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A Bayesian Nonparametric Latent Space
Approach to Modeling Evolving Communities in

Dynamic Networks∗

Joshua Daniel Loyal† and Yuguo Chen‡

Abstract. The evolution of communities in dynamic (time-varying) network data
is a prominent topic of interest. A popular approach to understanding these dy-
namic networks is to embed the dyadic relations into a latent metric space. While
methods for clustering with this approach exist for dynamic networks, they all as-
sume a static community structure. This paper presents a Bayesian nonparametric
model for dynamic networks that can model networks with evolving community
structures. Our model extends existing latent space approaches by explicitly mod-
eling the additions, deletions, splits, and mergers of groups with a hierarchical
Dirichlet process hidden Markov model. Our proposed approach, the hierarchical
Dirichlet process latent position cluster model (HDP-LPCM), incorporates tran-
sitivity, models both individual and group level aspects of the data, and avoids
the computationally expensive selection of the number of groups required by most
popular methods. We provide a Markov chain Monte Carlo estimation algorithm
and demonstrate its ability to detect evolving community structure in a network
of military alliances during the Cold War and a narrative network constructed
from the Game of Thrones television series.

Keywords: longitudinal networks, mixture model, nonparametric Bayes, social
networks, statistical network analysis.

1 Introduction

Many naturally occurring networks contain discrete changes in community structure.
When high school students move across the country for college, old friendship groups
often dissolve, which leads to the formation of new collegiate friendship groups. After
World War II, the Eastern and Western Blocs emerged and dominated the network of
global alliances. However, after the fall of the Soviet Union, these blocs reshuffled into
new political alliances. When exposed to external stimuli, regions of the brain activate
before becoming dormant. By identifying these community-level phase changes, we can
gain valuable insight into the rich processes that generate dynamic (longitudinal or
time-varying) networks.

In this work, we address this problem of inferring discrete changes in a network’s
community structure. See Figure 1 for a concrete example. In this case, a dynamic
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Figure 1: Adjacency matrices from a dynamic sequence of networks that exhibit an
evolving community structure. At t = 4 the groups split from two into six groups,
then at t = 7 the groups merge into four communities. The rows and columns of each
adjacency matrix have been sorted according to the ground truth labels. These networks
were simulated according to the procedure described in Section 5.4.

network’s community structure contains two groups during the first three time points,
splits into six groups at the fourth time point, and then merges into four groups during
the seventh time point. These additions, deletions, splits, and mergers of groups in
dynamic networks is our primary object of interest. For brevity, we refer to these group-
level dynamics as a network’s evolving community structure. Note that this does not
refer to individual actors (or nodes) moving between existing communities. While we
will model such actor-level dynamics, our primary goal is to infer changes in community
structure that occur on a larger macro scale.

We adopt the latent space approach to network modeling to infer an evolving com-
munity structure in dynamic networks. Initially developed in Hoff et al. (2002), latent
space models (LSMs) embed actors within a Euclidean space (the distance model) or a
hypersphere (the projection model). Closeness in the latent space increases the proba-
bility that the two actors form an edge in the observed network. For this reason, one
interprets the proximity of two actors in the latent space as an indication that they
have similar characteristics. The LSM’s popularity stems from the intuitive meaning of
the embeddings and its ability to naturally incorporate desirable sociological features
such as homophily, reciprocity, and transitivity. Sarkar and Moore (2005) and Sewell and
Chen (2015) extended the distance model to undirected and directed dynamic networks,
respectively.

The latent space model was first applied to the community detection problem in the
case of a single static network by Handcock et al. (2007). Their proposed latent position
cluster model (LPCM) uses a Gaussian mixture model to cluster the latent positions
embedded according to the Euclidean distance model. This approach assumes that a
cluster of actors in the latent space corresponds to a densely connected community
in the network. Sewell and Chen (2017) extended the LPCM to dynamic networks in
which the number of communities does not change over time. Their approach allows
the actors to transition between these fixed communities by endowing the actor’s latent
trajectories with autoregressive hidden Markov model (AR-HMM) dynamics.

The following two limitations make the existing LPCM for dynamic networks inad-
equate for inferring an evolving community structure: (1) the number of communities
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must remain fixed over time, and (2) the number of communities must be set a priori.
The first shortcoming implies that the existing LPCM cannot allow the number of com-
munities to change over time so that inference over evolving communities is not possible.
The second shortcoming means that uncertainty in the community structure is not as-
sessed in a fully Bayesian way, which is essential in most applications where multiple
clusterings fit the data well. The inability of LPCMs to handle time-varying groups in
dynamic networks motivates our investigation into a suitable Bayesian methodology.

In this work, we propose a Bayesian nonparametric model that addresses the short-
comings outlined in (1) and (2). As in Sewell and Chen (2017), we model the actor’s
trajectories through the latent space as a collection of independent and identically dis-
tributed (iid) AR-HMMs with Gaussian emissions. However, unlike their approach, we
remove the restriction that the hidden label Markov chain is homogeneous. Instead, we
propose a model with time-inhomogenous transition distributions. This modification
provides us with the flexibility to model the additions, deletions, splits, and mergers
of communities. Furthermore, we place a hierarchical Dirichlet process (HDP) prior on
these time-inhomogenious transition distributions. This nonparametric prior produces
fully Bayesian inference over the number of communities. Since our approach combines
the advantages of the HDP with the LPCM for modeling dynamic networks, we refer
to our model as the hierarchical Dirichlet process latent position cluster model (HDP-
LPCM). To the best of our knowledge, there is no other latent space approach that
accomplishes our modeling criteria.

The rest of this paper is organized as follows. Section 2 reviews other Bayesian non-
parametric approaches for modeling evolving communities. In Section 3, we describe
the hierarchical Dirichlet process latent position cluster model (HDP-LPCM), our pro-
posed Bayesian nonparametric method for modeling evolving communities in dynamic
networks. In Section 4, we outline our Metropolis-Hastings within Gibbs estimation pro-
cedure and our methodology for posterior summarization. We demonstrate the empirical
performance of our proposed method through various simulation studies in Section 5.
In Section 6, we use our model to analyze two real-world dynamic networks: a network
of military alliances during the Cold War (Gibler, 2009b) and a narrative network con-
structed from the Game of Thrones television series (Beveridge and Chemers, 2018).
Section 7 contains a discussion.

2 Related Methods

Although the latent space methodology has not previously incorporated an evolving
community structure, the statistical modeling of varying communities has a long history
in the broader network literature. For brevity, we focus on Bayesian nonparametric
approaches because they are most related to our work. We restrict the discussion to
the three most popular statistical network models: stochastic block models (SBMs),
mixed-membership stochastic block models (MMSBMs), and latent feature models.

For stochastic block models, Kemp et al. (2006) introduced the infinite relational
model (IRM), which uses a Dirichlet process to infer the number of blocks in the tradi-
tional stochastic block model. Ishiguro et al. (2010) extended this work to longitudinal
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networks in their dynamic infinite relational model (dIRM). Similar to our work, the
dIRM assumes the block memberships form a time-inhomogeneous Markov chain. For
multiplex networks, Paez et al. (2019) proposed the Hierarchical SBM (HSBM), which
uses an HDP to pool community structure across layers. Although the authors apply
the HSBM to dynamic networks, the model fails to capture essential autocorrelations
in an actor’s community assignments by assuming they are independent across time.

In the mixed-membership literature, Fan et al. (2015) introduced the dynamic infi-
nite mixed-membership stochastic block model. Their model also utilizes the hierarchical
Dirichlet process framework to extend the original mixed-membership model (Airoldi
et al., 2008; Fu et al., 2009; Ho et al., 2011) to the dynamic setting. In contrast to our
method, they do not assume an HMM structure and only use the HDP to re-sample the
mixed-membership vectors at every time step.

