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Abstract

We introduce the notion of localization at the boundary for conditioned random walks
in i.i.d. and uniformly elliptic random environment on Zd, in dimensions two and
higher. If d = 2 or 3, we prove localization for (almost) all walks. In contrast, for d ≥ 4,
there is a phase transition for environments of the form ωε(x, e) = α(e)(1 + εξ(x, e)),
where {ξ(x)}x∈Zd is an i.i.d. sequence of random variables, and ε represents the
amount of disorder with respect to a simple random walk.
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1 Introduction

In this paper, we deal with the notion of localization for random walks in random
environment (RWRE). Informally, the walk is localized if its asymptotic trajectory is
confined to some region with positive probability. Otherwise, it is delocalized. For
RWRE, localization has been studied almost entirely in the one-dimensional case (see,
for example, the works of Sinai [21] and Golosov [13]). This work aims to start the
investigation of this phenomenon in dimensions greater than one, considering the case
of the boundary. Let us first define the model on which we will be working.

1.1 The model of a random walk in a random environment

Fix d ∈ N, the dimension where the walk moves. For x ∈ Rd and p ∈ [1,∞], the
`p norm of x is denoted by |x|p. Define V := {x ∈ Zd : |x|1 = 1} = {±e1, · · · ,±ed} the
set of allowed jumps of the walk (as usual, ei is the vector (0, · · · , 1︸︷︷︸

i-th position

, · · · 0)). An

environment is an element ω in the space Ω :=M1(V )Z
d

(in general, we denote byM1(X)

to the space of probability measures on X). We usually write ω = {ω(x, e)}x∈Zd,e∈V .
Finally, we can define a random walk in the environment ω ∈ Ω starting at a point x ∈ Zd
as the Markov chain X = (Xn)n∈N with law Px,ω that satisfies
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Localization for RWRE

Px,ω(X0 = x) = 1,

Px,ω(Xn+1 = y + e|Xn = y) =

{
ω(y, e), if Px,ω(Xn = y) > 0

0, otherwise.

(1.1)

The measure Px,ω in the literature is known as the quenched measure, in contrast to the
annealed (or averaged) measure we describe next. We use the following notation in the
sequel: if Y = Ω or Y = (Zd)N, then B(Y ) is its Borel σ-algebra. In our case, choose a
probability measure P on (Ω,B(Ω)). The annealed measure Px of the RWRE starting at
x ∈ Zd is defined as the measure on Ω× (Zd)N that satisfies Px(A×B) =

∫
A
Px,ω(B)dP

for each A ∈ B(Ω) and B ∈ B((Zd)N). Expectations with respect to Px,ω, Px and P are
denoted by Ex,ω, Ex and E respectively. The basics assumptions in this work are the
following:

Assumption 1.1.

(i) The random vectors {ω(x, ·)}x∈Zd are i.i.d under P.

(ii) Uniform ellipticity: there exists a κ > 0 such that for every x ∈ Zd and e ∈ V ,

P(ω(x, e) ≥ κ) = 1. (1.2)

The two assumptions above are common in the literature. In particular, due to (i), we
can define q(e) := E[ω(0, e)] = E[ω(x, e)] for x ∈ Zd and e ∈ V .

More information about the model can be found in the references [12, 25].

1.2 Localization at the boundary

We will look at trajectories (Xn)n∈N of an RWRE such that |Xn|1 = n for each n, and
study the asymptotic behavior of the normalized quenched probability of reaching the
boundary at time n, that is, if x ∈ Zd satisfies |x|1 = n,

P0,ω (Xn = x | |Xn|1 = n) . (1.3)

Specifically, we are concerned in knowing if for some sequence (xn)n∈N ⊂ Zd such
that |x|1 = n for all n, the quenched probability (1.3) is greater than some constant
c, uniformly on n. In this case, the conditioned walk is “localized” around this path.
There is a counterpart in the literature of directed polymers in random environment (see
[8], p. 88). In this model, there is a nice characterization of localization/delocalization
depending on the disorder of the environment. For RWRE, the disorder measures how far
is the environment ω(0, e) from its expectation q(e). This allows us to obtain analogous
results in our case.

