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Abstract

Suppose N is a compact Riemannian manifold, in this paper we will introduce the
definition of N -valued BSDE and L2(Tm;N)-valued BSDE for which the solutions are
not necessarily staying in only one local coordinate. Moreover, the global existence of
a solution to L2(Tm;N)-valued BSDE will be proved without any convexity condition
on N .
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1 Introduction

Consider the following systems of backward stochastic differential equation (which
will be written as BSDE for simplicity through this paper) in Rn,

Yt = ξ −
∫ T

t

ZsdBs −
∫ T

t

f(s, Ys, Zs)ds, t ∈ [0, T ]. (1.1)

Here {Bs}s>0 is a standard m-dimensional Brownian motion defined on a probability
space (Ω,F ,P), ξ is a FT -measurable Rn-valued random variable, {Ys}s∈[0,T ], {Zs}s∈[0,T ]

are Rn-valued predictable process and Rmn-valued predictable process respectively. We
usually call the function f : Ω× [0, T ]×Rn ×Rmn → Rn the generator of BSDE (1.1).

Bismut [2] first introduced the linear version of BSDE (1.1). A breakthrough was
made by Pardoux and Peng [31] where the existence of a unique solution to (1.1) was
proved under global Lipschitz continuity of generator f . Still under the global Lipschitz
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BSDE on a Riemannian manifold

continuity of f , Pardoux and Peng [32] has established the connection between the
systems of forward-backward stochastic differential equation (which will be written as
FBSDE through this paper) and the solution of a quasi-linear parabolic system. Another
important observation by [31, 32] was that BSDE (1.1) could be viewed as a non-linear
perturbation of martingale representation theorem or Feynman-Kac formula.

It is natural to ask what is the variant for BSDE (1.1) on a smooth manifold N . When
an n-dimensional manifold N was endowed with only one local coordinate, Darling [11]
introduced a kind of N -valued BSDE as follows

Y kt = ξk −
m∑
l=1

∫ T

t

Zk,ls dBls +
1

2

m∑
l=1

∫ T

t

n∑
i,j=1

Γkij(Ys)Z
i,l
s Z

j,l
s ds. (1.2)

Here Yt = (Y 1
t , · · · , Y nt ) denotes the components of Yt under (the only one) local coor-

dinate, and {Γkij}ni,j,k=1 are the Christoffel symbols for a fixed affine connection Γ on N .
The most important motivation to define (1.2) is to construct a Γ-martingale with fixed
terminal value (we refer readers to [14] or [20] for the definition of Γ-martingale). In
fact, with the special choice of generator in (1.2) (which depends on the connection Γ),
the solution {Yt}t∈[0,T ] of (1.2) is a Γ-martingale on N with terminal value ξ. Moreover,
Blache [3, 4] investigated a more general N -valued BSDE as follows when {Yt} was
restricted in only one local coordinate of N ,

Y kt = ξk −
m∑
l=1

∫ T

t

Zk,ls dBls +
1

2

m∑
l=1

∫ T

t

n∑
i,j=1

Γkij(Ys)Z
i,l
s Z

j,l
s ds+

∫ T

t

fk(Ys, Zs)ds, (1.3)

where f : Ω × N × TmN → TN is uniformly Lipschitz continuous. Moreover, the Lie
group valued BSDE has been studied by Estrade and Pontier [15], Chen and Cruzeiro
[8].

On the other hand, the N -valued FBSDE is highly related to the heat flow of harmonic
map with target manifold N . Partly using some idea of N -valued FBSDE, Thalmaier [38]
studied several problems concerning the singularity for heat flow of harmonic map by
probabilistic methods. We also refer readers to [3, 4, 12, 17, 21, 22, 33, 39] for various
methods and applications for the subjects on Γ-martingale theory and its connection to
the study of heat flow of harmonic map.

For the problems on N -valued BSDE mentioned above, there are two main difficulties.
One is the quadratic growth (for the variable associated with Z) term in the generator
of (1.2) and (1.3), for which the arguments in [31, 32] may not be applied directly to prove
global (in time) or local existence of a solution to (1.2) and (1.3). Kobylanski first proved
the global existence of a unique solution to the scalar valued (i.e. n = 1) BSDE (1.1)
with the generator having quadratic growth and bounded terminal value. Briand and Hu
[5, 6] extended these results to the case where the terminal value may be unbounded.
The problem for multi-dimensional BSDE is more complicated, Darling [11] introduced
some condition on the existence of some doubly convex function, under which the global
existence of a unique solution to (1.2) or (1.3) has been obtained in [11, 3, 4]. Xing and
Zitković [40] proved global existence of a unique Markovian solution of (1.1) based on
the existence of a single convex function. We also refer readers to [19, 18, 24, 37] and
reference therein for various results concerning the local existence of a solution to (1.1)
in Rn with the generator having quadratic growth under different conditions, including
the boundness for Malliavin derivatives of terminal value(see Kupper, Luo and Tangpi
[24]), small L∞ norm of terminal value (see Harter and Richou [18] or Tevzadze [37])
and the special diagonal structure of the generator(see Hu and Tang [19]).

Another difficulty for N -valued BSDE is the lack of a linear structure for a general
manifold N . In fact, the expression (1.2) and (1.3) only make sense in a local coordinate
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BSDE on a Riemannian manifold

which is diffeomorphic to an open set of Rn. If we want to extend (1.2) and (1.3) to the
whole manifold N , the multiplication or additive operators (therefore the Itô integral
term) may not be well defined because of the lack of a linear structure on N . Due to this
reason, [11, 3, 4] gave the definition of an N -valued BSDE which was restricted in only
one local coordinate. Meanwhile in [8] and [15], the left (or right) translation on a Lie
group has been applied to provide a linear structure for associated BSDE.

By our knowledge, for a general N , how to define an N -valued BSDE which are
not necessarily staying in only one local coordinate is still unknown. In this paper,
we will solve this problem for the case that N is a compact Riemannian manifold, see
Definition 3.1 and 3.5 below. Moreover, as explained above, the existence of a doubly
convex or a single convex function is required to prove the global existence of a solution
to the BSDE whose generator has quadratic growth. The existence of these convex
functions could be verified locally in N (in fact, at every small enough neighborhood),
see e.g. [3, 4, 21]. But except for some special examples (such as Cartan-Hadamard
manifold), it is usually difficult to check whether such a convex function exists globally or
not in N . In this paper, we will also prove the global existence of an N -valued solution to
some BSDE without any convexity conditions mentioned above, see Theorem 3.4 and 3.6
below.

We also give some remarks on our results.

(1) Given a Riemannian metric on N , in Definition 3.1 and 3.5 we view N as a sub-
manifold of ambient space RL, so the linear structure on RL could be applied in
the BSDE (3.1) and (3.5). The key ingredient in (3.1) and (3.5) is that the term
with quadratic growth is related to second fundamental form A. As illustrated in
the proof of Theorem 3.2, it will ensure the solution of RL-valued BSDE (3.1) to
stay in N . The advantage of our definition is that it does not require the solution
to be restricted in only one local coordinate as in [11, 3, 4], therefore we do not
need any extra condition on the generator f in (3.1) (see e.g. condition (H) in
[3, 4]). Moreover, as explained in Remark 3.1, our definition will be the same as
that in [3, 4] when we assume that the solution of (3.1) is situated in only one local
coordinate.

(2) The equation (3.5) could be viewed as an N -valued FBSDE with forward equation
being x+ Bt in Tm. In Definition 3.5, we study the FBSDE with a.e. initial point
x ∈ Tm. This kind of solution has been introduced in [1, 28, 41, 42] to investigate
the connection between FBSDE and weak solution of a quasi-linear parabolic
system. The motivation of Definition 3.5 is to study the global existence of a
solution to N -valued BSDE for more general N , especially for that without any
convexity condition. Theorem 3.6 ensures us to find a global solution of (3.5)
for any compact Riemannian manifold N . By the proof we know that the result
still holds for non-compact Riemannian manifold with suitable bounded geometry
conditions. These results will also be applied to construct ∇-martingale with fixed
terminal value in Corollary 3.5.

(3) Theorem 3.2 provides a systematic way to obtain the existence of a solution to
N -valued BSDE, based on which we can apply many results on the RL-valued BSDE
whose generator has quadratic growth directly. By Theorem 3.4, for any compact
Riemannian manifold N , there exists a unique global Markovian solution to (3.1)
when the dimension m of filtering noise is equal to 1, which gives us another
example about the global existence of a solution to N -valued BSDE without any
convexity condition. Meanwhile, it also illustrates that for some BSDE whose
generator has quadratic growth, not only the dimension n of solution (see the
difference between scalar valued BSDE and multi-dimensional BSDE), but also the
dimension m of filtering noise, will have crucial effects.
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The rest of the paper is organized as follows. In Section 2 we will give a brief
introduction on some preliminary knowledge and notations, including the theory of
sub-manifold N in ambient space RL. In Section 3, we are going to summarise our main
results and their applications. In Section 4, the proof of Theorem 3.2 and 3.4 will be
given. And we will prove Theorem 3.6 in Section 5.

2 Preliminary knowledge and notations

2.1 Sub-manifold of an ambient Euclidean space

Through this paper, suppose thatN is an n-dimensional compact Riemannian manifold
endowed with a Levi-Civita connection ∇. By the Nash embedding theorem, there exists
an isometric embedding i : N → RL from N to an ambient Euclidean space RL with
L > n. So we could view N as a compact sub-manifold of RL. We denote the Levi-Civita
connection on RL by ∇̄ (which is the standard differential on RL). Let TN be the tangent
bundles of N and let TpN be the tangent space at p ∈ N . For any m ∈ N+, we define

TmN :=
⋃
p∈N

(TpN)⊗m

as the tensor product of TN with order m.

For every p ∈ N ⊂ RL, by the Riemannian metric on N , we could split RL into direct
sum as RL = TpN ⊕ T⊥p N , where T⊥p N denotes orthogonal complement of TpN . Hence
for every v ∈ RL and p ∈ N , we have a decomposition as follows,

v = vT + v⊥, vT ∈ TpN, v⊥ ∈ T⊥p N, (2.1)

we usually call vT , v⊥ the tangential projection and normal projection of v ∈ RL respec-
tively.

Given smooth vector fields X,Y on N , let X̄, Ȳ be the (smooth) extension of X, Y
on RL (which satisfy that X̄(p) = X(p), Ȳ (p) = Y (p) for any p ∈ N ), then we have
∇XY (p) = (∇̄X̄ Ȳ )T (p), where (∇̄X̄ Ȳ )T is the tangential projection defined by (2.1). Let
A(p) : TpN × TpN → T⊥p N be the second fundamental form at p ∈ N defined by

A(p)(u, v) : = ∇̄X̄ Ȳ (p)−∇XY (p)

= ∇̄X̄ Ȳ (p)− (∇X̄ Ȳ )T (p), ∀ u, v ∈ TpN,
(2.2)

where X, Y are any smooth vector fields on N satisfying X(p) = u, Y (p) = v, X̄, Ȳ are
any smooth vector fields on RL which are extension of X and Y respectively. The value
of A(p)(u, v) is independent of the choice of X, Y , X̄, Ȳ .

We define the distance from p ∈ RL to N as follows

distN (p) := inf{|p− q|; q ∈ N ⊂ RL},

where |p− q| denotes the Euclidean distance between p and q in RL. Set

B(N, r) := {p ∈ RL; distN (p) < r}, ∀ r > 0.

Since N is compact, it is well known that there exists a δ0(N) > 0 such that dist2
N (·) :

B(N, 3δ0)→ R+ and the nearest projection map PN : B(N, 3δ0)→ N are smooth, where
for every p ∈ B(N, 3δ0), PN (p) = q with q ∈ N being the unique element in N satisfying
|p−q| = distN (p). Moreover, for every p ∈ B(N, 3δ0), suppose γ : [0,distN (p)]→ RL is the
unique unit speed geodesic in RL (which is in fact a straight line) such that γ(0) = PN (p),
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γ(distN (p)) = p, then for every p ∈ B(N, 3δ0) it holds

∇̄distN (PN (p)) = γ′(0) ∈ T⊥PN (p)N,

∇̄distN (p) = γ′(distN (p)) = γ′(0),

|∇̄distN (p)| = 1.

(2.3)

Here we have used property γ′(0) = γ′(distN (p)) since γ(·) is a straight line in RL.
Moreover, we still have the following characterization for second fundamental form A,

A(p)(u, u) =

L∑
i,j=1

∂2PN
∂pi∂pj

(p)uiuj , p ∈ N, u = (u1, · · · , uL) ∈ TpN. (2.4)

We choose a cut-off function φ ∈ C∞(R,R) such that

φ(s) =


1, s < δ0,

∈ (0, 1), s ∈ [δ0, 2δ0],

0, s > 2δ0.