Finally, in the latent feature modeling literature, Kim and Leskovec (2013) in-
troduced the nonparametric multi-group membership model. They utilize a distance-
dependent Indian buffet process (dd-IBP) that assigns each actor a latent binary feature
vector. This nonparametric prior can infer an evolving number of binary features.

While some of these competing approaches have addressed shortcomings (1) and (2),
LPCMs have many appealing advantages that make our extension worthwhile. Foremost
is the LPCM’s ability to capture network structures on multiple scales. Unlike SBMs,
where the same within and between block probabilities are shared by all actors in a
group, LPCMs allow for heterogeneous connectivity patterns due to an actor’s local po-
sition. Furthermore, unlike other methods such as MMSBMs, the latent space provides
an interpretable visualization of the entire network. These visualizations allow domain
experts to make essential assessments and critiques of the statistical methodology.

3 The HDP Latent Position Cluster Model

We consider binary relational data between n individuals recorded over T time periods.
These relations are collected in a sequence of n × n binary adjacency matrix Yt, t =
1, . . . , T , where the entries Yijt indicate the presence (Yijt = 1) or absence (Yijt = 0) of
an edge between individuals i and j at time t. For clarity, we only consider undirected
random graphs without self-loops, so that Yt is a symmetric matrix with zeros on the
diagonal. The extension of our model to directed networks or networks with weighted
edges is straightforward and discussed in Section 7.

To each of the n individuals, we associate a latent (unobserved) position that may
vary through time in a p-dimensional Euclidean latent space. We represent the latent
position of individual i at time t with the vector-valued random variable Xi

t ∈ R
p.

In addition, we collect a snapshot of all individual latent positions at time t in the
n × p matrix Xt = (X1

t , . . . ,X
n
t )

′. Like the traditional LPCM, we assign each actor to
a latent group at each time point. Note that their assignment may change over time.
However, unlike the LPCM, we assume that the number of groups changes over time
to accommodate the network’s evolving community structure. We use G to denote the
total number of groups in the network over all observational periods. We refer to a
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group that contains at least one actor at time t as an active group at time t. We use
Gt ⊆ {1, . . . , G} to indicate the set of all active groups at time t. Note that under the
assumption of an evolving community structure, Gt is a random set and may grow or
shrink over time. We encode the latent group membership of individual i at time t with
the integer-valued random variable Zi

t ∈ Gt. The collection of group assignments for all
individuals at time t is summarized by the n-dimensional vector Zt = (Z1

t , . . . , Z
n
t )

′.

Common to the latent space literature, we assume that the latent community labels
only play a role in the distribution of the latent positions. Formally, we assume that
the formation of edges in the dynamic networks Y1:T is conditionally independent of
the actor labels Z1:T given the latent positions X1:T , i.e., Y1:T ⊥ Z1:T | X1:T . Note
that throughout the remainder of this work, we will use the notation A1:K to refer
to the sequence (A1, A2, . . . , AK). This allows us to decompose the joint probability
distribution as follows:

P(Y1:T ,X1:T ,Z1:T ) = P(Y1:T | X1:T )P(X1:T ,Z1:T ). (1)

This independence assumption says that the probability of a tie is solely determined by
the underlying latent positions of the actors. This decomposition is consistent with the
latent space clustering idea described earlier. Specifically, the notion that an underlying
cluster of actors in the latent space results in observed communities. We believe such a
generative model is natural for modeling communities in networks. For example, friend
groups often form due to their members having similar interests or characteristics.

3.1 The Euclidean Distance Model

As in Hoff et al. (2002), we posit that the probability of an edge forming between actors
increases as the Euclidean distance between actors decreases. Let dijt = ‖Xi

t − Xj
t‖2

denote the Euclidean distance between actors i and j at time t. A conventional link
between the conditional probability of forming an edge and dijt is the logistic regression
model:

P(Yijt = 1 | Xt,ψ) = logit−1(ηijt) =
exp(ηijt)

1 + exp(ηijt)
, (2)

where ηijt is a linear predictor that depends on the distances dijt and the vector ψ
holds any additional parameters. A sequence of conditional independence assumptions
results in the full network likelihood. First, we assume that the longitudinal networks
are conditionally independent given the latent positions, i.e., Yt ⊥ Ys | X1:T for all s, t ∈
{1, . . . , T}. Second, we posit that edges between actors form independently conditioned
on their latent positions at each time point. Under these assumptions, the likelihood of
the adjacency matrices factors as a product over the networks at each time point and
the set of dyads D:

P(Y1:T | X1:T ,ψ) =

T∏
t=1

∏
(i,j)∈D

P(Yijt = yijt | Xt,ψ) =

T∏
t=1

∏
(i,j)∈D

exp(yijtηijt)

1 + exp(ηijt)
. (3)

In this work, we focus on undirected networks without self-loops for which

D = {(i, j) : 1 ≤ i ≤ n, j < i} (4)
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and the linear predictor takes the form

ηijt = β0 − dijt (5)

so that ψ = {β0}. Various versions of this likelihood have been proposed, such as in
Sarkar and Moore (2005), Krivitsky et al. (2009), and Sewell and Chen (2015). The
intercept parameter β0 is sometimes referred to as the abundance. This is because
higher values of β0 result in a higher probability of forming edges.

3.2 An AR-HMM for Latent Space Dynamics

Recall that our goal is to endow the dynamics of the latent space with a probabilistic
structure that allows for inference over an evolving collection of communities. To accom-
plish this goal, we must place an adequately flexible joint distribution over the latent
space, P(X1:T ,Z1:T ). To begin, we adopt the assumptions taken by Sewell and Chen
(2017). Specifically, we assume that an actor’s community assignments form a Markov
chain, i.e.,

Zi
t | Zi

1, . . . , Z
i
t−1

d
= Zi

t | Zi
t−1, (6)

where
d
= denotes equality in distribution. Similarly, we assume an actor’s latent position

follows a Markov process with an additional dependence on the current community
assignment, i.e.,

Xi
t | Xi

1, . . . ,X
i
t−1, Z

i
1, . . . , Z

i
t−1, Z

i
t

d
= Xi

t | Xi
t−1, Z

i
t . (7)

These two assumptions allow us to factor the marginal density of an individual actor’s
trajectory. In particular, we conclude that an actor’s trajectory follows an independent
autoregressive hidden Markov model (AR-HMM):

p(Xi
1:T , Z

i
1:T ) = p(Zi

1)p(X
i
1 | Zi

1)

T∏
t=2

p(Zi
t | Zi

t−1)p(X
i
t | Xi

t−1, Z
i
t), (8)

where p(Zi
1) is the initial distribution over actor i’s initial community assignment, p(Zi

t |
Zi
t−1) is the transition distribution between actor i’s label assignment at time t− 1 and

time t, and p(Xi
t | Xi

t−1, Z
i
t) is the emission distribution for actor i’s latent position at

time t, which we allow to depend on the previously emitted value Xi
t−1.

To properly model evolving communities, we make an important departure from
previous dynamic latent space models. In particular, we expand the probabilistic model
to include time-inhomogeneous Markov chains where the transition matrix p(Zi

t | Zi
t−1)

can vary over time. This structure contrasts with previous methods, which assume that
an actor’s probability of transitioning from community i to community j is the same
at all times. We argue that time-inhomogeneous transitions are essential characteristics
of evolving communities. For example, the addition of a group requires the transition
matrices to add a non-zero probability of transitioning into that new group. Further-
more, once the new group appears in the network, an actor’s probability of transitioning
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into that group may approach a different steady-state from when it initially appeared.
Although models that utilize homogeneous Markov chains may infer changing group
structure by including empty clusters, their inferences will undoubtedly be biased due
to smoothing over sudden group structure changes.