At this point, we proceed to characterize localization rigorously. We decompose ∂D
in faces ∂D(s), with s ∈ {−1, 1}d, defined by ∂D(s) := {x ∈ ∂D : sjxj ≥ 0, j = 1, · · · , d}.
Set s := (1, 1, · · · 1). From now on, we will restrict our attention to ∂D+ := ∂D(s); an
analog treatment can be done on any face of the boundary. Define the allowed jumps by
V + := {e1, · · · , ed} ⊆ V . Next, consider the set

∂Rn := n∂D+ = {x ∈ Zd : |x|1 = n, xj ≥ 0 for all j ∈ {1, · · · , d}}

and define Rn as the sets of all paths (z0, z1, · · · , zn) ∈ (Zd)n+1 for which z0 = 0 and
zn ∈ ∂Rn. Note that this happens if and only if4zi := zi−zi−1 ∈ V + for each i = 1, · · · , n.
Subsequently, let An := {Xn −X0 ∈ ∂Rn}. Finally, the sequence of random variables
(Jn)n∈N is defined by J1 := 1, and for n ≥ 2,

Jn := max
x∈Zd

P0,ω(Xn−1 = x|An−1). (1.4)
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Localization for RWRE

Definition 1.2. An RWRE is localized at the boundary if

lim inf
n→∞

1

n

n∑
k=1

Jk > 0 P− a.s., (1.5)

and an RWRE is delocalized at the boundary if

lim inf
n→∞

1

n

n∑
k=1

Jk = 0 P− a.s. (1.6)

Note that a priori, the walk can be neither localized nor delocalized. However, in
Theorem 2.3 we show that this cannot happen for walks that satisfy Assumption 1.1.

1.2.1 A different formulation

Working on the boundary induces a polymer-like interpretation that makes more trans-
parent the argument we use below. Given ω ∈ Ω, x ∈ Zd, and e ∈ V +, define

π(ω, x, e) :=
ω(x, e)∑

e′∈V + ω(x, e′)
, Ψ(ω, x) := log

( ∑
e∈V +

ω(x, e)

)
. (1.7)

Then ω(x, e) = π(ω, x, e)eΨ(ω,x), and π induces an RWRE, with V + as the set of allowed
jumps. Its quenched measure (starting at x) is Px,π, and its expectation is Ex,π. Therefore,
for fixed n ∈ N and A ∈ B((Zd)N),

P0,ω(A,Xn ∈ ∂Rn) = E0,π

(
e
∑n−1
i=0 Ψ(ω,Xi), A

)
. (1.8)

The last display leads to define a quenched polymer measure Pωx,n as

Pωx,n(A) :=
E0,π

(
e
∑n−1
i=0 Ψ(ω,Xi), A

)
E0,π

(
e
∑n−1
i=0 Ψ(ω,Xi)

) , A ∈ B((Zd)N). (1.9)

This definition resembles the general framework introduced in [19]. Using the polymer
measure, it is direct to verify the identity

Jn = max
x∈Zd

Pω0,n−1(Xn−1 = x).

From now on, we use this scheme (except in Section 4.1), although, of course, both
definitions are equivalent.

1.3 Main results

This paper’s main results are that localization holds for (almost) all uniformly elliptic
and i.i.d environments in dimensions two and three and a phase transition in terms of
the disorder in dimensions four or higher.

Let c :=
∑
e∈V + q(e). The following assumption will play a remarkable role throughout

the sequel.

Assumption 1.3. The measure P satisfies

P(Ψ(ω, 0) = log(c)) < 1. (1.10)

Remark 1.4. As a consequence of Theorem 2.3, if Assumption 1.3 does not hold, then
the walk is delocalized at the boundary for any d ≥ 2.
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Localization for RWRE

Theorem 1.5. Let (Xn)n∈N be an RWRE that satisfies Assumptions 1.1 and 1.3. If
d ∈ {2, 3}, then the walk is localized at the boundary.

A related result in RWRE appears in the article [24] of Yilmaz and Zeitouni. They show
that for walks that satisfy a certain ballisticity condition1, there is a class of measures P
such that the quenched and annealed rate functions differ in a neighborhood of the LLN
velocity. In the directed polymer model, Comets and Vargas [10] prove localization in
dimension 1 + 1 (one dimension for time, and one for space), while Lacoin [15] proves
localization in dimension 1 + 2. Berger and Lacoin improved this result in [5], where
they gave the precise asymptotic behavior for the difference between the quenched and
annealed free energies, as n→∞.

For d ≥ 4, we consider a certain family of environments, parameterized by ε ∈ [0, 1).
This parameter represents how much the distribution of the jumps in an RWRE differs
from a simple random walk.

