
Electron. Commun. Probab. 26 (2021), article no. 28, 1–13.
https://doi.org/10.1214/21-ECP393
ISSN: 1083-589X

ELECTRONIC
COMMUNICATIONS
in PROBABILITY

Limits of random walks with distributionally robust

transition probabilities*

Daniel Bartl† Stephan Eckstein‡ Michael Kupper§

Abstract

We consider a nonlinear random walk which, in each time step, is free to choose its
own transition probability within a neighborhood (w.r.t. Wasserstein distance) of the
transition probability of a fixed Lévy process. In analogy to the classical framework
we show that, when passing from discrete to continuous time via a scaling limit, this
nonlinear random walk gives rise to a nonlinear semigroup. We explicitly compute the
generator of this semigroup and corresponding PDE as a perturbation of the generator
of the initial Lévy process.
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1 Introduction and main results

Lévy processes are mathematically tractable and therefore often used to model
certain real-world phenomena. This bears the task of correctly specifying / estimating
the corresponding parameters, e.g., drift and variance in case of a Brownian motion. In
many situations this can only be achieved up to a certain degree of uncertainty. For this
reason, Peng [20] introduced his nonlinear Brownian motion and started a systematic
investigation of this object. The nonlinear Brownian motion is defined via a nonlinear
PDE and, heuristically speaking, within each infinitesimal time increment it is allowed
to select its parameters (drift and variance) within a given fixed set. Accordingly, a
nonlinear Feynman-Kac formula makes it possible to compute the worst case expectations
of certain functions of the random process. Several works followed this parametric
nonlinearization approach to Lévy processes, see, e.g., Hu and Peng [14], Neufeld and
Nutz [18], Denk et al. [9] and Kühn [16].

On the other hand, in discrete time where no mathematical limitations force one to
restrict to parametric uncertainty, a more natural and general nonlinearization of a given
(baseline) random walk is of nonparametric nature. We start with a random walk which
is the discrete-time restriction of an Rd-valued Lévy process starting in zero, whose
marginal laws we denote by (µt)t≥0. For instance, µt can be the normal distribution with
mean 0 and variance t in which case we end up with a Gaussian random walk.
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Distributionally robust random walks

For a fixed parameter δ ≥ 0 representing the level of freedom (or uncertainty) and
n ∈ N, the nonlinear random walk with time index T = {0 = t0 < t1 < t2 < · · · } ⊂ R+

is defined as follows: for each time step tn  tn+1, the nonlinear random walk is
allowed to select its transition probability within the neighborhood of size δ∆tn+1 of the
transition probability µ∆tn+1

of our baseline random walk, where ∆tn+1 := tn+1 − tn and
the neighborhood is taken w.r.t. the p-th Wasserstein distance Wp.1 This means that,
conditioned on the event that the nonlinear random walk takes the value x ∈ Rd at time
tn, the worst possible expected value of an arbitrary function f ∈ C0(Rd) at time tn+1 is
given by

S(∆tn+1)f(x) := sup
{∫

Rd

f(x+ y) ν(dy) : ν such thatWp(µ∆tn+1
, ν) ≤ δ∆tn+1

}
.

Recall here that C0(Rd) is the set of continuous function vanishing at infinity. Iterating
this scheme, conditioned on the event that the nonlinear random walk starts in x at time
0, the worst possible expectation at time tn ∈ T is given by

S T(tn)f(x) := S(t1 − t0) ◦ · · · ◦ S(tn − tn−1)f(x). (1.1)

In conclusion, the corresponding processes follow the same heuristics as the nonlinear
Brownian motion and can be seen as a discrete time nonparametric reincarnation thereof.

Regarding the computation of S T we stumble on a recurring scheme in discrete
time: while definitions are mathematically simple, explicit computations are often
very challenging. Here this is evident as S and therefore S T are results of (iterated,
nonparametric, and infinite dimensional) control problems. In the following, we shall
show that when passing from small to infinitesimal time steps, the S T’s give rise to a
nonlinear semigroup and that a computation of the limit is possible via a nonlinear PDE.

For the rest of this article we shall fix p ∈ (1,∞) and assume that our initial Lévy
process has finite p-th moment, i.e.,

∫
Rd |x|p µ1(dx) < ∞. For convenience, for every

n ∈ N consider dyadic numbers Tn := 2−nN0 and set S n(t) := S Tn(tn) ◦ S(t − tn) for
t ≥ 0, where tn ∈ Tn is the closest dyadic number prior to t.

Proposition 1.1 (Semigroup). Both S n and S := limn→∞S n are well-defined and the
family (S (t))t≥0 defines a sublinear semigroup on C0(Rd). More precisely, for every
s, t ≥ 0 and x ∈ Rd,

1. S (t) maps C0(Rd) to itself and S (t) ◦S (s) = S (t+ s),

2. S (t)(·)(x) : C0(Rd)→ R is sublinear, increasing, and maps zero to zero, and S (t)

is contractive, i.e., ‖S (t)f −S (t)g‖∞ ≤ ‖f − g‖∞ for all f, g ∈ C0(Rd).

