/π − 1/p, 1/π] and R > 0.
Then, for n large enough,

Rp(Bα
π,∞(R)) ≤ c1(logn)

βn−ψ, (2)

where β only depends on p, π, α and where c1 only depends on R, p, π, α.

Up to log factors, the rate that is achieved when α > ᾱ cannot be im-
proved as it corresponds to the minimax rate for Hölder semi-balls. In the liter-
ature, [Bir14] obtained a lower bound that matches with this upper bound (to
within logarithmic factors) when p = 2 and α ≤ ᾱ. Slight modifications of his
proof lead to:

Proposition 2. Let p ∈ [1,+∞), π ∈ (0, p) and R > 0. Then, if α ∈ (1/π −
1/p, 1/π], for n large enough,

Rp(Bα
π,∞(R)) ≥ c2n

−ψ.

Moreover, if α ≤ 1/π − 1/p and p > 1, for n large enough,

Rp

({
f ∈ Bα

π,∞(R), ‖f‖p ≤ 1 +R
})

≥ c2.

In these inequalities, c2 depends on R, p, π, α only.

Therefore, the optimal rate of convergence is n−ψ, up to possible logarithmic
factors. When α is smaller than 1/π−1/p, Bα

π,∞(R) is not included in L
p([0, 1])

and minimax results for Bα
π,∞(R) are meaningless. The second point of the

proposition says that the minimax rate does not tend to zero even under an
additional condition on the L

p norm when p > 1.
When p = 1, ᾱ = 1/π− 1, and we recover that ψ = α/(1 + 2α) on the whole

range (1/π−1, 1/π]. This rate is actually free of logarithmic factors, see [Bir06].
The formula for ψ when p > 1, α < 1/π does not seem to appear in the literature.
We suspect, however, that already existing estimators are (near) minimax. Of
particular note are the wavelet estimators of [BTWB10, RBRTM11] and the
selection rule of [LW19]. Unfortunately, the authors did not explicitly address
this issue. But there is a likeness between the L2 oracle inequalities of [BTWB10,
RBRTM11] and ours (see (8) or (16) below). What is missing is the computation
of the risk from these inequalities. As for the very general paper of [LW19], the
authors explain in their Theorem 2 how to control the maximal risk of their
estimator over a collection F. The functions of F need not to be bounded. The
condition relates rather to the inclusion of F into a L

q space or more generally
a Lorentz space. The proof of Theorem 1 also turns out to be based on a similar
embedding. For each of these references, a logarithmic factor in the convergence
rates is to be expected. In [LW19], this factor may be due to a too local approach
to the estimation problem. In our paper, and in [BTWB10, RBRTM11], this
factor appears in the penalties/thresholds. These could therefore be a little
too large. Improving them would require controlling the underlying empirical
process more accurately. The question of whether the optimal rates involve
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Fig 1. Minimax rates for Besov classes and compact estimation domains

logarithmic factors is currently open. The negative side of Theorem 1 is that it
implies the suboptimality of the T-estimator of [Bir14] (see his Section 4.4.3).

When α > 1/π, the minimax rate of convergence is, up to logarithmic fac-
tors, n−ψ where

ψ =

{
α/(1 + 2α) if α > (p− π)/(2π)

(α− 1/π + 1/p)/(1 + 2α− 2/π) if α ≤ (p− π)/(2π).

This result has been known for a long time. We present in Figure 1 above a
graph to summarize these rates when p = 4.

There are therefore three possible formula for the rate on (1/π − 1/p,+∞).
The well-known elbow phenomenon refers in literature to the non-differentiabil-
ity of ψ at (p − π)/(2π) when p > 2 + π, i.e. when moving from the orange
zone to the green zone. Actually, ψ is not differentiable at min{ᾱ, 1/π} either.
Therefore, there is always at least one elbow effect on (1/π − 1/p,+∞) and
sometimes two.

3. Estimation procedure

For all subset F ⊂ L
p([0, 1]), and f ∈ L

p([0, 1]), we set dp(f,F)=infg∈F dp(f, g).
The notation |I| stands for both the cardinal of a finite set I, and the length of
an interval I. We set N� = N\{0}. The letters c, c′, C, C ′, . . . denote quantities
that may change from line to line.

3.1. Collection of partitions

We introduce here tree-structured partitions m of [0, 1] derived from the re-
cursive algorithm of [DY90] that are frequently encountered when estimating
smooth functions by histograms or more generally by piecewise polynomial es-
timators (see [BB09, Aka12, Sar14] among other references).
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Consider a partition m of [0, 1]. We may refine m by dividing some intervals I
ofm into two equal parts. The collection of all partitions that can be constructed
from m by this way is denoted by M(m). We then define collections M� of
partitions by induction by setting M0 = {{[0, 1]}} and

M� = M�−1 ∪
⋃

m∈M�−1

M(m).

The collection M� is therefore composed of partitions of [0, 1] into intervals
with endpoints of the form k/2�. It does not only contain the regular partitions
of [0, 1] of size 2k, k ≤ � but also partitions that are very thin locally, and wider
elsewhere.

We moreover define the collection M∞ =
⋃

�≥0 M� of partitions m that can
be constructed by this algorithm in a finite number of steps.

3.2. Projection estimators

We estimate the density f by means of piecewise polynomial estimators. They
are defined as projection estimators as described below.

Consider an integer r, a collection m of disjoint intervals, and the space

Pr(m) =

{∑
I∈m

PI1I , where PI is a polynomial function of degree at most r

}

of piecewise polynomial functions. Let (ϕI,j)I∈m,j∈{0,...,r} be the orthonormal
basis of Pr(m) defined from the Legendre polynomials

Qj(x) =
1

2j

j∑
k=0

(
j

k

)2

(x− 1)j−k(x+ 1)k,

by the formula

ϕI,j(x) =

√
2j + 1

b− a
Qj

(
2
x− a

b− a
− 1

)
1I(x),

where a < b denote the extremities of I. We define the projection estimator

f̂m =
∑
I∈m

j∈{0,...,r}

β̂I,jϕI,j with β̂I,j =
1

n

n∑
i=1

ϕI,j(Xi),

and omit the dependency in r to lighten the notations.
Since their introduction by [Cen62], projection estimators have received con-

siderable interest in statistical estimation. They are at the heart of many model
selection procedures, see [BM98, BBM99, Mas07] for key references. For peda-
gogical reasons, we present below a risk bound for this estimator when p = 2:
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Proposition 3. Let m be a (finite) partition of [0, 1] into intervals of positive
lengths. Then, if f ∈ L

2([0, 1]),

Ef

[
d22(f, f̂m)

]
≤ d22(f,Pr(m))

+ inf
q>1

‖f‖q
(r + 1)2

(∑
I∈m |I|1−q/(q−1)

)(q−1)/q

n
. (3)

The proof of this result is merely based on Hölder’s inequality, see Section 4.2.
It highlights what will allow us to estimate unbounded densities f of Bα

π,∞.
When m is a regular partition, that is when the intervals I ∈ m are of

the same size, the term in the infimum is ‖f‖q(r + 1)2|m|/n. In particular, by
letting q tend to 1,

Ef

[
d22(f, f̂m)

]
≤ d22(f,Pr(m)) +

(r + 1)2|m|
n

. (4)

For more general partitions m, and q → +∞,

Ef

[
d22(f, f̂m)

]
≤ d22(f,Pr(m)) + ‖f‖∞

(r + 1)2|m|
n

. (5)

These two inequalities apply either for regular partitions, without assumption
on ‖f‖∞, or for any partition when ‖f‖∞ is finite. More generally, the risk
bounds of projection estimators sometimes involve the supremum norm of f ,
and sometimes not, depending on whether or not the model checks a condition
linking the L

2 and L
∞ structure of the model (equation (7.16) in [Mas07]). For

more details on this phenomenon, we refer to [Bir14].
It is worth mentioning that (4) and (5) are not suitable for estimating den-

sities f in Bα
π,∞(R) when α < 1/π and π < 2. Indeed, such densities may

not be bounded and may be poorly approached by piecewise polynomial func-
tions based on regular grids. Making the bias term d22(f,Pr(m)) small requires
working with partitions m adapted to the spatial inhomogeneity of f . In some
sense, (3) fills the gap between (4) and (5). We can deal with irregular partitions
and unbounded densities. The condition on the supremum norm is replaced by a

condition on the Lq norm. The larger q is, the smaller (
∑

I∈m |I|1−q/(q−1)
)(q−1)/q

is and vice versa.
Two issues remain to be addressed. First, the risk of the estimator depends

on the choice of m. We need to explain how to define a partition m realizing
a good compromise between the two terms in (3). Second, we need to compute
the risk of this estimator when the target f lies in a Besov class. In the section
below, we start by answering the first point.