First, fix a probability vector α = (α(e))e∈V with strictly positive entries. Define

Eα :=
{

(r(e))e∈V ∈ [−1, 1]V :
∑
e∈V

r(e)α(e) = 0, and sup
e∈V
|r(e)| = 1

}
(1.11)

and consider a probability measure Q on Γα := EZdα (also fixed from now). Next, pick
an i.i.d family of random variables (ξ(x))x∈Zd ∈ Γα such that E[ξ(x, e)] = 0 for all e ∈ V .
Finally, given ε ∈ [0, 1), define the environments (ωε(x))x∈Zd as

ωε(x, e) := α(e)(1 + εξ(x, e)). (1.12)

This framework was originally used in [4] to study a phase transition of the map ε 7→
Ia(x, ·) − Iq(x, ·), where Iq(x, ·), Ia(x, ·) are the quenched (respectively annealed) rate
functions of an RWRE in the environment ωε. The study of RWRE at low disorder has
also been considered in [20, 22], among others.

For fixed ε ∈ [0, 1), let Pε be the law of ωε. This measure is uniformly elliptic
with constant κ = (1 − ε) mine∈V α(e). Conversely, for fixed κ < 1

mine∈V α(e) , we define
εmax := 1− κ

mine∈V α(e) , the maximum parameter so that for all ε ≤ εmax, Pε is uniformly
elliptic with constant κ. The last result of the paper is the phase transition for localiza-
tion/delocalization for parametrized environments. We say that an RWRE is ε-localized
(resp. delocalized) if (1.5) (resp. (1.6)) holds under the measure Pε.

Theorem 1.6. For d ≥ 2, α = (α(e))e∈V , Q and κ fixed, there exists ε ∈ [0, εmax] such
that the walk is ε-localized for 0 ≤ ε ≤ ε, and ε-delocalized for ε < ε ≤ εmax. Moreover, if
d ≥ 4, then ε > 0. Also, there are examples of walks that satisfy ε < εmax.

A direct consequence of Theorem 1.5 is the following:

Corollary 1.7. Under the same hypotheses and notation of Theorem 1.6, if Assumption
1.3 does not hold, then ε = εmax. Otherwise, and if also d = 2 or 3, then ε = 0.

1.3.1 Alternative approaches to localization

In the recent article [3], the authors developed two notions related to localization in
terms of the endpoint distribution ρn(·) := Pω0,n−1(Xn−1 ∈ ·) of a directed polymer in
random environment.

(i) Given i ∈ N and ε > 0, let Aεi := {x ∈ Zd : ρi(x) ≥ ε}. We say (ρi)i is asymptotically
purely atomic (concept introduced by Vargas in [23]) if, for each sequence (εi)i

1Called condition (T). This condition is equivalent to the ballisticity conditions (T’) and PM , as showed in
[14]
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Localization for RWRE

converging to zero as i→∞, it is true that

lim
n→∞

1

n

n∑
i=1

ρi(Aεii ) = 1 P− a.s. (1.13)

(ii) Given K, δ > 0, let Gδ,K be the set of probability distributions ρ on Zd for which
there exists some set Aδ,K ⊂ Zd with diameter at most K, such that ρ(Aδ,K) ≥ 1−δ.
We say that (ρi)i is geometrically localized with positive density if for each δ > 0,
there exists some K = K(δ, d,P) and θ = θ(δ, d,P) > 0 such that

lim inf
n→∞

1

n

n∑
i=1

1{ρi∈Gδ,K} ≥ θ P− a.s. (1.14)

For directed polymers, it is shown in the aforementioned article that if β > βc (i.e., the
“low temperature” regime), then the endpoint distribution is both asymptotically purely
atomic and geometrically localized with positive density. On the other hand, if 0 ≤ β ≤ βc
(i.e., the “high temperature” regime), then there is a sequence (εi)i that converges to
zero as i→∞ such that

lim
n→∞

1

n

n∑
i=1

ρi(Aεii ) = 0 P− a.s.

Moreover, for any K > 0, δ ∈ (0, 1),

lim
n→∞

1

n

n∑
i=1

1{ρi∈Gδ,K} = 0 P− a.s.

Using the framework introduced in Section 1.2.1, the results above should be adaptable
to our case for any d ≥ 2 using the parametrization (1.12). On the other hand, in
dimensions two and three, the endpoint distribution of an RWRE conditioned at the
boundary should be both asymptotically purely atomic and geometrically localized with
positive density (as soon as Assumption 1.3 is satisfied).

One of the novelties in [3] is a compactification argument for distributions on Zd,
which was inspired by the analog treatment for distributions on Rd made in [17]. Further
applications of similar ideas can be found in [2], [7], and [1].