Now that the semigroup property is established, we can state our main result.

Theorem 1.2 (Feynman-Kac). Let f ∈ C0(Rd) and define u : [0,∞)×Rd → R via u(t, x) :=

S (t)f(x). Then u is a viscosity solution of{
∂tu(t, x) = Aµu(t, ·)(x) + δ|∇u(t, x)| for (t, x) ∈ (0,∞)×Rd,
u(0, x) = f(x) for x ∈ Rd,

where Aµ is the generator of the initial Lévy process.

Here ∇ denotes the spatial derivative. Moreover, the notion of viscosity solution we
consider here is that of [9], and we refer to the discussion before and after Theorem
2.12 below for the definition and comments on uniqueness.

1 For µ, ν ∈ Pp(Rd) (the set of Borel probabilities on Rd with finite p-th moment), define Wp(µ, ν) :=

inf
{ ∫

Rd×Rd |y − x|p γ(dx, dy) : γ ∈ Cpl(µ, ν)
}1/p

where Cpl(µ, ν) is the set of all Borel probabilities on

Rd ×Rd with first and second marginal µ and ν, respectively. Throughout, | · | is the Euclidean norm.
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Distributionally robust random walks

Remark 1.3. Starting with an arbitrary Lévy process, Theorem 1.2 ensures that the
limiting semigroup S corresponds to a nonlinear Lévy process with parametric drift
uncertainty. The interesting feature of Theorem 1.2 is that, even though we consider
nonparametric uncertainty in discrete time leading to robustifications that are struc-
turally unconstrained, in the limit we end up with a process bearing only parametric
uncertainty, which is a drift-perturbed version of the initial Lévy process. For instance, if
we start with a Brownian motion with generator Aµ = 1

2∆, we end up with a g-Brownian
motion with generator 1

2∆+δ|∇|. More generally, if the initial Lévy process is a Brownian
motion with drift γ ∈ Rd and covariance matrix Σ ∈ Rd×d, then a quick computation
shows that the PDE of Theorem 1.2 takes the form

∂tu(t, x) =
1

2

d∑
i,j=1

Σij∂iju(t, x) + max
η∈Γ

d∑
i=1

ηi∂iu(t, x),

where Γ := {η ∈ Rd : |η−γ| ≤ δ}. In case of a g-Brownian motion, the solution of the PDE
can be represented in terms of a g-expectation, see [19]. Likewise, based on the theory
of backward stochastic differential equations with jumps, g-expectations also exist for
certain jump filtrations (e.g., the one generated by a Brownian motion and a Poisson
random measure), see [15, 17, 23]. This leads to corresponding nonlinear processes
with parametric drift uncertainty. Finally, we note that similar drift perturbations also
arise for related scaling limits, see, e.g., [21, Proposition 11].

In the following chapter we consider a convex generalization of the above setting: in
the definition of S(∆tn+1), instead of considering all ν in the δ∆tn+1 neighborhood of
µ∆tn+1

, we take into account all ν but penalized by their distance to µ∆tn+1
. In the limit

this gives a convex semigroup for which the generator includes a convex perturbation in
∇u (instead of the absolute value), see Theorem 2.12.

Finally, let us point out that numerical computation of nonlinear PDEs like the ones
resulting from Theorem 1.2 and Remark 1.3 has received a lot of attention in recent years
and by now efficient methods are available, see, e.g., [5, 22] and references therein.

Possible extensions and related literature. There are several natural variations of
the results in this paper. For instance, one can ask which effect additional constraints
on the measures ν appearing in the definition of S(t) might have. Concretely, what
would happen if one allows only for those ν which (additional to being in a Wasserstein
neighborhood of µt) have the same mean as µt, or if one replaces the Wasserstein
distance by its martingale version [6]. In the latter case, when changing the scaling of
the radius from δt to δt2, one could guess the PDE to be{

∂tu(t, x) = ∆u(t, ·)(x) + δ|∇2u(t, x)| for (t, x) ∈ (0,∞)×Rd,
u(0, x) = f(x) for x ∈ Rd,

in case that the underlying Lévy process is the Brownian motion. However, with the
exact methods of this paper, this can be made rigorous only with a (unnatural) technical
twist in definition of S(t) and understanding the full picture would require considerations
beyond the scope of this paper.

In a similar spirit, it would be interesting to start with transition probabilities (µnt )t
which approximate (µt)t (e.g. a Binomial random walk which converges to a Brownian
motion). A (parametric) variant of this was done by Dolinsky, Nutz, and Soner [10] for
Binomial random walks with freedom in the Bernoulli-parameter. Related, one could
ask whether Donsker-type results hold, i.e., whether the family of laws of the nonlinear
random walks (on the path space) has a limiting family.
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Distributionally robust random walks

Finally, let us highlight the connection to distributionally robust optimization (DRO)
using the Wasserstein distance. In DRO, the basic task consists of computing infλ S(t)fλ,
where (fλ)λ is a parametrized family of function; we refer to [4, 7, 12, 13] for recent
results and applications. Here duality arguments often help to compute the (infinite
dimensional) optimization problem appearing in the definition of S(t). In multi-step
versions of DRO (e.g., time-consistent utility maximization with Markovian endowment
[2]), the computation of S n(t)f is the key element. Related multi-step versions also
occur in the literature on robust Markov chains with interval probabilities (see [11, 25]
and references therein), and in particular on robust Markov decision processes [26, 27].
As S (t)f can be seen as a proxy for S n(t)f for large n, a natural question is whether the
results in the current paper can be used as an approximation tool for these multi-step
versions of DRO. This also motivates studying the speed of convergence S n(t)f → S (t)f .