3.3. Selection rule

For all partitions m,m′ and interval J , we set

m ∨ J = {I ∩ J, I ∈ m}
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m ∨m′ =
⋃

J∈m′

m ∨ J = {I ∩ J, I ∈ m, J ∈ m′} .

For all interval I, we define

v̂p(I) =

∥∥∥∥∥∥
r∑

j=0

|ϕI,j |

√√√√ 1

n

n∑
i=1

ϕ2
I,j(Xi)

∥∥∥∥∥∥
p

p

,

ŵp(I) =
1

|I|p/2

∥∥∥∥∥∥
r∑

j=0

√
(2j + 1)|ϕI,j |

∥∥∥∥∥∥
p

p

.

We set for any collection m of intervals and ξ > 0,

v̂pξ (m) =
∑
I∈m

((ξ + log2 (1/|I|))/n)
p/2

v̂p(I)

ŵp
ξ (m) =

∑
I∈m

((ξ + log2 (1/|I|))/n)
p
ŵp(I),

where log2 denotes the logarithm base 2. We consider κ1, κ2, and

p̂en
p
ξ(m) = κ1v̂

p
ξ (m) + κ2ŵ

p
ξ (m).

We consider some � ∈ N
� ∪ {∞} and define for m ∈ M�,

γ(m) =
∑
J∈m

sup
m′∈M�

{
dpp(f̂m1J , f̂m∨m′1J)− p̂en

p
ξ(m

′ ∨ J)
}
. (6)

We then define m̂ as any partition of M� satisfying

γ(m̂) + (1 + 21−p)p̂en
p
ξ(m̂) ≤ inf

m∈M�

{
γ(m) + (1 + 21−p)p̂en

p
ξ(m)

}
+ 1/n2p, (7)

and shrink the resulting estimator f̂ = min{1, n‖f̂m̂‖−1
p }f̂m̂.

This criterion can be seen as a Lespki-type procedure [Lep92] (see also [BB09])
modified as in [Sar14] in order make possible the construction of the estimator
by dynamic programming algorithms. We leave these computational aspects
aside for the moment to focus on the theoretical properties of f̂ . They will be
discussed in Section 3.7.

3.4. Risk bound

We prove in Section 4.3:
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Theorem 4. Let r ∈ N, � ∈ N
� ∪ {∞} and p ∈ [1,+∞). Then, there exists κ

depending only on p such that if κ1, κ2 ≥ κ, if ξ = 2p logn+ log(r + 1), and if
f ∈ L

p([0, 1]), the preceding estimator satisfies for n ≥ ‖f‖p,

Ef

[
dpp(f, f̂)

]1/p
≤ C inf

m∈M�

{
dp(f,Pr(m)) + inf

q∈[p,+∞]

√
Mq(m)vq(m)

�m + logn

n

+ w(m)
�m + logn

n

}
, (8)

where �m is the smallest value of N� such that m ∈ M�m ,

Mq(m) = min{‖f‖q, �1/qm ‖f‖q/(1+q/(p�m))},

vq(m) =

[∑
I∈m

|I|1−pq/(2q−p)

](2q−p)/(pq)

,

w(m) =

(∑
I∈m

|I|1−p

)1/p

.

Moreover, C only depends on r, p, κ1 and κ2.

Thereby, the risk of the estimator is controlled by the best possible compro-
mise between a bias term dp(f,Pr(m)) and an estimation term

inf
q∈[p,+∞]

√
Mq(m)vq(m) (�m + logn)/n+ w(m)(�m + log n)/n,

up to a multiplicative factor. The partitions m can vary freely in M�, and can
be very thin locally and thus well adapted to the target density f . Note that
this result improves with � (we can even set � = +∞ in theory).

Our theorem applies for any density f ∈ L
p([0, 1]), and in particular for

unbounded densities. We may always set q = p in the infimum but playing with
larger values of q will be worthwhile as vq(m) is non-increasing with q. The
value of q = +∞ is allowed using standard algebra in R ∪ {∞} to deal with
bounded f . In that case Mq(m) = ‖f‖p�m ≤ ‖f‖∞ and

vq(m) =

[∑
I∈m

|I|1−p/2

]2/p
.

There are two main differences between the present estimation term and that
of Proposition 3. We have here an additional term �m + logn which will be of
the order of logn for best partitions m and Besov-type regularity constraints.
This implies that our results will be slightly sub-optimal in some cases. But this
term cannot be avoided in general as (8) leads to the optimal rates in the sparse
zone (orange zone of Figure 1), see Section 3.6. The second difference lies in the
presence of the additional term w(m)(�m + logn)/n. For adequate partitions m,
and densities f ∈ Bα

π,∞(R), this last term will be, in the worst case, of the same

order of magnitude as
√
Mq(m)vq(m)(�m + logn)/n.
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3.5. Approximation

We need to bound (8) from above when f lies in a Besov class to get our maximal
risk bound. This problem falls under the theory of approximation and is treated
below.

We know from the literature that functions f ∈ Bα
π,∞(R) can be well approx-

imated by piecewise polynomial functions defined over a moderate number of
intervals. We refer to [DY90, BM00, Aka12]. Let us observe that

vq(m) =

[∑
I∈m

|I|1−δ

]1/δ
with δ = pq/(2q − p). (9)

When δ ≤ 1, a concavity argument entails vq(m) ≤ |m|. Moreover, if p = 1,
w(m) = |m| and Corollary 3.3 of [DY90] may be used to control the right-
hand side of (8). In general, however, vq(m) and w(m) may be much larger
than |m|: we do not only need to control the size of m but also the thinness
of the intervals. The following result, to be proved in Section 4.4, is tailored to
solve this problem.

Proposition 5. Let δ ≥ 1, p ∈ [1,+∞), π ∈ (0, p), α > 1/π − 1/p, R > 0,
f ∈ Bα

π,∞(R), r > α− 1 and k ≥ 1.

• Suppose that α > δ(1/π−1/p). Then, there exist � and m ∈ M� such that

dp(f,Pr(m)) ≤ CR2−kα,
∑
I∈m

|I|1−δ ≤ C2kδ,

and

∑
I∈m

|I|1−p ≤

⎧⎪⎨⎪⎩
C2kp if α > p/π − δ/p

C�2kp if α = p/π − δ/p

C2kπ(α+δ/p)+�π(p/π−δ/p−α) if α < p/π − δ/p.

Moreover,

� ≤ α+ δ/p

δ/p+ α− 1/π
k.

• Suppose that α < δ(1/π − 1/p). Then, there exists a partition m ∈ M�

with � ≤ k such that

dp(f,Pr(m)) ≤ CR2−k(α+1/p−1/π),
∑
I∈m

|I|1−δ ≤ C2k(δ−1),

and if p > δ, ∑
I∈m

|I|1−p ≤ C2k(p−1).
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• Suppose that α = δ(1/π − 1/p). Then, there exists a partition m ∈ M�

with � ≤ k such that

dp(f,Pr(m)) ≤ CRk1/p2−k(α+1/p−1/π),
∑
I∈m

|I|1−δ ≤ Ck2k(δ−1),

and if p > δ, ∑
I∈m

|I|1−p ≤ C2k(p−1).

In the above inequalities, C depends on α, δ, p, r, π only.