It is easy to verify that p 7→ φ(distN (p)) is a smooth function on RL. Then we could
extend the second fundamental form A defined by (2.2) to Ā : RL → L(RL × RL;RL)

(here L(RL ×RL;RL) denotes the collection of all linear maps from RL ×RL to RL) as
follows

Ā(p)(u, u) :=

{
φ
(
distN (p)

)∑L
i,j=1

∂2PN
∂pi∂pj

(PN (p))uiuj , p ∈ B(N, 2δ0),

0, p ∈ RL/B(N, 2δ0)
(2.5)

for all u ∈ RL. According to (2.4), (2.5) and the definition of φ, we know immediately
that Ā is a smooth map and

Ā(p)(u, v) = A(p)(u, v), ∀ p ∈ N, u, v ∈ TpN,
Ā(p) = 0, ∀ p ∈ RL/B(N, 2δ0).

We refer readers to [7, Section III.6], [13, Chapter 6] or [26, Section 1.3] for detailed
introduction concerning various properties for sub-manifold N of RL.

2.2 Non-linear generator f

In this paper, we make the following assumption for f .

Assumption 2.1. Suppose that f : N ×TmN → TN is a C1 map such that f(p, u) ∈ TpN
for every p ∈ N , u = (u1, · · · , um) ∈ Tmp N . And there exists a C0 > 0 such that for every
p ∈ N , u ∈ Tmp N ,

|f(p, u)|TpN 6 C0(1 + |u|Tmp N ), |∇pf(p, u)|TpN + |∇uf(p, u)|TpN 6 C0, (2.6)

where ∇p and ∇u denote the covariant derivative with respect to the variables p in N
and u in TmN respectively.

Now we define a C1 extension f̄ : RL ×RmL → RL of f as follows

f̄(p, u) :=

{
φ
(
distN (p)

)
f
(
PN (p),ΠN (PN (p))u

)
, p ∈ B(N, 2δ0),

0, p ∈ RL/B(N, 2δ0).
(2.7)

Here φ : R → R, PN : B(N, 2δ0) → N are the same as those in (2.5) and ΠN (p) : RL →
TpN denotes the projection map to TpN defined by (2.1) for every p ∈ N .
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Note that N is compact, combining (2.7) with (2.6) we obtain immediately following
estimates for the extension f̄ : RL ×RmL → RL of f .

|f̄(p, u)|+ |∇̄pf̄(p, u)| 6 C1(1 + |u|), |∇̄uf̄(p, u)| 6 C1, ∀ p ∈ RL, u ∈ RmL, (2.8)

Here ∇̄p and ∇̄u denote the gradient in RL with respect to variables p and u respectively.

2.3 Space of Malliavin differentiable random variables

Through this paper, we will fix a probability space (Ω,F ,P) and an Rm-valued
standard Brownian motion {Bt = (B1

t , · · · , Bmt )}t>0 on (Ω,F ,P) with some m ∈ Z+. Let
{Ft}t>0 denote the natural filtration associated with {Bt}t>0. For simplicity we call a
process adapted (or predictable) when it is adapted (or predictable) with respect to the
filtration {Ft}t>0.

Set

FC∞b (RL) :=
{
ξ(ω) =

(
ξ1(ω), · · · , ξL(ω)

) ∣∣∣ξi(ω) = gi
(
Bti1 , · · · , Btiki

)
, ∀ 1 6 i 6 L

for some gi ∈ C∞b (Rmki ;R), ki ∈ N+, 0 < ti1 < · · · < tiki

}
.

(2.9)

Let D : FC∞b (RL) → L2(Ω;L2([0, T ];RmL);P) be the gradient operator such that for
every ξ ∈ FC∞b (RL) with expression (2.9) and non-random η ∈ L2([0, T ];Rm),

Dξ(ω)(t) =
(
Dξ1(ω)(t), · · · ,DξL(ω)(t)

)
,∫ T

0

Dξi(ω)(t) · η(t)dt

= lim
ε→0

gi
(
Bti1 + ε

∫ ti1
0

η(s) ds, · · · , Btiki + ε
∫ tiki

0
η(s) ds

)
− gi

(
Bti1 , · · · , Btiki

)
ε

, 1 6 i 6 L,

where · denotes the inner product in Rm.
For every ξ ∈ FC∞b (RL), we define

‖ξ‖21,2 := E[|ξ|2] + E

[∫ T

0

|Dξ(t)|2dt

]
.

Let D1,2(RL) := FC∞b (RL)
‖·‖1,2

be the completion of FC∞b (RL) with respect to the
norm ‖ · ‖1,2. It is well known that (D,FC∞b (RL)) could be extended to a closed operator
(D,D1,2(RL)).

We define the space of N -valued Malliavin differentiable random variables as follows

D1,2(N) := {ξ ∈ D1,2(RL); ξ(ω) ∈ N for a.s. ω ∈ Ω}.

We refer readers to the monograph [30] for detailed introduction on the theory of
Malliavin calculus.

2.4 Other notations

We use := as a way of definition. Let Tm = Rm/Zm be the m-dimensional torus.
For every x ∈ Tm, p ∈ RL and r > 0, set BTm(x, r) := {y ∈ Tm; |y − x| < r} and
B(p, r) := {q ∈ RL; |q − p| < r}. Let dt and dx be the Lebesgue measure on [0, T ] and
Tm respectively. We denote the derivative, gradient and Laplacian with respect to the
variable x ∈ Tm by ∂xi , ∇x and ∆x respectively. The covariant derivative for the variable
in N is denoted by ∇, while we use ∇̄ and ∇̄2 to represent the first and second order
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gradient operator in RL respectively. We use 〈, 〉 to denote both the Riemannian metric
on TN and the Euclidean inner product on RL (note that for every p ∈ N and u, v ∈ TpN ,
we have 〈u, v〉TpN = 〈u, v〉RL). Meanwhile let · denote the inner product in Rm (in the
tangent space of Tm). Without extra emphasis, we use a.s. and a.e. to mean almost
sure with respect to P and almost everywhere with respect to Lebesgue measure on Tm

respectively. Throughout the paper, the constant ci will be independent of ε. For any
q > 1 and k ∈ N+, set

Ck(Tm;N) := {u ∈ Ck(Tm;RL);u(x) ∈ N for every x ∈ Tm},

Lq(Tm;RL) :=

{
u : Tm → RL; ‖u‖q

Lq(Tm;RL)
:=

∫
Tm
|u(x)|qdx <∞

}
,

Lq(Tm;N) := {u ∈ Lq(Tm;RL);u(x) ∈ N for a.e. x ∈ Tm}.

3 Main theorems and their applications

3.1 N-valued BSDE

In this subsection we are going to give the definition of N -valued BSDE through the
BSDE on ambient space RL. Fixing a time horizon T ∈ (0,∞), m ∈ N+ and q ∈ (1,∞),
we define

S q(RL) :=
{
Y : [0, T ]× Ω→ RL;Y is predictable, E

[
sup
t∈[0,T ]

|Yt|q
]
<∞,

t 7→ Yt(ω) is continuous on [0, T ] for a.s. ω ∈ Ω
}
,

S q(N) :=
{
Y ∈ S q(RL); for any t ∈ [0, T ], Yt ∈ N a.s.

}
.

M q
m(RL) :=

{
Z : [0, T ]× Ω→ RmL;Z is predictable, E

[( ∫ T

0

|Zt|2dt
)q/2]

<∞
}
.

We usually write the components of a Z ∈ M q
m(RL) by Zt(ω) =

{
Zi,jt (ω); 1 6 i 6

m; 1 6 j 6 L
}

and set

Zit(ω) = (Zi,1t (ω), · · · , Zi,Lt (ω)) ∈ RL, ∀ t ∈ [0, T ], 1 6 i 6 m,ω ∈ Ω.

Let

S q ⊕M q
m(N) :=

{
(Y,Z);Y ∈ S q(N), Z ∈M q

m(RL),

and Zit ∈ TYtN for dt× P a.e.− (t, ω) ∈ [0, T ]× Ω, 1 6 i 6 m
}
.

Definition 3.1. We call a pair of process (Y, Z) is a solution of the N -valued BSDE (3.1)
if (Y,Z) ∈ S q⊕M q

m(N) for some q > 2 and satisfies the following equation in RL (where
(Y,Z) is viewed as an RL ×RmL-valued process)

Yt = ξ −
m∑
i=1

∫ T

t

ZisdB
i
s −

m∑
i=1

1

2

∫ T

t

Ā(Ys)(Z
i
s, Z

i
s)ds+

∫ T

t

f̄(Ys, Zs)ds. (3.1)

Here ξ : Ω → N ⊂ RL is an N -valued FT measurable random variable, Ā : RL →
L(RL ×RL;RL) and f̄ : RL ×RmL → RL are defined by (2.5) and (2.7) respectively.

Remark 3.1. Let (U,ϕ) be a local coordinate on N such that U ⊂ N and ϕ : U →
ϕ(U) ⊂ Rn is a smooth diffeomorphism. Suppose that (Y,Z) is a solution of the N -valued
BSDE (3.1) with Y always staying in U . Then by applying Itô formula to ϕ(Yt) (by the
same computation in the proof of Proposition 3.8 below) it is not difficult to verify that
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(ϕ(Y ), dϕ(Y )(Z)) is a solution of (1.3) defined by [3, 4] with Γkij being the Christoffel
symbols associated with Levi-Civita connection ∇, where dϕ : TN → Rn denotes the
tangential map of ϕ : U ⊂ N → Rn.

Remark 3.2. Note that the second fundamental form A in (3.1) will depend on the
Riemannian metric (due to the decomposition of tangential direction and normal di-
rection) and associated Levi-Civita connection ∇ on N . But we are not sure whether
Definition 3.1 could be extended to the case that N is only a smooth manifold endowed
with an affine connection.

Now we will give the following result about the relation between a solution of the
N -valued BSDE and a general RL-valued solution of the BSDE (3.1).

Theorem 3.2. Suppose Y ∈ S q(RL), Z ∈ M q
m(RL) with some q > 2 and m > 1 is an

RL-valued solution of the BSDE (3.1) which satisfies that

|Zt(ω)| 6 C2, dt× P− a.e. (t, ω) ∈ [0, T ]× Ω, (3.2)

for some C2 > 0. If we also assume that the terminal value ξ ∈ N ⊂ RL a.s. in (3.1), then
(Y,Z) is a solution of the N -valued BSDE (3.1).

With Theorem 3.2, we can obtain the existence of a unique N -valued solution of (3.1)
by several known results on RL-valued solution of a general BSDE whose generator has
quadratic growth.

Corollary 3.3. Suppose ξ ∈ D1,2(N) and

|Dξ(ω)(t)| 6 C3, dt× P− a.e. (t, ω) ∈ [0, T ]× Ω. (3.3)

Then we can find a positive constant T0 = T0(C3) such that there exists a unique solution
(Y,Z) to the N -valued BSDE (3.1) in time interval [0, T0] (with terminal value ξ) which
satisfies (3.2) for some C2 > 0.

Proof. According to (2.5) and (2.8) we have for every y1, y2 ∈ RL and z1, z2 ∈ RmL,∣∣Ā(y1)(z1, z1)− Ā(y2)(z2, z2)
∣∣ 6 c1(1 + |z1|2 + |z2|2) (|y1 − y2|+ |z1 − z2|) ,∣∣f̄(y1, z1)− f̄(y2, z2)

∣∣ 6 c1(1 + |z1|+ |z2|) (|y1 − y2|+ |z1 − z2|) .
(3.4)

Based on (3.3) and (3.4), if we view (3.1) as an RL-valued BSDE, by [24, Theorem 3.1]
or [18, Theorem 2.1] we can find a T0 > 0 such that there exists a unique solution (Y, Z)

with Y ∈ S 4(RL), Z ∈M 4
m(RL) to (3.1) in time interval t ∈ [0, T0] which satisfies (3.2)

for some C2 > 0. In fact, although (3.4) is slightly different from those in [24] where
associated coefficients are required to be globally Lipschitz continuous with respect to
variable y, following the same procedure in the proof of [24, Theorem 3.1] we can still
obtain the desired conclusion here, see also the arguments in [24, Example 2.2]. Then
applying Theorem 3.2 we obtain the desired conclusion immediately.

Similarly, according to [40], under some condition on the existence of a Lyapunov
function, we can also obtain the unique existence of a global Markovian solution of the
N -valued BSDE (3.1) by applying Theorem 3.2, and we omit the details here.