2 Convex version and proof of main results

Let ϕ : [0,+∞)→ [0,+∞] be a lower semicontinuous, convex, and increasing function
which is not constant and such that ϕ(0) = 0. Assume that x 7→ ϕ(x1/p) is convex,
denote by ϕ∗(y) := supx≥0(xy − ϕ(x)) for y ≥ 0 its convex conjugate, and set ϕ(+∞) :=

ϕ∗(+∞) = +∞. For every f ∈ C0(Rd) and t ≥ 0, we define

S(t)f(x) = sup
ν∈Pp(Rd)

(∫
Rd

f(x+ y) ν(dy)− ϕt(Wp(µt, ν))
)
, (2.1)

where ϕt(·) := tϕ(·/t) for t > 0, ϕ0(a) = +∞ for a > 0, and ϕ0(0) = 0. The results stated
in the introduction will follow from the choice ϕ := +∞1(δ,+∞), in which case ϕ∗(y) = δy

for all y ≥ 0. Notice that the supremum in (2.1) can also be taken over the set

∆f,t := {ν ∈ Pp(Rd) : ϕt(Wp(µt, ν)) ≤ ‖f‖∞ + 1}. (2.2)

As ϕt is increasing and unbounded, this implies that there is a uniform upper bound on
Wp(µt, ν) over ν ∈ ∆f,t. Hence, by the following simple observation, the set ∆f,t is tight,
and therefore the supremum in (2.1) is attained2.

Lemma 2.1. For every ν ∈ Pp(Rd), t ≥ 0, and c > 0, we have that

ν({y ∈ Rd : |y| ≥ c}) ≤ 1

c

(
Wp(µt, ν) +

(∫
Rd

|x|p µt(dx)
)1/p)

.

Proof. An application of Markov’s and Hölder’s inequality implies that ν({y ∈ Rd : |y| ≥
c}) ≤ c−1(

∫
Rd |y|p ν(dy))1/p. The latter equals c−1Wp(δ0, ν), so that the proof is completed

by the triangle inequality forWp.

For further reference, we provide the proof of the following simple observation.

Lemma 2.2. For every c ≥ 0, we have that limt↓0 sup{r ≥ 0 : ϕt(r) ≤ c} = 0.

Proof. By assumption x 7→ ϕ(max{x, 0}1/p) is a convex lower semicontinuous function,
which is not constant equal to zero. Therefore, by the Fenchel-Moreau theorem there
exist a > 0 and b ∈ R, such that ϕ(x1/p) ≥ ax + b for all x ≥ 0. Thus, for every given
r > 0, we conclude that

ϕt(r) = tϕ
(
r
t

)
≥ ta

(
r
t

)p
+ tb.

As p > 1, this term converges to infinity when t converges to zero.

2Indeed, the set ∆f,t is weakly compact by Prokhorov’s theorem and lower semicontinuity of ν 7→
ϕt(Wp(µt, ν)).
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Distributionally robust random walks

Directly from the definition, the operator S(t) has the following properties.

Lemma 2.3. Let t ≥ 0 and f, g ∈ C0(Rd) such that f ≤ g. Then, S(t) is a convex
contraction on C0(Rd), which satisfies S(t)0 = 0, S(t)f ≤ S(t)g. Further, S(t)f has the
same modulus of continuity as f .

Proof. It is clear by definition that S(t) is convex and monotone. Moreover, as inf ϕt = 0,
it follows that S(t)0 = 0. To show that S(t) is a contraction, note that∫

Rd

f(x+ y) ν(dy) ≤
∫
Rd

g(x+ y) ν(dy) + ‖f − g‖∞

for all ν ∈ Pp(Rd) and x ∈ Rd. Hence, S(t)f(x) ≤ S(t)g(x) + ‖f − g‖∞ for all x ∈ Rd, and
changing the role of f and g yields contractivity.

It remains to prove that S(t)f ∈ C0(Rd). First, since f is in particular uniformly
continuous it follows that S(t)f is also uniformly continuous. To that end, let ε > 0 be
arbitrary and fix δ > 0 such that |f(x)− f(y)| ≤ ε for x, y ∈ Rd with |x− y| ≤ δ. Then, for
every such pair x, y, contractivity of S(t) implies that

S(t)f(x) = S(t)f(x+ ·)(0)

≤ S(t)f(y + ·)(0) + ‖f(x+ ·)− f(y + ·)‖∞
≤ S(t)f(y) + ε.