3.6. Minimax bound

We may therefore define partitions m with moderate vq(m) and w(m) that are
well adapted to the variations of f . This makes it possible to bound the infimum
in (8) from above. We state:

Theorem 6. Let r ≥ 0, p ∈ [1,+∞), and f̂ be the estimator defined in Sec-
tion 3.3 with κ1 = κ2 = κ, � = +∞ and ξ given by Theorem 4. For all π ∈ (0, p),

α ∈ (1/π − 1/p, r + 1) and R > 0, the estimator f̂ satisfies for n large enough,

sup
f∈Bα

π,∞(R)

Ef

[
dpp(f, f̂)

]1/p
≤ C(logn)τ (log n/n)ψ, (10)

where ψ is defined in Section 2.2 and where τ depends on p, π, α only. If α ∈
(ᾱ, 1/π], or if α > 1/π and α = (p − π)/(2π), then τ = 0. If α > 1/π and
α = (p− π)/(2π), τ = 1/p. Moreover, C depends on R, p, π, α only.

Combined with Proposition 2, this theorem says that our estimator f̂ is adap-
tive and near-minimax over a large scale of Besov classes. It implies Theorem 1.
Note that the rate is optimal in the orange zone of Figure 1.

The precise value of ᾱ can be explained by the following reasoning. A function
f ∈ Bα

π,∞ “almost belongs” to L
q where 1/q = 1/π − α. Assuming that this is

true, we see from Proposition 5 that the change of rates occurs at α = δ(1/π −
1/p) with δ = pq/(2q − p). This leads to the equation

α =
1/π − 1/p

2/p− 1/π + α
(11)

for which ᾱ is solution. By the way, slight modifications of the proof entail
that τ = 0 when α < 1/π and α < ᾱ when the supremum is taken over all the
densities of Bα

π,∞(R) whose Lq norm is uniformly bounded (with 1/q = 1/π−α).
When π ≥ p, the functions in Bα

π,∞(R) can be approached by piecewise
polynomial functions based on regular partitions, see Lemma 12 of [BBM99].
More precisely, for every α > 0 and k ≥ 1, there is a regular partitionm of size 2k

such that dp(f,Pr(m)) ≤ CR2−kα. For such a partition, vq(m) = w(m) = |m|.
By putting these results in (8), we deduce that our estimator achieves the rate
(log n/n)α/(1+2α) over the Besov classes Bα

π,∞(R) for all π ≥ p and α ∈ (0, r+1).
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3.7. Computational statistics

To compute our estimator, we have to minimize γ(m) + (1 + 21−p)p̂en
p
ξ(m) on

the set of partitions m of M�. It is not advisable, in practice, to solve this
optimization problem by an exhaustive search of m̂ among all the partitions
of M�. This is due to the very large cardinal of M�, even when � is moderate.
Actually, the calculation of γ(m) itself is an optimization problem that can
hardly be solved by a naive approach.

Fortunately, dynamic programming allows here to build the estimator more
efficiently. We refer to [Don97, BSR04, AL11, Aka12, Sar14] for some examples
of this technique in statistics. In particular, we may slightly adapt the algo-
rithm of [Sar14] to perform the exact computation of m̂ in at most C�(2� + n)
operations (see his Proposition A.1). The term C does not depend on �, n and
by operations we mean elementary operations such as additions, multiplications
etc., computation of elementary functions or integrals. Naturally, the numerical
complexity of the procedure increases with �. Since the theoretical results im-
prove with �, the choice of � is, at first sight, a sort of compromise between the
theoretical and computational properties of the estimator.

One may, however, in practice, be interested only in linear (or polynomial)
time estimators. This is equivalent to setting � and looking for the classes of
functions on which our estimator is (nearly) rate optimal. We show:

Proposition 7. Let p ∈ [1,+∞), π ∈ (0, p), r ≥ 0, α ∈ (1/π − 1/p, r + 1) and

R > 0. Let c and � be the largest integer such that 2� ≤ nc, κ1 = κ2 = κ and f̂
be the estimator defined in Section 3.3.

Then, if p > 1 and c = p/(p − 1), or if c = 1 and α > 1/π, the estimator
satisfies (10) for n large enough.

The numerical complexity of our procedure is of the order of nc(logn). By
setting c = 1, we get the preceding rates under the standard condition α > 1/π
in nearly linear time. When p > 1, we may set c = p/(p− 1) to get all the rates
in polynomial time.

Remark: the minimum length of an interval of a partition m ∈ M� is 2−�.
In particular, it is not necessary to go below 1/n to be (near) optimal when
α > 1/π. We need to cross this threshold to estimate unbounded densities
corresponding to smaller values of α.

4. Proofs

4.1. Proof of Proposition 2

Due to the results on Hölder’s classes, we only need to show

Rp

(
Bα
π,∞(R)

)
≥ c(1/n)(α+1/p−1/π)/(1+α−1/π).

This inequality can be shown by slightly adapting the arguments of [Bir14] to
the case p = 2. It is actually attained on a two-point problem {f1, f2}.
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Consider α ∈ [1/π − 1/p, 1/π], p > 1 and a density ϕ ∈ Bα
π,∞ with support

included in (0, 1). We set ϕ(x) = 0 for |x| > 1, define

ρ = min{R,R/‖ϕ‖p}/max{|ϕ|Bα
π,∞ , 1},

a such that a1+α−1/π = ρ(4n)1/π−α and g(x) = aϕ(4anx). We suppose from now
on that n is large enough to ensure that g is compactly supported on [0, 1/2].
Moreover, |g|Bα

π,∞ = ρ|ϕ|Bα
π,∞ and ‖g‖p = ε where

ε = ρ(1−1/p)/(1+α−1/π)(1/(4n))(α+1/p−1/π)/(1+α−1/π)‖ϕ‖p.

Define now f1 for all x ∈ [0, 1] by

f1(x) = g(x) + 1− 1/(4n),

and set f2(x) = f1(1− x).
Then, f1 and f2 are two densities such that |f1|Bα

π,∞ = |f2|Bα
π,∞ = |g|Bα

π,∞ =
ρ|ϕ|Bα

π,∞ and

max{‖f1‖p, ‖f2‖p} ≤ 1 + ‖g‖p ≤ 1 + ε.

Since g(x) and g(1− x) cannot be simultaneously non-zero,

‖f2 − f1‖p = 21/p‖g‖p = 21/pε.

Let h be the Hellinger distance. Then,

h2(f1, f2) =
1

2

∫
R

(√
f1(x)−

√
f2(x)

)2
dx

=

∫ 1/(4an)

0

(√
g(x) + 1− 1/(4n)−

√
1− 1/(4n)

)2
dx

≤
∫ 1/(4an)

0

g(x) dx ≤ 1/(4n).

Our lower bound when α ≥ 1/π − 1/p then follows from standard results in
minimax estimation. We refer, for instance, to Proposition 5 of [Bir14]. As to

the case, α < 1/π−1/p, we use B1/π−1/p
π,∞ (R) ⊂ Bα

π,∞(R) and apply the previous
result with α = 1/π − 1/p.

4.2. Proof of Proposition 3

Let fm be the L
2 projection of f on Pr(m) defined by

fm =
∑

βI,jϕI,j with βI,j =

∫
ϕI,jf = E[β̂I,j ],

where the sum runs over the intervals I ∈ m and j ∈ {0, . . . , r}. Pythagoras’
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theorem implies

d22(f, f̂m) = d22(f, fm) +
∑(

β̂I,j − βI,j

)2
= d22(f,Pr(m)) +

∑(
β̂I,j − E[β̂I,j ]

)2
.

Therefore,

E

[
d22(f, f̂m)

]
≤ d22(f,Pr(m)) +A/n with A =

∑∫
ϕ2
I,jf.

We use ‖ϕI,j‖∞ =
√
(2j + 1)/|I| to get

A ≤ (r + 1)2
∑
I∈m

1

|I|

∫
I

f,

and apply Hölder’s inequality twice:

A ≤ (r + 1)2
∑
I∈m

(∫
I

fq

)1/q

|I|−1/q

≤ (r + 1)2‖f‖q

(∑
I∈m

|I|−1/(q−1)

)(q−1)/q

.