Moreover, without any convexity condition (such as the existence of Lyapunov function
or doubly convex function), we also have the unique existence of a global Markovian
solution of the N -valued BSDE (3.1) when m = 1.

Theorem 3.4. Assume m = 1. Given an arbitrary T > 0, suppose ξ = h(BT ) for
some h ∈ C1(Tm;N) in (3.1) (since we could also view h ∈ C1(Tm;N) as a function
h ∈ C1(Rm;N), h(BT ) is well defined here). Then there exists a unique solution (Y,Z) of
the N -valued BSDE (3.1) in time interval [0, T ] which satisfies (3.2) for some C2 > 0.
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3.2 L2(Tm;N)-valued BSDE

Still for a given time horizon T ∈ (0,∞), we define

S 2(Tm;N) :=
{
Y : [0, T ]× Ω→ L2(Tm;N);Y is predictable,

t 7→ Yt(ω) is continuous in L2(Tm;RL) for a.s. ω ∈ Ω,

‖Y ‖2S 2(Tm;RL) := E
[

sup
t∈[0,T ]

‖Yt‖2L2(Tm;RL)

]
<∞

}
,

M 2(Tm;RL) :=
{
Z : [0, T ]× Ω→ L2(Tm;RmL); Z is predictable,

‖Z‖2M2(Tm;RL) := E
[ ∫ T

0

‖Zs‖2L2(Tm;RmL)ds
]
<∞

}
.

Indeed, if supt∈[0,T ] ‖Yt − Ỹt‖L2(Tm;RL) = 0 a.s. for some Y, Ỹ ∈ S 2(Tm;N), then we view

Y and Ỹ as the same element in S 2(Tm;N). Similar equivalent relations also hold for
M 2(Tm;RL).

We usually write the components of a Z ∈ M 2(Tm;RL) by Zxt (ω) =
{
Zx,i,jt (ω); 1 6

i 6 m, 1 6 j 6 L
}

for any t ∈ [0, T ], x ∈ Rd and ω ∈ Ω. We also set

Zx,it (ω) = (Zx,i,1t (ω), · · · , Zx,i,Lt (ω)) ∈ RL, ∀ t ∈ [0, T ], x ∈ Rm, 1 6 i 6 m, ω ∈ Ω.

Let

S ⊗M 2(Tm;N) :=
{

(Y,Z);Y ∈ S 2(Tm;N), Z ∈M 2(Tm;RL),

and Zx,it ∈ TY xt N for dt× dx× P− a.e. (t, x, ω) ∈ [0, T ]×Tm × Ω, 1 6 i 6 m
}
.

Now we can give the definition of L2(Tm;N)-valued (weak) solution of a BSDE,

Definition 3.5. We call a pair of process (Y,Z) is a solution of the L2(Tm;N)-valued
BSDE (3.5) if we can find an equivalent version of the (Y,Z) ∈ S ⊗M 2(Tm;N) (still
denoted by (Y, Z) for simplicity of notation) such that for a.e. x ∈ Tm the following
equation holds for every t ∈ [0, T ],

Y xt = h(BT +x)−
m∑
i=1

∫ T

t

Zx,is dBis−
m∑
i=1

1

2

∫ T

t

Ā(Y xs )(Zx,is , Zx,is )ds+

∫ T

t

f̄(Y xs , Z
x
s )ds. (3.5)

Here h : Tm → N is an N -valued non-random function, Ā : RL → L(RL ×RL;RL) and
f̄ : RL ×RmL → RL are defined by (2.5) and (2.7) respectively.

Now we will give the following results concerning the global existence of a solution of
the L2(Tm;N)-valued BSDE (3.5) for an arbitrarily fixed compact Riemannian manifold
N .

Theorem 3.6. Suppose h ∈ C1(Tm;N), then for any T > 0, there exists a solution (Y, Z)

of the L2(Tm;N)-valued BSDE (3.5) in time interval t ∈ [0, T ].

Remark 3.3. Intuitively, a global solution of the L2(Tm;N)-valued BSDE (3.5) always
exists for any compact Riemannian manifold N (without any other convexity condition)
since the collection Ξ0 := {x ∈ Tm; |Zxt | = +∞ for some t ∈ [0, T ]} is a Lebesgue-null
set in Tm (which could be seen in the proof of Theorem 3.6).

Meanwhile, due to the lack of monotone condition on the generator (see the cor-
responding monotone conditions in [1, 28, 41, 42]), it seems difficult to prove the
uniqueness for the solution of the L2(Tm;N)-valued BSDE (3.5).
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Remark 3.4. The exceptional Lebesgue null set for x ∈ Tm in (3.5) may depend on the
choice of h. We do not know whether we can find a common null set Ξ which ensures (3.5)
valid for every h ∈ C1(Tm;N) and x /∈ Ξ.

We also have the following characterization for the solution of an L2(Tm;N)-valued
BSDE.

Proposition 3.7. (Y, Z) is a solution of the L2(Tm;N)-valued BSDE (3.5) if and only
if (Y, Z) ∈ S ⊗M 2(Tm;N) and for every ψ ∈ C2(Tm;RL) and t ∈ [0, T ] there exists a
P-null set Π0 such that for all ω /∈ Π0, it holds that∫

Tm
〈Y xt , ψ(x)〉dx =

∫
Tm
〈h(BT + x), ψ(x)〉dx−

m∑
i=1

∫ T

t

(∫
Tm
〈Zx,is , ψ(x)〉dx

)
dBis

−
m∑
i=1

1

2

∫ T

t

∫
Tm
〈Ā(Y xs )(Zx,is , Zx,is ), ψ(x)〉dxds+

∫ T

t

∫
Tm
〈f̄(Y xs , Z

x
s ), ψ(x)〉dxds.

(3.6)

Proof. If (3.5) holds for a.e. x ∈ Tm, obviously we can verify (3.6).
Now we assume that there exists a (Y,Z) ∈ S ⊗M 2(Tm;N) such that (3.6) holds

a.s. for every ψ ∈ C2(Tm;RL) and t ∈ [0, T ]. Since there exists a countable dense subset
Θ ⊂ C2(Tm;RL) of L2(Tm;RL) under L2 norm, we can find a Lebesgue null set Ξ1 ⊂ Tm
and a P-null set Π ⊂ Ω such that (3.5) holds for every ω /∈ Π, x /∈ Ξ1 and t ∈ [0, T ] ∩ Q,
where Q denotes the collection of all rational numbers.

Note that we have E
[∫ T

0

∫
Tm
|Zxt |2dxdt

]
< ∞ by definition of M 2(Tm;RL). Hence

there exists a Lebesgue null set Ξ2 ⊂ Tm, such that

E

[∫ T

0

|Zxt |2dt

]
<∞, ∀ x /∈ Ξ2.

This, along with (2.8) implies immediately that for every ω /∈ Π and x /∈ Ξ1 ∪ Ξ2,
the function t 7→

∑m
i=1

∫ T
t
Zx,is dBs +

∑m
i=1

1
2

∫ T
t
Ā(Y xs )

(
Zx,is , Zx,is

)
ds−

∫ T
t
f̄ (Y xs , Z

x
s ) ds is

continuous in interval [0, T ]. So for every ω /∈ Π, x /∈ Ξ1 ∪ Ξ2 and t ∈ [0, T ] we can define

Ŷ xt (ω) := lim
s→t;s∈Q

(
h(BT + x)−

m∑
i=1

(∫ T

s

Zx,ir dBr +
1

2

∫ T

s

Ā(Y xr )
(
Zx,ir , Zx,ir

)
dr
)

+

∫ T

s

f̄ (Y xr , Z
x
r ) dr

)
.

Set

Ỹ xt (ω) :=


Y xt (ω), if t ∈ [0, T ] ∩Q, x /∈ Ξ1 ∪ Ξ2, ω /∈ Π,

Ŷ xt (ω), if t ∈ [0, T ] ∩Qc, x /∈ Ξ1 ∪ Ξ2, ω /∈ Π,

0, otherwise.

Then by definition it is easy to verify that (Ỹ x, Zx) satisfies (3.5) for every x /∈ Ξ1 ∪ Ξ2,
ω /∈ Π and t ∈ [0, T ].

Still by definition of Ỹ , we have Y xt (ω) = Ỹ xt (ω) for every ω /∈ Π, t ∈ [0, T ] ∩ Q and
x /∈ Ξ1 ∪ Ξ2. Meanwhile due to Y ∈ S 2(Tm;N) there exists a P-null set Π2 such that
t 7→ Y ·t (ω) is continuous in L2(Tm;RL) for every ω /∈ Π2. This along with the definition
of Ỹ implies immediately that given any ω /∈ Π ∪ Π2 and t ∈ [0, T ] ∩Qc, Y xt (ω) = Ỹ xt (ω)

(= L2-lims→t;s∈Q Y
·
s (ω)) for a.e. x ∈ Tm (the exceptional set for x ∈ Tm may depend on

t). Combining all the properties above we arrive at

sup
t∈[0,T ]

‖Yt(ω)− Ỹt(ω)‖L2(Tm;RL) = 0, ∀ ω /∈ Π ∪Π2.
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Hence Y and Ỹ is the same element in S 2(Tm;N), so we can find an equivalent version
(Ỹ , Z) of (Y,Z) which satisfies (3.5) a.s. for each x /∈ Ξ1 ∪ Ξ2.

3.3 Existence of ∇-martingale with fixed terminal value

In this subsection we will give an application of Theorem 3.4 and 3.6 on the construc-
tion of ∇-martingales, which also illustrates that Definition 3.1 and 3.5 are natural for
the motivation of an N -valued BSDE.

Proposition 3.8. (1) Suppose (Y,Z) is a solution of the N -valued BSDE (3.1). For
every g ∈ C2(N ;R) and t ∈ [0, T ], let

Mg
t := g(Yt)−g(Y0)−

m∑
i=1

1

2

∫ t

0

Hess g(Ys)(Z
i
s, Z

i
s)ds+

∫ t

0

〈∇g(Ys), f(Ys, Zs)〉ds, (3.7)

where Hess denotes the Hessian operator on N associated with the Levi-Civita
connection ∇. Then {Mg

t }t∈[0,T ] is a local martingale.

(2) Suppose (Y,Z) is a solution of the L2(Tm;N)-valued BSDE (3.5). Given some
g ∈ C2(N ;R) and x ∈ Tm we define {Mg,x

t }t∈[0,T ] by the same way of (3.7) with
(Yt, Zt) replaced by (Y xt , Z

x
t ). Then there exists a Lebesgue-null set Ξ ⊂ Tm such

that {Mg,x
t }t∈[0,T ] is a local martingale for every g ∈ C2(N ;R) and x /∈ Ξ.

Proof. We only prove part (1) of desired conclusion. The part (2) could be proved by
applying (3.5) and the same procedures for the proof of (1).

By the same way of (2.7), we extend g to a C2 function ḡ : RL → R with compact
support. Since we could still view (Y,Z) as an RL-valued solution to (3.1), applying Itô
formula to ḡ we obtain that the process {M̄ ḡ

t }t∈[0,T ] defined by

M̄ ḡ
t :=ḡ(Yt)− ḡ(Y0)−

m∑
i=1

1

2

∫ t

0

(
∇̄2ḡ(Ys)

(
Zis, Z

i
s

)
+
〈
∇̄ḡ(Ys), Ā(Ys)(Zs, Zs)

〉 )
ds

+

∫ t

0

〈∇̄ḡ(Ys), f̄(Ys, Zs)〉ds

(3.8)

is a local martingale.
For every p ∈ N , u ∈ TpN , let X, X̄ be arbitrarily fixed smooth vector fields on N and

RL satisfying X(p) = X̄(p) = u, so by (2.2) we have

∇̄2ḡ(p)(u, u) + 〈∇̄ḡ(p), Ā(p)(u, u)〉
= X̄

(
〈∇̄ḡ, X̄〉

)
(p)− 〈∇̄ḡ(p), ∇̄X̄X̄(p)〉+ 〈∇̄ḡ(p), ∇̄X̄X̄(p)−∇XX(p)〉

= X̄
(
〈∇̄ḡ, X̄〉

)
(p)− 〈∇̄ḡ(p),∇XX(p)〉

= X (〈∇g,X〉) (p)− 〈∇g(p),∇XX(p)〉
= Hess g(p)(X(p), X(p)) = Hess g(p)(u, u).

Here in the third step above we have applied the property that 〈∇̄ḡ(p), X̄(p)〉 = 〈∇g(p),

X(p)〉 for every p ∈ N due to (∇̄ḡ(p))T = ∇g(p). Similarly for every p ∈ N and u ∈ Tmp N
(note that f(p, u) ∈ TpN ) we obtain

〈∇̄ḡ(p), f̄(p, u)〉 = 〈∇g(p), f(p, u)〉.