Replacing the role of x and y shows that S(t)f is uniformly continuous with the same
modulus of continuity as f .

Second, we prove that S(t)f is vanishing at infinity. Let ε > 0 be arbitrary and fix a ≥ 0

such that |f(x)| ≤ ε for all x ∈ Rd with |x| ≥ a. SinceWp(µt, ν) is uniformly bounded over
ν ∈ ∆f,t, it follows form Lemma 2.1 that there is b > 0 such that ν({y ∈ Rd : |y| > b}) ≤ ε
uniformly over ν ∈ ∆f,t. Hence,

S(t)f(x) ≤ sup
ν∈∆t

∫
Rd

f(x+ y)1{|y|≤b} + f(x+ y)1{|y|>b} ν(dy) ≤ ε+ ε‖f‖∞

for all x ∈ Rd such that |x| ≥ a + b. For the reverse inequality, use that S(t)f(x) ≥∫
Rd f(x + y)µt(dy) for all x ∈ Rd, which follows from ϕ(0) = 0. Therefore the same

arguments as above show that S(t)f(x) ≥ −ε− ε‖f‖∞ for all x ∈ Rd such that |x| ≥ a+ b.
As ε was arbitrary, the claim follows.

At this point we know that S(t) maps C0(Rd) to itself, which allows us to define
S(t) ◦ S(s), or more generally S n as in (1.1). The following is the key result for our
analysis, and allows in particular to define the limit limn→∞S n.

Lemma 2.4. For every 0 < s < t and f ∈ C0(Rd), we have that

S(s)S(t− s)f ≤ S(t)f.

Proof. Fix f ∈ C0(Rd) and x ∈ Rd. Let νs(db) ∈ Pp(Rd) such that

S(s)S(t− s)f(x) =

∫
Rd

S(t− s)f(x+ b) νs(db)− ϕs(Wp(µs, νs))

and let γs(da, db) ∈ Pp(Rd × Rd) be an optimal coupling between µs(da) and νs(db).
Similarly, for each b ∈ Rd, let νbt−s(de) ∈ Pp(Rd) be such that

S(t− s)f(b) =

∫
Rd

f(b+ e) νbt−s(de)− ϕt−s(Wp(µt−s, ν
b
t−s))
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Distributionally robust random walks

and let γbt−s(dc, de) ∈ Pp(Rd ×Rd) be an optimal coupling between µt−s(dc) and νbt−s(de).
Now define the measure γt(dy, dz) ∈ Pp(Rd ×Rd) by∫

Rd×Rd

h(y, z) γt(dy, dz) :=

∫
Rd×Rd

∫
Rd×Rd

h(a+ c, b+ e) γbt−s(dc, de) γs(da, db)

for all h : Rd ×Rd → R bounded and Borel (we have ignored the fact that b 7→ γbt−s needs
to be γs-measurable for this expression to make sense, but this can be shown by usual
measurable selection arguments). Denoting by νt(dz) := γt(dz) the second marginal of
γt, it holds

S(t)f(x) ≥
∫
Rd

f(x+ z) νt(dz)− ϕt(Wp(µt, νt)).

Further, γt(dy, dz) is a coupling between µt(dy) and νt(dz). Indeed, by definition γt(dz) =

νt(dz), and γt(dy) = µt(dy) as

γt(A×Rd) =

∫
Rd×Rd

∫
Rd×Rd

1A(a+ c) γbt−s(dc, de) γs(da, db)

=

∫
Rd

∫
Rd

1A(a+ c)µt−s(dc)µs(da) = (µs ∗ µt−s)(A) = µt(A)

for every Borel set A ⊂ Rd. Similarly, we obtain

νt(B) = γt(R
d ×B) =

∫
Rd

∫
Rd

1B(b+ e) νbt−s(de) νs(db)

for every Borel set B ⊂ Rd. Moreover, by definition of the p-th Wasserstein distance it
holds

Wp(µt, νt) ≤
(∫

Rd×Rd

|y − z|p γt(dy, dz)
)1/p

=
(∫

Rd×Rd

∫
Rd×Rd

|(b− a) + (e− c)|p γbt−s(dc, de)γs(da, db)
)1/p

≤
(∫

Rd×Rd

|b− a|p γs(da, db)
)1/p

+
(∫

Rd×Rd

∫
Rd×Rd

|e− c|p γbt−s(dc, de) γs(da, db)
)1/p

.

Denote by I the first term in the above equation and by J the second one. By definition
of ϕt = tϕ(·/t), together with the fact that ϕ is convex and increasing, it holds

ϕt(Wp(µt, νt)) ≤ tϕ
(s
t

1

s
I +

t− s
t

1

t− s
J
)

≤ sϕ
(1

s
I
)

+ (t− s)ϕ
( 1

t− s
J
)

= ϕs(I) + ϕt−s(J).