Tractable inference over these time-inhomogeneous latent trajectories is made pos-
sible by tying together the transition distributions and emission distributions of every
actor. We collect the transition probabilities into a single row-stochastic transition ma-
trix Πt for each time step t = 2, . . . , T . Each entry is defined as (Πt)jk = πt

jk = p(Zi
t =

k | Zi
t−1 = j), which is the same for all n actors. In what follows, it will be useful to

isolate the j-th row of Πt in the vector πt
j . Furthermore, we refer to {πt

j} as the set
of rows of the transition matrix at time t. For simplicity, we assume that all actors
share a common initial state Zi

0 = 0. This allows us to view the initial distribution of
the Markov chain as a special transition distribution denoted by π1

0 = (π1
01, . . . , π

1
0G0

),

where π1
0k = p(Zi

1 = k | Zi
0 = 0) = p(Zi

1 = k) is equal for all actors.

Conditioned on the initial and transition probability matrices and the parameters
of the emission distributions θ, the data generating process of the actors’ trajectories is
characterized by a collection of iid AR-HMMs. In this work, we model the joint density
over all actors’ trajectories as

p(X1:T ,Z1:T | Π2:T ,π
1
0,θ) =

n∏
i=1

p(Xi
1:T , Z

i
1:T | Π2:T ,π

1
0,θ) (9)

=

n∏
i=1

π1
0,Zi

1
N(Xi

1 | μZi
1
, σ2

Zi
1
Ip)×

T∏
t=2

πt
Zi

t−1,Z
i
t
N(Xi

t | λμZi
t
+ (1− λ)Xi

t−1, σ
2
Zi

t
Ip),

where Ip is the p × p identity matrix, and N(X | μ,Σ) is the normal density with
mean vector μ and covariance Σ evaluated at the point X. Note that in this case θ =
{{μg, σ

2
g}

G
g=1, λ}. Like the clustering model in Handcock et al. (2007), the communities

are modeled as a multivariate normal distribution in the latent space with mean location
μg, and spherical covariance σ2

g Ip. As in the longitudinal clustering approach of Sewell

et al. (2016), the mean position Xi
t is equal to λμg + (1 − λ)Xi

t−1 where λ ∈ (0, 1).
This is a blend between the actor’s previous position and the current assigned group
location. Consequently, λ is called the blending coefficient. Note that we exclude λ = 0
so that latent positions remain clustered around the group centers in latent space. This
behavior is necessary to link the latent space’s evolving cluster structure to the observed
network’s evolving community structure. Furthermore, we exclude λ = 1 so that the
model accounts for the usually strong autocorrelation in the latent positions, which
improves forecasting performance.

In addition, we kept λ ∈ (0, 1) to allow the model to capture slowly merging (or
splitting) communities, which is not possible when λ = 0 or 1. Specifically, λ ∈ (0, 1)
induces a biased random walk that encourages actors to travel along the line connecting
their current latent position to their assigned group center μg. For example, consider
two communities that slowly merge into one, e.g., a dynamic friendship network between
students from two middle schools that slowly exhibits more across school friendships
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as students begin to attend a common high school. Such dynamics are described by a
latent space initially populated by two communities, corresponding to the two middle
schools, and the emergence of a third community, corresponding to the high school,
at their midpoint. As students are assigned to the high school community, the high
school’s group center acts as a sink where actors from the two middle school clusters
slowly wander over to the third community’s center. The size of λ controls the speed
of the merge with smaller values resulting in slower merging behavior. Although the
main manuscript primarily analyzes abrupt changes in community structure, where λ is
near one, we include a slow merging event in Section S.8 of the Supplementary Material
(Loyal and Chen, 2022a).

To complete the model, we must specify a prior on the initial distribution π1
0,

the transition probabilities Π2:T , and the parameters of the emission distribution θ =
{{μg, σ

2
g}

G
g=1, λ}. Recall that we account for evolving community structure by allowing

the transition probabilities’ dimensionality to change over time. Furthermore, we refrain
from specifying G, the total number of groups, or Gt, the active groups at time t, which
means that the prior must quantify their uncertainty. To satisfy these requirements, we
turn to the flexibility afforded by a Bayesian nonparametric approach.

3.3 Background: Dirichlet Processes and the HDP-HMM

The Dirichlet process (DP) is a distribution over discrete probability measures F0:

β ∼ GEM(γ), θk
iid∼ H, F0 =

∞∑
k=1

βk δθk
, (10)

where β ∼ GEM(γ) denotes the following sticking-breaking process (Sethuraman, 1994):

βk = wk

k−1∏
i=1

(1− wi), wk ∼ Beta(1, γ), k = 1, 2, . . . , (11)

and δθk
is a point mass at θk. In effect, β ∼ GEM(γ) divides a unit-length stick into

pieces with lengths given by the weights βk where the k-th weight is a random proportion
wk of the remaining stick length

∏k−1
i=1 (1 − wi). We use the notation F0 ∼ DP(γ,H)

to indicate draws from a DP with concentration parameter γ and base measure H.
Since draws from a DP are discrete with probability one, the DP cannot be used as a
general nonparametric prior over continuous densities. To extend the DP to continuous
density estimation, one uses F0 as a mixing measure over some parametric class of
distributions fθ. This construction is known as the DP mixture model. The sampling

process begins by drawing indicator variables zi
iid∼ β, and generating observations

as yi ∼ fθzi
. Note that we adopt the convention that if a K-dimensional vector v

belongs to the K simplex, i.e.,
∑K

j=1 vj = 1 and each entry vj ≥ 0, then z ∼ v

means z ∼
∑K

j=1 vj δ(z, j), where δ(i, j) is the Kronecker delta. Furthermore, the same
convention applies when K is infinite, which is the case for β.
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The hierarchical Dirichlet process (HDP) is a distribution over a collection of discrete
probability measures, {Fj : j = 1, . . . , J}, that share a common set of atoms:

β ∼ GEM(γ),

πj
iid∼ DP(α,β), θk

iid∼ H, Fj =

∞∑
k=1

πjk δθk
, j = 1, . . . , J.

(12)

The group-specific distributions of the HDP, πj , are often used as priors over the rows
of an infinite-dimensional transition matrix, i.e., (Π)jk = πjk for j ∈ N so that number
of states J is infinite. This formulation allows for the construction of the hierarchical
Dirichlet process hidden Markov model (HDP-HMM) (Teh et al., 2006), which is a natu-
ral Bayesian nonparametric extension of the Bayesian HMM (Robert et al., 2000). The
sampling mechanism of the HDP-HMM proceeds as follows: one samples the hidden
states sequentially as zt ∼ πzt−1 , and the observations are linked to the global parame-
ters via yt ∼ fθzt

. Note that the sharing of atoms induced by the HDP prior allows the
Markov chain to utilize a single global set of parameters, θk, at all time points.

Despite its popularity the original HDP-HMM struggles to model Markov chains
with long state durations. To remedy this issue Fox et al. (2011b) introduced the sticky
hierarchical Dirichlet process (sticky HDP):

β ∼ GEM(γ), (13)

πj
iid∼ DP(α+ κ,

αβ + κδj
α+ κ

), θk
iid∼ H, Fj =

∞∑
k=1

πjk δθk
, j = 1, . . . , J ,

where δj is a vector of zeros except for a single one at the j-th index. Analogous to the
HDP, the sticky HDP can be used as a prior over the transition matrices of an HMM. In
this case, the extra stickiness parameter κ > 0 biases the process towards self-transitions.
As a result, Fox et al. (2011b) found that the corresponding sticky HDP-HMM better
models the longer state durations found in real-world applications. For this reason, we
use the sticky HDP as a prior over the transition matrices in Equation (9).