Combining all above properties with the fact that Yt ∈ N a.s. for every t ∈ [0, T ],
Zt ∈ TYtN for dt× P-a.e. (t, ω) ∈ [0, T ]× P into (3.8) yields that M̄ ḡ

t =Mg
t a.s. for every

t ∈ [0, T ]. Therefore we know immediately that Mg
t is a local martingale.
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Recall that we call the adapted process {Xt}t∈[0,T ] a ∇-martingale if it is an N -valued
semi-martingale and for every g ∈ C2(N ;R),

Mg
t := g(Xt)− g(X0)− 1

2

∫ t

0

Hess g(Xs) (dXs, dXs)

is a local martingale. Here (dXt, dXt) denotes the quadratic variation for Xt.
Then taking f ≡ 0, combining Theorem 3.4, Theorem 3.6 and Proposition 3.8 together

we could obtain the following results concerning the existence of ∇-martingale on N

with fixed terminal value (in arbitrary time interval) immediately.

Corollary 3.5. Suppose h ∈ C1(Tm;N) and T > 0, then the following statements hold.

(1) For a.e. x ∈ Tm, there exists a ∇-martingale {Yt}t∈[0,T ] with terminal value
YT = h(BT + x).

(2) If m = 1, then there exists a ∇-martingale {Yt}t∈[0,T ] with terminal value YT =

h(BT ).

4 The proof of Theorem 3.2 and Theorem 3.4

Proof of Theorem 3.2. By Definition 3.1, in order to verify that (Y,Z) is a solution of
the N -valued BSDE (3.1), it remains to prove that Yt ∈ N a.s. for every t ∈ [0, T ] and
Zit ∈ TYtN for dt× P-a.e. (t, ω) ∈ [0, T ]× Ω and every 1 6 i 6 m.

Let δ0 be the positive constant introduced in subsection 2.1 such that the nearest
projection map PN : B(N, 3δ0)→ N and square of distance function dist2

N : B(N, 3δ0)→
R+ are smooth. Choosing a truncation function χ ∈ C∞b (R) satisfying that χ′ > 0 and

χ(s) =

{
s, s 6 δ2

0 ,

4δ2
0 , s > 4δ2

0 .

We define G : RL → R+ as follow

G(p) := χ
(

dist2
N (p)

)
, p ∈ RL2 . (4.1)

By the choice of δ0 and χ we have G(p) = 4δ2
0 for every p ∈ RL with distN (p) > 2δ0.

Note that G(p) = dist2
N (p) = |p − PN (p)|2 when p ∈ B(N, δ0), for every p ∈ B(N, δ0),

u = (u1, · · · , uL) ∈ RL it holds that

∇̄2G(p)(u, u) =2

L∑
k=1

(
L∑
i=1

ui

(
δik −

∂P kN
∂pi

(p)

))2

− 2

L∑
i,j,k=1

(pk − P kN (p))
∂2P kN
∂pi∂pj

(p)uiuj

> −2

L∑
i,j,k=1

(pk − P kN (p))
∂2P kN
∂pi∂pj

(p)uiuj ,

where δij denotes the Kronecker delta function (i.e. δij = 0 if i 6= j and δij = 1 when i = j),
P kN (p) means the k-th component of PN (p), thus PN (p) =

(
P 1
N (p), · · ·PLN (p)

)
. According

to definition of Ā in (2.5) we have for every p ∈ B(N, δ0), u = (u1, · · · , uL) ∈ RL,

〈
∇̄G(p), Ā(p)(u, u)

〉
= 2

L∑
i,j,k=1

(pk − P kN (p))
∂2P kN
∂pi∂pj

(PN (p))uiuj

− 2

L∑
i,j,k,l=1

(pk − P kN (p))
∂P kN
∂pl

(p)
∂2P lN
∂pi∂pj

(PN (p))uiuj

= 2

L∑
i,j,k=1

(pk − P kN (p))
∂2P kN
∂pi∂pj

(PN (p))uiuj .
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Here in the last step above we have used the following equality

L∑
k=1

(pk − P kN (p))
∂P kN
∂pl

(p) = 0,

which is due to the property ∂PN
∂pl

(p) ∈ TpN and p − PN (p) ∈ T⊥p N . Combining above
estimates together yields that

∇̄2G(p)(u, u) +
〈
∇̄G(p), Ā(p)(u, u)

〉
> 2

L∑
i,j,k=1

(pk − P kN (p))

(
∂2P kN
∂pi∂pj

(PN (p))− ∂2P kN
∂pi∂pj

(p)

)
uiuj

> −c2dist2
N (p)|u|2 = −c2G(p)|u|2, p ∈ B(N, δ0), u = (u1, · · · , uL) ∈ RL.

Meanwhile for every p ∈ B(N, δ0) and u = (u1, · · · , uL) ∈ RL we have〈
∇̄G(p), f̄(p, u)

〉
= 2

L∑
k=1

(pk − P kN (p))f̄k(p, u)− 2

L∑
k,l=1

(pk − P kN (p))
∂P kN (p)

∂pl
(p)f̄ l(p, u) = 0,

where the last step is due to the fact that ∂PN
∂pl

(p) ∈ TpN , f̄(p, u) ∈ TpN and p− PN (p) ∈
T⊥p N .

By all these estimates we arrive at

∇̄2G(p)(u, u) +
〈
∇̄G(p), Ā(p)(u, u)− f̄(p, u)

〉
> −c2G(p)|u|2, p ∈ B(N, δ0), u ∈ RL.

Still by the definition of G, Ā and f̄ we know that for every p ∈ RL/B(N, δ0) and u ∈ RL,

∇̄2G(p)(u, u) +
〈
∇̄G(p), Ā(p)(u, u)− f̄(p, u)

〉
> −c3(1 + |u|2) > −c4G(p)(1 + |u|2),

where in the second inequality above we have used the fact that G(p) > δ2
0 for every

p ∈ RL/B(N, δ0).
Combining above two estimates yields that

∇̄2G(p)(u, u) +
〈
∇̄G(p), Ā(p)(u, u)− f̄(p, u)

〉
> −c5G(p)(1 + |u|2), ∀ p, u ∈ RL. (4.2)

Hence by (3.1), (4.2) and applying Itô’s formula we get for every t ∈ [0, T ],

0 = G(ξ) = G(Yt) +

m∑
i=1

∫ T

t

〈∇̄G(Ys), Z
i
s〉dBis

+

m∑
i=1

∫ T

t

1

2

(
∇̄2G(Ys)(Z

i
s, Z

i
s) +

〈
∇̄G(Ys), Ā(Ys)(Z

i
s, Z

i
s)− 2f̄(Ys, Zs)

〉 )
ds

> G(Yt) +

m∑
i=1

∫ T

t

〈∇̄G(Ys), Z
i
s〉dBis −

c5
2

∫ T

t

G(Ys)(1 + |Zs|2)ds

> G(Yt) +

m∑
i=1

∫ T

t

〈∇̄G(Ys), Z
i
s〉dBis − c6

∫ T

t

G(Ys)ds.

Here we have applied (3.2) and the fact that G(ξ) = 0 a.s. (since ξ ∈ N a.s.). Taking the
expectation in above inequality we arrive at

E[G(Yt)] 6 c6

∫ T

t

E[G(Ys)]ds, ∀ t ∈ [0, T ].
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So by Gronwall’s inequality we obtain E[G(Yt)] = 0 which implies G(Yt) = 0 and Yt ∈ N
a.s. for every t ∈ [0, T ].

As explained in the proof of [24, Theorem 3.1] (which is due to the original idea
in [32]), it holds that Yt ∈ D1,2(N) and we can find an equivalent version of Zit and
DYt(ω)(t) such that

Zit(ω) = DYt(ω)(t) · ei, dt× P− a.e. (t, ω) ∈ [0, T ]× Ω, 1 6 i 6 m,

where ei = (0, · · · , 1︸︷︷︸
i th

, · · · , 0), 1 6 i 6 m is the standard orthonormal basis of Rm.

So according to [36, Theorem 3.1] (concerning the characterization of D1,2(RL)), we
know that Yt is σ(B·) measurable and for every t, r ∈ [0, T ]∫ r

0

(
DYt(s) · ei

)
ds = (P) lim

ε→0

Yt(B· + εeri (·))− Yt(B·)
ε

, a.s.,

where (P) limε→0 denotes limit under the convergence in probability and eri (t) := (t∧r)ei.
Based on this and the property that Yt ∈ N a.s. we deduce that for every t, r ∈ [0, T ],∫ r

0

(
DYt(s) · ei

)
ds ∈ TYtN, a.s..

Therefore we can find a version of Zit such that

Zit(ω) = DYt(ω)(t) · ei ∈ TYtN, dt× P− a.e. (t, ω) ∈ [0, T ]× Ω, 1 6 i 6 m.

Now we have proved the desired conclusion.

Proof of Theorem 3.4. Now we assume that m = 1. In this proof we use the notation
∂x, ∂2

xx to represent the first order and second order derivative with respect to x ∈ T1

respectively.
According to standard theory of quasi-linear parabolic equation (see e.g. [27, Ap-

pendix A] or [25, Chapter V and VII]), there exists a v ∈ C1([0, T1)×T1;RL)∩C2((0, T1)×
T1;RL) for some (maximal time) T1 > 0 which satisfies the following equation,{

∂tv(t, x)− 1
2∂

2
xxv(t, x) = − 1

2 Ā (v(t, x)) (∂xv(t, x), ∂xv(t, x)) + f̄ (v(t, x), ∂xv(t, x)) ,

v(0, x) = h(x), t ∈ (0, T1).
(4.3)

By the same arguments in the proof of Theorem 3.2 we will deduce that v(t, ·) ∈ N for
every t ∈ [0, T1). So we can replace the terms Ā, f̄ by A and f in (4.3) respectively. At
the same time, by (4.3) we have for every t ∈ (0, T1),

∂t|∂xv|2 = 2 〈∂x∂tv, ∂xv〉

= 2

〈
∂x

(
1

2
∂2
xxv −

1

2
A(v) (∂xv, ∂xv) + f(v, ∂xv)

)
, ∂xv

〉
=
〈
∂3
xxxv, ∂xv

〉
− 〈∂x (A(v) (∂xv, ∂xv)) , ∂xv〉+ 2 〈∂x (f(v, ∂xv)) , ∂xv〉

=: I1 + I2 + I3.

By direct computation we obtain

I1 =
1

2
∂2
xx

(
|∂xv|2

)
− |∂2

xxv|2.

Since 〈A(v) (∂xv, ∂xv) , ∂xv〉 = 0, we have

I2 = −∂x (〈A(v) (∂xv, ∂xv) , ∂xv〉) +
〈
A(v) (∂xv, ∂xv) , ∂2

xxv
〉

=
〈
A(v) (∂xv, ∂xv) , ∂2

xxv
〉
.
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Note that by (4.3) there is an orthogonal decomposition for ∂2
xxv as follows

∂2
xxv = (∂2

xxv)T + (∂2
xxv)⊥,

(∂2
xxv)T := 2∂tv − 2f(v, ∂xv) ∈ TvN,

(∂2
xxv)⊥ := A(v) (∂xv, ∂xv) ∈ T⊥v N.

So we obtain

I1 + I2 =
1

2
∂2
xx

(
|∂xv|2

)
− |(∂2

xxv)T |2.

By (2.6) we have

|I3| = 2 |〈∇∂xv (f(v, ∂xv)) , ∂xv〉|
6 2 |∇∂xv (f(v, ∂xv))| |∂xv|

6 2
(
|∇pf(v, ∂xv)| |∂xv|+ |∇uf(v, ∂xv)| |∇∂xv∂xv|

)
|∂xv|

6 c1
(
|∂xv|+ |(∂2

xxv)T |
)
|∂xv| 6 |(∂2

xxv)T |2 + c2|∂xv|2.

Here the fourth step above follows from the fact ∇∂xv∂xv =
(
∇̄∂xv∂xv

)T
= (∂2

xxv)T and
the last step is due to Young’s inequality.

Combining all above estimates together for I1, I2 and I3 we arrive at

∂t|∂xv|2 6
1

2
∂2
xx

(
|∂xv|2

)
+ c2|∂xv|2, ∀ t ∈ (0, T1).

So for e(t, x) := e−c2t|∂xv(t, x)|2 it holds,

∂te(t, x) 6
1

2
∂2
xxe(t, x), ∀ t ∈ (0, T1).