Moreover, convexity of x 7→ ϕ(x1/p) implies convexity of x 7→ ϕt−s(x
1/p). Therefore, by

Jensen’s inequality, we obtain

ϕt−s(J) ≤
∫
Rd×Rd

ϕt−s

((∫
Rd×Rd

|e− c|p γbt−s(dc, de)
)1/p

)
γs(da, db).

Recalling the definitions of I and J and that γs and γbt−s are optimal couplings, we
conclude

ϕt(Wp(µt, νt)) ≤ ϕs(Wp(µs, νs)) +

∫
Rd

ϕt−s(Wp(µt−s, ν
b
t−s)) νs(db).
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Distributionally robust random walks

Putting everything together, we obtain

S(t)f(x) ≥
∫
Rd

f(x+ z) νt(dz)− ϕs(Wp(µs, νs))−
∫
Rd

ϕt−s(Wp(µt−s, ν
b+x
t−s )) νs(db)

=

∫
Rd

(∫
Rd

f(x+ b+ e) νb+xt−s (de)− ϕt−s(Wp(µt−s, ν
b+x
t−s ))

)
νs(db)− ϕs(Wp(µs, νs))

= S(s)S(t− s)f(x)

This completes the proof.

Lemma 2.5. For all f ∈ C0(Rd), t ≥ 0 and n ∈ N, we have that S n+1(t)f ≤ S n(t)f . Fur-
ther, S n(t) is a contraction on C0(Rd), and S n(t)f has the same modulus of continuity
as f .

Proof. Both statements follow from Lemma 2.4 (respectively Lemma 2.3) together with
an induction.

Corollary 2.6. Let t ≥ 0 and f, g ∈ C0(Rd) such that f ≤ g. Then, the pointwise limit
S (t)f := limn→∞S n(t)f exists and is in fact uniform. Moreover, S (t) is a convex
contraction on C0(Rd) such that S (t)0 = 0 and S (t)f ≤ S (t)g.

Proof. We will use the semigroup (Sµ(t))t≥0 corresponding to our initial Lévy process,
given by Sµ(t)f(x) :=

∫
f(x+ y)µt(dy) and often use that it is a Feller semigroup (see,

e.g., [1, Theorem 3.1.9]).

By Lemma 2.5, the sequence (S n(t)f)n∈N is decreasing, hence the limit S (t)f =

limn→∞S n(t)f exists pointwise. Also, the limit S (t)f is vanishing at infinity. Indeed,
from the semigroup property of (Sµ(t))t≥0, it follows that Sµ(t)f ≤ S n(t)f ≤ S(t)f for
all n ∈ N, and therefore Sµ(t)f ≤ S (t)f ≤ S(t)f . Since by Lemma 2.3, S(t)f is vanishing
at infinity, and (Sµ(t))t≥0 is a Feller semigroup, we conclude that S (t)f is vanishing at
infinity. Further, by Lemma 2.5, the sequence S n(t)f is uniformly equicontinuous on
every compact subset of Rd, which by the Arzelà-Ascoli theorem and the fact that S (t)f

is vanishing at infinity, implies that limn→∞ ‖S n(t)f −S (t)f‖∞ = 0.

Finally, by induction over n ∈ N, it follows from Lemma 2.3 that S n(t) is a con-
vex contraction on C0(Rd), which satisfies S n(t)0 = 0 and S n(t)f ≤ S n(t)g. These
properties remain true for the limit S (t). The proof is complete.

Denote by Xt ∼ µt the initial Lévy process. In the following, we shall often use that
t 7→ µt is continuous w.r.t. Wp (at t = 0). To see that this is true, use the assumption
E[|X1|p] <∞ and [24, Theorem 25.18] to obtain E[supt∈[0,1] |Xt|p] <∞. As X has càdlàg
paths, dominated convergence implies thatWp(µt, δ0)p =

∫
Rd |x|p µt(dx) = E[|Xt|p]→ 0

as t ↓ 0.

The next result states the strong continuity of the family (S (t))t≥0 at zero.

Lemma 2.7. For every f ∈ C0(Rd), we have that

lim
t↓0
‖S (t)f − f‖∞ = 0.

Proof. Let f ∈ C0(Rd) and ε > 0.

We first show an upper bound, namely that there is t0 > 0 such that S (t)f ≤ f + 2ε

for all t < t0. As functions in C0(Rd) are uniformly continuous, there is δ > 0 such that
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|f(x+ y)− f(x)| ≤ ε for all x, y ∈ Rd with |y| ≤ δ. Then,

S (t)f(x) ≤ S(t)f(x) = sup
ν∈∆f,t

(∫
Rd

f(x+ y)ν(dy)− ϕt(Wp(µt, ν))
)

≤ sup
ν∈∆f,t

(∫
Rd

f(x+ y)1{|y|≤δ} + f(x+ y)1{|y|>δ} ν(dy)
)

≤ f(x) + ε+ ‖f‖∞ sup
ν∈∆f,t

ν({y ∈ Rd : |y| > δ}).