4.3. Proof of Theorem 4

We define the collection I∞ gathering all the dyadic intervals that appear in the
partitions m of M∞, that is, all the intervals with endpoints k2−�, (k + 1)2−�

where k ∈ {0, . . . , 2� − 1} and � ≥ 0. Without loss of generality, we may assume
that these intervals are of the form [a, b) when b < 1 and [a, b] when b = 1.

We set for I ∈ I∞, collection m of intervals and ξ > 0,

vpid(I) =

∥∥∥∥∥∥
r∑

j=0

|ϕI,j |
√
E[ϕ2

I,j(X)]

∥∥∥∥∥∥
p

p

,

vpid,ξ(m) =
∑
I∈m

((ξ + log2 (1/|I|))/n)
p/2

vpid(I),

penpid,ξ(m) = vpid,ξ(m) + ŵp
ξ (m).

We begin by proving a uniform risk bound in deviation for the projection esti-
mators:

Lemma 1. For all r ∈ N, f ∈ L
p([0, 1]), ξ ≥ log 4 + log(r + 1) and probability

larger than 1− (1/2)e−ξ: for all J ∈ I∞, and m ∈ M∞,

dpp(f1J , f̂m∨J1J ) ≤ c1d
p
p(f1J ,Pr(m ∨ J)) + c2pen

p
id,ξ(m ∨ J),

where c1 only depends on p, r and where c2 only depends on p.
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Proof of Lemma 1. Let fm∨J be the L
2 projection of f on Pr(m ∨ J) defined

by

fm∨J =
∑

I∈m∨J
j∈{0,...,r}

βI,jϕI,j with βI,j =

∫
fϕI,j = E[β̂I,j ].

By using the triangle inequality, and the elementary inequality (a + b)p ≤
2p−1(ap + bp),

dpp(f1J , f̂m∨J1J ) ≤ 2p−1
[
dpp(f1J , fm∨J1J ) + dpp(fm∨J1J , f̂m∨J1J )

]
. (12)

It follows from standard results about the Lp norm of the L2 projection operator
that

dp(f1J , fm∨J1J ) ≤ cdp(f1J ,Pr(m ∨ J)), (13)

where c only depends on r. We refer for instance to the argument below Lemma 3
of [BM00] for the proof of this inequality. We now tackle the second term in (12).

Consider � ≥ 0, and note that the intervals of I� = {I ∈ I∞, |I| = 2−�}
are of the form [k/2�, (k + 1)/2�) (the interval is closed when (k + 1)/2� = 1).
In particular, |I�| = 2�. We deduce from Bernstein’s inequality (Theorem 2.10
of [BLM13]) that there exists for each interval I ∈ I� and j, an event Ω(I, j) of
probability 1− e−ξ� with ξ� = 2ξ + 2� log 2 on which

|β̂I,j − βI,j | ≤
√

2(ξ�/n)Ef [ϕ2
I,j(X)] + ξ�/(3n)‖ϕI,j‖∞. (14)

We then set
Ωξ =

⋂
I∈I�
�≥0

j∈{0,...,r}

Ω(I, j),

and deduce from a union bound

P
[
Ωc

ξ

]
≤ (r + 1)

∑
�≥0

|I�|e−ξ�

≤ (r + 1)
∑
�≥0

2�e−2ξ−2� log 2

≤ 2(r + 1)e−2ξ,

which is not larger than (1/2)e−ξ as ξ ≥ log 4 + log(r + 1).
On the event Ωξ, (14) holds true simultaneously for all I ∈ I∞, j ∈ {0, . . . , r}

with � such that 2−� = |I|. Now, for m ∈ M∞, and J ∈ I∞,

dpp(fm∨J1J , f̂m∨J1J) =

∫ ∣∣∣∣∣∣∣∣
∑

I∈m∨J
j∈{0,...,r}

(
β̂I,j − βI,j

)
ϕI,j

∣∣∣∣∣∣∣∣
p
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≤
∑

I∈m∨J

∫ ⎛⎝ ∑
j∈{0,...,r}

∣∣∣β̂I,j − βI,j

∣∣∣ |ϕI,j |

⎞⎠p

.

As m∨J ⊂ I∞, we may use (14), and then (a+ b)p ≤ 2p−1(ap+ bp), ‖ϕI,j‖∞ =√
(2j + 1)/|I| to conclude the proof.

Lemma 2. For all r ∈ N, ξ ≥ log 4+log(r+1) and f ∈ L
p([0, 1]), the following

assertion holds true with probability larger than 1− (1/2)e−ξ: for all m ∈ M∞,
J ∈ I∞,

penpid,ξ(m ∨ J) ≤ p̂en
p
ξ(m ∨ J) ≤ c3pen

p
id,ξ(m ∨ J), (15)

provided that κ1, κ2 ≥ κ for some κ depending only on p and where c3 only
depends on κ1, κ2, p.

Proof of Lemma 2. As in the previous proof, we may apply Bernstein’s inequal-
ity to get with probability 1− (1/2)e−ξ: for all j ∈ {0, . . . , r}, and I ∈ I∞,∣∣∣∣∣ 1n

n∑
i=1

ϕ2
I,j(Xi)− Ef [ϕ

2
I,j(X)]

∣∣∣∣∣ ≤√2(ξ�/n)Ef [ϕ4
I,j(X)] + (ξ�/(3n))‖ϕI,j‖2∞

≤
√
2(ξ�/n)‖ϕI,j‖2∞Ef [ϕ2

I,j(X)]

+ (ξ�/(3n))‖ϕI,j‖2∞,

where � is such that 2−� = |I| and ξ� = 2ξ + 2� log 2. By using the elementary
inequality

√
2ab ≤ a/2 + b,∣∣∣∣∣ 1n

n∑
i=1

ϕ2
I,j(Xi)− Ef [ϕ

2
I,j(X)]

∣∣∣∣∣ ≤ 1

2
Ef [ϕ

2
I,j(X)] + (4/3)(ξ�/n)‖ϕI,j‖2∞.

Therefore,

1

n

n∑
i=1

ϕ2
I,j(Xi) ≤ (3/2)Ef [ϕ

2
I,j(X)] + (4/3)(ξ�/n)‖ϕI,j‖2∞

Ef [ϕ
2
I,j(X)] ≤ 2

n

n∑
i=1

ϕ2
I,j(Xi) + (8/3)(ξ�/n)‖ϕI,j‖2∞,

which leads to the result after some computations.

Proposition 8. Let r ∈ N, ξ > 0, � ∈ N
� ∪ {∞} and m̂ be a partition

satisfying (7). Then if κ1, κ2 ≥ κ for some κ depending only on p, and if f ∈
L
p([0, 1]), the following assertion holds true: for all ξ ≥ log 4 + log(r + 1) with

probability 1− e−ξ:

dpp(f, f̂m̂) ≤ C inf
m∈M�

{
dpp(f,Pr(m)) + penpid,ξ(m) + 1/n2p

}
. (16)

In this inequality, C depends on p, r, κ1, κ2 only.
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Proof of Theorem 8. Up to an increase of κ, the two preceding lemmas assert:
with probability 1− e−ξ, for all m ∈ M�, J ∈ I∞, κ1, κ2 ≥ κ,

2p−1dpp(f1J , f̂m∨J1J) ≤ cdpp(f1J ,Pr(m ∨ J)) + p̂en
p
ξ(m ∨ J), (17)

where c depends on p and r only. In the sequel, we repeatedly use the inequality
(a + b)p ≤ 2p−1(ap + bp) without mentioning it again. The triangle inequality
implies

γ(m) ≤ 2p−1dpp(f, f̂m) +
∑
J∈m

sup
m′∈M�

{
2p−1dpp(f1J , f̂m′∨J1J )− p̂en

p
ξ(m

′ ∨ J)
}
,

and (17) ensures

γ(m) ≤ 2p−1dpp(f, f̂m) +
∑
J∈m

sup
m′∈M�

{
cdpp(f1J ,Pr(m

′ ∨ J))
}

≤ 2p−1dpp(f, f̂m) + cdpp(f,Pr(m))

≤ 2cdpp(f,Pr(m)) + p̂en
p
ξ(m). (18)

The triangle inequality entails for all m ∈ M�,

dpp(f, f̂m̂) ≤ 2p−1
[
dpp(f, f̂m̂∨m) + p̂en

p
ξ(m̂ ∨m)

+
{
dpp(f̂m̂, f̂m̂∨m)− p̂en

p
ξ(m̂ ∨m)

}]
≤ 2p−1

[
dpp(f, f̂m̂∨m) + p̂en

p
ξ(m̂ ∨m)

+
∑
J∈m̂

{
dpp(f̂m̂1J , f̂m̂∨m1J)− p̂en

p
ξ(m ∨ J)

}]
.