3.4 An HDP Prior for Time-Inhomogeneous Markov Chains

Now, we present our extension to the latent position cluster model that can infer an
evolving community structure in dynamic networks. To accomplish this goal, we place
the following Bayesian nonparametric prior on the transition matrices in Equation (9):

β ∼ GEM(γ),

π1
0

iid∼ DP(α0,β), (14)

πt
g

iid∼ DP(α+ κ,
αβ + κδg
α+ κ

), (μg, σ
2
g)

iid∼ Hμ×Hσ2 , g = 1, 2, . . . , t = 2, . . . , T.

In this work, we take Hμ to be a multivariate normal distribution and Hσ2 to be an

inverse gamma distribution, i.e., μg
iid∼ N(μ0, τ

2Ip) and σ2
g

iid∼ Γ-1(a/2, b/2). For the ini-
tial distribution, we set κ = 0 and allocate it a separate concentration parameter α0 to
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distinguish it from the other transition distributions. Note that, unlike the traditional
HDP-HMM, our model re-samples the rows of the transition matrix, πt

g, at each time
step. This difference allows us to infer time-inhomogeneous Markov chains. As we pre-
viously argued, this time-inhomogeneity is crucial for modeling evolving communities.
In short, our model extends the dynamic Euclidean distance model proposed in Sewell
and Chen (2017) by incorporating time-inhomogeneous transition matrices that are in-
ferred through a nonparametric HDP prior. For this reason, we refer to our model as the
hierarchical Dirichlet process latent position cluster model (HDP-LPCM). A graphical
representation of the HDP-LPCM is depicted in Figure 2.

Figure 2: The graphical model for the HDP-LPCM. For clarity, we only display the
dependence on α and κ for the last transition matrix, although it is present in all
transition matrices from t = 2, . . . , T .

Although our prior borrows heavily from the sticky HDP-HMM formulation, there
are three key differences between the state-space model utilized in the HDP-LPCM
and the traditional sticky HDP-HMM. First, the emitted values Xi

t have an autoregres-
sive dependence. This modification was originally explored outside the network setting
by Fox et al. (2011a) to model switching linear dynamical systems with Gaussian ob-
servations. However, in our case, the observations are a sequence of binary adjacency
matrices. The second difference is that the HDP-HMM contains a single state sequence
Z1:T , while we infer multiple state sequences Zi

1:T for i = 1, . . . , n from a single observed
sequence of networks. The final departure from the HDP-HMM is the re-sampling of
the rows of the transition matrix {πt

g} at every time step. This difference introduces
time-inhomogeneity into the Markov chain, which is crucial for modeling the additions,
deletions, splits, and mergers of groups found in evolving communities.

In addition to properly modeling an evolving community structure, the other im-
portant accomplishment of our model is its ability to infer the number of communities
from the data in a fully Bayesian way. A typical parametric approach (specifying Gt

at each time step) would require comparing a combinatorial amount of models. This
task is computationally infeasible for even a small number of groups and time steps.
Through a nonparametric prior, we naturally incorporate model selection into our infer-
ence procedure, which avoids the computationally expensive model selection step found
in many LPCMs (Handcock et al., 2007; Sewell and Chen, 2017).
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3.5 The Weak-Limit Approximation

For inference, we utilize the weak-limit approximation to the HDP proposed in Fox
et al. (2011b). The approximation replaces the infinite dimensional DPs with finite
L-dimensional Dirichlet distributions as follows:

β ∼ Dirichlet(γ/L, . . . , γ/L),

π1
0

iid∼ Dirichlet(α0β1, . . . , α0βL), πt
g

iid∼ Dirichlet(αβ1, . . . , αβg + κ, . . . , αβL),

μg
iid∼ N(0, τ2Ip), σ2

g
iid∼ Γ-1(a/2, b/2), g = 1, . . . , L, t = 2, . . . , T.

(15)

Practically, the weak limit approximation transforms the infinite transition matrices
into finite L × L matrices. The parameter L gives us control over the approximation
with the accuracy increasing as L goes to infinity (Ishwaran and Zarepour, 2000). In
practice, one initially sets L larger than some a priori upper limit on the number of
communities and verifies this choice by checking that the posterior puts negligible mass
on models with L groups.

4 Estimation

We take a Bayesian approach to estimation. In what follows, we describe a Markov chain
Monte Carlo (MCMC) method to sample from the HDP-LPCM’s posterior. We imple-
ment a Metropolis-Hastings within Gibbs MCMC scheme with the goal of identifying
an evolving community structure consistent with the inferred posterior distribution.

4.1 Blocked Metropolis-Hastings within Gibbs Sampler

As outlined in Section 3, the joint distribution over all the variables (Equation (1))
factors as

p(Y1:T | X1:T , β0)︸ ︷︷ ︸
Equation (3)

·
Equation (9)︷ ︸︸ ︷

p(X1:T ,Z1:T | Π2:T ,π
1
0,μ1:L, σ

2
1:L, λ)

· p(Π2:T ,π
1
0 | β) · p(μ1:L, σ

2
1:L) · p(β)︸ ︷︷ ︸

Equation (15)

. (16)

To complete the model we assign the following priors:

β0 ∼ N(μβ0 , σ
2
β0
), λ ∼ N(0,1)(μλ, σ

2
λ), (17)

where N(0,1)(μ, σ
2) indicates the normal distribution with mean μ and variance σ2

truncated to the range (0, 1).

We realize these samples by following a Gibbs sampling algorithm in which we itera-
tively sample from the appropriate conditional distributions of X1:T , Z1:T , π

1
0, Π2:T , β,
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μ1:L, σ
2
1:L, λ, and β0. Due to our choice of priors, most conditional distributions are con-

jugate so that the Gibbs updates are derived in standard fashion. See Section S.1 of the
Supplementary Material for the details on these conditional distributions. Metropolis-
Hastings (MH) steps are necessary for the latent positions and the intercept. In both
cases, we use a normal random walk proposal. In all experiments, we tune the proposal
step sizes using an initial tuning phase so that the proposed moves have a 25%–40%
acceptance rate. The only samplers that need special care are the block sampler for
the actor labels Z1:T , the sampler for the global prior β, as well as the additional
hyperparameter sampling schemes. We fully derive these samplers in the Supplemen-
tary Material. In addition, we provide details of our parameter initialization scheme in
Section S.7 of the Supplementary Material.

The full Metropolis-Hastings within Gibbs sampler is outlined in Algorithm 1. When
describing the samplers, we use dot notation to indicate summations over an index,
e.g., for a random variable wab, w·b =

∑
a wab, wa· =

∑
b wab and w·· =

∑
a

∑
b wab. In

addition, we use nkjt to denote the number of actors that transitioned from group k to
group j at time t and nkt to denote the number of actors in group k at time t.

4.2 Posterior Summarization

The selection of a single point estimate that adequately summarizes the full posterior is
a challenging and open problem in Bayesian nonparametric statistics. A simple solution
uses the posterior mode. However, in Bayesian nonparametric models, the MCMC chain
often only visits a single partition once, which makes frequency estimates unreliable.
Another approach is to choose the partition corresponding to the MAP (maximum a
posteriori) estimate. A downside of the MAP approach is that it does not marginalize
over the uncertainty in the partitions. As a result, MAP clustering estimates tend to
over-fit the data. An ideal summarization methodology should take into account the
clustering uncertainty suggested by the posterior samples.

In this work, we take a decision theoretic approach to posterior summarization.
Specifically, we select the partition that minimizes the posterior expectation of an ap-
propriately chosen loss function over dynamic clusterings. In the case of static clustering,
two popular choices of loss functions are Binder’s loss (Binder, 1978) and the variation of
information (Meilă, 2007). Their use for posterior summarization was advocated by Lau
and Green (2012) and Wade and Ghahramani (2018), respectively. Note that minimiz-
ing Binder’s loss is equivalent to maximizing the Rand index, another popular measure
of clustering performance. Both loss functions have the desirable property that they
are metrics over the space of clusterings. Furthermore, the optimization of the expected
losses only depends on the posterior co-occurrence probabilities, so avoids complications
due to label switching.