(2.3)

By Lemma 2.2, it holds that

lim
t↓0

sup
ν∈∆f,t

Wp(µt, ν) ≤ lim
t↓0

sup
{
r ≥ 0 : ϕt(r) ≤ ‖f‖∞ + 1

}
= 0.

As argued before this lemma, we have limt↓0
∫
Rd |y|p µt(dy) = 0 and thus it follows from

Lemma 2.1 that
lim
t↓0

sup
ν∈∆f,t

ν({y ∈ Rd : |y| > δ}) = 0,

which yields the upper bound.
As for the lower bound, similarly as in the proof of Corollary 2.6, we make use of the

fact that Sµ ≤ S . Since (Sµ(t))t≥0 is a Feller semigroup, it holds f − ε ≤ S (t)f for all
0 ≤ t < t0 for a suitable t0 > 0. This completes the proof.

For later reference, let us point out that the same proof as given for Lemma 2.7 yields
the following result.

Corollary 2.8. We have that limn→∞ ‖S n(tn)f − f‖∞ = 0 for all f ∈ C0(Rd) and all
sequences (tn)n∈N in [0,∞) with limn→∞ tn = 0.

Lemma 2.9. Let t, tn ≥ 0 with tn ∈ Tn, tn ≤ t, and g, gn ∈ C0(Rd) for all n ∈ N. If
limn→∞ tn = t and limn→∞ ‖gn − g‖∞ = 0, then

lim
n→∞

‖S n(tn)gn −S (t)g‖∞ → 0.

Proof. As S n(t) = S n(tn)S n(t− tn) by definition, the triangle inequality implies that

‖S (t)g −S n(tn)gn‖∞ ≤ ‖S (t)g −S n(t)g‖∞
+ ‖S n(tn)S n(t− tn)g −S n(tn)g‖∞ + ‖S n(tn)g −S n(tn)gn‖∞.

By Corollary 2.6 the first term converges to zero as n→∞. As for the middle term, by
Lemma 2.5 we have that S n(tn) is a contraction, so that

‖S n(tn)S n(t− tn)g −S n(tn)g‖∞ ≤ ‖S n(t− tn)g − g‖∞.

The latter converges to zero by Corollary 2.8. Again by Lemma 2.5, the last term
converges to zero as n→∞. This completes the proof.

Now, we are ready to state our first main result (the convex generalization of Proposi-
tion 1.1).

Proposition 2.10. The family (S (t))t≥0 is a strongly continuous, convex, monotone and
normalized contraction semigroup on C0(Rd), i.e., for every s, t ≥ 0 and f ∈ C0(Rd), we
have that

(i) S (t) : C0(Rd)→ C0(Rd) is a convex and monotone contraction such that S (t)0 = 0,

(ii) S (0)f = f ,
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(iii) S (t) ◦S (s) = S (t+ s),

(iv) limt↓0 ‖S (t)f − f‖∞ = 0.

Proof. In view of Corollary 2.6 and Lemma 2.7, it remains to prove the semigroup
property S (t) ◦ S (s) = S (t + s). To that end, fix some f ∈ C0(Rd) and s, t ≥ 0 and
set denote by sn, tn ∈ Tn the closest dyadic elements prior to s and t, respectively. By
Lemma 2.9 (applied with g = gn = f) we have

S (t+ s)f = lim
n→∞

S n(tn + sn)f = lim
n→∞

S n(tn) ◦S n(sn)f,

where the last equality follows by definition of S n. Further, Lemma 2.9 also implies
that S n(sn)f converges uniformly to S (s)f . Therefore, we may apply Lemma 2.9 again
(with g = S (s)f , and gn = S n(sn)f ) and obtain

lim
n→∞

S n(tn) ◦S n(sn)f = S (t) ◦S (s)f.

This completes the proof.

Proposition 2.11. For every f ∈ D(Aµ) ∩ C1
0 (Rd), we have that

A f := lim
t↓0

S (t)f − f
t

= Aµf + ϕ∗(|∇f |)

and the limit is uniform.

Proof. Fix f ∈ D(Aµ) ∩ C1
0 (Rd).

(a) We start by showing that

S (t)f − f ≥ tAµf + tϕ∗(|∇f |) + o(t) as t ↓ 0. (2.4)

To that end, let t > 0. For notational simplicity we assume that t is a dyadic number,
say t = k02−n0 for some k0, n0 ∈ N; the general case (is only notationally heavier but)
works analogously. Then, S n0(t) is just the convolution of S(2−n0) with itself k0 times.
For every x ∈ Rd, let r = rx ∈ Rd with |r| = 1 and a = ax ≥ 0 be such that

r∇f(x) = |∇f(x)| and ϕ∗(|∇f(x)|) = a|∇f(x)| − ϕ(a), (2.5)

where the product between elements in Rd is understood as the scalar product. Note
that such r exists as | · | is its own dual norm, and such a exists as limy→∞ ϕ(y)/y =∞
which follows from the assumption that y 7→ ϕ(y1/p) is convex. Moreover, since |∇f(x)|
is uniformly bounded over x ∈ Rd, the same holds for a = ax.