Applying Itô’s formula to e(t − s,Bs + x) directly we obtain for every δ ∈ (0, T1) and
t ∈ (δ, T1),

e(t, x) = e−c2t|∂xv(t, x)|2 6 E[e(0, Bt + x)] =

∫
T1

ρ(0,x)(t, y)|∂yh(y)|2dy

6 c3δ
−1/2

∫
T1

|∂yh(y)|2dy,

where ρ(0,x)(t, y) is the heat kernel defined by (5.4) below. This implies immediately that

sup
(t,x)∈[δ,T1)×T1

|∂xv(t, x)|2 6 c3e
c2T1δ−1/2

∫
T1

|∂yh(y)|2dy. (4.4)

So we have limt↑T1 supx∈T1 |∂xv(t, x)|2 < ∞, hence by standard theory of quasi-linear
parabolic equation, we could extend the solution v of (4.3) to time interval (0, T2] for
some T2 > T1. By the same arguments above we can prove that (4.4) holds with T1

replaced by T2. Therefore repeating this procedure again, we can extend the solution v
of (4.3) to time interval [0, T ] for any T > 0.

Then for any fixed T > 0, suppose v ∈ C1([0, T ] × T1;N) ∩ C2((0, T ] × T1;N) is the
solution of (4.3) constructed above in time interval [0, T ]. We define Yt = v(T − t, Bt)
and Zt := ∂xv(T − t, Bt) for t ∈ [0, T ], applying Itô’s formula directly we can verify that
(Y,Z) is the unique solution to the N -valued BSDE (3.1) which satisfies (3.2) for some
C2 > 0.
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5 The proof of Theorem 3.6

In this section we will partly use the idea of [9, 35] (with some essential modification
for the appearance of term f̄ ) to construct a solution to the L2(Tm;N)-valued BSDE (3.5).

Through this section, let G : RL → R be defined by (4.1) and we define g : RL → RL

by

g(p) := ∇̄G(p), ∀ p ∈ RL.

For any ε > 0, based on linear growth conditions (2.8) and the fact g ∈ C∞b (RL;RL),
by standard theory of quasi-linear parabolic equation (see e.g. [25, Chapter V and
VII], or [27, Appendix A]), there exists a unique solution vε : [0, T ] × Tm → RL with
vε ∈ C2((0, T ]×Tm;RL) ∩ C1([0, T ]×Tm;RL) to following equation{

∂tvε(t, x)− 1
2∆xvε(t, x) = − 1

2εg(vε(t, x)) + f̄(vε(t, x),∇xvε(t, x)),

vε(0, x) = h(x).
(5.1)

Inspired by [9, 35], we are going to give several estimates for vε.

Lemma 5.1. Suppose that vε is the solution to (5.1), then for every ε > 0, it holds that∫ T

0

∫
Tm
|∂tvε(t, x)|2dxdt+ sup

t∈[0,T ]

(∫
Tm
|∇xvε(t, x)|2dx+

1

ε

∫
Tm

G(vε(t, x))dx
)

6 eC4T

(
C4T +

∫
Tm
|∇xh(x)|2dx

)
,

(5.2)

where C4 > 0 is a positive constant independent of ε and T .

Proof. We multiply both side of (5.1) with ∂tvε to obtain that for every s ∈ [0, T ],∫ s

0

∫
Tm
|∂tvε(t, x)|2dxdt =

1

2

∫ s

0

∫
Tm
〈∂tvε(t, x),∆xvε(t, x)〉dxdt

− 1

2ε

∫ s

0

∫
Tm
〈∇̄G(vε(t, x)), ∂tvε(t, x)〉dxdt

+

∫ s

0

∫
Tm
〈f̄
(
vε(t, x),∇vε(t, x)

)
, ∂tvε(t, x)〉dxdt

=: Iε1 + Iε2 + Iε3 .

Since vε ∈ C2((0, T ]×Tm;RL) ∩ C1([0, T ]×Tm;RL), we obtain

Iε1 = −1

2

∫ s

0

∫
Tm
〈∂t∇xvε(t, x),∇xvε(t, x)〉dxdt

= −1

4

∫ s

0

∂t

(∫
Tm
|∇xvε(t, x)|2dx

)
dt

=
1

4

∫
Tm
|∇xh(x)|2dx− 1

4

∫
Tm
|∇xvε(s, x)|2dx.

Note that 〈∇̄G(vε(t, x)), ∂tvε(t, x)〉 = ∂t
(
G(vε(t, x))

)
, it holds

Iε2 = − 1

2ε

∫ s

0

∂t

(∫
Tm

G(vε(t, x))dx
)
dt

= − 1

2ε

(∫
Tm

G(vε(s, x))dx−
∫
Tm

G(h(x))dx
)

= − 1

2ε

∫
Tm

G(vε(s, x))dx.
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Here the last equality is due to the fact that G(p) = 0 for every p ∈ N and h(x) ∈ N for
a.e. x ∈ Tm. Meanwhile by (2.8) and Young’s inequality we have for every s ∈ [0, T ],

|Iε3 | 6
∫ s

0

∫
Tm

(1

2
|∂tvε(t, x)|2 + 8|f̄

(
vε(t, x),∇xvε(t, x)

)
|2
)
dxdt

6
1

2

∫ s

0

∫
Tm
|∂tvε(t, x)|2dxdt+ c1

∫ s

0

∫
Tm

(
1 + |∇xvε(t, x)|2

)
dxdt

6
1

2

∫ s

0

∫
Tm
|∂tvε(t, x)|2dxdt+ c1

∫ s

0

∫
Tm
|∇xvε(t, x)|2dxdt+ c2T,

where the positive constants c1, c2 are independent of ε. Therefore combining all above
estimates together yields that for every s ∈ [0, T ]∫ s

0

∫
Tm
|∂tvε(t, x)|2dxdt+

(1

2

∫
Tm
|∇xvε(s, x)|2dx+

1

ε

∫
Tm

G(vε(s, x))dx
)

6
1

2

∫
Tm
|∇xh(x)|2dx+ 2c2T + 2c1

∫ s

0

∫
Tm
|∇xvε(t, x)|2dxdt.

Hence applying Gronwall lemma we can prove (5.2).

Given a point z0 = (t0, x0) ∈ [0, T ]×Tm, we define

QR(z0) := {z = (t, x) ∈ [0, T ]×Tm;x ∈ BTm(x0, R), |t− t0| < R2}, 0 < R < 1/2,

TR(z0) := {z = (t, x) ∈ [0, T ]×Tm; t0 − 4R2 < t < t0 −R2}, 0 < R <
√
t0/2.

(5.3)

Also for any z0 = (t0, x0) ∈ [0, T ]×Tm, 0 < R < min(1/2,
√
t0/2), let

ρz0(t, x) :=
1

(2π|t0 − t|)m/2
exp

(
− |x− x0|2

2|t0 − t|)

)
, t ∈ [0, T ], x ∈ Tm, (5.4)

Φε(R) :=R2

∫
Tm

(1

2
|∇xvε(t0 −R2/2, x)|2 +

1

ε
G(vε(t0 −R2/2, x))

)
ρz0(t0 −R2/2, x)ϕ2

x0
(x)dx,

=R2

∫
Rm

(1

2
|∇xvε(t0 −R2/2, x)|2 +

1

ε
G(vε(t0 −R2/2, x))

)
ρz0(t0 −R2/2, x)ϕ2

x0
(x)dx,

(5.5)

Ψε(R) :=

∫∫
TR(z0)

(1

2
|∇xvε(t, x)|2 +

1

ε
G(vε(t, x))

)
ρz0(t, x)ϕ2

x0
(x)dxdt

=

∫ t0−R2

t0−4R2

∫
Tm

(1

2
|∇xvε(t, x)|2 +

1

ε
G(vε(t, x))

)
ρz0(t, x)ϕ2

x0
(x)dxdt

=

∫ t0−R2

t0−4R2

∫
Rm

(1

2
|∇xvε(t, x)|2 +

1

ε
G(vε(t, x))

)
ρz0(t, x)ϕ2

x0
(x)dxdt.

(5.6)

Here ϕx0
∈ C∞(Tm;R) is a cut-off function which satisfies that ϕx0

(x) = 1 for every
x ∈ BTm(x0, 1/4), ϕx0

(x) = 0 for every x ∈ Tm/BTm(x0, 1/2) and supx0∈Tm ‖ϕx0
‖∞ +

‖∇xϕx0
‖∞ < ∞, and in the last equality of (5.5) and (5.6) we extend ϕx0

to a function
defined on Rm with compact supports.

Lemma 5.2. For any fixed z0 = (t0, x0) ∈ [0, T ]×Tm, let Φε(R), Ψε(R) be the functions
defined by (5.6), then for every 0 < R 6 R0 6 min(1/2,

√
t0/2),

Φε(R) 6 eC5(R0−R)Φε(R0) + C5(R0 −R), (5.7)

Ψε(R) 6 eC5(R0−R)Ψε(R0) + C5(R0 −R), (5.8)

where C5 is a positive constant independent of ε and z0 = (t0, x0).
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Proof. In the proof, all the constants ci are independent of ε, z0 and R. For every
1 < t < 4 and 0 < R 6 R0 6 min(1/2,

√
t0/2), set vRε (t, x) := vε(t0−R2t, x0 +Rx). By (5.1)

we have immediately that

∂tv
R
ε (t, x) +

1

2
∆xv

R
ε (t, x) =

R2

2ε
g(vRε (t, x))− f̄R(vRε (t, x),∇xvRε (t, x)), (5.9)

where f̄R : RL ×RmL → RL is defined by f̄R(p, u) = R2f̄(p,R−1u).
Also note that ρz0(t0 −R2t, x0 +Rx) = R−mρ(0,0)(t, x), applying integration by parts

formula we obtain

Ψε(R) = R2+m

∫ 4

1

∫
Rm

(1

2
|∇xvε(t0 −R2t, x0 +Rx)|2 +

1

ε
G(vε(t0 −R2t, x0 +Rx))

)
× ρz0(t0 −R2t, x0 +Rx)ϕ2

x0
(x0 +Rx)dxdt

=

∫ 4

1

∫
Rm

1

2
|∇xvRε (t, x)|2ρ(0,0)(t, x)ϕ2

x0
(x0 +Rx)dxdt

+

∫ 4

1

∫
Rm

R2

ε
G(vRε (t, x))ρ(0,0)(t, x)ϕ2

x0
(x0 +Rx)dxdt

=: Iε,R1 + Iε,R2 .

Meanwhile according to integration by parts formula we have,

∂

∂R
Iε,R1 = −

∫ 4

1

∫
Rm

〈
∆xv

R
ε (t, x),

∂vRε (t, x)

∂R

〉
ρ(0,0)(t, x)ϕ2

x0
(x0 +Rx)dxdt

−
∫ 4

1

∫
Rm

〈
∇xvRε (t, x) · ∇x

(
ρ(0,0)(t, x)ϕ2

x0
(x0 +Rx)

)
,
∂vRε (t, x)

∂R

〉
dxdt

+

∫ 4

1

∫
Rm
|∇xvRε (t, x)|2ϕx0

(x0 +Rx)ρ(0,0)(t, x)
(
∇xϕx0

(x0 +Rx) · x
)
dxdt.