To extend this approach to dynamic clusterings, we minimize the posterior expected
time-averaged variation of information (VI) which averages the static VI’s at each time
step as follows:

argmin
Ẑ1:T

E

[
1

T

T∑
t=1

VI(Zt, Ẑt)

∣∣∣∣∣ Y1:T

]
,
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Given the previous initial distribution (π1
0)

(�−1), a set of state-specific transition

probabilities Π
(�−1)
2:T , the global transition distribution β(�−1), group parameters

(μ1:L, σ
2
1:L)

(�−1), node labels Z(�−1)
1:T , latent positions X (�−1)

1:T , the likelihood specific

parameters β
(�−1)
0 , and blending coefficient λ(�−1), update the current parameters as

follows:

1. Initialize current parameters to the values of the (�− 1)th iteration.
2. Update latent positions X1:T via MH with a normal random walk proposal.
3. Update β0 via MH with a normal random walk proposal.
4. Update node labels Z1:T using the forward-backward algorithm detailed in Algo-

rithm S.1 in Section S.2 of the Supplementary Material.
5. Sample the auxiliary variables m, m̄,w as in Algorithm S.2 in Section S.4 of the

Supplementary Material.
6. Update the global transition distribution by sampling

β ∼ Dirichlet(γ/L+ m̄·1·, . . . , γ/L+ m̄·L·).

7. For each k ∈ {1, . . . , L}, sample a new initial distribution based on the initial
assignments:

π1
0 ∼ Dirichlet(α0β1 + n011, . . . , α0βL + n0L1).

8. For each k ∈ {1, . . . , L} and t ∈ {2, . . . , T}, sample a new transition distribution
based on the sample assignments:

πt
k ∼ Dirichlet(αβ1 + nk1t, . . . , αβk + κ+ nkkt, . . . , αβL + nkLt).

9. Update cluster parameters. For each k ∈ {1, . . . , L}:

μk ∼ N(μ̄k, σ̄
2
kIp),

σ2
k ∼ Γ-1((nk·p+ a)/2, b̄/2),

where μ̄k, σ̄
2
k are defined in Equation (S.1) and b̄ is defined in Equation (S.2) in

Section S.1 of the Supplementary Material.
10. Update blending coefficient λ:

λ ∼ N(0,1)(μ̄λ, σ̄
2
λ),

where μ̄λ, σ̄
2
λ are defined in Equation (S.3) in Section S.1 of the Supplementary

Material.
11. Update remaining hyperparameters {τ2, b, γ, α0, α, κ, ρ} as in Algorithm S.4 in

Section S.6 of the Supplementary Material.

Algorithm 1: Blocked Metropolis-Hastings within Gibbs sampler for the HDP-LPCM.
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where VI(Zt, Ẑt) = 2H(Zt, Ẑt)−H(Zt)−H(Ẑt) and H(Zt, Ẑt), H(Zt), and H(Ẑt) are
entropies calculated using the joint and marginal distributions of the labels. Similar
to Wade and Ghahramani (2018), we instead minimize the following calculable lower-
bound:

argmin
Ẑ1:T

⎧⎨
⎩

T∑
t=1

n∑
i=1

log(

n∑
j=1

1{Ẑj
t=Ẑi

t}
)− 2

T∑
t=1

n∑
i=1

log(

n∑
j=1

p(Zj
t = Zi

t | Y1:T )1{Ẑj
t=Ẑi

t}
)

⎫⎬
⎭ .

Notice that this expression only depends on the posterior co-occurrence probabilities,
which can be estimated from the posterior samples. We perform this optimization by
searching over all posterior samples from the MCMC chain (after an appropriate burn-
in). Possible ties are broken by selecting the sample with the highest likelihood (Equa-
tion (3)). This minimization does not require the partitions to be visited by the Markov
chain; however, by restricting the search to the sampled partitions, we have access to
the associated latent space for later visualization of the network.

4.3 Non-Identifiability of the Latent Positions

Since latent position models depend on the distance between actors, it is clear that they
are invariant to translations, rotations, and reflections of the latent space. Any posterior
inference that utilizes these positions must correct for such a non-identifiability. We take
the approach of Procrustes matching commonly employed in the literature. This involves
post-processing the samples by rotating and translating them to match a reference
layout. For a detailed description of this procedure, see the original work by Hoff et al.
(2002). We use the sample chosen by the procedure in Section 4.2 as the reference layout.

5 Simulation Study

We designed a simulation study to assess the HDP-LPCM’s performance on synthetic
networks with known community dynamics that mimic those found in real-world net-
works. We considered two scenarios: a sequence of networks with (1) a single static
number of groups active over all time steps and (2) a number of groups that changes
over time because the groups have either merged or split. We labeled these scenarios the
time-homogeneous and time-inhomogeneous simulations, respectively. The Supplemen-
tary Material includes an additional simulation study that investigated how group sepa-
ration and stability affect the HDP-LPCM’s performance (Section S.9) and a sensitivity
analysis that showed that the estimation method is unaffected by our hyperparameter
choices (Section S.10).

5.1 Measuring Performance

For each simulation, we evaluated the following three tasks: (1) assigning nodes to the
correct community at each time step while penalizing label switching across time steps,
(2) selecting the correct number of communities at each time step, and (3) predicting
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in-sample, missing, and one-step ahead dyads. We emphasize that the primary goals of
the HDP-LPCM are the first two tasks which involve clustering and community number
selection.

To evaluate the clustering performance outlined in task (1), we used two metrics:
the adjusted Rand index (ARI) and the variation of information (VI) introduced in
Section 4.2. The ARI takes values in [0, 1] and measures the amount of agreement
between two cluster assignments. Values close to one indicate near-identical assignments,
while values near zero are roughly expected when making assignments at random. On
the other hand, the VI is a true metric that takes values in [0, 2 log2(K

∗)], where K∗ is
the maximum number of communities, e.g., K∗ = L for the HDP-LPCM. Values near
zero indicate that the two cluster assignments are near identical. Unlike the ARI, the VI
satisfies the triangle inequality and is symmetric in its arguments. We included the VI
because we used it for posterior summarization. In the dynamic setting, we can compute
at least two versions of these metrics. The first version computes the metric at each time
step and averages the results. We refer to these as the average ARI and average VI.
The second version considers the labels for all time steps together and computes a single
metric called the global ARI and global VI. Achieving a good value of the global metrics
is more challenging since it requires consistent labeling within each time step and across
time steps. As such, we are primarily concerned with good global performance.

We measured predictive performance in three ways. First, to determine the goodness-
of-fit of the models to the training data, we calculated the area under the receiver
operating characteristic curve (AUC) based on the model’s predictions of in-sample
dyads. Next, we measured out-of-sample performance by evaluating the model’s ability
to impute missing dyads and make one-step ahead predictions. To do this, in each
simulation, we held out the last network and removed 10% of the dyads from each
proceeding network. Then, we obtained edge predictions for the missing dyads and one-
step ahead predictive probabilities and calculated the AUC values based on the dyads
involved in each task.