2 An equivalent criterion for localization

In this section, we prove an equivalent criterion of localization/delocalization that
will be used throughout the sequel. First, we need to define the following quantities.

Definition 2.1. Let (Xn)n∈N be an RWRE. Define the limits

p(ω) := lim
n→∞

1

n
logE0,π

(
e
∑n−1
i=0 Ψ(ω,Xi)

)
,

λ := lim
n→∞

1

n
logEE0,π

(
e
∑n−1
i=0 Ψ(ω,Xi)

)
= log(c).

(2.1)

The last equality holds since the conditioned walk is directed.

In the directed polymer literature, these limits are known as quenched and annealed
free energy, respectively. The existence of p and the fact that it is deterministic hinge
upon the following characterization in terms of Iq, the quenched rate function for RWRE
(which is also deterministic, see Lemma 3.5 in [4]).

Lemma 2.2. For an RWRE that satisfies Assumption 1.1, the following identities hold:

p = − inf
x∈∂D+

Iq(x), λ = − inf
x∈∂D+

Ia(x). (2.2)
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The proof of this lemma follows the lines of Lemma 16.12 in [18], so it is omit-
ted. Once the existence of p and λ is established, we proceed to state a criterion of
localization/delocalization with regards to whether p = λ or p < λ.

Theorem 2.3. Let (Xn)n∈N be an RWRE that satisfies Assumption 1.1.

(i) The RWRE is localized at the boundary if and only if p < λ.

(ii) The RWRE is delocalized at the boundary if and only if p = λ.

In particular, the walk is either localized or delocalized P-a.s.

As a corollary, we obtain a characterization of localization/delocalization in terms of
the difference between the infima of the quenched and annealed rate functions.

Corollary 2.4. For an RWRE that satisfies Assumption 1.1, we have localization at the
boundary if and only if

inf
x∈∂D+

Ia(x) < inf
x∈∂D+

Iq(x).

To prove Theorem 2.3, we need to introduce a couple of definitions. The first is a
martingale that relates p and λ, and the second is a random variable linked to Jn.

Definition 2.5. Given an RWRE (Xn)n∈N that satisfies Assumption 1.1, define the ran-
dom variable in (Ω,B(Ω),P)

Wn(ω) := E0,π

(
e
∑n−1
i=0 Ψ(ω,Xi)−n log(c)

)
, n ∈ N. (2.3)

The following lemma is straightforward, so its proof is skipped.

Lemma 2.6. The process {Wn}n∈N is a mean-one Fn-martingale under the filtration
{Fn}n≥0 given by F0 := {∅,Ω}, and for n ≥ 1,Fn := {ω(x, e) : |x|1 < n, x ∈ Zd, e ∈ V +}.

The martingale convergence theorem implies that W∞ := limn→∞Wn exists and
is non-negative P-a.s. Since the event {W∞ = 0} is invariant under the translations
(Te)e∈V + P-a.s., the ergodicity of P implies that P(W∞ = 0) ∈ {0, 1}. This consequence
will be useful in Proposition 2.7.

Next, we introduce a second random variable,

In(ω) :=
∑
x∈Zd

Pω0,n−1(Xn−1 = x)2. (2.4)

This random variable is Fn−1-measurable. Observe that

J2
n ≤ In ≤ Jn. (2.5)

The main ingredient in the proof of Theorem 2.3 is the next proposition, which compares
Wn and In. We use the following notation: for sequences (an), (bn) we say that an = Θ(bn)

if an = O(bn) and bn = O(an).

Proposition 2.7. Let (Xn)n∈N be an RWRE that satisfies Assumption 1.1. Then the
equality

{W∞ = 0} =

{ ∞∑
n=1

In =∞

}
(2.6)

holds P-a.s. Furthermore, if P(W∞ = 0) = 1, there exist constants c1(P), c2(P) ∈ (0,∞)

for which P-a.s.,

c1

n∑
k=1

Ik ≤ − logWn ≤ c2
n∑
k=1

Ik for n large enough, (2.7)

ECP 26 (2021), paper 56.
Page 6/13

https://www.imstat.org/ecp

https://doi.org/10.1214/21-ECP426
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


Localization for RWRE

that is, − logWn = Θ(
∑n
k=1 Ik).