We apply (17) with the inequalities p̂en
p
ξ(m̂ ∨ m) ≤ p̂en

p
ξ(m̂) + p̂en

p
ξ(m) (as

m̂ ∨m ⊂ m̂ ∪m) and dpp(f,Pr(m̂ ∨m)) ≤ dpp(f,Pr(m)) to deduce,

dpp(f, f̂m̂) ≤ 2p−1
[
c′dpp(f,Pr(m)) + (1 + 21−p)p̂en

p
ξ(m)

+
∑
J∈m̂

{
dpp(f̂m̂1J , f̂m̂∨m1J )− p̂en

p
ξ(m ∨ J)

}
+ (1 + 21−p)p̂en

p
ξ(m̂)

]
.

By using (6), and taking the infimum over all the partitions m ∈ M�,

dpp(f, f̂m̂) ≤ 2p−1 inf
m∈M�

{
c′dpp(f,Pr(m)) + (1 + 21−p)p̂en

p
ξ(m)

}
+ 2p−1

[
γ(m̂) + (1 + 21−p)p̂en

p
ξ(m̂)

]
,

and (7) entails

dpp(f, f̂m̂) ≤2p−1 inf
m∈M�

{
c′dpp(f,Pr(m)) + 2(1 + 21−p)p̂en

p
ξ(m) + γ(m) + 1/n2p

}
.
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We then use (18) to get

dpp(f, f̂m̂) ≤ C inf
m∈M�

{
dpp(f,Pr(m)) + p̂en

p
ξ(m) + 1/n2p

}
,

and apply (15).

Lemma 3. For all m ∈ M∞, ξ > 0 and q ∈ [p,+∞],

penpid,ξ(m) ≤ C
[
((ξ + �m)/n)p/2Mp/2

q (m)vp/2q (m) + ((ξ + �m)/n)pwp(m)
]
,

where C only depends on p and r.

Proof. Since |I| ≥ 2−�m for all I ∈ m,

vpid,ξ(m) ≤ ((ξ + �m)/n)
p/2
∑
I∈m

∫
I

∣∣∣∣∣∣
r∑

j=0

|ϕI,j |
√∫

I

fϕ2
I,j

∣∣∣∣∣∣
p

.

We use ‖ϕI,j‖∞ =
√
(2j + 1)/|I| to get

vpid,ξ(m) ≤ ((ξ + �m)/n)
p/2
∑
I∈m

∫
I

∣∣∣∣∣∣
r∑

j=0

2j + 1

|I|

√∫
I

f

∣∣∣∣∣∣
p

≤ ((ξ + �m)/n)
p/2

(r + 1)2pA with A =
∑
I∈m

(∫
I

f

)p/2

|I|1−p. (19)

We now bound above A by repeatedly using Hölder’s inequality as in the proof
of Proposition 3.

First, we use it twice to get for every q ≥ p,

A ≤
∑
I∈m

(∫
I

fq

)p/(2q)

|I|1−p/2(1+1/q)

≤ ‖f‖p/2q vp/2q (m). (20)

Second, let q′ ≥ p/2 such that 1/q′ = 1/q + 1/(p�m) and for j ≥ 0, mj = {I ∈
m, |I| = 2−j}, Ij = ∪I∈mjI. We deduce,

A ≤
�m∑
j=0

‖f1Ij‖
p/2
q′ |mj |1−p/(2q′)2−j(1−p/2(1+1/q′))

≤ ‖f‖p/2q′ 21/2
�m∑
j=0

|mj |1−p/(2q)2−j(1−p/2(1+1/q))

≤ ‖f‖p/2q′ 21/2(�m + 1)p/(2q)

⎛⎝ �m∑
j=0

|mj |2−j(1−p/2(1+1/q))2q/(2q−p)

⎞⎠1−p/(2q)
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≤ ‖f‖p/2q′ 21/2(�m + 1)p/(2q)vp/2q (m).

By combining this result together with (20) and (19), we obtain

vpid,ξ(m) ≤ C ((ξ + �m)/n)
p/2

Mp/2
q (m)vp/2q (m).

We now turn to the term ŵp
ξ (m). We have,

ŵp
ξ (m) =

∑
I∈m

((ξ + log2 (1/|I|))/n)
p
ŵ(I)p

≤ ((ξ + �m)/n)p
∑
I∈m

1

|I|p/2

∥∥∥∥∥∥
r∑

j=0

√
(2j + 1)|ϕI,j |

∥∥∥∥∥∥
p

p

.

We simply use |ϕI,j | ≤
√

(2j + 1)/|I| to get

ŵp
ξ (m) ≤ C((ξ + �m)/n)pwp(m),

which ends the proof.

Proof of Theorem 4. We denote by x+ the positive part of a real number x. We
have,

dp(f̂m̂, f̂) = (‖f̂m̂‖p − n)+

≤ (‖f̂m̂‖p − ‖f‖p)+

as ‖f‖p ≤ n. Therefore, dp(f̂m̂, f̂) ≤ dp(f, f̂m̂) and dp(f, f̂) ≤ 2dp(f, f̂m̂). We
apply Proposition 8 to define an event Ωξ of probability 1− e−ξ on which (16)

holds true. By using moreover dp(f, f̂) ≤ ‖f‖p + ‖f̂‖p ≤ 2n,

Ef

[
dpp(f, f̂)

]
≤ Ef

[
dpp(f, f̂)1Ωξ

]
+ (2n)pe−ξ

≤ 2pEf

[
dpp(f, f̂m̂)1Ωξ

]
+ (2n)pe−ξ.

Since ξ ≥ 2p logn, and w(m) ≥ 1 for all m, (2n)pe−ξ ≤ 2p(w(m)/n)p. We then

bound dpp(f, f̂m̂) thanks to (16) and Lemma 3.

4.4. Proof of Proposition 5

We introduce for each interval I the space

Pr(I) = {P1I , where P is a polynomial function of degree at most r}

composed of polynomial functions on I. We need the following claim:
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Claim 1. Let j ∈ N and m̄j be the regular partition of [0, 1] of size 2j. Then, for
all p ∈ [1,+∞], π ∈ (0, p), α > 1/π − 1/p, r > α− 1, R > 0 and f ∈ Bα

π,∞(R),⎛⎝∑
I∈m̄j

dπp (f1I ,Pr(I))

⎞⎠1/π

≤ C (1 + 1/τ)R2−jτ ,

where τ = α+ 1/p− 1/π and where C depends on π, r only.

This claim is a slight revisit of Lemma 1 of [Aka12] in a unidimensional
context. Note that it holds for all f ∈ Bα

π,∞(R) whereas her result is restricted

to functions f ∈ Bα
π,π(R) when π ∈ (1, p). The term in front of R2−jτ is also

made more explicit here (which will be of interest for the proof of Theorem 6).