5.2 Competing Methods

We compared our proposed HDP-LPCM to three competing methods: two stochastic
block models (SBMs) and a parametric LPCM. The first method used a single SBM fit
at each time step using the variational EM algorithm with the number of communities
selected by maximizing the integrated classification likelihood (ICL) criterion. To apply
this method to dynamic networks, we needed to account for label switching between
time steps. To do so, we combined the output sequentially using the label switching
algorithm proposed in Papastamoulis and Iliopoulos (2010). The second method is the
dynamic SBM introduced in Matias and Miele (2017) with the number of clusters chosen
by maximizing the ICL criterion. This model assumes a fixed number of communities, so
we only applied it to the homogeneous simulation. We used the blockmodels and dynsbm
R packages to estimate the SBM and dynamic SBM, respectively. However, since these
packages do not provide one-step ahead predictions or perform missing edge imputation,
we did not remove any dyads from the simulated networks and only calculated the AUC
based on predicting in-sample dyads for the block models.
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The last competing method is the parametric LPCM proposed in Sewell and Chen
(2017), which only applies to the homogeneous simulations. We replaced the directed
likelihood with the undirected likelihood of this work and set the number of commu-
nities to the ground truth. Lastly, we extracted the following two estimators of the
community assignments: LPCM (MAP) and LPCM (VI). As their names imply, LPCM
(MAP) is the original MAP estimator proposed in Sewell and Chen (2017), and LPCM
(VI) used the VI summarization procedure we introduced in Section 4.2. All LPCMs
imputed missing edges and calculated one-step ahead predictions using the augmented
Gibbs sampler and Monte Carlo marginalization scheme described in Sewell and Chen
(2015). Note that the HDP-LPCM’s forecasts assume that ΠT+1 = ΠT for simplic-
ity.

The HDP-LPCM and the LPCMs were estimated using a Markov chain consist-
ing of 50,000 samples. We used the initial 5,000 samples to tune the step sizes of the
Metropolis-Hastings samplers. We discarded the following 10,000 samples as burn-in
leaving 35,000 samples for inference. For the HDP-LPCM, we fixed the truncation level
of the weak-limit approximation (Equation (15)) to L = 10 in all experiments.

5.3 Time-Homogeneous Simulation

This simulation contains a single set of groups and transition matrices common to all
time points. Our goal is to demonstrate that the HDP-LPCM performs comparably to
the parametric LPCM (Sewell and Chen, 2017) while also providing a proper assessment
of uncertainty in the network’s community structure. The networks were generated
according to the sampling mechanisms described in Sections 3.1 and 3.2. We fixed the
total number of groups to G = 6 at each time point. We chose the blending coefficient
λ = 0.8, the dimension of the latent space p = 2, and the intercept β0 = 1.0. We set the
group locations to

(μ1, . . . ,μ6) =

(
−4 4 −2 2 0 0
0 0 0 0 −5 5

)
. (18)

We drew the group shapes σ2
g from a Γ-1(6, 2) distribution. These parameters induce

substantial overlap between groups 1 and 3 and groups 2 and 4 in the latent space. See
the second column of Figure 1 for an adjacency matrix drawn from this group structure.
Next, the initial distribution π1

0 was drawn from a six-dimensional Dirichlet(10, . . . , 10).
The six rows of the transition matrix, πt

g for g = 1, . . . , 6 and t = 2, . . . , 6, were chosen
proportional to(

1

‖μ1 − μg‖
, . . . ,

1

‖μg−1 − μg‖
,max
k �=g

{
const

‖μk − μg‖

}
,

1

‖μg+1 − μg‖
, . . . ,

1

‖μG − μg‖

)
.

We set the constant in the above equation equal to 20, which yields self-transition
probabilities ranging from 0.83 to 0.9. The latent actor positions, X1:T , and group
assignments, Z1:T , were drawn from Equation (9). Finally, we generated the adjacency
matrices according to Equation (2) with the linear predictor ηijt given by Equation (5).
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Simulation Model AUC (in-sample) AUC (missing) AUC (one-step ahead)
Homogeneous HDP-LPCM 0.911 (0.008) 0.897 (0.011) 0.810 (0.018)
Homogeneous LPCM (VI) 0.911 (0.008) 0.896 (0.011) 0.809 (0.018)
Homogeneous LPCM (MAP) 0.911 (0.008) 0.896 (0.010) 0.809 (0.018)
Homogeneous Dynamic SBM 0.889 (0.010) – –
Homogeneous SBM 0.892 (0.012) – –
Homogeneous Naive – – 0.617 (0.013)

Inhomogeneous HDP-LPCM 0.871 (0.004) 0.856 (0.007) 0.782 (0.021)
Inhomogeneous SBM 0.849 (0.006) – –
Inhomogeneous Naive – – 0.603 (0.014)

Table 1: Median AUC values for all 50 time-homogeneous / time-inhomogeneous simu-
lations. Standard deviations are displayed in parentheses. The Naive model corresponds
to using the dyads in YT to forecast YT+1.

Figure 3: Boxplots of ARI (left) and VI (right) of the five competing methods on the
time-homogeneous simulation. The non-hatched and hatched boxes denote the average
and global metrics, respectively. The proposed method is highlighted in blue.

We simulated 50 dynamic networks with T = 7 time points and n = 120 actors each.
Note that we only used the last network to evaluate one-step ahead predictions.

Table 1 contains the AUC values from this simulation. As a result of the preva-
lent community structure in the simulated networks, all the models have comparable
in-sample predictive performances. Also, the HDP-LPCM’s predictions of missing and
one-step ahead dyads are on par with those of the parametric LPCMs that directly
model the true data-generating process. However, the ARI and VI values in Figure 3
reveal that the block models are doing a poor job capturing the underlying community
assignments. Furthermore, the static SBMs have a significantly worse global ARI and
VI due to their inability to properly match the community labels across time steps.
Lastly, the LPCMs that used the VI estimator substantially outperformed the LPCMs
that used the MAP estimator, which validates our method of posterior summariza-
tion.

Next, we evaluated the ability of the HDP-LPCM to properly assign uncertainty
to the dynamic network’s community structure. Figure 4 contains boxplots of the es-
timated posterior probabilities of |Gt| over the 50 simulations. In most cases, |Gt| = 6
is correctly identified with the highest posterior probability. Next, we compared the
ability of our posterior summarization method to select a partition with the correct
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Figure 4: Boxplots showing the posterior distribution of |Gt| over the 50 time-
homogeneous simulations with bolded boxes indicating the true number of groups.

Figure 5: The number of groups estimated at each time step by the HDP-LPCM (left),
dynamic SBM (center), and the static SBMs (right). The yellow cells contain the true
number of communities, |Gt| = 6 at all time steps.

number of communities. Figure 5 displays the number of communities selected by the
HDP-LPCM at each time step as well as by the SBMs which are included as a baseline.
The HDP-LPCM drastically outperforms the block models, especially the static SBMs
which consistently underestimate the number of groups. Overall, the HDP-LPCM has
equivalent predictive and clustering performance to the parametric LPCM while also ac-
curately estimating the true number of communities which justifies its use as an efficient
drop-in replacement for the parametric LPCM.

5.4 Time-Inhomogeneous Simulation

We designed this simulation to test our model’s ability to detect changes in group
structure by allowing the number of groups to vary over time. We generated 50 networks
with T = 10 time steps and n = 120 actors each. There are G = 6 groups in the networks
overall. The simulations begin with two groups, these two groups split into six groups
at t = 4, and then the six groups merge into four groups at t = 7. The introductory
example (Figure 1) displays adjacency matrices generated from this procedure.