Sketch of the proof of Proposition 2.7. The proof of Theorem 2.1 in [9] can be
adapted to show Proposition 2.7. It is based on the Doob’s decomposition of the
submartingale − logWn. More precisely, there exist a martingale {Mn}n∈N and an
adapted process {An}n∈N such that for all n ∈ N, − logWn = Mn + An. Indeed,

An = −
∑n
i=1E

[
log
(

Wi

Wi−1

) ∣∣Fi−1

]
. Noting that

Wi

Wi−1
= Eω0,i−1

[
eΨ(ω,Xi−1)−log(c)

]
= 1 + Eω0,i−1

[
eΨ(ω,Xi−1)−log(c) − 1

]
=: 1 + Ui,

we decompose An and Mn as

An = −
n∑
i=1

E[log(1 + Ui)|Fi−1], Mn =

n∑
i=1

(− log(1 + Ui) + E[log(1 + Ui)|Fi−1]) .

Exactly as in the aforementioned result, it is enough to prove that there is a constant
C > 0 such that for all n ∈ N,

1

C
In ≤ E[− log(1 + Un)|Fn−1] ≤ CIn, E[log2(1 + Un)|Fn−1] ≤ CIn. (2.8)

To check the inequalities above, notice that, by uniform ellipticity, the potential Ψ is
bounded P-a.s., so there are constants 0 < C1 < C2 such that P-a.s., for all n ∈ N, Wn

Wn−1
∈

(C1, C2). Therefore,

Un − C3U
2
n ≤ log(1 + Un) ≤ Un − C4U

2
n (2.9)

for some constants C3, C4 > 0. Thus, E[− log(1 + Un)|Fn−1] is bounded by above by

E[−Un + C3U
2
n|Fn−1] = −C4E[U2

n|Fn−1]

= C3

∑
x,x′∈Zd

E
[
Eω0,n−1

(
eΨ(ω,x)−log(c) − 1, Xn−1 = x

)
×

Eω0,n−1

(
eΨ(ω,x′)−log(c) − 1, Xn−1 = x′

) ∣∣Fn−1

]
= C3

∑
x,x′∈Zd

E
[(
eΨ(ω,x)−log(c) − 1

)(
eΨ(ω,x′)−log(c) − 1

)]
×

Pω0,n−1(Xn−1 = x)Pω0,n−1(Xn−1 = x′)

= C3E

[(
eΨ(ω,0)−log(c) − 1

)2
]
In.

Similarly we get a lower bound E[− log(1 + Un)|Fn−1] ≥ C4E
[(
eΨ(ω,0)−log(c) − 1

)2]
In,

and this shows the first inequality in (2.9). Finally, noting that for some constant C5 > 0,
log2(1 + Un) ≤ C5U

2
n, repeating the steps from the last display we get the second

inequality on (2.9), concluding the proof.

Proof of Theorem 2.3.
Recall that, due to (2.5), we have(

1

n

n∑
k=1

Jk

)2

≤ 1

n

n∑
k=1

J2
k ≤

1

n

n∑
k=1

Ik ≤
1

n

n∑
k=1

Jk.
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Thus, the liminfs of the sequences ( 1
n

∑n
k=1 Ik)n and ( 1

n

∑n
k=1 Jk)n are of the same nature,

that is, both are positive P-a.s. or zero P-a.s.
If p < λ, W∞ = 0 P-a.s. To check this, observe that if W∞ > 0 then logWn

n → 0,

but at the same time logWn

n → p − λ = 0. So, if p < λ, then W∞ = 0 P-a.s. By (2.6),∑
n In =∞ P- a.s. and − logWn = Θ(

∑n
k=1 Ik). In particular, lim infn→∞

1
n

∑n
k=1 In > 0,

so the RWRE is localized at the boundary.
Reciprocally, if the walk is localized,

∑n
k=1 Ik =∞, so by (2.6),− logWn = Θ(

∑n
k=1 Ik),

and then − logWn

n → p− λ > 0. This proves (i), and the proof of (ii) is analogous.

3 Proof of Theorem 1.5

3.1 Preliminaries for the proof of Theorem 1.5

The method of fractional moment and change of measure used in the proof was
originally introduced by Derrida et al. in [11] for the pinning model. For directed
polymers, Lacoin and Moreno used it for the first time in [16] on the hierarchical lattice,
and Lacoin in [15] on Zd. Yilmaz and Zeitouni adapted the technique in [24] for random
walks in random environment. As the proofs are similar, we only mention the main
points of them and refer to the papers above for further details. More precisely, let
φ(θ) :=

∑
e∈V q(e)e

〈θ,z〉. In [24], the analog of showing that p < λ in the space-time
RWRE setting, is to demonstrate that for a sufficiently large set of points θ ∈ Rd,

lim
n→∞

1

n
E logE0,ω

[
e〈θ,Xn〉−n log(φ(θ))