(5.10)

Note that

∂

∂R
vRε (t, x) = −2tR∂tvε(t0 − tR2, x0 +Rx) +∇xvε(t0 − tR2, x0 +Rx) · x

=
1

R

(
2t∂tv

R
ε (t, x) +∇xvRε (t, x) · x

)
,

and ∇xρ(0,0)(t, x) = −xt ρ(0,0)(t, x), putting these estimates into (5.10) we arrive at

∂

∂R
Iε,R1

= −
∫ 4

1

∫
Rm

1

R

〈
∆xv

R
ε (t, x)− x

t
· ∇xvRε (t, x), 2t∂tv

R
ε (t, x) +∇xvRε (t, x) · x

〉
ΘR(t, x)dxdt

− 2

∫ 4

1

∫
Rm

〈
∇xvRε (t, x) · ∇xϕx0

(x0 +Rx), 2t∂tv
R
ε (t, x) +∇xvRε (t, x) · x

〉
ΛR(t, x)dxdt

+

∫ 4

1

∫
Rm
|∇xvRε (t, x)|2ΛR(t, x)

(
∇xϕx0

(x0 +Rx) · x
)
dxdt,

where ΘR(t, x) := ρ(0,0)(t, x)ϕ2
x0

(x0 + Rx), ΛR(t, x) := ρ(0,0)(t, x)ϕx0(x0 + Rx). By the
same way we obtain

∂

∂R
Iε,R2 =

∫ 4

1

∫
Rm

1

R

〈R2

ε
g
(
vRε (t, x)

)
, 2t∂tv

R
ε (t, x) +∇xvRε (t, x) · x

〉
ΘR(t, x)dxdt

+ 2

∫ 4

1

∫
Rm

R2

ε
G
(
vRε (t, x)

)
ΛR(t, x)

(
∇xϕx0

(x0 +Rx) · x
)
dxdt

+

∫ 4

1

∫
Rm

2R

ε
G
(
vRε (t, x)

)
ΘR(t, x)dxdt.
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Combining all above estimates for ∂
∂RI

ε,R
1 , ∂

∂RI
ε,R
2 together and applying (5.9) yields that

∂

∂R
Ψε(R) =

∫ 4

1

∫
Rm

1

tR

∣∣∣2t∂tvRε (t, x) +∇xvRε (t, x) · x
∣∣∣2ΘR(t, x)dxdt

+

∫ 4

1

∫
Rm

2

R

〈
f̄R
(
vRε (t, x),∇xvRε (t, x)

)
, 2t∂tv

R
ε (t, x) +∇xvRε (t, x) · x

〉
×ΘR(t, x)dxdt

− 2

∫ 4

1

∫
Rm

〈
∇xvRε (t, x) · ∇xϕx0

(x0 +Rx), 2t∂tv
R
ε (t, x) +∇xvRε (t, x) · x

〉
× ΛR(t, x)dxdt

+

∫ 4

1

∫
Rm

(
|∇xvRε (t, x)|2 +

2R2

ε
G
(
vRε (t, x)

))
ΛR(t, x)

(
∇xϕx0(x0 +Rx) · x

)
dxdt

+

∫ 4

1

∫
Rm

2R

ε
G
(
vRε (t, x)

)
ΘR(t, x)dxdt

=:

5∑
i=1

Jεi (R) >
4∑
i=1

Jεi (R).

Since |f̄R(p, u)| = R2|f̄(p,R−1u)| 6 c1R(R + |u|), according to Young’s inequality we
obtain

|Jε2 (R)| 6 1

4
Jε1 (R) + c2

∫ 4

1

∫
Rm

t(R3 +R|∇xvRε (t, x)|2)ΘR(t, x)dxdt

6
1

4
Jε1 (R) + c3 + c4

∫ 4

1

∫
Rm

R|∇xvRε (t, x)|2ΘR(t, x)dxdt

=
1

4
Jε1 (R) + c3 + c4

∫ t0−R2

t0−4R2

∫
Rm

R|∇xvε(t, x)|2ρz0(t, x)ϕ2
x0

(x)dxdt

6
1

4
Jε1 (R) + c4Ψε(R) + c3,

where in the second inequality above we have applied the property∫ 4

1

∫
Rm

R3ΘR(t, x)dxdt 6 R3‖ϕx0
‖2∞
∫ 4

1

∫
Rm

ρ(0,0)(t, x)dxdt 6 c5R
3 6 c5

(
1

2

)3

.

Still applying Young’s inequality we get

|Jε3 (R)|

6
1

4
Jε1 (R) + c6

∫ 4

1

∫
Rm

tR
∣∣∣∇xvRε (t, x) · ∇xϕx0

(x0 +Rx)
∣∣∣2ρ(0,0)(t, x)dxdt

=
1

4
Jε1 (R) + c6

∫ 4

1

∫
B(x0,1/2)/B(x0,1/4)

tR3−m
∣∣∣∇xvε(t0 − tR2, x) · ∇xϕx0

(x)
∣∣∣2

× ρ(0,0)

(
t,
x− x0

R

)
dxdt

6
1

4
Jε1 (R) + c7 sup

t∈[0,T ]

∫
Tm
|∇xvε(t, x)|2dx 6

1

4
Jε1 (R) + c8.

Here the second step from the change of variable and the fact that ∇xϕx0(x) 6= 0 only if
x ∈ B(x0, 1/2)/B(x0, 1/4) (note that we still denote the extension of ϕx0 to a function on
Rm with compact support by ϕx0), in the third step we have applied the property that

sup
R∈(0,1/2),t∈[1,4]

sup
x∈B(x0,1/2)/B(x0,1/4)

R3−mρ(0,0)

(
t,
x− x0

R

)
6 c9 sup

R∈(0,1/2)

R3−me−
1

128R2 6 c10,
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and ∫
B(x0,1/2)

|∇xvε(t, x)|2dx 6
∫
Tm
|∇xvε(t, x)|2dx,

the last step is due to (5.2).
Handling Jε4 (R) by the same way of that for Jε3 (R) we arrive at

|Jε4 (R)| 6 c11 sup
t∈[0,T ]

(∫
Tm
|∇xvε(t, x)|2dx+

1

ε

∫
Tm

G
(
vε(t, x)

)
dx
)
6 c12.

Combining all above estimates for Jεi (R), i = 1, 2, 3, 4 together yields that

∂

∂R
Ψε(R) >

1

2
Jε1 (R)− c4Ψε(R)− c13,

> −c4Ψε(R)− c13, ∀ 0 < R 6 R0.

Applying Gronwall’s lemma we obtain (5.8) immediately.
The proof for (5.7) is similar with that for (5.8), so we omit the details here.

Lemma 5.3. Given a ε ∈ (0, 1) and R > 0, suppose that vε,R ∈ C2((0, T ] × Tm;RL)

satisfies the following equation

∂tvε,R(t, x)− 1

2
∆xvε,R(t, x) = −R

2

2ε
g(vε,R(t, x)) + f̄R(vε,R(t, x),∇xvε,R(t, x)), (5.11)

where f̄R(p, u) = R2f̄(p,R−1u). Set e(vε,R)(t, x) := 1
2 |∇xvε,R(t, x)|2 + R2

ε G
(
vε,R(t, x)

)
.

Then there exists a positive constant C6 > 0 such that for every ε ∈ (0, 1) and R > 0,

∂te(vε,R)− 1

2
∆xe(vε,R) 6 C6e(vε,R)

(
R2 + e(vε,R)

)
, ∀(t, x) ∈ (0, T ]×Tm. (5.12)

Proof. By (2.3) (see e.g. [7, Section III.6]) we know that

∇̄distN (p) ∈ T⊥PN (p)N, ∀ p ∈ B(N, 3δ0), (5.13)∣∣∣∇̄(dist2
N

)
(p)
∣∣∣2 = 4dist2

N (p), ∀ p ∈ B(N, 3δ0). (5.14)

Note that G(u) = χ
(
dist2

N (p)
)
, by direct computation we have

R2

ε

(
∂t −

1

2
∆x

)
G (vε,R)

=
R2

ε
χ′
(
dist2

N (vε,R)
)〈
∇̄
(
dist2

N

)
(vε,R), (∂t −

1

2
∆x)vε,R

〉
− R2

2ε

〈
∇x
(
χ′
(
dist2

N (vε,R)
)
∇̄
(
dist2

N

)
(vε,R)

)
· ∇xvε,R

〉
=: Iε,R1 + Iε,R2

and (
∂t −

1

2
∆x

)
1

2
|∇xvε,R|2 =

〈
∇x
(
∂tvε,R −

1

2
∆xvε,R

)
· ∇xvε,R

〉
− 1

2
|∇2

xvε,R|2

=: Iε,R3 − 1

2
|∇2

xvε,R|2.

Here we use the notation to 〈·〉 to denote the total inner product for all the components
in Rm and RL. (For example,

〈
∇x
(
∂tvε,R − 1

2∆xvε,R
)
· ∇xvε,R

〉
=
∑m
i=1

∑L
k=1 ∂xi

(
∂tv

k
ε,R

− 1
2∆xv

k
ε,R

)
∂xiv

k
ε,R)
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According to (5.14) and (5.11) we find that

Iε,R1 = −R
4

2ε2

∣∣χ′ (dist2
N (vε,R)

)∣∣2 ∣∣∇̄ (dist2
N

)
(vε,R)

∣∣2
+
R2

ε
χ′
(
dist2

N (vε,R)
) 〈
f̄R (vε,R,∇xvε,R) , ∇̄

(
dist2

N

)
(vε,R)

〉
= −2R4

ε2

∣∣χ′ (dist2
N

)
(vε,R)

∣∣2 dist2
N (vε,R) .

Here in the last step we have used the property that〈
f̄R(p, u), ∇̄distN (p)

〉
= 0, ∀ p ∈ B(N, 3δ0), u ∈ RmL,

which is due to the fact that f̄R(p, u) ∈ TPN (p)N (see the definition (2.7) of f̄ ) and
∇̄
(
dist2

N

)
(p) ∈ T⊥PN (p)N .

Note that for every p ∈ B(N, 3δ0), distN (p)2 = |p − PN (p)|2, hence for every p ∈
B(N, 3δ0),

∂2dist2
N

∂pi∂pj
(p) = 2

L∑
k=1

((
δik −

∂P kN
∂pi

(p)

)(
δjk −

∂P kN
∂pj

(p)

)
−
(
pk − P kN (p)

) ∂2P kN
∂pi∂pj

(p)

)
.

Based on this we obtain that when distN (vε) 6 2δ0,〈
∇x
(
∇̄
(
dist2

N

)
(vε,R)

)
· ∇xvε,R

〉
=

L∑
i,j=1

m∑
l=1

∂2dist2
N

∂pi∂pj
(vε,R)

∂viε,R
∂xl

∂vjε,R
∂xl

= 2

L∑
k=1

m∑
l=1

(
L∑
i=1

∂viε,R
∂xl

(
δik −

∂P kN
∂pi

(vε,R)

))2

− 2

L∑
i,j,k=1

m∑
l=1

((
vkε,R − P kN (vε,R)

) ∂2P kN
∂pi∂pj

(vε,R)

)
∂viε,R
∂xl

∂vjε,R
∂xl

> −c1distN (vε,R)|∇xvε,R|2,

where in the last step we have used the fact |vkε,R − P kN (vε,R)| 6 distN (vε,R) and

sup
p∈B(N,2δ0)

∣∣∣ ∂2P kN
∂pi∂pj

(p)
∣∣∣ 6 c2.

This along with the fact χ′ > 0 yields that when distN (vε,R) 6 2δ0,

Iε,R2 6
c1R

2

2ε
χ′
(
dist2

N (vε,R)
)

distN (vε,R)|∇xvε,R|2

+
R2

2ε

∣∣χ′′ (dist2
N (vε,R)

)∣∣ ∣∣∇̄(dist2
N )(vε,R)

∣∣2 |∇xvε,R|2
6
R4

2ε2

∣∣χ′ (dist2
N (vε,R)

)∣∣2 dist2
N (vε,R)

+
R4

ε2

∣∣χ′′ (dist2
N (vε,R)

)∣∣2 dist4
N (vε,R)1{distN (vε,R)>δ0} + c3|∇xvε,R|4

6
R4

2ε2

∣∣χ′ (dist2
N (vε)

)∣∣2 dist2
N (vε,R) +

c4R
4

ε2
G2 (vε,R) + c3|∇xvε,R|4

6
R4

2ε2

∣∣χ′ (dist2
N (vε,R)

)∣∣2 dist2
N (vε,R) + c5e(vε,R)2.

EJP 26 (2021), paper 85.
Page 21/31

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP649
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


BSDE on a Riemannian manifold

Here second inequality follows from Young’s inequality and the fact χ′′(s) 6= 0 only when
s > δ2

0 , in the third inequality we have applied the property that∣∣χ′′ (dist2
N (vε,R)

)∣∣2 dist4
N (vε,R)1{distN (vε,R)>δ0}

6 c61{distN (vε,R)>δ0} 6
c6G

2 (vε,R)

δ4
0

1{distN (vε,R)>δ0} 6 c7G
2 (vε,R) .

By (5.11) again we have

Iε,R3 = Iε,R2 +
〈
∇x
(
f̄R (vε,R,∇xvε,R)

)
· ∇xvε,R

〉
.

According to (2.8) we obtain immediately that〈
∇x
(
f̄R (vε,R,∇xvε,R)

)
· ∇xvε,R

〉
6 c8

(
R2|∇xvε,R|2 +R|∇xvε,R|3 +R|∇2

xvε,R||∇xvε,R|
)

6
1

2
|∇2

xvε,R|2 + c9
(
R2|∇xvε,R|2 + |∇xvε,R|4

)
6

1

2
|∇2

xvε,R|2 + c10e(vε,R)
(
R2 + e(vε,R)

)
,

where in the second inequality above we have used Young’s inequality.
Combining all above estimates for Iε,R1 , Iε,R2 , Iε,R3 together we can prove the desired

conclusion (5.12).

Remark 5.4. Due to the appearance of term f̄ , the solution vε to (5.1) is no longer
scaling invariant. Therefore compared with the method in [9] and [35], in Lemma 5.2
and Lemma 5.3 above we could not only consider the situation for R = 1.