Now, for each n ≥ n0, set

νn2−n := µ2−n ∗ δa2−nr.

Then, one can compute thatWp(µ2−n , ν2−n) = a2−n, and therefore

S(2−n)g(y) ≥
∫
Rd

g(y + z + a2−nr)µ2−n(dz)− ϕ2−n(a2−n) (2.6)

for all g ∈ C0(Rd) and y ∈ Rd. Note that t = kn2−n for kn := k02n−n0 , and that the
measure which results in taking the convolution of ν2−n with itself kn times, is equal to
µt ∗ δatr. As further,

knϕ2−n(a2−n) = k02n−n02−nϕ(a) = tϕ(a) = ϕt(at)

ECP 26 (2021), paper 28.
Page 9/13

https://www.imstat.org/ecp

https://doi.org/10.1214/21-ECP393
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


Distributionally robust random walks

and each ϕ2−n(a2−n) does not depend on the state variable, estimating every S(2−n)

which appears in the definition of S n(t) (as the convolution of S(2−n) with itself kn
times) by (2.6) gives

S n(t)f(x) ≥
∫
Rd

f(x+ y + atr)µt(dy)− ϕt(at)

for all n ≥ n0. The right hand side does not depend on n, so that the definition of S (t)f

as the limit of S n(t)f therefore implies that

S (t)f(x)− f(x) ≥
∫
Rd

f(x+ y)− f(x)µt(dy)

+

∫
Rd

f(x+ y + atr)− f(x+ y)µt(dy)− ϕt(at) =: I1 + I2.

By definition of the infinitesimal generator Aµ of (Sµ(t))t≥0 and f ∈ D(Aµ), the first
term I1 equals tAµf + o(t) (uniformly over x ∈ Rd). The second term I2 is estimated by a
Taylor’s expansion: for some (measurable) ξ = ξ(x, y) with |ξ| ≤ ta, we may write

I2 =

∫
Rd

atr∇f(x+ y + ξ(x, y))µt(dy)− tϕ(a)

≥ ar∇f(x) + o(1)− tϕ(a),

uniformly over x ∈ Rd, where we need to justify the last step. Indeed, this follows as
in the proof of Lemma 2.7 by splitting the µt(dy) integral into two parts (close to zero
{|y| ≤ b} and its complement {|y| > b}), and using uniform continuity of ar∇f(x + ·)
together with the fact that µt({|y| > b})→ 0 and limt↓0 supx,y∈Rd |ξ(x, y)| = 0 as a = ax is
bounded uniformly over x ∈ Rd. Recalling (2.5) we conclude that∫

Rd

f(x+ y + atr)− f(x+ y)µt(dy)− ϕt(at) ≥ tϕ∗(|∇f(x)|) + o(t)

uniformly over x ∈ Rd, which shows (2.4).

(b) It remains to show that

S (t)f − f ≤ tAµf + tϕ∗(|∇f |) + o(t). (2.7)

Since
∫
Rd f(x + y)µt(dy) − f(x) = tAµf(x) + o(t) as f ∈ D(Aµ) and S (t)f ≤ S(t)f by

Corollary 2.6, it holds

S (t)f(x)− f(x) ≤ S(t)f(x)−
∫
Rd

f(x+ y)µt(dy) + tAf(x) + o(t)

= sup
u,ν

(∫
Rd

f(x+ z) ν(dz)−
∫
Rd

f(x+ y)µt(dy)− tϕ
(
u
t

))
+ tAf(x) + o(t)

uniformly over x ∈ Rd, where the supremum is taken over all u ≥ 0 and ν ∈ Pp(Rd)
with Wp(µt, ν) = u. Actually, for every t ≥ 0, one may restrict to those u ≥ 0 for which
tϕ(u/t) ≤ ‖f‖∞ + 1. As ϕ grows faster than linear, this implies that there is some u0

(independent of t) for which the latter implies u ≤ u0t.

Now, fix 0 ≤ u ≤ u0t and ν ∈ Pp(Rd) with Wp(µt, ν) = u, and a coupling π(dy, dz)

between µt and ν which is optimal forWp(µt, ν). By Taylor’s theorem,

f(x+ z)− f(x+ y) = ∇f(x+ y + ξ)(z − y)
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for all x, y, z ∈ Rd, where ξ = ξ(x, y, z) is a measurable function such that |ξ| ≤ |z − y|.
Hence, it follows from Hölder’s inequality that∫

Rd

f(x+ z) ν(dz)−
∫
Rd

f(x+ y)µt(dy) =

∫
Rd

∇f(x+ ξ)(z − y)π(dy, dz)

≤
(∫

Rd×Rd

|∇f(x+ ξ)|p
∗
π(dy, dz)

)1/p∗(∫
Rd×Rd

|z − y|p π(dy, dz)
)1/p

,

where p∗ = p/(p− 1) is the conjugate Hölder exponent of p. For every 0 ≤ u ≤ u0t and ν
as above, it follows fromWp(δ0, ν) ≤ Wp(δ0, µt) + u0t = o(1), that(∫

Rd×Rd

|∇f(x+ ξ)|p
∗
π(dy, dz)

)1/p∗

≤ |∇f(x)|+ o(1)

uniformly over x ∈ Rd, again by the same arguments as in the proof of Lemma 2.7.
Putting everything together yields

1

t

(
S(t)f(x)−

∫
Rd

f(x+ y)µt(dy)
)

≤ sup
0≤u≤u0t

(u
t

(|∇f(x)|+ o(1))− ϕ
(u
t

))
≤ ϕ∗(|∇f(x)|)

uniformly over x ∈ Rd, where the last inequality follows from the definition of the convex
conjugate ϕ∗. This shows (2.7) and therefore completes the proof.