Sketch of the proof of Claim 1. We make the following minor modification in
the proof of [Aka12]. Instead of applying Hölder’s inequality to her inequal-
ity (27), we apply Minkowski’s integral inequality. By using her notations, this
yields

2jdτσ/H(σ)

⎛⎝ ∑
K∈Dσ

j

Ep
r (s,K)q

⎞⎠1/p

≤ C(d, r,σ, p, q)2jdτσ/H(σ)
∑
k≥j

⎧⎨⎩ ∑
K∈Dσ

j

(
2−kdτσ/H(σ)2kσek(s,K)

)p ⎫⎬⎭
1/p

where the term C(d, r,σ, p, q) comes from her equation (19).
If we go back to her calculations, we can observe that C(d, r,σ, p, q) does

not depend on σ in a unidimensional setting (as σ = H(σ)). Moreover, the
dependency on q comes from her equation (20), and can be removed thanks
to Theorem 2.6 in Chapter 4 of [DL93]. We therefore write C(r, p) in place of
C(d, r,σ, p, q) (as d = 1).

We thus have,

2jdτσ/H(σ)

⎛⎝ ∑
K∈Dσ

j

Ep
r (s,K)q

⎞⎠1/p

≤ C(r, p)2jdτσ/H(σ)
∑
k≥j

2−kdτσ/H(σ)2kσek(s, [0, 1]
d)

≤ C(r, p)
(
1− 2−dτσ/H(σ)

)−1

sup
k≥j

(
2kσek(s, [0, 1]

d)
)
,

which gives the result using(
1− 2−dτσ/H(σ)

)−1

=
(
1− 2−τ

)−1 ≤ (1/ log(2))(1 + 1/τ).
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We now prove the following lemma.

Lemma 4. Let (ηj)j≥0 be a sequence of numbers that is bounded below by a
positive constant. Let p ≥ 1, π ∈ (0, p), α > 1/π − 1/p, r > α − 1, R > 0 and
f ∈ Bα

π,∞(R). Then, there exists m ∈ M∞ such that mj =
{
I ∈ m, |I| = 2−j

}
satisfies for all j ≥ 1,

|mj | ≤ min

{
C

(
R
2−(j−1)τ

ηj−1

)π

, 2j

}
, (21)

where τ = α+ 1/p− 1/π and where C depends on p, π, r, α only. Moreover,

dpp(f,Pr(m)) ≤
∞∑
j=0

|mj |ηpj . (22)

Remark: the construction of the partition m is the same to that of [DY90]
when the sequence (ηj)j is constant.

Proof of Lemma 4. We begin by defining two preliminary collections m̄j , m̄
′
j of

disjoint intervals of [0, 1] by induction.
When dp(f1[0,1],Pr([0, 1])) ≤ η0, we set (m̄0, m̄

′
0) = (m̄0, ∅) and when

dp(f1[0,1],Pr([0, 1])) > η0, we set (m̄0, m̄
′
0) = (∅, m̄0). We then define m̄j and

m̄′
j from m̄j−1, m̄

′
j−1 by

m̄j = {I ∈ m̄j , ∃I ′ ∈ m̄′
j−1 such that I ⊂ I ′ and dp(f1I ,Pr(I)) ≤ ηj}

m̄′
j = {I ∈ m̄j , ∃I ′ ∈ m̄′

j−1 such that I ⊂ I ′ and dp(f1I ,Pr(I)) > ηj}.

Therefore, m̄j , m̄
′
j are subsets of m̄j , m̄j ∪ m̄′

j is a partition of ∪I′∈m̄′
j−1

I ′ and

dp(f1I ,Pr(I)) ≤ ηj for all I ∈ m̄j

dp(f1I ,Pr(I)) > ηj for all I ∈ m̄′
j .

For every k, m̄′′
k =
(⋃k

j=0 m̄j

)
∪ m̄′

k is a partition of [0, 1]. Moreover, we de-

rive m̄′′
k from m̄′′

k−1 by dividing some of its intervals in two equal parts (more
precisely, we divide the intervals of m̄′

k−1). Therefore, m̄′′
k ∈ M(m̄′′

k−1) and
m̄′′

k ∈ M� for some �, see Section 3.1.
Since (ηj)j is bounded below, we may define the smallest � such that m̄′

� = ∅.
We then set m = m̄′′

� =
⋃�

j=0 m̄j . Note that m̄j = mj =
{
I ∈ m, |I| = 2−j

}
and m ∈ M�.

We now show the bound on |mj | = |m̄j | for j ≥ 1. For all I ∈ m̄j , there
exists I ′ ∈ m̄′

j−1 such that I ⊂ I ′. Therefore,

(ηj−1)
π < dπp (f1I′ ,Pr(I

′)),

and hence

(ηj−1)
π |m̄j | <

∑
I∈m̄j

dπp (f1I′ ,Pr(I
′))
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<
∑

J∈m̄′
j−1

∑
I∈m̄j

I′=J

dπp (f1J ,Pr(J))

< 2
∑

J∈m̄′
j−1

dπp (f1J ,Pr(J)).

By using m̄′
j−1 ⊂ m̄j−1 and Claim 1,

(ηj−1)
π |m̄j | < 2

(
C ′R2−(j−1)τ

)π
,

which shows the first bound in (21). As to the second one, we merely use that
m̄j ⊂ m̄j and |m̄j | = 2j .

Now,

dpp(f,Pr(m)) =
∑
I∈m

dpp(f1I ,Pr(I)) ≤
∞∑
j=0

∑
I∈mj

dpp(f1I ,Pr(I)) ≤
∞∑
j=0

|mj |ηpj ,

which shows (22).

Proof of Proposition 5. We apply Lemma 4 with

ηj =

{
C1/πR2(j+1)(δ−1)/p+τ−k(α+δ/p) if α > δ(1/π − 1/p)

C1/πR2(j+1)(δ−1)/p+τ−k(τ+(δ−1)/p) if α ≤ δ(1/π − 1/p).
(23)

We deduce a partition m with |mj | such that

|mj |1/π ≤
{
2k(α+δ/p)2−j(α+δ/p−1/π) if α > δ(1/π − 1/p)

2(k−j)(τ+(δ−1)/p) if α ≤ δ(1/π − 1/p).
(24)

In the first case, |mj | = 0 when j > (α + δ/p)/(α + δ/p − 1/π)k, which shows
that m ∈ M�. As to the second case, we have |mj | = 0 when j > k and thus
m ∈ Mk.

Note now that ∑
I∈m

|I|1−δ =

∞∑
j=0

|mj |2j(δ−1). (25)

By using |mj | ≤ 2j and (24), we get in the first case

∑
I∈m

|I|1−δ ≤
k∑

j=0

2j2j(δ−1) + 2kπ(α+δ/p)
∞∑

j=k+1

2−j(α+δ/p−1/π)π2j(δ−1)

≤ 2(k+1)δ

2δ − 1
+ 2kπ(α+δ/p) 2

−(k+1)(α−δ(1/π−1/p))π

1− 2−(α−δ(1/π−1/p))π

≤ C ′2kδ, (26)
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where C ′ depends on α, δ, p, π.
As to the second case, we use that |mj | = 0 for j > k and (24) to get

∑
I∈m

|I|1−δ ≤
k∑

j=0

2(k−j)(τ+(δ−1)/p)π2j(δ−1)

≤ 2kπ(τ+(δ−1)/p)
k∑

j=0

2j((1−π/p)(δ−1)−πτ). (27)

When the condition on α is strict, (1− π/p)(δ − 1)− πτ > 0, and thus,∑
I∈m

|I|1−δ ≤ 2kπ(τ+(δ−1)/p) × C ′2k((1−π/p)(δ−1)−πτ)

≤ C ′2k(δ−1), (28)

where C ′ depends on p, π, α, δ only.
Suppose now that α = δ(1/π − 1/p). Then, we put the inequalities (1 −

π/p)(δ − 1)− πτ = 0 and π(τ + (δ − 1)/p) = δ − 1 into (27) to derive∑
I∈m

|I|1−δ ≤ C ′k2k(δ−1). (29)

We now prove the bounds on dpp(f,Pr(m)). We use (22) and (23) to get in
the first case,

dpp(f,Pr(m)) ≤ Cp/πRp2−kp(α+δ/p)+pτ+δ−1
∞∑
j=0

|mj |2j(δ−1),

and in the second case

dpp(f,Pr(m)) ≤ Cp/πRp2−kp(τ+(δ−1)/p)+pτ+δ−1
∞∑
j=0

|mj |2j(δ−1).