Once again, the networks were simulated according to the sampling mechanisms de-
scribed in Sections 3.1 and 3.2 with the last network held out to evaluate one-step ahead
forecasts and 10% of the dyads removed at each time step to assess dyad imputation.
This simulation differs from the time-homogeneous simulation in how we specified the
transition matrices πt

g. We set the initial distribution π1
0 = (1/2, 1/2)T. We chose the
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Figure 6: Boxplots of ARI (left) and VI (right) of the two competing methods on the
time-inhomogeneous simulation.

rows of the transition matrix, πt
g for g ∈ Gt−1 and t = 2, . . . , 10, proportional to(

1{1∈Gt}
‖μ1 − μg‖

, . . . ,
1{g−1∈Gt}

‖μg−1 − μg‖
,

max
k �=g : k∈Gt

{
const

‖μk − μg‖

}
1{g∈Gt},

1{g+1∈Gt}
‖μg+1 − μg‖

, . . . ,
1{G∈Gt}

‖μG − μg‖

)
,

(19)

where Gt indicates the set of active groups at time t. At t = 1, 2, 3 there are two groups
with G1 = G2 = G3 = {1, 2}. From t = 4, 5, 6 these two groups split into six groups
so that G4 = G5 = G6 = {1, 2, 3, 4, 5, 6}. Finally, these six groups merge into four
groups at t = 7, 8, 9 so that G7 = G8 = G9 = {1, 2, 3, 4}. For all time points, we set the
constant in Equation (19) to 20 except for t = 4. At t = 4, we set the constant equal to
1 so that the nodes were more evenly distributed among the six newly created groups.
In addition, we set λ = 0.9 which resulted in stronger group cohesion and more closely
matched the values found in real-world networks.

The competing methods’ predictive performance on this simulation are displayed in
the second half of Table 1. The in-sample performance is comparable between the HDP-
LPCM and the SBM due to the strong group structure. Furthermore, the HDP-LPCM’s
ability to predict missing and one-step ahead dyads remains good despite the evolving
community structure. Once again, the advantage of the HDP-LPCM over the block
models is apparent when comparing their clustering performance in Figure 6 where the
SBM has an unsatisfactorily low global ARI.

Next, we evaluate the ability of the HDP-LPCM to quantify the changing macro-
level community structure. The posterior probabilities for |Gt| are displayed in Figure 7.
For most time points the correct number of groups has the highest median posterior
probability. The exception is at t = 3, which is right before the two groups split into six
groups, where no group number has a median posterior probability that exceeds 0.5.
As is common in Dirichlet process mixture models, the model tends to create a few
small clusters, which can inflate the group count. This is the case here, where the extra
clusters at t = 3 tend to be composed of less than five nodes. Once again, we assess
our posterior summarization method’s ability to select a clustering with the correct
number of communities. The number of groups selected by this method at each time
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step is displayed in Figure 8. For the majority of simulations, our method selects the
correct number of clusters. However, the method struggles at t = 3 which is where the
posterior is the most uncertain. However, the HDP-LPCM selects the true number of
clusters, |G3| = 2, the majority of the time despite often assigning |G3| = 3 a higher
posterior probability. The HDP-LPCM is able to recover because the VI estimator can
select a clustering with the small spurious communities removed when such pruning is
supported by the posterior co-occurrence matrix. In contrast, the SBMs fail to estimate
the true community structure for t = 1− 6 in the majority of simulations. Overall, we
conclude that the HDP-LPCM is able to adequately infer evolving communities.

Figure 7: Boxplots showing the posterior distribution of |Gt| over the 50 time-
inhomogeneous simulations. Bolded boxes indicate the true number of communities.

Figure 8: The number of groups estimated at each time step by the HDP-LPCM (left)
and the static SBMs (right). The yellow cells contain the true number of communities.

6 Real Data Application

In this section, we demonstrate the utility of our proposed HDP-LPCM on a variety
of real-world dynamic networks with an evolving community structure. We include
two applications: inferring changing international military alliances during the Cold
War and detecting dynamic plotlines in the television series Game of Thrones. Also, in
Section S.11 of the Supplementary Material, we show that the HDP-LPCM corroborates
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many previous findings concerning Sampson’s monastery network (Sampson, 1969), a
standard pedagogical example in the network literature.

For each analysis, we estimated the HDP-LPCM with a truncation level L = 25
using 50,000 iterations for tuning, 50,000 iterations for burn-in, which left a remaining
400,000 iterations for inference. The trace plots, autocorrelation functions (ACFs), and
marginal posterior densities are contained in Section S.12 of the Supplementary Ma-
terial. Visual inspection of the trace plots indicates the algorithm converged on each
dataset. Furthermore, the estimated model’s in-sample AUC was 0.99 for each analysis,
which indicates a good in-sample fit.

6.1 International Military Alliances

We begin by using the HDP-LPCM to examine changes in international military al-
liances during the first three decades of the Cold War (1950–1979). We use the Formal
Alliances (v4.1) dataset curated as part of the Correlates of War Project (Gibler, 2009b).
The raw dataset records all formal alliances – mutual defense pacts, non-aggression
treaties, and ententes – among nations between 1816 and 2012. The goal of our analysis
is to uncover the competing political blocs that defined the Cold War period in history
and to determine any points in time where that alliance structure changed.

For this analysis, we use the yearly dyadic dataset, which records an undirected
edge between two nations if there is a formal alliance between them during that year.
To simplify the analysis, we discretized the dynamic networks into five year chunks
from 1950–1979. We removed the nodes with a degree less than two from each network
to focus on the larger political blocs found in the dataset. In addition, we required a
nation to have at least one alliance during 1950–1979. We binarized the relations so
that a connection between nations i and j at time t means they had at least one active
alliance during those five years. This preprocessing resulted in T = 6 undirected binary
networks that each contains n = 107 actors.

The alluvial diagram (Figure 9) of the partition selected with the procedure de-
scribed in Section 4.2 shows that the HDP-LPCM estimates six communities overall
with five communities active during all six time points. Note that the model uses group
2 to collect isolated nodes and small intermittent alliances. This interpretation is sup-
ported by the fact that σ̂2 = 132, which is 28 times larger than the second largest group
shape σ̂1 = 4.67, and it encompasses most of the latent space. Thus we consider groups
1, 3, 4, 5, 6, and 7 as the major blocs inferred by the model. Note that these blocs
strongly dictate the network’s dynamics with an inferred blending coefficient λ = 0.994.
Figure 10 depicts the estimated latent spaces for the years 1950–1954 and 1960–1964.
We included the latent spaces for the remaining years in the Supplementary Material.

The static communities (groups 1, 3, 4, 5, and 6) coincide with long term regional
alliances during the Cold War. Group 1 corresponds to the Western Bloc, consisting pri-
marily of nations that are a part of the North Atlantic Treaty Organization (NATO) and
the Western European Union (WEU). The competing group 5 represents the Eastern
Bloc, which consisting of the Soviet Union and its satellite states such as East Germany,
Czechoslovakia, and Poland. Group 3 consists of the Latin American coalition of the
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Figure 9: Alluvial diagram for the international military alliances network. Each line is
the flux of nodes going from one group to the next at time t to t+1. A line’s thickness
is proportional to the number of nodes and the total height represents the 107 nodes.

Organization of American States (OAS), founded in 1948 to oppose socialism. Group 4
consists of member nations of the Southeast Asia Treaty Organization (SEATO), which
is the Asian equivalent of NATO. Group 6 is the Arab League (at the time the League
of Arab States) formed in 1945 to protect the interests of Arab countries. As depicted
in the alluvial diagram, an interesting finding of the HDP-LPCM is that there is little
exchange of nations between these groups over this time period. This finding bolsters
the claim that “once the ‘cold war’ confrontation became apparent . . . many nations
cast their lot with either the American or Soviet bloc” (Small and Singer, 1969).