This is a good place to mention the recent paper [3] in which related ideas as in
Proposition 2.11 are applied in the context of stochastic optimization. With Proposition
2.11 at our disposal, we can finally prove our main result (Theorem 1.2), or rather its
convex generalization (Theorem 2.12 below).

Before doing so, let us recall the notion of viscosity solution that we use: denote by
C1

0 (Rd) the space of all continuously differentiable functions f ∈ C0(Rd) whose gradient
is vanishing at infinity, and call v : (0,∞) → C0(Rd) test function if it is differentiable
(w.r.t. the supremum norm) and satisfies v(t) ∈ D(Aµ) ∩ C1

0 (Rd) for every t ∈ (0,∞).
Then, following [9], we say that a continuous function u : [0,∞) → C0(Rd) is a

viscosity subsolution of{
∂tu(t, x) = A u(t, x) for (t, x) ∈ (0,∞)×Rd,
u(0, x) = f(x) for x ∈ Rd,

if for every (t, x) ∈ (0,∞) × Rd and every test function v satisfying u ≤ v and v(t, x) =

u(t, x), it holds that ∂tv(t, x) ≤ A v(t, x). Similarly, u is called viscosity supersolution if
the above holds with ‘≤’ replaced by ‘≥’ at both instances, and a viscosity solution if it is
both a viscosity supersolution and subsolution.

As a consequence of the previous result we derive the following:

Theorem 2.12. Let f ∈ C0(Rd) and define u : [0,∞) × Rd → R via u(t, x) := S (t)f(x).
Then u is a viscosity solution of{

∂tu(t, x) = Aµu(t, x) + ϕ∗(|∇u(t, x)|) for (t, x) ∈ (0,∞)×Rd,
u(0, x) = f(x) for x ∈ Rd.

(2.8)

Proof. To show that u is a viscosity subsolution, let v be a test function such that u ≤ v
and v(t, x) = u(t, x) for some (t, x) ∈ (0,∞)×Rd. Since v is differentiable at t there exists
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∂tv(t) ∈ C0(Rd) such that v(t+ h) = v(t) + h∂tv(t) + o(h) for |h| → 0. Similar to the proof
of Lemma 2.7 it follows that

S (h)
(
v(t)− h∂tv(t) + o(h)

)
− S(h)(v(t)) = −h∂tv(t) + o(h)

for |h| → 0. Hence, for h > 0 small enough, using Proposition 2.10, we have that

0 =
S (h)S (t− h)f −S (t)f

h
=

S (h)u(t− h)− u(t)

h
≤ S (h)v(t− h)− u(t)

h

=
S (h)

(
v(t)− h∂tv(t) + o(h)

)
−S (h)v(t)

h
+

S (h)v(t)− u(t)

h

= −∂tv(t) +
S (h)v(t)− v(t)

h
+
v(t)− u(t)

h
+ o(h).

In particular, since h−1(S (h)v(t, x) − v(t, x)) → A v(t, x) uniformly over x ∈ Rd by
Proposition 2.11, and v(t, x) = u(t, x) by assumption, we conclude that 0 ≤ −∂tv(t, x) +

A v(t, x). This shows that u is a viscosity subsolution of (2.8). The arguments that u is a
viscosity supersolution follows along the same lines successively replacing ‘≤’ by ‘≥’.

Finally, we sketch how uniqueness of the solution of (2.8) in Theorem 2.12 may be
obtained. Under certain conditions on the initial Lévy process, one obtains from [14,
Corollary 53] uniqueness of the viscosity solution (2.8) by using the space C2,3

b ((0,∞)×
Rd) as test functions. This requires an extension of the semigroup (S (t))t≥0 to the space
BUC(Rd) of all bounded and uniformly continuous functions, which may be achieved
via monotone approximation and continuity from above of the operators S (t), t ≥ 0,
see also [8, Remark 5.4] Then, by adapting Proposition 2.11, it follows that Theorem
2.12 also holds for the test functions v : (0,∞)→ BUC(Rd) which are differentiable and
v(t) ∈ BUC2(Rd) for all t ≥ 0, where BUC2(Rd) denotes the space of all functions which
are twice differentiable with bounded uniformly continuous derivatives up to order 2.
Once this is done, the results in [14] may be used, since C2,3

b ((0,∞)×Rd) is a subset of
the considered test functions, see [9, Remark 2.7].
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