]
< 0, (3.1)

Comparing with

p− λ = lim
n→∞

1

n
E log[Wn] = lim

n→∞

1

n
E logE0,π

(
e
∑n−1
i=0 Ψ(ω,Xi)−n log(c)

)
,

the main difference between the two models is that the potential Ψ(ω, x) is replaced by a
tilt that depends on the steps of the walk, namely, Ψst(θ, e) := e〈θ,e〉. This introduces a
correlation that in our case is not present (see the paragraph below (3.9)). Thus, it is
natural to apply the methods in [24] to deduce the desired result. We sketch the main
ideas and differences in the next pages.

First, note that Theorem 2.3 implies immediately delocalization when (1.10) does not
hold. Indeed, in this case, P-a.s Ψ(ω, x) = log(c) for all x ∈ Zd, so by (2.1), p = log(c) = λ.
Hence, until the end of the proof we assume that (1.10) holds.

Let {X̂n}n∈N be a simple random walk with jumps in V + and law P̂ that satisfies

P̂ (X̂n+1 = x+ e|X̂n = x) =
q(e)∑

e′∈V + q(e′)
, x ∈ ∂Rn, e ∈ V +,

and define µ := Ê(X̂1). Consider N = nm with n fixed (but large enough) and m→∞.

Recall that WN (ω) = E0,π

(
e
∑N−1
i=0 Ψ(ω,Xi)−N log(c)

)
. We define, for y ∈ Zd,

Jy :=

(
(y − 1

2
)
√
n, (y +

1

2
)
√
n

)
⊂ Rd. (3.2)

Given Y = (y1, · · · , ym) ∈ (Zd)m, let

WN (ω, Y ) := E0,π

(
e
∑N−1
i=0 Ψ(ω,Xi)−N log(c), Xjn − jnµ ∈ Jyj ,∀j ≤ m

)
and decompose

WN (ω) =
∑
Y

WN (ω, Y ). (3.3)
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The decomposition in (3.3) is well-founded, since Zd ⊂
⋃
y∈Λ Jy. By the inequality

(
∑
i ai)

1/2 ≤
∑
i a

1/2
i , valid for countable indices, we obtain E[WN (ω)1/2] ≤∑

Y E[WN (ω, Y )1/2]. This inequality gives us

p−λ = lim
N→∞

1

N
E log[WN ] ≤ lim inf

N→∞

2

N
logE[W

1/2
N ] ≤ lim inf

N→∞

2

N
log

(∑
Y

E[WN (ω, Y )1/2]

)
.

(3.4)
Now, we estimate each expectation E[WN (ω, Y )]1/2, applying the change of measure.
The plan is the following (recall that N = mn with fixed n): fix j ∈ {1, · · · ,m}, Y ∈ (Zd)m,
and a square integer n. Also, C1 is a constant to determine, and y0 := 0. Then define

Bj := {(z, i) ∈ Zd ×N : (j − 1)n ≤ i < jn, |z − iµ− yj−1

√
n| ≤ C1

√
n}. (3.5)

3.2 Proof in the case d = 2

The idea is to define a function that depends on the different blocks Bj . Let

ω̃(y) := eΨ(ω,y) − c, and D(Bj) :=
∑

y:(y,|y|1)∈Bj

ω̃(y). (3.6)

In particular, E[D(Bj)] = 0, and they form an independent family of random variables.
It is important to observe that (1.10) guarantees that ω̃ and D(Bj) are non-degenerate

random variables. We also define δn := C
−1/2
1 n−3/4. Note that δ2

n|D(B1)| = O(1). Finally,
for K > 0 large enough (to determine), define

fK(u) := −K1{u≥eK2}, g(ω, Y ) := e
∑m
j=1 fK(δnD(Bj)).

By Cauchy-Schwarz inequality,

E[WN (ω, Y )1/2] = E[WN (ω, Y )1/2g(ω, Y )1/2g(ω, Y )−1/2]

≤ E[WN (ω, Y )g(ω, Y )]1/2E[g(ω, Y )−1]1/2.
(3.7)

One can show that forK large enough, E[g(ω, Y )−1]1/2≤2m. To boundE[WN (ω, Y )g(ω, Y )],
we can the estimates in Pages 251-252 from [24] to deduce that

E[WN (ω, Y )1/2]≤

2
∑
y∈Z2

max
x∈J0

EEx,π

(
e
∑n−1
i=0 Ψ(ω,Xi)+fK(δnD(B1))−n log(c);Xn−nµ ∈ Jy

)m

.