We then bound the sum by using (25) (26), (28) and (29).
We finally prove the bounds on

∑
I∈m

|I|1−p =

∞∑
j=0

|mj |2j(p−1).

When α > δ(1/π − 1/p), and α ≥ p/π − δ/p,

∑
I∈m

|I|1−p ≤
k∑

j=0

2j2j(p−1) + 2kπ(α+δ/p)
�∑

j=k+1

2−jπ(α+δ/p−1/π)2j(p−1)

≤ 2(k+1)p

2p − 1
+ 2kπ(α+δ/p)

�∑
j=k+1

2−jπ[α−(p/π−δ/p)] (30)
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and

�∑
j=k+1

2−jπ[α−(p/π−δ/p)] ≤
{
C ′′2−kπ[α−(p/π−δ/p)] if α > p/π − δ/p

�− k if α = p/π − δ/p.

We put this inequality in (30) to get the bound. When α > δ(1/π − 1/p), and
α < p/π − δ/p, we have

∑
I∈m

|I|1−p ≤ 2kπ(α+δ/p)
�∑

j=0

2−jπ(α+δ/p−1/π)2j(p−1)

≤ 2kπ(α+δ/p)
�∑

j=0

2−jπ[α−(p/π−δ/p)]

≤ 2kπ(α+δ/p) × C ′′2−�π[α−(p/π−δ/p)],

which implies the bound. When α ≤ δ(1/π − 1/p),

∑
I∈m

|I|1−p ≤
k∑

j=0

2(k−j)(τ+(δ−1)/p)π2j(p−1)

≤ 2kπ(α−1/π+δ/p)
k∑

j=0

2jπ(p/π−δ/p−α).

Since δ < p, we have p/π − δ/p− α > 0 and∑
I∈m

|I|1−p ≤ C ′′2kπ(α−1/π+δ/p)2kπ(p/π−δ/p−α) ≤ C ′′2(p−1)k.

4.5. Proof of Theorem 6

It is well known that there is an embedding of Besov spaces into L
q spaces,

see [DP88, DeV98]. We use here the following lemma. It will be proved after the
present proof for the sake of completeness.

Lemma 5. Let f be a density belonging to Bα
π,∞(R) for some π, α > 0. Then,

for all q ∈ [1,+∞] such that 1/q > 1/π − α,

‖f‖q ≤ cq(1 +R), (31)

where cq depends on π, α, q only. Moreover cq ≤ c(1 + 1/(α − 1/π + 1/q)) for
some c depending only on π, α.

We recall that ᾱ is the unique positive solution of (11) that is

α = (1/π − 1/p)/(2/p− 1/π + α).
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Define, when α ≤ 1/π, qα = π/(1 − πα), 1/δα = 2/p − 1/qα = 2/p − 1/π + α.
Every α ∈ (ᾱ, 1/π] satisfies α > δα(1/π − 1/p) and every α ∈ (1/π − 1/p, ᾱ]
satisfies α ≤ δα(1/π − 1/p).

Suppose that α ∈ (ᾱ, 1/π]. Let ε > 0 be small enough such that

α > (1/π − 1/p)/(2/p− (1/qα + ε)).

Let q′α ≥ p such that 1/q′α = 1/qα + ε and 1/δ′α = 2/p − 1/q′α. We apply
Proposition 5 with k defined as the smallest integer larger than

1

1 + 2α
log2

(
R2

1 +R

n

logn

)
, (32)

and δ = max{1, δ′α}. We therefore get a partition m ∈ M� such that
dp(f,Pr(m)) ≤ CR2−kα, (∑

I∈m

|I|1−δ

)1/δ

≤ C2k, (33)

and

w(m) ≤

⎧⎪⎨⎪⎩
C2k if α > p/π − δ/p

C�2k if α = p/π − δ/p

C2(π/p)[k(α+δ/p)+�(p/π−δ/p−α)] if α < p/π − δ/p.

(34)

We use (33) with a concavity argument when δ′α < 1 to get

vq′α(m) =

(∑
I∈m

|I|1−δ′α

)1/δ′α

≤ C2k.

Moreover, we have

� ≤ α+ δ/p

δ/p+ α− 1/π
k. (35)

Lemma 5 implies that Mq′α(m) ≤ ‖f‖q′α ≤ c(1 + R) for some c. Due to our
choice of k, we have for n large enough, using �m ≤ c′ logn for some suitable c′,

dp(f,Pr(m)) +

√
Mq′α(m)vq(m)

�m + log n

n

≤ C ′R1/(1+2α)

(
(1 +R)

log n

n

)1/(1+2α)

.

We now claim that the term w(m)(�m + logn)/n in (8) is negligible when n
is large. This is indeed straightforward when α ≥ p/π − δ/p as our bounds for
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w(m) and vq′α(m) are of the same order of magnitude (up to a logarithmic term
in case of equality). When α < p/π − δ/p, we have, using (34) and (35),

w(m) ≤ C ′2k(α+δ/p)(1−1/p)/(δ/p+α−1/π).

We apply the claim below (proved after the present proof) to get w(m) ≤
C ′2kβ(1+α) for some β < 1.

Claim 2. The following inequality holds true: for all α ∈ (1/π − 1/p, 1/π],
q ∈ [p, π/(1− πα)], π ∈ (0, p), 1/δ′ = 2/p− 1/q such that α > δ′(1/π − 1/p),

(α+ δ/p)(1− 1/p) < (1 + α)(δ/p+ α− 1/π),

where δ = max{1, δ′}.
It follows from the definition of k that for n large enough,

w(m)
�m + log n

n
≤ C ′′(R2/(1 +R)

)β(1+α)/(1+2α)
(
logn

n

)(1+2α−β(1+α))/(1+2α)

.

As β < 1, the exponent is always larger than α/(1 + 2α), and the term is
negligible. Since ‖f‖p ≤ ‖f‖q′α ≤ c(1 +R), we may apply Theorem 4 to get the
result for n large enough.

Suppose now that α ∈ (1/π−1/p, ᾱ) and α ≤ 1/π. Then, α < δα(1/π − 1/p).
Since α > 1/π−1/p, we may suppose that δα > 1. Let k be the smallest integer
larger than

1

2(α− 1/π + 1/p) + 1− 1/δα
log2

(
R2

1 +R

n

log n

)
. (36)

We derive from the second point of Proposition 5 a partition m ∈ Mk such that

vqα(m) ≤ C2k(1−1/δα), w(m) ≤ C2k(1−1/p), and

dp(f,Pr(m)) ≤ CR2−k(α+1/p−1/π).

Lemma 5 ensures that ‖f‖qα/(1+qα/(pk)) ≤ ck(1+R), for some c depending only
on π, α and p. We may thus apply Theorem 4 to get when n is large enough,

Ef

[
dpp(f, f̂)

]1/p
≤ C ′

{
R2−k(α+1/p−1/π) +

√
(1 +R)k1/qα+12k(1−1/δα)

k + logn

n

+2k(1−1/p) k + logn

n

}
.

By replacing k by (36), we observe that the first three terms are all of the same
order of magnitude (up to log terms). We then use Lemma 5 to bound the L

p

norm of f in the remaining term.
In borderline case α = ᾱ, and α ≤ 1/π, we do as above. We simply apply the

third point of Proposition 5 instead of the second one, which leads to additional
logarithmic factors in the final result.
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The proof when α > 1/π is quite similar. We set from now on qα = ∞,
δα = p/2. Suppose that α > δα(1/π − 1/p). We apply Proposition 5 with k
defined as the smallest integer larger than (32) and δ = max{1, δα}. We therefore
get a partition m ∈ M� such that dp(f,Pr(m)) ≤ CR2−kα, v∞(m) ≤ C2k, and
w(m) bounded from above by (34). Lemma 5 ensures that ‖f‖∞ ≤ c(1 + R),
and we apply Theorem 4. We finally use (35) and the claim below to show that
w(m)(�m + logn)/n is negligible when α < p/π − δ/p.