Lemma 5.5. Suppose that Ψε(R) is defined by (5.6). There exist positive constants
θ0 and R0 ∈ (0, 1/2) such that if for some (t0, x0) ∈ [0, T ] × Tm, R < min{R0,

√
t0/2},

ε ∈ (0, 1),

Ψε(R) =

∫∫
TR(z0)

(1

2
|∇xvε(t, x)|2 +

1

ε
G(vε(t, x))

)
ρz0(t, x)ϕ2

x0
(x)dxdt < θ0, (5.15)

then we have

sup
(t,x)∈QκR(z0)

(
|∇vε(t, x)|2 +

1

ε
G (vε(t, x))

)
6

C7

κ2R2
. (5.16)

Here κ is a positive constant depending only on E0 :=
∫
Tm
|∇xh(x)|2dx, R (but indepen-

dent of ε), and C7 is a positive constant independent of ε and R.

Proof. The proof is almost the same as that of [9, Lemma 2.4] or [35, Theorem 5.1],
the only difference here is that we have to use the equation (5.1) which is not scaling
invariant. For convenience of readers we also give the details here.

Set e(vε) := 1
2 |∇xvε|

2 + 1
εG (vε). Let r1 := κR for some positive constant κ ∈ (0, 1/2)

to be determined later. In the proof we write Qr(z0) for Qr with every r > 0 for simplicity.
Then we find an r0 ∈ [0, r1] such that

sup
06r6r1

{
(r1 − r)2 sup

(t,x)∈Qr
e(vε)(t, x)

}
= (r1 − r0)2 sup

(t,x)∈Qr0
e(vε)(t, x). (5.17)

Moreover, there exists a z1 = (t1, x1) ∈ Qr0 such that

sup
(t,x)∈Qr0

e(vε)(t, x) = e(vε)(t1, x1) =: e0.
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Let s0 := 1
2 (r1 − r0), it is easy to see that Qs0(z1) ⊂ Qr0+s0 . Hence by (5.17) we have

sup
(t,x)∈Qs0 (z1)

e(vε)(t, x) 6 sup
(t,x)∈Qr0+s0

e(vε)(t, x) 6
(r1 − r0)2

s2
0

sup
(t,x)∈Qr0

e(vε)(t, x) = 4e0.

Now set

K0 :=
√
e0s0, vε,e0(t, x) := vε

(
t

e0
+ t1,

x
√
e0

+ x1

)
,

e (vε,e0) (t, x) :=
1

2
|∇xvε,e0(t, x)|2 +

1

ε2e0
G (vε,e0(t, x)) .

Obviously we have

e (vε,e0) (0, 0) =
1

e0
e(vε)(t1, x1) = 1,

sup
(t,x)∈QK0

((0,0))

e (vε,e0) (t, x) =
1

e0
sup

t,x∈Qs0 (z1)

e(vε)(t, x) 6 4.
(5.18)

Meanwhile, it is not difficult to verify that vε,e0 satisfies (5.11) with ε = ε and R = 1√
e0

,
therefore according to Lemma 5.3 we have(

∂t −
1

2
∆x

)
e (vε,e0) 6 c1e (vε,e0)

(
e−1

0 + e (vε,e0)
)
. (5.19)

Now we claim that K0 :=
√
e0s0 6 1. In fact, if K0 > 1, then e−1

0 < s2
0 6 T , thus by (5.18)

and (5.19) it holds(
∂t −

1

2
∆x

)
e (vε,e0) 6 c1e (vε,e0) (T + e (vε,e0)) 6 c2e (vε,e0) on QK0

((0, 0)).

Therefore for ẽ (vε,e0) := e−c2te (vε,e0) we have(
∂t −

1

2
∆x

)
ẽ (vε,e0) 6 0 on QK0

((0, 0)).

Since we assume that K0 > 1, according to mean value theorem for sub-parabolic
function in [29, Theorem 3] or [34, Theorem 5.2.9] we obtain

1 = ẽ (vε,e0) (0, 0) 6 c3

∫
Q1((0,0))

ẽ (vε,e0) (t, x)dtdx

6 c4

∫
Q1((0,0))

e (vε,e0) (t, x)dtdx = c4e
m
2

0

∫
Q 1√

e0

(z1)

e (vε) (t, x)dtdx.

(5.20)

According to (5.7), (5.8) and following the same arguments in the proof of (2.19) in [9,
Lemma 2.4] (and also the comments in the proof of [9, Lemma 4.4]), for any δ > 0 we
can find κ(δ) ∈ (0, 1) which may depend on R and c5(δ) > 0 independent of R such that
for every z ∈ Qr, s > 0 with r + s 6 κR,

s−m
∫
Qs(z)

e (vε) (t, x)dtdx 6 c5 (Ψε(R) +RE0) + δE0

6 c5 (θ0 +R0E0) + δE0,

where the last inequality follows from (5.15) and the fact R 6 R0.
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Note that z1 ∈ Qr0 and 1√
e0

+ r0 < s0 + r0 6 r1 = κR, so for every δ > 0, we can find a

c6(δ) > 0 such that

c4e
m
2

0

∫
Q 1√

e0

(z1)

e (vε,e0) (t, x)dtdx 6 c6 (θ0 +R0E0) + δE0.

Hence choosing δ = min{ 1
4E0

, 1
2}, θ0 = 1

4c6(δ) , R0 = min{ 1
4c6E0

, 1
2} we get

c4e
m
2

0

∫
Q 1√

e0

(z1)

e (vε,e0) (t, x)dtdx 6
3

4
,

which is a contradiction to (5.20). So we obtain that K0 6 1. This along with (5.17)
yields that for any r ∈ [0, r1],

(r1 − r)2 sup
(t,x)∈Qr

e (vε) (t, x) 6 sup
06r6r1

{
(r1 − r)2 sup

(t,x)∈Qr
e (vε) (t, x)

}
= (r1 − r0)2 sup

(t,x)∈Qr0
e (vε) (t, x) = 4s2

0e0 = 4K0 6 4.

Therefore taking r = r1
2 = κR

2 we can prove desired conclusion (5.16).

Lemma 5.6. Let R0, θ0 be the same constants in Lemma 5.5, we define

Σ :=
⋂

R∈(0,R0)

{
z0 = (t0, x0) ∈ [0, T ]×Tm;

lim inf
ε→0

∫∫
TR(z0)

(1

2
|∇xvε(t, x)|2 +

1

ε
G(vε(t, x))

)
ρz0(t, x)ϕ2

x0
(x)dxdt > θ0

}
.

(5.21)

The Σ is a closed subset of [0, T ]×Tm which has locally finite m-dimensional Hausdorff
measure with respect to the parabolic metric d̃ defined by d̃(z1, z2) := |t1− t2|2 + |x1−x2|,
∀z1 = (t1, x1), z2 = (t2, x2).

Proof. According to formula (5.7), (5.8) (and the comments in the proof [9, Lemma 4.4]),
the proof is exactly the same as that of [35, Theorem 6.1], so we do not include the
details here.

Now we start to prove Theorem 3.6

Proof of Theorem 3.6. Step (i) Suppose vε is the solution to (5.1), set

Y x,εt := vε(T − t, Bt + x), Zx,εt := ∇xvε(T − t, Bt + x), ∀ (t, x) ∈ [0, T ]×Tm.

Since vε ∈ C2((0, T ]×Tm;RL)∩C1([0, T ]×Tm;RL), applying Itô’s formula and (5.1) we
obtain immediately that for every (t, x) ∈ [0, T ]×Tm,

Y x,εt = h (BT + x)−
m∑
i=1

∫ T

t

Zx,i,εs dBis −
∫ T

t

1

2ε
g (Y x,εs ) ds+

∫ T

t

f̄ (Y x,εs , Zx,εs ) ds. (5.22)

According to the uniform estimates (5.2) for vε, we can find a function v ∈ W 1,2([0, T ];

L2(Tm;RL)) satisfying ∇xv ∈ L∞([0, T ];L2(Tm;RmL)) and a subsequence {εk}∞k=1 with
limk→∞ εk = 0, such that

∂tvεk → ∂tv weakly in L2([0, T ];L2(Tm;RL)), (5.23)
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∇xvεk → ∇xv weakly∗ in L∞([0, T ];L2(Tm;RmL)). (5.24)

By (5.2), Sobolev embedding theorem and diagonal principle, there exists a subse-
quence {εk}∞k=1 (through this proof we always denote it by {εk}∞k=1 for simplicity) with
limk→∞ εk = 0 such that

lim
k→∞

∫
Tm
|vεk(t, x)− v(t, x)|2dx = 0, ∀t ∈ Q ∩ [0, T ], (5.25)

where Q denotes the collection of all the rational numbers as before. Still according
to (5.2) and the calculus for time involving Sobolev space (see e.g. [16, Theorem 2,
Section 5.9.3]) we obtain for any 0 6 s1 < s2 6 T and ε ∈ (0, 1),∥∥∥vε(s1, ·)− vε(s2, ·)

∥∥∥
L2(Tm;RL)

6
∫ s2

s1

‖∂tvε(t, ·)‖L2(Tm;RL)dt

6

√∫ T

0

‖∂tvε(t, ·)‖2L2(Tm;RL)
dt
√
s2 − s1

6 c1
√
s2 − s1.

(5.26)

This along with (5.25) yields that v ∈ C([0, T ];L2(Tm;RL)), (5.26) holds for v and for
every t ∈ [0, T ] we have (choosing a subsequence of {vεk} if necessary)

lim
k→∞

∫
Tm
|vεk(t, x)− v(t, x)|2 dx = 0. (5.27)

We define Y xt := v(T − t, Bt + x), Zxt = ∇xv(T − t, Bt + x) for every (t, x) ∈ [0, T ] × Tm.
So it follows from (5.27) that

lim
k→∞

E

[∫
Tm
|Y x,εkt − Y xt |

2
dx

]
= 0, ∀ t ∈ [0, T ]. (5.28)

For every 0 6 s < t 6 T , it holds∫
Tm
|Y xt (ω)− Y xs (ω)|2dx

6 2

∫
Tm
|v(T − s,Bs(ω) + x)− v(T − t, Bs(ω) + x)|2dx

+ 2

∫
Tm
|v(T − t, Bs(ω) + x)− v(T − t, Bt(ω) + x)|2dx

= 2

∫
Tm
|v(T − s, x)− v(T − t, x)|2dx+ 2

∫
Tm
|v(T − t, x+Bs(ω)−Bt(ω))− v(T − t, x)|2dx

=: I1(s, t, ω) + I2(s, t, ω).

Applying the fact that (5.26) holds for v we obtain

I1(s, t, ω) 6 2c21|s− t|.

Meanwhile by standard approximation procedure it is easy to verify that for every fixed
t ∈ [0, T ],

lim
y→0

∫
Tm
|v(t, x+ y)− v(t, x)|2dx = 0.

This, along with the continuity of t 7→ Bt(ω), implies immediately that we can find a null
set Π0 ⊂ Ω such that

lim
s→t

I2(s, t, ω) = 0, ω /∈ Π0, t ∈ [0, T ].
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Combining all estimates above we deduce that t 7→ Y ·t (ω) is continuous in L2(Tm;RL)

a.s.. According to this and the property that supt∈[0,T ] ‖v(t, ·)‖L2(Tm;RL) < ∞ we can
prove

E

[
sup
t∈[0,T ]

‖Y ·t ‖2L2(Tm;RL)

]
= sup
t∈[0,T ]

‖v(t, ·)‖2L2(Tm;RL) <∞.

Hence by all the properties above we have verified that Y ∈ S 2(Tm;RL). At the same
time, since ∇xv ∈ L∞([0, T ];L2(Tm;RL)), we have immediately that Z ∈M 2(Tm;RL).

Moreover, for every ψ ∈ C2(Tm;RL) it holds that

E

[∫ T

0

∣∣∣∣∫
Tm

〈
Zx,i,εkt , ψ(x)

〉
dx−

∫
Tm

〈
Zx,it , ψ(x)

〉
dx

∣∣∣∣2 dt
]

= E

[∫ T

0

∣∣∣∣∫
Tm

〈
∂vεk
∂xi

(T − t, Bt + x), ψ(x)

〉
dx−

∫
Tm

〈
∂v

∂xi
(T − t, Bt + x), ψ(x)

〉
dx

∣∣∣∣2 dt
]

= E

[∫ T

0

∣∣∣∣∫
Tm

〈
vεk(T − t, x),

∂ψ

∂xi
(x−Bt)

〉
dx−

∫
Tm

〈
v(T − t, x),

∂ψ

∂xi
(x−Bt)

〉
dx

∣∣∣∣2 dt
]

6 c2‖∇xψ‖2∞
∫ T

0

∫
Tm
|vεk(t, x)− v(t, x)|2dxdt.