The bound (3.4) tell us that p− λ < 0 once we are able to prove the following:

Lemma 3.1. For n,K, and C1 large enough,∑
y∈Z2

max
x∈J0

EEx,π

(
e
∑n−1
i=0 Ψ(ω,Xi)+fK(δnD(B1))−n log(c);Xn − nµ ∈ Jy

)
< 1/2.

The proof of the lemma above is followed almost exactly from Section 2.5 in [24]. The
main difference rests in display (2.22) in the aforementioned paper. In our case, we need
to check that for some α > 0,

EE0,π

e∑n−1
i=0 Ψ(ω,Xi)−n log(c)

(
n−1∑
i=0

ω̃(Xi)− α

)2

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is O(n).
We can decompose it as

n−1∑
j=1

EE0,π

[
e
∑n−1
i=0 Ψ(ω,Xi)−n log(c)(ω̃(Xj)− α)2

]
+

2
∑

1≤`<j≤n−1

EE0,π

[
e
∑n−1
i=0 Ψ(ω,Xi)−n log(c)(ω̃(X`)− α)(ω̃(Xj)− α)

]
.

(3.8)

The first term is nEE0,π

[
eΨ(ω,X1)−log(c) (ω̃(X1)− α)

2
]
. As cn :=

δ2n
(µnδn−An−eK2 )2

= O(n−2),

this expression vanishes as n→∞. On the other hand, if we choose

α := EE0,π

[
eΨ(ω,X1)−log(c)ω̃(X1)

]
=
E
[
e2Ψ(ω,0)

]
− c2

c
> 0 (by (1.10)), (3.9)

then by independence, the second term in (3.8) is zero. By comparison, the analog of α
(called µ in [24]) is greater than zero due to a positive correlation that in our case is not
needed.

Combining the previous results, such election of constants help us to deduce that
Lemma 3.1 is true, and therefore p− λ < 0.

3.3 Proof in case d = 3

In this case, the proof in spirit is essentially the same, but some technical details
need to be adapted to this situation. In particular, we need to redefine δn and D(Bj).
First, for a constant C2 > 0 to determine, let

V (y, z) :=
1

|i− j|
1{|y−z−(i−j)µ|<C2

√
|i−j|} if i 6= j, and 0 otherwise.

Also, recall that ω̃ is defined as in (3.6). Then we redefine

δn := n−1(log n)−1/2, D(Bj) :=
∑
y,z

(y,i),(z,j)∈Bj

V (y, z)ω̃(y)ω̃(z).

The proof of Theorem 1.6 in [24] can be followed almost word by word, and our situation
is a little bit simplified since the correlation issue is not present as in the d = 2 case.
Details are omitted.

4 Phase transition

Recall the parametrization of the environments (ωε)ε∈[0,1) (i.e., (1.12)). Let be p(ε)
the limit in (2.1) with environment ωε. On the other hand, λ is constant over ε, and it
is equal to log(

∑
e∈V + α(e)). The first part of Theorem 1.6 is consequence of the lemma

below:

Lemma 4.1. For each n ∈ N, the map

ε ∈ [0, εmax]→ 1

n
[E logP0,ωε(Xn ∈ ∂Rn)− logP0(Xn ∈ ∂Rn)] is non-increasing.

This is an adaptation of Lemma 5.1 in [4]. If we let n to infinity, then we deduce that
p(ε)− λ is non-increasing. To finish the proof, define

ε := inf{ε ∈ (0, εmax] : p(ε)− λ < 0},

with the convention that inf ∅ = εmax.
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The rest of this section is devoted to prove the second part of Theorem 1.6. The main
ingredient to show that ε > 0 is the next lemma, a particular case of Lemma 3.1 with
θ = 0 in [4].

Lemma 4.2. If ε > 0 is small enough, then supn |W 2
n |2 <∞.

Recall the following: ifW∞(ε) := W∞(ωε), thenW∞(ωε) > 0 implies p(ε) = λ, the later
being equivalent to localization. Indeed, If W∞ > 0, then log(W∞) = limn→∞ log(Wn) <

∞, so

p(ε) = lim
n→∞

1

n
logP0,ωε(Xn ∈ ∂Rn) = lim

n→∞

Wn(ωε)

n
+ λ = λ.

Now pick ε > 0 small enough such that supn |W 2
n |2 <∞ as in Lemma 4.2, and call it ε∗.