Claim 3. The following inequality holds true: for all α > 1/π, π ∈ (0, p), such
that α > (p/2)(1/π − 1/p),

(α+ δ/p)(1− 1/p) < (1 + α)(δ/p+ α− 1/π),

where δ = max{1, p/2}.

When α < δα(1/π − 1/p), we may suppose that δα = p/2 ≥ 1 and define k
as the smallest integer such that (36) holds true (with the present value of δα).
We derive from the second point of Proposition 5 a partition m ∈ Mk such that

v∞(m) ≤ C2k(1−1/δα), w(m) ≤ C2k(1−1/p), and

dp(f,Pr(m)) ≤ CR2−k(α+1/p−1/π).

By using ‖f‖p ≤ ‖f‖∞ ≤ c(1 + R), Lemma 5 and Theorem 4, we have for n
large enough

Ef

[
dpp(f, f̂)

]1/p
≤ C ′

{
R2−k(α+1/p−1/π) +

√
(1 +R)2k(1−1/δα)

k + logn

n

+2k(1−1/p) k + log n

n

}
.

By replacing k by (36), the first two terms are of the or-
der of ((log n)/n)(α−1/π+1/p)/(2α−2/π+1) and the third one
((log n)/n)(2α−2/π+1/p)/(2α−2/π+1). It is therefore negligible compared to
the first two terms as α > 1/π.

Finally, when α = δα(1/π− 1/p), we do as above, but additional logarithmic
factors appear as we apply the third point of Proposition 5.

Proof of Lemma 5. We apply Claim 1 in Section 4.4 with j = 0, p replaced
by q, and with r defined as the smallest integer larger than α. Then, there is a
polynomial function g of degree at most r such that

dq(f, g) ≤ C

(
1 +

1

α− 1/π + 1/q

)
R, (37)

where C depends on α and π only. Since g is a polynomial function, there
exists C ′ depending only on r such that ‖g‖q ≤ C ′‖g‖1 (see Theorem 2.6 in
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Chapter 4 of [DL93]). Therefore, using the triangle inequality,

‖g‖q ≤ C ′ [d1(f, g) + ‖f‖1]
≤ C ′ [dq(f, g) + 1] . (38)

We finally put ‖f‖q ≤ dq(f, g) + ‖g‖q, (37) and (38) together.

Proof of Claim 2. We first suppose that δ′ ≥ 1. Then,

(1 + α)(δ/p+ α− 1/π)− (α+ δ/p)(1− 1/p)

= (1 + α)(δ′/p+ α− 1/π)− (α+ δ′/p)(1− 1/p)

= (α+ δ′/p)(1/p+ α)− (1 + α)/π.

We have 1/δ′ ≤ 2/p− 1/π + α, and hence,

(1 + α)(δ/p+ α− 1/π)− (α+ δ/p)(1− 1/p)

≥
(
α+

1

p(2/p− 1/π + α)

)
(1/p+ α)− (1 + α)/π.

The right-hand side of this inequality is of the same sign as

[α(2/p− 1/π + α) + 1/p] (1/p+ α)− (1/π)(1 + α)(2/p− 1/π + α)

= (α− 1/π + 1/p)
(
α2 + (2/p− 1/π)α− (1/π − 1/p)

)
.

Finding a root of the quadratic polynomial amounts to solving (11). The only
positive root is therefore ᾱ. Since α > δ′(1/π−1/p) ≥ (1/π−1/p)/(2/p−1/π+
α), α is larger than ᾱ and the above quantity is always positive.

Suppose now that δ′ < 1. Then, α > 1 + 1/π − 2/p ≥ 1/π − 1/p, and

(1 + α)(δ/p+ α− 1/π)− (α+ δ/p)(1− 1/p) = (α+ 1/p)2 − (1 + α)/π.

The right-hand side of this inequality is an increasing function of α on [1/(2π)−
1/p,+∞) ⊃ [1/π−1/p,+∞). It is therefore larger than when α = 1+1/π−2/p.
For such a value of α, it is equal to (1− 1/p)2 and is non-negative.

Proof of Claim 3. We first suppose that p ≥ 2. Then,

(1 + α)(δ/p+ α− 1/π)− (α+ δ/p)(1− 1/p)

= (1 + α)(1/2 + α− 1/π)− (α+ 1/2)(1− 1/p)

= (α+ 1/2)(1/p+ α)− (1 + α)/π.

The right-hand side is a quadratic polynomial of the form α2 + bα + c with
b = 1/p − 1/π + 1/2 ≥ 1/p − 1/π. It it therefore increasing on [−b/2,+∞) ⊃
[1/(2π) − 1/(2p),+∞). In particular, it is larger that when α = 1/π or when
α = (p/2)(1/π − 1/p). It is equal to (−p + π + 2)/(2πp) in the first case, and
to p(p− π − 2)/(4π2) in the second case. At least one of the two terms is non-
negative.
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We now suppose that p < 2. Then,

(1 + α)(δ/p+ α− 1/π)− (α+ δ/p)(1− 1/p) = (1/p+ α)2 − (1 + α)/π.

As in the proof of Claim 2, the right-hand side of this inequality is an increasing
function of α on [1/(2π)− 1/p,+∞). It is therefore larger that when α = 1/π,
in which case it is equal to (π + (2− p)p)/(p2π) > 0.

4.6. Proof of Proposition 7

We must show that the partitions m defined in the proof of Theorem 6 belong
to M� for some � satisfying 2� ≤ np/(p−1) for n large enough. Moreover, we must
have 2� ≤ n when α > 1/π and n large enough.

When α ≤ ᾱ and α ≤ 1/π, or when α ≤ (p − π)/(2π) and α > 1/π, k is
defined by (36) with 1/δα = 2/p− 1/π + α or 1/δα = 2/p. As � ≤ k, we have,

2� ≤ C

(
n

logn

)1/(2(α−1/π+1/p)+1−1/δα)

.

When 1/δα is given by the first formula, the denominator in the exponent is

2(α− 1/π + 1/p) + 1− 1/δα = α− 1/π + 1 ≥ 1− 1/p,

and 2� ≤ np/(p−1) for n large enough. When 1/δα = p/2, we rather have

2(α− 1/π + 1/p) + 1− 1/δα = 2α− 2/π + 1,

and using α > 1/π, 2� ≤ n for n large enough.

Suppose now that α ∈ (ᾱ, 1/π], or α > 1/π and α > (p− π)/(2π). Then, k is
defined by (32) and � is bounded above by (35). In the first case, we use Claim 2
to get � ≤ (1 + α)/(1− 1/p) and thus

2� ≤ C

(
n

logn

)(1+α)/((1−1/p)(1+2α))

,

which is smaller than np/(p−1) for n large. In the second case, we use the claim
below to get � ≤ (1 + 2α)k and hence 2� ≤ C (n/log n).

Claim 4. The following inequality holds true: for all α > 1/π, π ∈ (0, p), such
that α > (p/2)(1/π − 1/p),

α+ δ/p < (1 + 2α)(δ/p+ α− 1/π),

where δ = max{1, p/2}.
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Proof of Claim 4. We first suppose that p ≥ 2. Then,

(1 + 2α)(δ/p+ α− 1/π)− (α+ δ/p) = (1 + 2α)(1/2 + α− 1/π)− (α+ 1/2)

= 2(α− 1/π)(α+ 1/2)

> 0.

We now suppose that p < 2. Then,

(1 + 2α)(δ/p+ α− 1/π)− (α+ δ/p) = 2α(α+ 1/p)− (1 + 2α)/π.

This quadratic polynomial is increasing on [(1/π−1/p)/2,+∞). The right-hand
side of the above equality is therefore larger that when α = 1/π, in which case
it is equal to (2− p)/(pπ) > 0.
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