So by (5.26) and (5.27) we have

lim
k→∞

E

[∫ T

0

∣∣∣∣∫
Tm

〈
Zx,i,εkt , ψ(x)

〉
dx−

∫
Tm

〈
Zx,it , ψ(x)

〉
dx

∣∣∣∣2 dt
]

= 0,

which implies that for each t ∈ [0, T ] and 1 6 i 6 m,

lim
k→∞

E

[∣∣∣ ∫ T

t

(∫
Tm
〈Zx,i,εks , ψ(x)〉dx

)
dBis −

∫ T

t

(∫
Tm
〈Zx,is , ψ(x)〉dx

)
dBis

∣∣∣2] = 0.

(5.29)
Step (ii) Let Σ ⊂ [0, T ] × Tm be defined by (5.21). By definition, for every z0 /∈

Σ, (5.15) holds for some R ∈ (0, R0), therefore by (5.16) we could find a neighborhood
Q(z0) := QκR(z0) of z0 such that (taking a subsequence of {vεk} if necessary)

sup
k>0

{
sup

(t,x)∈Q(z0)

(
|∇xvεk(t, x)|2 +

1

εk
G
(
vεk(t, x)

))}
6 c3 <∞. (5.30)

Note that G
(
vεk(t, x)

)
= χ

(
dist2

N (vεk(t, x))
)

and χ(s) 6 δ2
0 only if s 6 δ2

0 , it follows
from (5.30) that for every k large enough,

G
(
vεk(t, x)

)
= dist2

N (vεk(t, x)) 6 c3εk, ∀ (t, x) ∈ Q(z0).

Note that we could find a countable collection of open neighborhoods {Qi(z0)}∞i=1 as
above to cover [0, T ] × Tm/Σ, by diagonal principle there exists a subsequence {vεk}
such that

lim
k→∞

G
(
vεk(t, x)

)
= 0, ∀ (t, x) ∈ [0, T ]×Tm/Σ.

By Lemma 5.6 we know that Σ has locally finite m-dimensional Hausdorff measure with
respect to d̃, so under the Lebesgue measure on [0, T ]×Tm, Σ is a null set. Therefore
according to (5.27) it holds that

G
(
v(t, x)

)
= 0, dt× dx− a.e. (t, x) ∈ [0, T ]×Tm,
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which implies that v(t, ·) ∈ L2(Tm;N) for a.e. t ∈ [0, T ]. Combining this with (5.26) we
know that for every fixed t ∈ [0, T ].

v(t, x) ∈ N, a.e. x ∈ Tm.

and v(t, ·) ∈ L2(Tm;N).
By this we know for every fixed t ∈ [0, T ] and 1 6 i 6 m,

∂xiv(t, x) ∈ Tv(t,x)N, a.e. x ∈ Tm.

Hence Y ·t = v(T−t, Bt+·) ∈ L2(Tm;N) for every t ∈ [0, T ] and Zi,xt = ∂xiv(T−t, Bt+x) ∈
TY xt N for dt× dx× P-a.e. (t, x, ω). Note that it has been proved that Y ∈ S 2(Tm;RL),
Z ∈M 2(Tm;RL) in Step (i) above, so we have (Y, Z) ∈ S ⊗M 2(Tm;N).

Step (iii) Let e(vε)(t, x) := 1
2 |∇xvε(t, x)|2 + 1

εG(vε(t, x)). By the same methods (to

estimate Iε,R1 and Iε,R2 ) in the proof of Lemma 5.3 we can prove for every ε ∈ (0, 1),

(∂t −
1

2
∆x)e(vε) +

1

ε2

∣∣χ′ (dist2
N (vε)

)∣∣2 dist2
N (vε) 6 c4e(vε)(1 + e(vε)), (t, x) ∈ (0, T ]×Tm.

Combining this with (5.30), repeating the arguments in the proof of [9, Theorem 3.1(Page
94)] and the comments in the proof of [9, Lemma 4.4] we can prove that for any open
subset Q′ ⊂ Q(z0) with z0 ∈ [0, T ]×Tm/Σ,

sup
k>1

∫∫
Q′
|∇2

xvεk(t, x)|2dtdx <∞, (5.31)

and (
∂t −

1

2
∆x

)
vεk →

(
∂t −

1

2
∆x

)
v weakly in L2

loc(Q(z0)), (5.32)

1

εk
distN (vεk)→ λ̄ weakly in L2

loc(Q(z0)), (5.33)

for some λ̄ ∈ L2
loc(Q(z0)).

By (5.31) we can find a subsequence {vεk} such that

∇2
xvεk → ∇2

xv weakly in L2
loc(Q(z0)). (5.34)

At the same time, for every ϕ ∈ C∞c (Q(z0)) (here C∞c (Q(z0)) denotes the collection of
smooth functions defined on [0, T ]×Td whose supports are contained in Q(z0)), we have∫∫

Q(z0)

|∇xvεk(t, x)|2 ϕ(t, x)dtdx = −
∫∫

Q(z0)

ϕ(t, x)〈∆xvεk(t, x), vεk(t, x)〉dtdx

−
∫∫

Q(z0)

〈∇xϕ(t, x) · ∇xvεk(t, x), vεk(t, x)〉dtdx.

Based on this expression, according to (5.24), (5.26), (5.27), (5.31) and (5.34) we obtain

lim
k→∞

∫∫
Q(z0)

|∇xvεk(t, x)|2 ϕ(t, x)dtdx =

∫∫
Q(z0)

|∇xv(t, x)|2 ϕ(t, x)dtdx.

This along with (5.24) yields that for every ϕ ∈ C∞c (Q(z0)),

lim
k→∞

∫∫
Q(z0)

|∇xvεk(t, x)−∇xv(t, x)|2 ϕ(t, x)dtdx = 0,

which means (take a subsequence if necessary)

lim
k→∞

∇xvεk(t, x) = ∇xv(t, x), dt× dx− a.e. (t, x) ∈ Q(z0).
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Note that we could find a collection of countable open neighborhoods {Qi(z0)}∞i=1 as
above to cover [0, T ] × Tm/Σ, by diagonal principle there exists a subsequence {vεk}
such that (since the measure of Σ is zero under dt× dx)

lim
k→∞

∇xvεk(t, x) = ∇xv(t, x), dt× dx− a.e. (t, x) ∈ [0, T ]×Tm.

This together with (5.27) implies immediately that (taking a subsequence if necessary)

lim
k→∞

f̄ (vεk(t, x),∇xvεk(t, x)) = f̄ (v(t, x),∇xv(t, x)) , dt× dx− a.e. (t, x) ∈ [0, T ]×Tm.
(5.35)

Meanwhile by (2.8) and (5.2) it is easy to verify that f̄ (vεk(T − t, x),∇xvεk(T − t, x)) is
uniformly integrable with respect to dt× dx since

sup
k>1

∫ T

0

∫
Tm

∣∣f̄ (vεk(T − t, x),∇xvεk(T − t, x))
∣∣2 dtdx

6 c5

(
1 + sup

k>1

∫ T

0

∫
Tm
|∇xvεk(T − t, x)|2dtdx

)
<∞.

According to this and (5.35) we obtain that for every ψ̂ ∈ L∞([0, T ]×Tm;RL),

lim
k→∞

∫ T

0

∫
Tm

〈
f̄ (vεk(t, x),∇xvεk(t, x)) , ψ̂(t, x)

〉
dxdt

=

∫ T

0

∫
Tm

〈
f̄ (v(t, x),∇xv(t, x)) , ψ̂(t, x)

〉
dxdt.

Hence for every ψ ∈ C2(Tm;RL), t ∈ [0, T ] and a.s. ω ∈ Ω,

lim
k→∞

∫ T

t

∫
Tm

〈
f̄ (Y x,εks , Zx,εks ) , ψ(x)

〉
dxds

= lim
k→∞

∫ T

t

∫
Tm

〈
f̄ (vεk(T − s,Bs + x),∇xvεk(T − s,Bs + x)) , ψ(x)

〉
dxds

= lim
k→∞

∫ T

t

∫
Tm

〈
f̄ (vεk(T − s, x),∇xvεk(T − s, x)) , ψ(x−Bs)

〉
dxds

=

∫ T

t

∫
Tm

〈
f̄ (v(T − s, x),∇xv(T − s, x)) , ψ(x−Bs)

〉
dxds

=

∫ T

t

∫
Tm

〈
f̄ (Y xs , Z

x
s ) , ψ(x)

〉
dxds.

(5.36)

Step (iv) Note that by (5.30) we know χ′
(
dist2

N (vεk)
)

= 1 on Q(z0) when k is large
enough. So as explained in the proof of Lemma 5.3, we have

1

εk
g (vεk) =

1

εk
∇̄dist2

N (vεk)

=
2

εk
distN (vεk)∇̄distN (vεk) ∈ T⊥

PN(vεk)N

Hence combining this with (5.32), (5.33), (5.35) and following the same arguments in the
proof of [9, Theorem 3.1(Page 94–95)] we obtain that for dt×dx-a.e (t, x) ∈ [0, T ]×Tm/Σ,{(

∂t −
1

2
∆x

)
v(t, x)− f̄ (v(t, x),∇xv(t, x))

}
⊥TvN.
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From this we deduce that for dt× dx-a.e (t, x) ∈ [0, T ]×Tm/Σ,(
∂t −

1

2
∆x

)
v − f̄ (v,∇xv) =

L−n∑
j=1

〈(
∂t −

1

2
∆x

)
v − f̄ (v,∇xv) , νj(v)

〉
νj(v),

=

L−n∑
j=1

−
〈

1

2
∆xv, νj(v)

〉
νj(v)

= −1

2

m∑
i=1

A(v) (∂xiv, ∂xiv) ,

(5.37)

where {νi(p)}L−nj=1 is an orthonormal basis of T⊥p N at p ∈ N , in the second equality above
we have used the fact f̄ (v,∇xv) ∈ TvN , ∂tv ∈ TvN for a.e. x ∈ Tm, and the last step
follows from the standard property of sub-manifold (see e.g. [26, Section 1.3]).

Given (5.37) and applying the same procedures in the proof of [9, Theorem 3.1(Page
95)] (using again the fact that the measure of Σ is zero under dt× dx) we obtain that for
every ψ̂ ∈ L∞([0, T ]×Tm;RL),∫ T

0

∫
Tm

〈
∂tv, ψ̂

〉
+

1

2

m∑
i=1

(〈
∂xiv, ∂xi ψ̂

〉
+
〈
A(v)(∂xiv, ∂xiv), ψ̂

〉)
−
〈
f̄ (v,∇xv) , ψ̂

〉
dtdx = 0.

Combining this with the equation (5.1) and the convergence property (5.23),(5.24),(5.36)
it holds that

lim
k→∞

∫ T

0

∫
Tm

〈
1

εk
g (vεk) , ψ̂

〉
dtdx =

m∑
i=1

∫ T

0

∫
Tm

〈
A(v)(∂xiv, ∂xiv), ψ̂

〉
dtdx. (5.38)

For any ψ ∈ C2(Tm;RL) and t ∈ [0, T ], taking ψ̂(s, x) = ψ(T−s, x−Bs)1[0,T−t](s) in (5.38)
where ψ(s, x) ≡ ψ(x) ∀s ∈ [0, T ], we obtain that for a.s. ω ∈ Ω

lim
k→∞

∫ T

t

∫
Tm

〈
1

εk
g (Y x,εks ) , ψ(s, x)

〉
dxds

= lim
k→∞

∫ T

t

∫
Tm

〈
1

εk
g (vεk(T − s,Bs + x)) , ψ(s, x)

〉
dxds

= lim
k→∞

∫ T

0

∫
Tm

〈
1

εk
g (vεk(s, x)) , ψ(T − s, x−Bs)1[0,T−t](s)

〉
dxds

=

m∑
i=1

∫ T

0

∫
Tm

〈
A(v(s, x)) (∂xiv(s, x), ∂xiv(s, x)) , ψ(T − s, x−Bs)1[0,T−t](s)

〉
dxds

=

m∑
i=1

∫ T

t

∫
Tm

〈
A(Y xs )

(
Zx,is , Zx,is

)
, ψ(s, x)

〉
dxds.

Putting this with (5.28),(5.29), (5.36) into (5.22) we can verify that for every t ∈ [0, T ]

and ψ ∈ C2(Tm;RL), (3.6) holds for a.s. ω ∈ Ω. By Proposition 3.7 we have finished the
proof.
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