The evolving community structure (birth of group 7) is a result of the emergence
of Africa as a world power. In particular, seventeen African nations gained their inde-
pendence in 1960 alone. As a result of these newly independent nations, a large number
of regional alliances formed in the early 1960s (Gibler, 2009a). This is reflected in the
HDP-LPCM by the emergence of group 7 at t = 3, which encompasses the newly in-
dependent African nations. Fewer African alliances formed over the next decade. Our
model reflects this fact by only including the Union of Central African States, which
consists of former French colonies, in group 7 at t = 4 and 5. Finally, the Economic
Community of West African States (ECOWAS) formed in 1975, which resulted in the
re-introduction of many western African states into group 7 at t = 6. The dynamic
nature of the HDP-LPCM is essential in revealing the emergence of Africa as a world
power and demonstrates the importance of incorporating community evolution in latent
space network modeling.

6.2 Character Interactions in Game of Thrones

In this section, we study the networks of character interactions in the television series
Game of Thrones. The goal of our analysis is to use community detection to pinpoint
coherent dynamic plotlines within the series. This is an interesting case study because
the series’ narrative is known for its many dynamic stories and characters who freely
move between them. As such, we expect various groups of characters to form and die
out across the series’ lifetime and actors to freely move between these groups.

We utilize the networks compiled by Beveridge and Chemers (2018), who parsed fan-
generated scripts found on the user curation site Genius. The original dataset consists
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Figure 10: Latent space of international military alliances for the years 1950–1954 (left)
and 1960–1964 (right). The group shapes σg are displayed as two-standard deviation
ellipses centered on the group means μg. The names of select nations are annotated.
The undirected edges are also displayed. For clarity, all unconnected nodes and group
2’s two-standard deviation ellipse are removed.

of weighted character-character interactions split up between the eight seasons of the
television series. The weight of an edge equals the number of interactions during a given
season. Since this is primarily a pedagogical example, we restrict the dataset to the first
four seasons of the show. To remove minor characters, we only keep interactions that
occur greater than or equal to 10 times each season. The final result is T = 4 binary
undirected networks with a total of n = 165 actors each.

The alluvial diagram (Figure 11) and associated latent space (Figure 12) reveal
a dynamic group structure. The model infers six groups overall; however, only three
groups are active during the first season of the show. During the second season, group
2 splits off into groups 3, 4, 6, and 7. In addition, group 5 is created out of characters
from group 6. Note that the model uses group 6 to collect inactive characters, so we
exclude it from further analysis. After the change in season two, the network’s group
structure remains constant for seasons three and four. The latent space of seasons three
and four are included in the Supplementary Material. Furthermore, since the blending
coefficient λ = 0.974, we conclude that the groups drive the evolution of the network.
Overall, the ability of the HDP-LPCM to infer an evolving group structure is crucial
for properly understanding the network’s dynamics.

The inferred groups and their dynamics are consistent with the storylines in the
Game of Thrones series. During season one, there are two active groups. Group 2 consists
of all characters on Westeros, while group 1 centers around Deanery Targaryen’s story
on Essos. Starting at season two, group 2 contains characters revolving around Arya
Stark’s story arc, House Lannister, and other characters at King’s Landing. Group 3
contains Bran Stark’s group of companions (Hodor, Rickon, Osha, Meera, and Jojen) as
they travel north of the wall. The plotlines related to the remainder of House Stark are
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Figure 11: Alluvial diagram for the Game of Thrones character interaction networks.

Figure 12: Latent space of character interactions in Game of Thrones for seasons 1
and 2. We removed all unconnected nodes and group 6’s two-standard deviation ellipse.

contained in group 7. This group is composed of both Robb Stark’s contingent as well
as those related to Theon Greyjoy, who currently rules Winterfell the ancestral home of
the Starks. Group 4 pertains to the story north of the wall. It most notably contains Jon
Snow and Sam Tarly. Lastly, group 5 revolves around the story of Stannis Baratheon and
his quest to regain the Iron throne, which was introduced in season two. In conclusion,
our model recovers narratively coherent groups within the Game of Thrones character
interaction networks and identifies their dynamics within the storyline.

7 Discussion

In this article, we proposed the hierarchical Dirichlet process latent position cluster
model (HDP-LPCM) for dynamic networks. This is the first, to our knowledge, latent
position model that can detect evolving community structures. In addition, we demon-
strated that the HDP-LPCM still performs well when there is a static group structure.
To accomplish our modeling goals, we used Bayesian nonparametric priors to provide si-
multaneous inference over the number of communities at each time point in the network
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and the dynamics of each actor’s latent position. Furthermore, our MCMC inference
procedure has computational advantages over existing approaches. In particular, we
avoided the BIC approximations of Handcock et al. (2007) and the computationally
expensive process of estimating a large number of models.

In this work, we focused solely on community detection for binary undirected net-
works; however, our method can easily be extended to other network types. For example,
both directed and weighted networks can be accommodated through the minor modifi-
cations of the likelihood presented in Sewell and Chen (2016). Due to the HDP-LPCM’s
conditional dependence structure, one only needs to modify the Metropolis-Hastings
steps (i.e., steps 2 and 3) in Algorithm 1 to use the new network likelihood.

Common to most latent distance models, our proposed MCMC estimation method is
time-intensive for large networks due to the quadratic scaling of the procedure. Specifi-
cally, the proposed sampler produced 3.3 and 4 samples per second on a 2015 MacBook
Pro with a 2.2 GHz Intel Core i7 processor for the networks in Section 6.1 and Sec-
tion 6.2, respectively. To alleviate this issue, one could use the case-control likelihood
of Raftery et al. (2012). This method approximates the full likelihood by sub-sampling
the unconnected edges, which allows for inference that scales linearly with the number
of nodes. To further decrease the model’s runtime, one could create a variational Bayes
or stochastic variational Bayes (Hoffman et al., 2013) algorithm. However, the lack of
conjugacy in the distance model means such an algorithm is non-trivial to implement.
For this reason, we leave these extensions to future work.

Although our model can infer the number of communities, it does not provide in-
ference for the latent space’s dimension, p. In the numerical studies, we fixed p = 2,
which allowed for visualization and was adequate for the networks considered in this
work. Furthermore, we believe such visualizations allow for human-in-the-loop model
scrutiny, which is a primary strength of the latent position model over other approaches
such as latent feature models (Miller et al., 2009). Of course, selecting an appropriate
dimension of the latent space is crucial if one is focused on tasks such as link predic-
tion. A straightforward approach is to use a model selection criteria such as BIC or the
Watanabe-Akaike information criterion (WAIC) (Watanabe, 2010). Another possibility
is to put a prior over the dimensionality such as in Durante and Dunson (2014). Re-
gardless, the selection of p remains an interesting and open question for future research.

Finally, while the HDP-LPCM’s assumption of static group locations matches cer-
tain real-world networks, one can devise situations more naturally described by moving
group centers. For example, increased polarization between two groups resulting from
the groups moving further apart over time. We chose to keep the groups fixed for two
reasons: the simplification still captures the merging, splitting, creation, and deletion
phenomena of interest, and it removes the non-identifiability issue of distinguishing be-
tween the creation of a group and the movement of a group to a new location. Devising a
model that efficiently infers dynamic group centers is an area of future research interest.

Despite these possible extensions, we believe the HDP-LPCM has a broad range of
applicability. As demonstrated on the real-world networks in this paper, applications
include the detection of changing alliances structures as well as inference regarding
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narrative plotlines. We believe our methodology can be built upon to provide new tools
for understanding the sequential evolution of communities in dynamic networks.

Supplementary Material

Supplemental Material for “A Bayesian Nonparametric Latent Space Approach to Mod-
eling Evolving Communities in Dynamic Networks” (DOI: 10.1214/21-BA1300SUPPA;
.pdf).

The dynetlsm Python package (DOI: 10.1214/21-BA1300SUPPB; .zip). Contains code
to sample from the HDP-LPCM. This package (Loyal and Chen, 2022b) also includes
all datasets and scripts used to produce the results presented in this work . This package
is also available at https://github.com/joshloyal/dynetlsm.
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