By the martingale convergence theorem, Wn(ε∗)→W∞(ε∗) a.s. and in L2. As |Wn|2 = 1

for all n, then we necessarily have W∞(ε∗) > 0, and therefore p(ε∗) = λ. But the map
ε→ p(ε)− λ is non-increasing, so p = λ on [0, ε∗], and thus ε ≥ ε∗ > 0.

It only remains to show an example in dimension greater or equal than 4 where
0 < ε < εmax.

4.1 An example on which ε < εmax

For simplicity, we consider d = 4, and i.i.d random variables (ξ(x))x∈Zd ∈ Γα such
that ξ(x, e) = ξ(x, e′) for all e, e′ ∈ V +, and ξ(x,−e) = −ξ(x, e). If y = (y1, · · · , yd) ∈ ∂D+

is a point to determine, for i = 1, · · · , d, define α(ei) = α(−ei) := yi
2
∑d
i=1 yi

. Recall that

ωε(x, ei) = α(ei)(1 + εξ(x)) ei ∈ V +.

Moreover, assume that the distribution of ξ(0) under Q is the Rademacher distribution,
namely, Q(ξ(0) = 1) = Q(ξ(0) = −1) = 1

2 . By Corollary 2.4, localization occurs as soon as
infx∈∂D+ Ia(x) < infx∈∂D+ Iq(x). However, in this case, the infimum on the left is exactly
Ia(y), and it is achieved only at this point (see Theorem 2.3 in [4]). On the other hand,
by the continuity of Iq, the infimum on the right is also achieved at some point x ∈ ∂D+.
If x 6= y, then Ia(y) < Ia(x) ≤ Iq(x), so we are done. Thus, assume that x = y. Denote by
(yn)n∈N any sequence as in Lemma 3.5 in [4] for the point y. Then we decompose −Iq(y)

as

−Iq(y) = −Ia(y) + lim
n→∞

1

n
log

(∑
0=x0,x1,··· ,xn=yn

∏n
i=1 q(4xi)(1 + εξ(xi−1))∑

0=x0,x1,··· ,xn=yn

∏n
i=1 q(4xi)

)

≤ −Ia(y) + lim sup
n→∞

max
0=x0,x1,··· ,yn

1

n

n∑
i=1

log(1 + εξ(xi−1)). (4.1)

Also, the sum and maximum above are over all directed paths 0 = x0, x1, · · · , xn such
that xn = yn. Let C(yn) be the number of such paths. It’s easy to check that there exists

some constant C > 0 such that, for all n ∈ N, C(yn) ≤ Cenf(y)− d−1
2 logn, where f(y) =

−
∑d
i=1 yi log(yi). To estimate the maximum above, we can use Hoeffding inequality (see

Theorem 2.8 in [6]) to obtain, for a > 0,

P

(
n∑
i=1

log(1 + εξ(xi−1))− nE[log(1 + εξ(0))] > na

)
≤ exp

 −2na2

log
(

1+ε
1−ε

)2

 . (4.2)
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Therefore,

∞∑
n=1

P

(
max

0=x0,x1,··· ,yn

n∑
i=1

log(1 + εξ(xi−1))− nE[log(1 + εξ(0))] > na

)

≤
∞∑
n=1

C(yn) exp

 −2na2

log
(

1+ε
1−ε

)2

 <∞

as soon as a > log
(

1+ε
1−ε

)√
f(y)/2. By Borel-Cantelli’s lemma, (4.1) is bounded by

− Ia(y) + log

(
1 + ε

1− ε

)√
f(y)/2 + E [log(1 + εξ(0))]

= −Ia(y) + log

(
1 + ε

1− ε

)√
f(y)/2 +

1

2
(log(1 + ε) + log(1− ε)) .

If f(y) ≤ 9
50 , then

√
f(y)/2 ≤ 3

10 , and the last display is strictly smaller than −Ia(y) at
least for ε > 9

10 . The required value for f(y) can be achieved, for example, selecting the
vector y =

(
97
100 ,

1
100 ,

1
100 ,

1
100

)
, so in this case, we can choose εmax ≈ 9

10 to obtain a true
phase transition, with κ ≈ 1

1000 .

Remark 4.3. The asymmetry in terms of α is needed. Indeed, if α(e) = 1
2d for all

e ∈ V , then it is not difficult to show (see pp. 36-37 in [8]) that under our setting,
supn∈NE[W 2

n ] <∞, and therefore, p(ε) = λ for all ε ∈ [0, εmax].
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